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Towards Personalized Plasma Medicine via Data-Efficient Adaptation of
Fast Deep Learning-based MPC Policies

Kimberly J. Chan†, Georgios Makrygiorgos†, and Ali Mesbah

Abstract— Plasma medicine has emerged as a promising
approach for treatment of biofilm-related and virus infections,
assistance in cancer treatment, and treatment of wounds and
skin diseases. Despite advances in learning-based and predictive
control of plasma medical devices, there remain major chal-
lenges towards personalized and point-of-care plasma medicine.
In particular, an important challenge arises from the need to
adapt control policies after each treatment using (often limited)
observations of therapeutic effects that can only be measured
between treatments. Control policy adaptation is necessary
to account for variable characteristics of plasma and target
surfaces across different subjects and treatment scenarios, thus
personalizing the plasma treatment to enhance its efficacy. To
this end, this paper presents a data-efficient, “globally” optimal
strategy to adapt deep learning-based controllers that can be
readily embedded on resource-limited hardware for portable
medical devices. The proposed strategy employs multi-objective
Bayesian optimization to adapt parameters of a deep neural
network (DNN)-based control law using observations of closed-
loop performance measures. The proposed strategy for adaptive
DNN-based control is demonstrated experimentally on a cold
atmospheric plasma jet with prototypical applications in plasma
medicine.

I. INTRODUCTION

Cold atmospheric plasmas (CAPs) have recently found
promising use in plasma medicine [1]. CAPs, a low-
temperature (partially) ionized gas, can be generated by
applying an electric field to a noble gas, such as argon or
helium, whereby the resulting discharge is directed towards a
target surface [2]. The synergistic effects of CAPs, including
the generation of reactive chemical species and ions, ultravi-
olet radiation, low-level electric fields, and thermal effects,
can induce therapeutic outcomes [3]. As such, portable CAP
devices have shown promise for a variety of point-of-care
biomedical applications [4]. Nevertheless, CAPs exhibit mul-
tivariable, distributed-parameter, and intrinsically variable
dynamics and are often subject to (safety-critical) constraints.
Thus, there has been a growing interest in advanced control
of biomedical CAP devices using model predictive control
(MPC) [5] and learning-based control strategies [6]. Two
of the main challenges in MPC of CAPs stem from the
need to: (i) handle the fast dynamics and, thus, kilohertz
(kHz) sampling rates of CAPs [7], and (ii) adapt MPC
policy parameters to account for variable characteristics of
the plasma and target surfaces [8].
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The notion of learning and adaptation, as well as auto-
tuning, of control policies using closed-loop performance
data has received increasing attention. Notably, policy-
gradient methods [9] have been used as a popular reinforce-
ment learning (RL) approach to guide policy search within
continuous control-input spaces, with particular success for
MPC policies (e.g., [10]). Due to its use of gradient infor-
mation, policy-gradient RL is touted as a scalable alternative
to the increasingly popular Bayesian optimization (BO)
strategy for controller auto-tuning (e.g., [11], [12]), but at
a cost of lower data-efficiency, especially when initialized
poorly. Instead, BO can be a viable alternative for data-
efficient policy search, especially when performance data
and/or interactions with the real environment are limited.
BO is a derivative-free, probabilistically principled method
for “global” optimization that can handle a mixture of
continuous, discrete, and categorical decision variables [13].
For example, [14] presents an entropy-search BO approach to
use prior information from a “cheap” simulated environment
for sample-efficient policy learning on the actual physical
system. Moreover, the multi-objective nature of policy search
can be directly accommodated in BO when there is a need to
discover a set of optimal policies due to multiple conflicting
objectives [15], [16].

This paper presents a strategy for adaptive deep learning-
based approximate MPC, towards personalized and point-
of-care biomedical plasma applications. Approximate MPC
[17], which hinges on approximating MPC laws via of-
fline computations of the optimal control problem, enables
control of CAP devices at kHz sampling rates [18]. Deep
neural network (DNN)-based approximations of MPC laws
are especially attractive due to their low memory footprint
and versatile embedded implementations on resource-limited,
specialized hardware such as field programmable gate arrays
(FPGAs) [19], [20]. For plasma treatment of complex inter-
faces, it is imperative to adapt control policies to account
for the variability among different target surfaces, in addi-
tion to the time-varying nature of the plasma and surface
characteristics. Moreover, adaptability of the treatment policy
is important for personalized plasma medicine, where CAP
treatments must be tailored for each individual subject to
enhance their therapeutic efficacy without compromising the
safety and comfort of patients. However, a key challenge
arises from the limited number of treatments/trials that
can be performed in a biomedical context, which makes
data efficiency a prerequisite for policy adaptation. To this
end, we present a multi-objective BO (MOBO) strategy for
data-efficient and “globally” optimal adaptation of DNN-
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Fig. 1. Schematic of the kHz-excited CAP jet in helium (He). The
manipulated inputs are denoted along the black dotted arrows, and the
measured outputs are denoted in red.

based control policies in a run-to-run manner. MOBO uses
probabilistic surrogate models of multiple closed-loop per-
formance measures (i.e., plasma treatment outcomes) to
systematically trade off between exploration and exploitation
of a subset of DNN parameters. The selection of this subset
of parameters is guided by a global sensitivity analysis
that quantifies the influence of each network parameter
on the performance measures. As such, MOBO yields a
data-efficient scheme for performance-oriented adaptation of
DNN-based control policies. We experimentally demonstrate
the proposed strategy for adaptive DNN-based approximate
MPC of a CAP jet (CAPJ) with prototypical applications in
processing of heat-sensitive biomaterials.

II. ROBUST MPC OF COLD ATMOSPHERIC PLASMA JET

In this section, we present the control problem for a
prototypical CAPJ in the context of personalized plasma
treatments. We use a kHz-excited CAPJ in helium (He) that
consists of a copper ring electrode wrapped around a quartz
tube [21]. A schematic of the CAPJ is shown in Fig. 1. As
He gas flows through the tube, plasma ignition is achieved by
applying a high-frequency alternating current (AC) voltage to
the copper electrode. The plasma is directed out of the tube
onto a target substrate, in this case, a grounded, glass-covered
metal plate at a distance of 3 mm below the tip of the tube.
The applied power P and He flow rate q are the manipulated
inputs. The maximum surface temperature T and total optical
intensity I of the plasma at the plasma-surface incident point
are the measured outputs. Measurements are made available
every 0.5 s.

Using data collected from the CAPJ, we model the system
dynamics via a linear time-invariant (LTI) state-space model

x(k + 1) = Ax(k) +Bu(k), (1a)
y(k) = Cx(k) +Du(k), (1b)

where k is the discrete time step, x ∈ Rnx is the vector of
states, u = [P, q]⊤ ∈ Rnu is the vector of manipulated in-
puts, y = [T, I]⊤ ∈ Rny is the vector of measured output(s),
and A,B,C,D are the state-space matrices identified using
subspace identification [22]. The state-space model is defined
in terms of deviation variables around a nominal operating
condition. Furthermore, we assume an observable, canonical
form of (1), where C = I and D = 0. Additionally, we
assume that the overall system uncertainty is modeled as a
stochastic variable w that is added to (1a).

Plasma treatment of complex surfaces relies on quantifica-
tion of the delivered plasma effects to a surface. We describe
the accumulation of thermal effects on a target with a metric
called cumulative equivalent minutes (CEM), as given by

CEM(k + 1) = CEM(k) +K(Tref−T (k))δt, (2)

where K is an exponential base dependent on physical
properties of the substrate, Tref = 43◦C is the reference
temperature, and δt is the sampling time [23]. This definition
of the thermal dose is cumulative in that plasma effects
delivered cannot be retracted. With the CEM measure, the
augmented system states are x = [T, I,CEM]⊤. Accord-
ingly, the resulting nonlinear model of the CAPJ for thermal
treatment of surfaces takes the form

x(k + 1) = f(x(k), u(k), w(k)). (3)

The goal of a plasma treatment is to deliver a desired
amount of plasma effects as quickly as possible without
violating comfort and safety constraints. Here, we look to
systematically account for inherent uncertainties of CAPJs
using a robust MPC formulation. To this end, we use
scenario-based MPC (sMPC) [24]. sMPC assumes that the
system uncertainty is represented by a tree of discrete scenar-
ios, where each branch stemming from a node represents a
particular scenario of uncertainty realization. Further, to limit
the number of scenarios, a robust horizon Nr is often defined
to bound the uncertainty propagation up to a given point
[25]. In this work, we select a “worst-case” formulation of
the scenario tree, wherein the scenarios are generated based
on the worst-case bounds of the uncertainty. To represent
the trajectories generated by S scenarios, we adopt the
notation

(
xj(i), uj(i)

)
, where the addition of the superscript

j indicates the particular scenario j ∈ {1, . . . , S}. As such,
the optimal control problem at time step k is formulated as

min
xj ,uj

S∑
j=1

pjV j(·) (4a)

s.t. xj(i+ 1) = f
(
xj(i), uj(i), wj(i)

)
, (4b)(

xj(i), uj(i)
)
∈ X × U , (4c)

xj(0) = x(k), (4d)

uj(i) = ul(i) if xb(j)(i) = xb(l)(i), (4e)
∀i ∈ {0, . . . , Np − 1},

where pj is the probability of a particular scenario, V j(·)
is the control cost that can consist of a stage cost over a



prediction horizon Np and/or a terminal cost of a particular
scenario; wj(i) are chosen to be one of three scenarios: zero
or proportional to the minimum or maximum error of model
identification [α1wmin, 0, α2wmax], where α1, α2 ∈ [0, 1];
(4c) are the state and input constraints; and (4e) enforces a
non-anticipativity constraint, which represents the fact that
each control input that branches from the same parent node
must be equal (xb(j)(i) is the parent state of xj(i+1)), and
l is another counting variable for a particular scenario l ̸= j.
The solution to (4) defines the sMPC law as

πsmpc (x(k)) = u⋆(0), (5)

where u⋆(0) is the optimal first input. Here, the control
objective is defined as the terminal cost

V (CEM(Np)) = (CEMsp − CEM(Np))
2, (6)

where CEMsp denotes the setpoint CEM dose.
Finally, to adapt the policy for personalized CAP treat-

ments, we focus on two closed-loop performance measures:
(i) the delivery of a desired amount of thermal dose and (ii)
the adherence to a comfort/safety constraint. We define (i)
as a CEM tracking cost over the treatment time N

ϕ1 =

N∑
k=0

(CEMsp − CEM(k))2, (7)

and (ii) as the sum of the degree of constraint violation in
surface temperature over N

ϕ2 =

N∑
k=0

([T (k)− Ttol]
+)2, (8)

where Ttol is the nominal tolerated temperature constraint,
and [T (k) − Ttol]

+ is the positive magnitude of constraint
violation. These measures are competing since Ttol is often
set to a value at or near 43◦C, which limits the rate of CEM
delivery.

III. APPROXIMATE MPC USING DEEP LEARNING

The requirements of embedded control on low-cost,
resource-limited hardware for point-of-use CAPJ applica-
tions pose a key challenge to online deployment of the sMPC
law (5). The challenge arises from the high computational
cost of the scenario-tree optimization in (4). To this end, we
use DNNs to approximate (5).

Consider a dataset in the form of

T = {(xq, πsmpc(xq))}ns

q=1 , (9)

representing ns state-action (optimal input) pairs as acquired
by the offline solution of (4). Let a DNN-based policy
be defined as Π : Rnx → Rnu . A generic feedforward
description of a DNN constitutes a nonlinear, input-output
mapping, where information is propagated from the input
layer to the output layer via L hidden layers that contain H
nodes [26]. Given an input z,

Π(z; θ0, C) = WL+1◦(σL◦WL)◦· · ·◦(σ1◦W 1)(z), (10)

where θ0 = {W i}L+1
i=1 are the DNN parameters that are

computed via training the DNN using T ; ◦ denotes the
composition operator; and C denote the hyperparameters.
W i is comprised of the weight matrix and bias between the
i-th and (i+ 1)-th layers and σi is the activation function.

The DNN parameters are generally fit by minimizing
a mean-squared-error loss function. Meanwhile, the DNN
hyperparameters related to its architecture (e.g., L, H ,
{σi}Li=1), as well as the training/fitting options (e.g., learning
rate, optimizer solver) must be tuned. Tuning is a crucial
step of the DNN policy training since the hyperparameters
affect the resource utilization of hardware, e.g., the memory
required to store the weights/parameters θ0 and the accuracy
of the approximation of (5). While BO is commonly used to
facilitate hyperparameter tuning, this work focuses on using
BO to adapt DNN parameters. Here, the DNN is trained
using closed-loop data as described in, e.g., [19]. This way,
each step of the closed-loop trajectory is a solution to (5)
and represents a suitable situation in which the closed-loop
system is likely to operate.

Remark 1: Adaptation of DNN-based control policies us-
ing data-driven optimization methods such as BO is prone
to the curse of dimensionality. Thus, we utilize a global sen-
sitivity analysis (GSA) [27] with respect to the performance
measures ϕ1 and ϕ2 to decide which candidate parameters
θ ⊂ θ0 should be prioritized for control policy adaptation.

IV. MULTI-OBJECTIVE BAYESIAN OPTIMIZATION FOR
CONTROL POLICY ADAPTATION

The control policy adaptation can be cast as a multi-
objective (MO) problem characterized by M closed-loop
performance measures {ϕm}Mm=1; see (7), (8). We denote the
closed-loop system uncertainties by d = {d(0), . . . , d(N)}.
Further, we define a vector-valued performance measure
as h(θ) : Rnθ → RM , with components hm(θ) =
Ed [ϕm(θ,d)], where θ ∈ Θ are real-valued decision vari-
ables, namely the subset of DNN parameters that are adapted.
Then, the MO optimization problem for optimal selection of
θ is formulated as

min
θ∈Θ

h(θ). (11)

We approximate the expectation of each performance mea-
sure in a sample-based fashion as

hm(θ) = Ed [ϕm(θ,d)] ≈ 1

Nd

Nd∑
j=1

ϕm(θ,dj), (12)

where Nd is the number of samples for a given θ. The
sample-averaged approximation (12) yields noisy estimates
of the performance measures

ψm(θ) = hm(θ) + ϵm, (13)

where ϵm represents the noise of the m-th performance
measure, and Ψ(θ) = {ψm(θ)}Mm=1 denotes the set of
observed performance measures for a given θ.

Problem (11) cannot be directly solved in the case of
expensive and black-box performance measures. Hence, the



general idea of BO is to learn probabilistic surrogate models,
typically Gaussian process (GP) models, for the performance
measures and select a set of points that jointly optimize
the expected value of the current surrogates. This is done
by solving a proxy problem where an acquisition function
proposes points to query in order to refine the surrogate rep-
resenting the performance measures. The querying strategy
is based on the exploration/exploitation trade-off: we look to
query the measures at points that lie in a neighborhood that
can contain the optima while also reducing the prediction
uncertainty of the surrogate models. Given newly observed
data D = {(θi,Ψi)}No

i=1, each performance measure is
updated using Bayesian inference; e.g., for GP surrogates,
GP regression is used [28].

Moreover, in a MO setting, there is not a single best
optimizer since the performance measures can be conflicting.
Hence, the goal is to discover a set of optimal points, a Pareto
frontier comprised of Pareto optimal points. The Pareto
frontier is a boundary in the performance measure space in
which improving one measure is realized at the expense of
degrading the others. Let us denote a set of Pareto optimal
solutions as P . Solutions contained within P are known to
be non-dominated by other solutions in the feasible region.
For control policy adaptation, Pareto dominance is defined
as follows.

Definition 1: Given a set of parameters and their corre-
sponding performance measures {θ,h(θ)}, a solution h(θA)
dominates another solution h(θB) if hi(θA) ≤ hi(θB)
∀i ∈ {1, . . . ,M} and ∃i ∈ {1, . . . ,M} such that hi(θA) <
hi(θB). Pareto dominance is denoted by h(θA) ≺ h(θB),
while a solution h(θA) is non-dominated if ∄θB ∈ Θ such
that h(θB) ≺ h(θA).
Given Definition 1, the Pareto frontier is given as

P = {h(θ) s.t. ∄θ⋆ ∈ Θ : h(θ⋆) ≺ h(θ)}, (14)

and the set of Pareto optimal parameters is given as

ϑ = {θ ∈ Θ s.t. h(θ) ∈ P}. (15)

Establishing a Pareto frontier will enable the selection
of optimal control policies, each of which yields optimal
performance with varying levels of trade-offs between the
performance measures.

In MOBO, the search for the Pareto frontier is commonly
facilitated by the expected hypervolume improvement (HVI)
acquisition function [29]. The expected HVI relies on the
definition of an indicator that quantifies the Pareto optimality
of the estimated Pareto frontier known as the hypervolume
(HV).

Definition 2: The HV is defined with respect to a refer-
ence point r ∈ RM in the performance measure space. For
a finite, estimated Pareto set P , the HV is given as the M -
dimensional Lebesgue measure ΛM of the space dominated
by P and bounded by r

HV(P, r) = ΛM

 |P|⋃
i=1

[r,Ψi]

 , (16)

TABLE I
SENSITIVITY VALUES (MEAN ± STANDARD ERROR) OF THE

CLOSED-LOOP MEASURES TO VARIOUS PARAMETERS OF THE POLICY

First Layer Last Layer

Thermal Dose Delivery (ϕ1) 0.025± 3.2e−4 0.026± 8.3e−4

Temperature Constraint (ϕ2) 0.036± 4.7e−4 0.038± 1.1e−3

where |P| is the cardinality of P , and [r,Ψi] is the hyper-
rectangle formed by the points r and Ψi [29].

The HV acts as a metric to quantify the quality of
the Pareto frontier and is affected by the selection of the
reference point. Thus, “convergence” to a single HV value
means that MOBO has performed enough sampling (based
on some prespecified budget) to construct the best possible
Pareto frontier, which is not necessarily the true one. Then,
the HVI describes the incremental improvement of the HV
of P if a new point is added. The HVI of a set of newly
observed measures Ψ′ is given by

HVI(Ψ′,P, r) = HV(Ψ′ ∪ P, r)−HV(P, r). (17)

Hence, the expected HVI acquisition function αEHVI de-
scribes the expectation of HVI over the posterior of the
performance measures and is given as

αEHVI(θ) = E[HVI(Ψ′,P, r)]. (18)

Finally, to account for noisy observations of performance
measurements, the noisy expected HVI acquisition (NEHVI)
is employed; see [29]. Here, NEHVI is maximized with
respect to the DNN parameters θ.

V. ADAPTIVE DNN-BASED CONTROL POLICIES FOR
PERSONALIZED PLASMA TREATMENTS

We demonstrate the proposed MOBO strategy for control
policy adaptation on the CAPJ described in Section II.

A. Control Policy Approximation

First, we solved the sMPC problem (4) in closed loop to
gather training data for approximating the initial control law
(5). In (4), we set the prediction horizon Np = 5, the robust
horizon Nr = 2, and the discrete uncertainty scenarios as
[0.01wmin, 0, 0.01wmax]. The control inputs are constrained
by P ∈ [1.5, 5] W and q ∈ [1.5, 5] SLM, and the states
are constrained by T ∈ [25, 45]◦C and I ∈ [20, 80] arb.
units. The sMPC was formulated using CasADi [30] and
solved with IPOPT [31]. We simulated the true system with a
mismatch between the plant and control model and normally
distributed measurement noise N (0, (0.1)2). We collected
ns = 5, 000 samples of state-to-optimal-input mappings
and trained a fully-connected feedforward DNN architecture
with L = 4, H = 7, and ReLU activation functions.
We trained the DNN for 5, 000 epochs using PyTorch [32]
with the default optimizer settings. The resulting DNN-based
policy achieved nearly equivalent performance to the implicit
sMPC law. Furthermore, the computation time of the DNN,
which depends on the architecture of the DNN, compared



Fig. 2. (a) Hypervolume improvement (mean ± two standard errors) and
(b) observed Pareto frontier over five replicate runs of MOBO. The hyper-
volume improvement (a) demonstrates that MOBO reaches some optimal
representation of the Pareto frontier. The Pareto frontier (b) demonstrates
the trade-off between the competing performance measures (dose delivery:
reducing treatment time; temperature constraint: satisfying patient comfort
and safety).

to solving (4), on a standard CPU (2.4 GHz quad-core Intel
i5 processor) was roughly three orders of magnitude faster
(∼ 10−5 s versus ∼ 10−2 s).

B. Control Policy Adaptation in Closed-loop Simulations

We consider the treatment of a subject with characteristics
that differ from the mean population values, and our goal is
to adapt the initial policy designed for the population mean
to cater to the individual subject. Note that the closed-loop
performance measures are parameterized by subject-specific
characteristics, namely K in the CEM setpoint tracking cost
(7) and Ttol in the comfort constraint cost (8). Here, we
examine the case in which the parameters of the population
mean are Kpop = 0.5 and Ttol,pop = 45◦C, while the
characteristics of the individual subject are Kindiv = 0.55
and Ttol,indiv = 44.5◦C.

1) Selection of Adaptation Parameters: First, we examine
the sensitivity of the DNN-based policy to perturbations
in different subsets of its parameters. Knowing that the
desire for personalized treatments is to minimize the number
of trial-and-error treatments, we adapted a subset of DNN
parameters due to its high dimensionality (nθ0 = 212).
Common practice is to freeze the DNN and adapt the last
layer and/or append a new layer to the network to adapt.
To evaluate this practice, we examine the sensitivity of
the closed-loop performance measures to the parameters
of the first and last layers of the DNN-based policy. To
perform a GSA as described in Remark 1, we used the
sensitivity analysis tools by UQLab [33]. We used a moment-
independent method (i.e., Borgonovo indices) to analyze the
global sensitivity of the selected DNN parameters to the
closed-loop performance measures. We generated 10, 000
samples of the 44 parameters encapsulated by the first
and last layers of the 4-layer, 7-node DNN. Samples were
selected from geometrically-bounded values from the ini-
tial policy parameters. For each sample, we ran triplicate
closed-loop simulations using the DNN-based policy and
evaluated the mean plus and minus standard error values of
the observed closed-loop measures. Table I lists the results
of the GSA. In general, the dose delivery measure (7) is
less sensitive to changes in the parameters compared to

the temperature constraint measure (8). Overall, both of
the measures are equally sensitive to all of the parameters
selected for GSA. Despite this, the parameters of the last
layer have slightly higher influence with fewer number of
parameters. Hence, we selected the last layer of the DNN-
based policy as the subset of parameters to modify in our
policy search procedure (i.e., θ = WL+1 such that nθ = 16).

2) Personalized Control Policies: As a global optimiza-
tion method, MOBO provides a means to systematically
explore and detect trade-offs between competing perfor-
mance measures. Fig. 2 shows the results of 5 replicates of
50 iterations of MOBO on a simulated CAPJ, where one
iteration of MOBO is comprised of Nd = 3 replicates.1

The HV profile in Fig. 2(a) shows the “convergence” of
MOBO. The reduced improvement in the HV after more
than 30 iterations indicates that MOBO has achieved some
optimal representation of the Pareto frontier depicted in
Fig. 2(b). While it took 20 or more iterations to achieve
this Pareto frontier, the first few iterations of MOBO can
drastically improve upon the initial policy. The steep increase
in HV suggests that the initial policy parameterization is
suboptimal, and a new Pareto optimal point can be found in
the first few iterations even when starting with a suboptimal
solution.

C. Control Policy Improvement for Real-time Treatments

For the experimental demonstrations of the proposed ap-
proach on the CAPJ depicted in Fig. 1, the sMPC had Np =
Nr = 2, and the input bounds were adjusted to P ∈ [1.5, 3.5]
W and q ∈ [3.5, 7.5] SLM. Then, 11 closed-loop experiments
resulting in ns = 1, 378 samples were performed to gather
training data for the DNN approximation. The DNN was
trained with the same structure and procedure as described
for the simulation studies and achieved similar closed-loop
performance to implicit sMPC. MOBO was performed for
15 total iterations due to a limited budget of 45 treatments.

Fig. 3 shows the state and input profiles of 3 particular
iterations of MOBO. Within each iteration, we performed
Nd = 3 replicate real-time experiments to account for the
intrinsic variability of the system. The CEM profiles are plot-
ted with min-max bounds of the three replicates represented
by the shaded region, while the solid line represents the
median value of the triplicate runs. The temperature profiles
represent the mean value (solid lines) plus and minus two
standard errors (shaded region) of the triplicate experiments.
Both input profiles are plotted with the mean value from
the triplicate experiments. In Fig. 3, the profiles shown are
determined to be a few of the “best” treatment options
encountered through the process of MOBO. In this case,
the “best” is described in one of two ways: (i) if there
was insufficient data to establish a clear Pareto frontier, then

1To implement MOBO, we used Ax [34]. Ax interfaces with BoTorch
[35] to perform BO, and BoTorch interfaces with GPyTorch [36] for the
surrogate modeling with GPs. These tools were primarily used with their
default settings, using the Matern 5/2 kernel for GPs and the noisy EHVI
acquisition function. Codes are available at https://github.com/
kchan45/BO4Policy_Search_Plasma.



Fig. 3. State and input profiles of closed-loop experiments at various iterations of MOBO. Each iteration of MOBO consisted of triplicate experiments.
The CEM profile (upper left) shows the median value (solid line) along with the min/max range (shaded region). The surface temperature profile (upper
right) shows the mean value (solid line) and two standard errors (shaded region). For the manipulated inputs (power and flow rate), only the mean value
is plotted. The selected profiles shown are designated as the trajectories that correspond to the “incumbent best” policy parameterizations. The incumbent
best is deemed as the initial policy, if a Pareto frontier cannot be established (i.e., in the first few iterations) or the policy parameterization on the Pareto
frontier with the lowest temperature constraint measure.

the best treatment was considered the initial policy, and (ii)
once an estimated Pareto optimal point was found, the best
treatment used the policy that produces the lowest constraint
violation. This sequence of treatment protocols follows a
“safe” treatment intuition. As in for (i), the initial treatment
is deemed safe for the general population and is considered
“best” for the time being. In the case of (ii), once a Pareto
frontier is established, the treatment may then be switched
to a more optimal one at the cost of minor temperature
violations. Note that establishing some trade-off between
the different performance measures via an estimated Pareto
frontier allows for the personalization of plasma treatments.

From Fig. 3, the first “best” profile is the initial profile
(in blue); a new “best” is encountered after Iteration 3 (in
dashed orange). The dashed orange profile represents a new
parameterization of the policy that outperforms the initial
blue policy, as it achieves the CEM faster (reducing the
median treatment time by roughly 8 s or 13%), with slight
constraint violations. After more iterations of MOBO, a new
policy in dotted green is found at Iteration 12. In this case,
the CEM delivery on average is similar to the orange policy
(reducing the median treatment time from the initial policy
by 10 s or 16%), while maintaining a lower constraint cost.
Furthermore, in Fig. 3, the flow rate of He tends to become
saturated during treatment. In general, higher He flow rates
are characteristic of lower temperatures. Thus, because of
the temperature tolerance specification, the operation of the
CAPJ necessitates higher flow rate to remain within the
region of desirable operating temperatures. The locations

Fig. 4. Observed performance measures from the MOBO exploration.
A total of 15 iterations of MOBO were performed. Each individual point
represents the mean performance measure values from triplicate real-time
experiments at each iteration. The red boxes identify the estimated Pareto
optimal points.

of these “best” points in the performance measure space is
shown by the red boxes in Fig. 4. With few iterations, the
Pareto frontier cannot be visually established, but several
points may still be identified as Pareto optimal by their
proximity to the minimization of both performance measures.
Fig. 4 is consistent with the profiles in Fig. 3 in that Pareto
optimal points are found at Iterations 3 and 12 (as indicated
by the red boxes). As such, a strategy has been established
that can trade off between multiple performance measures in
order to tailor the treatment to individual subjects.



VI. CONCLUSIONS AND FUTURE WORK

This paper presented multi-objective BO (MOBO) as
an effective strategy for the adaptation of deep learning-
based controllers towards personalized plasma medicine. We
discussed how a computationally expensive (robust) MPC
law can be approximated with deep learning, where global
sensitivity analysis is utilized to limit the number of parame-
ters to be adapted. We demonstrated the capability of MOBO
in efficiently exploring the parameter space of a neural
network controller in closed-loop simulations and in real-
time experiments. Our future work will involve embedding
approximate MPC policies on resource-limited hardware, to-
wards adaptable MPC-on-a-chip for portable plasma devices.
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