Lawrence Berkeley National Laboratory Recent Work

Title
DOPPLER LINE SHAPE OF ATOMIC FLUORESCENCE EXCITED BY MOLECULAR PHTOTDISSOCIATION

Permalink

https://escholarship.org/uc/item/7xr1x1x1
Authors
Zare, Richard N.
Herschbach, Dudley R.
Publication Date
1962-08-01

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

DOPPLER LINE SHAPE OF ATOMIC FLUORESCENCE EXCITED BY MOLECULAR PHOTODISSOCIATION

Riohard N. Zare and Dudley R. Hersohbach

 August 1962DOPPLER LINE SHAPE OF ATOMIC FLUORESCENCE EXCITED by molecular photodissociation*

Richard N. Zare and Dudley R. Herschbach Department of Chemistry and Lawrence Radiation Laboratory University of California, Berkeley, Callfornia

Abstract

A semiolassical treatment of the photodissociation of a diatomic molecule is developed. It is shown that the angular distribution of products will often be peaked parallel or perpendicular to the direction of the inoident light beam. The form of the anisotropy is usually determined just by the orientation of the electronic transition dipole moment within the molecule and the polarization of the exciting light. From the angular distribution, the Doppler line shape of fluorescence emitted by an exoited fragment atom is derived by averaging the geometrical factors over the translational velocity distribution of the parent molecules and the distributions in magnitude and angle of the recoil velocity of the exoited atoms. A comparison is made with dissociative electron impaot prooesses whioh show similar features. The photodissooiation of NaI is treated in detail, and the factors Influencing the fluorescence width are evaluated for possible optical maser systems in which the supply of excited atoms is generated by molecular dissociation.

[^0]In optical masers having a gas as the active medium the pumping mechanisms tried thus far have utilized transitions between atomic energy levels. ${ }^{1-3}$ Many molecular dissociative processes which produce excited atoms are known, however. ${ }^{4}$ As pointed out by Singer and Gorog, 5-7 these processes offer attraotive possibilities for maser systems, since the pumping is irreversible, may be relatively broadband, and can continuously generate an almost completely inverted population of excited atoms. The oonditions required to obtain coherent amplification or oscillation by stimulated emission of the atomic fluorescence line may be determined from the fundamental analysis of Schawlow and Townes. ${ }^{1}$ The only way in whioh the mechanios of the molecular disaociation enters is via its influence on the Doppler line shape of the atomic fluorescence. The width of the emission is a oritical parameter, however, since a larger width raises the threshold population required for maser oscillation and adds greatly to the difficulty of selecting a single mode.

We shall treat the dissooiation of a diatomio gas by a beam of light by means of a simple semiolassioal model. The main features derived from this will be seen to apply also to other dissociative processes and to polyatomic moleoules,
although these will be considered only briefly here. The principal resulta are the distribution of velocity vectors of an atom A^{*} produced by

$$
\begin{equation*}
A B+h v_{P} \rightarrow(A B)^{*} \rightarrow A^{*}+B \tag{1}
\end{equation*}
$$

and the Doppler line shape of the atomio fluorescence.

$$
\begin{equation*}
A^{*} \rightarrow A+h v_{F^{*}} \tag{2}
\end{equation*}
$$

In Section I we evaluate the "form factorg" in the angular diatribution of atoms, $I(\theta)$, and the Doppler line ghape $D\left(V_{F}\right)_{\theta}$ which depend only on the orientation of the transition dipole moment within the moleoule and the polarizationof the pumping Light. In Section II these factors are averaged over the thermal distributions of translational. rotational. and vibrational energy of the parent molecules, and the distribution of frequencies of the pumping light. The caloulation of the form factors is entirely geometrical, whereas the averrges over the energy distributions require knowledge of the potential curves of both the ground and excited eleotronio atates of the AB molecule. In Section ITI we review experiments oonoerned with the anisotropy of the form frotorg, and disousa briefly some possible applications to optical masers.

I. GEOMETRICAI FACTORS IN PHOTODISSOCIATION

According to the Franck-Condon principle, 8 the position and momenta of the atomic nuclei remain constant during the electronic jump which accompanies the absorption of a photon. Ordinarily, if the excited electronic state aubsequently dissociates, it does so in a time short compared with a rotational period of the molecule, and the distribution of trajectories of the fragment atoms reflects the initial orientation of the molecule. The photodissooiating molecules are not isotropically distributed with respect to the exciting Iight beam, since the absorption probability is greateat when the transition dipole moment $\underset{\sim}{\mu}$ if aligned with the electrio vector \mathcal{E} of the 1ight. Thus the angular distribution of the atoms should show a corresponding anisotropy.

The oalculation of the form factors which characterize this anisotropy amounts to averaging the angular dependence of the transition probability, proportional to $|\underset{\sim}{\mu} f \cdot \underset{\sim}{E}|^{2}$, over all rotational orientations of the molecule. Several distinot cases appear. These are specified (see Table IV and Fig. 1) by the polarization of the exoiting light; by the orientation of $\underset{\sim}{\mu} f^{\prime}$ whioh is either parallel or perpendicular to the molecular axis; and by the direction of departure of the product atom, which is regarded as undergoing either axial recoil along the initial direction of the molecular axis, or
transverse recoil perpendicular to $1 t$. In Section II the general result will be synthesized from these two limiting cases for 'the reaoil direction.

The orientation of the transition dipole moment,

$$
{\underset{\sim}{\mu}}_{\mu_{1 f}}=\int \psi_{1}^{*} \underset{\sim}{\mu} \psi_{f} d \tau
$$

is readily identified from the symmetry properties of the initial and final molecular states. ${ }^{9}$ As seen in tables I and II, the allowed ${ }^{10} \Sigma \rightarrow \Sigma$, If $\rightarrow I$, and $\Delta \rightarrow \Delta$ transitions are parallel, and $\Sigma \rightarrow$ II and II $\rightarrow \Delta$ are perpendicular. The tables also include rules for electron impact recently derived by Dunn ${ }^{11}$ here the designation "parallel" or "perpendicular" refers to the orientation of the molecular axis with respect to a symmetry axis of the collision. For electron capture this symmetry axis lies along the incident electron beam. For dissociative excitation ox fonization processes, a symmetry axis is lesa obvious, but can stili be defined, as Dunn has shown. In many cases Dunn's mules predict anisotropies In the distribution of products which are qualitatively similar to those for photodissociation, and we shall make some comparisons in Section III.

The average over rotational orfentations is conveniently formulated in terms of the Eulerian angles θ, θ, ψ which relate a rotating, "molecule-§ixed" set of coordinate axes, xyz, to a nonrotating "space-fixed" system with axes parallel to specifiled laboratory directions, XYZ. For both systems the origin is the center-of-mass of atoms \AA and B. The angles
θ, ϕ are ordinary polar coordinates which locate the z-axis relative to the Z-axis and XY plane, and ψ is an azimuthal angle about the z-axis. Since all orientations of the molecule are equally likely,

$$
\begin{equation*}
\sin \theta d \theta d \Phi d \psi \tag{3}
\end{equation*}
$$

is the (unnormalized) probability of an orientation with Eulerian angles in the range θ, ϕ, ψ to $\theta+d \theta, \phi+d \phi, \psi+d \psi$. When the electric vector is aligned along one of the space fixed axes $F=X, Y, Z$, and the transition dipole moment lies along one of the molecule-fixed axes $g m x, y, z$, the absorption probability is proportional to

$$
\begin{equation*}
|\underset{\sim}{\mu} \cdot \mathcal{E}|^{2}=\mu_{g}^{2} \mathcal{E}_{F}^{2}\left|\Phi_{F g}(\phi, \theta, \psi)\right|^{2} \tag{4}
\end{equation*}
$$

since

$$
\mu_{\mathrm{F}}=\Sigma_{\mathrm{g}} \Phi_{\mathrm{Fg}} \mu_{\mathrm{g}}
$$

(For simplicity we have dropped the subscripts from $\underset{\sim}{\mu} f^{\circ}$) Here the angle dependent factors $\Phi_{F g}$ are the direction cosines Which desoribe the orthogonal transformation ${ }^{22}$ between the XYZ and Xyz systems (see Table III). The probability that dissooiation ocours for orientations in the range speoified by (3) is thus given by

$$
\begin{equation*}
\left|\Phi_{\mathrm{Fg}}(\phi, \theta, \psi)\right|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi d \psi, \tag{5}
\end{equation*}
$$

except for an angle Independent normalization factor.
We ahall choose the z-axis of the molecule-fixed aystem along the alrection of departure of atom A, so that the polar
coordinates which describe the angular distribution become identical to the Eulerian angles θ and ϕ. For either axial or transverse recoil of A, we may obtain the intensity which enters the range θ, ϕ to $\theta+d \theta, \phi+d \phi$ by simply averaging (5) over ψ. By definition, this intensity is

$$
I(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{~d} \phi
$$

where $I(\theta, \phi)$ is the differential cross section per unit solid angle. Therefore we find

$$
\begin{equation*}
I_{F_{g}}(\theta, \phi)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\Phi_{\mathrm{Fg}}(\phi, \theta, \psi)\right|^{2} d \psi \tag{6}
\end{equation*}
$$

These functions are given in Table III.
As the transformation between the XYZ and xyz systems is orthogonal, the results for other cases of interest, in which $\underset{\sim}{\mu}$ or $\underset{\sim}{\mathcal{E}}$ have equal components along two axes, are obtained by merely summing terms of the appropriate form in (4), (5), and (6). To bring out the symmetry of the angular distributions, we chose the $Z-a x i s$ along \mathcal{E} in the case of plane polarized light, and along the direction of the beam for unpolarized light; thus we use the functions $I_{Z g}$ or $I_{X_{g}}+I_{Y_{g}}$ " respectively, which are independent of ϕ. For axial recoil.

$$
\begin{aligned}
& \mu_{x}=\mu_{y}=0 ; \mu_{z} \neq 0 \text { for } \| \text { transitions, } \\
& \mu_{x}=\mu_{y} \neq 0 ; \mu_{z}=0 \text { for } \perp \text { transitions, }
\end{aligned}
$$

since the molecular axis coincides with the z-axis. For transverse reoo11, the molecular axis is taken along either the x or y axis and the μ_{g} components are permuted accordingly.

For example, in the case of unpolarized light, the angular distributions for the two types of electronic transitions are given by (except for normalization)

$$
I_{\|}(\theta)=I_{X z}+I_{Y z}
$$

and

$$
I_{\perp}(\theta)=I_{X X}+I_{X Y}+I_{Y_{X}}+I_{X_{y}}
$$

for axial recoil. The results for transverse recoil are obtained by $z \rightarrow x$ (or y), $x \rightarrow y(o r z), y \rightarrow z$ (or x). In Table IV formulas for the various cases are collected. These distributions have the form oharacteristic of a dipole interaction, $1+a P_{2}(\theta)$, and satisfy the expected sum mules ${ }^{13}$

$$
\begin{align*}
& \frac{1}{3} I_{A}(\theta)+\frac{2}{3} I_{T}(\theta)=1 \tag{7}\\
& \frac{1}{3} I_{\|}(\theta)+\frac{2}{3} I(\theta)=1 . \tag{8}
\end{align*}
$$

The angular distributions peak at right angles to the inoident beam in those cases in which the direction of recoil ooincides with the transition dipole moment (axial, parallels or transverse, perpendicular); otherwise, the distributions peak forward and backward along the beam.

From Tables III and IV we may readily derive the corresponding form faotors for the shape of the fluorescence line emitted by excited A^{*} atoms. At the low gas pressures of interest in maser experiments, the ine shape is mainly determined by the Doppler effect, and other contributions will be
neglected. Since the relative displacement in frequency or wavelength is

$$
\begin{equation*}
\left(v-v_{0}\right) / v_{0} \cong\left(\lambda-\lambda_{0}\right) / \lambda_{0}=V_{A} / c, \tag{9}
\end{equation*}
$$

(where c denotes the speed of light), the Doppler line shape is proportional to the probability distribution of the component along the direction of observation of the velocity vector of atom A. The laboratory velocity is the resultant,

$$
\begin{equation*}
\underset{\sim}{V} \mathrm{~A}={\underset{\sim}{\mathrm{AB}}}^{\mathrm{C}}+\underset{\sim}{V} \mathrm{~A} \tag{10}
\end{equation*}
$$

of the velocity of the center of mass of $A B$ and the recoll velocity which carries A away from the center of mass. It is convenient, however, to derive first the geometrical form factors for ${\underset{\sim A B}{A B}}=0$ and ${\underset{\sim}{A}}$ fixed in magnitude, and then construct from these the general result as shown in section II.

These form factors for "recoll only" will be denoted by $R_{F}\left(v_{F}, V\right)$. They give the distributions of components v_{F} of the recoll velooity along the space-fixed axes when ${\underset{\sim}{A}}^{A}$ has the flxed magnitude v. The simplest method of evalueting the R_{F} functions permutes the axes so that the new set, $X^{\prime} Y^{\prime} Z^{\prime}$ has the Z'-axis along the direction of observation. The corresponding expressions for the angular distributions $I\left(\theta^{\prime}, \phi^{\prime}\right)$ are obtained as before from (6) and Table III. From the probability distribution for directions of ${\underset{\sim}{*}}^{A}$,

$$
I\left(\theta^{\prime}, \phi^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}
$$

and the relation $V_{F}=v \cos \theta^{\prime}$, we then obtain

$$
\begin{equation*}
R_{F}\left(v_{F}, v\right) d v_{F}=\frac{1}{2 \pi} \int_{0}^{2 \pi} I\left[\theta^{\prime}\left(v_{F}, v\right), \phi^{\prime}\right] \frac{d v_{F}}{v} d \phi^{\prime} . \tag{11}
\end{equation*}
$$

The integration (which eliminates all reference to the primed coordinate system) yields

$$
\begin{equation*}
R_{F}\left(v_{F}, v\right)=\left(1+a_{F} P_{2 F}\right) R_{0} . \tag{12}
\end{equation*}
$$

with

$$
\int_{0}^{V} R_{F}\left(v_{F}, V\right) d v_{F}=1
$$

where R_{0} is the form faotor for an isotropio distribution of recoll vectors,

$$
\begin{align*}
R_{0} & =1 / v, \text { for } v>v_{F}>-v \tag{13}\\
& =0, \text { elsewhere }
\end{align*}
$$

and

$$
\begin{equation*}
P_{2 F}=\frac{1}{2}\left(\frac{3 v_{F}^{2}-v^{2}}{v^{2}}\right) \tag{14}
\end{equation*}
$$

For observation along the $Z-a x i s$, the asymmetry parameter a_{Z} is the same as in Table IV, whereas for observation along the X or Y axes.

$$
\begin{equation*}
a_{X}=a_{Y}=-\frac{1}{2} a_{Z} \tag{15}
\end{equation*}
$$

Thus, the average in (11) supresses part of the effect of the anisotropy in the angular distributions in the R_{X} and R_{Y} functions (whioh are identical) but not in the R_{Z} function. In Table V, the form factors are sorted into four classes, A
to D, characterized by decreasing anisotropy, and these are compared in Fig. 1. It is easily shown that the ${ }_{F}$ functions satisfy sum rules analogous to (7) and (8), with unity replaced by R_{0}, and

$$
\begin{equation*}
\frac{1}{3}\left(R_{X}+R_{X}+R_{Z}\right)=\left(1+\frac{1}{2} a_{Z} P_{2 Z}\right) R_{0} \tag{16}
\end{equation*}
$$

Also, if the direction of observation does not coincide with one of the axes, but lies along a line L with polar angles ©, © , the corresponding form factor is given by

$$
\begin{equation*}
R_{L}\left(v_{L^{*}} v\right)=R_{X} \sin \theta \cos \phi+R_{X} \sin \theta \sin \phi+R_{Z} \cos \theta \tag{17}
\end{equation*}
$$

where the argumenta of the R_{F} functions are $V_{X}=V_{L}$ ind cos $\$$. etc.

II. AVERAGES OVER ENERGY DISTRIBUTIONS

As Indicated in (10), we must compound the form factors given in Table V with the distribution of center of mass velocity veotors and the diatribution in magnitude of the recoll velocity. We shall denote by

$$
D_{F}\left(V_{F}\right) d V_{F}
$$

the probability that atom A has a velocity component

$$
V_{F}=c_{F}+v_{F}
$$

In the laboratory-fixed coordinate system within the range V_{F} to $V_{F}+d V_{F}$ (For simplicity, the subscripts in (10) are henceforth omitted.) The Doppler line shape of the atomic fluorescence is obtained from $D_{F}\left(V_{F}\right)$ by replacing V_{F} with
$c\left(v-v_{o} / v_{o}\right)$. Since the distributions to be combined are Independent, we have

$$
\begin{equation*}
D_{F}\left(V_{F}\right)=\int_{0}^{\infty} \int_{V_{F}-V}^{V_{F}+V} R_{F}\left(V_{F}-C_{F}, V\right) T\left(C_{F}\right) P(v) d C_{F} d V \tag{18a}
\end{equation*}
$$

or

$$
\begin{equation*}
=\int_{0}^{\infty} \int_{-v}^{v} R_{F}\left(v_{F}, v\right) T\left(v_{F}-v_{F}\right) P(v) d v_{F} d v \tag{18b}
\end{equation*}
$$

$T\left(c_{F}\right)$ is the translational velocity distribution,

$$
\begin{equation*}
T\left(C_{F}\right) d C_{F}=(1 / \sqrt{\pi} \alpha) \exp \left(-C_{F}^{2} / \alpha^{2}\right) d C_{F} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\left[2 \mathrm{kT} /\left(m_{A}+m_{B}\right)\right]^{1 / 2} \tag{20}
\end{equation*}
$$

is the most probable thermal veloaity of an $A B$ molecule. $P(v)$ is the recoll velocity distribution and is the only factor which depends on the detailed mechanics of photodissooiation. In (18a), the line shape is constructed by regarding each point of the "recoil only" curve to be broadened by the translational distribution, whereas (18b) is the converse of this. The 1 imits of integration are imposed by (13).

The average over the translational velocity distribution is convenientiy formulated in terms of the error integral and its derivative, ${ }^{14}$

$$
H(x)=(2 / \sqrt{\pi}) \int_{0}^{x} e^{-z^{2}} d z ; \quad H^{\prime}(x)=(2 / \sqrt{\pi}) e^{-x^{2}},
$$

and the dimensionless variables,

$$
\eta=V_{F} / \alpha, \quad \eta=v / \alpha
$$

Thus (18) yields

$$
\begin{equation*}
D_{F}\left(V_{F}\right)=\int_{0}^{\infty} F(\xi, \eta)[P(\alpha \eta) / \eta] d \eta \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
F(\xi, \eta) & =\left[1+\frac{1}{2}\left(a_{F} / \eta^{2}\right)\left(3 \xi^{2}-\eta^{2}+\frac{3}{2}\right)\right][H(\xi+\eta)-H(\xi-\eta)] \tag{22}\\
& +\frac{3}{4}\left(a_{F} / \eta^{2}\right)\left[(\xi-\eta) H^{\prime}(\xi+\eta)-(\xi+\eta) H^{\prime}(\xi-\eta)\right]
\end{align*}
$$

As η ranges from small to large values, the $F(\xi, \eta)$ funotion varies between $T(\xi)$ and $R_{F}(\xi, \eta)$. For $\eta \approx 1$, the line shape remains practioally Gausaian, and therefore is not significantly affected by photodissociation. The half-width at halfintensity is closely approximated by the usual formila, 15

$$
\begin{equation*}
\Delta v=\left(v_{o} / \mathrm{c}\right)[(2 k T / m) \ln 2]^{1 / 2} \tag{23}
\end{equation*}
$$

but with m the mass of the parent moleoule rather than the atom. For $\dagger \geqslant 2$, the Iine shape 1 a primarily determined by the "recoll only" form factor. This is 111ustrated in Fig. 2, whioh compares the $F(\xi, \eta)$ functions corresponding to the two most anisotropic cases of Table V.

The $P(V)$ diatribution which governs the final average in (21) is determined by the shape of the potential curves for the ground and excited electronic states of the AB molecule, the thermal diatributions of initial rotational and vibrational
energy, and the spectral distribution of the purnping light. In discussing these factors, we shall use the NaI molecule as an example.

According to an approximate form of the Franck-Condon principle, ${ }^{16}$ the probability that an electronic jump to a repulsive potential curve $V(r)$ takes place with the internucleax distance between r_{0} and $r_{0}+d r_{0}$ is proportional to

$$
\begin{equation*}
I_{p} v_{p} f_{n}\left|\psi_{n}\left(r_{0}\right)\right|^{2} d r_{0} \tag{24}
\end{equation*}
$$

where ψ_{n} is the wavefunction for the nth vibrational level of the ground electronic atate of $A B$, with energy, E_{n} above the lowest level and relative population f_{n} and the pumping light has intensity I_{p} at the frequency v_{p} for which

$$
\begin{equation*}
V\left(x_{0}\right)=h v_{p}+E_{n} \tag{25}
\end{equation*}
$$

Fig. 3 shows the repulsive potential curve for the state of NaI which dissociates to form an exoited $\mathrm{Na}\left({ }^{2} \mathrm{P}\right)$ atom: as derived from these relations and fluorescence intensity measurementa. ${ }^{17}$ A portion of the potential curve for the ground electronic state is also shown, including the vibrational levels and their relative populations. The threshold energy $V(\infty)=5.22 \pm 0.09 \mathrm{ev}$ is the sum of the Nar ciasociation energy ($D_{0}=3.12 \mathrm{ev}$) recommended by $\mathrm{Brewer}{ }^{18}$ and the $\mathrm{Na}\left({ }^{2} \mathrm{P}\right.$) excitation energy.

The final relative kinetic energy of the A^{*} and B atoms is

$$
\begin{equation*}
E=V\left(x_{0}\right)-V(\infty)+\frac{1}{2}\left(L^{2} / \mu r_{0}^{2}\right), \tag{26}
\end{equation*}
$$

where μ is the reduced mass,

$$
\mu=m_{A} m_{B} / m ; \quad m=m_{A}+m_{B^{\prime}}
$$

and L is the initial rotational angular momentum of the excited (AB)* molecule, which is practically the same (except at low values of L) as the rotational momentum J of the ground state AB molecule. However, to obtain the appropriate statistical weight faotors, I_{L}, we divide the relative populations of the rotational levels, \mathcal{I}_{J}, by $(2 \mathbb{I}+1)$, since the orientational degeneraoy has already been acoounted for in our oalculation of the form factors. The reooll velooity ($v=v_{A}$) of the A^{*} atom 1s given by

$$
\begin{equation*}
V_{A}\left(x_{0}, I\right)=\left(m_{B}(m)(2 E / \mu)^{1 / 2}\right. \tag{27}
\end{equation*}
$$

To evaluate the distribution function $P(v)$, we have prepared a computer program which, for any specified potential functions, evaluates (27) for given values of $x_{0} ; n_{2}$ and J, and oompounds the weighting factors of (24) with f_{L} Detailed caloulations employing this program are desoribed elsewhere. ${ }^{19}$ For the present purpose, a simple approximation is suffiaient. This considers only the population faotors f_{n} and f_{L} and the most primitive form of the Franck-Condon Principle, whioh assumes that eleotronic jumps accur only from the midpoint when $n=0$, and only from the turning points of the classical vibration when $n>0$. Fig. 4 gives the $P(v)$ funotions derived in thia way for various vibrational states of NaI) the subscripts
"L" and "H" for $n>0$ distinguish the "low" and "high" jumps from the turning points.

We have considered axial and transverse recoil separately, In order to postpone the problem of treating the aotual distribution of recoil direotions: The trajectory of the A^{*} atom emitted in a photodissociation will approach an asymptotic IIne which makes an angie with the initial direotion of the molecular axis. Axial recoil $\left(X=0^{\circ}\right)$ is approached when

$$
V\left(n_{0}\right)-V(\rho) \gg L^{2} / 2 \mu r_{0}^{2}
$$

and transverse recoil $\left(X=90^{\circ}\right)$ in the opposite 11 mit . The angle of recoil is obtained by reversing the trajectory caloulation for a two-body collision, ${ }^{12}$ and this gives

$$
\begin{equation*}
x\left(r_{0}, L\right)=\left(L^{2} / 2 \mu\right)^{\frac{1}{2}} \int_{r_{0}}^{\infty}\left[v\left(r_{0}\right)-v(r)+\frac{r^{2}}{2 \mu}\left(\frac{1}{r_{0}^{2}}-\frac{1}{r^{2}}\right)\right]-\frac{1}{2} \frac{d r}{r^{2}} \tag{28}
\end{equation*}
$$

The computer program ${ }^{19}$ also evaluates (28) and the trajectories. Fig. 5 shows two sets of typical trajectories, one corresponding to the r_{0} at the midpoint of the $n=0$ vibration, the other to the r_{0} for the "low" side of $n=4$. As the latter transItion 1s nearly at the threshold (see Fig. 3), the recoil angles beoome quite large. However, the statistical weight factor f_{L} favors low rotational energy and thus low values of X, as is illustrated by the distributions given in Fig. 6.

To derive the angular distribution corresponding to a given value of x, we return to (5) and introduce a new syatem of axes,
denoted by $g_{r}=X_{r} y_{r} z_{r}\left(\right.$ with r for ${ }^{\text {Hecoll" }}$), with the z_{r} axis parallel to the asymptote to the trajectory of A. The old "molecule-fixed" system: which we now denote by $g_{m}=$ $x_{m} y_{m}{ }^{2} m$ has z_{m} along the molecular axis. Thus X is the polar angle relating the two systems; the g_{r} axes can be oriented so that the other two Eulerian angles vanish. The angles with respect to the "space-fixed" system, $F=X Y Z$, are $\theta=\theta_{r}$, $\phi=\phi_{r}=\phi_{m}$ and $\psi=\psi_{r}=\psi_{m}$. The direation cosine elements $\Phi_{\text {Fgm }}\left(\phi, \theta_{m}, \psi\right)$ whioh appear in $(4-6)$ are transformed into combinations of the $\Phi_{\mathrm{Fgr}}(\phi, \theta, \psi)$ elements by an axis rotation, and thus

$$
\begin{aligned}
& \Phi_{\mathrm{Fxm}}=\oplus_{\mathrm{FXr}} \\
& \oplus_{\mathrm{Fym}}=\cos X \Phi_{\mathrm{Fyx}}+\sin X \Phi_{\mathrm{Fzr}} \\
& \oplus_{\mathrm{Fzm}}=-\sin X \Phi_{\mathrm{Fyr}}+\cos X \Phi_{\mathrm{Fzr}}
\end{aligned}
$$

The calculation of the angular diatribution now proceeds as before, and aimply "mixes" the previous resulta for axial and transverse recoll.

$$
\begin{equation*}
I(\theta)=\cos ^{2} X I_{A}(\theta)+\sin ^{2} X I_{T}(\theta) \tag{29a}
\end{equation*}
$$

This may also be written as

$$
\begin{equation*}
I(\theta)=1+a P_{2}(x) P_{2}(\theta) \tag{29b}
\end{equation*}
$$

Where a 18 the asymmetry parameter for the axial case given in Table IV. Analogous results obtain for the R_{F} form factors of Table V.

The average over the X distribution can be readily incorporated in (21): in effect, we have $X=X(v)$, aince (27) and (28) are determined by the same parameters and receive the aame statistical weights. When $X=X_{0}$, with

$$
x_{0}=\arccos (1 / \sqrt{3})=54^{\circ} 44^{\prime}
$$

the angular distribution and the R_{F} factors correspond to isotropic recoil. as geen from (7). For $X<X_{0}$, the form factor for axial recoil gives the dominant contribution in (29). In the average the statistical factors usually atrongly favor small values of X, as illustrated in Fig. 6, and since $\cos ^{2} x$ remains near unity in this region, the result is often practioally equivalent to tio case of purely axial recoil.

In Fig. 7 the combined effect of the various averages is 111ustrated for the most anisotroplo form factor; Case A of Table V. The three uppermost curves refer to an $n=3_{L}$ transition, and show X_{P} averaged over v (dot-dashed ourve). over v and X (dashed curve), and over V, X, and the translational velocity distribution (solid ourye). It is geen that even for thia near threshold transition, which has a relatively broad distribution in X (see Fig. 6), the Iine shape is quite olose to that for purely axial recoll. The two lower ourves refer to exaftation by a reotangular band of pumping light With energy well above the threshold. Both curves have been averaged over v, x, and translations in one (dashed) the pumping band is narrow and excites only the $n=0$ transition, in the other (solid) it is 500 A wide and exoitea transitions from all the vibrational levels.
III. DISCUSSION

There have been many experimental studies of atomic fluorescence excited by molecular photodissociation, and a bibllography is given elsewhere. ${ }^{19}$ In several cases, the presence of large Doppler broadening due to recoil has been established. ${ }^{4,19}$ However, an early study of the NaI photodissociation by Mitchell appears to be the only attempt that has been made to observe a possible anisotropy in the angular distribution of products. ${ }^{20}$ Mitchell viewed the fluorescent light through a sodium vapor filter, which transmitted only that part of the light for which the Doppler shift exceeded the absorption width of the filter. As he found no observable difference in the intensity of this filtered light emitted parallel and perpendicular to the incident beam, Mitchell concluded that the angular distribution of products was isotropic. ${ }^{15,20}$

This result is disappointing, but it is not incompatible with the treatment outlined here. The fluorescent $\mathrm{Na}\left({ }^{2} \mathrm{P}\right)$ atoms could be formed by exciting either a $\Sigma \rightarrow \Sigma$ or a $\Sigma \rightarrow \Pi$ transition of NaI. According to Table V, aince the exciting light was unpolarized the experiment involved a comparison of asses B and C, if the transition is $\Sigma \rightarrow \Sigma$, or cases C and D, if $\Sigma \rightarrow \mathrm{I}$. It is only necessary to consider the form factors of Fig. 1 , as the recoil broadening is much larger than the thermal broadening (average $\eta \sim 5$). Near the center of the fluorescence line, where sodium filter is most effective,
the ratio of the form factors is 2 for B / C and 0.7 for C/D, for axial recoil (the corresponding ratios are 0.7 and 1.2 for transverse recoil). Under the conditions of Mitchell's experiment, the filter removed up to 50% of the fluorescence Intensity. Thus, the intensity observed parallel and perpendicular to the inoident beam would be expected to change noticeably, by up to -25% for a $\Sigma \rightarrow \Sigma$ transition and up to $+15 \%$ for $\Sigma \rightarrow$ II. However, if both these transitions were exoited the anisotropy would be almost entirely suppressed, as an approximate sum rule analogous to (8) would apply. This explanation appeara likely, since the bandwidth of the pumping 11ght used by Mitohell was very broad, $0.3-0.5 \mathrm{ev}$, and there Is some evidence ${ }^{19}$ to suggest that the potential curves for the excited Σ and $I I$ states differ by less than 0.3 ev over most of the relevant range of x_{0}

Recently, the anisotropy of the photodissooiation probability has been confirmed and explained in an elegant experiment on the H_{2}^{+}molecular ion by Dehmelt and Jefferta, 21 This is not concerned with angular distributions of fluorescence but With the total photodissociation rates for the various speotroscopic states. The orientation dependence of these rates provides a means to accumulate molecules selectively in partioular magnetio substates and to monitor the population ohanges induoed by absorption of radiofrequency radiation. Dehmelt and Jefferts have derived in detail the photodissociation rates for the case of a parallel transition produced by polarized
light, and their analysis may readily be extended to the other cases considered in Table IV. The olassical expressions for the rates are derived by averaging (5) over the molecular precessions charaoteriatio of each spectrosoopic state, and quantum mechanical results may be obtained by replacing the $\Phi_{\text {Fg }}$ factors of Table III with the well-known expressions for direction cosine matrix elements. 22

Comparisons with moleoular dissociation by electron impact are of particular interest, as maser pumping by eleotrons may sometimes be preferable to pumping by photons. The dissociative ionization of H_{2} molecules by an electron beam has been found ${ }^{23}$ to give an anisotropio distribution of protons, approximately of the form $1+2 \mathrm{P}_{2}(\theta)$, but there seems to be no experimental information about angular distributions for other systems. A theoretical caloulation of the product distributions and fluorescence line shape would proceed just as for photodissociation, if the form factors of Tables IV and V were replaced by functions appropriate to electron impact. However, even in the Born approximation limit, the evaluation of the transition probability $P(\phi, \theta, \psi)$ which replaces $|\underset{\sim}{\mu} \cdot \underset{\sim}{\epsilon}|^{2}$ In (5) is a formidable numerical problem. Dunn's qualitative oharacterization of the anisotropiea of $P(\phi, \theta, \psi)$ refers to two configurations in which the momentum transter vector $\underset{\sim}{K}$ is aligned either parallel or perpendicular to the molecular axia. 11 According to the symmetry analysis summarized in Tables I and II, in most transitions $P(\phi, \theta, \psi)$ vanishes for one or another of these configurations, and then the dissociation produots
w111 peak parailel or perpendicular to $\underset{\sim}{K}$ (only axial recoil 1s considered). In the case of dissociative electron capture or attachment, $\underset{\sim}{x}$ ia identical to the propogation vector $\underset{\sim}{k}$ of the eleatron beam. For dissociative exoitation or ionization, K will have a range of orientations relative to' k (and described by an angie x), and the factors involved in estimating this are also discussed by Dunn.

The peaking of the $P\left(\phi_{n} \theta, v\right)$ functions with respect to K may be expeoted to resemble qualitatively the peaking with respeot to the eleotric vector which appears in photodissociation. Thus it is useful to note the conneotions given in Table UI, which obtain when K is parallel $\left(x=0^{\circ}\right)$ or perpendicular ($x=90^{\circ}$) to $\underset{\sim}{k}$. These conneotions become quantitative felations at suffiolently high energies, where the transition probability can be expanded with $\operatorname{H\mu }_{\sim},\left.\underset{\sim}{K}\right|^{2}$ as the leading term. ${ }^{11}$ Again there appear two classes of electronic transitions, now olassified as $\Delta \Lambda=0(\Sigma \rightarrow \Sigma, I f \rightarrow \Pi, \Delta \rightarrow \Delta)$ and $\Delta \Lambda \neq 0(\Sigma \rightarrow \pi$, $\Sigma \rightarrow \Delta_{1}$ II $\rightarrow \Delta$).

From Table VI we see that the oase of dissociative electron capture (for which $x=0^{\circ}$ always) is essentially equivalent to photodissociation with polarized light, except that some additional transitions become allowed. For dissooiative eleotron excitation or ionization, we may expect to obtain a practical approximation to the general result by taking

$$
\begin{equation*}
I(\theta)=\cos ^{2} k I_{\mathrm{o}}(\theta)+\sin ^{2} x I_{\mathrm{g}}(\theta) \tag{30}
\end{equation*}
$$

and analogous expressions for the fluorescence form factors. (These mixing formulas are readily justified when the $|\mu \cdot \mathrm{K}|^{2}$ term dominates the transition probability.) Here $I_{0}(\theta)$ denotes the result which applies for electron oapture or polarized photodissociation, as given in the upper part of Table VI. In (30) this is reached in the limit of large momentum transfer (where $k=K$ and hence $x \approx 0^{\circ}$), which obtains near the excitation or Ionization threahold. We denote by $I_{g}(\theta)$ the result for amall momentum transfer (where $\underset{\sim}{k} \gg \underset{\sim}{K}$) and the conservation laws require $x=90^{\circ}$), which obtaing at high energy. This 1imit resembles olosely photodissociation by unpolarized light, and is given in the lower part of Table VI. According to (30) and F18. I, in dissociative excitation the anisotropy in the form factors for a given transition will be a maximum at threshold, but will be irgt suppressed and then reversed in gense if the bombarding electron energy is incxeased aufficiently. In contrant, for Associative capture the form factors should remain practically independent of the energy. The dissooiation of polyatomic molecules by photons or eleatrons should also show anisotropies, since in many cases, the excitation probability will depend on the relative orientation of the incident beam and a molecular axis. 9,11

In discussing the feasibility of optical masers utilizing excited atoms generated by molecular photodiasociation, singer and Gorog ${ }^{5-7}$ have emphasized the importance of minimizing the Eluorescence line width. As illustrated in our calculations, the width is quite sensitive to molecular properties, and in
particular to the shape of the potential curves. The width must therefore be investigated experimentally in each case. However, some general aspects of the problem are indicated by these calculations and the available data. ${ }^{19}$

The Doppler broadening arising from the thermal oenterof mass motion is somewhat less than that of an atom at the same temperature, as noted in (23). It can be almost eliminated by viewing the fluoresoence at right angles to a moleoular beam. ${ }^{6,7}$ In practice, however, it appears that the dominant contribution to the Doppler width will usually come from the reooll velocity. An obvious way to minimize this is to use pumping light with energy only slightly above the threshold for producing fluorescence, so that $V\left(r_{0}\right)-V(\infty)$ in (26) is small. This approach usually involves a very substantial sacrifice in Intensity as it discards molecules in the lowest vibrational states, which almost always lie under a strongly sloping portion of $V(r)$, as in Fig. 3. Also, even at the threshold, the thermal distribution of rotational energy atill appears in the recoil veloaity, Another means of limiting the reooil velocity is to select a molecule for which the mass factor in (27),

$$
\left(\frac{m_{B}}{m_{A^{m}}}\right)^{1 / 2}
$$

is small. Unfortunately, other requirements often conflict with this. Finally, if the angular distribution is markedly
anisotropic, there is some advantage in observing the fluorescence at right anglea to the preferred direction of recoil. For a "Case A^{n} dissociation, the effective Doppler width is that of just one of the lobes. For the example of fig. T. we find $\Delta v=3.6$, and 2.5, for $n=0,3_{L}(\operatorname{so11d})$, and 3_{L} (dashed), respectively, 24 From (23), the thermal center-if-mass motion alone would give $\Delta v=2.5$; whereas for a Na atom the same temperature $\Delta v=6.3$. Thus, in this example it turns out that pumping at the $n=0$ transition would yield a fluoresoence line half as wide (as well as four times more intense) as the ine given by pumping at the $n=3_{L}$ transition. The advantage whioh the $n=3^{3}$ transition gains by being nearer to the threshold is overbalanoed by the contributions from tharmal motion and transverse reooll. which blur together the two lobes of the fluorescenoe line. The "recoil splitting" and oonsequent narrowing of the fluoreacence line prediated for Case A would be destroyed $1 f \Sigma \rightarrow \Sigma$ and $\Sigma \rightarrow I$ transitions are superimposed as seems likely for NaI. The Δv for the $n=0$ transition in Fig, 7 becomes 10 for a Case B dissoalation, and 15 for 1a0tropio recoll.

Table I. Behavior of the transition probability between pairs of electronic states of homonuclear diatomic moleoules. Behavior for parallel transitions is indicated to the right of the vertioal ilne, for perpendicular transitions to the left. The transition probability for electric dipole transitions induced by photons is nonvanishing only where a P appears; the transition probability for "aligned" collisions (see text) with electrons is nonvanishing where either A or an E appears.

	Σ_{g}^{+}	Σ_{8}^{*}	$\Sigma^{+}{ }^{+}$	Σ_{u}^{*}	I_{8}	H_{4}	Δ_{g}	4
$\Sigma_{\mathbf{g}}^{+}$	$\underline{E} \mid$	010	017	010	010	$\mathrm{P} \mid 0$	E 10	010
$\Sigma_{\mathbf{g}}^{\mathbf{\prime \prime}}$		$E \mid E$	010	O1P	010	810	E $\mid 0$	010
\sum_{4}^{4}			$E \mid E$	010	P 10	010	010	$\mathrm{E} \mid 0$
5^{4}				$E \mid E$	P10	010	010	E/O
$\mathbf{H}_{\mathbf{g}}$					E/E	$0 \mid P$	010	$p / 0$
Hu						$E \mid E$	810	010
A_{s}							$E \mid E$	$0 \mid P$
4								$\mathrm{E} \mid \mathrm{E}$

Table II. Behavior of the transition probability between pairs of eleatronic states of heteronuciear diatomic molecules. Notation is the ame as in trable I.

	Σ^{+}	Σ^{*}	II	Δ
Σ^{+}	E / P	010	810	E 10
Σ^{*}		E/P	910	$E 10$
II			E\|P	$P 10$
Δ				E/P

Table III. Transformation coefficients in terms of Eulerian angles.

Direction of Transition Dipole	$\begin{aligned} & \text { Directio } \\ & \mathrm{F}=\mathrm{X} \end{aligned}$	Eleotrio Fi Y	2
Direotion cosine factors, Φ_{Fg}			
$g=x$	C¢C $\psi-S \Phi C \theta C \psi$	$S \phi C \psi+C \phi C \theta S \psi$	s θ S
y	$-C \phi S \psi-S \Phi C \theta C \psi$	$-S \phi S \psi+C \phi C \theta C \psi$	$s \theta C \psi$
z	$\mathbf{S \phi S} \boldsymbol{\theta}$	$-C \phi S \theta$	$c \theta$
Azimuthally averaged squares, $\frac{1}{2 \pi}\left\|\phi_{\mathrm{Fg}}\right\|^{2}$			
x or y	$\frac{1}{2}\left(c_{\phi}^{2}+s_{\phi}^{2} c_{\theta}^{2}\right)$	$\frac{1}{2}\left(s_{\phi}^{2}+c_{\phi}^{2} c_{\theta}^{2}\right)$	$\frac{1}{2} S^{2}$
z	$S_{\phi}^{2} S_{\theta}^{2}$	$c_{\phi}^{2} s_{\theta}^{2}$	c_{θ}^{2}

Here sine is abbreviated by S, cosine by C.

Table IV. Differential cross section $I(\theta)$
in center-of-mass system.

Electronic
Transition

For polarized light with electric field along
Z-axis
$\\|$

$1+2 \mathrm{P}_{2}$
1

For unpolarized light incident along 2-axis

$$
\begin{array}{lll}
\| & 1-p_{2} & 1+\frac{1}{2} P_{2} \\
1 & 1+\frac{1}{2} P_{2} & 1-\frac{1}{4} P_{2}
\end{array}
$$

where

$$
\begin{aligned}
& P_{2}=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
& \int_{0}^{2 \pi} \int_{0}^{\pi} I(\theta) \sin \theta d \theta d \phi=4 \pi
\end{aligned}
$$

Table V. Form factors R_{P} for reco11 broadening of atomic fluorescence line.

Electronic Light Observation Axial				
Transition	Beamserse	Direation	Recoil	Recoil

Casa A
$\| \quad z \quad 1+2 P_{2 F} \quad 1-P_{2 F}$

Case B
1
p
2

u
Z
$1-\mathbf{P}_{2 F}$
$1+\frac{1}{2} P_{2 F}$
II
$\mathrm{p} \quad \mathrm{X}$ or Y
Case 0
1
u
u
X or x
$1+\frac{1}{2} R_{2 F}$
$1-\frac{1}{4} P_{2 F}$
1
p
X or Y
Case D

$$
1 \quad u \quad x \text { or } x \quad 1-\frac{1}{4} p_{2 F} \quad 1+\frac{1}{8} P_{2 F}
$$

Here p denotes polarized light with the eleotric vector along the Z-axis and u unpolarized ilght inoident along the Z-axis. These formulas are to be multiplied by the isotropic factor R_{0} as in equation (12).

Table VI. Comparison of dissociative electron impact with photodissociation.

Angular Electronio Transition
Distribution
:---:
Momentum transfer along beam $\left(x=0^{\circ}\right)$
$\Delta A=0$

Momentum transfer transverse to beam $\left(\mathrm{x}=90^{\circ}\right.$)
$\Delta \Lambda=0$
B
B
C
$\Delta \neq 0$
C
C
D

Here A to D designate form factors which are expeoted to resemble qualitatively those given for axial recoll in Table V and Fig. 1. The eleatron beam is incident along the Z axis.

Captions for Figures

Fig. 1-Form factors, $1+\mathrm{aP}_{2}$, for axial reaoil (solid ourves) and transverse recoil (dashed curves), for the various cases defined in Table V. Cases A, B, C apply alco to the differential cross sections of Table IV.

Fig. 2-Line shape functions $F(\xi, \eta)$ versus ξ for various values of a, the asymmetry parameter of Table V, and η, the ratio of the recoil velocity and the most probable translational velocity.
Fig. 3-Potential ourves for the NaI molecule (after Hansen ${ }^{17}$).
Fig. 4-Distribution of recoil velooity of Na atoms produced by photodissociation of NaI molecules in various vibrational levels. The aloping curves which extend to higher velocities arise from the rotational contribution in equation (26).

Fig. 5-Mrajectories of Na atoms produced by photodissociation of NaI molecules in various vibrational states, n, and rotational states; J. The distance between the recoiling Nacand I atoms exceeds $100 \AA$ within less than 10^{-13} seconds, for $n=0$, and less than 5×10^{-11} seconds, for $\mathrm{n}={ }^{4} \mathrm{~L}$.
Fig. 6-Distributions of recoil angles. These correspond to the velooity distributions of Fig. 4.

Fig. 7-Doppler line shapes calculated for fluorescence of Na atoms produced in a Case A transition of NaI (see Table V). The area under the $n=3_{L}$ curves should be seduced by one-third when comparisons with the other curves are made. A velocity of $10^{5} \mathrm{~cm} / \mathrm{sec}$ corresponds to a Doppler sh1ft of $0.020 \AA$.

Fig. 1.

Fig. 4.

Fig. 5.

Fig. 6.

1. A. L. Schawlow and C. H. Townes, "Infrared and Optical Masers," Phys. Rev., Vol. 112, pp. 1940-1949; December, 1958.
2. C. H. Townes, Ed., "Quantum Electronics," Columbia University Preas, New Xork, N.Y. 1960.
3. J. R. Singer, Ed. "Advances in Quantum Electronics," Columbla University Press, New York, N.Y.; 1961.
4. P. Pringsheim, "Fluorescence and Phosphorescence," p. 208; Interscience Publishers, Inc., New Yorkg 1949.
5. J. R. Singer. ${ }^{\text {HMasers and Other Quantum Mechanioal }}$ Amplifiers," Advances in Electronica and Eleotron Phyaics, Vol. 15, pp. 73-162, Academio Press. New York, N. Y. 1961.
6. J. R. Singer and I. Corog, "Optioal Masers Utilizing Molecular Eeams," Bull. Am. Phys. Soc. p. 14, January, 1962.
7. I. Gorog. "Coherent Optical Emission from Moleoular Beams;" Electronics Researoh Laboratory (M.S. Thesis) University of California, Berkeley, California, November, 1961.
8. E. U, Condon, "The Franck-Condon Prinoiple and Related Topics," Am. Journal of Phys. Vol. 15, pp. 365-374; September, 1947.
9. H. Sponer and E. Teller, "Electronio Spectra of Polyatomic Moleoules," Rev. Mod. Phys. Vol. 13, pp. 75-169; Apr11. 1941.
10. The Selection rules given in Tables I and II disregard electronic-rotational coupling.
11. G. H. Dunn, "Anisotropies in Angular Distributions of Molecular D1saociation Products," Phys. Rev. Letters, Vol. B, pp. 62-64; January, 1962.
12. H. Goldstein, "Classical Mechanics," Addison-Wesley Pubilshing Company, Inc., Reading, Mass. 1957.
13. Indeed, from relations (7) and (8), one can infer the relative signs and magnitudes of the asymmetry parameter a, for the various cases of Table IV, but not the absolute magnitude.
14. An extensive tabulation of these functions is given in "Tables of Probability Functions," Vol. I, National Bureau of Standards, Washington, D.C. 1941.
15. A. C. G. Mitaheli and M. W. Zemansky, "Resonance Radiation and Excited Atoms," Cambridge University Press; 1961.
16. G. Herzberg, "Spectra of Diatomio Moleoules," p. 393. D. Van Nostrand Company, Inc. Princeton, N.J., 1961.
17. H. G. Hanson, "Quenching of NaI Fluorescence by $\mathrm{H}_{2}{ }^{*} \mathrm{HCl}^{*}$ CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ " Journal of Chem. Phys. Vol 23, pp, 13911397. August, 1955.
18. L. Brewer and E. Erackett, "The Dissdoiation Energies of Gaseous Alkali Halides," Chem. Rev. Vol. 61, pp. 4254321 August, 1961.
19. R. N. Zare and D. R. Herschbach, "Meohanics of Molecular Photodissociation," UCRL Report 10438. Lawrenoe Radiation Laboratory, University of California, Berkeley: September 1962.
20. A. C. a. Mitohell, "Über die Riohtungsverteilung der Relativgeschwindigkeit der Zerfallsprodukte bei der optischen Dissoziation von NaJ," Zeit. E. Physik, Vol. 49s pp. 228-235; 1928.
21. K. B. Jefferts and H. O. Dehmeit, "Experimental Demonstration of Alignment of H_{2}^{+}Molecular Ions by Selective Photodissociation," Eull. Am. Phys. Soc. Vo1. T. p. 432. August, 1962. See also: H. O. Dehmelt and K. B. Jefferts, HAllgnment of the H_{2}^{+}Moleaular Ion by Selective Photodissooiation. I," Phys. Rev. Vol. 125, pp. 1318-1322s February. 1962.
22. See, for example, P. C. Cross, R. M. Hainer and G. W. King. "The Asymmetrio Rotor II, Calculation of Dipole Intensities and Iine Classification," Journal of Chem. Phys. Vol. 12; pp. 210-243; June, 1944.
23. V. N. Sasaki and T. Nakao, "Molekulare Orientierung ung die Anregungs-und Dle Anregungs - und Wasserstoffmolekils durch Elektronenstoss," Proc. Imp. Acad. Japan, Vol. 11. pp. 413-415; December, 1935. Seealso, V. N. Sasaki and T. Nakao, "Molekulare Orientierung und die Dissoziationswahrscheinlichkeit des Wasserstoffmolekils durch Electronenstoss," Proc. Imp. Acad. Japan, Vol. 17, pp. 75-77) March, 1941.
24. For convenience, we omit the factor $v_{\rho} / 0$ and give Δv in velooity units, $10^{4} \mathrm{~cm} / \mathrm{sec}$.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may. not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: *Received by the IRE, August, 1962. Support of this research by the Atomic Energy Commisaion and the Alfred P. Sloan Foundation is gratefully acknowledged.

