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SUMMARY

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and

a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome

resources for cowpea have lagged behind most other major crops. Here we describe foundational genome

resources and their application to the analysis of germplasm currently in use in West African breeding pro-

grams. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS)

assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs.

These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the develop-

ment of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to pro-

duce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of

WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarifi-

cation of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of

materials from West African breeding programs. Two major subpopulations exist within those materials, one

of which has significant parentage from South and East Africa and more diversity. There are genomic regions

of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The

new resources and knowledge help to define goals and accelerate the breeding of improved varieties to

address food security issues related to limited-input small-holder farming and climate stress.

© 2016 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited and
is not used for commercial purposes.
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INTRODUCTION

Cowpea (Vigna unguiculata (L.) Walp.), native to Africa and

a member of the Fabaceae family, is a primary source of

protein in sub-Saharan Africa, where it is grown for fresh

and dry grains, foliage, and forage. Cowpea is also an

important crop in parts of Asia, South America, and the

USA (Singh, 2014). Because of its adaptability to harsh

conditions, cowpea is a successful crop in arid and semi-

arid regions where few other crops perform well. Cowpea

is important to the nutrition and income of smallholder

farmers in Africa, while also contributing to sustainability

of the cropping system through fixation of atmospheric

nitrogen and prevention of soil erosion. Despite its rele-

vance to agriculture in the developing world and its stress

resilience, actual yields of cowpea are much lower than the

known yield potential, and cowpea genome resources have

lagged behind those developed for other major crop

plants.

Cowpea is a diploid with a chromosome number

2n = 22 and an estimated genome size of 620 Mb (Chen

et al., 2007). Its genome shares a high degree of collinear-

ity with other warm season legumes, especially common

bean (Phaseolus vulgaris L.) (Vasconcelos et al., 2015).

Diverse cowpea germplasm is available from collections in

Africa (International Institute of Tropical Agriculture [IITA],

Nigeria), the USDA repository in Griffin, GA (USA), the

University of California, Riverside, CA (USA), and India

(National Bureau of Plant Genetic Resources [NBPGR] in

New Delhi). These collections contain diversity relevant to

pests, pathogens, plant architecture, seed characteristics

and adaptation to marginal environments. Resources that

were developed previously to support adoption of markers

for breeding include a 1536-SNP GoldenGate assay

(Muchero et al., 2009), which has enabled linkage mapping

and QTL analysis (e.g. Lucas et al., 2011; Muchero et al.,

2013; Pottorff et al., 2014) as well as an assessment of the

diversity of landraces throughout Africa (Huynh et al.,

2013).

IT97K-499-35, developed at IITA, was released in Nigeria

in 2008 as a line that is resistant to most races of the para-

sitic weed Striga gesnerioides that are prevalent in West

Africa. This black-eyed variety has also been released as a

cultivar in Mali and Ghana under the names ‘Djiguiya’ and

‘Songotra’, respectively. Gene-space sequences accounting

for approximately 160 Mb of the IT97K-499-35 genome

were previously published (Timko et al., 2008). In addition,

29 728 ‘unigene’ consensus sequences, derived from

183 118 ESTs from cDNA libraries of 17 different cowpea

accessions are available in the software HarvEST:Cowpea

(harvest.ucr.edu) (Muchero et al., 2009).

Here we present additional resources from IT97K-499-35

including sequence assemblies from 659 coverage whole-

genome shotgun (WGS) short reads and minimal tiling

path (MTP) BACs, a BAC physical map, more than 1 million

SNPs discovered from sequences of 36 diverse accessions,

and an Illumina Cowpea iSelect Consortium Array which

represents a publicly accessible resource for screening

51 128 SNPs. These genomic resources do not constitute a

complete sequence of the cowpea genome, yet they have

been sufficient to support linkage mapping, synteny analy-

sis, and evaluation of materials currently in use from four

West African breeding programs, which serve one of the

most food insecure regions of the world.

RESULTS

Whole-genome shotgun sequencing and assembly

A WGS approach using short-read sequencing was fol-

lowed to assemble sequences of the cowpea genome.

WGS data from cowpea accession IT97K-499-35 included

394 million paired-end short reads for a total of 40.6 Gb of

sequence data (approximately 659 coverage) from Illumina

GAII, and Illumina HiSeq sequences from one 5 kb long-

insert paired-end (LIPE) library. These two datasets were

assembled using SOAPdenovo (Luo et al., 2012) together

with the Sanger BAC-end sequences (BES) described

below and the ‘gene-space’ sequences available from

Timko et al. (2008). The resulting assembly has over

600 000 scaffolds (97 777 of 1 kb or longer), accounting for

323 Mb of the cowpea genome (724 Mb of total scaffold

length including Ns; Table S1). This highly-fragmented

assembly reflects the short length of the reads and the

expected highly-repetitive genome; its close relatives com-

mon bean (Schmutz et al., 2014) and adzuki bean (Yang

et al., 2015) are approximately 45% repetitive. Despite the

fragmentation, the assembly yielded high BLAST hits to

97.2% of the available EST-derived ‘unigene’ consensus

sequences available from HarvEST:Cowpea (http://harvest.

ucr.edu). This may be an underestimate of the representa-

tion of genes in IT97K-499-35 because the 17 cowpea

accessions used for the EST libraries may contain genes

not present in IT97K-499-35. The WGS assembly also pro-

duced BLAST hits to 24 712 common bean gene models,

which is 90.9% of the total number of predicted protein-

coding loci (Schmutz et al., 2014). The average GC content

© 2016 The Authors.
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of the WGS assembly was 35.96%, similar to other

sequenced legumes (Varshney et al., 2012; Schmutz et al.,

2014; Yang et al., 2015).

Physical map and BAC sequencing

Two BAC libraries were constructed from IT97K-499-35

using restriction enzymes HindIII and MboI (36 864 clones

each with 150 and 130 kb average clone insert size, respec-

tively). High-quality BES were generated from 30 343 BACs

using the Sanger method. BES had an average read length

of 674 bp, a GC content of 37.2%, and accounted for

20.5 Mb. They were included in the WGS assembly

described above. For physical mapping, 59 408 BACs

(97.9% from HindIII and 63.2% from MboI) were finger-

printed using the method of Luo et al. (2003). After quality

filtering, 43 717 clones were assembled into 829 contigs

(40 952 BACs) and 2765 singletons using FPC (Soderlund

et al., 2000). The total number of fingerprints in the physi-

cal map represents an equivalent of 11-fold haploid gen-

ome coverage. The resulting cowpea physical map is

available at http://phymap.ucdavis.edu/cowpea.

In total, 4355 MTP clones were sequenced in combinato-

rial pools (Lonardi et al., 2013) using Illumina HiSeq2000.

Reads were assigned to individual BACs and then assem-

bled using SPAdes (Bankevich et al., 2012). BAC assem-

blies had an average N50 of 18.5 kb, an average L50 of 5.7

contigs, and a total length of 496.9 Mb (Table S2). The GC

content was 34.05%. Analysis of overlap between

sequenced BACs provided an estimate of non-redundant

genome coverage at 372.8 Mb (approximately 60.1% of the

cowpea genome; see Experimental Procedures for more

details). Sequence comparison revealed that the BAC

assemblies contain 17 216 (57.9%) of 29 728 cowpea EST-

derived cowpea unigenes (http://harvest.ucr.edu). In addi-

tion, the BAC sequences had high homology with 15 617

(57.4%) of the 27 197 protein-coding gene models in com-

mon bean (Schmutz et al., 2014). These analyses suggest

that approximately 42% of the cowpea genome is missing

from the BAC assemblies.

Development of the Cowpea iSelect Consortium Array

In total, 36 additional cowpea accessions relevant to Africa,

China and the USA were shotgun sequenced using Illu-

mina HiSeq 2500 (12.59 average coverage) and aligned to

the WGS assembly of IT97K-499-35 to discover SNPs.

These accessions were chosen to represent the geo-

graphic, phenotypic and genetic diversity of cultivated

cowpea (Figure S1 and Table S3). An additional set of

12.59 HiSeq data was also produced from IT97K-499-35

and included as a control against spurious SNP calls. The

reads were mapped to the reference sequence (Data S1)

using BWA (Li and Durbin, 2009) to generate a .bam file.

Then, SAMtools (Li et al., 2009), SGSautoSNP (Lorenc

et al., 2012) and FreeBayes (Garrison and Marth, 2012)

were used to generate three overlapping sets of candidate

SNPs, from which the intersection yielded about 1 million

SNPs. No accession contributed substantially more SNPs

than any other, highlighting the broad coverage of diver-

sity within the set of accessions used for SNP discovery.

The most distant accession from IT97K-499-35 was

UCR 779 (differing at 25% of SNP loci) followed closely by

the four Chinese accessions (22–24%). The accessions

most closely related to IT97K-499-35 were the IITA breed-

ing lines IT89KD-288, IT93K-503-1 and IT84S-2246 (12–
13%). The set of approximately 1 million SNPs was filtered

to 55 496 SNPs for the design of an Illumina iSelect Con-

sortium Array (see Experimental Procedures for details on

filtering criteria). The design also included 1163 SNPs from

the prior GoldenGate assay (Muchero et al., 2009) and 60

presumed organelle SNPs, for a total of 56 719 intended

SNPs (60 000 assays). From those, 51 128 SNPs (90.1%)

were represented in the final product manifest (Data S2).

The Cowpea iSelect Consortium Array is available from

Illumina (Illumina Inc., San Diego, CA, USA; http://www.illu

mina.com/areas-of-interest/agrigenomics/consortia.html).

Construction of a consensus genetic map for cowpea

Five bi-parental RIL populations were used to develop a

consensus genetic map (Table S4). Monomorphic SNPs

and those with an excessive number of missing and/or

heterozygous calls were eliminated, as well as individuals

that were duplicated or highly heterozygous. The number

of lines per population used for mapping ranged from 94

to 135 (Table S4) for a total of 575 RILs. A genetic map was

constructed using MSTmap (Wu et al., 2008; http://mstma

p.org/) at LOD 10 for each RIL population. Linkage groups

(LGs) were numbered and oriented based on a previous

cowpea consensus map (Lucas et al., 2011). Individual

maps and the genotype data used for their construction

can be found in Data S3. Two maps (Sanzi 9 Vita7 and

CB27 9 IT82E-18) each had two chromosomes separated

into two LGs (Table S4 and Data S3) due to regions where

parents lack polymorphisms. One region of identity

between CB27 and IT82E-18 on LG4 impacted the number

of polymorphisms and marker bins, and the total size of

that LG in the specific genetic map (Table 1). Genetic map

sizes varied among the five populations, from 803.4 cM in

ZN0169 Zhijiang282 to 917.1 cM in Sanzi 9 Vita7

(Table 1).

Individual maps were merged into a consensus map

using MergeMap (Wu et al., 2011; http://mergemap.org/).

Equal weight was given to each individual map. MergeMap

identified a few conflicts in marker order, which were

resolved by deleting a few conflicted markers with priority

given to the map with the highest resolution in the particu-

lar LG (i.e. more bins). No SNP was placed on different

LGs between maps. As MergeMap’s coordinate calcula-

tions for a consensus map are inflated relative to cM

© 2016 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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distances in individual maps, consensus LG lengths were

normalized to the mean cM length from the individual

maps. The resulting consensus map contains 37 372 SNP

loci mapped to 3280 bins (Table 1 and Data S4). This is a

34-fold increase in marker density and a four-fold increase

in resolution (number of bins) over the consensus map of

Lucas et al. (2011). The new consensus map includes 757

SNPs that were included in the prior GoldenGate assay

(Muchero et al., 2009). The map spans 837.11 cM at an

average density of one bin per 0.26 cM and 11.4 SNPs per

bin. The new consensus map has dense coverage of all 11

cowpea LGs, with 1.85 cM on LG1 being the largest gap

(Figure S2 and Data S4).

Syntenic relationships between cowpea and common

bean

Similar to cowpea, common bean is a diploid member of

the Phaseoleae tribe with 2n = 22 chromosomes. The iSe-

lect SNP design sequences were compared to P. vulgaris

gene models (Schmutz et al., 2014) to clarify the syntenic

relationships of cowpea with this closely related species.

The 26 550 SNPs that were mapped in V. unguiculata and

matched a P. vulgaris gene model provided a view of syn-

teny (Figure 1). Six cowpea LGs (VuLG2, VuLG6, VuLG8,

VuLG9, VuLG10 and VuLG11) are largely collinear with six

common bean pseudomolecules (Pv7, Pv6, Pv9, Pv11,

Pv10 and Pv4, respectively), while the rest have synteny

mainly with two common bean pseudomolecules (Figure 1

and Table S5). From these five cowpea LGs with one-to-

two relationships, three (VuLG3, VuLG4, and VuLG7) have

a higher number of links, and over a longer genome inter-

val, with one P. vulgaris chromosome (Pv3, Pv1 and Pv2,

respectively; Figure 1 and Table S5). The other two cowpea

LGs, VuLG1 and VuLG5, both have their largest block of

homologous synteny with Pv8, followed by Pv5 and Pv1,

respectively (Figure 1 and Table S5).

The same numbering scheme for common bean and

cowpea chromosomes would facilitate comparative studies

between the two species. Adoption of the chromosome

numbers of P. vulgaris according to synteny relationships

with LGs of cowpea seems sensible, but additional cowpea

sequence information will be needed to clarify the relation-

ships between VuLG1 and VuLG5 with Pv1, Pv5 and Pv8.

The BAC-FISH analysis by Iwata-Otsubo et al. (2016) that

correlates the genetic and chromosome maps in cowpea

can be used to orient the cowpea genetic map so that it

meets the convention of displaying the short arm on top.

Genetic anchoring of WGS scaffolds and BACs

The 37 372-SNP consensus map was used to anchor WGS

and BAC assemblies to genetic map positions. The iSelect

SNP design sequences were used as BLAST queries to

search against WGS and BAC sequences, and matches

with an e-value = 1e�50 or better were tallied. AssembledT
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sequences were considered anchored to the genetic map if

100% of the matching SNPs mapped to the same LG, and

were at most 5 cM apart (Data S5 and S6). The anchored

sequences contain 100 Mb of the WGS assembly (237 Mb

scaffold size including Ns; Table S1 and Data S5) and

420 Mb of BAC assemblies (Table S2 and Data S6). For

BACs, this is an overestimate of the actual genome cover-

age because BAC sequences have approximately 23%

overlap (see Physical map and BAC sequencing), resulting

in a reduced estimate of 323 Mb of unique sequences

within anchored BACs. Also, observe in Table S1 that

95.3% of the anchored WGS scaffolds are larger than 1 kb

and they comprise 99.1% of the anchored non-N sequence.

Thus, the anchored portion of the WGS assembly, which is

comprised mainly of 24 342 scaffolds larger than 1 kb

among 25 537 anchored scaffolds, contains many fewer

fragments than the entire WGS assembly (644 126 scaf-

folds). This is the outcome of having selected SNPs in the

largest WGS contigs as a final criterion in SNP selection

(see Experimental Procedures).

Distribution of genetic variation

The anchoring of WGS scaffolds to the genetic map

enabled investigation of the frequency and positional dis-

tribution of genetic diversity in the cowpea genetic map.

Nearly half of the 1 036 981 SNPs discovered from the 37

diverse cowpea accessions were anchored to the genetic

map based on the anchoring of 25 537 WGS scaffolds

using mapped iSelect SNPs. This information was used to

examine the SNP frequency and distribution across the 11

cowpea LGs. Frequencies were calculated for 2 cM inter-

vals and normalized to the total anchored scaffold size.

SNP frequencies were not uniformly distributed across the

genetic map (Figure 1). LG11 and LG10 had significantly

higher SNP frequencies than all other cowpea linkage

groups. Relatively higher SNP frequencies were also

observed in the distal ends of LG5 and LG9, in the cen-

tromeric region of LG7, and toward the ends of LG1. In

contrast, LG8 had relatively low SNP diversity (Figure 1).

There was no clear relationship between the most diverse

cowpea genomic regions and the gene-dense syntenic

regions of common bean (Figure 1).

Genetic diversity and structure in West African breeding

programs

Evaluation of genetic diversity has important implications

for breeding programs and the conservation of genetic

resources. A total of 146 West African cultivated cowpea

accessions were evaluated using the Cowpea iSelect Con-

sortium Array. This included 105 cultivars and breeding

lines from the breeding programs of IITA (Nigeria), INERA

(Institut de l’Environnement et de Recherches Agricoles,

Figure 1. Circos illustration of synteny between

cowpea linkage groups (VuLG) and common bean

pseudomolecules (Pv).

SNP frequencies calculated for 2 cM windows and

normalized to the total anchored scaffold size

(in kb) are shown for the 11 cowpea LGs. Phaseolus

vulgaris gene densities are also shown for 500 kb

windows.
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Burkina Faso), ISRA (Institut Senegalais de Recherches

Agricoles, Senegal), and CSIR-SARI (Council for Scientific

and Industrial Research, Savanna Agricultural Research

Institute, Ghana), and 41 landraces collected from these

same countries (Table S6). It should be noted that these

landraces were chosen by the different breeding programs

and may not represent the full range of genetic diversity

available in the West African landrace germplasm.

STRUCTURE analysis and principal component analysis

(PCA) were performed to evaluate population structure and

to clarify the genetic relationships between accessions.

STRUCTURE (Pritchard et al., 2000) was run for K = 1–6
and, although the estimated log probabilities of the data

reached a plateau at K = 5 (Figure 2a), at that level of pop-

ulation subdivision there were individuals not strongly

assigned to one subpopulation or another (Figure S3).

When applying the Evanno et al. (2005) method, the maxi-

mum ΔK value was reached at K = 2 (Figure 2a), which

would be consistent with two major subpopulations. PCA

showed a clear separation of the two subpopulations on

the first component (PC1; Figure 2b), which were not dif-

ferentiated by breeding program or by improvement status

(Figure 2c,d and Table S6). The 45 accessions belonging to

subpopulation 1 (i.e. ancestry ≥0.8; Table S6) included 23

landraces from the four countries and 22 breeding acces-

sions. From the 44 accessions belonging to subpopulation

2, 14 were landraces (mostly from Senegal; Table S6) while

the remaining 30 were either IITA breeding lines or lines

from other programs derived from IITA lines. Pedigree his-

tory that was available from IITA revealed that members of

subpopulation 2 contain South and East Africa parentage

whereas subpopulation 1 parentages are restricted to West

Africa. All admixed accessions but one (59–30) are cultivars

and breeding lines. PCA also shows that the four West Afri-

can breeding programs are working with very similar

materials, except for somewhat narrower diversity within

the Ghana program (Figure 2c). Landraces were less dis-

persed than cultivars and breeding lines, mostly dis-

tributed along the first component (Figure 2d). Thirteen

landraces that were collected in the same geographical

area of Burkina Faso clustered together (Figure 2c), indicat-

ing high genetic similarity between them. Fixation index

(FST) values were calculated between the two major sub-

populations and between landraces and cultivars/breeding

lines. The FST value for subpopulations 1 and 2 was 0.18,

indicating moderate population differentiation. Little

genetic differentiation was found for landraces vs. breed-

ing materials (FST = 0.02), in accordance with STRUCTURE
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Figure 2. Population structure analysis of 146 cultivated cowpea accessions from West Africa.

(a) The plot on the left displays the log probability of the data for each K between 1 and 6, while the plot on the right shows DK values calculated as proposed

by Evanno et al. (2005). The plot of ancestry estimates for K = 2 is shown in the bottom, where each individual is shown as a vertical bar.

(b–d) Principal component analysis of all cowpea accessions colored by the result of STRUCTURE (b), by breeding program (c), and by their improvement status

(breeding vs. landrace; plot (d)).
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and PCA results. FST values between subpopulations, and

between landraces and breeding materials at SNPs across

the genome are provided in Data S7.

Polymorphism information content (PIC), expected

heterozygosity (He) and nucleotide diversity (p) were cal-

culated for the entire set of West African accessions, for

each of the two major subpopulations, and for landraces

and breeding materials. Average PIC was 0.247, while He

and p averaged 0.307 and 0.308, respectively, when con-

sidering the whole dataset. Average values for all three

diversity measures were higher in subpopulation 2 than

in subpopulation 1: average PIC, He and p were 0.158,

0.193 and 0.195, respectively, in subpopulation 1, while

they were 0.229, 0.284 and 0.288 in subpopulation 2.

Breeding lines had slightly higher PIC, He and p values

than landraces, being 0.242, 0.301 and 0.303, respectively,

in breeding materials, while they were 0.234, 0.290 and

0.293 in landraces. However, given the small sample size

of local landraces and the fact that they were biased

toward the interests of breeders, this may be an inaccu-

rate estimate of the diversity in West African landrace

germplasm. Since PIC, He, and p are highly correlated,

only expected heterozygosity (He) values for each sub-

population, and for landraces and breeding lines are

shown at each SNP in Data S7.

He values for subpopulation 1 and 2 were plotted to

explore the spatial patterns of diversity across the 11 LGs

(Figures 3 and S4, upper plots). FST values were also plot-

ted across the genome (Figures 3 and S4, lower plots). The

greater diversity within subpopulation 2 is apparent

throughout most of the genome (Figures 3 and S4), with

some exceptions. An extreme example of an exception is a

region extending from 30 to 35 cM on LG7, where diversity

is very low in subpopulation 2 (Figure 3). In addition, in

regions where diversity is low in one subpopulation, it

tends to be moderate to high in the other subpopulation.

One exception to this latter trend is near 63 cM on LG1,

where both subpopulations have very low diversity and

contain the same alleles (low FST; Figure 3). This region

coincides with a QTL for pod length (Xu et al., 2016).

Another exception is on LG3 (approximately 82–85 cM; Fig-

ure S4), in a region coinciding with a QTL for heat toler-

ance (Lucas et al., 2013). These plots also revealed regions

of very high population differentiation (FST) on LG 4, 7, and

8 (Figures 3 and S4). The smallest of these regions (LG8 at

53 cM) contains seven SNPs. The design sequences for six

of them are contained within two sequenced BACs

(H084G18 and M006L23) which contain many sequences

related to P. vulgaris nodulin gene models

(Phvul.009G135300.1 and Phvul.009G135400.1). This sug-

gests the presence of a cluster of nodulin genes in this

region. The number of genes that could be relevant in the

larger regions of LG 4 and LG 7 is too large to be consid-

ered in detail.

HarvEST:Web and HarvEST:Cowpea allow easy access to

available cowpea genome resources

The new cowpea genome resources must be easily

accessed if they are to be widely utilized for basic research

and agricultural development. In addition to all sequence

data being deposited in permanent, public repositories at

the National Center for Biotechnology Information (NCBI;

see Accession numbers), information presented in this

manuscript is available through HarvEST:Web (http://harve

st-web.org/) or in the Windows software HarvEST:Cowpea

(download from http://harvest.ucr.edu). WGS and BAC

sequences, and their annotations can be retrieved in Har-

vEST:Web by specifying ‘scaffold name’ or ‘BAC address,’

respectively. These sequences can be searched by BLAST

via http://www.harvest-blast.org. SNP names can also be

used as inputs for sequence and annotation retrieval. In

addition, a synteny viewer has been implemented in Har-

vEST:Cowpea, enabling facile comparisons between cow-

pea and either common bean, soybean or Arabidopsis.

Macrosynteny and microsynteny are clearly evident

between cowpea and the two closely related warm season

legumes.

DISCUSSION

Increase in climate variability is projected to have the

greatest negative consequences on agricultural and human

systems in the tropical and subtropical developing world,

aggravating food insecurity in already vulnerable popula-

tions (Thornton et al., 2014). Cowpea is a relatively drought

and heat-tolerant crop that provides protein to nearly

200 million Africans and cash income to smallholder farm-

ers (Thomson, 2008). The limited availability of genome

resources for cowpea has contributed to the relatively slow

development of higher yielding varieties adapted to toler-

ate abiotic and biotic stresses. This report presents 323 Mb

of WGS and 497 Mb of BAC sequence information, a tool

to simultaneously test 51 128 single nucleotide variants,

and a high-density genetic map providing coordinates for

most of those sequences and variants. Application of these

resources can be made for genome-wide association stud-

ies (GWAS) of cowpea germplasm to discover favorable

alleles for simple and complex traits, as is already being

conducted in other legume crops (e.g. Kujur et al., 2015;

Ray et al., 2015). Useful variation can then be connected to

assembled genome sequences–including BACs–annotated
for P. vulgaris syntenic gene models, thereby increasing

the precision and speed of cowpea improvement.

One of the biggest obstacles in comparing and using

results obtained by different research groups is the lack of

a common nomenclature for cowpea linkage groups. With

a high SNP coverage of the genome and connections to

cowpea genome sequences, this study provides the basis

for a unified chromosome nomenclature for the cowpea

© 2016 The Authors.
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research community. Such common nomenclature could

adopt the P. vulgaris chromosome numbering on the basis

of synteny comparisons between both species as well as

cytogenetic studies in cowpea (Iwata-Otsubo et al., 2016)

and between cowpea and common bean (Vasconcelos

et al., 2015). While several cowpea LGs are largely syntenic

with one P. vulgaris chromosome, further resolution is

needed to satisfy a single nomenclature for those LGs

whose syntenic relationships with common bean are less

clear. The goal would be to extend a standard
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Figure 3. Genetic diversity and population differentiation across linkage groups 1, 7, and 8.

Upper plots show expected heterozygosities (He) for subpopulations 1 (red line) and 2 (green line), while lower plots show genetic differentiation (FST) between

the two subpopulations. He and FST values were averaged across a sliding window of 5 genetic bins with a step of one bin. The dashed lines indicate the bottom

and top 1% of He and FST values, respectively. Arrows indicate regions with a markedly depletion of genetic diversity in one or both subpopulations, while shad-

owed areas indicate genomic regions of very high genetic differentiation (FST).
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chromosome numbering to other diploid Vigna species

whose genomes have been sequenced and are integrated

into a genome database (Sakai et al., 2016). This would

facilitate the transfer of genomic information on target

traits from one Fabaceae species to another.

West Africa is the region with the largest production and

consumption of cowpea in the world (FAOSTAT, 2012;

Singh, 2014). Evaluating the genetic diversity present in

the West African breeding germplasm is important to man-

age breeding programs and assure future genetic gains.

By applying the Cowpea iSelect Consortium Array to 146

breeding lines and landraces, we have provided a useful

overview of genetic variability in West African cultivated

germplasm. Two subpopulations were found in the evalu-

ated materials, which seem to coincide with the two major

African gene pools (GP1–West, North and Central Africa;

GP 2–East, South and Southeast Africa; Huynh et al., 2013).

It is unknown why many landraces from West Africa

belong to this subpopulation. One can speculate that dif-

ferent subsets of the broader germplasm were carried by

humans during different waves of migration. Subpopula-

tion 2 is more diverse that subpopulation 1, which may be

expected since it contains germplasm from outside West

Africa. Since all of these accessions have been adapted to

West Africa, the existence of two major subpopulations at

the present time means that relatively wide crosses can be

made without compromising adaptation. The new genetic

knowledge helps guide crossing strategies. The common

agro-ecological zones which extend across cowpea pro-

duction areas of the four included countries of Burkina

Faso, Ghana, Nigeria and Senegal facilitates coordination

of breeding activities and exchange of germplasm. The

IITA breeding program in Nigeria has been a regional dis-

tributor of new breeding materials during the last few dec-

ades, setting an excellent precedent which can now be

revitalized and expanded using genome knowledge.

Average diversity values for entire genomes should be

interpreted cautiously because patterns of diversity

vary across LGs. In fact, although the overall genetic diver-

sity within the West African breeding population is rela-

tively high (He and p = 0.31), we identified genomic

regions of diversity depletion. Those regions may contain

favorable alleles for important traits that became fixed dur-

ing domestication and breeding selection. The lowest He

values in LG1 coincide with the position of SNPs associ-

ated with pod length in Chinese germplasm of V. unguicu-

lata subspecies sesquipedalis (Xu et al., 2016). One

interpretation could be that there has been selection for a

preferred pod length in these materials. Also, a previously

reported QTL for heat tolerance (Cht-5) coincides with a

low-diversity region of LG3 (Lucas et al., 2013). Favorable

alleles at this QTL were donated by the line IT82E-18, the

African parent of the RIL population (Lucas et al., 2013;

Table 1). The low diversity in this region of LG3 may reflect

selection for better yield performance of West African cow-

peas under higher growing season temperatures. There

are several genome regions where FST is much higher than

the genome-wide average, indicating high genetic differen-

tiation between subpopulations. Interestingly, a cluster of

nodulins was annotated in BACs located in one of these

regions. As nodulins play a key role in the establishment

of symbiosis with Rhizobium bacteria (Legocki and Verma,

1980), perhaps different nodulin alleles are correlated with

different rhizobial symbionts for the two subpopulations. If

so, then this merits consideration of seed inoculants to

optimize symbiotic associations.

The He and FST values for each SNP (Data S7) comprise

another valuable resource stemming from this work. They

are shown for the two subpopulations, and for landraces

and breeding materials, providing breeders with a useful

resource to increase the genetic diversity in their breeding

programs or to incorporate unique alleles into their breed-

ing populations. Also, He values can be used as criteria for

selecting efficient subsets of markers for conversion to

other platforms. Customized, maximally informative sub-

sets of markers have numerous applications including rou-

tine tests of seed purity, validation of germplasm fidelity,

verification of successful crosses and guidance of progeny

selection in later generations during trait introgression into

preferred backgrounds via backcrossing.

EXPERIMENTAL PROCEDURES

Physical mapping and BAC-end sequencing

Cowpea accession IT97K-499-35 was grown for three generations
by single seed descent and then increased to provide a supply of
seed for DNA isolation. The material was screened with the Illu-
mina GoldenGate assay (Muchero et al., 2009), establishing that
homozygosity was attained. Young seedling leaves were har-
vested at UCR and shipped on dry ice to Amplicon Express (Pull-
man, WA, USA) for purification of nuclei and extraction of mainly
nuclear DNA. Two BAC libraries were then constructed by Ampli-
con Express from high molecular weight DNA using restriction
enzymes HindIII and MboI. After partial digestion with restriction
enzymes, high MW cowpea DNA fragments were ligated with Hin-
dIII or BamHI linearized BAC vector pCC1. Ligated DNA molecules
were introduced into Escherichia coli DH10B cells by electropora-
tion and plated on LB agar containing 12.5 lg/ml chlorampheni-
col, 0.5 mM IPTG and 40 lg ml�1 X-Gal and cultured overnight.
White colonies were picked and inoculated into 384-well plates
containing LB freezing buffer. Cultures were incubated at 37°C for
24 h with aeration, and then stored at �80°C. The libraries con-
tained 36 864 clones each, with average insert sizes of 150 kb for
the HindIII library and 130 kb for the MboI library.

BAC clones from the two libraries (36 096 from HindIII and
23 312 from MboI) were fingerprinted using the SNaPshot-based
fingerprinting procedure (Luo et al., 2003). BAC DNAs were simul-
taneously digested with five restriction enzymes (BamH1, EcoRI,
XbaI, XhoI, and HaeIII), and then labeled with the SNaPshot label-
ing kit (Luo et al., 2003). The fragments were sized on an
ABI3730XL instrument with the GS1200Liz size-standard (Gu et al.,
2009). Fragment sizes in the range of 100–1000 bp were compiled
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for computational assembly. After removing substandard finger-
prints, potential cross contamination and clones with less than 40
total fragments, fingerprints from 43 717 clones (73.6%) were used
for an initial contig assembly using the FPC software (Soderlund
et al., 2000). This initial assembly was performed with a relatively
high stringency (1 9 10�45) to minimize co-assembly of clones
from unrelated regions of the genome. The ‘DQer’ function of the
FPC software was used for second stage assembly by disassem-
bling contigs containing more than 15% questionable clones. The
‘Single-to-End’ and ‘End-to-End’ merging function of FPC was
used for a final, third stage assembly by stepwise decreases of
assembly stringency based on Sulston score cutoff values (down
to 1 9 10�35). Finally, the 10% largest contigs were subjected to
manual editing, examining with CB map analysis and disjoining
contigs with CB analysis results at 1 9 10�30.

The same BAC DNA used for fingerprinting was also used for
BES. BAC clones were sequenced using pIndigoBAC5 Reverse
End Sequencing primer (50-TACGCCAAGCTATTTAGGTGAGA-30)
and BigDye terminator chemistry (Applied Biosystems, Foster
City, CA, USA) on an ABI3730XL automated sequencer (Applied
Biosystems, Foster City, CA, USA). Raw sequence reads were
trimmed with the Phred program using a quality score of 20
(Ewing and Green, 1998). BES from vector sequences, E. coli,
mitochondria and chloroplasts were identified using BLASTN. The
chloroplast sequences of common bean (DQ886273.1), soybean
(DQ317523), Medicago truncatula (AC093544), Lotus japonicus
(AP002983), and mitochondrial DNA sequences of Arabidopsis
(Y08501.2) and rice (DQ167399.1) were used to identify organelle
contaminations. The resulting high-quality BES were then pro-
cessed with the RepeatMasker program (www.repeatmasker.org)
to identify characterized repeats. Cowpea BES with more than
80% of the sequence length showing homology to known repeats
were removed, otherwise the BES were kept but the repetitive
region was marked using letter N. Self-comparisons were con-
ducted with the RepeatMasker processed sequences to further fil-
ter the cowpea-specific repeat elements.

MTP sequencing and BAC assembly

A set of MTP BACs was chosen using the FMTP method of Bozdag
et al. (2013). MTP BACs were paired-end sequenced (2 9 100
bases) using Illumina HiSeq2000 (Illumina, Inc, San Diego, CA,
USA). Sequencing was done in two sets of 2197 BACs (Vu1 and
Vu2) applying a combinatorial pooling design (Lonardi et al.,
2013). After quality-trimming, reads in each pool were ‘sliced’ into
smaller samples of optimal size, deconvoluted, and then assem-
bled BAC-by-BAC using SPAdes (Bankevich et al., 2012), as
explained in detailed by Lonardi et al. (2015). From the 4394
intended BACs, 4355 produced sufficient reads to generate an
assembly.

To estimate the percentage of overlapping BAC sequences,
19-mers occurring at least four times were identified and used for
repeat-masking of sequences. Repeat-masked sequences were then
BLASTed against themselves using an e-value cutoff of e�40. Only
overlapping sequences >300 bp were considered to be overlaps. To
estimate the gene content of the BAC assemblies, BAC sequences
were compared to cowpea EST-derived ‘unigenes’ (http://harvest.
ucr.edu) and P. vulgaris gene models (Schmutz et al., 2014) using
BLAST (e-value cutoffs of e�40 and e�25, respectively).

Whole-genome shotgun sequencing and assembly

The same batch of IT97K-499-35 nuclear DNA that was used for
BAC library construction was used for WGS sequencing. About
394 M paired-end reads (equivalent to approximately 659

coverage) with an average read length of approximately 100 bases
after quality-trimming were produced at the National Center for
Genome Resources (NCGR; Santa Fe, NM, USA) on an Illumina
GAII sequencing instrument. An additional approximately 90 M

Illumina reads were produced using an Illumina HiSeq sequencing
instrument at NCGR from one 5 kb long-insert paired-end (LIPE)
library made from the same batch of nuclear DNA.

For the assembly, two additional sets of Sanger sequences were
included. One set of Sanger sequences was the basis of a prior
publication on ‘gene-space sequences’ (GSS; Timko et al., 2008),
comprised of approximately 250 000 reads from methyl filtered
fragments of IT97K-499-35. The other set of Sanger sequences
included the BES described above. The assembly combined the
paired-end short reads, LIPE, GSS, and BES data using SOAPden-
ovo with k = 31 (Luo et al., 2012). To estimate the gene content of
the WGS assembly, sequences were BLASTed against cowpea
EST-derived ‘unigenes’ (http://harvest.ucr.edu) and P. vulgaris
gene models (Schmutz et al., 2014), using e-value cutoffs of e�40

and e�25, respectively.

SNP discovery and design of the Cowpea iSelect

Consortium Array

A total of 32 accessions were sequenced to 12.59 coverage by the
Beijing Genomics Institute (BGI) using Illumina HiSeq 2500 (Illu-
mina, Inc.). Four additional accessions from China (see Table S3)
were sequenced at the Majorbio Pharm Technology Co. Ltd
(Shanghai, China). Additional sequences of IT97K-499-35 were
produced in the Genomics Core Facility at the University of Cali-
fornia, Riverside.

The WGS assembly from IT97K-499-35 described above was
used as the reference to map each of these 36 sets of reads, and
the new set of HiSeq sequences from the reference genotype
sequenced at the University of California Riverside. This 37th set
was used as a control (i.e. SNPs call in this accession were consid-
ered false positives). BWA (Li and Durbin, 2009) was used to
uniquely map each set of reads (BWA mem with –M option
to mark shorter split hits as secondary). Reads which mapped to
multiple locations were excluded from further analysis. Alignment
files were merged with the software tool Picard to a single ‘sam’
file. Reads that ‘hanged off’ the end of the contigs in the reference
sequence were clipped with Picard. Also, to avoid skewed variant
calling, duplicated reads were marked with Picard.

To filter putative SNPs to a shorter list of highest confidence
variants, three software packages were used, namely SAMtools
(Li et al., 2009), SGSautoSNP (Lorenc et al., 2012), and FreeBayes
(Garrison and Marth, 2012). It was not possible to utilize GATK
(McKenna et al., 2010) because GATK requires a relatively large
set of confirmed training SNPs for the base quality score recalibra-
tion phase, and no such set of SNPs was available for cowpea. In
total, SAMtools discovered 4 629 826 SNPs using mpileup with
default parameters, SGSautoSNP detected 2 488 797 SNPs and
FreeBayes called a total of 8 269 140 SNPs. An intersection set of
SNPs was then identified, leading to 1 036 981 SNPs that were
identified by all three methods. Additional filtering was required
to reduce the number of SNPs to the target density of 60 000 SNP
assays designed as a community resource for future germplasm
characterization. These filtering steps included: (i) designability
score based upon Illumina’s Assay Design Tool; (ii) avoidance of a
SNP whose adjacent sequences occurred frequently in the gen-
ome assembly; (iii) consideration of allele frequency, generally
avoiding SNPs with only one accession carrying the minor allele;
(iv) selection of two SNPs in or near each inferred cowpea gene
based on MUMmer sequence alignment with P. vulgaris gene
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models (Schmutz et al., 2014); (v) requirement for a minimum dis-
tance from a SNP that had already been selected; (vi) preference
against an A/T or C/G SNP since these require two beadtypes
(assay space); and (vii) location within a relatively larger WGS
contig to maximize the amount of WGS contigs that could subse-
quently be anchored to a SNP-based genetic map.

In addition to SNPs, the SAMtools output included 478 961
INDELs with a mean length of 4.48 bp. These were not included in
the iSelect design.

In addition to SNPs discovered by WGS sequencing of diverse
accessions, 1163 SNPs previously validated on the GoldenGate
platform (Muchero et al., 2009) were included in the design to
facilitate comparisons with prior genotyping research. In total,
56 719 SNPs were submitted for assay design using 60 000 bead-
types. This yielded 51 128 assays in the final manifest for the pub-
licly available Cowpea iSelect Consortium Array.

Consensus genetic map construction

Five bi-parental RIL populations developed previously (Muchero
et al., 2009; Lucas et al., 2011) were genotyped with the Cowpea
iSelect Consortium Array at the University of Southern California.
SNPs were called using the GenomeStudio software (Illumina,
Inc.). To meet assumptions of the clustering algorithm, ‘synthetic
heterozygotes’ were constructed and included in the initial set of
96 genotyped samples by creating 1:1 mixtures of DNA samples
from individuals known from prior work to be most genetically
distant from each other. The data from these individuals provided
the signal needed for the algorithm to position clusters for
heterozygotes. SNPs with low GenTrain scores were visually
inspected based upon manufacturer’s published best practice for
optimizing accuracy in genotyping projects (http://www.illumina.c
om/documents/products/technotes/technote_infinium_genotyp
ing_data_analysis.pdf). The resulting cluster file is available upon
request.

SNP data from each population were exported from Genome
Studio and curated to eliminate: (i) monomorphic SNP loci;
(ii) SNPs with >20% missing or heterozygous calls; and (iii) segre-
gation-distorted markers (MAF < 0.25). RILs were also curated to
remove individuals with >10% heterozygous loci or those carrying
many non-parental alleles. Identical individuals were also thinned
to one such individual prior to mapping. Genetic maps for each
RIL population were constructed at LOD 10 using MSTmap (Wu
et al., 2008; http://mstmap.org/). Because the level of residual
heterozygosity varied among populations, different population
type options were chosen for map construction in MSTmap (RIL 7
for Tvu-14676 9 IT84S-2246-4; RIL 6 for Sanzi 9 Vita7 and
ZN016 9 Zhijiang282; and RIL5 for CB46 9 IT93K-503-1 and
CB27 9 IT82E-18). Other parameters for MSTmap included: group-
ing LOD criteria = 10; no mapping size threshold = 2; no mapping
distance threshold = 10 cM; try to detect genotyping errors = no;
and genetic mapping function = kosambi. Output maps were
inspected to identify and remove data that would result in pre-
sumably spurious double recombination events, unless supported
by several markers or moderate to large genetic distances.

Linkage groups from each population were numbered and ori-
ented based on the previous cowpea consensus map (Lucas et al.,
2011) and then merged into a consensus map using MergeMap
(Wu et al., 2011; http://mergemap.org/). Equal weight was given to
each individual map (weight = 1.0). MergeMap identified a few
conflicts in marker order, which were resolved by deleting a few
conflicted markers with priority given to the map with the highest
resolution in the particular LG (i.e. more bins). As MergeMap’s
coordinate calculations for a consensus map are inflated relative

to cM distances in individual maps, consensus LG lengths were
normalized to the mean cM length from the individual maps.

Synteny with P. vulgaris

The cowpea genome assembly described above was compared
to P. vulgaris pseudomolecules and unanchored scaffolds (from
https://phytozome.jgi.doe.gov/pz/portal.html) using MUMmer
(Kurtz et al., 2004). Alignments that were further used had a min-
imum identity of 55.11% and a mean identity of 89.24%. The
positions of P. vulgaris gene models within the aligned regions
was used to position each cowpea SNP relative to P. vulgaris
gene models. A synteny plot was constructed based on SNPs
that had a cM position in the cowpea consensus map and fell
within the region of the cowpea sequence that was aligned with
a common bean gene model. Circos v.67-7 (Krzywinski et al.,
2009) was used to illustrate the synteny between each cowpea
linkage group and common bean chromosome that shared 50 or
more SNPs. Cowpea LGs were plotted according to cM lengths,
while common bean chromosomes were plotted as physical
length.

Cowpea SNP frequencies were based on the number of discov-
ered SNPs per genetic bin and the total size of the WGS scaffolds
allocated into the corresponding bin. For every 2 cM window the
number of SNPs allocated within that window was divided by the
sum of the corresponding WGS scaffold sizes in kb. Two outlying
values were replacing by a maximum value so that all of the other
calculated values could be easily visualized. Phaseolus vulgaris
gene densities were calculated as the number of genes available
from Schmutz et al. (2014) per 500 kb windows.

Genetic analyses of West African accessions

In total, 146 accessions were genotyped with the Cowpea iSelect
Consortium Array. Monomorphic loci were eliminated, as were
SNPs with missing or heterozygous calls in more than 20% of the
samples. A total of 46 620 polymorphic SNPs passed this filtering.
The software STRUCTURE v.2.3.4 (Pritchard et al., 2000) was used
to infer population structure. SNPs with minor allele frequencies
(MAF) <0.05 were excluded. STRUCTURE was run four times for
each hypothetical number of subpopulations (K) between 1 and 6,
with a burn-in period of 10 000 and 50 000 Monte Carlo Markov
Chain iterations. LnP(D) values were plotted and DK values were
calculated according to Evanno et al. (2005) to estimate the opti-
mum number of subpopulations. A final run at the inferred K
(K = 2) was performed to assign individuals to subpopulations
based on a membership probability ≥0.80. Those accessions with
probabilities lower than 0.80 were considered ‘admixed.’ A total of
45 accessions were assigned to subpopulation 1, 44 were assigned
to subpopulation 2, and 57 were considered ‘admixed’ (Table S6).
PCA was conducted in TASSEL v5.0 (Bradbury et al., 2007) using
SNPs with MAF > 0.05, and results were displayed using TIBCO
Spotfire� 6.5.0 (TIBCO Software Inc., Palo Alto, CA, USA).

PIC, He, and p values were calculated for all 46 620 SNPs in the
entire set of samples, and then separately for subpopulation 1 and
subpopulation 2 (45 and 44 samples, respectively; 45 820 poly-
morphic SNPs). PIC was calculated using the method of Botstein
et al. (1980), He (for two alleles) was calculated as
He ¼ 1�Pk

i¼1 Pi
2, where Pi is the frequency for the ith allele

among a total of k alleles. p was evaluated as in Xu et al. (2016).
FST values (Nei, 1977) were calculated per locus for accessions of
subpopulations 1 and 2, and also for landraces and breeding lines.
He and FST were plotted along the consensus genetic map by
averaging values across a sliding window of 5 bins in 1 bin steps.
Figures were made using TIBCO Spotfire� 6.5.0.
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Accession numbers

Sequence data are available through the National Center for
Biotechnology Information, as follows. Raw BAC sequence reads
from IT97K-499-35 are available under SRA accessions SRA052227
and SRA052228. BAC assemblies are HTGS accessions AC270865
to AC275219. The WGS assembly of IT97K-499-35 is genome
accession MATU00000000. WGS sequence raw reads from 37
diverse cowpea accessions are available under SRA accession
SRP077082.
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Figure S1. Principal component analysis (PCA) of 729 samples rep-
resenting the diversity of cultivated cowpea (blue) and distribution
of 34 of the 36 accessions included in the SNP discovery panel
(red).

Figure S2. Graphical representation of the iSelect SNP consensus
genetic map for cowpea. Each horizontal line is a bin.

Figure S3. STRUCTURE cluster plot for K = 5. Each bar is an acces-
sion.

Figure S4. Genetic diversity and population differentiation across
linkage groups 2, 3, 4, 5, 6, 9, 10, and 11.

Table S1. WGS assembly characteristics and anchoring to the
genetic map.

Table S2. BAC assembly characteristics and anchoring to the
genetic map.

Table S3. Information on cowpea accessions used for SNP
discovery.

Table S4. Information on the individual mapping population data
used for consensus map construction.

Table S5. Pairwise counts of the number of links between cowpea
linkage groups (VuLG) and common bean pseudomolecules (Pv).

Table S6. Information on West African accessions used in the
study.

Data S1. Mapping statistics for 37 cowpea accessions.

Data S2. Information of SNPs included in the final Cowpea iSelect
Consortium Assay.

Data S3. Five individual genetic maps (each sheet) and the geno-
type dataset used for their construction.

Data S4. iSelect SNP consensus genetic map for cowpea.

Data S5. List of WGS scaffolds and their genetic anchoring infor-
mation.

Data S6. List of sequenced BACs and their genetic anchoring
information.

Data S7. Expected heterozygosity (He) values at SNPs across link-
age groups for the entire sample set (146 West African accessions;
He_All), for subpopulation 1 (He_Subp.1) and subpopulation 2
(He_Subp.2) accessions, and for landraces (He_Landraces) and
breeding materials (He_Breeding).
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