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Abstract 
The effect of literacy on phonological processing has been 
described in terms of a virus that “infects all speech 
processing” (Frith, 1998). Empirical data has established that 
literacy leads to changes to the way in which phonological 
information is processed. Harm & Seidenberg (1999) 
demonstrated that a connectionist network trained to map 
between English orthographic and phonological 
representations display’s more componential phonological 
processing than a network trained only to stably represent the 
phonological forms of words. Within this study we use a 
similar model yet manipulate the transparency of 
orthographic-to-phonological mappings. We observe that 
networks trained on a transparent orthography are better at 
restoring phonetic features and phonemes. However, 
networks trained on non-transparent orthographies are more 
likely to restore corrupted phonological segments with legal, 
coarser linguistic units (e.g. onset, coda). Our study therefore 
provides an explicit description of how differences in 
orthographic transparency can lead to varying strains and 
symptoms of the ‘literacy virus’.  

Keywords: Connectionist Modeling, Reading, Literacy, 
Spoken word recognition. 

Introduction 
There is a well-established link between the acquisition of 

literacy and changes to the manner in which phonological 
information is processed. Children’s awareness of the 
phonological structure of words has been shown to improve 
qualitatively and quantitatively when exposed to literacy 
training (e.g. Alcock, Ngorosho, Deus, & Jukes, 2010; 
Hulme et al., 2005). Critically, similar improvements have 
been recorded in adults who receive literacy training later in 
life (e.g. Morais, 1979), indicating that changes in 
phonological processing are consequent upon literacy and 
not due to extended language exposure or other 
developmental factors.  

Literacy training has also been shown to relate to 
improvements in categorical perception of speech sounds 
(Serniclaes et al., 2005). Participants who were literate 

indicated a sharper boundary in judging syllables along a 
ba-da continuum, compared to illiterates. Further, effects of 
orthography on speech perception have been reported 
widely using varying tasks (Taft et al., 2008; Pattamadilok 
et al., 2009; Peereman et al., 2009), languages (Ventura et 
al., 2004; Zeigler et al., 2008) and orthographic 
manipulations (Orthographic Neighborhood: Zeigler et al., 
2003; Orthographic Consistency: Zeigler et al., 2004). Many 
of these previous studies have investigated effects of 
literacy on phonological processing by manipulating the 
properties of the phonological form of the word. In addition, 
recent evidence from studies of language-mediated visual 
attention has linked literacy to changes in the granularity of 
online speech processing without requiring explicit 
operations on the phonological structure of the word 
(Huettig, Singh & Mishra, 2011; Smith, Monaghan & 
Huettig, 2013). In eye-tracking behavioral studies, and 
computational models of the effects, they found that literate, 
but not illiterate participants, demonstrated phonological 
cohort effects on visual search of objects with similar 
names, but equivalent levels of co-activation of visual 
search of objects with similar meanings. These studies 
suggest a broader impact of literacy-related changes to 
phonological processing that extends to language processes 
that interface with visual systems.  

Brain imaging data provides further support for changes 
to phonological processing as a consequence of literacy 
training, suggesting both an influence of activation in 
orthographic processing regions when processing speech 
(Dehaene et al., 2010) and a restructuring of phonological 
processing regions (Perre et al., 2009, 2011; Pattamadilok et 
al., 2010). 

Computational modelling studies offer a means by which 
mechanisms that drive such effects can be isolated. Harm & 
Seidenberg (1999) captured explicitly the emergent effects 
of learning orthographic-to-phonological mappings on 
phonological representations in a connectionist model of 
reading. They trained a model that learned to stably 
represent the phonological forms of a large set of English 
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words (the “illiterate” model), and compared this to a model 
that also learned to map orthographic forms onto the same 
phonological representations (a “literate” model). They 
found that the literate model represented phonological forms 
of words with a higher degree of componential structure 
than the illiterate model. For instance, the model was tested 
on its ability to reconstruct individual phonological features 
within phonemes, and the literate model was able to do this 
more accurately than the illiterate model, akin to the 
increased sensitivity of the categorical boundary between 
similar phonemes in literate participants (Serniclaes et al., 
2005). Similarly, the model was also tested on its ability to 
reconstruct single phonemes that were degraded in the 
phonological input, the literate model performed with a 
higher degree of accuracy, indicating greater ability to 
construct individual phonemes in the spoken form of the 
word.  

The model was analyzed in terms of the connection 
weights between different regions of the words’ 
phonological representations. The literate model resulted in 
stronger connections from each phoneme to itself, and 
slightly weaker connections to other phonemes within the 
word. This suggested that the model’s granularity of 
processing was affected by orthographic training – the 
literate model processed more phoneme-by-phoneme, 
whereas there was less componential processing in the 
illiterate model. Hence, effects of experience of orthography 
mapping onto phonology qualitatively changes the way in 
which the phonological forms of words are represented, 
even when orthography is not directly implicated in the test.  

Effects of different orthographies on speech 
processing 

It is therefore understandable that the analogy of literacy as 
a “virus” that “infects all speech processing…” (Frith, 1998) 
has resonated so strongly with researchers within this field. 
However, evidence from cross-linguistic studies suggests 
that this virus may have many strains, each giving rise to a 
different set of symptoms. One factor that seems to play a 
key role in determining the precise effect that literacy has on 
speech processing is the orthographic transparency of a 
language. 

Orthographic systems differ radically in how they map 
onto the speech sounds of the language. English represents a 
semi-transparent language as individual letters provide a 
reasonable approximation to the word’s pronunciation, 
though there are many irregularities present in the set of 
letter sound mappings (e.g. PINT. YACHT). Languages 
such as Serbian, however, demonstrate a very shallow or 
transparent orthography, as each letter corresponds with 
perfect regularity to a single speech sound. Chinese, at the 
other extreme, provides an example of a deep orthography 
(a morphosyllabic language). Chinese characters are each 
pronounced as syllables, and are composed of two portions: 
a phonological and a semantic radical. The phonological 
radical provides a hint about the pronunciation of the 
syllable, but this is modulated by the semantic radical. The 

effect is that each character’s pronunciation has to be 
learned individually, and there is almost no componential 
structure at the syllable level in terms of relationships 
between orthography and phonology. 

Much of the evidence reported earlier in this section 
describes effects of literacy observed in transparent or semi-
transparent languages. However, recently the body of 
evidence examining the effects of literacy training on 
phonological processing in less transparent languages such 
as Chinese has grown substantially (e.g. Tan et al., 2005; 
Shu et al., 2008; Brennan et al., 2013). 

Shu et al.’s (2008) study supports predictions that changes 
to the granularity of phonological processing as a 
consequence of literacy training are modulated by 
orthographic transparency (Ziegler and Goswami, 2005). 
They measured the performance on syllable and rime 
awareness in Chinese children aged 3 to 6 years, and found 
that this improved gradually with age. However, awareness 
of phoneme onset and tone awareness only improved above 
chance when exposed to additional instruction which made 
explicit the relationship between orthography and phonemes 
(by training additionally in Pinyin).  

Further evidence can be found in Brennan et al.’s (2013) 
study that contrasted the effects of literacy training in a 
transparent language (English) with training in a non-
transparent language (Chinese), on phonological processing. 
They compared neural activity in Chinese and English 
children (8-12 years of age) and adults when making 
rhyming judgments to pairs of spoken words. Differences 
over the course of development in activity in brain regions 
associated with phonological processing (superior temporal 
gyrus) were only observed between English speaking adults 
and children, further this difference was more pronounced 
for words with conflicting orthography (e.g. PINT – MINT). 
These findings provide evidence that phonological 
processing regions can be effected by literacy training and 
that orthographic transparency can influence the nature of 
this effect.  

Together this evidence supports the position that the 
consequences of literacy training on phonological 
processing differ as a consequence of orthographic 
transparency. The current study aims to capture these 
differences explicitly in a computational model based on 
Harm & Seidenberg (1999). Within this model we 
manipulated the transparency of the orthography on which 
the model is trained. We predicted that the type of literacy 
training would have an effect on the componential structure 
of phonological processing in the speech processing of the 
model. In particular, we examined the effect of transparent 
versus nontransparent literacy training on the model’s 
ability to reconstruct phonological features of phonemes, 
and also the model’s ability to reconstruct individual 
phonemes in words. 

Method 
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Figure 1: Network Architecture (Harm & Seidenberg, 
1999). 

Architecture  
The model used within this study was based on Harm & 
Seidenberg’s (1999) connectionist model of reading (see 
Figure 1). 

The model contained a phonological attractor network 
which was trained to develop stable representations of 
spoken forms of words. This network consisted of a 
phonological layer of 200 units which were fully self-
connected and fully connected to and from a set of 100 
clean up units. The phonological layer comprised 8 
phoneme slots of 25 units representing the presence or 
absence of a specific phonological feature. Speech input was 
simulated as input activations to the phonological layer, and 
phonological production was simulated as output activation 
across the same set of units in the phonological layer.  

Written input was presented at an orthographic layer 
consisting of 260 units. The orthographic layer was 
composed of 10 orthographic slots, each consisting of 26 
units, with each unit corresponding to a distinct letter. The 
orthographic layer was fully connected to a hidden layer of 
1000 units, which was fully connected to the phonological 
layer.  

The model differed from that presented in Harm & 
Seidenberg (1999) as additional resources were provided in 
the form of extra processing units in the cleanup layer and 
hidden layer to enable the model to learn the complex non-
transparent mapping between orthography and phonology. 
Pilot studies demonstrated that the model failed to learn 
accurate and stable representations without these additional 
resources.  

Representations  
A corpus of 6,188 monosyllabic English words, each 
between 1-10 letters in length was used to train and test the 
transparent orthography model. Each word comprised an 
orthographic and phonological representation. Orthographic 
representations were 260 unit binary vectors, with 26 units 
encoding each letter slot. A single unit indicated the 

presence or absence of a given letter in each letter slot. 
Phonological representations were 200 unit binary vectors, 
with 25 units encoding each of 8 phoneme slots. Phonemes 
were defined in terms of 25 phonological features as 
implemented in Harm & Seidenberg (2004). Orthographic 
and phonological representations were vowel centered to 
control for variation in vowel positions.  

The non-transparent orthography model was trained using 
the same set of orthographic and phonological 
representations, but with orthographic representations 
randomly reassigned to phonological representations (non-
transparent corpus). Thus, the model had to learn the 
relationship between the whole word and its pronunciation 
without recourse to regularities at a finer grain level, for 
example between particular letters and phonemes, as was 
available for the transparent orthography model. The two 
orthographies were therefore controlled in terms of the set 
of inputs and outputs, but what differed was the extent to 
which the mapping between them was componential. 

Training  
All connections within the network were initialized with 
random weights (µ = 0, σ = 1), except for the self-
connections in the phonological layer which passed 
activation back to the same unit. The weights on these 
connections were fixed to 0.75 and were therefore not 
adjusted during training to ensure that input to the 
phonological network decayed over time, thus forcing the 
phonological network to developed phonological attractors.   

Training of the model consisted of two stages, similar to 
Harm and Seidenberg’s (1999) model of reading: a pre-
literate stage, which simulated developing experience with 
listening and speaking the phonological forms of words, and 
a literate stage, simulating learning to map written onto 
spoken forms of words.  

The pre-literate stage, the first 1 million training trials, 
involved training the phonological attractor to maintain a 
stable phonological representation at the phonological layer 
over time. For each word, the phonological representation 
was clamped at the phonological layer from time step 0 until 
time step 2. The model then cycled activity for a further 5 
time steps (ts). At time steps 5-7 the target phonological 
representation was presented to the phonological layer, error 
was computed as the Euclidean distance between actual and 
target activation at the phonological layer and then error was 
back-propagated and connection weights updated within the 
phonological attractor network. 

The second stage of model training included literacy 
training trials, in which the model was required to map from 
orthography to phonology.  The orthographic representation 
of a word was clamped to the orthographic layer for the 
entire training trial. At time steps 5-7 the word’s 
phonological representation was presented to the 
phonological layer as a target, with error (distance between 
target and actual phonological layer activations) back-
propagated and weights updated throughout the entire 
network.  
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The model was trained on a further 9 million training 
trials with orthography to phonology (reading trials: p = 0.8) 
and phonology to phonology trials (listening trials: p = 0.2) 
randomly interleaved, although reading trials were four 
times more likely to occur than listening trials.  

Words were sampled randomly according to their log-
compressed frequency, with minimum frequency set at 0.05. 
Four simulations each were trained for the transparent and 
the non-transparent models, Each simulation run differed in 
terms of the random initial starting weights, and the random 
selection of words. Each instantiation of the non-transparent 
model was trained on a different corpus each with a new 
random reassignment of orthography-phonology mappings. 
Networks were trained with a learning rate of 0.05. 

Results 

Pre-Test 
Once trained networks were tested on their ability to 
perform each training task for each word in the training 
corpus to ensure sufficient training had been provided for all 
models to learn the requisite mappings. To test listening 
performance the phoneme closest in euclidean distance to 
the activation of units in each phoneme slot at the end of a 
listening trial was computed, providing the phonological 
representation produced by the model. This was compared 
to the phonological representation of the word presented at 
the beginning of the test trial. If all phonemes within the two 
representations matched, then the trial was registered as 
successful. Networks trained on a transparent corpus 
successfully performed the listening task for all words in the 
corpus. Networks trained on a non-transparent corpus 
performed the listening task successfully for 99.9% (SD = 
0.0003) of words in the corpus. A similar procedure was 
applied to examine performance on reading tasks. A reading 
trial following the training procedure was conducted for 
each word in the corpus. The phoneme closest to the 
activation of units in each phoneme slot at the end of the 
reading trial was computed. If this matched the phonological 
representation of the word presented to the orthographic 
layer then the model was registered as having correctly read 
the word. Networks trained on a transparent corpus read all 
words within the training corpus successfully. Networks 
trained on a non-transparent corpus successfully read 98.8% 
(SD = 0.0009) of words within the training corpus.  

To examine differences in the phonological processing of 
networks trained on a transparent corpus and those trained 
on a non-transparent corpus we tested networks on their 
ability to reconstruct phonological features of phonemes, 
and to reconstruct individual phonemes in words when 
corrupted by noise. 

Pattern Completion 
Pattern completion tests examined the model’s ability to 
restore each active phonological feature, in each phoneme, 
of each word. The phonological representation of a given 
word was clamped to the phonological layer for ts 0-2 yet 

with a single active phonological feature switched off. The 
network was then free to cycle until ts 7 at which point the 
activity of the unit representing the corrupted phonological 
feature was recorded. The distance between its level of 
activation at the end of the test trial and its correct value (i.e. 
1) was recorded. Figure 2 presents the mean sum squared 
error calculated over all features, phonemes and words for 
networks trained on a transparent corpus and networks 
trained on a non-transparent corpus. Networks trained on a 
transparent corpus re-activated corrupted phonological 
features more accurately than networks trained on non-
transparent corpora [µ = -0.013, σ = 0.005, t(3) = -4.747, p 
= 0.018]. 
 

 
Figure 2: Mean sum squared error (SSE) calculated between 

correct feature and restored feature 

Segment Restoration 
Networks were also tested on their ability to restore entire 
phoneme segments. On segment restoration trials a single 
phoneme was replaced with random noise. Features within 
the corrupted segment were assigned values between [0 – 
0.1] with p = 0.8 and values between [0 – 0.5] with p = 0.2. 
Networks were tested on their ability to restore each 
phoneme within each word. During ts 0-2 the corrupted 
phonological representation was clamped to the 
phonological layer, the network was then allowed to cycle 
freely until ts 7. At ts 7 activation in the phonological layer 
was recorded. The nearest neighbor phoneme (euclidean 
distance) was identified given the activation recorded in 
each phoneme slot.    

 
Phoneme Restoration For each network, the average 
(euclidean) distance between the pattern of activation in the 
phoneme slot corresponding to the location of the corrupted 
phoneme and its nearest neighbor phoneme was calculated. 
This provides a measure of how well a network’s 
phonological attractor component is able to restore a 
corrupted phoneme segment. Figure 3 displays the mean 
performance of networks trained on a transparent corpus 
and networks trained on a non-transparent corpus. Networks 
trained on a transparent corpus restored corrupted phonemes 
marginally better than those trained on a non-transparent 
corpus [µ = -0.045, σ = 0.029, t(3) = -3.054, p = 0.055].  
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Figure 3: Mean Euclidean distance calculated between 

nearest neighbor phoneme and restored phoneme 
 

Validity of Segment Restorations Networks were also 
tested on the validity of the segment restored. The restored 
sub-syllabic segment (onset, vowel or coda) in which the 
corrupted phoneme was embedded was examined and 
recorded as a legal restoration if the segment existed in the 
training corpus. Figure 4 displays the proportion of illegal 
restorations made by networks trained on a transparent 
corpus and networks trained on a non-transparent corpus. 
Networks trained on a transparent corpus made more illegal 
segment restorations than those trained on a non-transparent 
corpus [µ = -0.102, σ = 0.012, t(3) = -16.492, p < 0.001]. 
 

 
Figure 4: Proportion of illegal segment restorations 

Discussion 
Harm & Seidenberg (1999) demonstrated that literate 
networks trained on a transparent orthography restored both 
phonetic features and phonological segments (onset, vowel, 
coda) more accurately than illiterate models.  Our 
simulations show that networks trained on a transparent 
orthography also outperform models trained on a non-
transparent orthography in restoring phonetic features and 
phonemes. However, models trained on a non-transparent 
orthography were more likely than models trained on a 
transparent corpus to restore phonemes to form valid 
segments at a coarser grain size (onset, vowel, coda).  

These findings suggest that transparent models processing 
of phonological information is more componential (at the 

phoneme level), and subsequently models trained on a non-
transparent orthography are more likely to process 
phonological information more coarsely. Importantly each 
gains contrasting benefits in phonological processing as a 
consequence of the mappings on which they are trained.  
This is an important extension of the findings of Harm & 
Seidenberg (1999). In our simulations we have shown that 
literacy training has an effect on phonological processing 
both in the case of transparent and non-transparent 
orthographies and further that transparency defines the 
nature of the effect.  

Both models benefit from the regularities of the 
orthographic training. In the transparent model increases in 
finer grain phonological processing arises as a consequence 
of the network learning from consistencies at the phoneme 
level between orthography and phonology. It is pushed 
towards processing words phoneme by phoneme. Therefore, 
when noise was applied to a phoneme segment the 
transparent model was more likely to restore the distorted 
segment with a segment that was closer to a valid phoneme.  

In contrast, in the non-transparent model, correspondence 
between orthography and phonology only exists at the word 
level. The model is therefore more likely to develop 
phonological attractors at a coarser grain size. For this 
reason corrupted segments are increasingly pushed toward 
valid segments at the level of onsets, vowels or codas.  

The finding that transparent networks processing of 
phonological information is more componential than non-
transparent networks connects with established empirical 
findings such as the results of Shu et al., (2008) in which 
phoneme awareness increased in Chinese children when 
exposed to training on a transparent orthographic system.  
Further this study’s findings provide additional support for 
theoretical models that argue that the granularity of 
phonological processing developed is dependent on the 
transparency of the orthography on which an individual is 
trained (Zeigler & Goswami, 2005). 

Our results also provide predictions for future empirical 
studies. Transparent networks outperformed non-transparent 
networks on phonetic feature restoration. This predicts that 
individuals trained on deep orthographic systems such as 
Chinese will perform worse than individuals trained on 
shallower orthographies such as English in identifying fine 
phonetic contrasts. A second prediction follows from the 
finding that non-transparent models were more likely to 
generate valid restorations of coarser grain units (e.g. onset, 
coda). Should this finding represent the development of 
stronger phonological attractors at onset, coda and word 
levels, then individuals trained on non-transparent 
orthographies should be more resilient to corrupted speech 
at these grain sizes than individuals trained on transparent 
orthographies.  

Studies that examine the impact of literacy training on 
phonological processing regions within the brain have 
largely focused on effects in individuals trained on 
transparent or semi-transparent languages. Our findings 
suggest that phonological restructuring is likely to occur for 
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both populations trained on transparent and non-transparent 
languages yet the nature of this restructuring and therefore 
its neural and behavioral consequences will differ. 

Previous modelling of the effects of literacy on 
phonological processing provided an explicit description of 
how literacy leads to improved phonological processing. 
Within the current paper we extend this previous work by 
describing how characteristics of the language in which 
training is received can have significant consequences for 
the nature of the effects observed.  

Behavioral and brain imaging studies are beginning to 
define various strains and symptoms of the literacy virus. 
Computational modelling studies such as the one presented 
here provide a means of identifying the factors that 
categorize these strains. Such models can then be used to 
raise predictions of their resulting symptoms that can then 
be tested empirically. 
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