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Abstract

This paper reports on the learning of spatial concepts
in the Lo project. The starting point is the identifi-
cation of a visual primitive which appears to play a
central role in the visually-based semantics for terms
which express spatial relations between two objects.
This primitive is simply the orientation of the imag-
inary ray connecting the two related objects where
they are nearest each other. Given this, an impor-
tant part of the learning consists of determining which
other orientations this particular one should align with
(e.g. it should align with upward vertical for “above™).
These other orientations may be supplied by an object-
centered coordinate frame, as in English “in front of”
and Mixtec “&ii”, as well as by the upright coordinate
frame. A central feature of the system design is the use
of orientation-tuned Gaussian nodes which can learn
their orientation and o, and which perform the critical
task of orientation comparison.

Introduction

The Lo project (Feldman et al. 1990; Weber & Stol-
cke 1990) concerns the computational task of acquir-
ing natural language in the visually-based semantic do-
main of spatial relations between geometrical objects.
The goal is to learn to determine, for any natural lan-
guage, whether a scene description in that language is
true of a particular scene. A significant part of this
task is learning the perceptually grounded semantics
for the individual spatial terms in the language. Thus,
as a subtask, we would like to learn to associate scenes,
containing several simple objects, with spatial terms de-
scribing the spatial relations in the scene. Languages
differ widely in the perceptual features encoded in their
spatial terms (Talmy 1983; Bowerman 1989), making
this subtask a challenging one.

When learning a particular spatial concept, the sys-
temn is supplied with a scene, and an indication of which
object is the reference object (called the landmark, or
LM) and which is the object located relative to the
reference object (called the trajector, or TR). This is
illustrated in Figure 1.

Earlier work on this subtask (Regier 1990; Regier
1991) used connectionist mechanisms to learn several
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LM “Above”

Figure 1: Learning to Associate Scenes
with Spatial Terms

basic spatial terms in English, and handled the prob-
lem of learning the semantics for these in the absence of
explicit negative instances. It did not, however, cover
object-relative terms, i.e. spatial terms which are sen-
sitive to an inherent orientation that a LM may have,
such as “in front of” in English. “In front of” makes
reference to a coordinate frame centered in the LM it-
self: if the LM (a person, for example) has an inherent
front, “in front of” is determined relative to that front.
This is in contrast to terms like “above”, which are un-
affected by any inherent orientation of the LM.

This paper presents a way of viewing spatial con-
cepts in which the semantics for object-relative terms
and non-object-relative terms are learned in much the
same manner. This is based on the identification of a
useful visual primitive, and the specification of a mech-
anism for using it. The system presented here success-
fully learns the perceptually-based semantics of object-
relative terms such as “in front of”, as well as that of
non-object-relative terms such as “above”, “on”, and
the like.

General Approach

A central assertion of this work is that one of the cru-
cial primitives used in determining spatial relations is
the orientation of the (imaginary) ray from the LM to
the TR where they are nearest to each other. Consider
Figure 2. Here we have small circles located relative
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Figure 2: Good and Poor Instances of English “Above”

to two triangles, with the shortest possible connecting
line between the LM and TR drawn in. Note that in
both cases, the circle is above some part of the triangle.
The assertion is that (a) is a better instance of “above”
because the orientation of the ray is closer to upward
vertical in this case than in (b). This has, at any rate,
proven to be a productive working hypothesis. This
orientation where the LM and TR are nearest is called
the TR orientation.

Another potentially useful primitive, to be incorpo-
rated in the future, is the orientation of the ray con-
necting the centers of mass of the two objects (the CoM
ortentation). Figure 2 can actually be seen as supply-
ing evidence that a combination of these two primitives
might play a role in the determination of exactly when
one object is “above” another. For if the small cir-
cle in (a) were moved down the slope of the triangle,
it would eventually reach a point at which we would
no longer feel comfortable calling the relation between
the two objects “above”; however, the TR orientation
would have remained unchanged. This can be explained
by postulating that both the TR orientation and the
CoM orientation must play a part in the determination
of “above”, and that the CoM orientation in this new
case is too far from vertical to allow one to label the
scene “above”. The CoM orientation is not used in the
system presented here; this is primarily to simplify the
exposition.

Given orientation primitives of this sort, a large part
of the task of learning the perceptually-based semantics
for spatial terms is to determine which other orienta-
tions in the scene the TR (and/or CoM) orientation
aligns with, and to what extent. As a very simple ex-
ample, if the TR orientation aligns perfectly with up-
ward vertical, we consider this an excellent instance of
“above”. If it deviates a little from upward vertical,
this is a fair instance, and so on. Thus, what is re-
quired is an orientation comparison mechanism of some
sort. ©-nodes, to be described in detail below, fulfill
this function.

There are in fact two distinct aspects to the process
of learning orientations:

e Learning which of several available reference orienta-
tions the TR orientation should align with.
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e Learning what the values of some of these reference
orientations should be. For example, the system
starts learning without knowledge of the fact that up-
ward vertical is an important reference orientation. It
must learn to tune itself so that upward vertical be-
comes one of the reference orientations available to
the TR orientation for alignment.

These two aspects of the learning occur simultaneously
in the system.

Some reference orientations are not learned, however.
The orientations of the major and minor axes of the
landmark are critical for learning object-relative terms,
together with an indication of whether or not one end of
each axis is inherently marked as the positive direction
(e.g. the positive direction of the major axis for an erect
human being is upwards, while the positive direction
for the minor axis is toward the ventral side). The
values of these orientations clearly change with each
new landmark; thus, they are not learned.

Orientation alignment does not suffice to represent
such important perceptual features as inclusion and
contact. Another crucial primitive is a bitmap repre-
sentation of the interior of the LM, i.e. a 2-D visual
map such that all points that fall in the interior or on
the boundary of LM are activated, and all others un-
activated. Ideally, a fixed connectionist visual prepro-
cessing stage will produce these primitives for the learn-
ing system, given the input image. Currently, they are
computed in a non-connectionist fashion.

The system learns spatial concepts by combin-
ing evidence from these two forms of representation,
orientation-based and bitmap-based. The detailed ar-
chitecture will be presented below.

The Mixtec Spatial System

As mentioned above, part of the goal of the Ly project
is to build a system that will be able to learn the spatial
system of any natural language. For this reason, this
paper focuses on the learning of spatial concepts from
the Mixtec language, a system radically different from
that of English. Both Mixtec and English concepts are
learned by the system.

The Mexican Indian language Mixtec has a spa-
tial system based on an extensive body-part metaphor
(Brugman 1983), featuring a number of object-relative
terms. In general, in Mixtec one would say “The [TR]
is located (near/at) the [LM]’s [body-part-name]”, even
if the LM were not an animate object. Thus, the region
above a tree would be described as “(near/at) the tree’s
head”. One intriguing aspect of Mixtec is that it uses
human body-part terms to describe relations relative to
LMs which are vertically extended, and animal body-
part terms for horizontally extended LM objects (since
animals such as dogs and horses are generally seen on all
fours, horizontally extended). There is a Mixtec term
which is used for both humans and animals, however,
and therefore, for both vertically and horizontally ex-
tended objects. This is the term éii, or “belly”, which
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Figure 3: Some Training Data and Results

for Mixtec “éii” (see text)

indicates the area in front of a vertically extended ob-
ject (where human bellies are), and the region below a
horizontally extended object (where animal bellies are,
most of the time). Thus, this term is object-relative in
the case of a vertically extended LM, and not object-
relative in the horizontally extended case. l.e. the rel-
evant reference orientations are supplied by the LM in
the vertically extended case, and by the (learned) up-
right coordinate system otherwise.

Training and Results

The TR is restricted to be a single point for the time
being; current work is directed toward the more general
case of an arbitrarily-shaped TR.

Figure 3 presents training data and results for Mixtec
éii (“belly”).

Figure 3 (a) contains some of the training data for
Mixtec éii (“belly”). It shows an oriented upright LM
(the large “+4”’s on the LM mark the positive directions
of the major and minor axes), and a number of point
TRs: the circles indicate positive examples of ¢ii with
respect to this LM, and the small x-marks indicate neg-
atives. Note that the positive examples are all located
in the positive direction of the minor axis, or “in front
of” the LM.

Figure 3 (b) also holds training data for ¢ii. It shows
an unoriented horizontally extended LM (no end of ei-
ther axis is marked as positive), again with a number
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of point TRs indicating positive and negative exam-
ples. Recall that in the case of horizontally extended
LMs, éii (or “belly”) is associated with that region of
space which is found where animal bellies usually are,
viz the area below the LM. Thus, for horizontally ex-
tended LMs, it does not matter whether the axes of the
object are marked for direction or not.

There is training data relative to other LMs as well
(upright LMs pointing to the right, horizontal LMs with
directed axes, such that the minor axis points down-
ward, etc.), but considerations of space preclude pre-
sentation of all of these.

Figure 3 (c) illustrates the results of the learning.
The size of the black circles indicates the appropriate-
ness, as judged by the trained system, of using the term
¢i1 to describe the relation between a point TR at that
location, and the LM shown. Note that the LM points
to the right here, and that it is the region to the right
that is considered to be ¢ii the LM. In the case of an
upright LM pointing to the left (like the LM presented
with the training data in (a)), points to the left of the
LM would be considered ¢ii the LM.

Figure 3 (d) illustrates the results of the learning rel-
ative to an unoriented horizontally extended landmark.
As desired, points under the LM are considered to be
¢ii the LM. Again, space considerations rule out pre-
sentation of the results for all possible LMs, but the
concept is successfully learned.

The system has learned the English concepts in front
of, in back of, above, below, left, right, in, out, off, and
on. It has also learned the following concepts from
Chalcatongo Mixtec: ini (“spleen, gut”, meaning in-
side), $ini (“human head”, above an upright LM), éi
(“belly”, already discussed), ha?a (“foot”, at the base
of an upright LM), siki (“animal back”, above a hor-
izontally extended LM), and yate (“human back”, in
front of an upright LM). Clearly, several of these are
object-relative terms.

System Design

One of the central mechanisms used in the system is
one that determines to what extent a given orientation
matches a reference orientation. A node mechanism
is presented here which allows this sort of orientation
comparison, and allows the node to learn to tune itself
to embody an appropriate reference orientation and tol-
erance.

Once this node mechanism has been presented, the
network as a whole will be presented and discussed.

©-Nodes

All orientations in the system are represented in
(sin,cos) pairs.! The structure of a single ©-node, which
learns to tune itself to a preferred orientation and toler-
ance using this representation, is presented in Figure 4.
Note that sing,cosg, and oy are variables internal to

!This representation can be viewed as a minimalist ver-
sion of coarse-coding.
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Figure 4: Internal Structure of a Single ©-node

the ©-node, defining its preferred orientation and tol-
erance. These internal values may be learned together
with weights in the network as a whole, or may be im-
posed from the outside to order to “tune” the node.
The function of a ©-node is simply a Gaussian (see
(Moody & Darken 1988) for earlier work using Gaus-
sian nodes in a somewhat different way in connectionist
networks):
(sing — sin;)? + (cosgy — cos;)?
7] ]
(1)
The partial derivatives of f with respect to each of
the internal variables are:

9fe
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From these, we can easily find -2£-, -2E_ and 2E

Bsing’ Ocose ’ doy’
which enables us to use back-propagation to train the
internal variables of a given ©-node, together with the
weights of the network in which they are embedded.

Every ©-node will learn its o4, and several, though
not all, will learn their orientations as well (sing, cosg).

Network Architecture

Figure 5 illustrates the architecture of the network
used here. Note that all weights below the dotted line
are frozen at 1.0, so learning occurs only above this line.

Recall that the system uses both orientation-based
and bitmap-based primitives. We examine the halves
of the network handling each of these in turn.
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We first consider orientation-based processing. This
is done by the left-hand half of the network, which re-
ceives input from the TR orientation and the major and
minor axis orientations of the LM (here labeled “MAQO”
and “mAQ”, respectively). If the LM major axis has
no inherent direction, then the two possibilities for that
orientation are loaded into the MAO(1) and MAO(2)
inputs (e.g. if it is a tall object with neither the top
nor the bottom marked as the positive direction, the
inputs are loaded with the (sin,cos) representations of
90 degrees and 270 degrees). If, on the other hand,
the LM has an inherent direction for its major axis,
both MAO(1) and MAO(2) are loaded with the repre-
sentation for that direction. The minor axis orientation
inputs (mAQO(1) and mAO(2)) are handled analogously.

All hidden nodes marked © are ©-nodes of the sort
described above, and all receive their (sin;,cos;) in-
puts (recall Figure 4) from the TR orientation input.
Of these nodes, the middle three learn their sing, cosy,
and oy, while the others learn only o4, and have their
(sing, cosg) internal variables set by the lines leading
to them from the MAO and mAO inputs. Thus, the
middle three nodes learn to tune themselves (generally
to the upright vertical and to left and right), while the
two on the left are always tuned to whatever the major
axis orientation is, and the two on the right to whatever
the minor axis orientation is, with ambiguously oriented
LMs handled as described above.

Consider node H, above the ©-node layer. It, like the
other nodes not explicitly marked with a ©, computes
the usual sigmoid of its weighted and summed input.
Notice that the two ©-nodes associated with the ma-
jor axis project to H, on links which are constrained to
be of the same weight, denoted “r” (see (LeCun 1989)
for details on this technique of weight-sharing). The
two links from the MAO ©-nodes to node J will also
be constrained to be the same, though not necessarily
the same as “r”. Weights from the mAO ©O-nodes are
similarly constrained.

Notice that under these constraints, node H will treat
both MAO ©O-nodes identically, so that it can learn to
respond to ambiguously directed LMs without worrying
about which of the two possible orientations is repre-
sented by which of the two ©-nodes. Note also that if
the LM does have inherent orientation, then H can re-
ceive greater input from these nodes than it would in the
case of an ambiguously oriented LM, since in the am-
biguous case, at most one of the two Gaussian ©-nodes
will be responding strongly, while in an unambiguously
directed case, both may be.

This played a role in the learning of Mixtec éii: if
there was an inherent minor axis orientation, that di-
rection was the correct one for ¢ii as learned by the
system. If there was not any inherent directionality to
the minor axis however, the system responded to the
coincidence with downward vertical of one of the two
possibilities for the minor axis. Since a node such as
H will receive greater input in the case of an unam-
bigously oriented LM with a TR in that direction, but
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All orientations are in (sin,cos) pairs.

All weights below the dotted line are
frozen at 1.0.
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Figure 5: Network Architecture
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will still respond somewhat in the case of an ambiguous
LM with a TR in one of the two possible directions, this
concept was learnable.

We now consider the processing of the bitmap-based
LM representation, performed by the right-hand part of
the network, which receives input from the LM interior
map. Each of the three nodes in the cluster labeled “I”
(for interior) has a receptive field of five pixels.

When a TR location is specified, the values of the five
neighboring locations shown in the LM interior map,
centered on the current TR location, are copied up to
the five input nodes. The weights on the links between
these five nodes and the three nodes labeled “I” in the
layer above define the receptive fields learned. When
the TR position changes, five new LM interior map pix-
els will be “viewed” by the receptive fields formed. This
allows the system to detect the LM interior (or a border
between interior and exterior) at a given point and to
bring that to bear if that is a relevant semantic feature
for the set of spatial terms being learned.

Note that the four outer links in this small receptive
field are tied to the same value, so that this receptive
field is radially symmetric. Thus, this half of the net-
work handles strictly local features such as contact and
inclusion, while the rest of the network handles direc-
tional features.

The orientation-based and bitmap-based representa-
tions are combined at the output level of the network,
so that the learned semantics for a given spatial term
may involve a mixture of evidence from the two repre-
sentation types.

Conclusions

A connectionist system has been presented which
learns perceptually grounded semantics for both object-
relative and non-object-relative spatial terms, from En-
glish and Mixtec. The system relies on the use of a
particular visual primitive, the orientation of the imagi-
nary ray connecting the two relevant objects where they
are nearest to each other. This orientation is compared
to various reference orientations, by Gaussian ©-nodes
tuned for a particular orientation and tolerance. These
O-nodes learn their os, and some learn their reference
orientations as well.

Immediate future work is directed toward extending
the system to handle trajectors which are not simply
a single point. In addition, moving trajectors, and a
means for handling the resulting polysemy, are on the
agenda.
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