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ABSTRACT

We consider a non-regenerative MIMO relay system where the
source, relay and destination are all equipped with multiple anten-
nas. The relay does not decode the packets but performs a multi-
dimensional amplify-and-forward function (a relay matrix) on the
baseband signals. Under the condition that the source is white, the
relay matrix that maximizes the capacity between the source and
the destination has been previously found. In this paper, we show a
new result on how the source covariance matrix and the relay ma-
trix can be jointly optimized to maximize the source-destination
capacity. It is shown that the optimal coordinate system governed
by the previously discovered relay matrix is still valid under the
joint optimization, and the joint optimization yields a further ca-
pacity gain when the SNR at the relay is low.

1. INTRODUCTION

Wireless relays are important for wireless ad hoc communication
networks. Deploying a relay between a source and a destination
can reduce the (required) transmitted power from the source, and
hence reduce the interference to other neighboring nodes. A relay
may also be necessary when there is strong shadowing between
the source and the destination. Relays can be regenerative or non-
regenerative. The former performs decoding and then re-encoding
while the latter only performs an amplify-and-forward function on
the baseband symbols. Because of the above difference, a non-
regenerative relay generally causes a much smaller delay than a
regenerative relay. A non-regenerative relay is also more flexible
as it does not need to know the code used at the source and the des-
tination. Also note that “regenerative relay and non-regenerative
relay” can be treated as two functionalities that can be embedded
in a single physical node, and which to use can be adaptively gov-
erned by a higher layer networking protocol.

Design of MIMO relays is important for a network of nodes
equipped with multiple antennas. A regenerative MIMO relay sys-
tem is studied in [1] where the relay is assumed to be able to
simultaneously transmit and receive at a single frequency. This
type of full duplex relay is difficult to implement in practice. A
non-regenerative MIMO relay system is previously studied in [2]
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where the relay transmits and receives in two orthogonal channels
(i.e., half duplex). But in [2], the source covariance matrix is as-
sumed to be proportional to the identity matrix, and only the relay
matrix is optimized. In this paper, we show that the source co-
variance matrix and the relay matrix can be jointly optimized to
maximize the source-destination capacity. The direct link between
the source and the destination is assumed to be weak and will not
be considered in this paper. But the effect of the direct link and a
comparison to the result shown in [1] will be given in a forthcom-
ing paper. With the direct link, finding the optimal relay matrix is
still an open problem.

In Section 2, the non-regenerative MIMO relay system is for-
mulated. In Section 3, we show that the coordinate system gov-
erned by the relay matrix shown in [2] remains optimal under the
joint optimization of source and relay. In Section 4, we show how
the power at the source and the relay can be optimally distributed
along the optimal coordinates. Numerical results are given in Sec-
tion 5. Section 6 concludes the paper.

2. PROBLEM FORMULATION

A non-regenerative MIMO relay system is depicted in Fig. 1 where
s denotes the source vector, H1 the channel matrix between the
source and the relay, H2 the channel matrix between the relay and
the destination, F the relay matrix, y the signal vector received at
the destination, n1 and n2 are the noise at the relay and the desti-
nation, respectively. The input-channel and output-channel of the
relay are assumed to be orthogonal to each other in time and/or
frequency (although frequency division appears the most desirable
in this context).

n2

F H2

y
H1

n1

s

Fig. 1. A non-regenerative MIMO relay system

It follows that the signal vector received at the destination from
the relay can be written as

y = H2F H1s + H2F n1 + n2 (1)

where the (weak) signal arriving at the destination from the source
is not included. The noise vectors n1 and n2 are assumed to be

1-4244-0309-X/06/$20.00 ©2006 IEEE 239



zero-mean white Gaussian with the covariance σ2
1 and σ2

2 , respec-
tively. The numbers of antennas equipped at the source, relay and
destination are denoted by M , L and N , respectively, and hence
H1 ∈ CL×M , H2 ∈ CN×L, and F ∈ CL×L.

If n1 and n2 are colored with known covariance matrices, i.e.,
E(n1n

H
1 ) = R1, and E(n2n

H
2 ) = R2, then the above system

(1) is equivalent to

ȳ = H̄2F̄ H̄1s̄ + H̄2F̄ n̄1 + n̄2 (2)

where ȳ = R
−1/2
2 y, H̄2 = R

−1/2
2 H2, F̄ = F R

1/2
1 , H̄1 =

R
−1/2
1 H1, s̄ = s, n̄1 = R

−1/2
1 n1, and n̄2 = R

−1/2
2 n2. Here,

the noise vectors are whitened as E(n̄1n̄
H
1 ) = I and E(n̄2n̄

H
2 ) =

I . Therefore, without loss of generality, we will assume that the
noise vectors n1 and n2 are white.

The source-destination capacity of the MIMO relay system
(1) is the maximal mutual information between s and y, which is
known to be as follows [3] (a factor 1/2 penalty due to the orthog-
onal channels is ignored here as it does not affect the optimization
problem):

C(F , Q) = log2 det[I + H2F H1QHH
1 F HHH

2 ×
(σ2

1H2F F HHH
2 + σ2

2I)−1] (3)

where Q = E(ssH) is the source covariance matrix. We assume
that H1 and H2 are known to all nodes. In [2], it is assumed that
Q = P1

M
I . In this paper, we consider a more general problem as

follows:

max
F,Q

C(F , Q) (4)

s.t. tr(Q) ≤ P1

tr(F H1QHH
1 F H + σ2

1F F H) ≤ P2 (5)

3. OPTIMAL COORDINATES OF JOINT SOURCE AND
RELAY DESIGN

Let the singular value decomposition (SVD) of H1 and H2 be

H1 = U 1Σ1V
H
1

H2 = U 2Σ2V
H
2

Here, U 1, U 2, V 1, and V 2 are unitary matrices of singular vec-
tors, and Σ1 and Σ2 are diagonal matrices of singular values of
H1 and H2, respectively, in descending order. We also define
Λ1 = Σ2

1 and Λ2 = Σ2
2. Our main theorem is:

Theorem 1 The capacity C(F , Q) can achieve its maximum when
the source covariance matrix Q and the relay matrix F are con-
structed as follows:

Q = V 1ΛQV H
1

F = V 2ΣF UH
1

where ΣF and ΛQ are diagonal matrices.

Remark: The structure of the optimal relay matrix is the same
as that shown in [2] under the constraint Q = P1

M
I . The above re-

sult turns the original MIMO channel into a set of parallel SISO
channels. With the coordinates of Q and F given as in the the-
orem, the optimization of Q and F now comes down to the op-
timization of ΛQ and ΣF . The power distribution at the source

and the relay (along the optimal coordinates) is governed by the
diagonal entries of ΛQ and ΣF , respectively.

Proof: Recall that given two N × N positive semi-definite
Hermitian matrices A and B with eigenvalues λk(A) and λk(B)
arranged in the descending order respectively, we have

N

k=1

λk(A)λN+1−k(B) ≤ tr(AB) ≤
N

k=1

λk(A)λk(B) (6)

Also recall from [2] that when the source signal is white, the opti-
mal weighting matrix at the relay can be chosen as F = V 2ΣF UH

1 .
If we define an equivalent channel H̃1 = H1Q

1/2, the capacity
formulation (3) is equivalent to the relay-only design formulation
in [2]. Hence, by following [2], for any given (“source-relay”) pair
Q̃ and F̃ , there always exists another pair Q̃ and F̃ o that achieves
better or equal capacity with the same power constraints, and F̃ o

can be represented as

F̃ o = V 2ΣF Ũ
H
1 (7)

where Ũ 1 is dependent on Q̃, i.e., H1Q̃HH
1 = Ũ 1Λ̃1Ũ

H
1 . Us-

ing (7) in (3), we have a partially optimized source-destination
capacity:

C(F̃
(1)

, Q̃) = log2 det[I + Λ2ΛF Λ̃1(σ
2
1Λ2ΛF + σ2

2I)−1]

The power constraint on the relay becomes tr(ΛF Λ̃1 + σ2
1ΛF ) ≤

P2. The power constraint on the source is still tr(Q) ≤ P1.

Note that the capacity and the power constraint are only de-
pendent on Λ̃1 but not on Ũ 1. It follows that for any matrix Q
satisfying

H1QHH
1 = Û 1Λ̃1Û

H

1 (8)

where Û 1 is any orthogonal matrix, the optimal capacity is the
same as that for Q̃. Therefore, (7) can be replaced by

F o = V 2ΣF Û
H

1 (9)

We need now to determine the optimal structure for Q. Denote
r = rank(H1) ≤ min(M, L). Then the SVD of H1 with rank r
can be written as

H1 = U 1Σ1V
H
1

= U 1,1 U 1,2
Σ1,1

0
V 1,1 V 1,2

H

where Σ1,1 has the dimension r × r. It follows that

H1QHH
1 = Û 1Λ̃1Û

H

1

= Û 1,1 Û 1,2
Λ̃1,1

0
V̂ 1,1 V̂ 1,2

H

240



where Λ̃1,1 has the dimension r×r. It is easy to verify that U 1,1 ⊥
Û 1,2 and U 1,2 ⊥ Û 1,1. Hence, from (8), we have

H+
1 H1QHH

1 HH+
1

= H+
1 Û 1Λ̃1Û

H

1 HH+
1

= V 1,1 V 1,2
Σ−1

1,1

0
U 1,1 U 1,2

H

× Û 1,1 Û 1,2
Λ̃1,1

0
Û 1,1 Û 1,2

H

× U 1,1 U 1,2
Σ−1

1,1

0
V 1,1 V 1,2

H

= V 1,1 V 1,2
Σ−1

1,1U
H
1,1Û 1,1Λ̃1,1Û

H

1,1U 1,1Σ
−1
1,1

0

× V 1,1 V 1,2
H

where H+
1 denotes the pseudo-inverse of H1. It can be verified

that UH
1,1Û 1,1 is unitary since UH

1 Û 1 is unitary. Hence, by de-
noting Λ1,1 = Σ2

1,1, we have

tr(Q) ≥ tr(H+
1 H1QHH

1 HH+
1 ) (10)

= tr(Σ−1
1,1U

H
1,1Û 1,1Λ̃1,1Û

H

1,1U 1,1Σ
−1
1,1)

≥ tr(Λ̃1,1Λ
−1
1,1) (11)

The first inequality (10) in the above utilizes the second inequality
in (6) and the fact that HH

1 HH+
1 H+

1 H1 is a project matrix with
eigenvalues being only 1 and 0. The second inequality (11) comes
from the first inequality in (6).

Now we note that the following Qo:

Qo = V 1,1 V 1,2
Λ̃1,1Λ

−1
1,1

0
V 1,1 V 1,2

H

satisfies

H1QoH
H
1 = U 1

Λ̃1,1

0
UH

1 .

and hence satisfies (8). Furthermore, Qo has the minimum trace
tr(Λ̃1,1Λ

−1
1,1). Therefore, the theorem is proved.

4. OPTIMAL POWER DISTRIBUTION

Under the theorem, we can now rewrite (1) as

ỹ = Σ2ΣF Σ1s̃ + Σ2ΣF ñ1 + ñ2 (12)

where ỹ = UH
2 y, s̃ = V H

1 s, ñ1 = UH
1 n1, and ñ2 = UH

2 n2.
Note that s̃, ñ1, and ñ2 are all white. The original MIMO relay
channel has thus been decomposed into a set of parallel SISO sub-
channels. The corresponding source-destination capacity is

C = log2 det[I + Λ1Λ2ΛF ΛQ(σ2
1Λ2ΛF + σ2

2I)−1] (13)

where ΛF = Σ2
F , Λ1 = Σ2

1, and Λ2 = Σ2
2. We will use

Λ1 = diag(α1, α2, · · · , αL)

Λ2 = diag(β1, β2, · · · , βL)

ΛQ = diag(q1, q2, · · · , qL)

ΛF = diag(f1, f2, · · · , fL)

The capacity can be further expressed as

C =

L

k=1

log2(1 +
αkqkβkfk

σ2
1βkfk + σ2

2

)

The power constraints (5) become L
k=1 qk ≤ P1 and L

k=1 fk(αkqk+
σ2

1) ≤ P2.
Let dk = fk(αkqk + σ2

1). By some simple derivations, the
original optimization problem is equivalent to

max
q,d

L

k=1

log2

(1 + αk

σ2
1
qk)(1 + βk

σ2
2
dk)

1 + αk

σ2
1
qk + βk

σ2
2
dk

(14)

s.t.
L

k=1

qk ≤ P1 &
L

k=1

dk ≤ P2 (15)

Once dk and qk are obtained, fk can be calculated via fk =
dk/(αkqk+σ2

1). For convenience, we define q = [q1, q2, · · · , qL]T ,
and f and d are similarly defined.

The optimal solution to the above problem is still unknown as
it is nonconvex. But we propose two algorithms that we believe
can yield a “near” optimal solution if not the optimal solution.

4.1. Iterative Algorithm

By observing the above optimization problem (14), we see that the
roles of q and d are virtually symmetric. If we fix either q or d,
the problem is equivalent to the relay-only design problem in [2].
Thus an iterative procedure can be designed by estimating q and
d alternately. Once converged, q and d can be used to compute f .
According to [2], we have the following iterative algorithm:

1. Determine an initial value of q, satisfying the power con-
straint (15).

2. Calculate d with the given q as follows:

dk =
σ2

2

2βk
(
αk

σ2
1

qk)2 + 4
αk

σ2
1

qk
βk

σ2
2

µ − αk

σ2
1

qk − 2

+

where [x]+ denotes max{0, x}, and µ is decided by

1

2

L

k=1

σ2
2

βk
(
αk

σ2
1

qk)2 + 4
αk

σ2
1

qk
βk

σ2
2

µ − αk

σ2
1

qk − 2

+

= P2

3. Calculate q with the new d fixed via a similar set of for-
mula.

4. Go back to Step 2 until convergence.

4.2. Dual Decomposition Algorithm

This algorithm is via dual decomposition (see [4] or [5]). Instead
of focusing on the primal problem (14), the dual objection function
g(λ) is considered, which can be decoupled into L independent
problems with respect to qk and dk. That is,

g(λ) = max
q,d

J(q, d, λ)
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where

J(q, d, λ) =
L

k=1

log2

(1 + αk

σ2
1
qk)(1 + βk

σ2
2
dk)

1 + αk

σ2
1
qk + βk

σ2
2
dk

+λ1(P1 −
L

k=1

qk) + λ2(P2 −
L

k=1

dk)

=

L

k=1

Jk(qk, dk, λ) + λ1P1 + λ2P2

with

Jk(qk, dk, λ) = log2

(1 + αk

σ2
1
qk)(1 + βk

σ2
2
dk)

1 + αk

σ2
1
qk + βk

σ2
2
dk

− λ1qk − λ2dk

The dual optimization problem is

min
λ≥0

g(λ) (16)

The solution to the dual problem provides an upper bound to the
primal problem (14) (see [6]).

One can observe that the dual problem is decomposed with
respect to qk and dk by absorbing the (originally coupled) power
constraints into the Lagrangian g(λ). Thus the task now is to solve
the unconstrained problem (16).

The dual decomposition method [4] provides a computation-
ally tractable way to solve this problem. The idea is to perform a
global search to find the optimal values of λ1 and λ2. For every
fixed λ1 and λ2, the optimal values of qk and dk are calculated
by maximizing Jk(qk, dk, λ). However, the optimal solution of
maximizing Jk(qk, dk, λ) is not easy to find, since it is not a con-
cave function. Here we again use iterative searching by alternately
calculating qk and dk. Since each iteration increases the objec-
tive function Jk(qk, dk, λ), it is guaranteed to converge to a local
maximum.

5. NUMERICAL EXAMPLES

In this section, we compare the capacities of the relay system under
three different schemes:

1. CNaive: Capacity of the relay system without power dis-
tribution control neither at the source nor at the relay. This
scheme is called a “naive” scheme.

2. CRelayOnly: Capacity of the relay system with power dis-
tribution control only at the relay.

3. CJoint: Capacity of the relay system with joint power dis-
tribution control at both the source and the relay.

For the relay-only scheme and the naive scheme, the source
covariance matrix is fixed to be a scaled identity matrix P1

M
I .

For the naive scheme, the relay simply normalizes the received
signal to meet the power constraint and then forward the signal to
the destination. In this case, the weighting matrix at the relay is

F = ηI

Given the power constraint P2 at the relay, we can have

η =
P2

tr(P1
M

H1H
H
1 + σ2

1I)

In all simulations, the channels are assumed to be independent
Raleigh fading channels (i.e, all entries in the channel matrices
are independent and complex Gaussian with zero mean and unit
variance). The number of antennas is chosen to be L = M =
N = 4. We will use SNR1 = P1

Mσ2
1

and SNR2 = P2
Lσ2

2
.

For all cases considered, the two optimization algorithms yielded
the same results, which seems to suggest that the optimal solution
had most probably been found in each case. 20000 Monte Carlo
runs were done for each pair of SNR1 and SNR2.

Fig. 2 shows the probability density functions (PDFs) of CNaive.
Fig. 3 shows the PDFs of the capacity gain CRelayOnly/CNaive.
Fig. 4 shows the PDFs of the capacity gain CJoint/CNaive. Fig.
5 shows the PDFs of the capacity gain CJoint/CRelayOnly .

From these figures, we see that when SNR2 (SNR at the des-
tination) is low, the relay-only scheme yields a large capacity gain
over the naive scheme. And when SNR1 (SNR at the relay) is low,
the joint scheme yields an additional capacity gain. This observa-
tion is supported by the fact that capacity is a logarithmic function
of power and hence is more sensitive to change of power in low
power region than in high power region.

6. CONCLUSION

We have studied a joint optimization of the source covariance ma-
trix and the relay matrix of a non-regenerative MIMO relay sys-
tem. The results shown here extend the previous work in [2] where
the source covariance matrix was assumed to be proportional to the
identity matrix. It is shown that the structure (or coordinates) of
the optimal relay matrix given in [2] is still valid in the current
setting. Optimization algorithms are given to compute the opti-
mal power distribution along the optimal coordinates of both the
source covariance matrix and the relay matrix (although the exact
optimal power distribution remains an open problem). Our results
show that the joint source and relay optimization yields a further
capacity gain beyond the relay-only optimization when SNR at the
relay is low.
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