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CODIMENSION 3 ARITHMETICALLY GORENSTEIN SUBSCHEMES

OF PROJECTIVE N-SPACE

R. HARTSHORNE, I. SABADINI AND E. SCHLESINGER

Abstract. We study the lowest dimensional open case of the question whether every
arithmetically Cohen–Macaulay subscheme of P

N is glicci, that is, whether every zero-
scheme in P

3 is glicci. We show that a general set of n ≥ 56 points in P
3 admits no

strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we
establish a number of important results about arithmetically Gorenstein zero-schemes in
P

3.

1. Introduction

There has been considerable interest recently in the notion of Gorenstein liaison for
subschemes of P

N . In particular, a question that has attracted a lot of attention, by
analogy with the case of complete intersection liaison in codimension 2, is whether every
ACM subscheme of P

N is in the Gorenstein liaison class of a complete intersection (glicci
for short). Many special classes of ACM subschemes have been found that are glicci, but
the question in general remains open [4],[5],[18],[24],[29],[30].

Our motivation for this research was to consider the lowest dimensional case of this ques-
tion, namely zero-dimensional subschemes of P

3. In this case, since every zero-dimensional
scheme is ACM, the question becomes simply: is every zero-scheme in P

3 glicci? One of
us has shown in an earlier paper [18] that a general set of n ≤ 19 points is glicci (we give
a new proof of this in Proposition 7.1), while for n ≥ 20 it is unknown. In this paper we
show

Theorem 1.1 (Theorems 7.2 and 7.4). A general set of n ≥ 56 points in P
3 admits no

strictly descending Gorenstein liaison or biliaison.

The theorem does not imply that a general set of n ≥ 56 points is not glicci, but it shows
that, if such a set is glicci, it must first be linked upwards to a larger set before eventually
linking down to a point.

In order to prove the theorem, since Gorenstein liaisons are performed with arithmeti-
cally Gorenstein (AG) subschemes, we need to establish a number of results about these.

It is known that the family PGor(h) of codimension three AG subschemes of P
N with

a fixed Hilbert function, encoded in the h-vector h (see section 2), is irreducible [8]. The
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dimension of PGor(h) is computed in [22] and [25], but not explicitly as a function of the
h-vector. In the case of zero-dimensional AG subschemes of P

3, a formula for dim PGor(h)
in terms of the h-vector is given in [6, §5]; following a different approach, we derive in
Corollary 5.3 a formula which allows to compute dim PGor(h) inductively.

In all cases we are aware of where a class of ACM subschemes of P
N has been proved to

be glicci, the proof was actually accomplished using strict Gorenstein liaisons, i.e. using
only those AG schemes of the form mHX − KX on some ACM scheme X, where HX and
KX denote respectively the hyperplane and the canonical divisor class. So we ask whether
all AG subschemes can be obtained in this way, or only some. This analysis was performed
in an earlier paper [20] for curves in P

4, and we extend the results to any P
N , N ≥ 3.

One may consult [23] for a deformation theoretic approach to this problem, and Boij in
[1, Theorem 3.4] proves a result related to ours in an algebraic context. To give a precise
statement, we use two numerical invariants b(h) and b(h) of the Hilbert function, which
satisfy b(h) ≥ 2b(h). Our result is

Theorem 1.2 (Theorem 3.4). Given an h-vector arising as the h-vector of a codimension
3 AG subscheme of P

N , there is always in PGor(h) a scheme of the form mHX − KX on
some codimension 2 ACM subscheme X ⊂ P

N . Furthermore, if b(h) ≥ 2b(h) + 2, the
general element of PGor(h) has this form.

It looks as if the most interesting h-vectors will be those with b(h) equal to 2b(h) or
2b(h) + 1, in which case it is possible the most general element of PGor(h) is not of the
form mHX −KX on any ACM X. For points in P

3, we give strong evidence in Proposition
6.8 that this happens in degree 30, by giving an example of a family of AG sets of 30 points
whose general element is not of the form mHC − KC on any integral ACM curve C. This
phenomenon may occur earlier in degrees 20, 28 or 29.

Watanabe showed that codimension 3 AG subschemes are licci, that is, in the complete
intersection liaison class of a complete intersection. In section 5 we sharpen this result in
the case of general AG sets of points in P

3 by showing that

Theorem 1.3 (Theorem 5.2). For a given h-vector, a general AG zero dimensional sub-
scheme of P

3 with that h-vector can be obtained by ascending complete intersection bili-
aisons from a point.

This was proved for curves in P
4 in [20]. To establish the result, we need a version of

the well known Cayley–Bacharach property for a zero-scheme in P
N to be AG, of which

we give a new proof in section 4.
In section 6, we study the Hilbert schemes PGor(h) of AG zero-schemes Z in P

3 keeping
in mind the two crucial questions

(1) When does the general element of PGor(h) have the form mH −K on some ACM
curve C?

(2) As the AG scheme Z varies in the Hilbert scheme PGor(h), how many general
points can we assign to a general Z ? This is important in order to understand the
possible Gorenstein liaisons one can perform on a set of general points.
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We don’t have a general answer to these questions, but we have made computations up to
degree 30, and summarized our results in Table 1. The notations and methods used for
these computations are explained in section 6.

We hope that this ground work will be the foundation for an eventual solution of our
motivating problems discussed above.

We would like to thank the referee for his careful reading of the paper and his several
helpful comments.

2. The h-vector of ACM subschemes of P
N

Notation: R = H0
∗(P

N ,OPN ) =
⊕

n∈Z
H0(PN ,OPN (n)) denotes the homogeneous co-

ordinate ring of P
N ; RX = R/IX the coordinate ring of a closed subscheme X, where

IX = H0
∗(P

N , IX,PN ).
Throughout the paper, X denotes an arithmetically Cohen-Macaulay (ACM for short)

subscheme of P
N : recall X is called ACM if the coordinate ring RX is Cohen-Macaulay (of

dimension t + 1 where t = dim X). We denote by ΩX the graded canonical module of RX .
When dim X > 0, we have

ΩX
∼= H0

∗(P
N , ωX) =

⊕

n∈Z

H0(PN , ωX(n))

where ωX is the Grothendieck dualizing sheaf of X.
A subscheme Z ⊆ P

N is arithmetically Gorenstein (AG for short) if its homogeneous
coordinate ring is a Gorenstein ring. This is equivalent to saying Z is ACM and the
canonical module ΩZ is isomorphic to RZ(m) for some m ∈ Z.

Denote by H(n) = dimk(RX)n the Hilbert function of RX . The difference function
hX(n) = ∂t+1H(n) is called the h-vector of X [29, §1.4]: it is nonnegative and with finite
support. We let b = b(X) denote the largest integer n such that hX(n) > 0. One can show
hX(n) > 0 for 0 ≤ n ≤ b. It is convenient to represent the h-vector in the form

(1) hX = {1 = hX(0), hX(1), . . . , hX(b)}.
We now recall how other numerical invariants can be computed in terms of the h-vector.

First of all, the degree of X is given by the formula d =
∑b

n=0 hX(n). If X is nondegenerate,
hX(1) = codimX.

For any closed subscheme X ⊂ P
N , we denote by s(X) the least degree of a hypersurface

containing X. If X is ACM of codimension c, the number s(X) is the least positive integer
n such that hX(n) <

(

n+c−1
c−1

)

.
The integer b(X) is related to the regularity and to the index of speciality of X. A sheaf

F on P
N is n-regular in the sense of Castelnuovo-Mumford if

H i(PN ,F(n − i)) = 0 for i > 0.

If F is n-regular, then it is also n+ 1-regular. Thus one defines the regularity of a sheaf F
as the least integer r such that F is r-regular. The regularity of a subscheme X ⊆ P

N is
the regularity of its ideal sheaf.
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We let m(X) denote the largest integer n such that (ΩX)−n 6= 0 (when dim X > 0, this
is the index of speciality of X).

Proposition 2.1. Let X be an ACM subscheme of P
N of dimension t < N . Then

(1) the regularity of X is b(X) + 1.
(2) we have m(X) = b(X) − t − 1.
(3) we have m(X) = max{n : ht+1(PN , IX(n)) 6= 0}.

Proof. The first statement [29, p.8 and p.30] follows computing both the h-vector and the
regularity of X out of the minimal free resolution of IX over R. The second statement
follows from the isomorphism

ΩX
∼= HomRL

(RX , ΩL)

where L ∼= P
t, the map RL → RX is induced by projection from a general linear subspace

of codimension t+1, so that RX is a free finitely generated graded RL module with hX(n)
minimal generators in degree n.

The third statement is immediate when X is a hypersurface. If 0 ≤ t ≤ N − 2 it is a
consequence of the fact that the canonical module ΩX is the graded k-dual of Ht+1

∗ (PN , IX).
In fact, by the local duality theorem for graded modules (see e.g. [2, Theorem 3.6.19]),
the canonical module ΩX is the graded k-dual of Ht+1

m
(RX), where Hi

m
denotes the i-th

local cohomology group with respect to the irrelevant maximal ideal m of R, and moreover
Ht+1

m
(RX) ∼= Ht+1

∗ (PN , IX) (see [14, p.137]). �

For AG subschemes we have more ways to compute the invariant m:

Proposition 2.2. Let Z be an AG subscheme of P
N . Then m(Z) is the integer m such

that ΩZ
∼= RZ(m). Furthermore, if the minimal free resolution of RZ over R has the form

0 → R(−c) → · · · → R → RZ → 0,

then m(Z) = c − N − 1 and b(Z) = c − codim(Z).

Proof. It is clear that ΩZ
∼= RZ(m) implies m = m(Z). To relate the integer c appearing

at the last step of the resolution with m, we compute ΩZ
∼= Extcodim (Z)(RZ , ΩPN ) using

the minimal free resolution of RZ , and we find

ΩZ
∼= RZ(c − N − 1).

Hence m = c − N − 1. �

Remark 2.3. For an AG subscheme Z, the integer b(Z) is called the socle degree of RZ in
Migliore’s book [29] and is denoted by r; the integer m(Z) is sometimes referred to as the
a-invariant of the Gorenstein graded algebra RZ .

Corollary 2.4. Let X be a codimension 2 ACM subscheme of P
N . Then in the minimal

free resolution of IX:

0 −→ ⊕R(−bj) −→ ⊕R(−ai) −→ IX −→ 0

we have max{bj} = b(X) + 2.
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Proof. The regularity of IX equals max{bj} − 1 by [29, p. 8] and b(X) + 1 by Proposition
2.1. �

Macaulay has characterized the possible h-vectors for ACM subschemes of P
N [27]. We

will only need this result for subschemes of codimension 2 (Proposition 2.6) and its analogue
for AG subschemes of codimension 3 (Proposition 2.8), which is due to Stanley.

Definition 2.5. An h-vector is said to be C2-admissible if there exists an s ≥ 1 such that
{

h(n) = n + 1 if 0 ≤ n ≤ s − 1,

h(n) ≥ h(n + 1) if n ≥ s − 1.

A C2-admissible h-vector is said to be of decreasing type if h(a) > h(a + 1) implies that
for each n ≥ a either h(n) > h(n + 1) or h(n) = 0.

Proposition 2.6.

(1) A finitely supported numerical function h : N → N is the h-vector of a codimension
2 ACM subscheme X of P

N (N ≥ 2) if and only if h is C2-admissible. Furthermore,
X can be taken reduced, and a locally complete intersection in codimension ≤ 2.

(2) If X is an integral codimension 2 ACM subscheme of P
N , then hX is of decreasing

type. Conversely, if h is of decreasing type and N ≥ 3, there exists an integral codi-
mension 2 ACM subscheme X ⊂ P

N with hX = h which is smooth in codimension
≤ 2 (thus smooth if N = 3, 4).

Proof. The first statement is a very special case of a theorem by Macaulay (see [27],[34]),
and is equivalent, in case N = 3, to Theorem V.1.3 of [28], and, in general, to Proposition
1.3 of [31]. The fact that X can be taken reduced, and a locally complete intersection in
codimension ≤ 2 is proven in [31, 3.2]. The second statement is proven in [31, 3.3]; it was
first proven over the complex numbers and for N = 3 in [13, 2.2 and 2.5]. �

We have also the result of Ellingsrud [12] about the Hilbert scheme:

Theorem 2.7 (Ellingsrud). The set of all ACM codimension 2 subschemes of P
N (N ≥ 3)

with a given h-vector is a smooth, open, irreducible subset of the Hilbert scheme of all
closed subschemes of P

N . (There is also an explicit formula for its dimension).

Stanley [34], drawing on Macaulay’s Theorem, and applying the structure theorem of
Buchsbaum and Eisenbud [3], characterized the possible h-vectors of AG codimension
3 subschemes. Before we state his result, we define the “first half” kh of an h-vector
{1, h(1), . . . , h(b)} setting:

(2) kh(n) =

{

∂h(n) for 0 ≤ n ≤ [b/2],
0 otherwise,

where [b/2] denotes the integral part of b/2. We have (see [34, 4.2])

Proposition 2.8. A finitely supported numerical function h : N → N is the h-vector of an
AG codimension 3 subscheme of P

N (N ≥ 3) if and only if
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(1) h is symmetric, meaning that h(n) = h(b − n) for all 0 ≤ n ≤ b;
(2) the first half of h is C2-admissible.

We say such an h-vector is G3-admissible.

Remark 2.9. If Z is a codimension 3 AG-subscheme of P
N , we let kZ denote the first half

of hZ and call it the k-vector of Z. Note that the degree of kZ is precisely hZ([b(Z)/2]).
Furthermore, because of its symmetry, the h-vector of Z is determined by its first half kZ

and by b(Z).

Example 2.10. The h-vectors
{1, 3, 3, . . . , 3, 3, 1}

all are G3-admissible with first half {1, 2} - no matter how many 3’s appear in the string.

Remark 2.11. There is an analogue of Ellingsrud’s Theorem in the case of codimension 3
AG-subschemes. If we fix the h-vector, the set PGor(h) of codimension 3 AG-subschemes of
P

N with the given h-vector carries a natural scheme structure, which makes it into a smooth
irreducible subscheme of the Hilbert scheme; furthermore, the dimension of PGor(h) can
be computed, see [8],[22],[25]. Corollary 5.3 below allows one to compute dim PGor(h)
inductively as a function of the h-vector.

We will need formulas for the variation of the h-vector under liaison and biliaison. Recall
the definition of Gorenstein liaison [29, 5.1.2] and biliaison [19]:

Definition 2.12. Let V1, V2, X be equidimensional subschemes of P
N , all of the same

dimension, with V1 and V2 contained in X. We say that V2 is G-linked to V1 by X if X is
AG and IV2,X

∼= Hom(OV1
,OX); in this case, it is also true that V1 is G-linked to V2 by X.

Definition 2.13. Let V1 and V2 be equidimensional closed subschemes of dimension t of
P

N . We say that V2 is obtained by an elementary biliaison of height h from V1 if there
exists an ACM scheme X in P

N , of dimension t + 1, containing V1 and V2 so that IV2,X
∼=

IV1,X(−h). (In the language of generalized divisors on X, this says that V2 ∼ V1 + hH ,
where H denotes the hyperplane class).

If h ≥ 0 (respectively h ≤ 0), we will speak of an ascending (respectively descending)
biliaison. If we restrict the scheme X in the definition to be a complete intersection scheme,
we will speak of CI-biliaison.

The following proposition is well known and shows how the h-vector of an ACM scheme
changes under G-liaison and elementary biliaison.

Proposition 2.14.

(1) Suppose V1 and V2 are two ACM subschemes of P
N linked by the AG scheme X.

Let b = b(X). Then

hV2
(n) = hX(n) − hV1

(b − n) for all n ∈ Z.

(2) Suppose V1 and V2 are ACM subschemes of P
N such that V2 is obtained by an

elementary biliaison of height 1 from V1 on the ACM scheme X. Then

hV2
(n) = hX(n) + hV1

(n − 1) for all n ∈ Z.
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Proof. The first statement is proven in [29, 5.2.19]; the second follows from the isomorphism
IV2,X

∼= IV1,X(−1). �

Example 2.15. We will later need the h-vector of a zero dimensional subscheme W ⊂ P
3

consisting of d general points. Since points in W impose independent conditions on surfaces
of degree n, the least degree s = s(W ) of a surface containing W is the unique positive
integer such that

(

s+2
3

)

≤ d <
(

s+3
3

)

, and we have

(3) hW (n) =























(

n + 2

2

)

if 0 ≤ n < s

d −
(

s + 2

3

)

if n = s

0 otherwise.

3. AG divisors on codimension 2 ACM subschemes

If Z is an AG subscheme of codimension 3 in P
N , we know that its “first half” kZ is the

h-vector of a codimension 2 ACM subscheme X ⊂ P
N . Thus given a pair of h-vectors h

and k, with k equal to the first half of h, it is natural to ask whether we can find a pair of
subschemes Z and X of P

N with hZ = h and hX = k satisfying further Z ⊂ X. Theorem
3.4 gives a positive answer.

Consider an ACM scheme X ⊂ P
N which is generically Gorenstein, so that in the

language of generalized divisors [19] one can speak of the anticanonical divisor −K on X.
Then it is well known that any divisor Z on X linearly equivalent to −K + mH , that is,
such that IZ,X

∼= ωX(−m), is AG ([24, 5.2], [19, 3.4]). In the following proposition we
recall this fact, and describe the relation between the h-vectors of X and Z.

Proposition 3.1. Let X be a generically Gorenstein ACM subscheme P
N of dimension

t ≥ 1, and let H be a hyperplane section of X. Suppose Z ⊂ X is divisor linearly equivalent
to −K + mH, for some integer m. Then

(a) Z is an AG subscheme of P
N with ΩZ

∼= RZ(m); in particular, m = m(Z).
(b) The h-vector of Z is determined by the integer m and the h-vector of X by the

formula

∂hZ(n) = hX(n) − hX(m + t + 1 − n).

In particular,

b(Z) ≥ b(X)

and, if kZ denotes the first half of hZ, we have hX(n) ≥ kZ(n) for every n.
(c) The equality hX = kZ holds if and only if b(Z) ≥ 2b(X) (or equivalently m ≥

2b(X) − t), so that in this case the h-vector of X is determined by that of Z.

Remark 3.2. Since b(Z) ≥ b(X), we see that if Z is fixed, there are at most finitely many

h-vectors h̃ with the property that there exists an ACM X with hX = h̃ on which Z is a
divisor linearly equivalent to −KX + mHX .
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Proof of 3.1. From the exact sequence

(4) 0 → ΩX(−m) → RX → RZ → 0

it follows
depth RZ ≥ Min(depth ΩX − 1, depth RX) = dim RX − 1.

Since Z is a divisor on X, dim Z = dim X − 1, so we must have equality, and thus Z is
ACM.

To see Z is in fact AG, we apply the functor HomRX
(−, ΩX) to the exact sequence (4)

to get
0 = HomRX

(RZ , ΩX) → ΩX
∼= IZ,X(m) → RX(m) → ΩZ → 0.

This implies ΩZ
∼= RZ(m) because ΩZ is a faithful RZ-module.

To prove (b), we use the exact sequence (4) and Serre duality to obtain

(5) ∂hZ(n) = hX(n) − ∂t+1(ht(OX(m − n)).

To see ∂t+1(ht(OX(m − n)) = hX(m + t + 1 − n), we use the fact that ∂t+1htOX(n) =
(−1)t+1∂t+1h0OX(n) because χOX(n) = h0OX(n)+(−1)thtOX(n) is a polynomial of degree
t in n, together with the fact that for any numerical function f(n), if g(n) = f(m − n),
then ∂t+1g(n) = (−1)t+1∂t+1f(m + t + 1 − n).

Setting n = 0 in the formula, we see that hX(m + t + 1) = 0, hence b(X) < m + t + 1.
But m + t = b(Z) because m = m(Z) and dim Z = t − 1. Thus b(X) ≤ b(Z).

As for part (c), it is clear that hX = kZ implies b(Z) ≥ 2b(X). Conversely, suppose
b(Z) ≥ 2b(X). Then [b(Z)/2] ≥ b(X), which implies hX(n) = 0 = kZ(n) for n > [b(Z)/2].
On the other hand, for n ≤ [b(Z)/2], we have m + t + 1− n = b(Z) + 1− n > b(X), hence
by part (b)

kZ(n) = ∂hZ(n) = hX(n).

�

Proposition 3.3. Let X be a codimension 2 ACM subscheme of P
N , N ≥ 3. Assume X

is a locally complete intersection in codimension ≤ 2. Then

(a) if m ≥ 2b(X) − N + 1, there is an effective generalized divisor Z ⊂ X linearly
equivalent to mH − K;

(b) if m ≥ 2b(X) − N + 2 and furthermore X is a locally complete intersection every-
where, the invertible sheaf L(mH − K) = ω∨

X(m) is very ample.

Proof. We will follow the proof of Theorem 3.5 in [20]. First of all note that the assump-
tion X is a locally complete intersection in codimension ≤ 2 assures that X satisfies the
conditions ”G1 + S2” under which the theory of generalized divisors is developed in [17];
also KX is an almost Cartier divisor on X, and L(mH − K) = ω∨

X(m).
Let us begin by proving part (a): since IX(b + 1) is generated by global sections, so are

(I/I2)(b + 1) and
∧2(I/I2) (2b + 2). By assumption, off a closed subscheme Y of X of

codimension at least 3, X is a locally complete intersection, so
∧2(I/I2) ∼= ω∨

X(−N − 1)
on X \ Y , and ω∨

X(2b−N + 1) is generated by its global sections on X \ Y . In particular,
for m ≥ 2b − N + 1 we can find a section of ω∨

X(m) over X \ Y which generates ω∨
X(m)
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at the generic points of X. Since codim Y > 1, we can extend this section to all of X [17,
1.11] . We conclude that for m ≥ 2b − N + 1 there is an effective divisor Z ⊂ X linearly
equivalent to mH − K [17, 2.9].

If X is a locally complete intersection everywhere, then the above argument shows that
for m ≥ 2b − N + 1 the invertible sheaf ω∨

X(m) is globally generated. Statement (b) now
follows from this and the fact that the tensor product of a very ample invertible sheaf and
a globally generated invertible sheaf is very ample. �

Theorem 3.4. Let h be a G3-admissible h-vector, and let k be its first half as defined
in section 2 formula (2). Denote by b and b the largest integers such that h(n) 6= 0 and
k(n) 6= 0 respectively, and let m = b − N + 2, N ≥ 3. Then:

(a) there is an AG subscheme Z of P
N of codimension 3 with h-vector hZ = h lying on

an ACM scheme X of codimension 2 with h-vector hX = k;
(b) if the first half k of h is of decreasing type, we may take X to be integral, and in

case N = 3 or 4, both X and Z to be smooth;
(c) if b ≥ 2b + 2 (that is, m ≥ 2b − N + 4), then there is an open subset V of the

Hilbert scheme PGor(h) such that every Z ∈ V is of the form Z ∼ mH − K on a
codimension 2 ACM scheme X with h-vector k.

Remark 3.5. Note that in the statement the integers b and b depend only on h, and by
definition of the “first half” of h we always have b ≥ 2b. Thus the hypothesis in (c) holds
unless b = 2b or b = 2b + 1.

Remark 3.6. In [9] it is shown that an integral AG subscheme of codimension 3 of P
N

exists with given h-vector if and only if the first half of that h-vector is of decreasing type.
A result related to statement (c) above is Theorem 3.4 of [1]; see also Remark 5.3 of [24].
For a deformation theoretic approach to the question of determining those AG schemes Z
of the form Z ∼ mHX − KX see [23].

Proof. (a) Suppose given a G3-admissible h-vector h. Then its first half k is C2-admissible,
hence there exists [31, 3.2] an ACM subscheme X ⊂ P

N of codimension 2 with h-vector
hX = k which is reduced and a locally complete intersection in codimension ≤ 2. Then
b(X) = b, and by definition of the “first half” function b ≥ 2b, that is, m ≥ 2b − N + 2.
By Proposition 3.3, there is a divisor Z ⊂ X linearly equivalent to mH − K, and, by
Proposition 3.1, Z is AG with m(Z) = m, hence b(Z) = b and the first half of the h-vector
hZ equals hX . Thus hZ and h both have first half k and are last nonzero at b, hence by
symmetry hZ = h.
(b) If k is of decreasing type, then X can be taken to be integral [31, 3.3]. If N = 3
or 4, then X can be taken even smooth [31, 3.3], and, since mH − K is very ample by
Proposition 3.3, we can take Z to be smooth by the usual Bertini theorem.
(c) It is known that PGor(h) is smooth, and the tangent space to PGor(h) at the point
corresponding to the subscheme Z is isomorphic to the degree zero piece 0HomR(IZ , RZ) of
the graded R-module HomR(IZ , RZ): see for example [25], and [22] for the zero-dimensional
case. We remark that, in case dim Z > 0, the tangent space 0HomR(IZ , RZ) is isomorphic
to the space of global sections of the normal sheaf NZ of Z in P

N .
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It is therefore sufficient to show that the dimension of the family in statement (c) is
greater or equal than the dimension of 0HomR(IZ , RZ).

We will restrict X to vary in the open subset of locally complete intersections in codi-
mension ≤ 2. Therefore we can use the theory of generalized divisors on X. Since X is
an ACM scheme and since the linear system |Z| = |mH −K| is effective, the dimension of
the linear system |Z| on X is equal to dim 0HomRX

(IZ,X , RX) − 1 [17, 2.9].
Since IZ,X

∼= ΩX(−m), we have HomRX
(IZ,X , IZ,X) ∼= RX and Ext1

RX
(IZ,X, IZ,X) = 0.

Thus applying the functor HomRX
(IZ,X,−) to the sequence

(6) 0 −→ IZ,X −→ RX −→ RZ −→ 0

we obtain an exact sequence

0 −→ RX −→ HomRX
(IZ,X , RX) −→ HomRX

(IZ,X , RZ) −→ 0.

Hence

(7) dim 0HomRX
(IZ,X , RZ) = dim 0HomRX

(IZ,X , RX) − 1

is the dimension of the linear system |Z| on X.
The family of ACM schemes in which X varies has dimension

(8) dim 0HomR(IX , RX)

because codimension 2 ACM subschemes of positive dimension are unobstructed [12].
Next we remark that if Z is as in (c) then by Proposition 3.1 the h-vector hX equals kZ .

The ACM scheme X is unique. Indeed, the equality of the Hilbert functions of X and Z
for n ≤ b guarantees that the map H0(IX(n)) → H0(IZ(n)) is an isomorphism for n ≤ b.
Since IX is generated in degrees less or equal than b + 1, the homogeneous ideal of X is
uniquely determined by the ideal of Z.

Therefore the dimension of the family in statement (c) is the sum of the dimension of the
linear system |Z| on X and of dimension of the Hilbert scheme in which X varies. By (7)
and (8) this dimension is equal to

dim 0HomR(IX , RX) + dim 0HomRX
(IZ,X , RZ).

Thus to complete the proof it suffices to show

(9) dim 0HomR(IZ , RZ) ≤ dim 0HomR(IX , RX) + dim 0HomRX
(IZ,X, RZ).

To this end, we apply HomR(−, RZ) to the exact sequence

(10) 0 −→ IX −→ IZ −→ IZ,X −→ 0

and obtain a new exact sequence

0 −→ HomR(IZ,X, RZ) −→ HomR(IZ , RZ) −→ HomR(IX , RZ),

from which we deduce:

(11) dim 0HomR(IZ , RZ) ≤ dim 0HomR(IX , RZ) + dim 0HomR(IZ,X, RZ).
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Comparing (9) and (11), we see we will be done if we can show HomR(IX , RX) ∼=
HomR(IX , RZ). For this, we apply the HomR(IX ,−) to the exact sequence (6) and obtain

0 −→ HomR(IX , IZ,X) −→ HomR(IX , RX) −→ HomR(IX , RZ) −→ Ext1
R(IX , IZ,X).

Since IZ,X
∼= ΩX(−m)), we need to show that HomR(IX , ΩX(−m)) = Ext1

R(IX , ΩX(−m)) =
0.

To prove these vanishings, we consider the minimal presentation of IX over R:

(12)
⊕

R(−bj) −→
⊕

R(−ai) −→ IX −→ 0.

The module HomR(IX , ΩX(−m)) is a submodule of
⊕

ΩX(ai − m). By Proposition 2.4
we have b + 2 = Max{bj} ≥ ai for every i. Since by assumption m ≥ 2b − N + 4, we have

m − ai ≥ b − N + 2 = b + dim X.

By Proposition 2.1 it follows ΩX(ai − m) = 0 for every i, hence HomR(IX , ΩX(−m)) = 0.
To deal with Ext1

R(IX , ΩX(−m)), let M denote the kernel of the surjection
⊕

R(−ai) →
IX . Then Ext1

R(IX , ΩX(−m)) is a quotient of HomR(M, ΩX(−m)), which in turn is a
submodule of

⊕

ΩX(bj − m)). Since m ≥ 2b − N + 4, the same argument as above
shows ΩX(bj − m) = 0 for every j. Hence HomR(M, ΩX(−m)) = 0, and, a fortiori,
Ext1

R(IX , ΩX(−m)) = 0, which is what was left to prove. �

4. Arithmetically Gorenstein zero-dimensional subschemes

A natural problem is to look for geometric conditions which allow one to decide whether
or not a subscheme of P

N is AG. In the case of zero-dimensional subschemes there is a
characterization in terms of the so called Cayley–Bacharach property: it is the implication
(a) ⇐⇒ (b) in the following proposition, and it was originally proven in [7] in the reduced
case and then generalized to the non reduced case in [26]. Below we give an alternative
proof.

Recall a zero dimensional subscheme Z ⊂ P
N is ACM, and by Proposition 2.1 its m-

invariant is

m(Z) = max{n | (ΩZ)−n 6= 0} = max{n : h1(PN , IZ(n)) 6= 0},
and the regularity of Z is m(Z) + 2.

Proposition 4.1. Let Z be a zero-dimensional scheme in P
N , let m = m(Z) and suppose

the h–vector of Z is symmetric, i.e.

h(n) = h(m + 1 − n) for every n ∈ Z.

Then the following are equivalent:

(a) Z is AG;
(b) Z satisfies the Cayley–Bacharach property: for every subscheme W ⊂ Z with

deg(W ) = deg(Z) − 1, we have

h0(PN , IW (m)) = h0(PN , IZ(m));

(c) for any proper subscheme W0 of Z, m(W0) < m;
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(d) for any proper subscheme W0 of Z, h1(PN , IW0
(m)) = 0.

Proof.

(c)⇐⇒ (d) Since
⊕

n∈Z
H1(PN , IW0

(n)) is the graded k-dual of ΩW0
, the vanishing

h1(PN , IW0
(m)) = 0

implies h1(PN , IW0
(n)) = 0 for every n ≥ m, that is, m(W0) < m.

(b)⇐⇒ (d) Since m(W0) ≤ m(W ) whenever W0 ⊆ W ⊆ Z, we may assume in (d) that
W0 = W has length deg Z − 1.

Looking at Hilbert polynomials we see

h0(IW (m)) − h1(IW (m)) = h0(IZ(m)) − h1(IZ(m)) + 1.

The assumption on the h-vector implies that h1(PN , IZ(m)) = hZ(m + 1) = 1. Thus
h0(IW (m)) = h0(IZ(m)) if and only if h1(IW (m)) = 0.

(c)=⇒ (a) The symmetry of the h-vector implies that RZ and ΩZ(−m) have the same
Hilbert function.

We can define a function ϕ : RZ → ΩZ(−m) sending 1 to α where α is a non zero element
of degree zero in ΩZ(−m). If ϕ had a nontrivial kernel, then it would define a proper
subscheme W of Z together with a non zero map RW → ΩZ(−m) and so m(W ) = m(Z),
contradicting (c). Thus ϕ has trivial kernel, hence it is an isomorphism because RZ and
ΩZ(−m) have the same Hilbert function. Therefore Z is AG.

(a)=⇒ (c) Suppose m(W ) = m. Then we have a nontrivial map

RW → ΩW (−m) → ΩZ(−m) ∼= RZ

lifting the natural map RZ → RW , hence W = Z. �

For later use we need to rephrase this criterion in the case Z is a subscheme of an AG
curve. Thus suppose we are given an AG curve C and a zero dimensional subscheme
Z ⊂ C. Then Z can be thought of as an effective generalized divisor on C [17], and it
corresponds to a nondegenerate section of the reflexive sheaf of OC modules

OC(Z) = HomOC
(IZ,C ,OC).

Analogously we define

RC(Z) = HomRC
(IZ,C, RC).

Note that, since C is ACM, we have IZ,C
∼= H0

∗(IZ,C) and RC
∼= H0

∗(OC), hence the n-th
graded piece RC(Z)n of RC(Z) is isomorphic to H0(OC(Z + nH)), which at the level of
graded modules we may rewrite as

RC(Z) ∼= H0
∗(OC(Z)).

Applying the functor HomRC
(−, RC) to the exact sequence

0 → IZ,C → RC → RZ → 0
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we obtain another exact sequence, analogous to [17, 2.10]

(13) 0 → RC → RC(Z) → Ext1
RC

(RZ , RC) ∼= ΩZ ⊗ Ω∨
C → 0

where the last isomorphism can be derived as follows:

Ext1
RC

(RZ , RC) ∼= Ext1
RC

(RZ , ΩC) ⊗ Ω∨
C
∼= ΩZ ⊗ Ω∨

C .

Corollary 4.2. Suppose Z is an effective divisor on the AG curve C. Let m = m(Z) and
e = m(C). Suppose the h–vector of Z is symmetric. Then Z is AG if and only if

dim(RC(W ))e−m < dim(RC(Z))e−m

for every subscheme W ⊂ Z with deg(W ) = deg(Z) − 1.

Proof. Pick a subscheme W ⊂ Z with deg(W ) = deg(Z)− 1. Since ΩC
∼= RC(e), applying

(13) to W and then to Z, we see that m(W ) < m is equivalent to

dim(RC(W ))e−m < dim(RC(Z))e−m.

�

5. Complete Intersection Biliaison

In this section, we will show that a general AG set of points in P
3 is obtained by ascending

complete intersection biliaisons from a point (see Definition 2.13). We follow closely section
4 of [20].

Lemma 5.1. Let Z be a codimension 3 AG subscheme of P
N with h-vector h. Let s denote

the minimum degree of a hypersurface containing Z, b = b(Z) = max{n | h(n) > 0}, and
let m be the integer for which ΩZ

∼= RZ(m). Then

a) s = min{n > 0 | h(n) <
(

n+2
2

)

}.
b) m = b − dim(Z) − 1.
c) IZ(b + 2 − s) is generated by global sections.

Proof. Part a) follows from the definition of the h-vector. Part b) we recall for memory
from Proposition 2.1. For part c) we use the theorem of Buchsbaum–Eisenbud [3] in the
notation of [21, §5, pp. 62-63]. Let R be the homogeneous coordinate ring of P

N . Then
the homogeneous ideal IZ of Z has a resolution of the form

0 → R(−c) → ⊕R(−bi) → ⊕R(−ai) → IZ → 0

with i = 1, 2, . . . , 2r +1 for some positive integer r. Moreover, this resolution is symmetric
in the sense that if we order a1 ≤ a2 ≤ · · · ≤ a2r+1 and b1 ≥ b2 ≥ · · · ≥ b2r+1, then
bi = c− ai for each i. Furthermore, if we let uij = bi − aj be the associated degree matrix,
then uij > 0 for i + j = 2r + 3.

To relate this to the invariants s and b of the h-vector, first note that the ai are the
degrees of a minimum set of generators of IZ . Hence a1 = s, which is the least degree of
a generator. By symmetry, b1 = c − s. On the other hand, b = c − 3 by Proposition 2.2.
From the inequality u2,2r+1 > 0 we find b2 > a2r+1 = max{ai}. But b1 = c − s ≥ b2, so we
find max{ai} < c− s. Hence max{ai} ≤ b+2− s, and IZ(b+2− s) is generated by global
sections. �
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Theorem 5.2. For any h-vector h corresponding to an AG zero dimensional subscheme of
P

3 (as in (2.8)), there is a nonempty open subset Vh of the Hilbert scheme PGor(h) such
that any Z ∈ Vh can be obtained by strictly ascending CI-biliaisons from a point in P

3.

Proof. We will prove, by induction on the degree, the following slightly more precise state-
ment. For each h, let s = s(h) and t = t(h) denote the value of the invariants s(Z) and
m(Z) + 3− s(Z) for Z ∈ PGor(h). We claim there is an open set Vh ⊆ PGor(h) such that
for any Z ∈ Vh

(i) There is a reduced complete intersection curve C = Fs∩Ft such that Z is contained
in the smooth locus Csm of C and intersects every irreducible component of Csm.

(ii) There is an AG zero-scheme Z ′ ∼ Z−H on C, with h-vector h′, such that Z ′ ∈ Vh′.

To begin with, by Lemma 5.1 a zero dimensional AG subscheme Z ⊆ P
3 is contained in

the complete intersections C of two surfaces of degree s = s(Z) and t = m(Z) + 3 − s(Z)
respectively. Thus property (i) is an open condition on PGor(h).

We start the induction with AG subschemes Z having s = 1. These are contained in a
P

2, so they are complete intersections, and for these the theorem is well known.
So now we assume s ≥ 2. Suppose for a moment that Z ⊆ C satisfies condition (i). We

will show that the linear system |Z − H| is nonempty and contains an AG subscheme Z ′.
We use the exact sequence (13) twisted by −H :

(14) 0 → RC(−H) → RC(Z − H) → ΩZ ⊗ Ω∨
C(−H) → 0.

Now ΩC
∼= RC(s + t− 4) = RC(m− 1), and ΩZ

∼= RZ(m), so the sheaf on the right is just
RZ . Therefore

(15) h0(OC(Z − H)) = dim(RC(Z − H))0 = dim(RZ)0 = 1

so the sheaf OC(Z − H) has a unique section σ whose restriction to Z is 1. From the
condition that Z meets every irreducible component of Csm, and C being reduced, we
conclude that σ is nondegenerate, and defines an effective divisor Z ′ ∼ Z − H [17, 2.9].
Furthermore, since σ restricted to Z is 1, we find that Supp (Z) ∩ Supp (Z ′) = ∅.

We claim that Z ′ is AG. First of all from the equality

(16) hZ′(n) = hZ(n + 1) − hC(n + 1)

and the fact that both hZ and hC are h-vectors satisfying h(n) = h(m + 1 − n) for all
n ∈ Z, we see that hZ′ is symmetric and m(Z ′) = m − 2. Therefore to show Z ′ is AG it
is enough by Corollary 4.2 to show that for every D ⊂ Z ′ with deg(D) = deg(Z ′) − 1 we
have

dim(RC(D))1 < dim(RC(Z ′))1.

Since Z ′ ∼ Z−H is a Cartier divisor on C, the divisor Z ′−D is effective and has degree
1, therefore it is a point Q in the support of Z ′. Now D + H ∼ Z − Q and Z ′ + H ∼ Z,
so what we have to prove is that

h0(OC(Z − Q)) = dim(RC(Z − Q))0 < dim(RC(Z))0 = h0(OC(Z)).

This follows from the fact that Supp (Z) ∩ Supp (Z ′) = ∅, hence the section of OC(Z)
corresponding to Z is not the image of a section of OC(Z − Q).
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Now we explain the induction step of the proof. Given an admissible h-vector h with
s ≥ 2, define h′ as in (16) above. By the induction hypothesis there exists an open set
Vh′ ⊆ PGor(h′) of AG schemes satisfying (i) and (ii). Let Z ′ be such a scheme, and let
Z ′ ⊆ C ′ = Fs′ ∩ Ft′ satisfy (i). Note that we either have s′ = s− 1 and t′ = t− 1 or s′ = s
and t′ = t− 2. So define a curve C = (Fs′ + H1)∩ (Ft′ + H2) or C = Fs′ ∩ (Ft′ + H1 + H2),
where H1, H2 are planes in general position. Then C is a reduced complete intersection
curve of two surfaces of degree s and t respectively.

On this curve C, we will show, by an argument analogous to the one above, that a
general divisor Z in the linear system Z ′ + H on C is AG.

We first prove that an effective divisor Z ∈ |Z ′ + H| is AG if and only if Supp (Z) ∩
Supp (Z ′) = ∅. By construction the h-vector of Z is symmetric. Therefore by Corollary
4.2 the divisor Z is AG if and only if for every W ⊂ Z of degree deg(Z) − 1 we have

dim(RC(W ))−1 < dim(RC(Z))−1.

Since Z is Cartier on C, we may write W = Z − Q where Q is a point in the support in
Z, and then the inequality above is equivalent to

h0(OC(Z ′ − Q)) < h0(OC(Z ′)).

Now from the exact sequence

(17) 0 → RC → RC(Z ′) → ΩZ′ ⊗ Ω∨
C
∼= RZ′(−1) → 0

we deduce h0OC(Z ′) = 1. Thus the inequality above is satisfied if and only if for every
Q ∈ Supp(Z) we have h0OC(Z ′ − Q) = 0, that is, Q is not in Supp(Z ′).

This completes the proof of the claim that Z is AG if and only if Supp (Z)∩Supp (Z ′) = ∅.
Now we show that a general Z in |Z ′ + H| satisfies this property. For this, note that
IZ,C

∼= IZ′,C(−1), hence twisting by one the exact sequence (17) we obtain

(18) 0 → RC(1) → RC(Z) → RZ′ → 0.

The degree zero piece is

0 → H0OC(H) → H0OC(Z) → (RZ′)0 → 0

which shows that a general section of H0OC(Z) maps to a unit in (RZ′)0, hence does not
vanish at any point P of Z ′.

Furthermore, since the trivial biliaison Z ′+H satisfies (i), and this is an open condition,
we can choose Z in |Z ′ + H| so that it is AG and satisfies (i).

Thus there exists an open subset of AG subschemes Z ∈ PGor(h) satisfying (i). Since
the procedures of constructing Z ′ from Z and Z from Z ′ are reversible, we can find an
open subset Vh ⊆ PGor(h) of AG schemes Z satisfying (i) with the associated scheme Z ′

lying in Vh′.
This completes the inductive proof of (i) and (ii). To prove the theorem, we take a

Z ∈ Vh, and by (ii) find a Z ′ ∈ Vh′ with smaller degree. We continue this process until
either the degree is 1 or s = 1, which we have discussed above.

�
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As a corollary we now derive a formula that allows one to compute the dimension of
PGor(h) inductively (cf. [6] for a different approach). Fix a G3-admissible h-vector h, and
let s = s(h) = min{n > 0 : h(n) <

(

n+2
2

)

} and t = m(h) + 3 − s(h). Denote by h′ the
h-vector defined as in (16) by the formula h′(n) = h(n+1)−hs,t(n+1), where hs,t denotes
the h-vector of a a complete intersection of two surfaces of degree s and t.

Corollary 5.3. With the above notation, if s ≥ 2, then

dim PGor(h) = dim PGor(h′) − h′(s) − h′(t) + st + 3s + 3 − ε,

where ε = 0 if t > s and ε = 1 if t = s.

Proof. As in the proof of Theorem 5.2, given a general Z ∈ PGor(h), there are Z ′ ∈
PGor(h′) and a curve C, complete intersection of surfaces of degree s and t, such that Z is
linearly equivalent to Z ′ + H on C. The h-vector hC = hs,t of C is given by hC(n) = n + 1
for 0 ≤ n ≤ s − 1, hC(n) = s for s − 1 ≤ n ≤ t − 1 and hC(n) = hC(m + 1 − n) for n ≥ t.
Let us denote by F the family of complete intersection curves C = Fs ∩ Ft containing the
AG zero-scheme Z as a divisor Z ∼ Z ′ + H and by F ′ the family of complete intersection
curves C = Fs ∩ Ft containing the AG zero-scheme Z ′. We have

(19) dim PGor(h) = dim PGor(h′) + dimF ′ + dimC |Z ′ + H| − dimF ,

because dimC |Z ′| = 0 by formula (15). Let us begin by supposing t > s and let us compute
dimF and dimF ′. We have

dimF = (h0IZ(s) − 1) + (h0IZ(t) − h0OP3(t − s) − 1) =

=

(

(

s + 3

3

)

−
s
∑

n=0

h(n) − 1

)

+

(

(

t + 3

3

)

−
t
∑

n=0

h(n) −
(

t − s + 3

3

)

− 1

)

.

To determine dimF ′ we need the Hilbert function of Z ′ which equals

n+1
∑

r=1

(h(r) − hC(r)).

dimF ′ =

(

(

s + 3

3

)

−
s+1
∑

n=1

h(n) +

s+1
∑

n=1

hC(n) − 1

)

+

(

(

t + 3

3

)

−
t+1
∑

n=1

h(n) +

t+1
∑

n=1

hC(n) −
(

t − s + 3

3

)

− 1

)

.

The exact sequence (14) shows that dimC |Z ′ + H| = 4. By substituting the various pieces
in (19) we obtain:

dim PGor(h) = dim PGor(h′) − h(s + 1) − h(t + 1) +

s+1
∑

n=0

hC(n) +

t+1
∑

n=0

hC(n) + 4.

Using the properties of the h-vectors hC , h′ we obtain

dim PGor(h) = dim PGor(h′) − h(s + 1) − h(t + 1) + hC(s) + hC(s + 1) + st + 3s + 1 =

= dim PGor(h′) − h′(s) − h′(t) + hC(s) − hC(t + 1) + st + 3s + 1.
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Moreover hC(s) = s − 1 if t = s, hC(s) = s if t ≥ s + 1, so hC(s) − hC(t + 1) = 1 if t = s,
hC(s) − hC(t + 1) = 2 if t ≥ s + 1, from which the statement follows.

When t = s, the calculation is similar, the only difference being that in this case we have
dimF ′ = dim Grass(2, H0(IZ′(s))) and analogously for dimF . �

Remark 5.4. Using Corollary 5.3 we can compute the dimension of PGor(h) by induction
on s, once we know the dimensions for all h with s = 1. Now a zero dimensional subscheme
Z with s = 1 is the complete intersection of two plane curves of degree p and q, q ≥ p, and
thus the dimension count is immediate:

dim PGor(h) =















3, if p = q = 1
q + 4, if p = 1, q > 1
p2 + 3p + 1, if q = p ≥ 2
pq + 3p + 2, if q > p ≥ 2.

Given a C2-admissible h-vector h (see Definition 2.5), an argument similar to the one
in Corollary 5.3 can be used to determine the dimension of the family ACM(h) of ACM
curves in P

3 with a fixed h-vector h. This dimension was first computed by Ellingsrud
[12]. Here we give a formula which allows to compute dim ACM(h) inductively (compare
[28], Proposition 6.8 p.176). Let s = s(h) denote the least degree of a surface containing a
curve C in ACM(h). Let h′ be the h-vector defined by

(20) h′(n) =

{

h(n) for n ≤ s − 2
h(n + 1) for n ≥ s − 1.

Note that h′ is the h-vector of an ACM curve C ′ obtained from C ∈ ACM(h) by performing
an elementary descending biliaison of height one on a surface of degree s. Then:

Proposition 5.5. Let h, h′ as above. Then

(21) dim ACM(h) = dim ACM(h′) + 4s +
∑

n≥s+1

h′(n).

Corollary 5.6. If h(n) = 0 for n ≥ s + 2, then dim ACM(h) = 4d where d =
∑

n≥0 h(n)
is the degree of a curve in ACM(h).

Proof. By induction on s, beginning with s = 1, in which case we have a plane curve of
degree 1, 2, or 3 and the result is known. Alternatively, one can observe that the hypothesis
on the h-vector implies that any curve C ∈ ACM(h) has index of speciality m(C) ≤ s− 1;
hence the normal bundle NC satisfies h1(NC) = 0 by [35, Lemma 4.2], and this implies the
statement by deformation theory. �

6. AG zero dimensional subschemes of P
3

In this section we study AG zero dimensional subschemes of P
3 of low degree and their

Hilbert schemes PGor(h). The results are summarized in Table 1.
We begin by addressing the question of how many general points one can impose on a

general Z ∈ PGor(h). We denote by µ = µ(h) this number.
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More generally, when F is an irreducible flat family of subschemes of P
N , we define µ(F)

(or µ(Y )) to be the maximum number of general points one can impose on a general Y ∈ F .
Since d general points in P

N depend on dN parameters, one has µ(F) codim(Y, PN) ≤
dim(F). For complete intersections one has

Proposition 6.1. Let F be the family of complete intersections of hypersurfaces Y of
degrees d1, . . . , dr in P

N . Let s = min{di}. Then

µ(F) =

(

s + N

N

)

− #{i | di = s}.

In particular, µ(F) codim(Y, PN) = dim(F) if and only if di = s for every i.

We let µ(h) denote µ(PGor(h)). There are two obvious upper bounds for µ(h):

Proposition 6.2. Let µ denote the maximum number of general points one can impose on
a general Z ∈ PGor(h). Then

(a)

µ ≤ 1

3
dim PGor(h).

(b) if s = s(h), then

µ ≤
(

s + 3

3

)

− h0(IZ(s)) = h(s) +

(

s + 2

3

)

Proof. For part (b), note that whenever W ⊂ Z, we have hZ(n) ≥ hW (n). Hence, if W is
a set of d general points contained in Z, we must have

hZ(n) ≥ hW (n) =















(

n + 2

2

)

if n < s(W )

d −
(

s(W ) + 2

3

)

if n = s(W ).

Thus either s(W ) < s, which means W is contained in a surface of degree s− 1 and hence
d <

(

s+2
3

)

, or s(W ) = s, in which case h(s) ≥ d−
(

s+2
3

)

. Thus in any case d ≤ h(s) +
(

s+2
3

)

as claimed.
�

Lower bounds for µ(h) are provided by the numbers µ̃ which we now introduce. Given a

pair (h̃, m) consisting of a C2-admissible h-vector h̃ and an integer m, we let h = h(h̃, m)
denote the h-vector determined by the formula

(22) ∂h(n) = h̃(n) − h̃(m + 2 − n).

By Proposition 3.1, if Z is a divisor linearly equivalent to mHC−KC on some ACM curve C
with h-vector h̃, then h = hZ . Assuming this linear system is nonempty for a general curve
C in ACM(h̃), we denote by U the open dense subset of ACM(h̃) consisting of reduced and

locally complete intersection curves, smooth if h̃ is of decreasing type, on which the linear
system mHC − KC has the smallest dimension. We can also require curves in U to have
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any other general property we may need – for example the normal bundle being stable – as
long this does not make U empty. Let B = B(h̃, m) be the subscheme of PGor(h) defined
as

B = {Z ∈ PGor(h)| ∃C ∈ U such that Z ∼ mHC − KC on C}.
By construction B is irreducible of dimension

(23) dimB = D(h̃, m) + dim ACM(h̃) − δ

where D(h̃, m) is the dimension of the linear system |mHC − KC | for C ∈ U , and δ is the
dimension of the family of curves C ∈ U containing a fixed general Z in B.

We let µ̃ = µ̃(h̃, m) = µ(B) denote the maximum number of general points one can

impose on a general Z ∈ B . By definition µ(h) ≥ µ̃(h̃, m). We will later see one can often
compute µ̃.

It is interesting to know when B(h̃, m) contains a open set of PGor(h), in which case

µ = µ̃. By Theorem 3.4 this is the case when h̃ is the first half of h and m ≥ 2b(h̃) + 1. It

is also the case when B(h̃, m) has the same dimension of PGor(h). The latter is known (see

Remark 5.4), while to compute the former we can use formula (23). Note that dim ACM(h̃)
is known (see Proposition 5.5), and, when the linear system |mHC −KC | is nonspecial for

a general C in ACM(h̃), we have D(h̃, m) = deg(h) − g(C). Then to determine dimB we
still need to know the number δ, although this seems more difficult to compute in general.
In several cases one can show δ is zero, and of course this will be the case if the degree of
Z is large enough. We give a precise statement in Corollary 6.4 below.

Following Ellia [11], we denote by GCM(d, s) the maximum genus of an ACM irreducible
curve of degree d not lying on a surface of degree s− 1. When d > s(s− 1), dividing d by
s we write d = st − r with 0 ≤ r < s. Then by [13]

(24) GCM(d, s) = 1 +
d

2

(

s +
d

s
− 4

)

− r(s − r)(s − 1)

2s
,

which is the genus of a curve linked by two surfaces of degrees s and t to a plane curve of
degree r.

Proposition 6.3. Assume the base field has characteristic zero. Fix a C2-admissible h-
vector h̃ of decreasing type. Let C1 and C2 be two distinct irreducible curves in ACM(h̃).
Let d = deg(Ci) and s = s(Ci). If d ≥ 3, then

g(C1 ∪ C2) ≤ GCM(2d, s).

Furthermore, if equality holds, then C1 ∪ C2 is an ACM curve linked to plane curve of
degree r by two surfaces of degree s and t respectively, where r and t are defined by the
relation 2d = st − r with 0 ≤ r < s.

Proof. We follow closely the arguments of [11] which require characteristic zero. Note that
the numerical character χ(X) used by Ellia is an invariant equivalent to the h-vector hX

when X is ACM. Let C = C1 ∪ C2. Since C1 and C2 are the irreducible components of C
and have the same numerical character, the proof of [11, Theorem 10] shows the character
of C is connected.
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Furthermore, since C1 is an ACM curve with s(C1) = s, we have hC1
(n) = n + 1 for

0 ≤ n ≤ s − 1, thus

d =
∑

hC1
(n) ≥ 1

2
s(s + 1).

As in the proof of [11, Theorem 13], if we had g(C) > GCM(2d, s), we would have σ ≤ s−1,
where σ is the length of the character χ(C). Then 2d ≥ s(s + 1) > σ2 + 1. Since d ≥ 3,
C contains no curve of degree 2, hence by [11, Lemma 12] C is contained in a surface of
degree σ, which is absurd since σ ≤ s − 1.

We conclude g(C) ≤ GCM(2d, s). Suppose equality holds and write 2d = st − r with
0 ≤ r < s. Then the argument in [11, Theorem 10] together with [13, Theorem 2.7] shows
that C is ACM with the same Hilbert function as a curve linked by two surfaces of degrees
s and t to a plane curve of degree r. In particular, C is contained in a surface S of degree
s = s(C1). Therefore S is of minimal degree among surfaces containing C1, and, since C1

is irreducible, S must also be irreducible. But then looking at the Hilbert function of C
we see C is contained in a surface T of degree t that cuts S properly, and the curve linked
to C by the complete intersection S ∩ T is a plane curve of degree r. �

Corollary 6.4. Assume the base field has characteristic zero. Fix an h-vector of decreasing
type h̃ and let U0 be the dense open subset of ACM(h̃) consisting of smooth irreducible
curves. Let Z be a divisor in the linear system |mHC − KC | on some curve C ∈ U0, and
let d = deg(C) and s = s(C).

If d ≥ 3 and md ≥ GCM(2d, s), then C is the unique curve in U0 containing Z. In
particular, δ is zero in this case.

Proof. If there was another C ′ ∈ U0 containing Z, then we would have

deg(Z) ≤ deg(C ∩ C ′) = g(C ∪ C ′) − 2g(C) + 1 ≤ GCM(2d, s) − 2g(C) + 1.

Since deg(Z) = md − 2g(C) + 2, this would imply

m deg(C) ≤ GCM(2d, s) − 1

contradicting the assumptions. �

We now give an example in which δ is zero, but there is more than one curve in ACM(h̃)
containing Z. Let C be a curve of type (a, a − 1) on a smooth quadric surface Q. One

knows C is ACM with h-vector h̃ = {1, 2, . . . , 2} ending in degree b(C) = a − 1

Lemma 6.5. Suppose Z is a zero dimensional scheme on a smooth quadric surface that
is the intersection of two curves C1 and C2 of type (a, a − 1) and (a − 1, a) respectively.
Then Z is AG, deg(Z) = 2a2 − 2a + 1 and m(Z) = 2a − 3. If a ≥ 3 and the curves C1

and C2 are smooth, then these are the only irreducible curves in ACM(h̃) that contain Z.

In particular, the dimension δ of the family of irreducible curves C ∈ ACM(h̃) containing
Z is zero.

Proof. The fact Z is AG is well known and can be seen as follows: since Z = C1 ∩ C2, we
have OC1

(Z) = OQ(a− 1, a)⊗OC1
, and by the adjunction formula Z ∼ (2a− 3)H −K on

C1. Therefore Z is AG with m = 2a − 3.
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Suppose now C is an irreducible curve in ACM(h̃) which contains Z. Then Z is contained
in C∩C1. By Proposition 6.3 and Corollary 6.4, we must have Z = C∩C1, and C∪C1 must
be the complete intersection of a quadric surface Q′ and a surface of degree 2a − 1. Since
a ≥ 3, we must have Q′ = Q, hence C is a curve type (a−1, a) on Q. To finish, observe that
there is a one to one correspondence between curves C of type (a−1, a) on Q and effective
divisors linearly equivalent to Z on C1, because h0OQ(−1, 1) = h1OQ(−1, 1) = 0. �

The following results deal with some particular questions which arise in degree 14, 21
and 30.

Proposition 6.6. Assume the base field has characteristic zero. The general zero-dimensional
arithmetically Gorenstein scheme of degree 14 with h-vector h = {1, 3, 6, 3, 1} is a divisor
Z ∼ 3HC − KC on some smooth ACM curve C of degree 6 and genus 3.

Proof. The h-vector of an ACM curve C of degree 6 and genus 3 is h̃ = {1, 2, 3}, the first

half of h, and h = h(h̃, 3), hence a divisor in the linear system 3HC − KC has h-vector

{1, 3, 6, 3, 1}. Thus it is enough to show dimB(h̃, 3) = dim PGor(h), which is 35. By

formula (23) we have dimB = dimC |3HC − KC | + dim ACM(h̃) − δ = 11 + 24 − δ, so it
suffices to show δ = 0.

Assume by way of contradiction that δ > 0: this means that, having fixed a general Z
in B, one can find a positive dimensional family C of curves C in U containing Z. By the
deformation theory of the pair (Z, C) in P

3, the infinitesimal deformations of C that leave
Z fixed are sections of the normal bundle NC that vanish on Z. Thus a tangent vector to
the family C gives a nonzero section of NC(−Z). Therefore we obtain a contradiction, and
the proposition will be proven, if we can show H0(C, NC(−Z)) is zero.

For this, we claim that, if C is a general ACM curve of degree 6 and genus 3 and Z is
any divisor of degree 14 on C, then H0(C, NC(−Z)) = 0. Since there are curves of type
(6, 3) whose normal bundle NC is stable by [10], and stability is an open property, then
for a general such C the normal bundle is stable. The rank two bundle NC has degree 28
while deg Z = 14, so we have deg N(−Z) = 0 and, by stability, H0(C, NC(−Z)) = 0. �

Proposition 6.7. The general zero-dimensional arithmetically Gorenstein scheme of de-
gree 21 with h-vector h = {1, 3, 4, 5, 4, 3, 1} is a divisor Z ∼ 5HC − KC on an ACM curve
C of degree 5 and genus 3.

Proof. An ACM curve of degree 5 and genus 3 has h-vector h̃ = {1, 2, 1, 1}. Since

dim ACM(h̃) = 20 by Corollary 5.6, and dim PGor(h) = 37, the statement follows if

dim PGor(h) equals dimB(h̃, 5) = 38 − δ, i.e. if δ = 1. The general curve of degree 5 and
genus 3 is the union of a plane curve D of degree 4 and a line L intersecting D in one
point P . We claim that a general divisor Z ∼ 5HC −KC consists of 15 points on the plane
quartic and 6 points on the line. In fact, from the exact sequences (see [33, 11-10])

(25) 0 → ωD → ωC → ωL(P ) → 0

and

(26) 0 → ωL → ωC → ωD(P ) → 0
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we see OL(5HC − KC) = OL(6) and OD(5HC − KC) = OD(4HD − P ). Let W denote
the 15 points of Z lying on the quartic D. Then W is the divisor 4HD − P on D, so
h0(IW,D(4)) = 1 and h0(IW,P3(4)) = 2. Therefore δ = 1. �

Proposition 6.8. The general zero-dimensional arithmetically Gorenstein scheme Z of
degree 30 with h-vector h = {1, 3, 6, 10, 6, 3, 1} is not of the form mHC − KC on any
integral ACM curve.

Proof. From the h-vector we see m(Z) = 5. We claim that, if Z ∼ 5HC−KC on an integral
ACM curve C, then C has h vector equal to the first half kZ = {1, 2, 3, 4} of hZ . In fact,
by Proposition 3.1 the h-vector of C must be of the form hC = {1, 2, 3, 4, hC(4), ...., hC(b)}.
The curve C then has degree dC = 10 +

∑b

n=4 hC(n) = 10 + d̃ and genus gC = 11 +
∑b

n=4(n − 1)hC(n) ≥ 11 + 3d̃. Thus

30 = deg Z = 5dC − 2gC + 2 ≤ 50 + 5d̃ − 22 − 6d̃ + 2 = 30 − d̃,

hence d̃ = 0 and C has h-vector {1, 2, 3, 4}. Now the family of such curves C has dimension
40, while for fixed C, we have dimC |Z| = h0OC(5HC − KC) − 1 = 19 because deg Z >
2gC − 2 (here we use the hypothesis C integral). Thus the family of schemes Z of the
form 5HC −KC on some integral ACM curve C has dimension at most 59. However, if we
compute dim PGor(hZ), as explained in Remark 5.4 we find dim PGor(hZ) = 63. Thus a
general Z cannot be of the form mHC − KC on any integral ACM curve C. �

Remark 6.9. It seems unlikely that Z could be of the form −K + mH on any ACM curve
(possibly reducible), but we do not have a complete proof.

In Table 1 we list, for every degree d ≤ 30, all possible h-vectors of zero-schemes of
degree d in P

3 not contained in a plane. The list is constructed using Proposition 2.8. For
every h vector in the table we record

• the dimension A of PGor(h), which can be computed as explained in Remark 5.4,
or applying the formula of [22];

• the invariant m of Propositions 2.1 and 2.2;
• at least one h-vector h̃ such that h = h(h̃, m) as in formula (22);

• the degree and genus of an ACM curve with h-vector h̃;
• the dimension B of B(h̃, m); we note that:

(a) when h is the h-vector of a complete intersection of type (a, b, c) and h̃ is the
h-vector of a complete intersection of type (a, b), then B = A.

(b) when Theorem 3.4(c) holds, that is, m ≥ 2b(h̃) + 1, one has B = A.

(c) in all other cases, since in the table we always have deg(h) ≥ 2g(h̃) − 1,

formula (23) gives B = deg(h) − g(h̃) + dim ACM(h̃) − δ;

• the maximum number ν̃ of general points on a general curve C ∈ ACM(h̃); by
results of Perrin [32] and Ellia [11], it happens that in all cases in our table one has

ν̃ = Min

(

1

2
dim ACM(h̃), α

)
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where α is the dimension of the family of surfaces of degree s(C) that contain curves

in ACM(h̃). When s(C) ≤ 3, we have α =
(

s(C)+3
3

)

− 1. Note that the problem of
determining ν̃ for ACM curves of higher degree remains open.

• the maximum number µ̃ of general points on a general Z ∈ B(h̃, m); for C a general

curve in ACM(h̃), we have µ̃ = ν̃ if dim |mHC−KC | ≥ ν̃, while, if dim |mHC−KC | <
ν̃, we can only say

dim |mHC − KC | ≤ µ̃ ≤ µ;

• the maximum number µ of general points on a general Z ∈ PGor(h); note that
µ = µ̃ when A = B.

We indicate with a check ”X” whether a general AG zero-scheme is in the linear system
|mH − K| on some ACM curve C with h-vector h̃.

7. General sets of points in P
3

Proposition 7.1. A set of n ≤ 19 general points in P
3 can be obtained by a sequence of

ascending (i.e. degree increasing) Gorenstein liaisons from a point. In particular, it is
glicci.

Proof. If we have a set W of n general points and we can find a family of AG schemes Z of
degree d containing µ general points, and if 1

2
d < n ≤ µ, then we can perform a descending

Gorenstein liaison from W using Z to get a new set W ′ of d − n < 1
2
d < n points. Since

the process is reversible, the set W ′ also consists of general points, and we can continue
the process. For one or two points the result is trivial. For n ≥ 3 general points, using
Table 1, we choose Z of degree d and h-vector h as follows

n d h µ
3, 4 5 {1, 3, 1} 5
5, 6, 7 8 {1, 3, 3, 1} 7
8, 9, 10, 11 14 {1, 3, 6, 3, 1} 11
12, 13, 14 20 {1, 3, 6, 6, 3, 1} 14
15, 16, 17 27 {1, 3, 6, 7, 6, 3, 1} 17
18, 19 30 {1, 3, 6, 10, 6, 3, 1} ≥ 19

�

At present, this is as far as we can go, because for n = 20 we do not know if an AG zero
scheme of degree 30 and h = {1, 3, 6, 10, 6, 3, 1} has µ ≥ 20.

Theorem 7.2. A set of n ≥ 56 general points in P
3 admits no strictly descending Goren-

stein liaison.

Proof. Let W be a set of n general points, with s(W ) = s, so that its h-vector is

hW =

{

1, 3, 6, . . . ,

(

s + 1

2

)

, a

}
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with 0 ≤ a <
(

s+2
2

)

and n =
(

s+2
3

)

+a. If W is contained in an AG scheme Z then s(Z) ≥ s.
On the other hand, if the residual scheme W ′ has degree less than n, then looking at the
h-vectors and using Proposition 2.14, we see that there are only three possibilities for hZ :

Type 1 hZ = {1, 3, 6, . . . ,
(

s+1
2

)

, . . . , 6, 3, 1}
Type 2 hZ = {1, 3, 6, . . . ,

(

s+1
2

)

,
(

s+1
2

)

, . . . , 6, 3, 1} and a > 0

Type 3 hZ = {1, 3, 6, . . . ,
(

s+1
2

)

, b,
(

s+1
2

)

, . . . , 6, 3, 1}, with
(

s+1
2

)

≤ b ≤
(

s+2
2

)

and a >
1

2
b

A necessary condition for Z to contain n general points is that dim PGor(h) ≥ 3n. We
compute dim PGor(h) for each of the types above, using Corollary 5.3 and induction on s.
Setting b =

(

s+1
2

)

+ c, so that 0 ≤ c ≤ s + 1, we find

Type 1 dim PGor(h) = 4s2 − 1
Type 2 dim PGor(h) = 4s2 + 3s − 1
Type 3 dim PGor(h) = 4s2 + 4s + 4c − 1.

Now writing the inequality dim PGor(h) ≥ 3n, we find for Type 1

4s2 − 1 ≥ 3

(

s + 2

3

)

+ 3a,

and using a ≥ 0, this implies s < 5.
For Type 2, we find

4s2 + 3s − 1 ≥ 3

(

s + 2

3

)

+ 3a.

Again using a > 0, this implies s < 6.
For Type 3, we have

4s2 + 4s + 4c − 1 ≥ 3

(

s + 2

3

)

+ 3a.

Using a >
1

2
b =

1

2

(

s + 1

2

)

+
1

2
c this gives

4s2 + 4s +
5

2
c − 1 ≥ 3

(

s + 2

3

)

+
3

2

(

s + 1

2

)

.

Now using c ≤ s + 1 we get

4s2 + 4s +
5

2
(s + 1) − 1 ≥ 3

(

s + 2

3

)

+
3

2

(

s + 1

2

)

which implies s < 6
Thus for s ≥ 6, and hence for n ≥ 56, a set of n general points has no descending

Gorenstein liaison. �

Remark 7.3. Checking possible values of a and c for s = 5, the same method applies for
all n ≥ 35, except possibly 36, 37, 38, 45, 46, 47.
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One of us [18, Proposition 2.7] has shown that a set of n < 19, n 6= 17, general points in
P

3 can be obtained by a sequence of ascending biliaisons from a point. On the other hand,
we can prove:

Theorem 7.4. A set of n ≥ 56 general points in P
3 admits no strictly descending elemen-

tary biliaison.

Proof. Suppose a set Z of n ≥ 56 general points admits a descending biliaison on an ACM
curve C, i.e., Z ∼ W + H on C. Then by Proposition 2.14 the h-vectors satisfy

hZ(l) = hC(l) + hW (l + 1)

for all l. Let s = s(Z), so that hZ(s − 1) = 1
2
s(s + 1). It follows that hC(s − 1) and

hW (s − 2) must each achieve their maximum values, namely s and 1
2
s(s − 1) respectively.

It follows also that hC(l) = 0 for l ≥ s + 1, since this is true also for hZ by formula (3).
Thus C satisfies the hypothesis of Corollary 5.6 and the dimension of the family ACM(hC)
is 4d, where d is the degree of C.

Now in order for C to contain n general points, we must have dim ACM(hC) ≥ 2n. Let
hC(s) = a. Then d = deg C = 1

2
s(s + 1) + a. Let hZ(s) = b. Then n = deg Z =

(

s+2
3

)

+ b.
Furthermore, a ≤ s + 1 and a ≤ b.

From 4d ≥ 2n, we thus obtain 2d ≥ n, or

s(s + 1) + 2a ≥
(

s + 2

3

)

+ b

Writing 2a ≤ s + 1 + b, we get

(s + 1)2 ≥
(

s + 2

3

)

which implies s ≤ 2 +
√

10 < 6. So for s ≥ 6, and hence for any n ≥ 56, a set Z of n
general points admits no descending biliaison. �

Remark 7.5. The same argument, taking into account the exact values of a and b, applies
to all n ≥ 31, except for n = 40, 41, 42. Using a slightly more sophisticated argument, we
can treat smaller values of n such as the following case of n = 20.

Example 7.6. A set Z of 20 general points admits no descending elementary biliaison.
Indeed, by the analysis in the proof above, the only possibility would be on an ACM curve
C with h-vector hC = {1, 2, 3, 4}. This is a curve of degree 10 and genus 11. Since the
family of all Z’s has dimension 60, and the family of pairs (C, Z) with Z ⊂ C has dimension
60 also, we conclude that a general Z must lie on a general C, and that the points in Z are
also general on C. Thus for a general Z, the divisor W = Z −H on C is a general divisor
of degree 10. But since the genus of C is 11, this general W cannot be effective. Thus the
general Z has no descending biliaison.

On the other hand, we do not know if Z admits a strictly descending Gorenstein liaison,
because we cannot answer the question whether there are AG zero-schemes of degree 30
containing 20 general points. If so, we could link 20 general points to 10 general points and
thus 20 general points would be glicci. In our notation, the question is whether µ ≥ 20.
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We have only been able to show 19 ≤ µ ≤ 21. There are AG schemes of degree 30 in the
linear system 5H − K on an ACM curve with (d, g) = (10, 11), but these can contain at
most 19 general points. The more general AG schemes of degree 30 are not of the form
mH − K on any integral ACM curve by Proposition 6.8, so some new technique will be
necessary to answer this question.

Example 7.7. We can show by an analogous but more complicated argument that a set
Z of 31 general points on a nonsingular cubic surface in P

3 does not admit any descending
Gorenstein biliaison in P

3. Since Z is in the strict Gorenstein liaison equivalence class of
a point [18, 2.4], it is glicci. Furthermore, since in codimension 3, even strict Gorenstein
liaison gives the same equivalence relation as Gorenstein biliaison [19, 5.1], Z is even in
the Gorenstein biliaison equivalence class of a point. This is the first example we know of
of a scheme Z that is glicci but cannot be obtained by a sequence of ascending Gorenstein
biliaisons from a linear space.

8. Conclusion

We have established a number of fundamental results about arithmetically Gorenstein
zero-dimensional schemes in P

3. In particular, we have investigated those that occur in
the form mH − K on an ACM curve and we studied the number of general points that
one can impose on an AG scheme with given h-vector, in order to understand the possible
Gorenstein liaisons that one can perform on a set of general points. In all cases we are
aware of where a class of zero-dimensional subschemes of P

3 has been proved to be glicci,
the proof was actually accomplished using strict Gorenstein liaisons, i.e. using only those
AG schemes of the form mH −K on some ACM curve (see [18, § 1], for the terminology of
strict G-liaison). Remembering that a Gorenstein biliaison is a composition of two strict
G-liaisons, this remark applies to the determinantal schemes of [24, 3.6], to any zero-scheme
on a non singular quadric surface or a quadric cone [5, 5.1 and 6.1] and to n general points
on a non singular cubic surface in P

3 [18, 2.4]. For us, this underlines the importance of
studying those more general AG zero-dimensional schemes not of the form mH − K on
any ACM curve, and by making use of them either to prove or disprove the assertion that
”Every zero-scheme in P

3 is glicci”.
In the course of this work we have been led to reconsider some old problems whose

solution would be helpful in furthering the work of this paper. One is the problem of
Perrin’s thesis [32] to find how many general points one can impose to a curve of given
degree and genus in P

3. For us it is the ACM curves that are relevant, so we ask: is it true
that for a general smooth ACM curve with h-vector h̃, the number ν̃ of general points one
can impose on the curve is given by the formula mentioned in section 6:

ν̃ = min

(

1

2
dim ACM(h̃), α

)

?

The other old question, which appeared in a special case in the proof of Proposition 6.6,
concerns the stability of the normal bundle of a space curve. The problem was stated in
[16], and has been more recently studied by Ellia [11]: if C is a general smooth ACM curve
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of degree d, genus g, s = s(C) and

g < d(s − 2) + 1 (resp. ≤)

then is the normal bundle of C stable (resp. semistable)?
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Table 1. Nondegenerate AG zero-dimensional subschemes in P
3 of degree

≤ 30 (char. k = 0)

d h A m h̃ (d̃, g̃) B ν̃ µ̃ µ

5 {1, 3, 1} 15 1 {1, 2} (3,0) 15 X 6 5 5a

8 {1, 3, 3, 1} 21 2 {1, 2} (3,0) 20 no 6 6 7e

{1, 2, 1} (4,1) 21e X 8 7
11 {1, 3, 3, 3, 1} 23 3 {1, 2} (3,0) 23d X 6 6 6d

12 {1, 3, 4, 3, 1} 27 3 {1, 2, 1} (4,1) 27e X 8 8 8e

13 {1, 3, 5, 3, 1} 31 3 {1, 2, 2} (5,2) 31 X 9 9 9b

14 {1, 3, 3, 3, 3, 1} 26 4 {1, 2} (3,0) 26d X 6 6 6d

14 {1, 3, 6, 3, 1} 35 3 {1, 2, 3} (6,3) 35 X 12 11 11a

16 {1, 3, 4, 4, 3, 1} 31 4 {1, 2, 1} (4,1) 31e X 8 8 8e

17 {1, 3, 3, 3, 3, 3, 1} 29 5 {1, 2} (3,0) 29d X 6 6 6d

18 {1, 3, 5, 5, 3, 1} 37 4 {1, 2, 2} (5,2) 36 no 9 9 9e

{1, 2, 2, 1} (6,4) 37e X 9 9

20 {1, 3, 3, 3, 3, 3, 3, 1} 32 6 {1, 2} (3,0) 32d
X 6 6 6d

20 {1, 3, 4, 4, 4, 3, 1} 35 5 {1, 2, 1} (4,1) 35e
X 8 8 8e

20 {1, 3, 6, 6, 3, 1} 44 4 {1, 2, 3} (6,3) 41 no 12 12 14a

{1, 2, 3, 1} (7,5) 43 no 14 14
{1, 2, 3, 2} (8,7) ≤ 44 ? 16 ?

21 {1, 3, 4, 5, 4, 3, 1} 37 5 {1, 2, 1, 1} (5,3) 37 X 4 4 4
23 {1, 3, 3, 3, 3, 3, 3, 3, 1} 35 7 {1, 2} (3,0) 35d X 6 6 6d

23 {1, 3, 5, 5, 5, 3, 1} 41 5 {1, 2, 2} (5,2) 41d X 9 9 9d

24 {1, 3, 4, 4, 4, 4, 3, 1} 39 6 {1, 2, 1} (4,1) 39d X 8 8 8d

24 {1, 3, 5, 6, 5, 3, 1} 44 5 {1, 2, 2, 1} (6,4) 44e X 9 9 9e

25 {1, 3, 5, 7, 5, 3, 1} 47 5 {1, 2, 2, 2} (7,6) 47 X 9 9 9a,b

26 {1, 3, 3, 3, 3, 3, 3, 3, 3, 1} 38 8 {1, 2} (3,0) 38d X 6 6 6d

26 {1, 3, 4, 5, 5, 4, 3, 1} 43 6 {1, 2, 1, 1} (5,3) 43 X 4 4 4

26 {1, 3, 6, 6, 6, 3, 1} 47 5 {1, 2, 3} (6,3) 47d X 12 12 12d

27 {1, 3, 6, 7, 6, 3, 1} 51 5 {1, 2, 3, 1} (7,5) 50 no 14 14 17e

{1, 2, 3, 2, 1} (9,10) 51e X 18 17

28 {1, 3, 4, 4, 4, 4, 4, 3, 1} 43 7 {1, 2, 1} (4,1) 43d X 8 8 8d

28 {1, 3, 5, 5, 5, 5, 3, 1} 46 6 {1, 2, 2} (5,2) 46d X 9 9 9d

28 {1, 3, 6, 8, 6, 3, 1} 55 5 {1, 2, 3, 2} (8,7) 53 no 16 16 16≤ µ ≤18
{1, 2, 3, 3, 1} (10,12) ≤ 55 ? 19 16

29 {1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1} 41 9 {1, 2} (3,0) 41d X 6 6 6d

29 {1, 3, 6, 9, 6, 3, 1} 59 5 {1, 2, 3, 3} (9,9) ≤ 56 no 18 18 18≤ µ ≤19
{1, 2, 3, 4, 1} (11,14) ≤ 59 ? 22 ?

30 {1, 3, 5, 6, 6, 5, 3, 1} 50 6 {1, 2, 2, 1} (6,4) 50e
X 9 9 9e

30 {1, 3, 6, 10, 6, 3, 1} 63 5 {1, 2, 3, 4} (10,11) ≤ 59f ? 20 19 19≤ µ ≤21
a: µ = µ̃ because A = B or µ̃ = [A/3]
b: the upper bound on µ is given by Proposition 6.2
c: δ = 0 by 6.4, 6.5 or 6.6
d: Theorem 3.4(c) applies, and µ̃ = ν̃ because dim |mHC − KC | ≥ ν̃
e: complete intersection case
f : see Proposition 6.8
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[12] Ellingsrud, G., Sur le schéma de Hilbert des variétés de codimension 2 dans P
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