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Abstract

One of many major issues that plagues Internet voting is the potential for a distributed denial of
service attack on the voting servers. These denial of service attacks are harmful because they block
voting during the downtime. In addition, most current online voting protocols are centralized with only
one voting server, making such an attack likely to disenfranchise some voters. The question is how to
combat these attacks. One solution is to distribute the servers in a parallel manner, so in case one server
goes down, the others can still provide service to voters. Whereas many online voting systems assume the
constant availability of the voting infrastructure, we focus on the event that a server becomes unavailable.
We extend a previously established online voting protocol, Helios, by adding multiserver capability. These
servers communicate using the Paxos protocol, an algorithm for fault tolerant distributed environments.
An analysis of this solution concludes that a multi-server Helios network communicating through the
Paxos protocol promises safety and robustness.

1 Introduction

As the Internet becomes increasingly accessible on an international scale, demand has increased for integrat-
ing aspects of public administration into this convenient infrastructure. Foremost in any democracy is the
ability to vote, and the capability to vote online is a major point of interest. After all, the Internet allows
anyone to purchase and sell goods, perform banking transactions, and conduct entire businesses, along with
just about anything else imaginable. Why, then, have we not yet transitioned to Internet voting?

Internet voting has important merits that bear consideration. Access to physical polling sites is a sig-
nificant issue for many demographics, including the disabled, elderly, people working or studying away from
home, and overseas voters. The convenience and accessibility of voting from the comfort of home rather than
waiting in line at a polling site can be appealing and could potentially engender better voter turnout [TM03].
Aside from saving time and transportation costs, the vast majority of people (especially in developed coun-
tries) have some sort of access to the Internet: according to the a 2012 FCC study, 94% of Americans have
access to some sort of Internet [FCC12], while a 2015 study finds that 83% of Americans have advanced
broadband [FCC15]. The omnipresence of the Internet has the potential to enable many voters to participate
where doing so would otherwise be inconvenient or infeasible. It also could substantially reduce the cost of
elections given the expenses of physical voting machines, election staff, ballots, and other election-related
materials. And, regardless, there are times when desperate election officials have turned to the Internet on
their own initiative, such as when Hurricane Sandy shut down the ability of many voters (and even poll-
workers to be able to physically get to polling places, so some election officials resorted to allowing ballots
returned by email—in at least one case, first to the official email address of voting officials, and then later,
when the associated mailbox filled up, to the election official’s personal AOL email address [Neu13].

1



However, voting over the Internet is not common in civic elections. Indeed, most countries disallow it
outright for several reasons [SJ12, Eps13]. In general, Internet voting comes with drawbacks not found in
traditional voting. One of the reasons why Internet voting has been slow to get accepted is that of trust.
There is a significant lack of trust in both the client and the network. Voting systems may be attacked, and
if they are, the attackers may be able to alter votes, block them, or forge them. They may also interfere
with the proper tallying of the votes, or be able to associate ballots with individual voters, enabling voter
coercion [VAL04] or vote selling [Ben13]. Some of these issues can be solved technically, but other problems
require the development of policies and procedures to handle them. These issues come up at least in part due
to the lack of humans to supervise an Internet voting process, as it all takes place within the “black boxes”
of computer systemsthat may be remote and unattended by poll workers. This is in stark contrast to the
public and heavily monitored physical polling sites. Additionally, incorporating the Internet into elections
creates the possibility of remote, international sabotage — attacking election servers from different countries
and on a wide scale suddenly becomes much more convenient.

However, there are some situations in which Internet voting may be useful. In America, voters who fall
under the Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA) voters have to deal with a
slew of problems such as only 75% of the votes cast being counted, and voters having to surrender their
privacy when voting [Wag13]. As such, 49 out of the 50 states do allow UOCAVA to submit absentee
ballots electronically. While in many cases, this definition of “electronically” includes faxes, one state does
allow web uploads and several others allow ballots to be returned via e-mail. Only Alaska has allowed all
eligible voters to vote online [Nat15]. Even this is possible only because UOCAVA voters returning their
ballots electronically typically agree to waive their privacy in order to cast their vote. In this situation,
Internet voting may be appropriate, as some have suggested [Wag13], and further development of techniques
to improve the robustness of such systems, such as end-to-end cryptographic schemes, to avoid UOCAVA
voters having to waive their privacy rights, would be useful.

To that end, significant efforts have been made to overcome some of the key vulnerabilities that arise
in Internet voting. For example, several online voting systems give the voter the option to audit their
ballot cryptographically to ensure that the vote they cast was correctly recorded and counted. Numerous
usability issues have been identified in three of the most prominent such systems, Helios [Adi08], Prêt à
Voter [RBH+09] and Scantegrity II [CCC+08] that have prevented voters from casting a ballot [AKBW15].
That said, one additional vulnerability that these systems have not yet addressed is the possibility of a denial
of service attack on the election servers. While a distributed denial of service (DDoS) attack on any web
server can be harmful, an attack during an election can be particularly dangerous. During a successful DDoS
attack, a web server will lose its ability to provide its service to a client. This means that voters would be
unable to cast their ballot during that time. Given the limited timetable of an election, a DDoS attack on an
election server might mean that some ballots never get cast or counted. It is unreasonable to expect voters
who were unable to connect to the server to find transportation to a physical voting site to cast their ballot.

This paper describes a means of combining Helios, one of the three noteworthy systems mentioned earlier,
with a system that can defend against many denial of service attacks. We do this by implementing a crash-
resistant, fault tolerant scheme with multiple election servers. Thus, if some election servers go down or
become unavailable due to denial of service attacks, enough additional functioning servers would remain to
handle the election. We distinguish this method from traditional Internet voting security schemes, most of
which focus primarily on front-end user interaction and cryptographic protocols. In doing so, they often
assume the constant accessibility of the Internet voting infrastructure — an unsafe assumption in this day
and age. We demonstrate our approach by augmenting an existing Internet voting system, Helios [Adi08],
with multiple servers that communicate through the Paxos fault tolerant protocol [Lam98]. By simulating
denial of service attacks by shutting off servers at random times, we can provide evidence of safe progress
using Paxos in the face of servers that have crashed or become unavailable.

In this paper, Section 2 identifies related work about Internet voting and Paxos. Section 3 describes the
methodology behind setting up Distributed Helios. Section 4 covers the experiments and an analysis of the
results. Finally, Section 5 concludes the paper with a look into the feasibility of Distributed Helios and ideas
for future work.
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2 Related Work

A variety of on-line public elections have been proposed or have been occurred. Additionally, a variety of
research approaches have been suggested. In this section, we describe several examples where there were
denial of service attacks present or a documented solution to denial of service attacks that could be improved.

2.1 Public Elections

The Secure Electronic Registration and Voting Experiment (SERVE) was a 2004 attempt by the U.S. De-
partment of Defense Federal Voting Assistance Program (FVAP) to enable UOCAVA voters to vote over the
Internet from anywhere in the world [JRSW04]. SERVE was never actually deployed [WP07], and indeed,
there were several vulnerabilities in the proposed system, including a lack of voter verifiable audit trails. An
important point regarding SERVE is that whereas physical voting locations are generally spread out enough
that possible attacks would only affect individual polling stations, SERVE’s centralized servers were vulner-
able to denial of service attacks, which could cripple the voting service itself, thereby interfering with the
voters’ ability to cast votes, or the attack could have targeted the networks around the area of a particular
demographic, skewing the votes. Although these attacks are detectable, there is no clear protocol on how to
respond should they affect the results of the election.

In early 2007, the country of Estonia developed its own Internet voting project after an earlier small-scale
success in 2005 [WP07]. The Estonian system improved upon SERVE in several ways, including the use
of a secondary, follow-up phase after the initial voting, where the eligible voters could vote traditionally
and could overwrite their Internet votes if they so wished. However, a recent study by Springall and
Halderman reproduced the Estonian Internet voting system in a lab environment and found several glaring
weaknesses [SFD+14]. Also, even though the Estonian Internet voting system is an improvement over
SERVE, its solution to DDoS attacks is to shut down all Internet voting and revert back to traditional
voting. Currently, the Estonian Internet voting infrastructure relies on four servers, only one of which is
accessible to the public and therefore easy to lock down during an attack, which helps explain Estonia’s
solution to a DDoS attack. If the government wants Internet voting to become a mainstay of elections, it
must come up with more effective countermeasures to deal with DDoS attacks and other avenues of attack.

2.2 Research Efforts in Online Voting

Several research projects have sought to develop new voting schemes for online voting from the bottom up.
In order to do this, the developers of these voting systems have attempted to take a holistic view of elections,
beginning with the key properties and requirements of elections. There are several key security properties
of election systems that are especially relevant to Internet voting [RBH+09]:

• Integrity: Integrity in an election requires that each stage of the election be honest, meaning that a
vote must be recorded as it was intended by the voter, properly recorded as a cast vote, and tallied as
it was recorded. Integrity ensures that nothing was altered.

• Privacy: The privacy property assures secrecy in both directions of a vote: given a particular vote,
one cannot figure out who cast the vote, and given a particular voter, one cannot figure out how he or
she voted. Voters should not be able to prove how they voted even if they wanted to; so, the privacy
property must hold even when the voter does not want it to hold.

• Verifiability: An election system that is verifiable is able to be individually or publicly audited. An
individual should be able to confirm their ballot was cast, and the public should be able to confirm
that the votes were recorded properly and counted (without sacrificing the other security properties)

• Robustness/Availability: Systems that are robust are able to function properly in spite of random
faults or intentional attacks. That is, the service should still be available if a server crashes or is
compromised. Some voting schemes acknowledge the possibility of such failures and list possible
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solutions, but they have yet to be implemented and tested in practice. Our system aims to promote
the availability of the voting service even if servers are under attack.

In particular, with regard to these properties, one specific notion of verifiability is that of end-to-end
verifiability – all stages of the election, from ballot casting to vote tallying, should be verifiable without
relying on trusting the staff, the machinery, or any intermediate step, while being resistant to coercion and
vote selling. Recent research efforts have seen trends toward using cryptographic primitives to accomplish
this. Systems such as Helios [Adi08], Prêt à Voter [RBH+09] and Scantegrity II [CCC+08] use cryptographic
techniques to satisfy this property. However, as noted earlier, despite the desired properties of robustness and
availability, these systems still rely primarily on a single server to run elections, and are therefore significantly
vulnerable to denial of service attacks.

2.2.1 Helios

Helios is an open-source Internet voting system created and managed by Ben Adida that promises end-to-
end voter-verifiability and secrecy [Adi08]. Helios is available in its entirety from GitHub. It allows anyone,
even non-voters, to audit elections via cryptographic proofs on a web browser. The Helios protocol borrows
heavily from Benaloh’s Simple Verifiable Voting protocol [Ben06]. The key feature of this protocol is the
separation of ballot preparation and ballot casting, which is key to auditability. It allows anyone, including
non-voters, to audit and test the system. Only upon casting the ballot is the voter authenticated. In the
Benaloh process, the voter chooses the election and makes his or her candidate selections. After confirming
the selections, the ballot preparation system encrypts the vote and offers the voter a choice to either audit
the ballot or seal it. Upon auditing the ballot, the preparation system will display the ciphertext and allow
the voter to verify that the ballot was correctly encrypted. If the voter wants to then seal and cast the ballot,
the system will re-encrypt it with a new ciphertext. Only after sealing the ballot will the voter authenticate
himself or herself to the voting system and, if successful, have the ballot recorded. After a voter casts their
encrypted ballot, the ballot is posted ona public bulletin board along with the voter’s name, allowing anyone
to find the voter’s encrypted vote. The votes can then be tallied, and all the election data, including the
shuffles, decryptions, and tallies, can be downloaded by an interested party.

Helios’s main interface and data storage revolve around its website and database, which are hosted on a
single server.1 One key aspect of the Helios website is that once the ballot is loaded on the voter’s browser, no
further network calls are made until the ballot is encrypted. Helios accomplishes this by using a single-page
web application and relies on JavaScript to deal with pre-loading, rendering, and updating HTML pages
without calling upon the server to load new pages. The current Helios back-end is a web application on a
single server. All election data is stored in a PostgreSQL database. Server logic is implemented in Python
and the web application makes liberal use of Django, a high-level Python web framework.

The administrator is authorized to create, edit, and review ballots. Upon final examination and approval
of the ballot details, the election is frozen, and no further changes can be made to the ballot or voter list.
An e-mail can then be sent to voters with their Helios user name, the SHA1 hash of the election, a link
to the voting site, and a randomly generated 10-character password that the administrator does not know.
Voters can then make their selections for the races on the ballot. Visiting the URL results in a single-page
web application, where all the necessary parameters are preloaded. Page transitions and button clicks are
handled by JavaScript code.

After finishing the selection process, the voter can then seal the ballot, which will cause the ballot to be
encrypted. A SHA1 hash of the ciphertext is displayed. The voter can then either audit the ballot or cast the
vote. Choosing to audit reveals the random key used to encrypt, and the voter can verify the encryption with
the provided Python Ballot Verification program. After auditing, the ballot is “unsealed” and changes can
be made, or the ballot can be resealed with a different random cryptographic key. Opting to cast the ballot
will discard the plaintext and key. The voter must then log into the server, which is the authentication step
— it is this step during which a network call is finally made. After successful authentication, Helios sends
the voter a confirmation e-mail (the “receipt”) with the encrypted vote and its SHA-1 hash. At any point

1Helios Web Site: http://heliosvoting.org
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after successfully casting the ballot, the voter — or anyone else — can go to the election’s public bulletin
board and view the encrypted vote. If a voter opted to audit the ballot, the encrypted, audited ballot will
be posted on a separate page for anyone to verify.

Finally, once the election is over, the election administrator can prevent further ballots from being cast
and compute the encrypted tally. The encrypted votes will be combined into the tally, and the trustees of
the election are responsible for decryption. Before the election, each trustee generates a keypair and submits
the public key to Helios. During the decryption phase, each trustee will provide the corresponding private
key. After decryption, the final tally is first reviewed by the administrator and then released to the public.

In Adida’s original Helios paper, he notes that he made a conscious decision to “forgo complexity and opt
for . . . a single server” [Adi08]. While one server does lend itself to simplicity, the resulting system becomes
vulnerable to attack. A distributed denial of service attack could easily bring down the server and cripple
the entire system.

2.3 Recent Extensions

We note in passing that, while Greece has not yet embraced Internet voting, many Greek universities have
used online voting for their elections [TPLT13]. The Greek university Internet voting system used is called
Zeus, and is heavily based on Helios. Like Helios, Zeus is end-to-end verifiable and offers computationally
secure privacy. Zeus was deployed by several universities in the face of opposition from political parties. The
University of Thrace was forced to annul its first election due to a coding bug that opened (started) the
election too early. A second attempt resulted in the server undergoing a slowloris attack [Ha.09], a denial
of service attack where the attacker opens many connections to the target server and sends partial requests,
causing the target to keep the connections open until the maximum concurrent connection pool is filled;
this prevents additional connections from being made [ZJT13]. Fortunately, the attackers used static IP
addresses and were swiftly blocked. The University of Patras also experienced a slowloris attack that was
dealt with easily. However, some universities — including the University of the Aegean, the Agricultural
University of Athens, and the University of Athens — had protesters stage sit-ins at the e-mail server rooms,
during which they switched off the servers and prevented voters from receiving access links through their
mail. Voters had to go to a physical location to receive their links. Overall, none of the attempted attacks
on Zeus were particularly effective, but there were not any serious attacks during the elections. The voters
in question were not particularly technology-savvy and thus were sometimes confused about steps in the
process, such as the voting receipts, because they did not understand the purpose of the receipts. None of
them chose to use the audit option, implicitly trusting that the Zeus system was working.

Some clear lessons can be learned from these previous attempts at Internet voting, the most obvious
of which is that Internet voting is not yet ready for large-scale deployment. Gaps in meeting the key
requirements remain in the solutions that have been deployed thus far. It is difficult to find a system that is
cryptographically secure yet simple enough for a layperson to understand and robust enough to withstand
possible attacks.

3 Distributed Helios: Enhancing End-to-End Verifiable Online
Voting with Robustness to Denial of Service Attacks

Our solution to mitigate the effects of distributed denial of service attacks on election servers is to replicate
the servers that house the data using the Paxos protocol. This approach must be handled carefully, as it
can lead to instances where replicated servers are not synchronized properly. Just having multiple servers is
not enough, as their state can end up differing. If server A receives messages m1 and then m2, it is entirely
possible that, due to latency or some other reason, server B receives m2 before m1, or worse, receives m2

without receiving m1 at all. If the messages both alter the system, servers A and B will end up diverging
in state, possibly creating different outputs. Without some way to handle disagreements, the system cannot
make any meaningful progress, because it does not know what course of action to take. Maintaining state
across multiple servers can be handled by a fault tolerant protocol.
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3.1 Paxos

Paxos is a fault-tolerant consensus protocol developed by Leslie Lamport [Lam98]. Paxos is meant to solve
the problem of an unreliable network of unreliable parties trying to agree upon a result. In the network,
members are able to communicate with each other through messages that take arbitrarily long to be sent
and may even be dropped in transit. The members, which are the servers in our implementation, may also
fail at any point. Under these conditions, these members must agree on certain proposed values. Under
these assumptions, the Paxos protocol allows for the system to make progress even with a certain number
of failures.

Though originally a research concept, today Paxos is used in many practical, production systems. For
example, Chubby is a fault-tolerant system developed by Google that has been utilized in several of Google’s
distributed systems, such as Google File System and Bigtable [Bur06, CGR07]. At its heart, Chubby is a
coarse-grained distributed locking mechanism meant to achieve the goals of reliability, availability to large
numbers of clients, and simplicity. It provides a useful tool as a locking service, a name server, and for leader
elections.

While there are many versions of Paxos, every version follows the same basic formula. There are three
safety requirements for consensus: only a previously proposed value can be chosen, at most one value is
chosen, and the server will not learn that a value was chosen unless it actually has been chosen. The network
is made up of servers that take on different roles in the protocol:

• Acceptor: The acceptors are responsible for deciding whether to accept or reject a proposed value,
generally by majority vote.

• Proposer: A proposer offers a value, usually submitted to it by a client, to a group of acceptors. In
the event of multiple simultaneous proposers, a lead proposer is chosen to prevent deadlock.

• Learner: Once the acceptors agree on the proposer’s value, the learners are responsible for taking
action or executing the request.

Throughout the protocol, servers can take on multiple roles. Acceptors and proposers can end up as learners,
and learners can act as proposers in subsequent Paxos rounds. In some cases, servers will take on all three
roles. Paxos takes several rounds of communication [Lam01, MJ13]:

• Prepare Phase: In this phase, the proposer generates a prepare message, which includes a proposal
number N . The proposal number acts as a sequence number, increasing as the proposer generates more
proposals. Afterwards, the prepare message is sent to the acceptors, asking them to promise never to
accept a proposal with a lower proposal number. Additionally, it asks the acceptors for the proposal
with the highest number less than N that they have accepted, if any. The size of the set of acceptors
that the proposer sends the prepare message to may vary, but the proposer must receive a response
from a majority of acceptors to make meaningful progress.

• Promise Phase: If proposal number N received by the acceptor is greater than any of its previously
received proposal numbers, the acceptor sends the proposer a promise message that assures the proposer
that it will ignore all future messages with a lower proposal number. The acceptor stores the value of
the highest received proposal number for future use. If the proposal number happens to be less than a
previous proposal number, the acceptor will ignore the prepare message. At any point in the protocol,
acceptors can choose to ignore any message from a proposer without jeopardizing correctness.

• Accept Request Phase: Once the proposer receives promise messages from a majority of the accep-
tors, it can then create an accept message, which includes the value (or client request) and the initial
proposal number. This message is sent back to the acceptors.

• Learn Phase: If an acceptor receives an accept message, it will accept it as long as it has not already
responded to a prepare message with a higher proposal number. Once the message is accepted, it sends
a learn message to everyone else, including the learners.
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3.2 Distributed Helios

We extend the Helios system by adding the capability to withstand distributed denial of service attacks. To
accomplish this, we replicate the Helios server across multiple machines. We then have to ensure that the
same state is maintained across the different servers. To do this, we use a crash tolerant protocol. Through
combining Helios with the Paxos protocol, our goal is to create a robust online voting system that can
continue functioning correctly in the face of a distributed denial of service attack. The Paxos protocol helps
handle synchronization issues — any changes to the server must be approved by a majority of the network
before being enacted.

Our implementation of Paxos makes no distinction between the acceptor set and learner set. All servers
simultaneously act as acceptors and learners. If we want to expand the network to accommodate more
servers, it may be beneficial to limit the subset of acceptors in the interest of latency.

3.2.1 Implementation

The Helios server code is publicly available on GitHub.2 To replicate the servers and make testing easier,
we used VMWare Workstation 10.0.3 to create new virtual Ubuntu 14.04.1 64-bit servers. We cloned the
Helios server system from GitHub onto these clean virtual machines and modified the files thereto add the
fault tolerance. The Django framework, used by Helios, allows for multiple databases in the network. These
databases can be located on separate machines. Helios uses PostgreSQL for its database purposes.

Helios offers authentication using Google, Facebook, Twitter, and LinkedIn accounts. In our case, we
enabled Google authentication for testing. Google recently revamped their authorization system API to use
only the OAuth 2.0 protocol, causing Helios’s implementation of OpenID to become obsolete as of 2015.
Any new OpenID functionality needed to be migrated to Google’s Google+ sign-in. Fortunately, Ben Adida
was kind enough to update the Helios code on GitHub to accommodate the change in systems. As Google
does not allow private IPs as redirect URIs, and the virtualizing servers used private IP addresses, we had
to alter Helios’s authentication code to route the redirect URI to an arbitrary domain name.

In Helios, updates to the PostgreSQL database are done using the Django save() function. save()

by default will save to the primary database, but it also has the option to save to a particular database if
there are multiple databases in the network. We overrode the save() function in each Python class to loop
through all the servers available and save to each one (assuming that the Paxos protocol agreed upon the
save):

def actualsave(classtype, obj):

for currentserver in servers:

super(classtype,obj).save(

using=currentserver[0])

By default, Django objects have auto-incrementing primary keys that are saved as an attribute when the
save() function is first called. Caution is needed when dealing with the primary keys, since multiple save
requests that get rejected by Paxos might lead to primary key collisions.

3.2.2 Communication

To facilitate communication among servers, we used Twisted, an event-driven open-source networking engine
for Python. Twisted is robust, flexible, and stable, but most importantly, it is asynchronous, meaning that
waiting for messages will not block code from running like synchronous communication would. Twisted
engines respond to events as they arrive onto the network.

Twisted instantiates protocols per connection to the network and configuration data is discarded when
the connection is completed. Most of the code to handle incoming events is in a protocol instance. Persistent
configuration is stored in a protocol factory, which is responsible for handling the creation of new protocol
instances for each new connection.

2https://github.com/benadida/helios-server
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Twisted is useful for creating both clients and servers. We repurposed the Helios manage.py file to make
Helios simultaneously act as both a Twisted server and a Twisted client. Both the client and server use a
modified LineReceiver Twisted protocol; this simple protocol handles receiving and sending lines across a
connection. The lines that we send are JSON objects that contain:

• Message type: The message is either a prepare (PREP), promise (PROM), accept request (ACC), or learn
(LRN) message

• Class name: The name of the Python class that Helios is saving to the database

• Highest sequence number: The highest sequence number that the current server has seen

• Current round number: The round number of the server that sent the first message

In our implementation, the client protocol sends PREP and ACC messages to the server protocol and waits for
the server to reply with the respective PROM and LRN messages. If it receives enough LRN messages, it will
proceed to use the overridden save() function to save the update to all the servers in the database.

The client factory, which produces the client protocol instances, inherits from the ReconnectingClient-
Factory subclass. A ReconnectingClientFactory factory will automatically attempt reconnection to a server
if the connection is lost or broken. The number of reconnection attempts depends on a timer that grows with
an easily modifiable (usually exponential) factor, and a successful reconnect attempt will reset the delay.
We set the initial reconnect delay at 3 seconds with a 1.3 factor multiplying the delay on each subsequent
attempt.

One significant aspect of Twisted is that neither protocols nor factories have any knowledge of the
network. This is intentional so that neither of them require blocking on code to wait for network activity.
The Twisted reactor class is the class that actually listens on a given port and network interface, whether
it be TCP or UDP or some other protocol. The Twisted reactor.run() method, which is used to start
listening for connections, does block on code, so we created a separate thread for the reactor to run on,
allowing the rest of the code to continue running.

It should be noted that these connections are unencrypted to reduce latency. No personally identifiable
information regarding the election itself — the voter, the ballot, the list of trustees, and so on — is ever
sent over the connection. Also, as our threat model deals only with denial of service attacks, and does not
include corruption attacks.

4 Results

4.1 Experiment Details

The two most important considerations with Distributed Helios are protocol correctness and running time.
To test both, we created several different test case environments, with Helios running on a single server
without Paxos and Helios running on 3, 5, and 7 servers with Paxos, respectively.

The first environment, where a single Helios server runs without Paxos, serves as the control environment.
An odd number of servers for most of the other environments was chosen for reasons of clarity. It is more
intuitive to demonstrate a majority of acceptors on an odd number of servers than an even amount. It should
be noted that most real-life applications of distributed fault tolerance use between three and seven replica
servers, thereby tolerating between 1–3 failures, given that Paxos-like protocols are able to tolerate f crash
failures for every 2f + 1 replicas [CGR07, RJ08].

4.1.1 Correctness Testing

Adding the Paxos layer on top of Helios introduced a level of complexity that increased the probability of
error. Therefore, we needed to verify that the Helios servers operate correctly under the Paxos protocol.

A control test was done on the default non-Paxos Helios, in which an entire election process was recreated
to verify normal operation. The entire election process consists of:
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1. Creating an election

2. Updating or modifying the eligible voters

3. Adding or modifying trustees

4. Adding questions and candidates to the election

5. Freezing the ballot and allowing voting

6. Voting

7. Auditing the ballot

8. Posting the audited ballot to the public bulletin board

9. Casting the completed vote

10. Viewing audited ballots on the public bulletin board

11. Freezing the election, preventing any more votes

12. Tallying the votes

13. Releasing the election results

The same process was repeated with the Paxos-Helios environments. It was soon discovered that some
pages would load more quickly than the Paxos protocol could execute, causing the pages to behave as if the
objects were not being saved until they were refreshed. To counter this, we imposed artificial wait times on
certain page loads. The wait times had to be increased as the number of servers increased. Even worse,
sometimes sequential code fragments were executed before earlier code had finished saving objects, creating
“list index out of bounds” errors because the code was trying to access the as-yet-unsaved objects. Special
attention had to be paid to these areas of Helios, resulting in even longer loading times for the sake of
consistency.

Before we started to introduce failures into the servers, we ran tests on the fully functional network.
Messages across the network were tracked on all servers to verify arrival in the correct order. If a client
request was made to the primary server, we checked that it sent a prepare message to the other servers,
received promise messages, sent accept request messages, and finally received learn messages before saving.
Likewise, the acceptor servers each had to receive a prepare message and an accept request message before
sending off the respective promise and learn message.

If a server is already the leader (having sent a previous prepare message and received enough promise
messages), then we do not need to repeat the prepare and promise phases and can skip to the accept request
phase. Therefore, we perform a few consecutive requests on the same server and check to see that only the
first request contains the prepare and promise messages. However, if a client request is made to another
server, we need to check to see that it performs the prepare and promise phases with the appropriate round
numbers.

As the number of servers increases, so does the number of promise and learn messages required to fulfill
the majority quota. With three servers, the proposer only requires one promise and learn message (because
it acts as part of the implicit majority). With five, it requires two external promise and learn messages, and
with seven servers, three are required.

We also have to ensure that the contents of the messages follow proper protocol. That is, the sequence
numbers of different objects should be monotonically increasing, and the round numbers between requests
should increase with respect to the length of the number of servers. Also, messages with lower round numbers
than the current highest round number should be ignored.

After verifying correct operation with no server failures, we began to introduce faults into the system.
Failures were first simulated by simply shutting down Helios on a server and preventing any contact to and
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from the server. Shutting servers down during key moments in the Paxos protocol created the test cases
that we needed.

The easier faults to test for are failures in the acceptor servers rather than the lead server. Because Paxos
only requires a majority of the servers to respond, removing one server should not affect progress. In fact, in
a three-server example where Server 1 is the primary server, the second learn and promise messages Server 1
receives from Server 3 are ignored by the lead server, since it will have already achieved consensus with the
responses from Server 2, which arrived earlier. Indeed, shutting down a single replica server did nothing to
affect the protocol other than require synchronizing after a restart. To extend the example to more servers,
a leader in a seven-server Paxos environment can safely ignore up to three messages, meaning the system is
unaffected if three acceptor servers crash, since they do not have to undergo leadership change.

A larger problem occurs when a majority of the acceptor servers are taken down. If a proposer times out
while waiting for a majority number of responses from the acceptors, it will consider the request a failure. If
another request is made, the server should increase its round number (to avoid being ignored by any servers
that it managed to contact) and try again until the acceptors come back.

The most complex situations involve failures in the lead proposer server. Regardless of how the new
lead is chosen, we need to make sure that all the other servers are aware of the choice through the prepare
and promise Paxos phases and the correct round numbers. If the lead server was not about to save a client
request, then the situation does not need to be resolved further.

However, in the event that the lead server is in the process of sending accept request messages in response
to a client request when its leadership gets taken over, then the original leader needs to inform the new leader
of the pending request. To accomplish this, if the proposer has managed to accumulate enough promise
messages from the acceptors (or if it is already the leader), it will save the potential request. If another
server attempts to take leadership from the current leader, the leader will attach the request in the promise
message it sends back to the new server. The new server will execute the previous request with new accept
request messages before executing its own requests.

Messages to the proposer were interwoven and interrupted with new requests to verify proper behavior.
We created unit tests to assert that certain conditions — sequence numbers, round numbers, message ordering
— were fulfilled under arbitrary message arrangements.

4.1.2 Testing Running Time

To determine how Paxos affects the running time of Helios, we tracked the execution time of the overwritten
save() function from the initial function call to when the object is actually saved into the database. In
the physical world, distributed servers are often separated geographically, creating latency between message
arrival. We simulated physical network travel by inducing an artificial latency of 50 milliseconds for each
message sent across the virtual network. We kept track of five objects throughout the trial runs: Audited-
Ballot, CastVote, Election, Trustee, and Voter. These objects are class objects located in helios/models.py

and are automatically created and updated by Helios as the user goes through the election process. The
objects are tracked by overwriting their default save() function and forcing them to go through the Paxos
protocol — the respective class names and objects are passed through the protocol as parameters.

The AuditedBallot object contains the information necessary to post an audited ballot to the public
bulletin board. Similarly, the CastVote object is saved when a vote is cast and posted to the ballot tracker.
The Election object is the most commonly saved object and includes updates to the election name and
description, adding or editing election questions, altering the availability of the election, and general adjust-
ments to the election. Helios automatically saves itself as a Trustee object when an election is created, but
it is possible to add additional trustees afterwards. Finally, Helios offers the option to limit the voters in
a private election to a select list or to open up the election to the public. If the former is chosen, a Voter
object is created for each member of the voter list, and if the latter is selected, the Voter object is saved
upon casting the vote.

Similar to the correctness testing, we ran several iterations of a complete election process, from election
process to vote casting. We repeated this process several times to create a reasonable number of data points.
When we apply our fault tolerance protocol to Helios, the additional latency depends on the number of
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protocol messages sent across the network (which standard Helios does not send) and the network latency.
We can estimate the extra latency based on this equation:

# servers ∗ ((#messages ∗ network latency) + #messages)

Our equation estimates the amount of extra time to save an object relative to standard Paxos. The
number of servers denotes the number of servers required to form a majority: two servers in a 3-server
system, three servers in a 5-server system, and five servers in a 7-server system. The number of messages
represents the messages sent with the Paxos protocol. There are four messages: the prepare message, the
promise message, the accept request message, and the learn message. Along with the induced 50-millisecond
latency, we can estimate the expected delay of Distributed Helios. In a 3-server system, we expect an object
to be saved around 8.4 times slower than standard Paxos. In a 5-server system, we expect the latency to
about 12.6 times the standard Paxos latency. Finally, in a 7-server system, the latency is expected to be
about 21 times that of standard Paxos.

4.2 Empirical Results

A control test of a single server without Paxos was conducted to measure the time taken to save an object
to the PostgreSQL database. In the following figures, each dot represents the time it takes from an object
to be saved into the database, with each color representing the object in the dot’s column. The horizontal
jittering is for visual purposes only.

Figure 1: Average Helios Save Times for Single-Server Non-Paxos (Overall: 0.071s)

As shown in Figure 1, without having to participate in Paxos, the average save time of a Helios object is
0.071 seconds. Webpage load times are nearly instantaneous.
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Using our hypothesized estimates and the average save time for single-server non-Paxos, we estimate that
the average save time for 3-server Paxos will be about 0.596 seconds. Likewise, we estimate that 5-server
Paxos save times will be around 0.895 seconds. Finally, our equation estimates that 7-server Paxos will have
a save time of around 1.491 seconds.

3-server Paxos marks the introduction of transmitted messages across the network that create inactivity
in the system until the protocol is resolved. To enforce interface correctness, we imposed small load times
on the webpages while the protocol was in effect. For 3-server Paxos, there was a small but noticeable
half-second delay when saving objects, especially when a new leader needed to be accepted.

Figure 2: Average Helios Save Times for 3-Server Paxos (Overall: 0.6483s)

As shown in Figure 2, on average, in 3-server Paxos, a server that wishes to fulfill a client request takes
anywhere between 0.17 to 1.4s to save an object, depending on object type. These times include the 50ms
induced latency we imposed on network traffic. The overall average save time was 0.6483s, and an object
takes 9.13 times as long as non-Paxos to save under 3-server Paxos.

As shown in Figure 3, the mean save time for an object under 5-server Paxos is 1.087 seconds, ranging
from 0.18 to 2.3 seconds. Under 5-server Paxos, a new object takes 15.31 times as long as non-Paxos to save.

As shown in Figure 4, under 7-server Paxos, the protocol takes 1.588 seconds to save an object, with
objects taking between 0.28 and 3.2 seconds to save. With respect to non-Paxos, 7-server Paxos takes 22.36
times as long to save an object.

As shown in Figure 5, overall average save times across environments ranged from 0.071 seconds in the
non-Paxos environment to 0.65 seconds with 3 servers to 1.09 seconds with 5 servers and finally to 1.59
seconds with 7 servers.

4.3 Analysis

Overall, our hypothesized latency increases were very similar to the actual results. In 3-, 5-, and 7-server
Paxos, our estimated save times were 0.596 seconds, 0.895 seconds, and 1.491 seconds respectively. The data
collected reveals that the actual save times were 0.648 seconds, 1.087 seconds, and 1.588 seconds. In each
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Figure 3: Average Helios Save Times for 5-Server Paxos (Overall: 1.087s)

Figure 4: Average Helios Save Times for 7-Server Paxos (Overall: 1.588s)
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Figure 5: Average Helios Save Times Across Environments

case, our estimated delay was slightly too low. We attribute the small discrepancy to the overhead involved
with maintaining the Paxos state inside each server.

Apart from the non-Paxos control environment, adding additional servers increased the save time linearly,
with each single server adding approximately 0.23 seconds to the average save time. The insertion of three
servers creates a 912.97% increase in running time, up to a 2236.36% increase with seven servers, and the
data seems to indicate a linear increase in save time as servers are added.

We generated a linear regression model for the relationship between the number of servers (ignoring the
non-Paxos case) and the mean time to save an object. To accomplish this, we ran the lm() linear model
fitting function in R using a dataset comprised of all the data points across the different environments,
disregarding non-Paxos. The output of the lm() function describes the coefficients for the y-intercept and
slope of the line that fits the regression model of the dataset. In other words, the result is a line of best fit.
The equation is:

y = 0.2352x− 0.06885

where x is the number of servers and the resulting y is the mean time to save. We assume an odd number of
servers in our model, and if x is even, we use x + 1 servers instead to estimate the running time. Using this
linear model, we can extrapolate the save time for larger numbers of servers. Each server adds about 0.235
seconds to the overall save time of an object. For example, a 9-server implementation would have about a
2.048-second delay in saving an object.

Thus far, our simulations of failed servers only account for heavy denial of service attacks that brought
down all traffic to and from the servers. There are times, however, when the degree of the attack may vary. A
server under a light attack may only drop a small percentage of messages rather than all of them. Although
hindered, these servers can still contribute to the Paxos protocol. To accommodate servers slowed down by
attacks, we specify a timeout period while waiting on messages. By utilizing TCP to send messages, we are
guaranteed ordered, reliable messages even in a slow network.

We can use our linear regression model to set an appropriate timeout for the number of servers involved;
in our case, we set the timeout to be 1.5 times the estimated average save time of a CastVote or AuditedBallot
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object for a given number of servers, as those two were the objects that took the longest to save. In this way,
our system is capable of handling servers under varying levels of attacks: uncommunicative servers can be
safely ignored as long as a majority exists, while at the same time, slow servers are allowed a grace period
in which to respond to messages.

A small optimization we can make to the execution of Paxos is to parallelize the messages sent by the
leader to the acceptor servers. However, the bulk of the delay in Distributed Helios lies in waiting for the
correct amount of response messages from the acceptor servers. Thus, while parallelizing leader messages
might slightly improve efficiency in the prepare and accept request phases, it will not significantly impact
the overall average delay.

4.4 Limitations

The Paxos protocol that we employed in our implementation is non-Byzantine [LSP82]: that is, members
do not maliciously lie or attempt to undermine the protocol, and messages are delivered without corruption.
Protocols that deal with Byzantine faults [CL02] are needed for arbitrary faults such as corrupt servers or
messages. Note that Byzantine protocols typically require 3f + 1 replicas for each failure f that the quorum
can tolerate, in contrast to 2f + 1 for Paxos and crash failures, and of course a corresponding increase in
latency due to increased computation and communication. Because our focus is on crash tolerance, and
minimizing latency, our implementation is not resilient to Byzantine faults.

Additionally, we replicate only the servers containing the ballots. The processes themselves are not
replicated, including the process of encrypting the vote. However the encrypted vote itself is saved to
each replicated database. The verification of the correct encryption is also not replicated, but in reality is
optional and can be performed at any point by any of the servers as long as the encrypted ballot was saved
and replicated. This means that if a server gets taken down in the middle of the process, the process can
just be repeated on another server. If a ballot is re-encrypted, it will replace the old ballot so there should
be no conflicting ballots.

5 Conclusions and Future Work

In this paper, we explored the dangers of distributed denial of service attacks on single election servers.
Malicious attacks on network servers are not only simple, they can be issued from remote locations. A single
successful attack on an election server can bring down the entire service indefinitely, a major issue given
the limited timetable of an election. Our solution was to replicate Helios, an open-source online election
system, into a multiple server network. We addressed the problem of maintaining state across the different
servers in a potentially faulty network by augmenting Helios with Paxos, a fault tolerance protocol meant
to ensure safety and progress in an imperfect environment. Additionally, testing confirmed correctness of
the Paxos protocol: client requests are only honored after being acknowledged by a majority of the network.
Each additional server increases the latency linearly by less than a quarter of a second, and this latency can
potentially be lessened with optimization. Distributed Helios is a promising first step in protecting election
servers from distributed denial of service attacks.

The largest concern with using Distributed Helios over standard Helios is the latency cost associated
with enforcing a safe protocol across an unsafe network. Without optimizing the system, a three-server
setup averages a 0.65 second delay to save. At the upper end, a seven-server configuration can take over 3
seconds to save an object. High latency can sometimes cause a negative effect on the usability of a system.
As Neilsen points out, “1.0 second is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay . . . 10 seconds is about the limit for keeping the user’s attention
focused on the dialogue” [Nie93]. Longer delays often persuade users to divert their attention to some other
task or give up completely, especially without feedback about the delay. In fact, any delay longer than one
second causes the user to feel that the interface is sluggish.

One long-standing method of mitigating the short attention span of users is implementing a percent-done
indicator for any action requiring more than 10 seconds [Mye85]. The indicator’s benefits are threefold: it
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assures the user that progress is being made and that a crash has not occurred; it gives an estimation of
completion time to the user; and finally, it alleviates the annoyance of waiting by providing the user with
something to look at while waiting. Although the latency of Distributed Helios is less than 10 seconds, a
five- or seven-server configuration will have enough noticeable delay that a percent-done indicator, or even
just a quick animation to represent “loading” time, may be useful to maintain the user’s attention.

The other real-world fault-tolerant systems discussed, Google Chubby and Zab, both use between three
to seven replica servers in practice [CGR07, RJ08], which is one of the reasons behind our experiment
environments. With optimization, Distributed Helios, which is relatively small, may be able to run even
faster.

Distributed Helios is not highly recommended for small-scale elections that are unlikely to be attacked,
as the latency cost would not outweigh the safety advantage of a distributed system. For example, small
school elections are probably not going to be targeted, making the strong safety guarantees of Paxos exces-
sive, especially considering the fact that it will likely only have one server. However, if interest in safety
takes precedence over latency, Distributed Helios is highly recommended. In important elections, such as
government elections, safety takes the highest priority. In this situation, it is worthwhile to sacrifice some
user convenience in favor of robustness.

5.1 Future Work

There are several potential directions our current implementation of Distributed Helios could take in the
future. Other than expanding the threat model to include Byzantine failures, the primary drawback at this
point is efficiency, so improvements to the running time can greatly improve the viability of Distributed Helios.
For example, Fast Paxos is a modification to Paxos that seeks to reduce end-to-end message delay in basic
Paxos [Lam06]. By passing over phases in basic Paxos, overall running time can be greatly reduced. However,
the client is forced to send its request to multiple destinations. In the same vein, another improvement to
Distributed Helios would be the capability to select different variations of Paxos, such as Fast Paxos over
basic Paxos, depending on the situation. This would greatly aid in various environments, where a different
version of Paxos might contain an optimization to the protocol that would allow for superior efficiency.
The Raft consensus algorithm [OO14] also shows promise. One of the foremost principles in the design of
Raft is to be simpler to understand than Paxos, making its implementation theoretically easier than Paxos’
implementation. However, all of the alternatives to Paxos utilize some sort of two-phase commit protocol
at some point in their algorithms to accomplish consensus. In Distributed Helios, a large portion of the
delay occurred during the two-phase commit section of the algorithm, meaning that using another protocol
might not increase the efficiency by much. However, it may still be worthwhile to experiment with various
protocols in an effort to reduce latency as much as possible.

Of course addressing Byzantine faults may compound this issue even further, but a wide variety of research
efforts are being made to reduce latency in Byzantine protocols as well [KAD+09, DMPZ14, AGK+15].

From a broader perspective, real-world Paxos has been elusively difficult to implement properly. In the
Google Chubby paper, the authors note that “[t]here are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system” [CGR07]. Even though there exists a large body of
literature concerning fault tolerance and consensus, implementing the algorithm in a practical system remains
complex and difficult. To convert Paxos into a real-world application, Google engineers had to transform a
protocol that could have been written in a page of pseudocode into a multi-thousand line implementation.
The proposed algorithms remain largely inaccessible despite their apparent simplicity, and building tools
that would allow easier implementations of fault tolerance would go a long way to furthering this work.
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