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A 48-V-to-1-V Switching Bus Converter for

Ultra-High-Current Applications
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Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
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Abstract—This paper presents an ultra-high-current switching
bus converter with direct 48-V-to-1-V power conversion for next-
generation ultra-high-power digital loads (e.g., CPUs, GPUs,
ASICs, etc.). In the proposed topology, two 2-to-1 switched-
capacitor (SC) front-ends are merged with four 10-branch series-
capacitor buck (SCB) modules through two switching buses.
Compared to the DC-bus-based architecture, the switching-bus-
based architecture does not require DC bus capacitors, reduces
the number of switches, and ensures complete soft-charging op-
eration. Through two-phase operation within each SCB module,
the switching bus converter extends the maximum duty ratio
and achieves a very large SC stage conversion ratio of 20-to-1.
Compared to existing 48-V-to-1-V hybrid SC demonstrations, the
proposed topology has the lowest normalized switch stress and the
smallest normalized passive component volume, showing great
potential for both higher efficiency and higher power density than
prior solutions. A 48-V-to-1-V hardware prototype was designed
and built with custom four-phase coupled inductors and gate
drive daughterboards. Hybrid gate drive circuitry comprising
gate-driven charge pump circuits and cascaded bootstrap circuits
was customized for the high-side switches in the SCB modules
to overcome the challenge of accumulative voltage drops in the
conventional cascaded bootstrap circuit. The hardware prototype
was tested up to 1200-A output current and achieved 92.4% peak
system efficiency, 87.5% full-load efficiency (including gate drive
loss), and 607 W/in3 power density (by box volume).

I. INTRODUCTION

In recent years, as microprocessors (e.g., CPUs, GPUs,

ASICs, etc.) become more computationally powerful, their

electric power demands have grown dramatically. The power

consumption of next-generation digital loads is expected to

reach 1000 W, with core logic voltages below 1.0 V and peak

current demand beyond 1000 A. Meanwhile, as modern data

centers shift towards the 48-V bus architecture from the legacy

12-V bus architecture, the design of the voltage regulation

modules (VRMs) responsible for the 48-V to Point-of-Load

(PoL) power conversion is becoming increasingly challenging

due to the quadrupled voltage conversion burden. In particular,

the continued increase in power levels with maintained or even

reduced space for power conversion leads to an ever-increasing

demand for higher power density. Moreover, higher power

conversion efficiency is required for easier thermal manage-

ment and reduced electricity consumption of data centers.

The main challenges of 48-V-to-PoL power conversion

include: i) high conversion ratio, ii) high output current, iii)

high efficiency, iv) high power density, and v) fast transient re-

sponse. Various solutions have been proposed to address these

challenges, and they can be classified into two categories: 1)

transformer-based solutions [1]–[3] , and 2) hybrid switched-

capacitor (SC) solutions [4]–[14]. As an emerging family

of topologies, hybrid SC converters have received increased

attention, since they can leverage both the greatly superior

energy density of capacitors compared to magnetics [15], [16]

and the better figure-of-merit (FOM) of low-voltage switching

devices compared to high-voltage devices [17].

This paper presents a high-performance 48-V-to-1-V hybrid

SC converter for next-generation ultra-high-current digital

loads. In the proposed topology, two 2-to-1 SC front-ends

are merged with four 10-branch series-capacitor buck (SCB)

modules through two switching buses, achieving a very large

SC stage conversion ratio of 20-to-1. Compared to the DC-

bus-based architecture, the switching-bus-based architecture

does not require DC bus capacitors, reduces the number

of switches, and ensures complete soft-charging operation.

Through a topological comparison based on the normalized

switch stress and the normalized passive component volume,

it is shown that the proposed topology has great potential for

both higher efficiency and higher power density than prior

solutions. A 48-V-to-1-V hardware prototype was designed

and built with custom four-phase coupled inductors and gate

drive daughterboards. Hybrid gate drive circuitry was designed

for the high-side switches in the SCB modules to overcome the

challenge of accumulative voltage drops in the conventional

cascaded bootstrap circuit. The hardware prototype was tested

up to 1200-A output current and achieved excellent perfor-

mance which surpasses existing state-of-the-art solutions.

II. SWITCHING BUS CONVERTER

A. Circuit Topology and Operating Principles

Fig. 1 shows the schematic drawing of the proposed switch-

ing bus converter. It comprises two stages: 1) two 2-to-1 SC

front-ends as Stage 1, and 2) four 10-branch series-capacitor-

buck (SCB) modules (i.e., Modules A-D) as Stage 2. The two

stages are merged through four switching buses (i.e., Switch-

ing buses A-D). As shown in Fig. 2, the bus voltages vswA-

vswD always switch between two different levels. Therefore,

this type of intermediate bus is referred to as a switching bus.

As can be seen in Figs. 1 and 2, each SCB module consists

of five submodules and operates in a two-phase fashion with

a 180◦ phase shift between neighboring branches. The control

signals of Modules C and D are 90◦ phase shifted with respect
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Fig. 1: Schematic drawing of the proposed switching bus converter.
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Fig. 2: Key waveforms and control signals.
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Fig. 3: Comparison between the DC-bus-based architecture and the proposed switching-bus-based architecture. (a) DC-bus-based architecture. (b) Switching-
bus-based architecture. Compared to the DC-bus-based architecture, the proposed switching-bus-based architecture does not require DC bus capacitors, reduces
the number of switches, and ensures complete soft-charging operation.

TABLE I: Topological comparison between this work and existing 48-V-to-1-V hybrid SC demonstrations

Year Reference
SC Stage

Conversion Ratio
Buck Stage

Conversion Ratio
Buck Stage
Duty Ratio

Normalized
Switch Stress

Normalized Passive
Component Volume

2020
Crossed-coupled
QSD buck [4]

4:1 12:1 0.083 24.2 2.08

2020 DIH [5] 6:1 8:1 0.125 14.7 2.40

2021 CaSP [6] 6:1 8:1 0.125 23.5 2.02

2022
2023

LEGO [7]
Mini-LEGO [8]

6:1 8:1 0.125 17.6 2.41

2023 SDIH [9] 6:1 8:1 0.125 14.7 2.40

2022 MLB [10] 8:1 6:1 0.167 23.7 2.03

2022 VIB [11] 8:1 6:1 0.167 14.3 2.07

2023 MSC [12] 8:1 6:1 0.167 15.1 1.95

2022 Dickson2 [13] 9:1 5.33:1 0.188 14.8 1.90

2023 16-to-1 SBC [14] 16:1 3:1 0.333 10.2 1.69

2023 This work 20:1 2.4:1 0.417 8.99 1.56

to those of Modules A and B so that the four inductors

grouped in the gray rectangles are four-phase interleaved

with a 90◦ phase shift and can be implemented as four-

phase coupled inductors with higher energy density and faster

dynamic response than discrete inductors.

The output voltage of the proposed switching bus converter

can be regulated through duty cycle control as

Vout =
D

20
Vin, (1)

where Vin and Vout are the input and output voltages, respec-

tively, and D is the duty ratio with respect to the switching

period T as illustrated in Fig. 2.

B. Advantages of the Switching-Bus-Based Architecture

The most straightforward approach to combining two (or

multiple) conversion stages is to link them with an interme-

diate DC bus, as illustrated in Fig. 3(a). This DC-bus-based

architecture typically requires a large DC bus capacitor (Cbus)

to maintain a stiff bus voltage (VDC), which hinders converter

miniaturization.

Compared to the DC-bus-based architecture, the proposed

switching-bus-based architecture shown in Fig. 3(b) has three

advantages that promise higher performance:

• It does not require a large and bulky decoupling capacitor

to maintain a stiff DC bus voltage.

• One redundant switch can be removed on each switching

bus while two stages are merged together.

• It can ensure complete soft-charging operation for all

flying capacitors.

In Fig. 3(b), when Stage 1 and Stage 2 are merged, the original

highest high-side switches in Module A (S1HA in Fig. 3(a))

is connected in series with S3 in Stage 1. Similarly, S1HB in



Module B is connected in series with S2. Since the switching

buses do not need to support bidirectional voltage blocking,

only one switch is needed on each bus, and the other redundant

one can be removed. Therefore, compared to the DC-bus-based

architecture, the switching-bus-based architecture enables a

reduction in the number of switches.

C. Theoretical Analysis and Topological Comparison
Compared to the conventional multi-phase operation of

the series-capacitor-buck (SCB) converter [18], the two-phase

operation illustrated in Fig. 2 extends the maximum duty ratio

from 1
N to 1

2 , where N is the number of branches in the

SCB converter. As a result, the upper limit on the number of

branches (Nm−ph and N2−ph) in a SCB converter with fixed

input and output voltages (Vin(SCB) and Vout(SCB)) can be

increased:

Multi-phase operation: Nm−ph <

√
Vin(SCB)

Vout(SCB)
(2)

Two-phase operation: N2−ph <
Vin(SCB)

2Vout(SCB)
. (3)

For the proposed switching bus converter shown in Fig. 1,

the input and output voltages of the SCB modules in Stage

2 are Vin(SCB) = 24 V and Vout(SCB) = 1 V, respectively.

Therefore, the maximum allowable numbers of branches in

the SCB modules for multi-phase operation and two-phase

operation are Nm−ph(max) = 4 and N2−ph(max) = 10,

respectively. Since the switch voltage stress and inductor volt-

second stress in a SCB converter decrease as the number of

branches increases, a SCB converter with more branches can

have less switching device losses and smaller inductor volume.

In addition, changing the control scheme of the SCB modules

from the conventional multi-phase operation to the two-phase

operation can also improve transient response with an extended

maximum duty ratio.
To compare the theoretical potential of the proposed topol-

ogy to that of existing 48-V-to-1-V hybrid SC topologies, this

paper uses two metrics for topological comparison. The first

metric is the normalized switch stress [16], defined as the

total volt-ampere (VA) stress on the switches in a topology

normalized by the output power:

Normalized switch stress =

∑
VdsId(rms)

VoutIout
, (4)

where Vds and Id(rms) are the peak blocking voltage across

and the RMS current through the switches when assuming

no capacitor voltage ripple and no inductor current ripple,

respectively. A lower normalized switch stress is desirable,

as it indicates lower switching losses and lower conduction

losses and thus higher efficiency. The second metric used in

the comparison is the normalized passive component volume,

where the capacitor and inductor volumes are calculated as the

peak energy stored in them divided by their volumetric energy

density. This metric indicates the total passive component

volume needed to meet the given ripple requirements on the

inductor currents and capacitor voltages when transferring one

Fig. 4: Photograph of the hardware prototype. Dimensions: 7.97× 1.02×
0.244 in3 (202.5× 25.8× 6.2 mm3).

unit of normalized power from the input to the output. A

smaller normalized passive component volume is desirable,



TABLE II: Component list of the hardware prototype

Component (X = A,B,C,D) Part number Parameters

MOSFET S1−8 Infineon IQE013N04LM6CGSC 40 V, 1.35 mΩ, dual-side cooling
MOSFET S2HX−10HX Infineon IQE006NE2LM5CGSC 25 V, 0.58 mΩ, dual-side cooling
MOSFET S1LX−10LX Infineon IQE006NE2LM5CGSC 25 V, 0.58 mΩ, dual-side cooling

Infineon IQE004NE1LM6 15 V, 0.45 mΩ

Flying capacitor C1,2 TDK C3216X7R1H106K160AE X7R, 50 V, 10 μF∗×20 (in parallel)
Flying capacitor C1X−6X TDK C3216X6S1E226M160AC X6S, 25 V, 22 μF∗×6 (in parallel)
Flying capacitor C7X−9X TDK C3216X5R1A107M160AC X5R, 10 V, 100 μF∗×6 (in parallel)

Input capacitor Cin KEMET C1206C224K1RECAUTO X7R, 100 V, 0.22 μF∗×14 (in parallel)
Output capacitor Cout Murata GRM219R60J476ME44D X5R, 6.3 V, 47 μF∗×248 (in parallel)

Gate driver in Stage 1 Texas Instruments UCC27212 4-A peak source, 4-A peak sink
Low-side gate driver in Stage 2 Texas Instruments LMG1020 7-A peak source, 5-A peak sink
High-side gate driver in Stage 2 Texas Instruments LM27222 3-A peak source, 4.55-A peak sink

∗ The capacitance listed in this table is the nominal value before DC derating.

(a)

1 2 3 4

(b)

Fig. 5: Custom four-phase coupled inductor. Dimensions: 18.5× 10.5× 3.2 mm3. (a) 3D view with current paths annotated. (b) Coupled inductor assembly

with two pieces of magnetic cores and four pieces of windings: 1©→ 2©→ 3©→ 4© .

as it indicates higher power density.

As listed in Table I, compared with existing 48-V-to-1-

V hybrid SC demonstrations, this work achieves the largest

SC stage conversion ratio with the lowest normalized switch

stress and the smallest normalized passive component volume,

showing great potential for both higher efficiency and higher

power density than prior solutions. With a larger SC stage

conversion ratio, the conversion burden on the following

buck stage can be alleviated, enabling buck stage efficiency

improvement and inductor size reduction.

III. HARDWARE IMPLEMENTATION

To validate the functionality and performance of the pro-

posed switching bus converter, a 48-V-to-1-V hardware pro-

totype was built with custom four-phase coupled inductors

and gate drive daughterboards. Fig. 4 shows an annotated

photograph of the prototype, with the main circuit components

listed in Table II. The power board has 6 layers, with 6-oz

copper on the two outer layers and 2-oz copper on the four

inner layers.

A. Coupled Magnetics

Compared to discrete inductors, coupled inductors can

achieve faster transient response without sacrificing steady-

state performance [19] and can achieve core volume reduction

due to DC flux cancellation [10].

As presented in Fig. 5, a four-phase coupled inductor

comprising two pieces of magnetic cores and four pieces of

windings was customized and assembled for the hardware

TABLE III: Key parameters of the four-phase coupled inductor

Parameter Value

Coupling coefficient -0.91
Per-phase DC resistance 0.16 mΩ
Equivalent per-phase steady-state inductance∗ 260 nH
Overall transient inductance (40 phases) 0.80 nH
Height 3.2 mm

∗ Four-phase average value at D = 0.417.

prototype. The magnetic cores are fabricated with DMEGC

DMR96A Mn-Zn ferrite. The key parameters of the four-phase

coupled inductor are listed in Table III.

B. Gate Drive Circuitry

As has been mentioned in [14], one practical implemen-

tation challenge of the switching bus converter is the gate

drive circuitry design for the high-side switches in Stage 2

(i.e., S2HX−10HX, X = A,B,C,D). Due to the large number of

high-side switches, conventional cascaded bootstrapping suf-

fers from accumulative voltage drops across bootstrap diodes,

leading to higher gate drive loss [20]. In [14], the synchronous

bootstrap technique [21] was adopted to reduce the voltage

drops in the bootstrap circuit by replacing bootstrap diodes

with active FETs. Though effective and widely applicable,

the synchronous bootstrap circuit has a high component count

when implemented with discrete components, which compli-

cates hardware implementation and reduces overall reliability.
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Fig. 6: Gate drive circuitry for high-side switches in Module X
(X = A,B,C,D), where switches S2HX,4HX,··· ,10HX are powered with
gate-driven charge pump circuits, and switches S3HX,5HX,··· ,9HX are
powered with cascaded bootstrap circuits. (a) Schematic drawing. (b) Control
signals.

This paper proposes custom-designed gate drive circuitry

to power the high-side switches in the second stage of the

switching bus converter, as illustrated in Fig. 6(a). In the

proposed hybrid gate drive circuit, switches S2HX,4HX,··· ,10HX

are powered with gate-driven charge pump circuits [20],

and switches S3HX,5HX,··· ,9HX are powered with cascaded

bootstrap circuits. Fig. 6(b) shows the control signals of

the proposed hybrid gate drive circuitry. The charge-pump

capacitors Cpump2X,pump4X,··· ,pump10X are charged by the

flying capacitors C2X,4X,··· ,10X when φCPX = 0, and the local

decoupling capacitors C2HX,4HX,··· ,10HX are charged by the

added gate driver GDCPX when φCPX = 1. To ensure proper

TABLE IV: Key parameters and test conditions of the hardware prototype

Parameter Value

Nominal input voltage 48 V
Nominal output voltage 1.0 V
Maximum tested output current 1200 A (30 A/phase)
Switching frequency 200 kHz
Prototype box volume∗ 1.98 in3

Power density by box volume 607 W/in3

∗ The box volume is defined as the volume of the best-fit cuboid
encompassing the entire solution, including the gate drive circuitry.

operation, φCPX must be high when φ2X = 1. Compared to

the synchronous bootstrap circuit [21], the proposed hybrid

gate drive circuit is simpler and thus easier to implement and

mechanically more reliable. In the hardware prototype shown

in Fig. 4, the proposed hybrid gate drive circuit is implemented

as the green daughterboards mounted on the bottom side of

the red power board.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

COMPARISON

The hardware prototype was tested up to 1200-A output

current at 1.0-V output voltage, achieving a power density of

607 W/in3 by box volume (the volume of the best-fit cuboid

encompassing the entire solution, including the gate drive

circuitry), as listed in Table IV. As shown in Fig. 7, at 1200-A

output current, the highest temperature on the board at thermal

equilibrium with air cooling only is 68.1 ◦C. Given that the

coupled inductors are not saturation current limited and the

converter is not thermally limited at 1200-A output current,

the prototype can handle higher output current. Currently,

the 1200-A maximum tested output current is limited by the

capability of the DC electronic loads (two Chroma 63203 600-

A DC electronic loads) used in this test.

Fig. 8 presents the measured efficiency of the hardware

prototype. It achieved 93.8% peak power stage efficiency

at 280-A output current and 87.9% full-load power stage

efficiency at 1200-A output current. With the gate drive loss

included, it achieved 92.4% peak system efficiency at 380-A

output current and 87.5% full-load system efficiency.

Table V and Fig. 9 show the performance comparison

between this work and the state-of-the-art 48-V-to-1-V works

in previous literature. It can be seen that the switching bus

converter prototype presented in this paper achieved excellent

performance with very high power density and very high

efficiency, pushing the Pareto front of Fig. 9 to the upper-right

corner.

V. CONCLUSION

This paper presents a high-performance 48-V-to-1-V hybrid

SC converter for next-generation ultra-high-current digital

loads (e.g., CPUs, GPUs, ASICs, etc.). The proposed topology

comprises two 2-to-1 switched-capacitor (SC) front-ends and

four 10-branch series-capacitor buck (SCB) modules, with the

two stages merged through two switching buses. Compared to

the DC-bus-based architecture, the switching-bus-based archi-

tecture does not require DC bus capacitors, reduces the number



Fig. 7: Thermal image at equilibrium with 220 CFM air cooling only
(Vin = 48 V, Vout = 1.0 V, Iout = 1200 A).

Fig. 8: Measured 48-V-to-1-V efficiency. Peak efficiency: 93.8% at Iout =
280 A (92.4% at Iout = 380 A including gate drive loss). Full-load efficiency:
87.9% (87.5% including gate drive loss) at Iout = 1200 A.

TABLE V: Performance comparison between this work and the state-of-the-art 48-V-to-1-V works

Year Reference Output Current Power Density† Power Stage Efficiency System Efficiency‡

2023 This work
1200 A

(30 A/phase)
607 W/in3

(by box volume)
Peak efficiency: 93.8%
Full-load efficiency: 87.9%

92.4%
87.5%

2023 16-to-1 SBC [14]
500 A

(31.3 A/phase)
464 W/in3

(by box volume)
Peak efficiency: 94.7%
Full-load efficiency: 86.4%

93.4%
86.1%

2023 MSC [12]
220 A

(27.5 A/phase)
607 W/in3

(by box volume)
Peak efficiency: 92.9%
Full-load efficiency: 86.3%

91.1%
85.8%

2023 Mini-LEGO [8]
240 A

(20 A/phase)
1390 W/in3

(by box volume)
Peak efficiency: 87.1%
Full-load efficiency: 84.1%

84.1%
82.3%

2022 Dickson2 [13]
270 A

(30 A/phase)
360 W/in3

(by box volume)
Peak efficiency: 93.8%
Full-load efficiency: 88.4%

91.6%
87.7%

2022 VIB [11]
450 A

(28.1 A/phase)
232 W/in3

(by box volume)
Peak efficiency: 95.2%
Full-load efficiency: 89.1%

93.3%
88.1%

2022 MLB [10]
60 A

(30 A/phase)
263 W/in3

(by box volume)
Peak efficiency: 92.7%
Full-load efficiency: 88.6%

91.5%
88.4%

2022 SDIH [9]
105 A

(52.5 A/phase)
598 W/in3

(by box volume)
Peak efficiency: 83.5%
Full-load efficiency: 71.5%

81.4%
70.9%

2022 LEGO [7]
450 A

(37.5 A/phase)
294 W/in3

(by box volume)
Peak efficiency: 91.1%
Full-load efficiency: 85.7%

88.4%
84.8%

2020
Crossed-coupled
QSD buck [4]

40 A
(20 A/phase)

150 W/in3

(by power component volume)
Peak efficiency: 95.1%∗
Full-load efficiency: 92.7%∗

N/A
N/A

2020 Sigma [2] 80 A
420 W/in3

(by box volume)
Peak efficiency: 94.0%
Full-load efficiency: 92.5%

N/A
N/A

† The box volume is measured as the smallest rectangular box that can contain the converter, including the gate drive circuitry.
‡ Gate drive loss is included in the calculation of system efficiency. ∗According to direct correspondence with the author.

of switches, and ensures complete soft-charging operation.

Through two-phase operation within each SCB module, the

switching bus converter extends the maximum duty ratio and

achieves a very large SC stage conversion ratio of 20-to-1.

Compared to existing 48-V-to-1-V hybrid SC demonstrations,

the proposed topology has the lowest normalized switch

stress and the smallest normalized passive component volume,

showing great potential for both higher efficiency and higher

power density than prior solutions. A 48-V-to-1-V hardware

prototype was designed and built with custom four-phase

coupled inductors and gate drive daughterboards. Hybrid gate

drive circuitry comprising gate-driven charge pump circuits

and cascaded bootstrap circuits is customized to overcome the

challenge of accumulative voltage drops in the conventional

cascaded bootstrap circuit. The hardware prototype was tested

up to 1200-A output current, achieving 92.4% peak system

efficiency, 87.5% full-load efficiency (including gate drive

loss), and 607 W/in3 power density (by box volume).
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