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Embedded Boundary Algorithms for Solving the Poisson

Equation on Complex Domains

Marcus S. Day1, Phillip Colella, Michael J. Lijewski, Charles A. Rendleman
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Berkeley, CA, 94720

Daniel L. Marcus

Sage IT Partners

San Francisco, CA 94111

Abstract

We present a graph-based strategy for representing the computational domain

for embedded boundary discretizations of conservation-law PDE's. The represen-

tation allows recursive generation of coarse-grid geometry representations suit-

able for multigrid and adaptive mesh re�nement calculations. Using this scheme,

we implement a simple multigrid V-cycle relaxation algorithm to solve the lin-

ear elliptic equations arising from a block-structured adaptive discretization of

the Poisson equation over an arbitrary two-dimensional domain. We demonstrate

that the resulting solver is robust to a wide range of two-dimensional geometries,

and performs as expected for multigrid-based schemes, exhibiting O (N logN)

scaling with system size, N .

Keywords: Cartesian grid, embedded boundary, adaptive mesh re�nement,

multigrid, Poisson equation, linear solution methods

1 Introduction

In the Embedded Boundary (EB) approach to discretizing PDE's in complex geometries,

the physical domain is embedded completely within a larger uniform mesh. The bulk of the

data underlying an EB discretization utilizes rectangular indexing, and only a small number

of cells near the embedded boundary require special treatment. In this paper, we extend

a class of EB discretization schemes to allow for arbitrarily complex domain boundaries in

building multi-level discretization scheme components, such as multigrid and adaptive mesh

re�nement. We focus here on an adaptive multigrid scheme for the Poisson equation. The

framework however, would extend readily as the basis for hyperbolic and incompressible

ow discretizations.

EB methods have been applied to a wide range of conservation-law PDE's (alternative

names for EB include \Cartesian Grid", or \Immersed Boundary"). The earliest use was

in 1977 by Reyhner[1] in the context of axisymmetric transonic potential ow solutions. In

1978, Purvis and Burkhalter[2] presented a �nite-volume formulation of the full potential

1Corresponding author contact information: MSDay@lbl.gov, or via the Center for Computational Sci-

ences and Engineering, MS-50D, LBNL, (510) 486-5076, FAX: (510) 486-6900
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equation via Cartesian Grid methods. In 1983, Wedan and South[3] extended this idea

in two dimensions to allow multi-element and internal ow geometries. The TRANAIR

code, presented in [4], employed a three-dimensional �nite-element based discretization

of the full potential equation, complete with local adaptivity. Clarke, et al.[5], Ga�ney,

et al.[6], Epstein, et al.[7] and Morinishi[8] presented work that extended the Cartesian

schemes to steady Euler ows. Chiang, et al.[9] presented an Euler solver for Cartesian

grids which featured adaptive gridding. Coirer[10] developed a locally adaptive upwind

�nite-volume scheme in two dimensions, and incorporated the viscous terms necessary to

compute steady Navier-Stokes ow, following the work of DeZeeuw[11, 12] and Gooch[13].

Melton[14] extended the work of Coirer into three dimensions. Melton's contribution also

included the capability for automated grid generation via a collection of speci�ed \water-

tight" components, and the logic for handling split irregular cells at the �nest level. The

latter feature, introduced in [11], reduces considerably the grid resolution required to capture

the details of geometries containing sharp edges and thin bodies, such as the trailing edges

of airfoils.

When applying Embedded Boundary methods to the time-dependent Euler equations,

researchers must additionally deal with the overly severe CFL constraints arising from small

cells cut by the boundary. The earliest schemes to deal with cut cells in a time-dependent

framework were presented by Noh [15]. Some of Noh's ideas related to cell-merging and

ux redistribution, are used in more contemporary works, such as the schemes presented

by Quirk[16], Pember, et al.[17] and Yang, et al.[18]. Additional methods to ameliorate the

CFL time step restriction have been constructed based on geometrical wave-propagation,

and rotated di�erence schemes, and are presented in a series of papers by LeVeque[19, 20],

and Berger and LeVeque[21, 22, 22].

A variety of embedded boundary schemes have been presented in the literature for

elliptic problems on irregular domains. Peskin[23], LeVeque[24], Tome and McKee[25],

Tau[26], and Almgren, et al.[27] present specialized elliptic solution schemes for Cartesian

grids, as required to implement the elliptic solve step of the projection schemes for in-

compressible ows[28]. In a more general setting, LeVeque and Li[29] extend the methods

in [23] to allow internal interfaces in the elliptic transport coe�cients and source terms.

Yang[30] then extended that scheme to incorporate complex domain boundaries embed-

ded in a uniform rectangular grid. The resulting logically rectangular system can be

inverted with fast Poisson-solver schemes, including a specially tailored multigrid-based

implementation[31]. Hewitt[32] presents an embedded curved boundary scheme which is

similar to that of Yang[30], except that additional care was taken to allow e�cient use of

ADI-based solvers. Johansen[33] presents a di�erent type of two-dimensional scheme for

elliptic equations, along the lines of the hyperbolic schemes, where the embedded boundary

is treated as a physical domain boundary, and not just an internal interface. Johansen em-

ploys a novel data-centering scheme to avoid conditioning and accuracy problems exhibited

by many of the previous schemes for elliptic and parabolic systems.

In this paper, we present a generalized EB domain speci�cation for the data associated

with the numerical integration of conservation-law PDEs. In our scheme, the computational

domain is represented as a connected graph; the nodes of the graph represent the discrete

cells on the grid, and the edges represent the cell faces. The graph representation of gridded

data leads to an intuitive cell merging strategy for generating successively coarser geome-
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Figure 1: Indexing scheme for Uniform gridding with mesh spacing, h, in two dimensions.

try descriptions from the �ner grid. This framework is applied toward the construction of

an EB Poisson solver, employing block-structured adaptive mesh re�nement[34] and multi-

grid(cf. [35]). Here, we extend the elliptic EB discretization of Johansen and Colella[33] to

fully arbitrary geometrical con�gurations, thereby allowing complete geometry coarsening

that is not limited by complex boundary shape. In a more general sense, this application

also extends [11, 14] to allow \split-cells" at all levels of re�nement, rather than at only the

�nest level. For this Poisson-solver example, we present convergence results which verify

that, even in complex domains, our scheme converges at the expected rates, in terms of

both grid-re�nement, and multigrid relaxation performance.

The notation of our embedded boundary framework is motivated in Section 2 via the

�nite-volume discretization of the Poisson equation. We present our simple multigrid scheme

in Section 3, including details of the EB grid-coarsening strategy. In Section 4, we present

the block-structured adaptive mesh re�nement scheme and associated extensions to the

single-level multigrid iteration. In Section 5, a simple geometry generator is described

based on the requirements of the grid-coarsening strategy, and the Poisson discretization.

We demonstrate the generality and convergence of these schemes in Section 6 through a

variety of example test cases. We add some concluding remarks in Section 7.

2 Embedded Boundary Poisson Discretization

As a prototypical example of a conservation law PDE, take the Poisson equation for the

potential, ' (~x), d dimensions:

r2' (~x) = � (~x) (1)

and for clarity of exposition, consider Neumann conditions to apply on all boundaries, @
,

of the computational domain, 
 (we will remove this restriction in subsequent sections). We

solve Equation 1 on a discrete grid of uniform cells. The cells are indexed by the vector i =

(i1; : : : ; id), and are located at �i = [(i1 � 1=2) h; (i1 + 1=2) h]� : : :� [(id � 1=2)h; (id + 1=2)h]

(see Figure 1). Each cell has 2 � d faces, si = i � uk=2; k 2 [1; d], where uk is the unit

vector in the kth direction, and the discretized dependent variable is de�ned on cell centers,

'i � ' (ih).

The divergence of the conserved ux, ~F = r', over the control volume, �i, can be

written via the divergence theorem as

�
r � ~F

�
i

=

Z
�i

r � ~FdV

,Z
�i

dV =

I
@�i

~F � d~S

,Z
�i

dV (2)
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(a)

Full Cells

Cell Fragments

Embedded Solid

(b)

Λ ji, a + ji ,21a − ji ,21

a −ji 21,

a +ji 21,

Figure 2: (a) A two-dimensional embedded boundary domain, which excludes the embed-

ded solid. (b) A standard cell for simple Embedded Boundary discretization

methods, with volume fraction, �, and apertures, As. For the Neumann case,

there is no ux into the embedded boundary.

=
1

hd

I
@�i

~F � n̂ hd�1; for uniform grid spacing, h

where n̂ is the normal on the surface, @�i, of the control volume. Using the midpoint rule

to evaluate the surface integrals,

�
r � ~F

�
i
�

1

hd

X
s2 si

�
~F � n̂

�
s
hd�1 +O

�
h2
�

(3)

Here,
�
~F � n̂

�
s
is the normal component of the ux at the center of face s.

For the Poisson equation, we may compute ~F using centered di�erences. For d = 2,

i = (i; j), and s = f(i� 1=2; j) ; (i; j � 1=2)g, the terms in the sum expand explicitly to

�
~F � n̂

�
i+1=2;j

=
'i+1;j � 'i;j

h
;

�
~F � n̂

�
i�1=2;j

=
'i�1;j � 'i;j

h
(4)

�
~F � n̂

�
i;j+1=2

=
'i;j+1 � 'i;j

h
;

�
~F � n̂

�
i;j�1=2

=
'i;j�1 � 'i;j

h

If the face s coincides with the edge of the computational domain, we simply set ~Fs = 0

to enforce the Neumann boundary conditions. Inserting these expressions into Equation 3,

and setting the result equal to the cell-centered discrete values of �i, we obtain an elliptic

linear system of equations, which can be solved using a variety methods, including multigrid

relaxation.

2.1 Embedded Boundaries

The discrete cells for the Embedded Boundary method are based on a uniform underlying

grid of mesh cells, just as in the regular case above. And like the regular case, physical

boundaries may be represented by the grid-aligned edges of the uniform grid. However,

within the regular mesh, we also allow \solid body" boundaries which may not align with

the coordinate directions (see Figure 2(a)). These bodies are represented as piecewise linear

surfaces (curves in 2D) cutting through the background rectangular mesh cells, leaving cell

fragments in the domain. Cell fragments will be distinguished from full cells, which are

neither cut nor covered by the embedded solid. The region inside the embedded boundary

is not part of the computational domain.
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Full edge-centered
flux values

Center of Edge
Fragment

Figure 3: Second-order ux evaluation due to Johansen and Colella. The shaded region

of the grid represents \solid body", outside the computational domain. The

ux at the center of the partial face is linearly interpolated from the uxes

computed at the full edge centers.

If there is only one cell fragment at each mesh cell, full and partial cells can be identi�ed

uniquely by the multi-dimensional index, i 2 Zd. Indices of cells completely covered by the

embedded body are considered invalid. De�ne the volume fraction, �i, as the ratio of cut to

full cell volume for cell i, and the face aperture, Ai;s, as the ratio of cut to full face area on

side s of cell i (see Figure 2(b) for the \reference" cut cell in two dimensions). Equation 3

can now be extended to apply to the regular and irregular cells in the Embedded Boundary

description: �
r � ~F

�
i
�

1

�ihd

X
s2 si

�
~F � n̂

�
s
Ai;sh

d�1 +O
�
h2
�

(5)

This error estimate is valid only at the center of mass of the cut cell.

In order to compute the ux terms in Equation 5 from the state in the cut cells, we

adopt the data-centering scheme detailed in [33]. In this scheme, all state data resides at

the geometric center of the full cell containing the partial cell. Note that this position will

actually lie outside the computational domain if the partial cell occupies less than half the

full cell's volume, since the embedded boundary is a piecewise-linear interface. It follows

then that the scheme may be applied only for problems where the solution pro�le may be

smoothly extended into the embedded boundary region a distance O (h).

As detailed in [33], numerical uxes for this scheme are computed at the center of the

full edge underlying each of the partial edges using simple central di�erences{i.e. the ux

resides midway between full cell centers, where the state resides2. [2] used a full-edge-

centered ux in their conservative integral sum corresponding to Equation 5. However,

for second-order accuracy, the surface integrals should be evaluated via the midpoint-rule,

requiring ux values which are interpolated to the center of the partial edge. This is easily

computed to second-order accuracy by linearly interpolating tangentially adjacent full-edge-

centered quantities (see Figure 3). In [33], this scheme was shown to be a formally consistent

approximation, with errors in the computed �eld quantity diminishing asymptotically to

second order in all relevant norms. The truncation error, weighted by volume fraction, �,

is �rst-order in h on the boundary cells, uniformly in �, so that the entire scheme has a

second-order truncation.

2This position may actually lie outside the computational domain as well, depending on the associated

partial cell volumes. Also, when we later extend the scheme for thin bodies, edge-centered ux values for

edges on opposite sides of the body will coexist at the same physical location.
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(a)

Fluid

Body

(b)

Fluid

Body

Figure 4: (a) An example \thin" body in the Embedded Boundary grid framework. Each

of the two mesh cells shown contains multiple partial cells. (b) A \trailing edge"

geometry, where a cell has more than one neighbor in a coordinate direction.

(a) (b)

Figure 5: (a) The blunting procedure used in existing embedded boundary implementa-

tions unable to otherwise cope with the thin-body or trailing edge problems.

(b) The same geometry represented on a coarser grid. The location of the \tip"

will continue to creep with coarsening; the problem coarsened many times will

no longer represent gross physical properties of the original geometry, and may

lead to unphysical communication in the computed �elds

2.1.1 Extension to Complex Geometries

The above procedures for discretizing conservation laws in the embedded boundary

framework (based on cell-centered states, and tangentially interpolated uxes) is limited to

applications where the irregular solid bodies are \thick". In particular, the discretizations

for the \thin-body" and \trailing-edge" scenarios such as those shown in Figure 4 are ill-

de�ned, since we can no longer uniquely identify partial cells using the index, i. Such

situations arise when constructing multiple-level numerics, such as multigrid linear solvers

and adaptive mesh re�nement. In the literature, these cases also arise if the immersed body

has very thin �ngers or trailing edges (such as airfoils).

Adaptive EB methods to date have employed a simple geometrical \blunting" technique

(a schematic of this process is shown in Figure 5(a)). Blunting cuts o� arbitrary portions of

the embedded body that lead to multiple cell fragments at a single index. Geometric �delity

is preserved typically through concurrent use of adaptive mesh re�nement (see [16], for ex-

ample). However, blunting and mesh re�nement alone have not been su�cient for large

three-dimensional simulations. DeZeeuw[11] and Melton[14] have implemented \split-cell"

schemes, allowing multiple discrete cells to exist at a given mesh cell location. By localiz-

ing the region of greatest re�nement, they reduce the overall computational requirements,

particularly in simulating complex three-dimensional machinery.

In initial implementations of the \split-cell" approach, the �xed-width tree-based data

structures allow cell splitting only at the level most re�ned locally. However, for genuinely

multiple-level algorithms (i.e. those requiring a reasonable representation of the state at all

6



+=
BodyBody

Figure 6: The dual-structure scheme stores the regular cells in a logically rectangular

array, and the irregular cells as a generalized graph (detailed in text). The

unstructured gridding used for the cut cells allows arbitrarily complex embedded

structures in the domain, while the logically rectangular data structures for the

remainder of the domain enable access to the inherent e�ciencies of regular

structured gridding.

re�nement levels), we must generalize the scheme. By de�nition, the extension requires an

unstructured data format, but only near the embedded boundary. For data over the bulk

of the domain, e�cient structured array storage is su�cient and desirable.

2.2 A Formal Description of Embedded Boundaries

In the following, we present a dual-structure scheme that is general enough for arbitrary

geometrical complexity, yet does not preclude an e�cient implementation. We describe and

manipulate the computational domain via a connected graph, Gtot =
�
V tot; Etot

	
, empha-

sizing the role of connectivity and communication through the domain. In Gtot, the nodes,

V tot, represent the set of �nite-volume cells, and the edges, Etot, represent the faces through

which the cells communicate.

We divideGtot into two sub-graphs, G andGfull, withG = fV;Eg, containing all cells, V ,
adjacent to the embedded boundary. The set, E, contains all the edges between the nodes

in V . We de�ne Gfull =
n
V full; Efull

o
similarly for the regions away from the embedded

boundary. Data on V full and Efull are stored and manipulated in logically rectangular

arrays{incurring a small overhead; viz. unused locations occupied by partial and empty

cells. Irregular data on V and E is maintained in a sparse representation which implements

the nontrivial aspects of the connectivity implied by Gtot (see Figure 6). The interface

between the two subgraphs is a small subset of edges, Etot�Efull�E, and is maintained as

an auxiliary set in the Gfull data structures, since there is a natural location in the arrays.

Logically, an edge is speci�ed by the two nodes that surround it. Let us de�ne the

subscript operator, \-" over edge, e, such that e� returns the node object to the \low" side.

Similarly, the \+" operator is de�ned such that e+ returns the node object to the \high"

side of e. Now, we may specify formally the de�ning properties of all edges in E:

8 e 2 E; e = (e�; e+) ; e� 2 V and e+ 2 V

That is, both the high and low nodes are in the graph. Relating the graph back to the

computational domain, we may associate a set of geometrical attributes with each node or

edge, such as its index, i 2 Zd (note that multiple nodes may have identical indices). If

7



(a)

A C E

F

G

H

Body

J

I
Body

(b)

A C E

F

H

I

G J

Figure 7: (a) A small region of a typical multiply-connected geometry. Cells A, C, F and

J are bounded on a side by \interface" faces. (b) The graph representation of

the partial cells labeled in (a). The dotted lines indicate interface faces, which

are not strictly part of the graph. Information from the logically rectangular

data communicates with the graph via the interface faces.

K (v) is the operator returning the index of node v, then:

K (e+)�K (e�) = uk

for e belonging to the set of faces in the kth coordinate (here, uk is the kth unit vector).

That is, the nodes on either side of an edge are separated by a unit vector. The indices of

the edge is:

K (e) =
K (e+) +K (e�)

2

Each cell in the domain has an associated cell volume fraction, � (v) : V 7! [0; 1]. The

cell volume fraction is the ratio of the partial cell volume to that of the underlying mesh

cell. Each cell face in the domain has an associated face area aperture, A (e) : E 7! [0; 1].

The face area aperture is the ratio of the partial face area to that of the underlying mesh cell

face. For our uniform grid spacing, h, the mesh cell volume is hd, and the mesh face area

is hd�1. For the nodes in Gfull, vfull 2 V full �
�
vfull

�
= 1, and for efull 2 Efull, A

�
efull

�
= 1.

The two data structures, regular and irregular, will communicate through the interface

faces (see Figure 7). Interface faces have on one side, a full cell in Gfull, represented in

the block-structured dense data, and on the other side, a cell fragment represented in the

graph, G. Formally, we de�ne an interface edge:

e an inteface if e� 2 V and e� 2 V
full:

Also, we de�ne the corresponding unit vector set, L (v) � O = f�u1; : : : ;�udg, as the

subset of orientations about the node, v 2 V , which are bounded by interface faces. Using

the notation of Figure 1, the set of indices of the interface faces about v are then K (v) +
o=2; 8 o 2 L (v). In Figure 7, L (F) = f�u1g, and there is an interface edge connected to

cell F residing at index K (F) � u1=2. Also, K (I) = K (J), and K (F) = K (G). This is an
example of a \thin-body" geometry.

We are now in a position to de�ne the appropriate generalization of Equation 5. For the

partial cells, v 2 V , the sum consists of contributions from the partial faces, e 2 E as well

as from the interface faces. There is no ux contribution from the boundary, since we have

assumed homogeneous Neumann boundary conditions. Let us introduce a ux function,

8



F =
�
FR; F I

�
, which lives on cell faces in the regular and irregular parts of the domain.

(i.e. 8 o 2 O; i 2 Zd; FR
�
i+ o

2

�
: Zd + O

2 7! < and 8 e 2 E; F I (e) : E 7! <). We have,

�
r � ~F

�
v2V

=
1

� (v) hd

8<
:
X

e:e�=v

F I (e)A (e) hd�1 �
X

e:e+=v

F I (e)A (e) hd�1

+
X

o2L(v)

FR

�
K (v) +

o

2

�
hd�1sgn (o)

9=
;+O

�
h2
�

(6)

where sgn (x) = 1 if x > 0, otherwise sgn (x) = �1. Note that the right side contains an

implied sum over coordinate directions, and that this formulation treats correctly the cases

where there are more, or less than a single face on a given side of a discrete cell. On the

regular cells, v 2 V full, we simply apply Equation 3.

The ux functions, FR and F I , may be de�ned, according to the PDE, using a pair of

cell-based data structures for the state, ' =
�
'R; 'I

�
, where 'R : Zd 7! <, and 'I : V 7! <.

It is useful to de�ne FR in two passes. For the Poisson equation, on the �rst pass, FR may

be de�ned using central di�erences on data exclusively from 'R (as in Equation 5 for

d = 2). On the second pass, the uxes on the interface edges are overwritten with the

central di�erences using data from 'R on the full-cell side of the interface, and data from

'I on the partial-cell side. Formally, the expression is

FR

�
K (v) +

o

2

�
=

1

h

�
'R (K (v) + o)� 'I (v)

�
sgn (o) (7)

The ux function, F I , will be computed using the algorithm described in [33]. To

carry this out in our generalized context, we require a set of monotone nodes, M (v; Lm),

associated with node v, and built from Gtot =
�
V tot; Etot

�
(i.e. the nodes fv;M (v; Lm)g �

V tot). The node, u 2 M (v; Lm) is reachable from v via a monotone path of length Lm if

there exists some ~N 2 Zd such that

K (u) = K (v) +
dX

k=1

Nk uk; where
dX

k=1

jNkj = Lm

That is,M (v; Lm) consists of a sequence of at most Lm > 0 movements to neighbor nodes,

with the restriction that the movements along any single coordinate be all of the same sign.

Note that no two cells in a path can be at the same index. Also note that the list of cells

in a monotone path may include full cells from V full as well as partial cells from V .

Geometrically, a monotone path may be used to restrict the neighborhood of a cell

for the purposes of constructing interpolating pro�les that do not span an embedded thin

body (see Figure 8(a)). Monotone node sets may also be used to de�ne an appropriate

neighborhood for conservative ux redistribution (such as in the scheme described in [17]).

In the present context, we will utilize the concept of monotonicity to help identify candidate

neighbor faces to involve in the ux interpolation scheme of [33].

In order to carry out the ux interpolation for a cell face, e, we need to identify all

the appropriate \other" edges, e0, containing a cell-centered ux value we can use in the

9



(a)

Body

B

C
D

A

E

(b)

Body

Body

e

e’

Figure 8: (a) A monotone path is a sequence of steps along a connected path in the cell

fragment graph such that all steps in any single coordinate direction are of the

same sign. In the two-dimensional example, there is no monotone path from

B to D, or from A to E. However, the paths fA-B, A-B-C, C-D, C-D-E, D-Eg
are monotone. (b) The face, e0, is found by constructing two 1-step monotone

paths, as described in the text. Information above the top body is not used

when constructing the interpolated ux at e.

interpolant. To do this, search all edges in Etot for e0 where

e0 = (v 2M�; u 2M+) (8)

HereM� =M (e�; 1) andM+ =M (e+; 1) (see Figure 8(b)). In general, this search will

return either zero, one or several candidate full or partial edges. Since we do not maintain

cell location information, we cannot select the \best" from multiple candidates. We might

further restrict the search to �nd only full cells for which Equation 8 held true, or to return

only faces such that A (e0) = 1. Alternatively, we just average together the inuence of all

edges that qualify. If the condition in Equation 8 returns an empty list, we have only a

single point on the edges to use for the interpolant, so we may construct only a piecewise

constant ux interpolant.

Now, we compute the full edge-centered Poisson ux, F f for a state, ', on the node set,

V

F f (e) =
'I (e+)� 'I (e�)

h
+O

�
h2
�

(9)

and then compute the partial edge-centered ux, F , as the linear in 2D, bilinear in 3D,

interpolation between F f (e) and the set F f (e0). For example, if d = 2, and the search,

Equation 8, returns a single candidate, then

F I (e) = F f �e0�+ 1

2

�
A
�
e0
�
+A (e)

� �
F f (e)� F f �e0��+O �h2� (10)

As an aside, notice that since data is stored for the full cells, v 2 V full, in dense block-

structured arrays, there are additional array positions corresponding to the mesh cells par-

tially or completely covered by the solid (i.e. i, where 69 v 2 V tot such that K (v) = i). The

interface faces have the e�ect of preventing any direct communication across the regular

edges into these covered cells. The covered cells thus become isolated from the computation,

and are e�ectively wasted space allocated for the solution process. In general though, the

computer resources spent on unused rectangular cells covered by the embedded structures

is easily minimized to be a negligible overhead cost for the calculation.
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Figure 9: (a) Dirichlet boundary uxes for cell \a" (for d = 2), computed by �tting a

parabola through the value at the domain boundary, and two interior points (�).

The resulting Laplacian stencil involves 2 � d points (�). (b) Two dimensional

quadratic interpolation for computing pro�le gradients normal to the embedded

boundary.

2.3 Dirichlet Boundaries

In this section, we generalize the Poisson problem of interest to include Dirichlet bound-

aries. Since we are using a cell-centered approach, Dirichlet conditions imposed along the

domain boundary, @
, result in nontrivial uxes through the boundary faces. We present

the methods we use to evaluate the uxes based on the gradient of a multi-dimensional

polynomial interpolant constructed using the boundary data, and the internal state.

The case where the Dirichlet boundary aligns with the grid index coordinates is depicted

for d = 2 in Figure 9(a). The ux is to be evaluated at the midpoint of the cell face on

the physical domain boundary ( ), using a parabola constructed with the boundary value

(at ), and internal state values (at �). The procedure extends directly to d = 3, since the

interpolant is constructed only in the dimension normal to the boundary surface.

The embedded boundary case is depicted in Figure 9(b). The embedded boundary

is represented as a piecewise linear surface reconstruction between adjacent nodes on the

irregular cell graph, as detailed in Appendix A. The Dirichlet boundary value and the

resulting normal boundary gradient both live at the center of the cell's reconstructed surface.

A quadratic interpolant is constructed between this location, and where the boundary

normal intersects two adjacent grid lines (or planes, if d = 3) nearby; the intersection

locations are marked in Figure 9(b) with �'s. The procedure for carrying this out follows

closely the one outlined in [33].

State values at the grid-line intersection locations are evaluated with a quadratic in-

terpolant (parabolic for d = 2, bi-quadratic for d = 3). The interior state values used for

constructing the multi-dimensional interpolating surface must be in a monotone path from

the partial cell, as discussed in Section 2.2. This requirement prevents cases of unphysi-

cal communication, where parts of the embedded boundary lie in between the cells used

for constructing the interpolant. The quadratic interpolant for embedded boundary uxes

that is constructed in this fashion remains well-conditioned for arbitrarily small partial cells

adjacent to the boundary, as detailed in [33].

For su�ciently coarse geometries, a quadratic interpolant may be impossible to con-

struct, simply for lack of su�cient candidate cells in a monotone path from the boundary
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location. Typically, this occurs when a complex geometry is underresolved, or when an

embedded body is within 2h from the regular boundary. In these cases, we construct a

bilinear interpolant in two dimensions (tri-linear in 3D), if possible, from adjacent cells.

If there are no adjacent cells available, we set the ux at the Dirichlet boundary to zero,

e�ectively using a piecewise-constant interpolant. In practice, when we are forced to reduce

the order of the boundary interpolant on any cell at the �nest level, our codes generate

warning messages, since the resulting discretization becomes formally inconsistent. The

remedy is usually to rede�ne the underlying rectangular grid so as to ensure su�cient grid

points. Unless otherwise mentioned, none of the results presented in later sections required

boundary interpolant order reduction.

3 Multigrid

Using Equation 6, and the dimension-dependent expression for the ux, such as Equa-

tion 10, we build a discretization for Equation 1 of the form

L (') = � (11)

Equation 11 can be solved with using point relaxation with multigrid acceleration[35]. Typi-

cally, we employ simple \V-cycle" multigrid schedules in the relaxation, using piecewise con-

stant prolongation, volume-weighted restriction, and a simple smoother of the Gauss-Seidel

type. It is worth noting that our level-transfer operators fail the well-known requirement

that

nP + nR > 2n (12)

where n is the order of the di�erential operator, and nP (nR) is the maximum degree of

exactly interpolated (coarsened) polynomials plus 1. For our choices, nP = nR = 1. In

fact, inequality (12) is a heuristic for \optimal" multigrid performance, and is not strictly

necessary; we demonstrate that the computational work in our algorithm scales nearly

linearly with system size despite our low-order transfer functions.

Details of the multigrid V-cycle are presented in Section 3.1. The scheme has been

tailored to solve Equation 11 in correction form, applicable to our linear problem (i.e. solve

for e : L
�
'0 + e

�
= �, where '0 is some initial guess for '). The boundary conditions for

the correction, e, are simply the homogeneous form of those of the original problem for '.

Our multigrid scheme requires a hierarchy of grids, created by coarsening recursively the

original geometry via a procedure we detail in Section 3.2. We detail the smoother and

level-transfer operations in Section 3.3.

3.1 Multigrid V-cycle

We label the re�nement levels of our problem domain with m : 0 � m � mhi, where mhi

represents the original level, where we desire the problem solution. The multigrid iteration

is initiated by invoking the multigrid level-relaxer (the \V-cycle") on mhi. The level-relaxer

applies some number of smoothing passes, and then constructs the next coarser problem

using the smoothed residual. The coarse problem is relaxed with a recursive call to the

level-relaxer. At the bottom of the cycle, the coarse equations are solved \exactly", and the
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resulting correction is interpolated back up to the next �ner level. The interpolated correc-

tions from the coarse grid are added to the next �ner solution, which is then smoothed once

again. A complete V-cycle terminates when the �nest solution has been incremented with

coarse corrections and smoothed. The V-cycle is invoked repeatedly until the magnitude of

the residual, Rm = �m � Lm ('m), is acceptably small at m = mhi.

Let P
�

m+1

�
be the projection of the grid at multigrid level, m + 1, onto the grid at

level m. The recursive multigrid level relaxation is shown in Algorithm 1, for the case that

Algorithm 1 The multigrid V-cycle, for 
m = P
�

m+1

�
.

Vcycle( m, m1, m2 )

if (m = m2) then

Rm = �m � Lm ('m)

end if

if (m > 0) then

em = Smooth (em = 0; Rm)

'm = 'm + em

if (m > m1) then

Rm�1 = �m�1 � Lm�1
�
'm�1

�
Vcycle( m� 1, m1, m2 )

em = em +Re�ne
�
em�1

�
end if

Rm = Rm � Lm (em)

�m = Smooth (�m = 0; Rm)

'm = 'm + �m

else

SolveL (em) = Rm

end if

P
�

m+1

�
= 
m on all multigrid levels, m < mhi (all grids cover the entire domain). The

levelm2 represents the �nest grid, whilem1 is the level at the bottom of the V-cycle. Notice

that m1 is an input parameter to the scheme, and is not necessarily zero. If m1 > 0, the

\bottom" level is not solved \exactly", but rather just smoothed like all the other levels.

This feature is used later, when we extend our multigrid scheme to incorporate a limited

form of adaptive mesh re�nement.

3.2 Geometry Coarsening

In the following, we present an algorithm for coarsening a geometry speci�ed according

the de�nitions in Section 2.2. The coarsening procedure is recursive, in the sense that it

takes an input �ne graph, Gf =
�
V f ; Ef

�
, and its underlying index space, and generates

a complete coarse graph, Gc. We assume a static geometry, so that the procedure need

be carried out only once to generate the full hierarchy of irregular geometry graphs at the

beginning of a computation. The re�nement ratio, r 2 Zd, is the re�nement, by dimension,

between Gc and Gf , with respect to the cell indices, K
�
V f
�
and K (V c). We restrict

our implementation to the case, r = 2i (2; : : : ; 2), where i 2 Z and discuss only the case
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Figure 10: (a-b) The extended graph includes nodes representing full cells, such as B

and D. Also, the extended graph includes edges between the full cells, such as

B-D, as well as interface faces, such as A-B, C-D, D-F. (c-d) The coarsened

geometry and graph, where the path A-B-C-D has becomes coarse node 1,

E-F-H-I has become 2, and G-J has become 3. The edge 1-2 is created by the

coarsening procedure.

r = (2; : : : ; 2), since the rest of the set we allow can be generated by recursive application.

Generally speaking, multigrid performs most e�ciently when the levels are separated by

a constant factor of 2, unless there are geometrical or physical e�ects driving anisotropic

transport. The scheme is trivially extended to arbitrary r, including directionally biased

re�nement, but such details detract from the presentation.

The procedure for generating Gc fromGf consists of three basic steps. First, we augment

the �ne graph to include all full cells that will be merged into the new coarse map (see

Figure 10). Next, for every coarse index, ic, we build lists of connected components from

the �ne nodes, vf , such that K
�
vf
�
= if , where ic = b12 i

fc =

�
b
i
f
1

2 c; : : : ; b
i
f

d

2 c

�
(the

operator, bxc, returns the largest integer d-tuple, such that each component is less than the

corresponding component in x). Each connected component generates a new node in the

coarse graph. Finally, the edge list is assembled to connect the new coarse nodes. Some

auxiliary information needed by the algorithm is generated on the y, as will be discussed

below.

We can discuss each step in detail, after de�ning some useful notation.

� The index set of the cells in the �ne graph, If =
n
K (v) : v 2 V f

o
.

� The �ne-to-coarse projection, Pfc : Zd 7! Zd, takes a �ne index, and returns a coarse

index, such that Pfc
�
if
�
= b1

2
ifc.

� The coarse-to-�ne projection takes a coarse index and returns a set of �ne indices,

Icf (ic) =
n
if : Pfc

�
if
�
= ic

o
of �ne indices associated with a coarse index. For each

if 2 Icf (ic), if if 62 F , then if 2 If (i.e. the operator does not return indices fully

covered by the embedded boundary).
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� The index set spanned by the coarse graph, Ic, is the union of �ne indices created by

coarsening, then re�ning, the index set If ;Ic =
S
v2V f Icf

�
Pfc

�
if
��

; 8 if 2 If .

� The index set of full cells to add to the �ne graph is therefore, IExt = Ic � If

� The set of full cells, N (v) � Zd, neighboring a node, v is de�ned from the index set

L (v) as N (v) = fK (v) + o : 8 o 2 L (v)g. The set L (v) must be provided as input at

the �nest level; for coarser levels, the set is generated by the algorithm.

� The set of partial cells at the �ne level to be associated with the coarse node, v, is

Lcf;I (v). The corresponding set of full �ne cells to be associated with v is Lcf;R (v).
These are built during the coarsening procedure, and are useful when transferring

state data between re�nement levels (see Section 3.3).

The extended graph, Gaug, is created by adding each index, i 2 IExt into the list of

nodes, V aug, removing i from all the lists, N (v) ; v 2 V aug, creating new edges connecting

this cell to the graph, and building a new N map entry for this cell. Algorithm 2 details

this procedure. In Figure 10, cells labeled B and D are to be added to V f , and the edges

(A;B), (C;D), (B;D) and (D;F ) are added to Ef to obtain Gaug.

Algorithm 2 Creating the extended graph, Gaug = (V aug; Eaug).

Initialize (V aug; Eaug) = Gf

for all i 2 IExt do
V aug  V aug

S
fvnewg

K (vnew) = i

� (vnew) = 1

N (vnew) = fg
for k = 1,d do

if 9 v : i 2 N (v) then

if i�K (v) = uk then

N (v) N (v)� fig
e = (v; vnew)

A (e) = 1

Eaug  Eaug
S
feg

else if i�K (v) = �uk then
N (v) N (v)� fig
e = (vnew; v)

A (e) = 1

Eaug  Eaug
S
feg

else

N (vnew) N (vnew)
S
fi� ukg

end if

end if

end for

end for

15



The graph, Gc is created by coarsening the extended graph, Gaug, as detailed in Algo-

rithm 3. Here, we build all the connected components at coarse index, ic, of an undirected

subgraph of Gaug, using all the nodes, v 2 V aug such that Pfc (K (v)) = ic. A new coarse

cell is created for each of these connected paths, and the volume fraction of the new cell is

such that its volume is the sum of the volume of its constituent full and partial cells. In

Figure 10(a), the full coarse cell on the right contains two connected components, G-J, and

E-H-I-F, which give rise to coarse cells 2 and 3 in Figure 10(c).

Algorithm 3 Creating nodes, V c, of the coarsened graph, Gc = (V c; Ec), from the aug-

mented graph, Gaug.

Initialize V c = fg
for all ic 2 Ic do
V =

n
v 2 V aug : Pfc (K (v)) = ic

o
E = fe 2 Eaug : e� 2 V ^ e+ 2 V g
for all connected components, (V�; E�) of (V;E) do

V c  V c S fvnewg
K (vnew) = ic

� (vnew) = 1
2d

P
vf2V� �

�
vf
�

Lcf;R (vnew) = Lcf;I (vnew) = fg
for all v 2 V� do
if K (v) 2 IExt then
Lcf;R (v) = Lcf;R (v)

S
fig

else

Lcf;I (v) = Lcf;I (v)
S
fvnewg

end if

end for

end for

for k = 1; d do

Ek;�
vc = fe� 2 V�; e� 62 V�;K (e+)�K (e�) = ukg

end for

end for

For each new coarse cell created, a subset of �ne edges, Ek;�
vc � Eaug is identi�ed that

connects the subgraph in the coordinate direction, k, to the remainder of the grid. The �
symbol indicates whether this set of edges is on the low (�), or high (+) side of the new

coarse cell. Each unique edge subset, Ek;�
vc , generates a new coarse edge in Ec, as detailed in

Algorithm 4. The new edge may be de�ned once we �nd two cells pointing to the identical

�ne-edge subset. The aperture of the new edge is such that the surface area of the coarse

edge is equal to the sum of its constituent �ne edges. In Figure 10, the �ne edge subset,

E0;�
2 , associated with coarse cell 2 in the 0-direction on the low side is f(D;F ) ; (C;E)g.

This is identical to E0;+
1 , so a new edge, (1; 2), is added to the coarse graph.

The coarsening strategy is trivial for the grid completely in the regular part of the

domain (i.e. at ic : if 2 F ; 8 if 2 Icf (ic)). Finally, the coarse full-cell map, Fc, is created
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Algorithm 4 Creating edges, Ec, of the coarsened graph, Gc = (V c; Ec) from the aug-

mented graph, Gaug.

Initialize Ec = fg
for all vc 2 V c do

for k = 1; d do

for all vC
0

: K (vc)� uk = K
�
vC

0
�
do

E = E
B;k
�;vc

T
E
B;k

+;vC
0

if E 6= fg then

enew =
�
vC

0

; vc
�

Ec  Ec S fenewg
A (enew) = 1

2d�1

P
e2E A (e)

end if

end for

end for

end for

using the existing �ne full-cell map, Ff , according to the following criteria:

ic 2 Fcif 6 9 if 2 Icf (ic) : if 2 Ff (13)

Notice that within our coarsening strategy, oating-point data, such as apertures and vol-

umes, are not used explicitly to determine the merging process. The procedure we have

outlined can be used to coarsen an input geometry to Gc = (V c; Ec), where K (vc) =

(0; : : : ; 0) ;8 vc 2 V c, and accommodates multiple dimensions and arbitrary complexity.

Since we are concerned only with the aspects of the geometry that appear in Equation 3

(cell areas, volumes and connectivity), we do not require the ability to reconstruct the em-

bedded surface. In particular, no \blunting" is necessary, and we retain maximal geometric

�delity.

Also, notice that we have not designed our coarsening strategy to construct connected

paths of solid; there is no determined way to distinguish parts of the solid in a coarse cell

that were derived from speci�c regions of the �ne description. This would be an issue for ap-

plying inhomogeneous boundary conditions, except that we solve in correction form to avoid

requiring such information|the boundary conditions for the correction problem are homo-

geneous). It follows then that our scheme cannot easily be extended to Full-Approximation-

Storage versions of multigrid, for example (useful for nonlinear elliptic problems).

3.3 Smoothing, Coarsening, Re�ning the State

Point relaxation for Equation 11 iterates on the expression, 'n+1 = 'n+� (L ('n)� �),

where � is a relaxation parameter, n is an iteration counter and 'n is an approximation

to the solution, '. For each cell, we choose � such that the expression for 'n+1 does not

contain 'n at that cell.

The relaxation parameter, �v, on the irregular cells, v 2 V , is obtained by summing

the derivative of each term in Equation 6 with respect to 'Iv, the value of the state in the
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irregular data structure at node v. We can generalize Equation 10 so that the derivative of

the ux with respect to the cell-centered state is

@F I (e)

@'Iv
= �

we
v

h
; for e : e� = v

The weighting, we
v, depends on the dimension, d, of the problem. For d = 2, we

v =
1=2 (A (e) +A (e0)), where A (e0) is the aperture of other edge involved in the ux inter-

polation (or, the average of the apertures, if there are more than one). The relaxation

parameter becomes

�v =

2
4 1

� (v) h2

0
@ X
e:e�=v

we
vA (e) +

X
o2L(v)

1

1
A
3
5
�1

(14)

whereas on the regular cells, i 2 F , the expression reduces simply to

�i =
h2

2d
(15)

Over the regular cells, we order the pointwise updates with a multi-coloring scheme (red-

black \checker-boarding" for d = 2) based on cell index for vectorization e�ciency. We

update all the irregular cells simultaneously between each colored sweep over the regular

cells. The combination (red sweep, irregular update, black sweep, irregular update) counts

as a single \smoothing" pass of the point relaxation operator.

The Smooth operations in Algorithm 1 consist of two or more iterations of the above

sequence, while the Solve operation iterates the sequence to numerical convergence (the

number of iterations required is on the order of the number of unknowns at that level).

Typically, the Solve operation is carried out only on the coarsest multigrid level.

The level transfer operations, Coarsen and Re�ne are de�ned using the cell-to-cell-

subset maps de�ned in Section 3.2. A volume-weighted averaging Coarsen operation for

irregular data at node vc is

'Ivc = 2�d

0
@ X
vf2Lcf;I(vc)

'Ivf�
�
vf
�
+

X
if2Lcf;R(vc)

'R
if

1
A (16)

where Lcf;R (vc) and Lcf;I (vc) are, respectively, the regular and irregular �ne nodes that

coarsen into vc, as de�ned in Algorithm 4. For regular data at index ic,

'Ric = 2�d
X

if :if2Icf (ic)
V

if2F

'R
if

(17)

A piecewise-constant Re�ne operation for irregular data is constructed with the cell-

to-cell-subset maps as

'Ivf2Lcf;I(vc) = 'Ivc (18)

The corresponding piecewise-constant re�ne for regular data is

'R
if2Ff =

(
'Ivc if if 2 Lcf;R (vc)
'R

ic
if if 2 Icf (ic)

V
if 62 Lcf;R (vc) 8 vc 2 V c (19)

Note that 'R
if
is not de�ned for if 62 Ff , since those full cells are either cut or covered by

the embedded solid.
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Figure 11: Properly nested unions of rectangular grid patches for cell-based data in 2D.

The re�nement ratio between AMR levels is 2n; n is a small positive integer.

The re�ned patches at any level may touch the boundary of the computational

domain, but coarse-�ne boundaries are bu�ered with at least one layer of cells

at the next coarser level.

Body

Ω∂
Ω

Ω∂ l

Figure 12: The case where the embedded boundary, @
, intersects the coarse-�ne bound-

ary, @
`, between AMR levels, ` and ` � 1. The AMR implementation pre-

sented here does not allow for this condition.

4 Adaptive Mesh Re�nement

The regular component of the geometry description in Section 2.2 was built on rectan-

gular patches of uniform gridding over the large portion of 
 that is not adjacent to the

embedded boundary. This aspect, and the structure of the coarsening machinery used to

generate the multigrid mesh hierarchy, make it straightforward to extend our scheme to

incorporate block-structured adaptive mesh re�nement (AMR) over the regular parts of the

domain. The scheme is related closely to that described in [34].

The AMR rectangular grid hierarchy is composed of di�erent levels, `, of re�nement,

ranging from coarsest, at ` = 0, to the �nest, at ` = `hi � 0. These levels will correspond

to a subset of the multigrid levels previously discussed. The domain at each AMR level,


`, is represented as a union of rectangular grid patches of a given resolution, accompanied

by a graph of the irregular cells. The rectangular grids are properly nested, in the sense

that the union of the grid patches at level ` + 1 are contained in the union of grids at

level ` for 0 � ` < `hi (see Figure 11). Furthermore, except at physical boundaries, the

union of level ` grids is large enough to guarantee that there is a border at least one level

` cell wide surrounding each ` + 1 grid. Grids at all levels are allowed to extend to the

regular physical boundaries. We restrict this implementation under the condition that the
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irregular geometry, G` =
�
V `; E`

�
, at level `, be completely contained within the union of

rectangular patches at level ` (see Figure 12). Thus, K
�
v`
�
falls within the bounds of the

patches for every v` 2 V `. In short, this restriction speci�es that the embedded boundary

will be discretized at the �nest grid level.

The extent of the rectangular patches of regular gridding may be �xed throughout the

calculation, or modi�ed as the calculation proceeds so as to focus computational resources

where resolution is required. In the latter solution-adaptive applications, error estimation

techniques, such as Richardson extrapolation, are used to tag cells where the local error

is above a given tolerance. The tagged cells are grouped into rectangular patches using

the clustering algorithm given in [36], and re�ned to form the grids at the next level.

The process is repeated until either the error tolerance criteria are satis�ed, or a speci�ed

maximum re�nement level is reached. Upon entering the iterative solver, the initial guess

data may be used to create the grids at level 0 through `hi. As the guessed state is relaxed

toward the solution, a re-gridding algorithm may be called periodically. When new grids

are created at level `+1, the data on these new grids are copied from the previous grids at

level `+ 1, if possible, otherwise interpolated in space from the underlying level ` grids. In

all cases, the newly generated �ne-level grids must be properly nested.

4.1 Multi-level V-cycle

In order to extend our embedded boundary multigrid Poisson solver to this limited AMR

framework, we augment our discretization and V-cycle to incorporate that P
�

`
�
� 
`�1.

We begin with the initial set of AMR levels on which we want the solution, and construct

intermediate multigrid levels between and below the AMR levels so that adjacent pairs of

levels are related by a re�nement ratio of 2. These new levels are for use by the multigrid

solver alone, and are discarded when the solution is complete. Each new multigrid level is

created by coarsening the next �ner level above, and does not communicate with coarser

AMR levels below. Letm = m (`) be the multigrid level corresponding to a given AMR level

`. (Note that m (`hi) = mhi.) For all intermediate multigrid levels, m (`) < m < m (`+ 1),


m = P
�

m+1

�
, i.e. the coarsened domain covers the same region of the physical domain

as does the source �ne domain.

The multi-level residual, R � ��L ('), is de�ned everywhere to be the residual on the

�nest grid available. For every level, ` < `hi, the residual for the region covered by P
�

`+1

�
is ignored. The multigrid relaxation is initiated by invoking the recursive V-cycle smoother

on the �nest level, `hi, which in turn calls a V-cycle smoother on the next level. Note that

the next level may be an AMR level, or it may be simply a multigrid level.

The solution at level ` sees the coarse solution through the interface, @
`, between


` and 
`�1 (excludes the physical boundary). Additionally, if ` < `hi, the solution on


` sees also the �ner data through the interface @
`+1. We de�ne the full three-level

discrete Laplacian operator, L`
�
'`+1; '`; '`�1

�
to incorporate the �ne uxes at @
`+1, and

and coarse data at level ` � 1 along @
`, as discussed in Section 4.2. We also de�ne a

\no-�ne" operator, L`;nf
�
'`; '`�1

�
, which uses the coarser data at @
`, but ignores level

` + 1 data, and applies a homogeneous boundary condition on all physical boundaries. In

order to use the no-�ne operator, we construct the level ` correction problem in the region
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P
�

`+1

�
by coarsening the level `+1 residual. In this way, the level ` correction is \aware"

of the progress made on level ` + 1 without ever requiring the full three-level operator,

except to compute the initial residual at each level. The complete AMR V-cycle appears

Algorithm 5 The multigrid V-cycle, for P
�

`
�
� 
`�1.

AmrVcycle( ` )

if (` = `hi) then

R` = �` � L`
�
'`; '`�1

�
e` = 0

end if

if (` > 0) then

'`save = '`

e` = Smooth
�
e`; R`

�
'` = '` + e`

e`�1 = 0

R`�1 =

8<
:

Coarsen
�
R` � L`;nf

�
e`; e`�1

��
On P

�

`
�

�`�1 � L`�1
�
'`; '`�1; '`�2

�
On 
`�1 � P

�

`
�

AmrVcycle( `� 1 )

e` = e` +Re�ne
�
e`�1

�
On P

�

`
�

R` = R` � L`;nf
�
e`; e`�1

�
�` = Smooth

�
�` = 0; R`

�
e` = e` + �`

'` = '`save + e`

else

SolveL
�
e`
�
= R`

'` = '` + e`

end if

in Algorithm 5. If 9m : m (`� 1) < m < m (`), then we augment the multigrid cycle to

smooth on the multigrid levels between the AMR levels, and bypass the bottom solve. This

modi�cation is e�ected by replacing the recursive call to AmrVcycle(`�1) in Algorithm 5,

with a call to Vcycle( m (`)� 1;m (`� 1) ;m (`) ).

4.2 Coarse-Fine Matching

A coarse-�ne interface, @
`, separates the regions P
�

`
�
and 
`�1 � P

�

`
�
. The

�ne grid solution is connected to the coarse data through this interface so that it can

properly \feel" the boundary conditions on @
, using a procedure closely related to that

presented in [37]. The �ne grid feels the coarse solution via Dirichlet boundary conditions

by interpolating the coarse data adjacent to @
`. The coarse grid likewise feels the �ne

solution through a procedure that replaces the coarse ux on @
` with the appropriate sum

of constituent face �ne uxes. The following two sections discuss each of these operations
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Figure 13: A typical coarse-�ne interface, @
`, for d = 2; r = 4. The heaviest lines

indicate �ne grid boundaries. Locations are shown for coarse grid boundary

data (�), tangentially interpolated values (�), �ne grid cell-centers (�) and

perpendicularly interpolated ghost cell values (4). Interpolated coarse grid

boundary data (�) is computed using Equation 20.

in detail.

4.2.1 Fine Grid Boundary Conditions

At each level of the multigrid V-cycle (i.e. each multigrid level m), colored sweeps of

the point relaxation are performed on rectangular grids sequentially, with the boundary

conditions e�ectively imposed once per sweep. For convenience, the coarse-�ne boundary

conditions are represented in the operator as Dirichlet values in ghost cells immediately

outside the �ne grids (to locations represented by triangles in the two-dimensional example

shown in Figure 13). For a given �ne grid, each ghost cell value is copied from another �ne

grid, or interpolated using the coarse grid data. Once the ghost cell values have been �lled,

the Laplacian operator may be computed as speci�ed in Equations 3 and 5 for all �ne cells

in the rectangular grid patch.

The interpolation (for d = f2; 3g) is performed in two separate steps. First, a quadratic

interpolation tangential to the face of the �ne grid gives values at the locations identi�ed in

the example, Figure 13, by small open circles. Next, a quadratic interpolant is constructed

normal the interface, using the cell-centered �ne grid data (small solid circles), and tangen-

tially interpolated data, to �ll in data in the ghost cell locations. The multi-dimensional

interpolation must be updated after each time the �ne or coarse data is modi�ed, since the

ghost cell value is a�ected by both pro�les.

Su�cient coarse data exists to easily compute a parabola through the coarse data for

the tangentially interpolated values that lay in the coarse cell labeled \a" in Figure 13. For

cell \b" however, the upper point is covered by �ne grid, and therefore contains invalid data.
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In [37], a one-side linear tangential interpolation was constructed in this case using only the

valid coarse data. We improve on that concept by generating an accurate coarse value in

the covered coarse cells (large open circle in Figure 13), so that the parabolic interpolant

may be constructed as before. The generated coarse cell data is based on the covering �ne

data, using a third-order interpolant:

'`�1
�

=
X

j2nbhd(�)

'`j +
1

2
r2'`

�
+O

��
h`
�3�

(20)

where the sum is taken over the �ne grid cells adjacent to location marked (�), and the

Laplacian correction term, r2'`
�
, is computed as the average of the simple (2d+ 1)-pt

numerical Laplacian computed on the 2d �ne cells surrounding the point marked (�).

4.2.2 Level `� 1 uxes along @
`

Local conservation is preserved along the coarse-�ne interface, @
`, by ensuring that the

same ux computed to enter the �ne grid is counted to leave the coarse grid. The procedure

for carrying this out can be speci�ed after de�ning some additional notation. The coarse

index, ic, at level `� 1, is uncovered if ic 2
�

`�1 � P

�

`
��
. Further, the uncovered index,

ic 2 Ik;+, lays adjacent to @
` in the kth-direction if @
` borders the cell at ic on its

high-side. The cell at ic 2 Ik;� lays adjacent to the coarse-�ne boundary if @
` borders its

low-side. For example, in Figure 13, each coarse cell marked with a large bullet, (�), is a

member of the set, I0;+ at level `� 1. For every ic 2 Ik;�, there is a face set, S (ic) at level
` such that the sum of the faces, s 2 S (ic), covers entirely the coarse face at ic � 1=2uk.

We incorporate the �ne uxes into the coarse discretization at level ` � 1 by building

the conservation sum on the coarse cell in two passes. In the �rst pass, the coarse uxes

are computed and summed as if the level ` �ne grid were not present. For the correction

pass, we compute the �ne uxes along @
` according to the prescription in Section 4.2.1.

Then, we use the following expression to overwrite coarse uxes at level ` � 1 on @
` for

each coordinate direction, k:

�
r � ~F

�
ic2Ik;�

=
�
r � ~F

�
ic
+ (21)

1

(h`�1)
d

0
@ X
s02S(ic)

�
~F � n̂

�
s0

�
h`
�d�1

�
�
~F � n̂

�
ic�uk

�
h`�1

�d�11A

That is, we remove the extensive contribution from the underlying coarse edge, and replace

it with the sum of extensive uxes on the contributing �ne edges. In this operation, the

cells in 
`�1 � P
�

`
�
become e�ectively isolated from the cells in P

�

`
�
.

5 Implementation and Geometrical Requirements

The fundamental irregular data representation, the graph, G = (V;E) of irregular cells,

is implemented in our codes as two lists, one for the cell fragments, and one for the edge
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fragments. These lists are produced by a \geometry generator" module, according to re-

quirements of the algorithms presented in earlier sections of this paper. The geometry

generator is discussed in Section 5.1. In short, for every partial cell, v, in the domain, we

must store the following information:

� The partial cell volume fraction, � (v),

� The set of full cells, N (v), neighboring v, speci�ed as a list of integer d-tuples,

� The index, K (v), of the full mesh cell containing v, speci�ed as a d-tuple

For each partial edge, e, in the domain, we need the following information:

� The partial edge area fraction, A (e)

� The coordinate direction of the unit vector normal to the edge

� An identi�er of the cell on either side of the edge

Additionally, for the nodes, vi in all levels but the coarsest, we require the lists, Lcf;I (vi)
and Lcf;R (vi), as discussed in Algorithm 3. Finally, we require a method of testing whether

an index, i, lies within the set of full uid cells, i.e. if i 2 F . For most problems, the

total number of solid and partial cell in the domain is much smaller than the number of

full cells. Instead of maintaining a list of all the full cells, we generate a list of the solid

cells, B : i 2 F i� ( 6 9v 2 V : K (v) = i) and (6 9i 2 B). Generation of B, is described in the

Section 5.1.4. The regular data is stored in block-structured arrays on a union of rectangles

for each re�nement level using the BoxLib [BoxLib96] software library. The two distinct

data structures communicate via the \interface faces" described in Section 2.2.

5.1 Geometry Generation

In general, the procedure for generating Embedded Boundary geometries consists of the

following steps: intersect the surface description with the background uniform Cartesian

mesh; compute partial cell areas and cell fragment volumes; and establish connectivity of

the cells to each other and to the full cells. Although a general implementation of this

procedure has been presented for complex three dimensional geometries[14], we introduce

a simpler scheme for two dimensions which requires considerably less e�ort to implement,

yet is su�cient for our purposes.

Our procedure is similar to a two-dimensional scheme[16] presented for constructing

an Embedded Boundary representation of bodies which are speci�ed as unions of Bezier

curves. We extend this idea by allowing for a nearly arbitrary collection of two-dimensional

polygons (vertex lists with an assumed orientation). The vertices of these polygons may be

generated, for example, by evaluating the parameterized Bezier curves and line segments

used in PostScript-compatible computer drawing software, or any other user-speci�able

function. The only constraint is that no mesh cell in the background �ne-level Cartesian

grid may contain more than one of these vertices totally within it.

By convention, as the input vertex list is traversed, the body lies to the left of the

segments connecting successive nodes. Except in the case of a \polyline" (discussed in
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(a)
Body

(b)
Body

Figure 14: Creation of the cell fragments in two dimensions. (a) Along each line segment,

created by connecting successive nodes in the speci�ed list, edge fragments are

generated from the grid line intersections. (b) Once the edges are known, cell

fragments can be generated. Cell fragments surrounding the nodes are created

in a subsequent step of the algorithm

(a)

Body

(b)

Body

Figure 15: Classi�cation of nodes along the polygon that speci�es the embedded body.

(a) A concave node, and (b) a convex node. Convex nodes are signi�cantly

easier to handle in the geometry generation procedures.

Section 5.1.3), the polygon is closed by connecting the �rst point in the list to the last.

Each vertex is speci�ed by location, and whether the point lies exactly on any grid line

or at a coordinate line intersection. The latter avoids di�culties associated with exact

arithmetic on a �nite-precision machine.

A list of mesh-line intersections is computed between each successive pair of vertices.

The segment joining each successive pair of these new intersections will represent a portion

of the embedded boundary, and will become the irregular boundary of a new cut cell. The

grid-aligned partial edges of each of these new cut cells are easily constructed, and added

to a master list. It is a simple matter in this setting to then determine which partial edges

in the master list border the new cell fragment. Once the involved partial edges have been

identi�ed, the cell volume is computed using the scheme outlined in Appendix A. For

each partial edge between newly created cell fragments, there is now enough information

to complete the speci�cation, including in particular the identity of the surrounding partial

cells. After the input vertex list has been traversed, cell and edge fragments will exist

that completely surround the polygon, except within and bordering mesh cells that contain

original vertices (see Figure 14). The procedure for adding these �nal cell fragments and

edges into the master list depends on whether the speci�ed vertex is concave or convex. We

discuss the simpler convex case �rst.

5.1.1 Convex Polygons

If the ith node, vi, of the speci�ed polygons is convex (i.e. if vi�1vi � vivi+1 � 0, see

Figure 15), there are at least two methods for computing the volume of the surrounding
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(a)

Fluid

Body

(b)

Fluid

Body

Figure 16: The two methods used in this paper for computing cell fragments. (a) The

\natural" method: Compute the cell fragment according the the speci�ed

polygon, exactly. (b) The \blunted" method: Compute the cell fragment

using the grid line intersection locations. The blunted method only builds

cells that are exactly discretized by the �nite-volume conservation sum. The

piecewise-linear boundary interfaces allowed by the natural method are only

approximated by the ux sum.

cell fragment: the volume may be de�ned explicitly by the polygon segments, or by the

nearest grid line intersections (locally blunting the boundary shape{see Figure 16). The

�rst option was implemented as the default in our scheme. The second option improved

some of the convergence results, as detailed in Section 6, but it places severe limits on the

generality of our scheme with respect to geometries containing �ne scale surface concavity,

as discussed in Section 5.1.2. We refer to the former option as the \natural" method, and

the latter as the \blunted" method. Cell fragments encompassing a convex node may be

constructed by generating the appropriate partial edge areas and computing the cell volume

using one of the two methods shown in Figure 16. The edge fragments are simply added

into the edge list as well, since all the necessary information (face area, neighboring cells)

already exists.

5.1.2 Concave Nodes

If the node, vi, is concave, the situation is a little more complex, as there is the possibility

that one or more of the cell fragments de�ned in the �rst pass actually conict with one

another (see Figure 17). Since each was created without regard for the other, the two will

overlap in space, and each will protrude through the irregular boundary of the other. Given

the local node layout, we simply resolve the conicting cell and edge fragment de�nitions

based on the location of edge intersections near the concave node. In particular, we march

away from the concave node by interval along the segment, vivi+1, searching for a mesh index

containing more than one cell fragment. If two are found, we remove the fragment associated

with the segment vivi+1, in favor of the one associated with vi�1vi. We additionally update

the cell pointers of the adjacent edges, and reduce the a�ected edge fragment apertures,

and cell fragment volume. Finally, we add in the cell fragment at the apex of the node.

If we are to build the geometry according to the blunted method, the procedure above

is modi�ed. Firstly, if the segments, vi�1vi and vivi+1 intersect the same face of the mesh

cell containing the concave node, then there can be no cell fragment surrounding that node.

If this is the case, we must traverse the segments, vi�1vi and vivi+1, removing edge and cell

fragments until we can properly construct a cell fragment with non-zero volume according

the blunted method. This process will minimize grid-scale concave features of the body,

and could be a strong function of exactly where the body is placed on the mesh grid.
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A

(a)

B

(b)

C

Figure 17: Resolving cell fragment conicts that may arise near concave nodes, depending

on whether the natural or blunted generation scheme is being used. (a) A pair

of conicting cell fragments exist at the mesh index marked \A". (b) In the

natural scheme, one of the cell fragments is removed, and the remaining one

is trimmed away appropriately, leaving the cell fragment marked \B". A new

cell fragment is added at the apex of the node. (c) In the blunted scheme, cell

and edge fragments are removed from the geometry until a cell fragment with

non-zero volume can be constructed from a linear boundary segment.
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(a)

Fluid

Body
(b)

Fluid

Body

Figure 18: A thin region of uid between two sections of the embedded solid. The sections

may or may not be part of the same body. (a) No cell fragment conicts arise

with our present generation schemes. (b) The cell fragments between the body

sections can be properly generated only after a global search procedure. We

have not implemented such a search, and currently ag this condition as an

input error.

Thin Shell
Boundary

Figure 19: A in�nitely thin shell geometry. Cell fragments can be generated along both

sides of a a polyline; our schemes support multiple cell fragments at a given

mesh cell index.

As presently implemented, our gridding scheme can resolve conicting cell fragment

de�nitions coming only from adjacent line segments in the polygon description. This limits

large-scale convexity to cases where non-adjacent segments of the polygon remain separated

by at least one mesh grid line. For the same reason, multiple bodies in the same calculation

must remain separated by a grid line as well (see Figure 18). This limitation is easily

removed by expanding the search for conicting cell fragments to include the entire set, but

the work of such a search would scale poorly with problem size, and cell and edge conict

resolution would become considerably more complex.

5.1.3 In�nitely Thin Shells

A special case easily allowed by our procedure is the \in�nitely thin" body having its

outline speci�ed by an \open" polygon, or polyline. This is e�ected via the same procedures

as above, except that after we construct the cell fragments along each line segment in the

polygon, we reverse the point list, and repeat the procedure to generate cell fragments along

the other side of the line. We truncate the polyline at the last intersection with the grid

to avoid creating cell fragments around the �rst and last nodes of the polyline. Figure 19

illustrates such a situation. This is a \thin" body condition, as discussed in Section 2.1.1,

and is accommodated naturally in our framework; in Section 6.2, we present results for one

such geometry.
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(a)

A

B

Body

DC

(b)

B

A
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Body

D

Figure 20: Determining the set of solid cells, B, from the layout of cell and edge fragments.

(a) The vertical strips for the x-direction sweep. The cell fragment at A

has non-zero aperture on its high y-side, and zero aperture on its low y-side.

Therefore, B, and all the indices below it, must be solid cells. There are no cell

fragments in the vertical strip containing D, so no solid cells can be identi�ed.

(b) The horizontal strips for the y-direction sweep. The cell fragments in C

identify D as a uid cell.

5.1.4 Set of Solid Cells

The simple procedure we use for identifying the solid cells is similar in spirit to that

outlined in [16], except that we must allow for thin bodies (see Figure 20). We proceed after

generating all the cell and edge fragments, by sweeping in one-dimensional strips. The �gure

illustrates the process in two-dimensions, though the scheme is valid in three dimensions

as well. We begin with a vertical strip at the left side of the domain, and the assumption

that all non-partial cells are full (non-solid), though we cannot determine a priori whether

the bottom of the strip is inside the solid or the uid until we reach the �rst index which

contains cell fragments. We use the general logic that if one cell fragment in the set at that

index has non-zero aperture on its low x face, then there can be no solid cell immediately

below. Likewise, if a cell in the set has non-zero aperture on its high x face, then no solid

cell can be immediately above. If, at the �rst index containing cell fragments, there are

none in the set with non-zero aperture on their low x face, we add all mesh cells below that

one to the solid cell list. We continue upward until �nding an index with cell fragments

where none have non-zero aperture on their high x face. All cells between that location,

and the next with all cell fragments having zero low x aperture, are added to the solid set.

Note that since we may traverse the entire strip without encountering a cell fragment, this

single pass system may fail to identify solid cells which populate the entire strip. We now

proceed with similar logic in y-strips, and if in three dimensions, �nish with z-strips.

Algorithm 6 Ensuring solid cells are \properly bordered". Here, O is the list of possible

orientation unit vectors.
I = fK (v) : v 2 V g
while 9 i 2 
 6 B

S
I : i+ o 2 B, for any o 2 O do

B = B
S
i

end while

A �nal pass is required to eliminate any remaining ambiguities. We search for mesh

cells not containing a cell fragment, and not marked for solid, but which are adjacent to

solid. Since solid cells cannot be adjacent to uid, if any such cells are found, they are

tagged solid as well. Details of the scheme appear in Algorithm 6. This procedure is
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Figure 21: Example geometry coarsening, taking a 128� 96 grid progressively down to a

4� 3. Note that the volume and area fractions are consistent across levels.

continued until there are no more mesh cells satisfying the condition. The algorithm is

particularly ine�cient, but only required if the strip passes reveal any solid cells adjacent

to the rectangular computational domain boundary.

Once the complete geometry at the �nest level has been generated, we may apply re-

cursively the coarsening strategy de�ned in Section 3.2 to generate the coarser geometry

descriptions required for the multigrid/AMR re�nement levels. In Figure 21, we show an

example two-dimensional geometry, as it is coarsened by our scheme. In the �gure, the em-

bedded body is shaded in, and the individual cell fragments are drawn. Note that the body

shape is drawn in at the resolution of the �nest grid; the volume and edges of the coarse cell

fragments are consistent with this picture. We use the reconstruction algorithm detailed in

Appendix A only for estimating a position to apply the Dirichlet boundary condition, as

described in Section 2.3

6 Results

We present a variety of test cases which exercise di�erent components of our adaptive

multigrid linear elliptic solution scheme. In all cases, the domain is two-dimensional. The

�rst sets of results are used to verify the consistency and accuracy of the discretization. Since

the method is essentially identical to that presented in [33], we observe identical convergence

behavior. Next, we look at the residual reduction performance of our multigrid scheme,

using a variety of embedded boundary shapes and boundary conditions. We conclude with

a demonstration and assessment of the adaptive aspects of the solver.
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6.1 Convergence Veri�cation

For the following cases, the embedded boundary is de�ned by the curve,

r = 0:30 + 0:15 cos 6�

where r is radius, and � is azimuthal angle about the origin, measured from the positive

x-axis. The computational domain for these cases lies between this curve, and the unit box,

centered at (0; 0). Equation 1 is solved for the potential, ', given a Poisson source

� = 7r2 cos 3�

The exact solution for this system is 'e (r; �) = r4 cos 3�. The error �eld, � (~x) = ' (~x) �
'e (~x) is used to monitor the convergence of the discrete solution to the correct continuum

solution. The exact solution resides at the full cell centers, as discussed in Section 2.1. The

truncation error �eld, � (~x), is the di�erence between the analytic Laplacian operator, and

the numerically computed operator, L ('e), de�ned in Section 3. The truncation �eld, as

well as the Poisson source resides at each cell's center of mass.

We de�ne the volume-weighted norm of a variable e:

k�ekp =

 X
i2


jeij
p�ih

d

,X
i2


�ih
d

!
(22)

where 
 is the computational domain. An 1-norm, kek1, is the maximum over all the

domain of the absolute value of the elements of e. The rate of convergence in a given

norm, p, between two errors �elds, e1 and e2, computed with two di�erent background

mesh spacings, h1 > h2, is

Rp = log

 
ke1kp
ke2kp

!,
log

�
h1

h2

�
(23)

The convergence rate, Rp = n indicates nth-order accuracy, i.e. the leading term in the

truncation error scales as O (hn).

6.1.1 Problem 1: Dirichlet Embedded Boundary Conditions

We enforce inhomogeneous Dirichlet boundary conditions, as described in Section 2.3, by

setting the value at the center of the reconstructed interface, ~xbc, equal to the exact solution

value, 'e (~xbc). This �xed value results in a non-trivial extensive Dirichlet boundary ux,
~FEB � ~AEB , to be added to the conservative sum, Equation 6 on the cell fragments. Here,
~AEB = AEBn̂EB, where n̂EB is the unit normal on the embedded boundary evaluated

at ~xbc, and AEB is the magnitude of area of contact of the cell fragment with the solid,

computed using the interface reconstruction scheme described in Appendix A. The ux,
~FEB , is computed according to the speci�cation in Section 2.3.

In the �rst set of cases, the embedded boundary geometry is constructed using the

natural method, as discussed in Section 5.1, and we discretize the domain on uniform mesh

of N2 cells, where N = f40; 80; 160; 320; 640; 1280g. For these cases, the �nest grid covers
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Figure 22: Contours of the exact solution for Problem 1, plotted over a grid with h = 1=80.

The shaded region represents the embedded body, and is excluded from the

computational domain. Contours are not extended into the cell fragments,

which are drawn in around the embedded solid.

the entire domain, i.e. P
�

m+1

�
= 
m;8m : 0 � m < mhi. We initialize the state with

the exact solution, and relax the system via a multigrid V-cycle using the level-transfer and

smoother operations de�ned in Section 3.3. At the coarsest level, there is insu�cient data

in the domain to compute the full embedded boundary interpolants at 16 of the partial cell

boundaries (generally, at the concave nodes of the geometry). For those cells, the planar

interpolation functions are used, resulting in a scheme that is formally inconsistent. At

the re�nement level where h = 1=80, there are just four points where this occurs{at the

concave nodes along the central vertical axis. For h < 1=80, the full interpolants could be

computed for all partial cells in the domain. A contour plot of the solution for this test

problem is shown in Figure 22. In the �gure, we also draw in the cell fragments resulting

from discretizing the domain on a grid with h = 1=80, and shade in the embedded body,

which is excluded from the calculation.

Tables 1 and 2 show the convergence rates of the norm of the volume-weighted trunca-

tion, and the error, respectively with decreasing h = 1=N . The large initial rates are due to

the low-order boundary interpolants, and the erratic convergence rates for k��k1 will be

explained shortly. The 1 and 2 norm convergence rates for the truncation are as expected

for centered di�erences with boundary uxes computed using parabolic interpolants. As

demonstrated in [33], the initial rapid convergence of the error, �, due to errors in approxi-

mating the ux at embedded Dirichlet boundaries. These errors, which are large on coarse

grids, generate contributions to � which converge to third order in h for all the norms.

Eventually however, this component of � becomes small enough that it is dominated by

the second-order truncation terms generated by the central di�erences in the bulk of the

computational domain. Our results appear to con�rm that argument.
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N k��k1 R1 k��k1 R1 k��k2 R2

0040 0.483204 - 0.0148148 - 0.15888 -

0080 0.0616952 3.0 0.00311469 2.2 0.0141678 3.5

0160 0.0330336 0.90 0.00078422 2.0 0.00491301 1.5

0320 0.0191487 0.79 0.000198956 2.0 0.00180314 1.4

0640 0.00907973 1.1 4.93392e-05 2.0 0.000628069 1.5

1280 0.0059005 0.62 1.23034e-05 2.0 0.000225618 1.5

Table 1: Convergence of the volume-weighted truncation error of the numerical Laplacian

operator for the Dirichlet case, Problem 1, using the natural cell fragment con-

struction process, as detailed in Section 5.1. The largest errors are consistently

on the cell fragments. The 1-norm converges roughly at �rst order in h, while

the 1 and 2-norms converge at 2 and 1.5 respectively.

N k�k1 R1 k�k1 R1 k�k2 R2

40 3.47043e-05 - 8.63834e-06 - 1.35548e-05 -

80 5.15269e-06 2.8 1.27141e-06 2.8 1.83661e-06 2.9

160 7.38936e-07 2.8 2.3757e-07 2.4 3.42284e-07 2.4

320 1.32241e-07 2.5 5.1197e-08 2.1 7.67556e-08 2.2

640 3.26955e-08 2.0 1.19695e-08 2.1 1.85318e-08 2.1

1280 8.18485e-09 2.0 2.93154e-09 2.0 4.61567e-09 2.0

Table 2: Convergence of the error, � = '� 'e, of the computed solution to the Dirichlet

case, Problem 1, using the natural cell fragment construction process, as detailed

in Section 5.1. The largest error is on the cell fragments. The initial fast conver-

gence was explained in [33]; the convergence rates approach two asymptotically,

as expected.

Partial Cell Index

|
|τ

Λ

Truncation Error on Partial Cells

Figure 23: Scatter plot of the magnitude of the volume-weighted truncation error, j�� j,
of the operator in Problem 1, over the cell fragments generated for the grid,

h = 1=160.
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Original Cell

(b)
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Reconstructed Cell

∆

Figure 24: Cell reconstruction in 2D. The error, �, in the computed boundary area, may

be O (h) for this special case. The �gure exaggerates the curvature of the

boundary to illustrate the issue.

The erratic convergence behavior of k��k1 can be understood with the aid of Figure 23,

where we plot the magnitude of �� as a function of cell fragment index number for Problem 1

setup, with h = 1=160. It is evident that the 1-norm is determined (to a factor of two, or

so) by a small number of cells in the domain. All the cells represented in the �gure where

j�� j > 0:02 share the feature that boundary curvature e�ects introduce O (h) errors into

the numerical operator via the approximation of AEB, i.e. the surface integral,I
@�i

n̂ � d~S

is incorrect to O (h), whereas for normal cell fragments, this error is only O
�
h2
�
. Such a

situation arises only for triangular reconstructed cells with high aspect-ratio near regions

on the boundary with signi�cant curvature (see Figure 24). In this case, the reconstruction

will position the boundary segment correctly to O
�
h2
�
, measured along n̂EB, which results

in an O (h) error at the intersections with the grid line. As an alternative, the boundary

area, ~AEB, may be de�ned so that the discrete area integral is exact, but then � computed

for this cell would no longer consistent with these cell faces. The observation motivated

us to develop the blunted approach to cell construction, described in Section 5.1, where

both the cell apertures and volumes are constructed consistent with the piecewise linear

representation. For this case, the boundary interface reconstruction procedure will give

the \exact" boundary point location. Now, the geometry-induced errors arise only from

the piecewise-linear representation of the smooth boundary, and these errors are smoother

and better behaved. This phenomenon was not observed in [33], where the cell fragments

generated were automatically blunted (according to our terminology in Section 5.1).

We re-computed the geometry using the blunted version of the scheme, as detailed in

Section 5.1. Tables 3 and 4 show the convergence behavior for Problem 1, using the blunted

cell fragments. Clearly, k��k1 behaves as expected, and indeed how it was reported to

behave in [33]. Note that the other norms remain e�ectively unchanged, as one might

expect. As an aside, we note that a plot for this blunted case that corresponds to Figure 23

would show the same general features as before, i.e. only a few cells were within a factor of

2 of k�k1, while the rest were at roughly half that level. However, in this case, since these

errors decay smoothly as h decreases, the outliers do not adversely impact the overall error

norm.

These results might indicate that the blunted scheme is superior to the natural scheme,

were it not for the undue restrictions that the blunted scheme places on geometries. Aside

from being unable to represent concave features on the scale of the mesh grid, the blunted
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N k��k1 R1 k��k1 R1 k��k2 R2

40 0.484045 - 0.0150905 - 0.155971 -

80 0.065068 2.90 0.00313342 2.3 0.014329 3.4

160 0.035117 0.89 0.000787199 2.0 0.0049367 1.5

320 0.0198966 0.82 0.000199542 2.0 0.00179268 1.5

640 0.0104768 0.93 4.94945e-05 2.0 0.000618629 1.5

1280 0.00578773 0.86 1.23339e-05 2.0 0.000220398 1.5

Table 3: Convergence of the volume-weighted truncation error of the numerical Laplacian

operator for the Dirichlet case, Problem 1, using the blunted cell fragment con-

struction process, as detailed in Section 5.1. The1-norm convergence is slightly

better behaved in this case, compared to the results generated from the natural

cell generation method. Here again, the1-norm converges roughly at �rst order

in h, while the 1 and 2-norms converge at 2 and 1.5 respectively.

N k�k1 R1 k�k1 R1 k�k2 R2

40 3.62205e-05 - 8.74556e-06 - 1.36764e-05 -

80 5.21425e-06 2.8 1.2735e-06 2.8 1.84214e-06 2.9

160 7.92214e-07 2.7 2.38048e-07 2.4 3.43014e-07 2.4

320 1.32427e-07 2.6 5.12732e-08 2.2 7.68536e-08 2.2

640 3.27236e-08 2.0 1.19778e-08 2.1 1.8544e-08 2.1

1280 8.18749e-09 2.0 2.93368e-09 2.0 4.61752e-09 2.0

Table 4: Convergence of the error, � = '� 'e, of the computed solution to the Dirichlet

case, Problem 1, using the blunted cell fragment construction process, as detailed

in Section 5.1. These results are quite similar to those presented for the natural

cell fragment method
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N k��k1 R1 k��k1 R1 k��k2 R2

40 0.0498369 - 0.00691271 - 0.019298 -

80 0.0249605 1.0 0.00178174 2.0 0.00678532 1.5

160 0.0124902 1.0 0.000451207 2.0 0.00242888 1.5

320 0.00624756 1.0 0.000114123 1.9 0.000871247 1.5

640 0.00312439 1.0 2.87537e-05 2.0 0.000308245 1.5

1280 0.00156234 1.0 7.23863e-06 2.0 0.000110257 1.5

Table 5: Convergence of the volume-weighted truncation error of the numerical Laplacian

operator for the Neumann case, Problem 2, using the natural cell fragment con-

struction process, as detailed in Section 5.1. Here again, the 1-norm converges

at �rst order in h, while the 1 and 2-norms converge at 2 and 1.5 respectively.

method generates geometries that may depend strongly on the position of the underlying

grid lines. Since we are developing these numerical schemes for arbitrary geometries, the

latter is not a desirable feature. Also, it is worth noting that since the large errors in this

scheme are due to an O (1) number of points, and since these cells generally have very small

volume, they will have minimal impact on the solution over the rest of the domain{this was

evident in the results presented above, since the truncation and solution errors converged

at the expected rates in the 1 and 2-norm regardless of the convergence behavior of the

1-norm.

6.1.2 Problem 2: Neumann Embedded Boundary Conditions

To test the discretization with Neumann boundary conditions, we set up a case identical

to Problem 1, except that the inhomogeneous extensive ux, ~FEB � n̂EB, added to the

conservative ux sum is computed explicitly from the known solution. The components of
~FEB = r'e, are

rx' (x; y) =
4x4 � 3x2y2 � 3y4

r

ry' (x; y) = �
�xy

�
5x2 + 9y2

�
r

where r2 = x2+y2. The local normal was computed from the cell's edge fragment apertures,

according to the procedures outlined in Appendix A. The natural cell construction proce-

dures were used for this case. The convergence results are presented in Tables 5 and 6. Note

that convergence behavior in these cases is much more uniform. The Neumann case appears

to be somewhat less sensitive to details of the boundary treatment, as expected. Since there

is no contribution to conservative ux sum from terms along the boundary interface, the

scheme is insensitive to the details of the boundary surface reconstruction procedure.

6.2 Multigrid Assessment

In this section, we evaluate the e�ectiveness of our simple multigrid scheme for solving

the Poisson equation on a variety of two-dimensional geometries. First, we assess the
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N k�k1 R1 k�k1 R1 k�k2 R2

40 6.12207e-05 - 1.77911e-05 - 3.01133e-05 -

80 1.72152e-05 1.8 4.8787e-06 1.9 8.34709e-06 1.9

160 4.57722e-06 1.9 1.29383e-06 1.9 2.21562e-06 1.9

320 1.18702e-06 1.9 3.35947e-07 1.9 5.73883e-07 1.9

640 3.02077e-07 2.0 8.53856e-08 2.0 1.45699e-07 2.0

1280 7.61676e-08 2.0 2.16465e-08 2.0 3.68528e-08 2.0

Table 6: Convergence of the error, � = '�'e, of the computed solution to the Neumann

case, Problem 2, using the natural cell fragment construction process, as detailed

in Section 5.1. We clearly observe second order in all norm measures.

performance of our schemes for the case that `hi = 0, and 
m = P
�

m+1

�
, i. e. the �nest

grid covers the entire domain completely. We use the simple V-cycle described in this paper,

with low-order level transfer functions and a point-relaxation smoother. In all cases, the

coarsest level in the multigrid V-cycle is h = 1=2, and the \exact" solve at the bottom of the

V-cycle (on the 2� 2 system) consists of 8 passes of the smoother operation. The measure

of performance is the averaged residual reduction factor,

f =

�
k�R0k1
k�RNk1

� 1
N

(24)

where the average is taken over the total number, N , of complete multigrid iterations taken

during that solve. As in Section 3.1, R = � � L ('), and the subscript indicates iteration

number, with 0 representing the residual computed with the initial guess. For all cases,

the initial guess was a at pro�le (' = 0), and the system was relaxed until k�Rk1 was

reduced by 10 orders of magnitude.

6.2.1 Problem 3: Solver Scaling with System Size

Problem 3 is designed to illustrate how our simple multigrid scheme scales with system

size. The problem setup is identical to that of Problem 1, except that we build a single

geometry, based on h = 1=256, and construct a series of sub-problems, at decreasing levels

of re�nement. We do this simply by starting the multigrid V-cycle at successively higher

(coarser) levels. Figure 25 plots the residual reduction factor, f as a function logN , where

N is the number of cells on a side (= 1h). The reduction factor increases linearly with

logN , which veri�es that we are achieving the expected performance of classic multigrid

schemes, where the work scales as O (N logN).

6.2.2 Problems 4 and 5

Problems 4 and 5 are designed to test the scheme's ability to handle a wide variety of

geometrical shapes embedded in the grid. Statistics for the six geometries we tried appear

in Table 7. In all cases, the background uniform mesh is 256 � 256 over the region in two-

dimensional real space, [0; 0] � [1; 1]. The bodies were described as a set of node lists, and

the natural cell fragment construction procedure was used. The cases are:

37



Residual Reduction Factor

log(N)/log(2)

Figure 25: Plot of the residual reduction factor, f , as a function of system size, N , for

Problem 3. The reduction factor scales linearly with logN , so that the com-

puter work to solve this linear system scales as O (N logN).

Case Desc. NB N256
V N t256 (s) N1024

V t1024 (s) fN fD

A Line 0 192 65336 0.17 768 0.43 0.141 0.146

B Boxes 8192 512 57344 0.35 2048 1.4 0.103 0.0767

C Ellipses 10240 912 55296 0.9 3792 5.0 0.0407 0.0557

D Ellipse 42764 700 22772 0.63 2812 7.5 0.0607 0.0760

E Naca 2311 536 63225 0.5 2144 1.8 0.118 0.0902

F Arc 0 764 65918 0.7 3068 3.0 0.186 0.135

Table 7: The six geometries used for Problems 4 and 5. Here, NB is the number of solid

cells , N256

V
is the number of cell fragments, N is the total number of uncovered

cells (including full and partial cells), t256 is the CPU time (in seconds) to gen-

erate the geometry on the 2562 domain, N1024

V
is the number of cell fragments

in the same geometry generated for a 10242 mesh, and t1024 is the CPU time

it took to generate the larger geometry. fN and fD are the residual reduction

factors for the Neumann and Dirichlet problems, Problems 4 and 5, respectively.
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(a) (b) (c)

(d) (e) (f)
Figure 26: Contour plots for Problem 4. Homogeneous Neumann conditions are imposed

on the embedded body, while homogeneous Dirichlet conditions are applied to

the rectangular boundaries (except in (d)).
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16
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B. Two boxes, measuring 1
4
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2
; 1
2
� 1

4

�
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�
1
2 �

1
4 ;

1
2 �

1
4

�
measuring 5

16 �
5
32 .

D. One ellipse, centered at
�
1
2 ;

1
2

�
, measuring 3

4 �
5
8 . For this case, the domain is inside

the elliptical surface (so that there are no rectangular boundaries for this example),

E. Two NACA 0012 airfoils, uniformly scaled to have length 0:468, and placed so that

the leading edges are at (:336; :625) and (:195; :375).

F. An arc, sweeping out � =
�
�
4
;��

4

�
, with center at

�
3
4
; 0
�
and radius = 1

4
.

For Problem 4, we computed solutions to the Poisson equation on the six geometries,

imposing a homogeneous Neumann boundary condition at the embedded boundaries. A

homogeneous Dirichlet condition was imposed all along the rectangular boundary (if one

exists in the problem). To make the solution non-trivial and non-singular, we placed equal,

but opposing Gaussian source terms,

� =
X
i

Ci
1 exp

�
Ci
2 j~x� ~xij

2
�

(25)

where ~xi =
�
�1

2 ;
1
2

�
, Ci

1 = �1 and Ci
2 = 0:01 (actually we omitted the left source in

Case A to obtain a solution which more clearly demonstrates the abilities of the code).

Contour plots of the solutions for all six cases are presented in Figure 26. Here, we plot 31

equally spaced levels between the extreme values of the solution, and shade in the embedded
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(a) (b) (c)

(d) (e) (f)
Figure 27: Contour plots for Problem 5. Homogeneous Dirichlet conditions are imposed

on all boundaries of the domain, including rectangular and embedded surfaces.

bodies that have been excluded for each case. The contours clearly intersect normal to the

embedded surface, and are tangent to the rectangular boundary, as expected. The multigrid

residual reduction factors for this case appear in Table 7, column 9.

For Problem 5, we enforce Dirichlet conditions on all boundaries. The embedded bound-

aries were set to zero, while the rectangular boundaries where set to unity (if they exist in

the problem). In Case D, this would result in a trivial solution; we added a single source

of the form of Equation 25 at the center of the domain, with where ~x1 =
�
1
2 ;

1
2

�
, C1

1 = 1

and C1
2 = 0:01. Contour plots of the solutions for all six cases are presented in Figure 27.

Here, we plot 21 equally spaced levels between 0 and 1, inclusive. The contours are clearly

tangent to all boundaries in the problems, and show the correct general characteristics ex-

pected of the Poisson solution. The multigrid residual reduction factors for this case appear

in Table 7, column 10.

6.2.3 Problem 6: Adaptive Multi-level Solve

Problem 6 demonstrates the AMR component of our solver. For this case, we chose the

geometry labeled \F" in Table 7, and run the system setup for Problem 3 (i.e. the Poisson

equation, with two opposing sources). We apply homogeneous Neumann conditions to

the embedded boundaries, and along the left and right sides of the domain. We apply

homogeneous Dirichlet conditions to the upper and lower boundaries. The �nal solution

presented has four AMR levels, with a uniform factor of two separating each. The �nest

grid has h = 1=512, while the coarsest uncovered level has h = 1=64.

First, we solve our problem over the entire domain with h = 1=64 (this will involve 7

multigrid levels, with h = 1=2n; n = [1; 6]). Richardson extrapolation is used to estimate

the local truncation error, � , as described in [38]. All rectangular cells with � > :1h2
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are \tagged" for re�nement, according to the procedure detailed in [38]. We also tag

every mesh cell containing at least one partial cell (in this way, we can ensure that the

embedded boundary is always gridded to the �nest level). A set of rectangular grid patches

are generated for the level with h = 1=128. The �ne grid solution is initialized by by

interpolating the coarse grid values using our piecewise-constant level transfer scheme, and

the system is relaxed via the multi-level multigrid scheme given in Algorithm 5. After the

solve, the error tagging procedure is applied again to adjust the grids at h = 1=128, if

necessary. The solve at this level continues until the grid layout remains constant. The

next AMR level is then added using a similar process, and the three-level scheme is iterated

to convergence in the same way. We terminate execution after four AMR levels have been

converged, both in terms of grid placement and in terms of reducing the 1-norm of the

residual at each level at least eight orders of magnitude from that of the initial guess.

Figure 28 shows the converged, adapted solution. The boxes overlaid on the contours

indicate the extent of block-structured logically rectangular grids at each level (for clarity,

we've shaded them according to level). Due to limitations in our graphics, contours were not

drawn in the partial cells{this is most noticeable near the body in the �rst solution plot. In

the �nal arrangement, levels 3-0 cover 6:96; 24:3:46:8 and 100 percent of the computational

domain, respectively. The average residual reduction factor for the entire calculation was

approximately 0:08. Note that the solution is resolved well enough that grid re�nement

is not triggered near the location of the sources. The minor pro�le adjustments with grid

re�nement appear to result from the improved resolution of the curved boundary.

We note this example was the largest of the linear solves presented in this paper, consum-

ing approximately 10 minutes of CPU time on a DEC Alpha 300 MHz machine. Although

such performance is unacceptable for for typical high-performance computing applications,

the encouraging convergence performance warrants another implementation pass to stream-

line data access and minimize unnecessary calculation.

7 Conclusions

In this paper, we have presented a graph-based algorithm for representing irregular

bodies embedded in a block-structured, logically rectangular Cartesian grid. We detailed a

recursive geometrical coarsening strategy valid for arbitrarily complicated domain shapes.

The strategy carries enough geometrical information along to allow �nite-volume type

conservation-law discretizations to be constructed on every coarse level generated. It ap-

propriately handles \thin-bodies" and \trailing-edges" at every level, and extends directly

to three dimensions.

Based on our data representation and coarsening strategy, we constructed a simple

multigrid scheme for solving the Poisson equation in the presence of arbitrarily complex

geometries. We studied the behavior of our scheme, both in terms of convergence rates to

the continuum solution of Poisson's equation, and in terms of the residual reduction rates.

By testing over a wide range of geometries, we found that the complexity and position

of the embedded shapes seems to have some impact on our scheme's residual reduction

properties, but that the scheme was nonetheless generally quite robust|remarkable since we

implemented only the simplest of possible strategies for the various components of multigrid

(such as level transfer and smoothing operations).
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Figure 28: Adaptive solution to the Poisson equation on the \Arc" geometry, an in�nitely

thin embedded surface. Left-to-right, top-to-bottom, the �gures depict the

converged solution with one, two, three and four AMR levels, respectively.

The coarsest solution is on a 64 � 64 grid, and each AMR level is re�ned a

constant factor of two from the one next coarser.
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Figure 29: Linear reconstruction of the embedded boundary surface, based on the surface

normal, ~n, and cell volume. In two-dimensions, the uid cell may be triangular,

trapezoidal or pentagonal.

The encouraging results presented in this paper indicate that our scheme is suitable for

extension to other conservation-law PDE systems. Our EB formalism extends naturally to

the high-resolution Godunov scheme presented in [17], and to the approximate projection

scheme presented in [27]). The adaptive solver can also be used as a starting point for

extending the variable-density adaptive projection schemes in [37, 38].

A Piecewise Linear Boundary Reconstruction

At the most re�ned grid level, the embedded boundary is represented as a C0 piecewise

linear interface, speci�ed by the apertures of the edges in connected paths of the irregular

geometry graph. The location of this interface within the cells is required, for example, when

computing the uxes induced by Dirichlet conditions along the embedded boundary. The

boundary surface can be reconstructed with volume-of-uid-type methods. We compute

the surface normal, ~n = fn1; : : : ; ndg, for irregular cell v using the partial cell apertures:

nk =
X

e:e�=v

A (e)�
X

e:e+=v

A (e) (26)

for all edges, e, in the k-direction. Now, the surface normal, ~n, and the cell volume, � (v),

specify a unique location for a linear boundary intersection surface. In two dimensions, for

example (see Figure 29), take the case that jn2j > jn1j > 0. De�ne a slope, m = n1
n2
, and

v = �(v). The shape of the cell can identi�ed:

v is a

8><
>:

quadrilateral if v � b and v � 1� b

triangle if v � b and v � 1� b

pentagon if v � b and v � 1� b

where b = jmj =2. In the case of the triangle, one node is on the unit square, the others

are at
�
0; 1�

p
4bv
�
and

�p
v=b; 1

�
. In the case of a quadrilateral, two nodes are on the

unit square, and the others are at (0; 1� v � b). Finally, in the case of the pentagon, three

of the nodes are on the unit square, while the other two are at
�
1�

p
(1� v) =b; 0

�
and�

1;
p
4b (1� v)

�
. These formula are then rotated based on the signs of n1 and n2, in order

to keep a well-behaved slope, m. Similar, but slightly more complex formula can be used

to �nd the plane intersecting the boundary in three dimensions.

We use these formulas also to de�ne an approximate boundary location for geometries

coarsened using the techniques described in Section 3.2. However, there is no guarantee that

the position will accurately reect the sub-grid scale boundary shape. And since we are
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modeling arbitrary boundary shape, higher order reconstruction methods do not necessarily

represent an improvement in location accuracy. For example, on a very coarse grid with

d = 2, one may compute nk = 0; 8 k 2 f1; dg and � (v) < 1, for some v in the domain. This

implies that the embedded structure lays completely within the coarse cell; this case cannot

be represented by a linear boundary segment. We handle this case in the computations

by merely setting the slope, m = 0, and continuing on to the next cell. Such ill-de�ned

cases arise typically at the coarsest levels generated automatically for a multigrid solver

grid hierarchy, and usually represent a re�nement level constructed solely as a temporary

aid for the linear solution. If such a procedure ends up degrading the performance of the

solver, we remove that level from the multigrid hierarchy so that the coarsest problem is

�ne enough to prevent these ambiguous cases.
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