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Abstract

Partial differential equations with gradient constraints arising in the optimal control of
singular stochastic processes

by

Ryan C. Hynd

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lawrence C. Evans, Chair

This dissertation is a study of second order, elliptic partial differential equations (PDE)
that subject solutions to pointwise gradient constraints. These equations fall into the broad
class of scalar non-linear PDE, and therefore, we interpret solutions in the viscosity sense
and use methods from the theory of viscosity solutions. These equations are also naturally
associated to free boundary problems as the boundary of the region where the gradient
constraint is strictly satisfied cannot, in general, be determined before a solution of the PDE
has been obtained. Consequently, we also employ techniques from PDE theory developed
for free boundary problems.

In addition, we identify connections with control theory. Each solution of the PDE we
consider has a probabilistic interpretation as an optimal value of a stochastic control problem.
A distinguishing feature of these optimization problems is that the controlled processes have
sample paths of bounded variation and thus may be “singular” with respect to Lebesgue
measure on the real line. The theory of stochastic singular control has been used to model
spacecraft control, queueing systems, and financial markets in the presence of transaction
costs. Our work makes considerable progress at rigorously interpreting the PDE that arise
in these applications.
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Chapter 1

Introduction

In this work, we study partial differential equations (PDE) within the general class of
equations

max
{
F (D2u,Du, u, x), H(Du)

}
= 0, x ∈ O (1.1)

where 
O ⊂ Rn

F : S(n)× Rn × R×O → R
H : Rn → R

(1.2)

are given and the unknown is a scalar function

u : O → R.

In equation (1.1), Du denotes the gradient vector of the function u, D2u denotes the Hessian
matrix of second derivatives of u, and u and its derivatives are evaluated at the point x ∈ O.
In (1.2), S(n) denotes the collection of symmetric n× n matrices with real entries.

Observe that if u is a solution of (1.1), then

F (D2u,Du, u, x) ≤ 0 and H(Du) ≤ 0, x ∈ O.

The inequality H(Du) ≤ 0 is interpreted as a gradient constraint. Also notice that

F (D2u,Du, u, x) = 0 whenever H(Du) < 0, x ∈ O.

Therefore, if the subset Ω ⊂ O determined by the inequality H(Du) < 0 was known a priori,
we could attempt to solve the PDE

F (D2u,Du, u, x) = 0 x ∈ Ω

and then solve H(Du) = 0 in the complement of Ω to obtain a solution. However, this is
in general impossible as we would need a solution of (1.1) to determine Ω to begin with. In
this sense, the problem of finding a solution can be interpreted as a free boundary problem.
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We shall see that a good existence theory for solutions of (1.1) necessitates the assumption
that the non-linearity F is continuous and elliptic:

F (X, p, r, x) ≤ F (Y, p, s, x) whenever r ≤ s, Y ≤ X (1.3)

r, s ∈ R, x ∈ O, p ∈ Rn and X, Y ∈ S(n).1 In many cases, a good existence theory also
requires that that the gradient constraint function H satisfies the monotonicity condition:

H(sp) < H(tp) whenever 0 ≤ s < t, p 6= 0 (1.4)

s, t ∈ R, p ∈ Rn. Accordingly, these will be standing assumptions in the problems we study
below.

It is well known that equations of the form (1.1) need not have solutions that are twice
continuously differentiable. That is, (1.1) may not have classical solutions. However, with
the above assumptions, (1.1) is a non-linear, elliptic PDE for a scalar function u. Therefore,
it is appropriate to interpret equation (1.1) in the sense of viscosity solutions. This point
of view will allow us to establish comparison principles and obtain limited regularity (or
smoothness) of solutions. As a result, this is the approach we will follow in this paper.

There has been much work on equations related to the general class of PDE (1.1). One
of the first rigorous papers on this subject was written by L. C. Evans [10] (see also [11]),
where it is assumed that L is linear and H is allowed to have dependence in the x variable

H(p, x) = |p| − g(x), (x, p) ∈ O × Rn. (1.5)

In [10], it was shown that solutions of the associated boundary value problem exist, are
unique and under some technical assumptions, have locally Lipschitz continuous derivatives.

The main idea in [10] was to study solutions of an appropriate, “penalized” equation and
deduce uniform estimates on solutions that allow one to pass to a limit in a strong sense and
solve the original equation; this is a relatively standard approach for PDE free boundary
problems [14]. The result of [10] was extended by M. Wiegner [23] who proved the regularity
result in [10] without making the same technical assumptions. In turn, the result in [23] was
extended by H. Ishii et. al. [16] who established the regularity of solutions all the way up
to the boundary, assuming ∂O is sufficiently regular. The methods employed in these works
were entirely based on analysis.

The next wave of research on these types of equations was driven by applications. Davis
and Norman derived an equation of type (1.1) in their now classic paper [7] on optimal
portfolio consumption in the presence of transaction costs. Shortly thereafter, Davis, Panas,
and Zariphopoulou deduced an analogous equation in their model for pricing options in the
presence of transaction costs [8]. Both mathematical models were based on the control of
random processes that may be singular with respect to Lebesgue measure on the real line.
This was no coincidence as for many choices of F and H, (1.1) is the dynamic programming

1The monotonicity of r 7→ F (X, p, r, x) is sometimes isolated and termed proper.
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equation for such a stochastic control problem. These connections are now well understood
and have been studied further in [13].

Most analytical work on equations of type (1.1) assume that F is linear, H is closely
related to (1.5) (with say g ≡ 1) and involves the classical boundary value or Dirichlet
problem. The purpose of this dissertation is to investigate three problems that aim to depart
from this familiar setup. The first involves the Dirichlet problem for a general gradient
constraint function H; the second involves a non-standard, non-linear eigenvalue problem;
and the third involves asymptotic analysis for a parabolic version of (1.1) with a non-linear
F .

1.1 Survey of results

We consider three problems regarding PDE of the form (1.1). First, we study the Dirichlet
problem associated with the PDE

max{Lu− h(x), H(Du)} = 0.

L is assumed to be linear and uniformly elliptic, h is a given smooth function and H is a
given convex function satisfying (1.4). This is a model dynamic programming equation for
many infinite horizon, stochastic singular control problems. We establish the existence of a
unique viscosity solution of the Dirichlet problem, and show that if H is uniformly convex,
this solution belongs to the function space C1,1

loc . See Theorem 2.0.1 below.
Next, we consider the problem of finding a real number λ and a function u satisfying the

PDE
max {λ−∆u− h(x), |Du| − 1} = 0, x ∈ Rn.

Here h is a given convex function that grows superlinearly. We prove that there is a unique
λ∗ such that the above PDE has a viscosity solution u satisfying

lim
|x|→+∞

u(x)

|x|
= 1.

Moreover, we show that associated to λ∗ is a convex solution u∗ belonging to the function
space C1,1(Rn); for a precise statement, see Theorem 3.0.1. We also formally argue that λ∗

has a probabilistic interpretation as being the least, long-time averaged (“ergodic”) cost for
a singular optimal control problem involving h.2

Finally, we consider the problem of pricing options on multiple assets in the large risk
aversion, small transaction cost limit. In a relatively standard single-asset setting, G. Barles
and H. Soner [2] showed that the limiting option price is a solution of a non-linear, Black-
Scholes type PDE. In this paper, we establish an analogous result for a model of the problem

2In this dissertation, the term “formal” will always mean non-rigorous.
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in a multi-asset framework. In particular, we study solutions zε of the initial value problem
associated to the “mixed-type” parabolic equation

max

{
zt −

(
∆xz +

1

ε
|Dxz + y|2

)
, |Dyz| −

√
ε

}
= 0

for small ε. Under some technical assumptions, we prove that, as ε tends to 0, appropriate
limits of zε tend to solutions of the corresponding initial value problem for a non-linear,
parabolic equation

ψt = λ
(
D2ψ

)
.

Here, the non-linearity λ arises as a solution of a non-linear eigenvalue PDE problem. See
Theorems 4.0.1 and 4.0.2 for precise statements of these results.

1.2 Technical preliminaries

Before we embark on our study, we pause to mention some key results from the theory
of viscosity solutions and analysis that will be of great utility. We first give a definition of
a viscosity solutions in terms of test functions and then give an equivalent characterization
in terms of “jets.” Next, we present the basic tools for establishing comparison principles
between viscosity sub- and supersolutions and tools for establishing the existence of viscosity
solutions. Our references for standard results from the theory of viscosity solutions are [1],
[5], and [6]. We conclude by presenting a construct that will be used to “penalize” various
PDE with gradient constraints.

In this section, we assume that O ⊂ Rn is open and that

G : S(n)× Rn × R×O → R
is continuous and elliptic (i.e. satisfies condition (1.3)). We will use the ellipticity assumption
to make a basic observation about solutions of the equation

G(D2u,Du, u, x) = 0, x ∈ O. (1.6)

Observe that if u ∈ C2(O) is a solution of (1.6) and u − ϕ has a local maximum at
x0 ∈ O, where ϕ ∈ C2(O), then

G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ 0

as

Du(x0) = Dϕ(x0) and D2u(x0) ≤ D2ϕ(x0).

Likewise, if u− ψ has a local minimum at x0 ∈ O, where ψ ∈ C2(O), then

G(D2ψ(x0), Dψ(x0), u(x0), x0) ≥ 0.
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Further arguing along these lines leads to the comparison principle: if u, v ∈ C2(O)
satisfy 

G(D2u,Du, u, x) ≤ 0, x ∈ O
G(D2v,Dv, v, x) ≥ 0, x ∈ O
u(x) ≤ v(x) x ∈ ∂O

,

then u ≤ v in O. However, we are assuming that u, v ∈ C2(O), while solutions of (1.6)
may not be twice continuously differentiable. Nevertheless, these basic calculus arguments
motivate the definition of viscosity solutions which only requires the pointwise values of a
function.

Definition 1.2.1. u ∈ USC(O) is a viscosity subsolution of (1.6) if whenever u − ϕ has a
local maximum at x0 ∈ O where ϕ ∈ C2(O), then

G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ 0.

v ∈ LSC(O) is a viscosity supersolution of (1.6) if whenever v − ψ has a local minimum at
x0 ∈ O where ψ ∈ C2(O), then

G(D2ψ(x0), Dψ(x0), v(x0), x0) ≥ 0.

w is a viscosity solution of (1.6) if it is both a viscosity subsolution and a viscosity superso-
lution.

Remark 1.2.2. Viscosity solutions defined above are necessarily continuous.

A useful concept for us will be that of second order sub- and superjets.

Definition 1.2.3. (i) Let x0 ∈ O. (p,X) ∈ Rn × S(n) belongs to the second order superjet
of u at x0 if

u(x) ≤ u(x0) + p · (x− x0) +
1

2
X(x− x0) · (x− x0) + o(|x− x0|2) (1.7)

as |x− x0| → 0, x− x0 ∈ O. The collection of all such pairs (p,X) is denoted J2,+u(x0).
(ii) Let x0 ∈ O. (p,X) ∈ Rn × S(n) belongs to the second order subjet of u at x0 if

u(x) ≥ u(x0) + p · (x− x0) +
1

2
X(x− x0) · (x− x0) + o(|x− x0|2) (1.8)

as |x− x0| → 0, x− x0 ∈ O. The collection of all such pairs (p,X) is denoted J2,−u(x0).

Notice that if u − ϕ has a local maximum [minimum] at x0 and ϕ ∈ C2(O), then (1.7)
[(1.8)] holds with

p = Dϕ(x0) and X = D2ϕ(x0). (1.9)

A converse to this fact is also true and we refer the reader to [5] for its proof.
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Lemma 1.2.4. Suppose that (p,X) ∈ J2,+u(x0). Then there is an open set U 3 x0 and
ϕ ∈ C2(U) such that (1.9) holds.

Therefore we can address the question of whether or not a function is a viscosity solution
by studying the function’s second order jets. In particular, if u is a subsolution of (1.6) and
(p,X) ∈ J2,+u(x0), then

G(X, p, u(x0), x0) ≤ 0; (1.10)

and if v is a supersolution of (1.6) and (p,X) ∈ J2,−v(x0), then

G(X, p, v(x0), x0) ≥ 0. (1.11)

Remark 1.2.5. In what follows, it will be important for us to study the sets

J
2,+
u(x0) := {(p,X) ∈ Rn × S(n) : there exists (xn, pn, Xn) ∈ O × J2,+u(xn), for n ∈ N,

such that (xn, u(xn), pn, Xn)→ (x0, u(x0), p,X), as n→∞}

J
2,−
v(x0) := {(p,X) ∈ Rn × S(n) : there exists (xn, pn, Xn) ∈ O × J2,−v(xn), for n ∈ N,

such that (xn, v(xn), pn, Xn)→ (x0, v(x0), p,X), as n→∞}

for x0 ∈ O. It is readily verified that if u is a viscosity subsolution of (1.6) and (p,X) ∈
J

2,+
u(x0), then (1.10) holds. Likewise, if v is a viscosity supersolution of (1.6) and (p,X) ∈

J
2,−
v(x0), then (1.11) holds.

Throughout this paper, all PDE and partial differential inequalities will be interpreted
in the viscosity sense. Therefore, we may sometimes omit the term “viscosity” when we
mention solutions, subsolutions, and supersolutions.

The next two lemmas are commonly used to establish comparison principles between
sub- and supersolutions. The are both proved in [6].

Lemma 1.2.6. Let O ⊂ Rn. Assume that u ∈ USC(O) and v ∈ LSC(O) and set

Mδ = sup
O×O

{
u(x)− v(y)− 1

2δ
|x− y|2

}
for δ > 0. Assume that Mδ < +∞ for all δ positive and small and that there is (xδ, yδ) ∈
O ×O such that

lim
δ→0+

{
Mδ −

(
u(xδ)− v(yδ)−

1

2δ
|xδ − yδ|2

)}
= 0.

Then

lim
δ→0+

1

2δ
|xδ − yδ|2 = 0

and
lim
δ→0+

Mδ = u(x0)− v(x0) = sup
x∈O
{u(x)− v(x)}

whenever x0 is a limit point of xδ as δ → 0+.
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Lemma 1.2.7. (Theorem of Sums) Let Oi ∈ Rni be open for i = 1, . . . , k and

O := O1 ×O2 × · · · ×Ok.

Assume ui ∈ USC(Oi) and that ϕ is twice continuously differentiable in a neighborhood of
O. Set

w(x) := u1(x1) + · · ·+ uk(xk), x = (x1, . . . , xk) ∈ O

and suppose that x̂ = (x̂1, . . . , x̂k) ∈ O is a point of local maximum of w − ϕ relative to O.
Then for each ρ > 0, there are Xi ∈ S(ni) such that

(Dxiϕ(x̂), Xi) ∈ J
2,+
ui(x̂i)

for i = 1, . . . , k, and 
X1

X2

. . .

Xk

 ≤ A+ ρA2

where A = D2ϕ(x̂) ∈ S(n1 + n2 + . . . nk).

Once a comparison principle for solutions of non-linear elliptic PDE has been established,
the next goal typically is to exhibit a solution. This is often accomplished by Perron’s
method, which informally consists of showing the “largest” supersolution with the correct
boundary conditions is a solution. This method hinges on the following lemmas. Again both
are proved in [6].

Lemma 1.2.8. Let F be a family of subsolutions of (1.6) and set w(x) = sup {u(x) : u ∈ F}.
If w∗ is finite for each x ∈ O, then w is a subsolution of (1.6). 3

Lemma 1.2.9. Let u be a subsolution of (1.6) and suppose that u∗ is not a supersolution
at some point x0 ∈ O. 4 Then for all κ > 0 and small enough, there is a subsolution v such
that 

v ≥ u

supO(v − u) > 0

v(x) = u(x), x ∈ O and |x− x0| ≥ κ

.

Informally, the above lemmas assert that a pointwise supremum of a family of subsolutions
is again a subsolution, and if a subsolution is not a supersolution, it cannot be “maximal.” An
application of these results is the existence of solutions of the Dirichlet problem associated
to (1.6). This is known as Perron’s method.

3w∗(x) := infδ>0 sup {w(y) : |y − x| ≤ δ} is the upper-semicontinuous envelope of w.
4u∗(x) := supδ>0 inf {u(y) : |y − x| ≤ δ} is the lower-semicontinuous envelope of u.
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Theorem 1.2.10. Let g ∈ C(O) and assume the equation{
G(D2u,Du, u, x) = 0, x ∈ O

u = g, x ∈ ∂O
(1.12)

admits a comparison principle i.e. if u is a subsolution, v is a supersolution, and u ≤ v on
∂O, then u ≤ v in O. Suppose in addition that there is a subsolution u and a supersolution
u that satisfy u∗ = u∗ = g on ∂O. Then

u(x) := sup {w(x) : u ≤ w ≤ u, w is a subsolution of (1.6)}

is the unique solution of (1.12).

Proof. Uniqueness follows by assumption, so we only need to establish existence. To this
end, we first notice that u∗ ≤ u∗ ≤ u ≤ u∗ ≤ u∗, which by assumption implies u = g on
∂O. Next, we have that u∗ is a viscosity subsolution by Lemma 1.2.8 and thus u∗ ≤ u.
Hence, u∗ = u is a viscosity subsolution. If u∗ is not a viscosity supersolution, we would
have a contradiction to Lemma 1.2.9. By the comparison of sub- and supersolutions, u ≤ u∗.
Hence, u = u∗ = u∗ is a viscosity solution of equation (1.6).

We conclude this introduction by presenting a construct that will be of great use to
us when confronting various PDE free boundary problems. This construct is a family of
functions (βε)ε>0 that we will call the standard penalty function. This family of functions
satisfies 

βε ∈ C∞(R)

βε = 0, z ≤ 0

βε > 0, z > 0

β′ε ≥ 0

β′′ε ≥ 0

βε(z) = z−ε
ε
, z ≥ 2ε

. (1.13)

For each ε > 0, we think of βε as a type of smoothing of z 7→ (z/ε)+; for small ε, we think
of βε as a smooth approximation of the set valued mapping

β0(t) =

{
{0}, t < 0

[0,∞], t = 0
.

A basic result that we will assume is

Proposition 1.2.11. A family of functions (βε)ε>0 satisfying (1.13) exists.
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Chapter 2

An elliptic PDE with convex gradient
constraint

In this chapter, we consider PDE associated with a general class of infinite horizon,
stochastic singular control problems. This is a class of non-linear, second-order PDE that
each have a free boundary determined by a convex gradient constraint. We show that the
Dirichlet problem has a unique solution, and for uniformly convex gradient constraints, this
solution has a locally Lipschitz continuous derivative. Our methods are entirely analytic.
However, we provide an interpretation of solutions as the value function of appropriate
singular control problems. Finally, we argue that the class of gradient constraint functions
arising in applications can be replaced by an equivalent class of uniformly convex gradient
constraints and show that our regularity result applies to some examples of the motivating
singular control problems.

The PDE we focus on is{
max{Lu− h(x), H(Du)} = 0, x ∈ O

u = 0, x ∈ ∂O
, (2.1)

where O ⊂ Rn is open and bounded with smooth boundary ∂O and h is a smooth, non-
negative function on O.

We assume that L is the linear differential operator

Lψ(x) := −a(x) ·D2ψ + b(x) ·Dψ + c(x)ψ, 1 ψ ∈ C2(O)

with smooth coefficients a : O → S(n), b : O → Rn and c : O → R. We shall further assume
that L is (uniformly) elliptic:

a(x)ξ · ξ ≥ γ|ξ|2, for all x ∈ O, ξ ∈ Rn (2.2)

1For square matrices A and B of the same dimension, A ·B := trAtB.
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for some γ > 0. The final assumption on L that we will make is that

c(x) ≥ δ, x ∈ O

where δ is a positive constant.
Our assumptions on H : Rn → R are that

H is convex

H(0) < 0

[0,∞) 3 t 7→ H(tp) is increasing for p 6= 0

. (2.3)

Our central result is

Theorem 2.0.1. (i) There is a unique continuous viscosity solution of (2.1).
(ii) If, in addition, H is uniformly convex, then u ∈ C1,1

loc (O).

We use techniques from the theory of viscosity solutions of scalar non-linear elliptic PDE
to prove the existence and uniqueness of solutions of (2.1). We use a penalization technique
similar to the one introduced by L.C. Evans in [10] and refined by M. Wiegner [23] and H. Ishii
et. al. [16] to establish the regularity result; we also believe that we have identified general
structural conditions (2.3) on the type of gradient constraints for which penalization methods
are successful at yielding regularity results. Finally, we discuss the motivating applications
in singular control theory and and give a probabilistic interpretation of solutions of (2.1).

2.1 Existence and uniqueness

Our main goal of this section is to establish a comparison principle among viscosity sub-
and supersolutions. Here we cannot assume that sub- and supersolutions are smooth, we
must rather use the definition of viscosity sub- and supersolutions and methods developed
for this class of sub- and supersolutions. With such a comparison principle we will employ
a routine application of Perron’s method to establish the existence of solutions of (2.1).

Proposition 2.1.1. Assume u is a viscosity subsolution of (2.1) and v is a viscosity super-
solution of (2.1). If

u ≤ v on ∂O and u ∈ L∞(∂O),

then u ≤ v in O.

Formal Proof. Before proving the above proposition, we give a formal proof (i.e. assuming
u, v ∈ C2(O)) that will help motivate a rigorous argument. Fix ε ∈ (0, 1) and set

wε(x) = εu(x)− v(x), x ∈ O.
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wε ∈ USC(O) and thus achieves its maximum at some xε ∈ O. If xε ∈ ∂O, then

wε(xε) = −(1− ε)u(xε) + u(xε)− v(xε) ≤ −(1− ε)u(xε) ≤ (1− ε)|u|L∞(∂O).

If xε ∈ O, then by calculus{
0 = Dwε(xε) = εDu(xε)−Dv(xε)

0 ≥ D2wε(xε) = εD2u(xε)−D2v(xε)
.

If Du(xε) = 0, then Dv(xε) = 0 and

H(Dv(xε)) < 0. (2.4)

Otherwise, by (2.3) we have H(Dv(xε)) = H(εDu(xε)) < H(Du(xε)) ≤ 0 and (2.4) still
holds. In particular, since v is a supersolution, we have that

Lv(xε)− h(xε) ≥ 0.

Therefore,

c(xε)w(xε) ≤ L(εu− v)(xε) (2.5)

≤ −(1− ε)h(xε)

≤ 0

and hence wε(xε) ≤ 0. In either case, wε ≤ C(1− ε), and letting ε→ 1− gives u ≤ v.

�

To make the above formal proof rigorous, we will use Lemma 1.2.6 and Lemma 1.2.7.

Proof. (of the proposition) 1. Fix ε ∈ (0, 1) and set

wη(x, y) = εu(x)− v(y)− 1

2η
|x− y|2, x, y ∈ O

for η > 0. wη ∈ USC(O ×O) and so has a maximum at some point (xη, yη) ∈ O ×O. As O
is compact, Lemma 1.2.6 implies that (xη, yη) has a limit point of the form (xε, xε) through
some sequence of η → 0+, where xε is a maximizing point of x 7→ εu(x)− v(x). If xε ∈ ∂O,
we have from the definition of wη and our assumptions that

εu(x)− v(x) ≤ εu(xε)− v(xε) = −(1− ε)u(xε) + u(xε)− v(xε) ≤ C(1− ε), x ∈ O.

2. Now we assume that xε ∈ O and without any loss of generality that (xη, yη) ∈ O ×O
for η > 0. According to the Theorem of Sums (Lemma 1.2.7), for each ρ > 0 there are
X, Y ∈ S(n) such that (

xη − yη
η

,X

)
∈ J2,+

(εu)(xη)



12

(
xη − yη

η
, Y

)
∈ J2,−

v(yη)

and (
X 0
0 −Y

)
≤ A+ ρA2. (2.6)

Here

A = D2 |x− y|2

2η

∣∣∣
x=xη ,y=yη

=
1

η

(
I −I
−I I

)
and I is the n× n identity matrix. In particular, choosing ρ = η in (2.6) implies the matrix
inequality (

X 0
0 −Y

)
≤ 3

η

(
I −I
−I I

)
. (2.7)

3. Since u is a viscosity subsolution

max

{
c(xη)u(xη)− a(xη) ·

X

ε
− h(xη), H

(
xη − yη
εη

)}
≤ 0, (2.8)

and since v is a viscosity supersolution

max

{
c(yη)v(yη)− a(yη) · Y − h(yη), H

(
xη − yη

η

)}
≥ 0. (2.9)

If xη = yη,

H

(
xη − yη

η

)
= H(0) < 0. (2.10)

If xη 6= yη, we have H
(
xη−yη
εη

)
≤ 0 and again (2.10) holds as H

(
xη−yη
η

)
= H

(
εxη−yη

εη

)
< 0.

By (2.9),
c(yη)v(yη)− a(yη) · Y − h(yη) ≥ 0. (2.11)

Combining (2.8) and (2.11) gives,

εc(xη)u(xη)− c(yη)v(yη) ≤ a(xη) ·X − a(yη) · Y + (b(xη)− b(yη)) ·
xη − yη

η

+εh(xη)− h(yη)

≤ a(xη) ·X − a(yη) · Y + Lip(b)
|xη − yη|2

η
+ Lip(h)|xη − yη|.

(2.12)

Note x 7→ a1/2(x) is Lipschitz continuous since x 7→ a(x) is Lipschitz and a ≥ γ > 0;2 indeed

Lip(a1/2) ≤ Lip(a)

2γ
.

2Here a1/2(x) is the unique positive square root of a(x).
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Also note that the 2n× 2n matrix(
a1/2(xη)a

1/2(xη) a1/2(xη)a
1/2(yη)

a1/2(yη)a
1/2(xη) a1/2(yη)a

1/2(yη)

)
is non-negative definite, and by (2.7)

a(xη) ·X − a(yη) · Y = tr [a(xη)X − a(yη)Y ]

= tr

[(
a1/2(xη)a

1/2(xη) a1/2(xη)a
1/2(yη)

a1/2(yη)a
1/2(xη) a1/2(yη)a

1/2(yη)

)(
X 0
0 −Y

)]
≤ tr

[(
a1/2(xη)a

1/2(xη) a1/2(xη)a
1/2(yη)

a1/2(yη)a
1/2(xη) a1/2(yη)a

1/2(yη)

)
3

η

(
I −I
−I I

)]
≤ 3

η
tr
[
(a1/2(xη)− a1/2(yη))((a

1/2(xη)− a1/2(yη))
]

≤ 3Lip(a)2

2γ2

|xη − yη|2

2η
.

By (2.12),

εc(xη)u(xη)− c(yη)v(yη) ≤
(

3Lip(a)2

2γ2
+ 2Lip(b)

)
|xη − yη|2

2η
+ Lip(h)|xη − yη|. (2.13)

4. Let (xε, xε) be a limit point of (xη, yη) through as sequence of η → 0+. If xε ∈ ∂O, we
have from our remarks above that

εu(xε)− v(xε) ≤ C(1− ε).

If xε ∈ O, we let η → 0+ through the appropriate subsequence in (2.13) and arrive at

c(xε)(εu(xε)− v(xε)) ≤ 0.

This inequality implies εu(xε)− v(xε) ≤ 0, and so in either case,

εu(x)− v(x) ≤ εu(xε)− v(xε) ≤ C(1− ε), x ∈ O.

We conclude by letting ε→ 1−.

Remark 2.1.2. The purpose of “doubling the variables” was so that we could “put derivatives”
on the smooth function (x, y) 7→ |x− y|2/2η and use the definition of viscosity solutions to
estimate wη near its maximum value. This particular choice of test function forced xη and
yη to be close so that w(xη, yη) had to be close to the maximum value of x 7→ εu(x)− v(x)
for η small.
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With a comparison principle in hand, we can now employ a routine application of Perron’s
method to obtain the existence of solutions.

Proof. (of part (i) of Theorem 2.0.1) Note that

u ≡ 0

is a viscosity subsolution of (2.1); and ū, the unique viscosity solution of{
Lv − h(x) = 0, x ∈ O

v = 0, x ∈ ∂O
, (2.14)

is a viscosity supersolution of (2.1). Therefore, Theorem (1.2.10) applies.

Remark 2.1.3. Perron’s method is a simple and elegant way to prove existence of solutions,
however it is not the only method. We will see other ways to prove existence via a “penalty”
method and using a stochastic singular control interpretation of solutions.

Remark 2.1.4. The arguments we have used to prove existence and uniqueness can be gen-
eralized to large class of equations of the form

max
{
F (D2u,Du, u, x)− h(x), H(Du)

}
= 0, x ∈ O (2.15)

where F is non-linear, elliptic and homogeneous: F (tM, tp, tu, x) = tF (M, p, u, x), for all
t ≥ 0 and (M, p, u, x) ∈ S(n) × Rn × R × O. We did not, however, explore such equations
as we were primarily interested in regularity and currently do not know how to establish an
analogous regularity result for equations of the form (2.15).

2.2 Regularity

In this section, we prove part (ii) of Theorem 2.0.1, which we restate for the reader’s
convenience.

Theorem 2.2.1. Let u be the unique viscosity solution of (2.1), and suppose that H is
uniformly convex. Then u ∈ C1,1

loc (O).

To this end, we will analyze solutions of the penalized equation{
Luε + βε(H(Duε)) = h(x), x ∈ O

uε = 0, x ∈ ∂O
, (2.16)

where (βε)ε>0 is the standard penalty function; see Proposition 1.13 for various properties
of this family of functions. Since the values of βε(H(Duε)) can be large when H(Duε) > 0



15

for small ε, solutions will seek to satisfy H(Duε) ≤ 0 and, in this sense, become closer to
satisfying equation (2.1). Without any loss of generality, we assume{

H ∈ C2(Rn)

D2H(p) ≥ 1, p ∈ Rn
. (2.17)

If H is merely continuous, we can mollify H and argue as we do below without significant
changes.

Notice that (2.16) is a semi-linear, uniformly elliptic PDE with smooth coefficients. By
classical arguments, (2.16) has a unique, smooth solution uε [15]. Our goal is to derive a
bound on |uε|W 2,∞(O′), for each O′ ⊂ O, that is independent of all ε > 0 and small. Such
an estimate would aid us in proving that a subsequence of uε converges to u, the solution
of (2.1), in C1

loc(O) as ε→ 0+. Such a convergence result would necessarily provide a W 2,∞
loc

estimate on u. We will obtain the desired bound on D2uε through a sequence of lemmas.

Lemma 2.2.2. There is a constant C such that

|uε(x)| ≤ C, x ∈ O

for ε > 0.

Proof. Let ū be the unique smooth solution of (2.14). As ū is a supersolution of equation
(2.16), uε ≤ ū; while uε ≥ 0, since u : x 7→ 0 is a subsolution of (2.16).

An immediate corollary of the above proof is

Corollary 2.2.3. There is a constant C such that

|Duε(x)| ≤ C, x ∈ ∂O

for ε > 0.

Proof. Recall that we have assumed that ∂O is smooth. By the proof of the previous lemma,
we have

∂ū(x)

∂ν
≤ ∂uε(x)

∂ν
≤ 0, x ∈ ∂O

where ν is the outward normal on ∂O.

Lemma 2.2.4. There is a constant C such that

|Duε(x)| ≤ C, x ∈ O

for 0 < ε < 1.
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Proof. 1. It suffices to bound the function

vε(x) = |Duε(x)|2 − λuε(x), x ∈ O

from above, for some universal (that is, ε-independent) constant λ > 0. To this end, we
suppress ε-dependence, function arguments and compute{

Dv = 2D2uDu− λDu
a ·D2v = 2aD2u ·D2u+ 2Du ·

{
D(a ·D2u)−

∑n
i.j=1 uxixjDaij

}
− λa ·D2u

.

These quantities will help us study v near its maximum values.
2. Equation (2.16) may be rewritten as

a ·D2u = c(x)u+ b(x) ·Du+ βε(H(Du))− h(x),

and for further ease of notation, we will write β for βε(H(Du)). We have

a ·D2v ≥ γ|D2u|2 + 2Du ·D(cu+ b ·Du+ β − h)− 2
n∑

i,j=1

uxixjDu ·Daij

−λ(cu+ b ·Du+ β − h)

= γ|D2u|2 − 2
n∑

i.j=1

uxixjDu ·Daij + 2c|Du|2 − 2Du ·Dh+ 2uDu ·Dc− λcu

−λh+ 2DbDu ·Du+ 2β′Du ·D2uDH + 2Du ·D2ub− λb ·Du− λβ
≥ −C|Du|2 − C +Dv · (β′DH + b) + λ(β′Du ·DH − β)

≥ −C|Du|2 − C +Dv · (β′DH + b) + λβ′(Du ·DH −H),

as βε(z) ≤ zβ′ε(z) for all z ∈ R. Since H is uniformly convex with D2H ≥ 1 and H(0) ≤ 0,

p ·DH(p)−H(p) ≥ |p|2/2, p ∈ Rn.

The above inequality implies

a ·D2v ≥ −C|Du|2 − C +Dv · (β′DH + b) +
λβ′

2
|Du|2 (2.18)

for constants C independent of ε.

3. Let x0 ∈ O be a maximizing point for v. If x0 ∈ ∂O, a bound on |Du(x0)|2 that is
independent of ε ∈ (0, 1) is immediate from the previous corollary. If x0 ∈ O, then

Dv(x0) = 0, a(x0) ·D2v(x0) ≤ 0.
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If β′ = β′(H(Du)) ≤ 1 < 1/ε, then β = β(H(Du)) ≤ 1. In particular, H(Du) ≤ 2ε ≤ 2
which implies a bound on |Du(x0)| independent of ε ∈ (0, 1). If β′(H(Du)) ≥ 1, (2.18) gives

0 ≥ −C|Du|2 − C +
λ

2
|Du|2, (2.19)

which implies a bound on |Du(x0)|2 independent of ε ∈ (0, 1), for λ > 0 chosen large
enough.

Lemma 2.2.5. For each O′ b O, there is a constant C = C(O′) such that

0 ≤ βε(H(Duε(x))) ≤ C, x ∈ O′

for 0 < ε < 1.

Remark 2.2.6. To simplify the arguments given below, we assume

b ≡ 0 c ≡ δ > 0.

We believe that incorporating more general coefficients b and c is merely technical and no
new issues arise.

Proof. 1. It suffices to bound

x 7→ η(x)βε(H(Duε(x))), x ∈ O

for each η ∈ C∞c (O), 0 ≤ η ≤ 1. To this end, we will show that for each such η, there is a
universal constant λ > 0 such that the function

vε(x) := η(x)βε(H(Duε(x))) +
λ

2
|Duε(x)|2, x ∈ O

is bounded above independently of ε ∈ (0, 1). We remark this approach was introduced in
[16]. As before, we will omit the ε dependence of uε and vε, arguments of functions and write
β for βε(H(Duε)).

2. We perform several computations that will help us study v near its maximum values.
Straightforward computations are

Dv = Dηβ + ηDβ + λD2uDu

a ·D2v = (a ·D2η)β + 2aDη ·Dβ + η(a ·D2β)

+λ(aD2u ·D2u+
∑n

i,j=1 Du · aijDuxixj)

We will do some further computations below to simplify the expression (above) that we have
for a ·D2v.
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(a)

η
(
(a ·D2η)β + 2aDη ·Dβ

)
= η(a ·D2η)β + 2aDη · ηDβ
= (ηa ·D2η − 2aDη ·Dη)β + 2aDη ·Dv − 2λaDη ·D2uDu

(b)

a ·D2β = β′′aD2uDH ·D2uDH +

β′

{
a ·D2uD2HD2u+DH ·D(a ·D2u)−

n∑
ij=1

uxixjDH ·Daij

}
= β′′aD2uDH ·D2uDH +

β′

{
a ·D2uD2HD2u+DH ·D(δu− h) +Dβ ·DH −

n∑
ij=1

uxixjDH ·Daij

}
η(a ·D2β) = ηβ′′aD2uDH ·D2uDH +

β′
{
ηa ·D2uD2HD2u+ ηDH ·D(δu− h) +Dv ·DH

−βDH ·Dη − λDH ·D2uDu− η
n∑

ij=1

uxixjDH ·Daij

}

(c)

n∑
i,j=1

Du · aijDuxixj = Du ·D(a ·D2u)−
n∑

i,j=1

uxixjDu ·Daij

= Du ·D(δu− h) +Du ·Dβ −
n∑

i,j=1

uxixjDu ·Daij

and so{
η
∑n

i,j=1Du · aijDuxixj = ηDu ·D(δu− h) +Du ·Dv
−βDu ·Dη − λD2uDu ·Dη − η

∑n
i,j=1 uxixjDu ·Daij.

Substituting the above computations (a)− (c) into our expression for a ·D2v gives
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ηa ·D2v = (ηa ·D2η − 2aDη ·Dη)β + 2aDη ·Dv
−2λaDη ·D2uDu+ η2β′′aD2uDH ·D2uDH

+ηβ′ { ηa ·D2uD2HD2u+ ηDH ·D(δu− h) +Dv ·DH

−βDH ·Dη − λDH ·D2uDu− η
n∑

ij=1

uxixjDH ·Daij

}

+λ{ ηaD2u ·D2u+ ηDu ·D(δu− h) +Du ·Dv

−βDu ·Dη − λD2uDu ·Du− η
n∑

i,j=1

uxixjDu ·Daij

}
. (2.20)

3. Let x0 ∈ O be a maximizing point for v. If x0 ∈ ∂O or η(x0) = 0, then v ≤ v(x0) ≤
λ|Du(x0)|2/2 ≤ C, as desired. If x0 ∈ O and η(x0) > 0, we have

Dv(x0) = 0 and 0 ≥ a(x0) ·D2v(x0);

and from (2.20),

0 ≥ −Cβ − C|D2u|+ β′
{
η|D2u|2 − C − Cβ − C|D2u|

}
+λ
{
ηγ|D2u|2 − C − C|D2u| − β

}
,

where C denotes various constants that are independent of ε ∈ (0, 1). All functions above
are evaluated at x0.

Recall that
β = a ·D2u− δu+ h ≤ C

{
1 + |D2u|

}
and therefore we have

0 ≥ λγη

2
|D2u|2 − C + β′

{
η|D2u|2 − C

}
again for various constants C independent of ε.

If β′ = β′ε(H(Duε)) ≤ 1 < 1/ε, then β = βε(H(Duε)) ≤ 1, and the claim follows for
v ≤ 1 + λ

2
|Du(x0)|2. If β′ ≥ 1 (and without loss of generality η|D2u(x0)|2 − C ≥ 0),

0 ≥ λγη

2
|D2u|2 − C + η|D2u|2.

For λ > 0 chosen large enough, we have η(x0)|D2u(x0)|2 ≤ C. Therefore,

v ≤ v(x0)

≤ η(x0)β(H(Du(x0)) + λ|Du(x0)|2/2
≤ η(x0)|D2u(x0)|2 + C

≤ C
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as desired.

With the estimates above, we are finally in a position to bound the second derivatives of uε.
Our approach here was introduced by L. C. Evans [10] and later refined by M. Wiegner [23];
it should be noted that they studied the case of a convex gradient constraint function with
x-dependence H = H(p, x) = |p| − g(x). We suspect that our assumptions on H (2.3) are
the most general for which this type of penalization technique yields regularity results.

Lemma 2.2.7. For each O′ b O, there is a constant C = C(O′) such that

|uε|W 2,∞(O′) ≤ C

for each 0 < ε < 1.

Proof. 1. It is sufficient to bound, for each η ∈ C∞c (O) with 0 ≤ η ≤ 1, the quantity

Mε := max
x∈O

√
η(x)|D2uε(x)|

for all 0 < ε < 1. With this in mind, we shall bound the related quantity

vε(x) = η(x)

(
1

2
|D2uε(x)|2 + λβ(H(Duε(x)))

)
+
µ

2
|Duε(x)|2, x ∈ O

from above. Here λ, µ are constants that will be chosen below. As in previous proofs, we
shall omit the ε dependence of uε, vε and their derivatives and many times we will write β
for βε(H(Duε)).

2. We will perform various computations that will help us study v near its maximum
values.



vxi = ηxi
(

1
2
|D2u|2 + λβ

)
+ η (D2u ·D2uxi + λβ′DH ·Duxi) + µDu ·Duxi

vxixj = ηxixj
(

1
2
|D2u|2 + λβ

)
+ ηxi

(
D2u ·D2uxj + λβ′DH ·Duxj

)
+

ηxj (D2u ·D2uxi + λβ′DH ·Duxi) +

η
{
D2uxi ·D2uxj +D2u ·D2uxixj

}
+

η
{
λ
(
β′′(DH ·Duxi)(DH ·Duxj) + β′(D2HDuxi ·Duxj +DH ·Duxixj)

)}
+µ
{
Duxi ·Duxj +Du ·Duxixj

}
(2.21)
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Using the assumed matrix inequalities a ≥ γ (2.2) and D2H ≥ 1 (2.17), we have

a ·D2u =
n∑

i,j=1

aijvxixj

= (a ·D2η)

(
1

2
|D2u|2 + λβ

)
+ 2

n∑
i,j=1

aijηxi
(
D2u ·D2uxj + λβ′DH ·Duxj

)
+

η

{
n∑

i,j=1

aijD
2uxi ·D2uxj +

n∑
i,j=1

D2u · aijD2uxixj+

λ

(
β′′aD2DH ·D2uDH + β′(a ·D2uD2HD2u+

n∑
i,j=1

DH · aijDuxixj)

)}

+µ

{
aD2u ·D2u+

n∑
i,j=1

Du · aijDuxixj

}

≥ (a ·D2η)

(
1

2
|D2u|2 + λβ

)
+ 2

n∑
i,j=1

aijηxi
(
D2u ·D2uxj + λβ′DH ·Duxj

)
+

+η

{
γ|D3u|2 +

n∑
k,l

uxkxl(a ·D2uxkxl)

}

+ηλ

(
β′′γ|D2uDH|2 + β′

[
γ|D2u|2 +

n∑
k=1

Hpk(a ·D2uxk)

])

+µ

{
γ|D2u|2 +

n∑
k=1

uxk(a ·D2uxk)

}
.

Below we will make further computations that will help us simplify the above expression for
a ·D2v.

Recall
a ·D2u = δu− h+ β.

Differentiating with respect to xk gives

a ·D2uxk = δuxk − hxk + β′DH ·Duxk − axk ·D2u,

and differentiating with respect to xl gives
a ·D2uxkxl = δuxkxl − hxkxl + β′′DH ·DuxkDH ·Duxl

+β′(D2HDuxk ·Duxl +DH ·Duxkxl)
−axk ·D2uxl − axl ·D2uxk − axkxl ·D2u

.
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In particular,

n∑
k=1

uxk(a ·D2uxk) = Du ·D(δu− h)−
n∑

i,j=1

uxixjDu ·Daij + β′D2uDH ·Du,

n∑
k=1

Hpk(a ·D2uxk) = DH ·D(δu− h)−
n∑

i,j=1

uxixjDH ·Daij + β′D2uDH ·DH,

and



∑n
k,l=1 uxkxl(a ·D2uxkxl) = D2u ·D2(δu− h)

−2
∑n

k,l=1 uxkxl(axk ·D2ux`)−
∑n

k,l=1 uxkxl(axkxl ·D2u)

+β′′D2u(D2uDH) · (D2uDH)

+β′
(
D2u ·D2uD2HD2u+

∑n
k,l=1 uxkxlDH ·Duxkxl

) .

Substituting these equalities into our expression for a ·D2v gives

a ·D2v ≥ (a ·D2η)
(

1
2
|D2u|2 + λβ

)
+ 2

n∑
i,j=1

aijηxi
(
D2u ·D2uxj + λβ′DH ·Duxj

)
+

η

γ|D3u|2 +D2u ·D2(δu− h)−
n∑

k,l=1

uxkxl
[
2(axk ·D

2ux`) + (axkxl ·D
2u)
]

+β′′
[
D2u(D2uDH) · (D2uDH) + λγ|D2uDH|2

]
+

β′
[
D2u ·D2uD2HD2u+ λγ|D2u|2 − 1

η

(
1
2
|D2u|2 + λβ

)
DH ·Dη

+DH ·D(δu− h)−
n∑

i,j=1

uxixjDH ·Daij

+

µ

γ|D2u|2 +Du ·D(δu− h)−
n∑

i,j=1

uxixjDu ·Daij

+

β′
n∑
i=1

Hpi

[
ηxi

(
1
2
|D2u|2 + λβ

)
+ η

(
D2u ·D2uxi + λβ′DH ·Duxi

)
+ µDu ·Duxi

]
,

assuming that η > 0. Recalling our computation for vxi [given in (2.21)] gives our final
expression for a ·D2v:
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η(a ·D2v) ≥ (ηa ·D2η − 2aDη ·Dη)

(
1

2
|D2u|2 + λβ

)
+ 2aDη ·

(
Dv − µD2uDu

)
+

η

{
γ|D3u|2 +D2u ·D2(δu− h)−

n∑
k,l=1

uxkxl
[
2(axk ·D2ux`) + (axkxl ·D2u)

]
+β′′

[
D2u(D2uDH) · (D2uDH) + λγ|D2uDH|2

]
+

β′
[
D2u ·D2uD2HD2u+ λγ|D2u|2 − 1

η

(
1

2
|D2u|2 + λβ

)
DH ·Dη

+DH ·D(δu− h)−
n∑

i,j=1

uxixjDH ·Daij

]}
+

µ

{
γ|D2u|2 +Du ·D(δu− h)−

n∑
i,j=1

uxixjDu ·Daij

}
+ β′DH ·Dv. (2.22)

3. Let x0 be a maximizing point for v. If η(x0) = 0 or x0 ∈ ∂O, then v ≤ v(x0) ≤
µ|Du(x0)|2 ≤ C. This of course implies M2

ε ≤ C as desired. Now suppose that η(x0) > 0
and x0 ∈ O, so that

Dv(x0) = 0 and a(x0) ·D2v(x0) ≤ 0.

Inequality (2.22), evaluated at x0, gives

0 ≥ −C{1 + |D2u|2}+
1

2
µηγ|D2u|2 +

η2β′′|D2uDH|2(γλ− |D2u|) + ηβ′
{(
ληγ − C|D2u|

)
|D2u|2 − C|D2u|2 − C

}
(2.23)

where C denotes various constants that are independent of ε (but may depend on
η(x0), Dη(x0), D2η(x0) etc).

From (2.23), we have that if we set

λ = λε := τMε,

where τ > 0 is chosen large enough and independently of ε ∈ (0, 1),

0 ≥ −C{1 + |D2u|2}+
1

2
µηγ|D2u|2.

This inequality implies a bound on η(x0)|D2u(x0)|2 for µ > 0 chosen large enough and
independent of 0 < ε < 1. Finally,

M2
ε ≤ max

O
v ≤ η(x0)|D2u(x0)|2 + CMε + C ≤ C(Mε + 1),

and thus Mε ≤ C.
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Proof. (of part (ii) of Theorem 2.0.1) We show here that there is a subsequence of ε → 0+

such that uε → u in C1
loc(O), where u is the solution of (2.1). This would in particular imply

that u ∈ W 2,∞
loc (O) = C1,1

loc (O).
1. Thus far, we have established that there is a constant C > 0 such that

|uε|W 1,∞(O) ≤ C, ε ∈ (0, 1),

and for each O′ b O, there is a constant C ′ such that

|uε|W 2,∞(O′) ≤ C ′, ε ∈ (0, 1).

We claim that there is a function v ∈ W 1,∞(O)∩W 2,∞
loc (O) and a sequence of ε tending to 0

such that as ε→ 0 {
uε → v uniformly in O

uε → v in C1
loc(O)

.3

Set

Oj =

{
x ∈ O : dist(x, ∂O) ≥ 1

j

}
for j ∈ N,

and observe that the sequence of compact sets Oj is increasing and O = ∪j∈NOj. Without
loss of generality suppose O1 6= ∅. The above estimates and the Arzelà-Ascoli Theorem
imply that there is a function v1 ∈ W 1,∞(O) ∩W 2,∞(O1) and a sequence ε0k → 0 as k →∞
such that uε

0
k → v1 uniformly in O and uε

0
k → v1 in C1(O1) as k →∞.

The uniform bounds we have on the W 2,∞(O2) norm of the sequence uε
0
k implies again

with the Arzelà-Ascoli Theorem that there is a function v2 ∈ W 1,∞(O) ∩W 2,∞(O2) and a
sub-sequence (ε1k)k≥1 of (ε0k)k≥1 such that uε

1
k → v2 uniformly in O and uε

1
k → v2 in C1(O2)

as k →∞. By induction, we have for each j ∈ N a function vj ∈ W 1,∞(O) ∩W 2,∞(Oj) and

a sub-sequence (εjk)k≥1 of (εj−1
k )k≥1 such that uε

j−1
k → vj uniformly in O and uε

j−1
k → vj in

C1(Oj) as k →∞.

The diagonal sequence (uε
k
k)k∈N is a subsequence of each (uε

j
k)k∈N with j fixed. Hence,

this diagonal sequence converges uniformly on O to some v ∈ W 1,∞(O). Fix any O′ b O,

and note that O′ ⊂ Oj for j fixed and large enough. (uε
k
k)k∈N being a subsequence of (uε

j
k)k∈N

converges in C1(O′) ⊂ C1(Oj) to v as k →∞.
2. We now claim that v is a viscosity solution of (2.1) and therefore has to coincide with

u by the uniqueness of viscosity solutions of (2.1). Suppose that v−ϕ has a local maximum
at x0 ∈ O and that ϕ ∈ C2(O). We must show

max
{
δv(x0)− a(x0) ·D2ϕ(x0)− h(x0), H(Dϕ(x0))

}
≤ 0. (2.24)

By adding x 7→ ρ
2
|x − x0|2 to ϕ and later sending ρ → 0, we may assume that v − ϕ has

a strict local maximum. Since uεk converges to v uniformly (for some sequence εk → 0) as
k →∞, there is a sequence of xk such that

3That is, uε → v uniformly in O and uε → v in C1(O′) for each O′ b O through a sequence of ε→ 0.
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{
xk → x0, as k →∞
uεk − ϕ has a local maximum at xk

.

As uεk is a smooth solution of (2.16), we have

δuεk(xk)− a(xk) ·D2ϕ(xk) + βε(H(Dϕ(xk))) ≤ h(xk).

Since βε ≥ 0, we can send k →∞ to arrive at

δv(x0)− a(x0) ·D2ϕ(x0) ≤ h(x0).

By Lemma 2.2.5,
0 ≤ βεk(H(Dϕ(xk))) = βεk(H(Duεk(xk))) ≤ C,

which necessarily implies that when k →∞

H(Dϕ(x0)) ≤ 0.

Thus, (2.24) holds.
Now suppose that v − ψ has a local minimum at x0 ∈ O and that ψ ∈ C2(O). We must

show

max
{
δv(x0)− a(x0) ·D2ψ(x0)− h(x0), H(Dψ(x0))

}
≥ 0. (2.25)

Arguing as above, we discover there is a sequence εk → 0 as k →∞, and xk such that{
xk → x0, as k →∞
uεk − ψ has a local minimum at xk

.

If
H(Dψ(x0)) ≥ 0,

then (2.25) holds. Suppose now that

H(Dψ(x0)) < 0.

Since uε is a smooth solution of (2.16), we have

δuεk(xk)− a(xk) ·D2ψ(xk) + βεk(H(Dψ(xk)))− h(xk) ≥ 0. (2.26)

By the convergence established in part 1 of this proof, H(Dψ(xk)) = H(Duεk(xk)) < 0 for
all large enough k. Hence,

lim
k→∞

βεk(H(Dψ(xk))) = 0.

In this case, the above limit and (2.26) imply

max
{
δv(x0)− a(x0) ·D2ψ(x0)− h(x0), H(Dψ(x0))

}
≥ δv(x0)−a(x0) ·D2ψ(x0)−h(x0) ≥ 0.
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Remark 2.2.8. Any solution u of (2.1) satisfies Lu ≤ h. Thus a (local) pointwise lower bound
on Lu would imply a local C1,α estimate on u by the Calderón-Zygmund estimate and the
Sobolev inequality [15]. We suspect that such an estimate holds without assuming that H is
uniformly convex.

Remark 2.2.9. In the case that H is not uniformly convex, we do not know whether or not u
has locally bounded second derivatives. A small consolation is that u can be approximated
uniformly by uθ where uθ is the C1,1

loc solution of{
max {Lu− h(x), θ|Du|2 +H(Du)} = 0, x ∈ O

u = 0, x ∈ ∂O
.

A close inspection of our methods show (a) |Duθ(x)| ≤ C for all x ∈ O and (b) for each
O′ b O there is a constant C = C(O′) such that

|D2uθ(x)| ≤ C/θ

for almost every x ∈ O′.

2.3 Probabilistic interpretation

For a specific class of convex gradient constraint functions H, equation (2.1) is the
Hamilton-Jacobi-Bellman (HJB) equation for the value function in a generic class of stochas-
tic singular control problems. In this section, we briefly outline this correspondence and
discuss how our regularity result is applicable for these value functions. For this class of gra-
dient constraint functions H we also prove that, under the appropriate norm, the solution
of the PDE is its own maximal Lipschitz extension.

2.3.1 Singular controls

Assume that (Ω,F ,P) is a probability space equipped with a standard n-dimensional
Brownian motion (W (t), t ≥ 0). A control process is a pair (ξ, ρ) such that

(ρ(t), ξ(t)) ∈ Rn × R, t ≥ 0,

(ρ, ξ) is adapted to W

|ρ(t)| = 1, t ≥ 0, a.s.

ξ(0) = 0, t 7→ ξ(t) is non-decreasing and is left continuous with right hand limits a.s.

.

Now, let ` be a norm on Rn and consider the stochastic control problem

v(x) := inf
ρ,ξ

Ex

∫ τ

0

e−
R t
0 c(X

ρ,ξ(s))ds
[
h(Xρ,ξ(t))dt+ `(ρ(t))dξ(t)

]
, x ∈ O. (2.27)



27

Here Xρ,ξ satisfies the stochastic differential equation (SDE){
dX(t) = −b(X(t))dt+ σ(X(t))dW (t)− ρ(t)dξ(t), t ≥ 0

X(0) = x

and τ = inf{t ≥ 0 : Xρ,ξ(t) /∈ O}. We are assuming that σ, b, c are smooth on O and that
the above SDE has as unique solution (in law) for each x ∈ O and control process (ρ, ξ).
In general, X will not have continuous sample paths and so it is regarded as a “singularly”
controlled process. Therefore, we say that v is the value function of a problem of stochastic
singular control.

W. Fleming and H. Soner [13] have shown that if the value function v satisfies a natural
dynamic programming principle, then v is a viscosity solution of a HJB equation of the form
(2.1). This result provides the connection between the PDE we studied in previous sections
and stochastic singular control.

Theorem 2.3.1. Assume that for each stopping time θ ≥ 0 and x ∈ O,4

v(x) = inf
ρ,ξ

Ex
{
e−

R τ∧θ
0 c(Xρ,ξ(s))dsv(Xρ,ξ(τ ∧ θ))

+

∫ τ∧θ

0

e−
R t
0 c(X

ρ,ξ(s))ds
[
h(Xρ,ξ(t))dt+ `(ρ(t))dξ(t)

]}
.

Then the value function v is a viscosity solution of HJB equation

{
max

{
−1

2
σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u− h(x), H(Du)

}
= 0, x ∈ O

u = 0, x ∈ ∂O
(2.28)

where
H(p) = max

|v|=1
{p · v − `(v)} , p ∈ Rn. (2.29)

Remark 2.3.2. In particular, H defined by (2.29) satisfies (2.3), so v is the unique viscosity
solution of (2.1) with

a(x) :=
1

2
σ(x)σt(x), x ∈ O.

2.3.2 Regularity of the value function

Notice that in the case where ` is the standard Euclidean norm (`(v) = |v|, v ∈ Rn)

H(p) = |p| − 1,

4θ is a stopping time with respect to the filtration generated by W .
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and (2.28) becomes

max

{
−1

2
σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u− h(x), |Du| − 1

}
= 0

which is equivalent to

max

{
−1

2
σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u− h(x), |Du|2 − 1

}
= 0.

Since p 7→ |p|2 − 1 is uniformly convex, v ∈ C1,1
loc (O) while H(p) = |p| − 1 is not uniformly

convex! We conjecture the reduction from the convex gradient constraint defined by (2.29)
to a uniformly convex gradient constraint G can be achieved for a large class of norms `. In
fact, we always have a candidate for such a G.

Lemma 2.3.3. Set

G(p) := max
|v|=1

{
(p · v)2 − (`(v))2

}
, p ∈ Rn. (2.30)

Then H(p) ≤ 0 if and only if G(p) ≤ 0.

Proof. Suppose H(p) ≤ 0. Then p · v ≤ `(v) and −p · v ≤ `(−v) = `(v) for |v| = 1. Hence,
|p · v| ≤ `(v), and thus G(p) ≤ 0. If G(p) ≤ 0, then `(v) ≥ |p · v| ≥ p · v. Consequently,
H(p) ≤ 0.

Corollary 2.3.4. The value function v is a viscosity solution of the PDE

{
max

{
−1

2
σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u− h(x), G(Du)

}
= 0, x ∈ O

u = 0, x ∈ ∂O
.

It remains to discover necessary and sufficient conditions on ` to ensure that G is uni-
formly convex. The example `(v) = |v|, for which G(p) = |p|2 − 1, shows there are some
norms ` for which G is uniformly convex.

Conjecture 2.3.5. Assume that ` is twice continuously differentiable and that for each
|v| = 1 the restriction of the linear map

D2`(v)− `(v)In (2.31)

to v⊥ is non-positive definite. Then G is uniformly convex.
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We now give some heuristic calculations that support Conjecture 2.3.5. Since

|p|2 − sup
|v|=1

`(v)2 ≤ G(p) ≤ |p|2 − inf
|v|=1

`(v)2

we expect
D2G(p) ≥ 2, p ∈ Rn. (2.32)

Before we show why (2.31) formally implies (2.32), let us do some preliminary computations
involving H.

We assume that for each p ∈ Rn, there is a unique v = v(p) ∈ Sn−1 such that

H(p) = p · v − `(v). (2.33)

We also assume that this v varies smoothly with p. Note that since ` is homogeneous of
degree 1, and in particular D`(v) · v = `(v) for v 6= 0, v(p) also a solution of the vector
equation

p−D`(v) = H(p)v. (2.34)

This can be also seen as a good heuristic by applying the theory of Lagrange multipliers to
the maximization problem determined by H.

Notice that from (2.33) and (2.34)

DH(p) = v(p) +Dvt(p) (p−D`(v))

= v(p) +Dvt(p)H(p)v(p)

= v(p) +H(p)D
(
|v(p)|2/2

)
= v(p).

Hence, when v = v(p)
DH(p) = v. (2.35)

Differentiating (2.34) gives

In −D2`(v(p))Dv(p) = DH(p)⊗ v(p) +H(p)Dv(p).

Using (2.35) and rearranging gives an expression for the derivative of v

Dv(p) =
(
D2`(v(p)) +H(p)In

)−1
(In − v(p)⊗ v(p)) . (2.36)

The proof of the Lemma 2.3.3 shows that v(p) will be a maximizer for the maximization
problem determined by G(p)

G(p) = (p · v)2 − (`(v))2;
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and similarly to how we computed (2.35), we have

DG(p) = 2(p · v(p))v(p).

A direct computation now yields an expression for the Hessian of G.

D2G(p) = 2 {v(p)⊗ v(p) + (v(p) · pIn + v(p)⊗ p)Dv(p)} . (2.37)

Now we will check that under the assumption (2.31), (2.32) holds.
First note that since Dv(p)tv(p) = (1/2)D|v(p)|2 = 0,

D2G(p)v(p) · v(p) = 2.

Now let w ∈ Sn−1 be such that w · v(p) = 0. (2.36) and (2.37) give

D2G(p)w · w = 2(p · v(p))
(
D2`(v(p)) +H(p)In

)−1
w · w

D2G(p)w · w ≥ 2 if and only if

(p · v(p))
(
D2`(v(p)) +H(p)In

)−1 ≥ 1,

which by (2.33) holds if and only if

D2`(v(p))− `(v(p)) ≤ 0.

This inequality is assumed by (2.31) and is the basis for our conjecture.

2.3.3 `−Lipschitz extension formula

Equation (2.1) is a free boundary problem determined by a gradient constraint. In the
case where H is given by (2.29) i.e.

H(p) = max
|v|=1
{p · v − `(v)} , p ∈ Rn,

we shall see that there is convenient expression for the solution u outside of the constraint
set. Before pursuing this matter, let us state a lemma that is of interest in its own right.
This lemma generalizes the fact that the function defined as the distance to the boundary
of a set Ω is a viscosity solution of the eikonal equation |Du| = 1 in Ω.

Lemma 2.3.6. Let Ω ⊂ Rn be non-empty and assume that g : ∂Ω→ R satisfies

|g(x)− g(y)| ≤ `(x− y), x, y ∈ ∂Ω.

Then the function
u(x) := inf

y∈∂Ω
{g(y) + `(x− y)} , x ∈ Ω (2.38)

is the unique viscosity solution of the generalized eikonal equation{
H(Du(x)) = 0, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω
. (2.39)
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Proof. 1. We first show that u is a viscosity solution of (2.39). (2.38) implies

|u(x1)− u(x2)| ≤ `(x1 − x2), x1, x2 ∈ Ω.

Now suppose that p ∈ J1,+u(x0). That is, that

u(x) ≤ u(x0) + p · (x− x0) + o(|x− x0|)

as Ω 3 x− x0 → 0. We set x = x0 − tv, for |v| = 1 and t positive, and rearrange the above
inequalities to get

p · v − `(v) ≤ o(1)

as t → 0+. Hence, p · v − `(v) ≤ 0 for all |v| = 1 and so H(p) ≤ 0. Therefore, u is a
viscosity subsolution of (2.39) satisfying u(x) = g(x), x ∈ ∂Ω. To see that u is a viscosity
supersolution of (2.39), we show that any viscosity subsolution w with w(x) = g(x), x ∈ ∂Ω
is dominated by u. Lemma 1.2.9 then applies.

Let w be a subsolution of (2.39) satisfying w(x) = g(x), x ∈ ∂Ω. Similar to our arguments
above, we find

|w(x1)− w(x2)| ≤ `(x1 − x2), x1, x2 ∈ Ω.

Then it follows that

u(x) = inf
y∈∂Ω
{w(y) + `(x− y)} ≥ w(x), x ∈ Ω.

2. Uniqueness follows from standard theorems in the theory of viscosity solutions of
eikonal-type equations (see Theorem 5.9 in [1]).

From the above lemma, we immediately have the following corollary which roughly as-
serts: once the free boundary is known, we only need to solve the PDE Lu = h within the
region H(Du) < 0 and then perform a certain Lipschitz extension of this solution over the
whole domain O to obtain a solution of

max{Lu− h(x), H(Du)} = 0, x ∈ O.

Corollary 2.3.7. Let u denote the unique solution of (2.1) with H given by (2.29). More-
over, assume that G given by (2.30) is uniformly convex. Then

u(x) = min
y∈Ω
{u(y) + `(x− y)} , x ∈ O.

where Ω =
{
x ∈ O : H(Du(x)) < 0

}
.
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2.4 Discussion

In this chapter, we studied (2.1) which is an elliptic PDE with a convex gradient con-
straint. We identified natural structural conditions on the gradient constraint function to
ensure the uniqueness of a viscosity solution of the Dirichlet problem and to ensure some
regularity of this solution. This work builds on previous efforts by L. C. Evans [10], M.
Wiegner [23] and H. Ishii et.al. [16].

These types of equations arise naturally in singular control theory where the value func-
tions of a broad class of control problems are viscosity solutions. Conveniently, the associated
convex gradient constraints arising in these problems possess the structural properties needed
for our analytic results. We also give an interesting characterization of the solution as being
its own Lipschitz extension across the free boundary that seems to be new.

In further research, it would be of interest to deduce whether or not our regularity result
is sharp and to extend our arguments to equations with fully non-linear operators. More
important work would be to deduce some regularity properties of the free boundary as its
known that a sufficiently smooth free boundary allows for the construction of optimal controls
(see, for instance, [21]).
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Chapter 3

The eigenvalue problem of singular
ergodic control

In this chapter, we address the following problem: find λ ∈ R such that the PDE

max {λ−∆u− h(x), |Du| − 1} = 0, x ∈ Rn (3.1)

has a solution u : Rn → R. We call any such λ a (non-linear) eigenvalue. Here is it assumed
that h ∈ C∞(Rn) is convex and satisfies the growth condition

lim
|x|→∞

h(x)

|x|
= +∞. (3.2)

These assumptions imply that h is bounded from below and without any loss of generality
it will also be assumed that h is non-negative.

Our main result is

Theorem 3.0.1. There is a unique λ∗ ∈ R such that (3.1) has a viscosity solution u ∈ C(Rn)
satisfying

lim
|x|→∞

u(x)

|x|
= 1. (3.3)

Moreover, associated to this eigenvalue λ∗ ∈ R is a convex solution u∗ of (3.1) belonging to
the space C1,1(Rn) that satisfies (3.3).

As far as we know, this work is the first to consider the question as posed above. However,
a big part of our motivation was the work of Menaldi et. al. [20] who studied a very
closely related problem arising in stochastic control theory. With regards to the framework
we present, they used probabilistic arguments to build an eigenvalue. In this chapter, we
establish the existence of a unique eigenvalue and obtain a better regularity result than what
was obtained in [20] (as it does not require any special assumptions on h; we only require
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convexity and superlinear growth). Moreover, we have employed methods that are entirely
analytic and use nothing from probability theory. These techniques, coming mostly from the
theory of viscosity solutions, also generalize more naturally to a fully non-linear version of
the PDE problem above that we address later in this work.

The organization of this chapter is as follows. In section 3.1, we show that there can be
at most one λ such that there is a viscosity solution of equation (3.1) satisfying (3.3). In
section 3.2, we present a PDE method for approximating the values of an eigenvalue. After
obtaining the required estimates, we successfully pass to the limit in section 3.5 and build
an eigenvalue. In section 3.6 we present two, new (approximate) min-max characterizations
of the eigenvalue. Finally, in section 3.7 we discuss an extension of Theorem 3.0.1 regarding
a fully non-linear, homogeneous operator.

Probabilistic interpretation of the eigenvalue. Equation (3.1) is related to the following
stochastic optimal control problem. Let (Ω,F ,P) be a probability space with n-dimensional
Brownian motion (W (t), t ≥ 0). We set

Xν(t) :=
√

2W (t) + ν(t), t ≥ 0

where ν is an Rn valued control process (adapted to the filtration generated by W ) that
satisfies 

ν(0) = 0 a.s.

t 7→ ν(t) is left continuous a.s.

|ν|(t) := TVν [0, t) <∞, for all t > 0 a.s.

.1 (3.4)

We say ν is a singular control as it may have sample paths that may not be absolutely
continuous with respect to Lebesgue measure on [0,∞).

The optimization problem of interest is to find a singular control ν that minimizes the
quantity

lim sup
t→∞

1

t

{
E
∫ t

0

h(Xν(s))ds+ |ν|(t)
}
. (3.5)

As (3.5) is a “long-time” average, we interpret this problem as one of singular ergodic control.
To see how (3.1) is related to the control problem described above, we suppose that there

is λ ∈ R such that (3.1) has a convex solution u ∈ C2(Rn). Let ν be a singular control
process. According to Ito’s rule for semi-martingales [17],

1TVf [a, b) denotes the total variation of f on the interval [a, b).
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Eu(Xν(t)) = u(x) + E
∫ t

0

∆u(Xν(s))ds+ E
∫ t

0

Du(Xν(s)) · dν(s)

+
∑

0≤s<t

E
∫ t

0

[u(Xν(s+))− u(Xν(s))−Du(Xν(s)) · (Xν(s+)−Xν(s))]

≥ u(x) + tλ− E
∫ t

0

h(Xν(s))ds− E
∫ t

0

|Du(Xν(s))|d|ν|(s)

≥ u(x) + tλ− E
∫ t

0

h(Xν(s))ds− |ν|(t).

Thus

λ ≤ 1

t

{
E
∫ t

0

h(Xν(s))ds+ |ν|(t)
}

+
Eu(Xν(t))− u(x)

t
, t > 0. (3.6)

We would like to conclude that

λ ≤ lim sup
t→∞

1

t

{
E
∫ t

0

h(Xν(s))ds+ |ν|(t)
}
. (3.7)

Suppose that the right hand side of the inequality (3.7) is finite or else (3.7) clearly holds.
In this case,

lim sup
t→∞

1

t

∫ t

0

Eh(Xν(s))ds <∞

which implies that there is a sequence of positive numbers tk →∞ as k →∞ such that

lim sup
k→∞

Eh(Xν(tk)) <∞.

As h grows superlinearly and as u grows at most as fast as |x|, as |x| → ∞,

lim sup
k→∞

Eu(Xν(tk)) <∞.

Choosing t = tk in (3.6) and sending k →∞ establishes (3.7). In particular,

λ ≤ λ∗ := inf
ν

lim sup
t→∞

1

t

{
E
∫ t

0

h(Xν(s))ds+ |ν|(t)
}
. (3.8)

If there is a control ν∗ such that

λ−∆u(Xν∗(t))− h(Xν∗(t)) = 0, for t ∈ (0,∞) a.s., (3.9)

∫ t

0

Du(Xν∗(s)) · dν∗(s) = −ν∗(t), for t ∈ (0,∞) a.s., (3.10)
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and

u(Xν∗(t+))− u(Xν∗(t))−Du(Xν∗(t)) · (Xν∗(t+)−Xν∗(t)) = 0, for t ∈ (0,∞) a.s., (3.11)

then equality holds in (3.8). In this case, we have λ∗ as a probabilistic formula for the
eigenvalue appearing in (3.1).

Remark 3.0.2. ν∗ satisfying (3.9), (3.10), and (3.11) is a good candidate for an optimal
control. Designing such an optimal control can be done via reflected diffusions if enough
regularity is assumed on u and on the boundary of the set of points x such that |Du(x)| < 1.
This procedure is discussed in detail in [20] and in [21].

3.1 Comparison principle

The purpose of this section is to prove that there can be at most one eigenvalue for which
the PDE (3.1) has a viscosity solution satisfying (3.3). In order to clearly state our results,
we make the following definition.

Definition 3.1.1. u ∈ USC(Rn) is a viscosity subsolution of (3.1) with eigenvalue λ ∈ R if
for each x0 ∈ Rn,

max {λ−∆ϕ(x0)− h(x0), |Dϕ(x0)| − 1} ≤ 0

whenever u − ϕ has a local maximum at x0 and ϕ ∈ C2(Rn). v ∈ LSC(Rn) is a viscosity
supersolution of (3.1) with eigenvalue µ ∈ R if for each y0 ∈ Rn,

max {µ−∆ψ(y0)− h(y0), |Dψ(y0)| − 1} ≥ 0

whenever v−ψ has a local minimum at y0 and ψ ∈ C2(Rn). u ∈ C(Rn) is a viscosity solution
of (3.1) with eigenvalue λ ∈ R if it is both a viscosity sub- and supersolution of (3.1) with
eigenvalue λ.

Towards establishing a uniqueness result, we first establish a comparison principle for
eigenvalues with sub- and supersolutions. We first present a formal argument to convey the
motivating ideas.

Proposition 3.1.2. Suppose u is a subsolution of (3.1) with eigenvalue λ and that v is a
supersolution of (3.1) with eigenvalue µ. If in addition

lim sup
|x|→∞

u(x)

|x|
≤ 1 ≤ lim inf

|x|→∞

v(x)

|x|
, (3.12)

then λ ≤ µ.



37

Formal proof. Here we assume that u, v ∈ C2(Rn). Fix 0 < ε < 1 and set

wε(x) = εu(x)− v(x), x ∈ Rn.

By (3.12), we have lim|x|→∞w
ε(x) = −∞, so there is xε ∈ Rn such that

wε(xε) = sup
x∈Rn

wε(x).

Basic calculus gives {
0 = Dwε(xε) = εDu(xε)−Dv(xε)

0 ≥ ∆wε(xε) = ε∆u(xε)−∆v(xε)
.

Note in particular that
|Dv(xε)| = ε|Du(xε)| ≤ ε < 1,

and since v is a supersolution of (3.1) with eigenvalue µ,

0 ≤ µ−∆v(xε)− h(xε).

As u is a subsolution of (3.1) with eigenvalue λ

ελ− µ ≤ ε∆u(xε)−∆v(xε)− (1− ε)h(xε)

≤ −(1− ε)h(xε)

≤ 0.

Here we have used that h is non-negative. Letting ε→ 1−, gives λ ≤ µ.

�

We now make this rigorous by using a “doubling the variables” type of argument.

Proof. (of the proposition) 1. Fix 0 < ε < 1 and set

wε(x, y) = εu(x)− v(y), x, y ∈ Rn.

For δ > 0, we also set

ϕδ(x, y) =
1

2δ
|x− y|2, x, y ∈ Rn.

The inequality

wε(x, y)− ϕδ(x, y) = ε(u(x)− u(y))− 1

2δ
|x− y|2 + εu(y)− v(y)

≤
(
|x− y| − 1

2δ
|x− y|2

)
+ εu(y)− v(y)
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implies
lim

|(x,y)|→∞
{wε(x, y)− ϕδ(x, y)} = −∞.

Therefore, wε − ϕδ achieves a global maximum at a point (xδ, yδ) ∈ Rn × Rn.
2. According to the Theorem of Sums (Lemma 1.2.7), for each ρ > 0, there are X, Y ∈

S(n) such that (
xδ − yδ
δ

,X

)
= (Dxϕδ(xδ, yδ), X) ∈ J2,+

(εu)(xδ),(
xδ − yδ
δ

, Y

)
= (−Dyϕδ(xδ, yδ), Y ) ∈ J2,−

v(yδ), (3.13)

and (
X 0
0 −Y

)
≤ A+ ρA2. (3.14)

Here

A = D2ϕδ(xδ, yδ) =
1

δ

(
In −In
−In In

)
.

Applying both sides of the matrix inequality (3.14) to the vector (ξ, ξ)t ∈ R2n and then
taking the dot product with (ξ, ξ)t yields

Xξ · ξ − Y ξ · ξ ≤ 0.

As ξ ∈ Rn is arbitrary, X ≤ Y .
3. We also have

1

ε

xδ − yδ
δ

∈ J1,+
u(xδ),

and since |Du| ≤ 1 (in the sense of viscosity solutions),∣∣∣∣xδ − yδδ

∣∣∣∣ ≤ ε < 1.

Since v is a viscosity supersolution of (3.1) with eigenvalue µ, we have

0 ≤ µ− trY − h(yδ)

by (3.13). As u is a viscosity subsolution of (3.1) with eigenvalue λ,

λ− trX

ε
− h(xδ) ≤ 0.

Therefore,
ελ− µ ≤ tr[X − Y ] + εh(xδ)− h(yδ) ≤ h(xδ)− h(yδ). (3.15)
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4. We now claim that xδ ∈ Rn is bounded for all small enough δ > 0. If not, then there
is a sequence of δ → 0, for which (wε − ϕδ)(xδ, yδ) tends to −∞ as this sequence of δ tends
to 0. Indeed

(wε − ϕδ)(xδ, yδ) = (εu(xδ)− v(xδ)) + v(xδ)− v(yδ)−
|xδ − yδ|2

2δ

≤ (εu(xδ)− v(xδ)) + |xδ − yδ| −
|xδ − yδ|2

2δ

≤ εu(xδ)− v(xδ) +
δ

2

which tends to −∞ as δ → 0 provided limδ→0+ |xδ| = +∞. This would be the case for some
sequence of δ → 0, provided xδ is unbounded.

However,

(wε − ϕδ)(xδ, yδ) = max
x,y∈Rn

{
εu(x)− v(y)− |x− y|

2

2δ

}
≥ εu(0)− v(0)

> −∞,

and thus xδ lies in a bounded subset of Rn. |xδ − yδ|2/2δ → 0 by Lemma 1.2.6, and thus yδ
is also bounded for all δ > 0 and small. Again by Lemma 1.2.6, we have that the sequence
((xδ, yδ))δ>0 has a cluster point (xε, xε) for a sequence of δ → 0+. Passing to this limit in
(3.15) along this such a sequence gives

ελ− µ ≤ 0.

We conclude by letting ε→ 1−.

Uniqueness of eigenvalues with solutions having the appropriate growth for large values
of |x| is now immediate.

Corollary 3.1.3. There can be at most one λ ∈ R such that (3.1) has a viscosity solution
u satisfying the growth condition (3.3).

3.2 Approximation

Another interesting corollary of Proposition 3.1.2 is

Corollary 3.2.1. Suppose there exists an eigenvalue λ∗ as described in Theorem (3.0.1).
Then

λ∗ = sup{ λ ∈ R : there exists a subsolution u of (3.1) with eigenvalue λ,

satisfying lim sup
|x|→∞

u(x)

|x|
≤ 1.

}
(3.16)
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and

λ∗ = inf{ µ ∈ R : there exists a supersolution v of (3.1) with eigenvalue µ,

satisfying lim inf
|x|→∞

v(x)

|x|
≥ 1.

}
(3.17)

It would be of great interest to show both expressions on the right hand sides of (3.16)
and (3.17) are equal and that this number is the unique eigenvalue of equation (3.1). Such a
procedure for producing eigenvalues would be reminiscent of Perron’s method for exhibiting
viscosity solutions of PDE enjoying a comparison principle. Unfortunately, this method does
not work so directly in our context as it is not clear that if, say, the right hand side of (3.16)
is not an eigenvalue we can find a strictly bigger number with a corresponding u that is a
subsolution of (3.1). Therefore, we are led to an alternative procedure of approximating an
eigenvalue.

The method we propose is a PDE version of the probabilistic approach used by Menaldi
et.al [20]. However, we believe the earliest application of this method appears in periodic
homogenization of viscosity solutions of PDE in [19] and [10]. This approach essentially
amounts to replacing λ in (3.1) with “δu’” and studying the resulting PDE for δ > 0 and
small. If this resulting PDE has a unique solution uδ, the hope is that there is a sequence of
δ tending to 0 such that δuδ tends to λ.

To this end, we will study solutions of the PDE

max {δu−∆u− h(x), |Du| − 1} = 0, x ∈ Rn. (3.18)

In particular, we seek a viscosity solution u satisfying (3.3)

lim
|x|→∞

u(x)

|x|
= 1.

Proposition 3.2.2. Suppose u is a subsolution of (3.18) and that v is a supersolution of
(3.18). If in addition

lim sup
|x|→∞

u(x)

|x|
≤ 1 ≤ lim inf

|x|→∞

v(x)

|x|
,

then u ≤ v.

Proof. We omit the proof as it is almost identical to the proof of Proposition 3.1.2.

Corollary 3.2.3. There can be at most one viscosity solution u (3.18) satisfying the growth
condition (3.3).

With a comparison principle in hand, we can now employ a routine application of Perron’s
method to obtain existence of solutions once we have appropriate sub and supersolutions.
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Lemma 3.2.4. Fix 0 < δ < 1.
(i) There is a universal constant K > 0 such that

u(x) = (|x| −K)+ , x ∈ Rn (3.19)

is a viscosity subsolution of (3.18) satisfying the growth condition (3.3).
(ii) There is a universal constant K > 0 such that

u(x) =
K

δ
+

{
1
2
|x|2, |x| ≤ 1

|x| − 1
2
, |x| ≥ 1

, x ∈ Rn (3.20)

is a viscosity supersolution of (3.18) satisfying the growth condition (3.3).

Proof. (i) Choose K > 0 such that

u(x) ≤ h(x), x ∈ Rn.

Such a K can be chosen due to the superlinear growth of h.
As u is convex and as Lip(u)=1, if (p,X) ∈ J2,+u(x0)

|p| ≤ 1 and X ≥ 0.

Hence,

max {δu(x0)− trX − h(x0), |p| − 1} ≤ max {u(x0)− h(x0), |p| − 1} ≤ 0.

Thus u is a viscosity subsolution.
(ii) Choose

K := n+ max
|x|≤1

h(x)

and assume that (p,X) ∈ J2,−u(x0). If |x0| < 1, ū is smooth in a neighborhood of x0 and
ū(x0) = K

δ
+ |x0|2

2

Dū(x0) = x0 = p

∆ū(x0) = n = trX

.

Therefore,
δū(x0)−∆ū(x0)− h(x0) ≥ K − n− h(x0) ≥ 0,

which implies
max {δū(x0)−∆ū(x0)− h(x0), |Dū(x0)| − 1} ≥ 0. (3.21)

Now suppose |x0| ≥ 1. ū ∈ C1(Rn), so p = Dū(x0) = x0/|x0| and in particular |Dū(x0)| = 1.
Thus (3.21) still holds, and consequently, ū is a viscosity supersolution.

The following result follows directly from Theorem 1.2.10 using u and ū above.

Theorem 3.2.5. Fix 0 < δ < 1. There is a unique viscosity solution u = uδ of the (3.18)
satisfying (3.3).
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3.3 Basic estimates

Before we attempt to pass to the limit as δ → 0, we will obtain some better estimates on
uδ that will help us build an eigenvalue λ∗ and establish estimates on a solution u∗ of (3.1)
corresponding to this eigenvalue. So far we have shown that (3.18) has a unique solution uδ
that satisfies the growth condition (3.3). Moreover, from the sub- and supersolutions (3.19)
and (3.20) above, we have for each 0 < δ < 1

(|x| −K)+ ≤ uδ(x) ≤ K

δ
+ |x|, x ∈ Rn

and
|uδ(x)− uδ(y)| ≤ |x− y|, x, y ∈ Rn.

Our goal now is to obtain second derivative estimates on uδ. We first prove

Proposition 3.3.1. There is a constant C > 0 such that for all 0 < δ < 1 and (Lebesgue)
almost every x ∈ Rn, the following estimate holds

0 ≤ D2uδ(x) ≤ 1

δ
max
|y|≤C

|D2h(y)|. (3.22)

The above proposition follows from the following two lemmas. In the first lemma, we
show that uδ is convex by adapting the classical “convexity maximum principle” argument
of Korevaar [18]; in the second lemma, we estimate the second-order difference quotient of
uδ from above to obtain the upper bound in (3.22).

Lemma 3.3.2. uδ is convex.

Proof. 1. We first assume u ∈ C2(Rn) and for ease of notation, we write u for uδ. Fix
0 < ε < 1 and set

Cε(x, y) = εu

(
x+ y

2

)
− u(x) + u(y)

2
, x, y ∈ Rn.

We aim to bound Cε from above and later send ε→ 1−.
We first claim that Cε achieves its maximum value at some point (xε, yε) ∈ Rn × Rn; it

suffices to show
lim

|(x,y)|→∞
Cε(x, y) = −∞. (3.23)

Let (xk, yk) ∈ Rn × Rn be such that

|xk|+ |yk| → ∞

as k →∞. Let N be large enough so that |xk|+ |yk| > 0 for k ≥ N . Note that for k ≥ N
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Cε(xk, yk)
|xk|+ |yk|

= ε
u
(
xk+yk

2

)
|xk|+ |yk|

− 1

2

{(
|xk|

|xk|+ |yk|

)
u(xk)

|xk|
+

(
|yk|

|xk|+ |yk|

)
u(yk)

|yk|

}
≤ ε

2

u
(
xk+yk

2

)∣∣xk+yk
2

∣∣ − 1

2

{(
|xk|

|xk|+ |yk|

)
u(xk)

|xk|
+

(
|yk|

|xk|+ |yk|

)
u(yk)

|yk|

}
when of course |xk + yk| > 0.

If |xk + yk| happens to be bounded, then

lim sup
k→∞

Cε(xk, yk)
|xk|+ |yk|

≤ −1

2
< 0.

while if |xk + yk| → ∞, as k →∞, we still have

lim sup
k→∞

Cε(xk, yk)
|xk|+ |yk|

≤ −(ε− 1)

2
< 0.

Consequently, lim supk→∞ Cε(xk, yk) = −∞. The claim (3.23) follows since (xk, yk) was an
arbitrary unbounded sequence.

2. As (xε, yε) is a maximizing point for Cε,

0 = DxCε(xε, yε) =
ε

2
Du

(
xε + yε

2

)
− 1

2
Du(xε)

and

0 = DyCε(xε, yε) =
ε

2
Du

(
xε + yε

2

)
− 1

2
Du(yε).

Thus,

εDu

(
xε + yε

2

)
= Du(xε) = Du(yε).

The function v 7→ Cε(xε + v, yε + v) has a maximum at v = 0 which implies

0 ≥ ε∆u

(
xε + yε

2

)
− ∆u(xε) + ∆u(yε)

2
.

Since,

|Du(xε)| = |Du(yε)| = ε

∣∣∣∣Du(xε + yε
2

)∣∣∣∣ ≤ ε < 1.

we have
δu(z)−∆u(z)− h(z) = 0, z = xε, yε.
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Combining the above inequalities gives

δCε(x, y) ≤ δCε(xε, yε)

= εδu

(
xε + yε

2

)
− δu(xε) + δu(yε)

2

≤ ε∆u

(
xε + yε

2

)
− ∆u(xε) + ∆u(yε)

2

εh

(
xε + yε

2

)
− h(xε) + h(yε)

2

≤ h

(
xε + yε

2

)
− h(xε) + h(yε)

2
≤ 0

by the convexity of h, for each x, y ∈ Rn.
3. To make this formal argument rigorous, we employ a doubling the variables type

of argument. Moreover, since Cε above is a type of doubling the variables function, it is
appropriate going to “quadruple the variables.” This can be done by fixing 0 < ε < 1 and
setting

wε(x, y, x′, y′) = εu

(
x+ y

2

)
− u(x′) + u(y′)

2
, x, y, x′, y′ ∈ Rn,

and for η > 0, setting

ϕη(x, y, x
′, y′) =

1

2η

{
|x− x′|2 + |y − y′|2

}
, x, y, x′, y′ ∈ Rn.

Notice that

(wε − ϕη)(x, y, x′, y′) = ε

{
u

(
x+ y

2

)
− u

(
x′ + y′

2

)}
− 1

2η

{
|x− x′|2 + |y − y′|2

}
+εu

(
x′ + y′

2

)
− u(x′) + u(y′)

2

≤
(
|x− x′|

2
+
|y − y′|

2
− 1

2η

{
|x− x′|2 + |y − y′|2

})
+εu

(
x′ + y′

2

)
− u(x′) + u(y′)

2
.

From our computations above, it follows that

lim
|(x,y,x′,y′)|→∞

(wε − ϕη)(x, y, x′, y′) = −∞
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and, in particular, that there is (xη, yη, x
′
η, y
′
η) ∈ Rn×Rn×Rn×Rn maximizing wε−ϕη. By

the Theorem of Sums, for each ρ > 0 there are X, Y ∈ S(2n) such that

(
Dxϕη(xη, yη, x′η, y

′
η), Dyϕη(xη, yη, x′η, y

′
η), X

)
∈ J2,+

(
(x, y) 7→ εu

(
x+ y

2

)) ∣∣∣
x=xη ,y=yη

,

(
−Dx′ϕη(xη, yη, x′η, y

′
η),−Dy′ϕη(xη, yη, x′η, y

′
η), Y

)
∈ J2,−

(
(x′, y′) 7→ u(x′) + u(y′)

2

) ∣∣∣
x′=x′η ,y

′=y′η
,

and (
X 0
0 −Y

)
≤ A+ ρA2. (3.24)

Here

A = D2ϕη(xη, yη, x
′
η, y
′
η) =

1

η

(
I2n −I2n

−I2n I2n

)
.

Note that the matrix inequality (3.24) implies X ≤ Y .
Set

pη := Dxϕη(xη, yη, x
′
η, y
′
η) = −Dx′ϕη(xη, yη, x

′
η, y
′
η) =

xη − x′η
η

,

qη := Dyϕη(xη, yη, x
′
η, y
′
η) = −Dy′ϕη(xη, yη, x

′
η, y
′
η) =

yη − y′η
η

,

and also write

X =

(
X1 X2

X3 X4

)
and Y =

(
Y1 Y2

Y3 Y4

)
for appropriate n × n matrices Xi, Yi i = 1, . . . , 4. As X, Y ∈ S(2n), X1, X4, Y1, Y4 ∈ S(n)
and X t

2 = X3, Y
t

2 = Y3.
By direct verification, we have

(pη, X1) ∈ J2,+
(
x 7→ ε

2
u
(x+yη

2

)) ∣∣∣
x=xη

(qη, X4) ∈ J2,+
(
y 7→ ε

2
u
(xη+y

2

)) ∣∣∣
y=yη

(pη, Y1) ∈ J2,− (1
2
u
)

(x′η)

(qη, Y4) ∈ J2,− (1
2
u
)

(y′η)

. (3.25)

Since the Lipschitz constant of the function x 7→ εu((x + yη)/2) is less than or equal ε/2,
|pη| ≤ ε/2 < 1/2. Since pη ∈ J1,− (1

2
u
)

(x′η) and u is a viscosity solution of (3.18),

δu(x′η)− trY1 − h(x′η) = 0.

Likewise, we conclude that

δu(y′η)− trY4 − h(y′η) = 0.
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As u is a viscosity solution of (3.18), we have from the first two inclusions in (3.25)

δu

(
xη + yη

2

)
− trX1

ε
− h

(
xη + yη

2

)
≤ 0

and

δu

(
xη + yη

2

)
− trX4

ε
− h

(
xη + yη

2

)
≤ 0.

Averaging the two above inequalities gives

δu

(
xη + yη

2

)
− tr[X1 +X4]

2ε
− h

(
xη + yη

2

)
≤ 0.

Altogether we have

δ

{
εu

(
xη + yη

2

)
−
u(x′η) + u(y′η)

2

}
≤ 1

2
tr[X1 − Y1] +

1

2
tr[X4 − Y4]

+εh

(
xη + yη

2

)
−
h(x′η) + h(y′η)

2

=
1

2
tr[X − Y ] + h

(
xη + yη

2

)
−
h(x′η) + h(y′η)

2

≤ h

(
xη + yη

2

)
−
h(x′η) + h(y′η)

2
. (3.26)

4. Another simple estimate for wε − ϕη is

(wε − ϕη)(x, y, x′, y′) = εu

(
x+ y

2

)
− u(x) + u(y)

2
+

u(x)− u(x′) + u(y)− u(y′)

2
− 1

2η

{
|x− x′|2 + |y − y′|2

}
≤ εu

(
x+ y

2

)
− u(x) + u(y)

2
+

|x− x′|+ |y − y′|
2

− 1

2η

{
|x− x′|2 + |y − y′|2

}
≤ εu

(
x+ y

2

)
− u(x) + u(y)

2
+
η

2
.

This estimate implies that (xη, yη) is a bounded sequence. For otherwise, (wε−ϕη)(xη, yη, x′η, y′η)
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tends to −∞ (by the above estimate on wε − ϕη) while

(wε − ϕη)(xη, yη, x′η, y′η) = max
x,y,x′,y′

(wε − ϕη)(x, y, x′, y′)

≥ (wε − ϕη)(0, 0, 0, 0)

= (ε− 1)u(0)

> −∞,

for each η > 0. By Lemma 1.2.6, there is a cluster point (xε, yε, xε, yε) of the sequence
((xη, yη, x

′
η, y
′
η))η>0 through some sequence of η → 0 that maximizes the function

(x, y) 7→ εu

(
x+ y

2

)
− u(x) + u(y)

2
.

Passing to the limit through this sequence of η tending to 0 in (3.26) gives for any x, y ∈ Rn

εu

(
x+ y

2

)
− u(x) + u(y)

2
≤ h

(
xε + yε

2

)
− h(xε) + h(yε)

2
≤ 0

due to the convexity of h. Finally, sending ε→ 1− establishes the claim.

Aleksandrov’s Theorem [12] now implies the following corollary.

Corollary 3.3.3. uδ is twice differentiable at (Lebesgue) almost every point in Rn.

Since uδ is convex and h grows superlinearly, we expect

δuδ(x)−∆uδ(x)− h(x) ≤ δuδ(x)− h(x) ≤ K + |x| − h(x) < 0

for all x large enough and all 0 < δ < 1. Here K is the constant in the (3.20). In other
words, if |Duδ(x)| < 1, then |x| ≤ C for some C independent of 0 < δ < 1. We give a proof
of this in terms of jets.

Corollary 3.3.4. There is a constant C > 0, independent of 0 < δ < 1, such that if |x| ≥ C
and p ∈ J1,−uδ(x), then |p| = 1.

Proof. Let K be the constant in the (3.20) and choose C so large that

K + |z| < h(z), |z| ≥ C.

Recall that J1,−uδ(x) = ∂uδ(x) by the convexity of uδ (see Proposition 4.7 in [1]). Here

∂u(x) = {p ∈ Rn : u(y) ≥ u(x) + p · (y − x) for all y ∈ Rn}

is the subdifferential of u at the point x.
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Moreover, (p, 0) ∈ J2,−uδ(x), and so

max{δuδ(x)− h(x), |p| − 1} ≥ 0.

As
δuδ(x)− h(x) ≤ K + |x| − h(x) < 0,

|p| = 1.

Lemma 3.3.5. Let C1 > C, where C is the constant in the previous corollary. For almost
every x ∈ Rn,

D2uδ(x) ≤ 1

δ
max
|y|≤C1

|D2h(y)|

for all 0 < δ < 1.

Proof. 1. Fix 0 < ε < 1, 0 < |z| < C1 − C, and set

C(x) := εuδ(x+ z)− 2uδ(x) + εuδ(x− z), x ∈ Rn.

As in previous arguments, we will give a formal proof (i.e. assuming u ∈ C2(Rn)) first and
then later describe how to our justify arguments. For ease of notation, we write u for uδ.

As lim|x|→∞ u(x)/|x| = 1,
lim
|x|→∞

C(x) = −∞.

Thus, there is x̂ ∈ Rn such that
C(x̂) = max

x∈Rn
C(x).

At x̂, we have {
0 = DC(x̂) = εDu(x̂+ z)−Du(x̂) + εDu(x̂− z)

0 ≥ ∆C(x̂) = ε∆u(x̂+ z)−∆u(x̂) + ε∆u(x̂− z)
.

Thus,

|Du(x̂)| = ε

2
|Du(x̂+ z) +Du(x̂− z)| ≤ ε < 1

and in particular {
|x̂| ≤ C (from the previous corollary)

δu(x̂)−∆u(x̂)− h(x̂) = 0
.
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Hence, for x ∈ Rn

δC(x) ≤ δC(x̂)

= ε(δu(x̂+ z) + δu(x̂− z))− 2u(x̂)

≤ ε∆u(x̂+ z)−∆u(x̂) + ε∆u(x̂− z) +

+ε(h(x̂+ z) + h(x̂− z))− 2h(x̂)

≤ h(x̂+ z)− 2h(x̂) + h(x̂− z)

≤ max
−1≤ξ≤1

D2h(x̂+ ξz)z · z

≤ max
|y|≤C1

|D2h(y)||z|2.

As the last expression is independent of ε, we send ε→ 1− and arrive at the inequality

u(x+ z)− 2u(x) + u(x− z)

|z|2
≤ 1

δ
max
|y|≤C1

|D2h(y)|, 0 < |z| < C1 − C.

The claim now follows as D2u exists a.e. in Rn.
2. Similar to previous proofs, we will “triple the variables.” Again we fix 0 < ε < 1 and

0 < |z| < C1 − C. Set{
w(x1, x2, x3) := ε(u(x1 + z) + u(x2 − z))− 2u(x3)

ϕη(x1, x2, x3) := 1
2η
{|x1 − x3|2 + |x2 − x3|2}

,

for x1, x2, x3 ∈ Rn and η > 0. Notice that

(w − ϕη)(x1, x2, x3) = ε(u(x1 + z)− u(x3 − z) + u(x2 + z)− u(x3 − z))

+C(x3)− 1

2η

{
|x1 − x3|2 + |x2 − x3|2

}
≤

(
|x1 − x3| −

1

2η
|x1 − x3|3

)
+

(
|x2 − x3| −

1

2η
|x2 − x3|3

)
+ C(x3),

which immediately implies

lim
|(x1,x2,x3)|→∞

(w − ϕη)(x1, x2, x3) = −∞.

In particular, there is (xη1, x
η
2, x

η
3) globally maximizing w − ϕη. Now we can invoke the

Theorem of Sums and argue very similarly to how we did in the proof of the convexity of
solutions of (3.18). We leave the details to the reader.
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Corollary 3.3.6. We have the following:
(i) uδ ∈ C1,1(Rn).
(ii)

Ωδ := {x ∈ Rn : |Duδ(x)| < 1}

is open and bounded independently of all 0 < δ < 1.
(iii) uδ ∈ Ck+2,α(Ωδ), provided h ∈ Ck,α(Rn) for some 0 < α < 1.
(iv) There is L (independent of 0 < δ < 1) such that

D2uδ(x) ≤ L, x ∈ Ωδ.

Proof. As usual we write u for uδ. (i) is immediate from Proposition 3.3.1. (ii) follows from
Corollary 3.3.4 and (i), since x 7→ |Du(x)| is continuous on Rn. (iii) follows from basic
elliptic regularity theory since u satisfies the linear elliptic PDE

δu(x)−∆u(x) = h(x), x ∈ Ωδ

(see Theorem 6.17 [15]). As for (iv), we have by convexity that if x ∈ Ωδ and |ξ| = 1

D2u(x)ξ · ξ ≤ ∆u(x)

= δu(x)− h(x)

≤ K + δ|x|
≤ K + C =: L. (3.27)

We conclude this section with a statement that uδ is a Lipschitz extension of its values
in Ωδ.

Proposition 3.3.7.
uδ(x) = min

y∈Ωδ

{uδ(y) + |x− y|} , x ∈ Rn. (3.28)

Proof. It is simple to check that, since Lip[uδ] ≤ 1, the formula above holds for x ∈ Ωδ. We
now proceed to show that the formula above also holds in the complement of Ωδ.

As easy argument using the convexity of uδ establishes that the minimum in (3.28) is
achieved on ∂Ωδ = ∂Ωδ for x /∈ Ωδ. So we are left to show

uδ(x) = min
y∈∂Ωδ

{uδ(y) + |x− y|} , x /∈ Ωδ. (3.29)

To this end, we first notice that uδ satisfies the eikonal equation
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{
|Dv(x)| = 1, x ∈ Ωδ

c

v(x) = uδ(x), x ∈ ∂Ωδ

(3.30)

and we claim this PDE has a unique solution given by the right hand side of (3.29). It is
not hard to see that the right hand side (RHS) above is a solution of (3.30). RHS clearly
defines a function with Lipschitz constant at most 1 and hence is a subsolution of (3.30).
The RHS also dominates every subsolution of the eikonal equation that is equal to uδ on
∂Ωδ and therefore is a supersolution of (3.30) by Lemma 1.2.9. The proof of uniqueness is a
straightforward adaptation of the proof of comparison of sub- and supersolutions of (3.18)
(see also Theorem 5.9 of [1]).

Corollary 3.3.8. There is a universal constant C > 0, such that the estimate

D2uδ(x) ≤ 1

|x| − C
, a.e. |x| > C

holds for all 0 < δ < 1.

Proof. Recall that Ωδ is bounded independently of 0 < δ < 1; let C be chosen so large that
if x ∈ Ωδ, then |x| ≤ C. Also recall that x 7→ |x| is smooth on Rn \ {0} and that

D2|x| = 1

|x|

(
In −

x⊗ x
|x|2

)
≤ 1

|x|
In, x 6= 0.

Let x ∈ Rn with |x| > C. From (3.28), there is y ∈ ∂Ωδ such that uδ(x) = uδ(y) + |x − y|;
moreover |y| ≤ C. Also from (3.28) and the above computation, we have that as |z| → 0

uδ(x+ z)− 2uδ(x) + uδ(x− z)

|z|2
≤ |x+ z − y| − 2|x− y|+ |x− z − y|

|z|2

≤ 1

|x− y|
+ o(1)

≤ 1

|x| − |y|
+ o(1)

≤ 1

|x| − C
+ o(1).

The corollary now follows as uδ is twice differentiable almost everywhere in Rn.

3.4 A uniform second derivative estimate

According to Corollary 3.3.8, D2uδ is bounded from above for all x large enough in-
dependently of all δ positive and small. However, the upper bound we have in the whole
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space
1

δ
max
|y|≤C1

|D2h(y)|,

blows up as δ → 0+. Our aim in this section is to obtain an estimate on the second derivative
of uδ that is uniform in all small δ > 0. In fact, we prove

Lemma 3.4.1. For each ball B ⊂ Rn, there is a constant C = C(B) such that

|Duδ(x)−Duδ(y)| ≤ C|x− y|, x, y ∈ B

for each 0 < δ < 1.

Having established the above lemma, we would immediately have from Corollary 3.3.8
the following uniform second derivative estimate.

Theorem 3.4.2. There is a universal constant L such that

0 ≤ D2uδ(x) ≤ L, a.e. x ∈ Rn

for all 0 < δ < 1.

Towards proving Lemma 3.4.1, we fix 0 < δ < 1 and for ε positive and small study the
solutions of the PDE {

δv −∆v + βε (|Dv|2 − 1) = h(x), x ∈ B
v = uδ, x ∈ ∂B

, (3.31)

where (βε)ε>0 is the standard penalty function and B ⊂ Rn is a fixed ball. As (3.31) is a
semi-linear elliptic PDE with smooth coefficients, it has a unique smooth solution vε for each
ε > 0 [15]. Our goal is to deduce a pointwise bound D2vε that is independent of all ε (and
δ) positive and small. With such an estimate we would be in a good position to pass to the
limit and show vε → uδ in C1(B) and in particular that uδ ∈ W 2,∞(B).

This is a very similar approximation to the one used in the previous chapter; see equation
(2.16). The primary difference between equations (3.31) and (2.16) is that equation (3.31)
has a non-zero boundary condition. However, as uδ is a subsolution of (3.31), the arguments
go through just the same. Using these methods, we obtain the following bounds.

Theorem 3.4.3. (i) There is a constant C such that the following estimate holds

|Dvε(x)| ≤ C, x ∈ B

for all 0 < ε < 1.
(ii) For each B′ b B, there is a constant C ′ such that the following estimate holds

|D2vε(x)| ≤ C ′
(

1 + |δvε|L∞(B) + |Dvε|2L∞(B)

)
, x ∈ B′ (3.32)

for all 0 < ε < 1.
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With the above estimates, we are now ready to establish Lemma 3.4.1.

Proof. (of Lemma 3.4.1) 1. Let B ⊂ Rn be a ball. Theorem (3.4.3) asserts that there is a
constant C > 0 such that

|vε|W 1,∞(B) ≤ C, ε ∈ (0, 1),

and for each B′ b B, there is a constant C ′ such that

|vε|W 2,∞(B′) ≤ C ′, ε ∈ (0, 1).

As in the proof of Theorem (2.0.1), it follows that there is a function v ∈ W 1,∞(B)∩W 2,∞
loc (B)

and a sequence εk tending to 0, as k →∞, such that{
vεk → v uniformly in B

vεk → v in C1
loc(B)

as k →∞.
2. A similar argument to the one presented in the proof of Theorem 2.0.1 shows that v

is a viscosity solution of (3.18). Therefore, v has to coincide with uδ, the unique viscosity
solution of the PDE{

max {δv −∆v − h(x), |Dv| − 1} = 0, x ∈ B
v = uδ, x ∈ ∂B

,

by a variant of the uniqueness assertion of Theorem 2.0.1.
3. From estimate (3.32), we have that for x, y ∈ B′ b B, there is a constant C ′ such that

|Dvεk(x)−Dvεk(y)| ≤ C ′
(
1 + |δvεk |L∞(B) + |Dvεk |2L∞(B)

)
|x− y|

for all k sufficiently large. As vεk → uδ in C1
loc(B), and as

|δuδ|L∞(B) + |Duδ|2L∞(B) is bounded for 0 < δ < 1,

we let k →∞ to discover that there is a constant L such that

|Duδ(x)−Duδ(y)| ≤ L|x− y|, x, y ∈ B′, 0 < δ < 1.
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3.5 Passing to the limit

We now have the following estimates on uδ (0 < δ < 1)
(|x| −K)+ ≤ uδ(x) ≤ K

δ
+ |x|, x ∈ Rn

|Duδ(x)| ≤ 1, x ∈ Rn

|Duδ(x)−Duδ(y)| ≤ L|x− y|, x, y ∈ Rn.

Our aim is to pass to limit as δ → 0+ and prove there is an eigenvalue λ∗ as stated in
Theorem 3.0.1. To this end, we define{

λδ := δuδ(xδ)

vδ(x) := uδ(x)− uδ(xδ)

where xδ is a global minimizer of uδ. Of course Duδ(xδ) = 0, and in particular xδ ∈ Ωδ.
Moreover, Corollary 3.3.4 asserts that |xδ| ≤ C for some constant C independent of all
0 < δ < 1.

For this constant C, we have that

0 ≤ λδ ≤ K + C

and that vδ satisfies 
|vδ(x)| ≤ |x|+ C

|Dvδ(x)| ≤ 1

|Dvδ(x)−Dvδ(y)| ≤ L|x− y|
,

for all x, y ∈ Rn, 0 < δ < 1. We will now use the above estimates to prove the following
lemma which completes the proof of Theorem 3.0.1.

Lemma 3.5.1. There is a sequence δk > 0 tending to 0 as k → ∞, λ∗ ∈ R, and u∗ ∈
C1,1(Rn) such that {

λ∗ = limk→∞ λδk
vδk → u∗ in C1

loc(Rn), as k →∞
. (3.33)

Moreover, u∗ is a convex solution of (3.1) satisfying the growth condition (3.3) with eigen-
value λ∗.

Proof. Routine compactness and diagonalization arguments establishes the convergence (3.33);
similar arguments were used to prove Lemma 3.4.1.

It is immediate from the definition that viscosity solutions pass to the limit under local
uniform convergence. It follows that u∗ satisfies the PDE

max{λ∗ −∆u∗ − h, |Du∗| − 1} = 0, x ∈ Rn
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in the sense of viscosity solutions. As |u∗(x)| ≤ |x|+ C for all x ∈ Rn,

lim sup
|x|→∞

u∗(x)

|x|
≤ 1.

By the Lipschitz extension formula (3.28) and Corollary 3.3.4, we also have for all |x| suffi-
ciently large,

vδ(x) = uδ(x)− uδ(xδ) ≥ |x| − C

for some C independent of 0 < δ < 1. Thus,

lim inf
|x|→∞

u∗(x)

|x|
≥ 1,

and so u∗ satisfies (3.3).

Remark 3.5.2. As we established for uδ, u
∗ is its own Lipschitz extension

u∗(x) = min
y∈Ω0

{u∗(y) + |x− y|} , x ∈ Rn

where Ω0 = {x ∈ Rn : |Du∗(x)| < 1}. Therefore, it suffices only to know u∗ within Ω0 to
know it everywhere in space.

3.6 Min-max formulae

Recall formula (3.16)

λ∗ = sup{ λ ∈ R : there exists a subsolution u of (3.1) with eigenvalue λ,

satisfying lim sup
|x|→∞

u(x)

|x|
≤ 1.

}

and formula (3.17)

λ∗ = inf{ µ ∈ R : there exists a supersolution v of (3.1) with eigenvalue µ,

satisfying lim inf
|x|→∞

v(x)

|x|
≥ 1.

}
,

which are consequences of the comparison principle established in Proposition 3.1.2. We shall
use these characterizations to establish the following “min-max formulae” approximations of
λ∗.
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Proposition 3.6.1. Define

λ− = sup

{
inf
x∈Rn
{∆φ(x) + h(x)} : φ ∈ C2(Rn), |Dφ| ≤ 1

}
(3.34)

and

λ+ = inf

{
sup

|Dψ(x)|<1

{∆ψ(x) + h(x)} : ψ ∈ C2(Rn), lim inf
|x|→∞

ψ(x)

|x|
≥ 1

}
. (3.35)

Then (i)
λ− = λ∗ ≤ λ+,

and (ii) if there is a C2(Rn) supersolution ψ∗ of (3.1) with eigenvalue λ∗, such that

lim inf
|x|→∞

ψ∗(x)

|x|
≥ 1,

then λ∗ = λ+.

Proof. 1. (λ∗ = λ−) For φ ∈ C2(Rn) with |Dφ| ≤ 1, set

µφ := inf
x∈Rn
{∆φ(x) + h(x)} .

If µφ = −∞, then µφ ≤ λ∗. If µφ > −∞, then

max{µφ −∆φ(x)− h(x), |Dφ(x)| − 1} ≤ 0, x ∈ Rn.

(3.16) implies µφ ≤ λ∗. Consequently, λ− = supµφ ≤ λ∗.
Now let u∗ be a convex, C1,1(Rn) solution associated to λ∗ and uε := ηε ∗ u∗ be the

standard mollification of u∗ for ε > 0. Note that as |Du∗| ≤ 1 and 0 ≤ D2u∗ ≤ L, we have

|Duε| ≤ 1 and 0 ≤ D2uε ≤ L, for all ε > 0.

Also note that as u∗ ∈ C1,1

∆uε = ηε ∗∆u∗ ≥ λ∗ − hε,
where hε is the standard mollification of h.

As h grows superlinear and D2u is bounded, there is R > 0 such that x 7→ ∆uε(x) +h(x)
achieves is minimum value for an x ∈ BR, for all ε > 0. Hence, as ε→ 0+

λ∗ ≤ inf
|x|≤R

{∆uε(x) + hε(x)}

≤ inf
|x|≤R

{∆uε(x) + h(x)}+ o(1)

≤ inf
x∈Rn
{∆uε(x) + h(x)}+ o(1)

≤ λ− + o(1).
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2. (λ∗ = λ+) Assume that ψ ∈ C2(Rn) and that lim inf |x|→∞ ψ(x)/|x| ≥ 1. Similar to our
argument above, we set

τψ := sup
|Dψ(x)|<1

{∆ψ(x) + h(x)} .

If τψ = +∞, then λ∗ ≤ τψ. If τψ <∞, then

max{τψ −∆ψ(x)− h(x), |Dψ(x)| − 1} ≥ 0, x ∈ Rn.

(3.17) implies λ∗ ≤ τψ. Consequently, λ∗ ≤ inf τψ = λ+. This proves (i).
If there is a C2(Rn) supersolution ψ∗ of (3.1) with eigenvalue λ∗, such that

lim inf
|x|→∞

ψ∗(x)

|x|
≥ 1,

then
λ+ ≤ sup

|Dψ∗(x)|<1

{∆ψ∗(x) + h(x)} ≤ λ∗

which proves assertion (ii).

We believe that the assumption on the existence of ψ∗ is not needed. Our intuition is
that the solution u∗ we constructed in Lemma 3.5.1 is twice continuously differentiable on
the set of points that |Du∗| < 1, and therefore, should be amongst the class of ψ in the
infimum defining λ+; in this case

λ∗ = sup
|Du∗(x)|<1

{∆u∗(x) + h(x)} ≥ λ+.

Conjecture 3.6.2. λ∗ = λ+.

3.7 Generalizations

We conclude this chapter with an interesting question: what are appropriate assumptions
on an elliptic non-linearity F to obtain a result analogous to Theorem 3.0.1 for the PDE

max
{
λ+ F (D2u,Du, x), |Du| − 1

}
= 0, x ∈ Rn ?

While we are not in a position to answer this question, we claim that the method of proof
we used actually implies the following

Theorem 3.7.1. Let F : S(n)→ R satisfy
F (M) ≤ F (N), N ≤M

F (tM) = tF (M),

F (M +N) ≤ F (M) + F (N)
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for each N,M ∈ S(n), t ≥ 0. That is F is elliptic, homogeneous, and concave. Then there
is a unique λ∗ ∈ R such that the PDE

max
{
λ+ F (D2u)− h(x), |Du| − 1

}
= 0, x ∈ Rn

has a viscosity solution u satisfying (3.3)

lim
|x|→∞

u(x)

|x|
= 1.

Associated with λ∗ is a convex viscosity solution u∗ satisfying (3.3).

Note however that we do not make any further claims about the regularity of u∗; perhaps
if F is uniformly elliptic, more regularity of u∗ can be obtained. The method of the proof
of the above theorem is essentially the same as the proof of Theorem 3.0.1. The comparison
principle for eigenvalues is virtually unchanged and to approximate λ∗, one studies solutions
of the equation

max
{
δu+ F (D2u)− h(x), |Du| − 1

}
= 0, x ∈ Rn

satisfying the growth condition (3.3). A comparison principle holds in this case as before
and analogous sub and supersolutions (to u and ū) can be written down to establish the
existence of solutions via Perron’s method. The concavity of F is what is used to obtain the
convexity of the solution uδ; and as u∗ will (essentially) be a pointwise limit of uδ as δ → 0,
u∗ will be also be convex. We hope to settle more general matters in forthcoming work.
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Chapter 4

Asymptotic analysis of parabolic PDE
with applications to option pricing

In their celebrated paper [3], F. Black and M. Scholes derived a formula for the fair price
of a European call option on a single stock in an arbitrage free market. They also presented a
“replication portfolio” that enabled the issuer of the option to hedge his position upon selling
the option. The Black-Scholes model presented the first rational method for valuing options,
and consequently, this model has been used in a large number of industrial applications.

Aside from the financial implications, interesting mathematics also came out of this work
as the Black Scholes formula is a solution of a certain linear, parabolic PDE

ψt +
1

2
σ2p2ψpp + rpψp − rψ = 0,

now known as the Black-Scholes equation. The purpose of this chapter is to discuss an
extension of the Black-Scholes model and further connections between non-linear PDE and
option pricing.

The Black-Scholes model, being the first of its kind, has various shortcomings. One such
shortcoming is the assumption that there are no costs for making transactions; in fact, in the
Black-Scholes model, the issuer of an option is trying to hedge his position at each moment
of time and thus transaction costs would be ruinous. This fact has been formalized and
proved rigorously [22]. Another shortcoming of the model, is that it does not account for
risk preferences of option issuers or purchasers; option prices are the same for buyers and
sellers and each price is completely determined by known market parameters and the option’s
payoff.

An alternative model, that addresses the aforementioned modeling issues, was presented
by Davis, Panas, and Zariphopoulou [8]. This model (which we will call the DPZ model)
uses the principle of certainty equivalent amount to define option prices and poses the option
valuation problem as a problem of stochastic control theory. Within the DPZ model, G.
Barles and H. Soner [2] discovered that in markets with small transaction costs ≈

√
ε, the
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asking price zε of a European option by a very risk averse ≈ 1
ε

seller is approximately given
by

zε(t, p, y) ≈ ψ(t, p) + εu

(
p
ψp(t, p)− y√

ε

)
,

as ε tends to 0. Here ψ is a solution of a PDE resembling a non-linear version of the
Black-Scholes equation

ψt + e−r(T−t)λ(er(T−t)p2ψpp) + rpψp − rψ = 0,

and λ = λ(A) and x 7→ u = u(x;A) satisfy the ODE

max

{
λ− σ2

2

(
A+ A2u′′ + (x+ Au′)2

)
, |u′| − 1

}
= 0, x ∈ R

for each A ∈ R. We shall see below how this ODE is naturally associated to a non-linear
eigenvalue problem. Establishing the convergence of zε to ψ, as ε tends to 0, is a problem of
asymptotic analysis of parabolic PDE as zε is a solution of a PDE of the form

max

{
−zt −

1

2
σ2p2

(
zpp +

1

ε
(zp − y)2

)
, |zy| −

√
εp

}
= 0.

In this chapter, we discuss a model problem for the generalization of the Barles and Soner
result to options on multiple assets. We do not directly address the multi-asset problem
as formidable technical problems arise. The most notable problem is that the associated
eigenvalue problem amounts to solving a non-linear PDE and does not seem able to be
resolved by trivial means. Moreover, understanding basic properties of the eigenvalue is also
non-trivial. Nevertheless, we found the model problem presented below to be both interesting
and instructive. We believe this work sheds light on the open and difficult problem of
deducing the large risk aversion, small transaction cost limit for options on multiple assets.

4.0.1 A model problem

We consider solutions zε = zε(t, x, y) of the initial value problem


max

{
zt −

(
∆xz + 1

ε
|Dxz + y|2

)
, |Dyz| −

√
ε
}

= 0, (0, T )×O × Rn

z = g(x), {t = 0} ×O × Rn

z = 0, (0, T )× ∂O × Rn

, (4.1)

where O ⊂ Rn is open, bounded and has smooth boundary ∂O. It is assumed that ε and T
are positive and g ∈ C(O) is non-negative. We do not establish the existence of solutions
of (4.1), although we believe that this can be accomplished by standard methods. It will
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be a standing assumption that T and g are chosen such that there is a continuous viscosity
solution zε of (4.1) for all ε positive and small. We also assume

lim
|y|→∞

zε(t, x, y)√
ε|y|

= 1 (4.2)

uniformly for all ε positive and sufficiently small and for all x in a compact subset of O. Our
goal is to understand the behavior of solutions when ε tends to 0.

In analogy with the aforementioned work of G. Barles and H. Soner [2], we shall formally
see that

zε(t, x, y) ≈ ψ(t, x) + εu

(
Dψ(t, x) + y√

ε

)
as ε→ 0+, where ψ = ψ(t, x) is a solution of the Cauchy problem for a non-linear, diffusion
equation 

ψt = λ (D2ψ) , (0, T )×O
ψ = g, {t = 0} ×O
ψ = 0, (0, T )× ∂O

. (4.3)

We shall also see that λ = λ(A) and x 7→ u(x;A) together satisfy the PDE

max
{
λ− tr

(
A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)

)
, |Du| − 1

}
= 0, x ∈ Rn (4.4)

for each A ∈ S(n).
Our first theorem is

Theorem 4.0.1. (Solution of the eigenvalue problem) For each A ∈ S(n), there is a unique
λ = λ(A) such that (4.4) has a viscosity solution satisfying

lim
|x|→∞

u(x)

|x|
= 1. (4.5)

Moreover, associated to λ(A) is a convex viscosity solution u satisfying (4.5).

It follows from Theorem 4.0.1 that the eigenvalue problem associated to the PDE (4.4)
has a well defined solution λ : S(n)→ R. Using this function λ and making some technical
assumptions, we establish the following theorem, which is the main result of this chapter.

Theorem 4.0.2. (Convergence of solutions) Assume the following technical conditions:

(i) There is a function ψ ∈ C([0, T ] × O) such that for each closed interval I ′ ⊂ (0, T )
and each compact O′ ⊂ O

lim
ε→0+

max
(t,x)∈I′×O′√

ε|y|≤η

|zε(t, x, y)− ψ(t, x)| = o(1), as η → 0+,
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(ii) λ is continuous and monotone non-decreasing, and

(iii) when detA 6= 0, there is a convex solution u ∈ C2(Rn) of (4.4) with eigenvalue λ(A)
that satisfies (4.5),

Then ψ is the unique viscosity solution of (4.3).

In section 4.1, we study the eigenvalue problem in detail. After showing the eigenvalue
problem has a unique solution, we deduce important properties of λ in section 4.2. In
section 4.3, we prove Theorem 4.0.1. Finally, in section 4.4, we present a multi-asset option
pricing model and pose a problem analogous to the single-asset problem solved by G. Barles
and H. Soner [2]. Before we undertake this work, we shall perform some important formal
computations that will guide our intuition for analyzing zε for ε small.

4.0.2 Formal asymptotics

Here we give a step-by-step formal derivation of how we arrived at the PDE [equation
(4.3)] for the limit ψ and the PDE [equation (4.4)] arising in the eigenvalue problem. These
heuristic calculations are arguably the most important part of our work since the techniques
we later use are founded on these results. These computations are based largely on section
3.2 of [2].

Step 1. |Dyz
ε| ≤

√
ε, so we expect limε→0+ zε to be independent of y. This observation

leads to the choice of ansatz

zε(t, x, y) ≈ ψ(t, x) + εu(xε(t, x, y)),

for ε small. Here ψ, u and xε are yet to be determined. Using this ansatz, we formally
calculate

zεt ≈ ψt + εDu(xε) · xεt
Dyz

ε ≈ ε(Dyx
ε)tDu(xε)

Dxz
ε ≈ Dψ + ε(Dxx

ε)tDu(xε)

D2
xz

ε ≈ D2ψ + ε
(
(Dxx

ε)tD2u(xε)Dxx
ε +D2

xx
ε ·Du(xε)

)
where (D2

xx
ε ·Du(xε))ij := xεxixj ·Du(xε), i, j = 1, . . . , n.

Step 2. We also observe that since

ε|(Dyx
ε)tDu(xε)| ≈ |Dyz

ε| ≤
√
ε,

xε (and its derivatives) should probably scale at worst like 1/
√
ε. With this assumption, we

calculate
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Iε := zεt −
(

∆xz
ε +

1

ε
|Dxz

ε + y|2
)

≈ ψt −∆ψ −

[
tr
(√

εDxx
ε)tD2u(xε)

√
εDxx

ε
)

+

∣∣∣∣Dψ + y√
ε

+ (
√
εDxx

ε)tDu(xε)

∣∣∣∣2
]

≈ ψt − tr[D2ψ + (
√
εDxx

ε)tD2u(xε)
√
εDxx

ε +(
Dψ + y√

ε
+ (
√
εDxx

ε)tDu(xε)

)
⊗
(
Dψ + y√

ε
+ (
√
εDxx

ε)tDu(xε)

)]
Step 3. Notice that

√
εDx

(
Dψ + y√

ε

)
= D2ψ.

This basic observation and the above computations lead us to choose the new “variable”

xε :=
Dψ + y√

ε

and the new “parameter”

A := D2ψ.

We further postulate that there is a function λ such that

ψt = λ(A).

Step 4. With the above choices and postulate,

Iε ≈ λ(A)− tr
(
A+ AD2u(xε)A+ (xε + ADu(xε)⊗ (xε + ADu(xε))

)
and also

|Du(xε)| . 1.

Since
max{Iε, |Dyz| −

√
ε} = 0,

we will require that u and λ(A) satisfy

max
{
λ− tr

(
A+ AD2uA+ (x+ ADu⊗ (x+ ADu

)
, |Du| − 1

}
= 0

for x ∈ Rn. Since lim|y|→∞ z
ε(t, x, y)/|y| =

√
ε, we additionally require
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lim
|x|→∞

u(x)

|x|
= 1.

In summary, we have the following (non-linear) eigenvalue problem:

For A ∈ S(n), find λ ∈ R and u : Rn → R satisfying{
max {λ− tr (A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)) , |Du| − 1} = 0, x ∈ Rn

lim|x|→∞ u(x)/|x| = 1
.

If we can solve the above eigenvalue problem uniquely for a monotone function λ, we
have the solution of the PDE (4.3) as a candidate for the limit of zε as ε→ 0+. We remark
that, philosophically, the procedure we described above is similar to the formal asymptotics
of periodic homogenization. In analogy with that context, λ plays the role of the effective
Hamiltonian, and the eigenvalue problem plays the role of the cell problem [19, 10].

4.1 Analysis of the eigenvalue problem

In this section, we prove Theorem 4.0.1 which we restate for the reader’s convenience.

Theorem 4.1.1. For each A ∈ S(n), there is a unique λ = λ(A) such that equation (4.4)

max
{
λ− tr

(
A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)

)
, |Du| − 1

}
= 0, x ∈ Rn

has a viscosity solution satisfying (4.5)

lim
|x|→∞

u(x)

|x|
= 1.

Moreover, associated to λ(A) is a convex viscosity solution u satisfying (4.5).

Notice that the above statement is a non-linear version of Theorem 3.0.1, the main result
of the previous chapter. To our good fortune, many of the methods we used in Chapter 3,
can be used for the above eigenvalue problem. We highlight the differences and omit proofs
where similar arguments have already been made. First, we give a definition that will allow
for clear statements below.

Definition 4.1.2. u ∈ USC(Rn) is a viscosity subsolution of (4.4) with eigenvalue λ ∈ R if
for each x0 ∈ Rn,

max
{
λ− tr

(
A+ AD2ϕ(x0)A+ (x0 + ADϕ(x0))⊗ (x0 + ADϕ(x0))

)
, |Dϕ(x0)| − 1

}
≤ 0,
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whenever u − ϕ has a local maximum at x0 and ϕ ∈ C2(Rn). v ∈ LSC(Rn) is a viscosity
supersolution of (4.4) with eigenvalue µ ∈ R if for each y0 ∈ Rn,

max
{
λ− tr

(
A+ AD2ψ(y0)A+ (y0 + ADψ(y0))⊗ (y0 + ADψ(y0))

)
, |Dψ(y0)| − 1

}
≥ 0,

whenever v−ψ has a local minimum at y0 and ψ ∈ C2(Rn). u ∈ C(Rn) is a viscosity solution
of (4.4) with eigenvalue λ ∈ R if its both a viscosity sub- and supersolution of (4.4) with
eigenvalue λ.

4.1.1 Comparison principle

We start our treatment of the eigenvalue problem by establishing a fundamental compar-
ison principle that will allow us to compare eigenvalues associated to sub- and supersolutions
of (4.4).

Proposition 4.1.3. Suppose u is a subsolution of (4.4) with eigenvalue λ and that v is a
supersolution of (4.4) with eigenvalue µ. If in addition

lim sup
|x|→∞

u(x)

|x|
≤ 1 ≤ lim inf

|x|→∞

v(x)

|x|
, (4.6)

then λ ≤ µ.

Proof. Let us first assume that u, v ∈ C2(Rn). Fix 0 < ε < 1 and set

wε(x) = εu(x)− v(x), x ∈ Rn.

By (4.6), we have that lim|x|→∞w
ε(x) = −∞, so there is xε ∈ Rn such that

wε(xε) = sup
x∈Rn

wε(x).

Basic calculus gives {
0 = Dwε(xε) = εDu(xε)−Dv(xε)

0 ≥ D2wε(xε) = εD2u(xε)−D2v(xε)
.

Note in particular that
|Dv(xε)| = ε|Du(xε)| ≤ ε < 1,

and since v is a supersolution of (4.4) with eigenvalue µ

µ− tr
(
A+ AD2v(xε)A+ (xε + ADv(xε))⊗ (xε + ADv(xε))

)
≥ 0.

As u is a subsolution of (4.4) with eigenvalue λ,
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ελ− µ ≤ tr
[
(ε− 1)A+ A(εD2u(xε)−D2v(xε))A

+ε(xε + ADu(xε))⊗ (xε + ADu(xε))− (xε + ADv(xε))⊗ (xε + ADv(xε))]

≤ tr [(ε− 1)A+ ε(xε + ADu(xε))⊗ (xε + ADu(xε))

−(xε + εADu(xε))⊗ (xε + εADu(xε))]

= tr [(ε− 1)(A+ xε ⊗ xε) + ε(1− ε)ADu(xε)⊗ ADu(xε)]

≤ (ε− 1)trA+ ε(1− ε)|ADu(xε)|2

≤ (ε− 1)trA+ ε(1− ε)|A|2.

We conclude by letting ε→ 1−. We can now argue as we have previously (in, say, Proposition
3.1.2) to make the formal argument above rigorous.

Corollary 4.1.4. For each A ∈ S(n), there can be at most one λ such that (4.4) has a
solution u satisfying (4.5).

4.1.2 Approximation

To approximate the values of a potential eigenvalue, we study the PDE

max
{
δu− tr

(
A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)

)
, |Du| − 1

}
= 0, x ∈ Rn (4.7)

for δ > 0 and small, and seek solutions that satisfy growth condition (4.5)

lim
|x|→∞

u(x)

|x|
= 1.

The goal is to show that the above PDE has a unique solution uδ and that there is a sequence
of δ → 0+ such that δuδ(0) → λ(A). Moreover, that we hope that uδ − uδ(0) converges to
a solution u of (4.4). First, we address the question of uniqueness of solutions of (4.7). As
this can be handled similar to the comparison principle for eigenvalues, we omit the proof.

Proposition 4.1.5. Suppose u is a subsolution of (4.7) and that v is a supersolution of
(4.7). If in addition

lim sup
|x|→∞

u(x)

|x|
≤ 1 ≤ lim inf

|x|→∞

v(x)

|x|
,

then u ≤ v.

Corollary 4.1.6. For each A ∈ S(n), there can be at most one solution of (4.7) satisfying
(4.5).

To establish uniqueness, we need sub- and supersolutions with the appropriate growth
as |x| → ∞.
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Lemma 4.1.7. Fix 0 < δ < 1.
(i) There is a universal constant K > 0 such that

u(x) = (|x| −K)+ +
trA

δ
, x ∈ Rn (4.8)

is a viscosity subsolution of (4.7) satisfying the growth condition (4.5).
(ii) There is universal constant K > 0 such that

u(x) =
K

δ
+

{
1
2
|x|2, |x| ≤ 1

|x| − 1
2
, |x| ≥ 1

, x ∈ Rn (4.9)

is a viscosity supersolution of (4.7) satisfying the growth condition (4.5).

Proof. (i) Choose K > 0 such that

(|x| −K)+ ≤ (|x| − |A|)2 , x ∈ Rn.

As u is convex and as Lip(u)=1, if (p,X) ∈ J2,+u(x0)

|p| ≤ 1 and X ≥ 0.

Hence,

δu(x0)− tr (A+ AXA+ (x0 + Ap)⊗ (x0 + Ap)) ≤ (|x0| −K)+ − trA2X − |x0 + Ap|2

≤ (|x0| −K)+ − (|x0| − |A|)2

≤ 0.

Thus u is a viscosity subsolution.
(ii) Choose

K := max
|x|≤1

tr
[
A+ A2 + (In + A)x⊗ (In + A)x

]
and assume that (p,X) ∈ J2,−u(x0). If |x0| < 1, ū is smooth in a neighborhood of x0 and

ū(x0) = K
δ

+ |x0|2
2

Dū(x0) = x0 = p

D2ū(x0) = In = X

.

Therefore,

δū(x0)−tr (A+AXA+ (x0 +Ap)⊗ (x0 +Ap)) ≥ K−tr
[
A+A2 + (In +A)x0 ⊗ (In +A)x0

]
≥ 0,

which implies

max {δū(x0)− tr (A+ AXA+ (x0 + Ap)⊗ (x0 + Ap)) , |Dū(x0)| − 1} ≥ 0. (4.10)

Now suppose |x0| ≥ 1. ū ∈ C1(Rn), so p = Dū(x0) = x0/|x0| and in particular |Dū(x0)| = 1.
Thus (4.10) still holds, and consequently, ū is a viscosity supersolution.
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As the existence of a unique viscosity solution now follows directly from Theorem 1.2.10,
we also omit the proof.

Theorem 4.1.8. Fix 0 < δ < 1. There is a unique viscosity solution u = uδ of the (4.7)
satisfying (4.5).

A fundamental property of the solution uδ that we deduce below is that it is convex.
Many other properties of uδ will be derived directly from this property. The method proof
is virtually the same as Lemma 3.3.2 in the previous chapter, so we only give a formal
argument.

Proposition 4.1.9. uδ is convex.

Proof. 1. We assume u ∈ C2(Rn) and for ease of notation, we write u for uδ. Fix 0 < ε < 1
and set

Cε(x, y) = εu

(
x+ y

2

)
− u(x) + u(y)

2
, x, y ∈ Rn.

We aim to bound Cε from above and later send ε→ 1−.
2. As in the proof of Lemma 3.3.2, there exists (xε, yε) maximizing Cε. At this point,

0 = DxCε(xε, yε) =
ε

2
Du

(
xε + yε

2

)
− 1

2
Du(xε)

and

0 = DyCε(xε, yε) =
ε

2
Du

(
xε + yε

2

)
− 1

2
Du(yε).

Thus,

εDu

(
xε + yε

2

)
= Du(xε) = Du(yε).

Also observe that v 7→ Cε(xε + v, yε + v) has a maximum at v = 0 which implies

0 ≥ εD2u

(
xε + yε

2

)
− D2u(xε) +D2u(yε)

2
.

Since,

|Du(xε)| = |Du(yε)| = ε

∣∣∣∣Du(xε + yε
2

)∣∣∣∣ ≤ ε < 1.

we have

δu(z)− tr
(
A+ AD2u(z)A+ (z + ADu(z))⊗ (z + ADu(z))

)
= 0, z = xε, yε.
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Set zε = (xε + yε)/2, pε = Du(zε), and notice

δCε(x, y) ≤ δCε(xε, yε)

= εδu

(
xε + yε

2

)
− δu(xε) + δu(yε)

2

≤ εtr
(
A+ AD2u(zε)A+ (zε + ADu(zε))⊗ (zε + ADu(zε))

)
−1

2
tr
(
A+ AD2u(xε)A+ (xε + ADu(xε))⊗ (xε + ADu(xε))

)
−1

2
tr
(
A+ AD2u(yε)A+ (yε + ADu(yε))⊗ (yε + ADu(yε))

)
= (ε− 1)trA+ tr

[
A

(
εD2u(zε)−

D2u(xε) +D2u(yε)

2

)
A

]
+ε|zε + ADu(zε)|2 −

1

2
|xε + ADu(xε)|2 −

1

2
|yε + ADu(yε)|2

≤ (ε− 1)trA+ ε|zε + Apε|2 −
1

2
|xε + εApε|2 −

1

2
|yε + εApε|2

= (ε− 1)trA+
(ε− 1)

2
(|xε|2 + |yε|2) + ε(1− ε)|Apε|2

≤ (ε− 1)trA+ ε(1− ε)|A|2,

for each x, y ∈ Rn. We conclude by sending ε→ 1−.

Aleksandrov’s Theorem [12] now implies the following corollary.

Corollary 4.1.10. uδ is twice differentiable at (Lebesgue) almost every point in Rn.

Since uδ is convex and uδ ≤ ū given by (4.9), we expect

δuδ − tr
(
A+ AD2uδA+ (x+ ADuδ)⊗ (x+ ADuδ)

)
≤ δuδ(x)− trA− |x+ ADuδ(x)|2

≤ K + |x| − trA− (|x| − |A|)2

< 0

for all x large enough and δ ∈ (0, 1), where K is the constant in (4.9). In other words, if
|Duδ(x)| < 1, then |x| ≤ C for some C independent of δ ∈ (0, 1). The appropriate statement
in terms of jets is given below, and the proof is omitted as it is very similar to Corollary
3.3.4.

Corollary 4.1.11. There is a constant C = C(A) > 0, independent of 0 < δ < 1, such that
if |x| ≥ C and p ∈ J1,−uδ(x), then |p| = 1.

Corollary 4.1.12. There is a constant C = C(A) > 0, independent of 0 < δ < 1, such that

uδ(x) = min
|y|≤C

{uδ(y) + |x− y|} , x ∈ Rn. (4.11)
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Proof. Choose C such that

K + |x| − trA− (|x| − |A|)2 ≤ 0 for |x| ≥ C,

where K is the constant appearing in the definition of ū in equation (4.9). Also set v to be
the right hand side of (4.11). As Lip[uδ] ≤ 1,

uδ ≤ v

and v = uδ for |x| ≤ C.
It is clear that Lip[v] ≤ 1, and it is also straightforward to verify that as uδ is convex, v

is convex, as well. Now let (p,X) ∈ J2,+v(x0). If |x0| < C, the v = uδ is a neighborhood of
x0 and so

max {δv(x0)− tr (A+ AXA+ (x0 + Ap)⊗ (x0 + Ap)) , |Dv(x0)| − 1} ≤ 0.

If |x0| ≥ C, then by the convexity of v

δv(x0)− tr (A+ AXA+ (x0 + Ap)⊗ (x0 + Ap)) ≤ δv(x0)− trA− |x0 + ADp|2

≤ δ(u(0) + |x0|)− trA− (|x0| − |A|)2

≤ K + |x0| − trA− (|x0| − |A|)2

≤ 0,

while we always have |p| ≤ 1. Therefore, v is a subsolution of (4.7), and consequently

v ≤ uδ.

Towards establishing an important lower bound on uδ, we first observe that uδ has its
global minimum value at x = 0.

Proposition 4.1.13. 0 ∈ ∂uδ(0), and in particular uδ achieves its minimum value at x = 0.

Proof. By Theorem 4.1.8,
uδ(x) = uδ(−x), x ∈ Rn

as x 7→ uδ(−x) satisfies (4.7) and (4.5). If uδ is differentiable at x = 0, then Duδ(0) = 0. By
convexity,

uδ(x) ≥ uδ(0) +Duδ(0) · x = uδ(0), x ∈ Rn.

In general (not assuming differentiability at x = 0), we write u = uδ and set

uε(x) = ηε ∗ u(x) =

∫
Rn
ηε(y)u(x− y)dy, x ∈ Rn
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where ηε ∈ C∞ is the standard mollifier. Recall ηε is radially symmetric, is supported in the
ball Bε, and satisfies

∫
ηε = 1 for all ε > 0. As u is continuous, uε → u locally uniformly

as ε → 0+. One checks that uε is convex and also that uε(x) = uε(−x). From our remarks
above, we conclude uε(x) ≥ uε(0) for x ∈ Rn. Sending ε → 0+, gives u(x) ≥ u(0) for all
x ∈ Rn.

We conclude this subsection by establishing an crucial lower bound on uδ; this lower
bound is key to establishing the existence of an eigenvalue.

Corollary 4.1.14. There is a constant C = C(A) > 0, independent of 0 < δ < 1, such that

uδ(x) ≥ uδ(0) + (|x| − C)+ , x ∈ Rn.

Proof. By above proposition uδ(x) ≥ uδ(0) for all x ∈ Rn and so the claim follows directly
from Corollary 4.1.12.

4.1.3 Convergence of scheme

We assume that A is a fixed n×n symmetric matrix and will now establish the existence
of a unique eigenvalue λ(A). Proposition 4.1.3 asserts uniqueness, so all that is left to prove
is the existence of an eigenvalue. To this end, we will use the estimates we have obtained on
the sequence of solutions uδ:

(|x| −K)+ + trA
δ
≤ uδ(x) ≤ K

δ
+ |x|

|uδ(x)− uδ(y)| ≤ |x− y|
uδ ((x+ y)/2) ≤ (uδ(x) + uδ(y))/2,

for x, y ∈ Rn and 0 < δ < 1.
Define {

λδ := δuδ(0)

vδ(x) := uδ(x)− uδ(0)
.

Notice that
trA ≤ λδ ≤ K

and vδ satisfies {
|vδ(x)| ≤ |x|
|Dvδ(x)| ≤ 1

for x ∈ Rn. We are now in a good position to prove the following lemma, which will complete
the proof of Theorem 4.0.1.
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Lemma 4.1.15. There is a sequence δk > 0 tending to 0 as k → ∞, λ(A) ∈ R, and
u∗ ∈ C(Rn) with Lip[u∗] ≤ 1 such that{

λ(A) = limk→∞ λδk
vδk → u∗ in locally uniformly as k →∞

. (4.12)

Moreover, u∗ is a convex solution of (4.4) with eigenvalue λ(A) that satisfies the growth
condition (4.5).

Proof. The convergence assertion follows from an argument very similar to the proof of
Lemma 3.5.1. It also follows easily from convergence assertion that u∗ satisfies the PDE

max
{
λ(A)− tr

(
A+ AD2u∗A+ (x+ ADu∗)⊗ (x+ ADu∗)

)
, |Du∗| − 1

}
= 0, x ∈ Rn

in the sense of viscosity solutions. As |u∗(x)| ≤ |x| for all x ∈ Rn,

lim sup
|x|→∞

u∗(x)

|x|
≤ 1.

By Corollary 4.1.14, for all |x| sufficiently large

vδ(x) = uδ(x)− uδ(0) ≥ |x| − C,

for some C independent of 0 < δ < 1. Thus,

lim inf
|x|→∞

u∗(x)

|x|
≥ 1,

and so u∗ satisfies (4.5).

4.2 Properties of the eigenvalue

In view of Theorem 4.0.1, the solution of the eigenvalue problem defines a function that
we shall denote λ : S(n)→ R. We will establish a few important properties of this function.
Our basic tool will be the comparison principle. Our first result is a direct consequence of
this principle.

Proposition 4.2.1. Let A ∈ S(n) and assume that λ(A) is the solution of the eigenvalue
problem associated to equation (4.4). Then

λ(A) = sup{λ ∈ R : there exists a subsolution u of (4.4) with eigenvalue λ,

satisfying lim sup
|x|→∞

u(x)

|x|
≤ 1.

}
(4.13)
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and

λ(A) = inf{µ ∈ R : there exists a supersolution v of (4.4) with eigenvalue µ,

satisfying lim inf
|x|→∞

v(x)

|x|
≥ 1.

}
(4.14)

The above formulae, manifestations of the comparison principle, will be used below to
establish bounds on the eigenvalue by what we call “min-max” formulae. Our hope is that
the eigenvalue itself is given by these min-max formulae, and in the future, they will help us
deduce the behavior of the eigenvalue function λ as A varies. We also use formulae (4.13)
and (4.14) to show that there are monotone non-decreasing upper and lower bounds for λ; we
believe that λ itself is monotone non-decreasing and view these bounds as positive evidence
for this conjecture.

4.2.1 Min-max formulae

In this subsection, we prove

Proposition 4.2.2. For A ∈ S(n), set

λ−(A) = sup

{
inf
x∈Rn

tr
[
A+ AD2φ(x)A+ (x+ ADφ(x))⊗ (x+ ADφ(x))

]
:

φ ∈ C2(Rn), |Dφ| ≤ 1} (4.15)

and

λ+(A) = inf

{
sup

|Dψ(x)|<1

tr
[
A+ AD2ψ(x)A+ (x+ ADψ(x))⊗ (x+ ADψ(x))

]
:

ψ ∈ C2(Rn), lim inf
|x|→∞

ψ(x)

|x|
≥ 1

}
. (4.16)

Then
λ−(A) ≤ λ(A) ≤ λ+(A).

Moreover, if there is a C2(Rn) subsolution of (4.4) with eigenvalue λ(A), then λ−(A) = λ(A);
and if there is a C2(Rn) supersolution u of (4.4) with eigenvalue λ(A) satisfying

lim inf
|x|→∞

u(x)

|x|
≥ 1 (4.17)

then λ(A) = λ+(A).
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Proof. (λ− ≡ λ) Fix A ∈ S(n), let φ ∈ C2 and suppose that |Dφ| ≤ 1. Now set

µφ(A) := inf
x∈Rn

tr
[
A+ AD2φ(x)A+ (x+ ADφ(x))⊗ (x+ ADφ(x))

]
.

If µφ(A) = −∞, then µφ(A) ≤ λ(A); if µφ(A) > −∞, by the assumptions on φ and the
definition of µφ(A)

max{µφ(A)−tr
[
A+ AD2φ(x)A+ (x+ ADφ(x))⊗ (x+ ADφ(x))

]
, |Dφ(x)|−1} ≤ 0, x ∈ Rn.

By (4.13), we still have µφ(A) ≤ λ(A). Thus,

λ−(A) = supµφ(A) ≤ λ(A).

If there is C2(Rn) subsolution u of equation (4.4) with eigenvalue λ(A), then

λ(A) ≤ µu(A) ≤ λ−(A).

(λ+ ≡ λ) Again fix A ∈ S(n). Now let ψ ∈ C2 satisfy lim inf |x|→ ψ(x)/|x| ≥ 1 and set

τψ(A) := sup
|Dψ(x)|<1

tr
[
A+ AD2ψ(x)A+ (x+ ADψ(x))⊗ (x+ ADψ(x))

]
.

If τψ(A) = +∞, then τψ(A) ≥ λ(A); if τψ(A) < +∞, by the assumptions on ψ and the
definition of τψ(A)

max{τψ(A)−tr
[
A+ AD2ψ(x)A+ (x+ ADψ(x))⊗ (x+ ADψ(x))

]
, |Dψ(x)|−1} ≥ 0, x ∈ Rn.

By (4.14), we still have τψ(A) ≥ λ(A). Hence,

λ+(A) = inf τφ(A) ≥ λ(A).

If there is C2(Rn) supersolution u of equation (4.4) with eigenvalue λ(A) satisfying (4.17),
then

λ(A) ≥ τu(A) ≥ λ+(A).

4.2.2 Monotone upper and lower bounds

In this subsection, we establish the following proposition.

Proposition 4.2.3. There are monotone non-decreasing functions λ, λ̄ : S(n) → R such
that

λ(A) ≤ λ(A) ≤ λ̄(A), A ∈ S(n).
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A much sharper result has already been established in dimension n = 1 by G. Barles and
H. Soner [2]. Specifically, they showed that the eigenvalue problem associated to the ODE

max{λ− (A+ A2u′′ + (x+ Au′)2), |u′| − 1} = 0, x ∈ R (4.18)

has a unique solution λ : R → R that is monotone increasing and continuous. Moreover,
associated to λ(A) is a solution u = u(· ;A) ∈ C(R) that satisfies

lim
|x|→∞

u(x)

|x|
= 1.

Furthermore, when A 6= 0, u(· ;A) ∈ C2(R). We will need the following variant of this result
for our purposes.

Lemma 4.2.4. (solution of the 1D eigenvalue problem)
(i) For each A ∈ R and α > 0, there is a unique λ = λ1(A,α) ∈ R such that the ODE

max{λ− (A+ A2u′′ + (x+ Au′)2), |u′| − α} = 0, x ∈ R (4.19)

has a solution u = u1(· ;A,α) ∈ C(R) satisfying

lim
|x|→∞

u(x)

|x|
= α. (4.20)

When A 6= 0, u1(· ;A,α) ∈ C2(R).

(ii) The function A 7→ λ1(A,α) is continuous and monotone non-decreasing for each α > 0.

Proof. Let λ : R → R be the solution of the eigenvalue problem associated to the ODE
(4.18), with solution u = u(·;A) for each A ∈ R as described above. It is easy to check that

u1(x;A,α) := u(αx;α2A), x ∈ R

is a solution of (4.19) with eigenvalue

λ1(A,α) :=
λ(α2A)

α2

that satisfies (4.20). The uniqueness of λ1 follows from the same ideas used to prove Propo-
sition (4.1.3).

We shall use λ1 to design λ and λ̄ in Proposition (4.2.3). Our main tool will be the
comparison principle, and in particular, formulae (4.13) and (4.14). First, however, we will
perform a change of variables and rewrite (4.4). For a given A ∈ S(n), we may write

A = PΛP t
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where P tP = In and

Λ =


a1

a2

. . .

an

 . (4.21)

Note that

trA =
n∑
i=1

ai,

trAD2uA = tr[PΛP tD2uPΛP t]

= tr[ΛP tD2uPΛ]

= tr[Λ2P tD2uP ]

=
n∑
i=1

a2
i (P

tD2uP )ei · ei

=
n∑
i=1

a2
iD

2uPei · Pei

=
n∑
i=1

a2
iuPei,P ei ,

and

tr(x+ ADu)(x+ ADu) = |x+ ADu|2

= |PP tx+ PΛP tDu|2

= |P tx+ ΛP tDu|2

=
n∑
i=1

(x · Pei + aiuPei)
2.

Making the change of (independent) variables

y = P tx, x = Py

and the change of (dependent) variables

v(y) = u(Py), u(x) = v(P tx), x, y ∈ Rn,

we have that if

max{λ− tr
[
A+ AD2u+ (x+ ADu)⊗ (x+ ADu)

]
, |Du| − 1} = 0, x ∈ Rn
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then

max{λ−
n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)
, |Dv| − 1} = 0, y ∈ Rn.

The above PDE is closely related to the equation

max
1≤i≤n

{λ−
n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)
, |vyi | − 1} = 0, y ∈ Rn,

which has the separation of variables solution

λ =
n∑
i=1

λ1(ai, 1) and v(y) =
n∑
i=1

u1(yi; ai, 1), y ∈ Rn.

These computations motivate the following lemma.

Lemma 4.2.5. Let A ∈ S(n) and assume that A = PΛP t where P tP = In and Λ is given
by (4.21).
(i) Set

λ :=
n∑
i=1

λ1(ai, 1/
√
n) and v(y) :=

n∑
i=1

u1(yi; ai, 1/
√
n)

where λ1 and u1 are the solutions of (4.19) as described in Lemma 4.2.4. Then u : x 7→
v(P tx) is a subsolution of (4.4) with eigenvalue λ.
(ii) Set

λ :=
n∑
i=1

λ1(ai,
√
n) and v(y) :=

n∑
i=1

u1(yi; ai,
√
n)

where λ1 and u1 are the solutions of (4.19) as described in Lemma 4.2.4. Then u : x 7→
v(P tx) is a supersolution of (4.4) with eigenvalue λ satisfying

lim inf
|x|→∞

u(x)

|x|
≥ 1. (4.22)

Proof. We prove the case where detA 6= 0, so that u1(·; ai, ·) ∈ C2(R) for i = 1, . . . , n. The
general case follows analogously.
(i) By assumption, v is a solution of the equation

max
1≤i≤n

{
λ−

n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)
, |vyi | −

1√
n

}
= 0, y ∈ Rn.

As

tr
[
A+ AD2u+ (x+ ADu)⊗ (x+ ADu)

]
=

n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)
,
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and

|Du(x)| = |PDv(P tx)|
= |Dv(P tx)|
≤
√
n max

1≤i≤n
|vyi(P

tx)|

≤
√
n

1√
n

= 1,

we have that

max{λ− tr
[
A+ AD2u+ (x+ ADu)⊗ (x+ ADu)

]
, |Du| − 1} ≤ 0, x ∈ Rn.

Thus u is a subsolution of (4.4) with eigenvalue λ.
(ii) By assumption, v is a solution of the equation

max
1≤i≤n

{
λ−

n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)
, |vyi | −

√
n

}
= 0, y ∈ Rn.

Notice that

tr
[
A+ AD2u+ (x+ ADu)⊗ (x+ ADu)

]
=

n∑
i=1

(
ai + a2

i vyiyi + (yi + aivyi)
2
)

and

|Du(x)| = |PDv(P tx)|
= |Dv(P tx)|

≥ 1√
n

max
1≤i≤n

|vyi(P tx)|,

which of course implies

√
n (|Du(x)| − 1) ≥ max

1≤i≤n
|vyi(P tx)| −

√
n.

It follows that

max{λ− tr
[
A+ AD2u+ (x+ ADu)⊗ (x+ ADu)

]
, |Du| − 1} ≥ 0, x ∈ Rn.

Since,
u(x)

|x|
=
v(y)

|y|
≥

∑n
i=1 u1(yi; ai)√

nmax1≤i≤n |yi|
,
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where y = P tx, and

lim
|t|→∞

u1(t; ai,
√
n)

|t|
=
√
n,

we have

lim inf
|x|→∞

u(x)

|x|
≥ 1.

Hence, u is a supersolution of (4.4) with eigenvalue λ that satisfies (4.22).

Corollary 4.2.6. Set
λ(A) := trλ1(A, 1/

√
n)

and
λ(A) := trλ1(A,

√
n).

for A ∈ S(n). Then
λ ≤ λ ≤ λ.

Proof. For A = PΛP t where P tP = In and Λ is given by (4.21), we have

trλ1(A, 1/
√
n) =

n∑
i=1

λ1(ai, 1/
√
n)

and

trλ1(A,
√
n) =

n∑
i=1

λ1(ai,
√
n).

Therefore, this corollary follows directly from the above lemma and formulae (4.13) and
(4.14).

Finally, Proposition 4.2.3 is established by the following proposition which is proved in
Appendix A.

Proposition 4.2.7. Let f ∈ C(R) be monotone non-decreasing. Then S(n) 3 A 7→ trf(A)
is monotone non-decreasing with respect to the partial ordering on S(n).

4.3 Passing to the limit

This short section is dedicated to the proof of Theorem 4.0.2 which we restate below.

Theorem 4.3.1. Assume the following technical conditions:
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(i) There is a function ψ ∈ C([0, T ] × O) such that for each closed interval I ′ ⊂ (0, T )
and each compact O′ ⊂ O

lim
ε→0+

max
(t,x)∈I′×O′√

ε|y|≤η

|zε(t, x, y)− ψ(t, x)| = o(1), as η → 0+,

(ii) λ is continuous and monotone non-decreasing, and

(iii) when detA 6= 0, there is a convex solution u ∈ C2(Rn) of (4.4) with eigenvalue λ(A)
that satisfies (4.5),

Then ψ is the unique viscosity solution of (4.3).

We adapt the perturbed test function method of L. C. Evans [9] and some aspects of the
convergence proof given in the work of G. Barles and H. Soner [2]. We will make use of the
following technical lemma, which is proved in Appendix B.

Lemma 4.3.2. Assume m ≥ 1, U ⊂ Rm is open, and for each 0 < ε ≤ 1, uε ∈ C(U × Rn).
Moreover, suppose that that for each compact U ′ ⊂ U

lim
|y|→∞

uε(x, y)

|y|
= −1

uniformly in 0 < ε ≤ 1 and in x ∈ U ′ and that

lim
ε→0+

max
x∈U ′√
ε|y|≤η

|uε(x, y)| = o(1)

as η → 0+. Then there is a sequence of positive numbers εk tending to 0, as k → ∞, such
that

U 3 x 7→ sup
y∈Rn

uεk(x, y)

converges to 0, as k →∞, locally uniformly in U .

Proof. (of Theorem 4.0.2) 1. First assume that ψ − φ has a local maximum at some point
(t0, x0) ∈ (0, T )×O. We must show

φt(t0, x0)− λ(D2φ(t0, x0)) ≤ 0. (4.23)

By adding x 7→ ρ
2
|x− x0|2 to φ and later sending ρ → 0+, we may assume that (t0, x0) is a

strict local maximum point for ψ − φ and that

detD2φ(t0, x0) 6= 0.
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We fix δ > 0 and set 
Aδ(t, x) := (1 + δ)2D2φ(t, x)

A0 := Aδ(t0, x0)

xε,δ(t, x, y) := (1 + δ)Dφ(t,x)+y√
ε

φε,δ(t, x, y) := φ(t, x) + εu
(
xε,δ(t, x, y);A0

)
for (t, x, y) ∈ (0, T )×O×Rn. We are assuming that u is a convex, C2(Rn) solution of (4.4)
with eigenvalue λ(A0) that satisfies (4.5).

2. It is easily verified that

lim
ε→0+

max
(t,x)∈(0,T )×O√

ε|y|≤η

|φε,δ(t, x, y)− φ(t, x)| ≤ (1 + δ)η

and

lim
|y|→∞

φε,δ(t, x, y)− φ(t, x)√
ε|y|

= 1 + δ

uniformly in ε ∈ (0, 1] and in (t, x) ∈ [0, T ]× O. Therefore, the hypotheses of Lemma 4.3.2
are satisfied with

m := n+ 1

U := (0, T )×O
uε(t, x, y) := 1

δ

{
(zε − φε,δ)(t, x, y)− (ψ − φ)(t, x)

}
, (t, x, y) ∈ U × Rn

.

Consequently, there is a sequence ε→ 0+ tending to 0 such that

sup
y∈Rn

(zε − φε,δ)→ ψ − φ

locally uniformly on (0, T )× O. As ψ − φ has a strict local maximum at (t0, x0), there is a
sequence of εk > 0 tending to 0, as k →∞, and a sequence (tk, xk) ∈ (0, T )×O such that{

(tk, xk)→ (t0, x0), as k →∞
supy∈Rn(zεk − φεk,δ) has a local maximum at (tk, xk), k ∈ N

.

Moreover,

lim
|y|→∞

(zεk − φεk,δ)(tk, xk, y)
√
εk|y|

= −δ,

which implies there is a sequence (yk)k≥1 ⊂ Rn such that

y 7→ (zεk − φεk,δ)(tk, xk, y)
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has a maximum at yk for each k ∈ N. It is readily verified that (tk, xk, yk) is point of local
maximum for zεk − φεk,δ, for k ∈ N.

3. Since, zε is a subsolution of the eikonal equation

|Dyz| =
√
ε

and φεk,δ ∈ C2((0, T )×O × Rn), we have at the point (tk, xk, yk)

|Dyφ
εk,δ| ≤

√
εk.

Thus

|Du(xεk,δ)| < |(1 + δ)Du(xεk,δ)|

=
1
√
εk
|
√
εk(1 + δ)Du(xεk,δ)|

=
1
√
εk
|Dyφ

εk,δ|

≤ 1.

Hence,{
|xεk,δ| ≤ C

λ(A0)− tr[A0 + A0D
2u(xεk,δ)A0 + (xεk,δ + A0Du(xεk,δ))⊗ (xεk,δ + A0Du(xεk,δ))] = 0

for all k ≥ 1. Computing as we did in subsection 4.0.2 we arrive at

0 ≥ φεk,δt −
(

∆xφ
εk,δ +

1

εk
|Dxφ

εk,δ + yk|2
)

≥ φt(tk, xk) + o(1)

− 1

(1 + δ)2
tr[A0 + A0D

2u(xεk,δ)A0 + (xεk,δ + A0Du(xεk,δ))⊗ (xεk,δ + A0Du(xεk,δ))]

= φt(t0, x0)− 1

(1 + δ)2
λ (A0) + o(1)

= φt(t0, x0)− 1

(1 + δ)2
λ
(
(1 + δ)2D2φ(t0, x0)

)
+ o(1)

as k →∞. Therefore, we let k →∞ and then δ → 0+ to conclude (4.23).
4. Now assume that ψ − φ has a local minimum at some point (t0, x0) ∈ (0, T )×O. We

must show
φt(t0, x0)− λ(D2φ(t0, x0)) ≥ 0. (4.24)
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By subtracting x 7→ ρ
2
|x−x0|2 from φ and later sending ρ→ 0+, we may assume that (t0, x0)

is a strict local minimum point for ψ − φ and that

detD2φ(t0, x0) 6= 0.

We fix δ ∈ (0, 1) and set
Aδ(t, x) := (1− δ)2D2φ(t, x)

A0 := Aδ(t0, x0)

xε,δ(t, x, y) := (1− δ)Dφ(t,x)+y√
ε

φε,δ(t, x, y) := φ(t, x) + εu
(
xε,δ(t, x, y);A0

)
for (t, x, y) ∈ (0, T )×O×Rn. We are assuming that u is a convex, C2(Rn) solution of (4.4)
with eigenvalue λ(A0) that satisfies (4.5).

5. It is easily verified that

lim
ε→0+

max
(t,x)∈(0,T )×O√

ε|y|≤η

|φε,δ(t, x, y)− φ(t, x)| ≤ (1− δ)η

and

lim
|y|→∞

φε,δ(t, x, y)− φ(t, x)√
ε|y|

= 1− δ

uniformly in ε ∈ (0, 1] and in (t, x) ∈ [0, T ]× O. Therefore, the hypotheses of Lemma 4.3.2
are satisfied with

m := n+ 1

U := (0, T )×O
uε(t, x, y) := 1

δ

{
−(zε − φε,δ)(t, x, y) + (ψ − φ)(t, x)

}
, (t, x, y) ∈ U × Rn

.

Consequently, there is a sequence of ε→ 0+ such that

inf
y∈Rn

(zε − φε,δ)→ ψ − φ

locally uniformly on (0, T ) × O. As ψ − φ has a strict local minimum at (t0, x0), there is a
sequence of positive numbers εk tending to 0, as k →∞, and a sequence (tk, xk) ∈ (0, T )×O
such that {

(tk, xk)→ (t0, x0), as k →∞
infy∈Rn(zεk − φεk,δ) has a local minimum at (tk, xk), k ∈ N

.

Moreover,

lim
|y|→∞

(zεk − φεk,δ)(tk, xk, y)
√
εk|y|

= +δ,
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which implies there is a sequence (yk)k≥1 ⊂ Rn such that

y 7→ (zεk − φεk,δ)(tk, xk, y)

has a minimum at yk for each k ∈ N. It is readily verified that (tk, xk, yk) is point of local
minimum for zεk − φεk,δ, for k ∈ N.

6. As u ∈ C2(Rn), we have at the point (tk, xk, yk)

|Dyφ
εk,δ| = |(1− δ)

√
εkDu(xεk,δ)|

≤ (1− δ)
√
εk

<
√
εk.

Since zεk is a viscosity solution of (4.1) and φεk,δ ∈ C2((0, T ) × O × Rn), we compute as in
subsection 4.0.2 to get

0 ≤ φεk,δt −
(

∆xφ
εk,δ +

1

εk
|Dxφ

εk,δ + yk|2
)

≤ φt(tk, xk) + o(1)

− 1

(1− δ)2
tr[A0 + A0D

2u(xεk,δ)A0 + (xεk,δ + A0Du(xεk,δ))⊗ (xεk,δ + A0Du(xεk,δ))]

≤ φt(tk, xk)−
1

(1− δ)2
λ (A0) + o(1)

≤ φt(t0, x0)− 1

(1− δ)2
λ (A0) + o(1)

= φt(t0, x0)− 1

(1− δ)2
λ
(
(1− δ)2D2φ(t0, x0)

)
+ o(1)

as k →∞. We conclude (4.24) by first letting k →∞ and then δ → 0.
7. Uniqueness of solutions of the PDE (4.3) follow from our assumptions that λ is

continuous and monotone (elliptic). See section 8 of the reference [6] for a proof of this
fact.

4.4 Financial application

We close this chapter by presenting a multi-asset version of the Davis, Panas, Za-
riphopoulou (DPZ) option pricing model. In this setting, we consider the analog of the
limit discovered by Barles and Soner. We show that the analogous limit again amounts to
understanding a limit of a sequence of solutions of a non-linear PDE very similar to the one
considered in this paper. However, new technical issues arise and our methods seem to be
just short of handling these issues. Nevertheless, we formulate a very reasonable conjecture.
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4.4.1 Option pricing model

We consider a Brownian motion based financial market consisting of n stocks and a money
market account (a “bond”) with interest rate r ≥ 0. The stock is modeled as a stochastic
process satisfying the SDE

dP i(s) =
n∑
j=1

σijP
i(s)dW j(s), s ≥ 0, i = 1, . . . , n

where (W (t), t ≥ 0) is a standard n-dimensional Brownian motion and σ is a non-singular
n× n matrix. We assume each participant in the market assumes a trading strategy which
is simply a way of purchasing and selling shares of stock and the money market account.
Furthermore, in this model we assume that participants pay transaction costs that are pro-
portional to the amount of the underlying stock; the proportionality constant we use is√
ε.

On a time interval [t, T ], a trading strategy will be modeled by a pair of vector processes
(L,M) = ((L1, . . . , Ln), (M1, . . . ,Mn)). Here Li(s) represents the cumulative purchases of
the ith stock and M i(s) represents the cumulative sales of the ith stock at time s ∈ [t, T ]; we
assume Li,M i are non-decreasing processes, adapted to the filtration generated by W , that
satisfy Li(t) = M i(t) = 0 for i = 1, . . . , n. Associated to a given trading strategy (L,M) is
a process X, the amount of dollars held in the money market, and processes Y i, the number
of shares of the ith stock held, for i = 1, . . . , n. These processes are modeled by the SDE

{
dX(s) = rX(s)ds+

∑n
i=1 (−(1 +

√
ε)P i(s)dLi(s) + (1−

√
ε)P i(s)dM i(s))

dY i(s) = dLi(s)− dM i(s) i = 1, . . . , n
t ≤ s ≤ T.

We assume that for a given amount of wealth w ∈ R, a seller of a European option with
maturity T and payoff g(P (T )) ≥ 0 has the utility

Uε(w) = 1− e−w/ε

and in particular has constant risk aversion

−U ′′ε (w)

U ′ε(w)
=

1

ε
.

If the seller does not sell the option, his expected utility from final wealth is

vε,f (t, x, y, p) = sup
L,M

EUε(X(T ) + Y (T ) · P (T )).1

1Here, and below, we are assuming that X(t) = x, Y (t) = y and P (t) = p.
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If he does sell the option, he will have to payout g(P (T )) at time T , so in this case his
expected utility from final wealth is

vε(t, x, y, p) = sup
L,M

EUε(X(T ) + Y (T ) · P (T )− g(P (T ))).

Note that since Uε is monotone increasing vε ≤ vε,f . We define the seller’s price Λε as the
amount which offsets this difference (and makes the seller “indifferent” to selling the option
or not)

vε(t, x+ Λε, y, p) = vε,f (t, x, y, p).

As in the single asset case [8], we expect the following proposition

Proposition 4.4.1. Suppose that v = vε, vε,f satisfy the dynamic programming principle:
for each W stopping time τ ∈ [t, T ]

v(t, x, y, p) = sup
L,M

Ev(τ,X(τ), Y (τ), P (τ)),

for t ∈ (0, T ), x ∈ R, y ∈ Rn, p ∈ (0,∞)n. Then vε, vε,f are viscosity solutions of the PDE

max
1≤i≤n

{
vyi − (1 +

√
ε)pivx,−vyi + (1−

√
ε)pivx, vt +

1
2
d(p)σσtd(p) ·D2

pv + rp ·Dpv + rxvx

}
= 0,

(4.25)
in the region t ∈ (0, T ), x ∈ R, y ∈ Rn, p ∈ (0,∞)n with

vε(T, x, y, p) = 1− exp(−(x+ y · p− g(p))/ε) and vε,f (T, x, y, p) = 1− exp(−(x+ y · p)/ε).

Important reductions: (a) To simplify the presentation, we set r = 0. However, this is
done without any loss of generality as the function

ṽ(t, x, y, p) := v(t, e−r(T−t)x, y, e−r(T−t)p)

satisfies the PDE (4.25) with r = 0, provided of course that v is a solution of (4.25).
Moreover, ṽ(T, x, y, p) = v(T, x, y, p).

(b) The main virtue of working with the exponential utility function is that the value
functions typically depend on the x variable in a simple way. Notice that (upon setting
r = 0)

X t,x(s) = x+

∫ s

t

{
−(1 +

√
ε)P (s) · dL(s) + (1−

√
ε)P (s) · dM(s)

}
, t ≤ s ≤ T

and so v = vε, vε,f satisfy

v(t, x, y, p) = 1 + e−x/ε(v(t, 0, y, p)− 1). (4.26)

This is convenient as it reduces the variable dependence of solutions of (4.25).



87

4.4.2 The large risk aversion, small transaction cost limit

In order to use the PDE methods to study Λε, we define zε, zε,f implicitly via

vε = Uε(x+ y · p− zε) = 1− exp(−(x+ y · p− zε)/ε)

and

vε,f = Uε(x+ y · p− zε,f ) = 1− exp(−(x+ y · p− zε,f )/ε).

In particular, notice that

Λε = zε − zε,f .

Moreover, using (4.26), it is straightforward to check that

z = zε, zε,f are independent of x.

Another consequence of this change of variable is that as vε, vε,f are expected to be viscosity
solutions of (4.25), zε, zε,f are expected to be viscosity solutions of

max
1≤i≤n

{
−zt −

1

2
d(p)σσtd(p) ·

(
D2
pz +

1

ε
(Dpz − y)⊗ (Dpz − y)

)
, |zyi | −

√
εpi

}
= 0 (4.27)

for t < T, p ∈ Rn
+, y ∈ Rn with

zε(T, p, y) = g(p), and zε,f (T, p, y) = 0.

Note the resemblance of equation (4.27) with (4.1), the PDE we focused on in this chapter.
A formal application of the maximum principle has

0 ≤ zε,f (t, y, p) ≤
√
ε

n∑
i=1

pi|yi|

for all (t, y, p) ∈ (0, T )×Rn× (0,∞)n. Therefore, we expect that the option price is approx-
imately

Λε = zε − zε,f ≈ zε

as ε→ 0+.
Performing heuristic computations as we did for solutions of PDE (4.1), we find

zε(t, p, y) ≈ ψ(t, p) + εu

(
d(p)

Dpψ(t, p)− y√
ε

)
, as ε→ 0+
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where

d(p) =


p1

p2

. . .

pn


and ψ is a solution of the non-linear Black-Scholes equation (when r = 0)

ψt + λ
(
d(p)D2ψd(p)

)
= 0.2 (4.28)

What’s more is that the non-linearity and function u in the error term for zε together solve
the following corrector problem: for each A ∈ S(n), find λ ∈ R and u : Rn → R that satisfy
the PDE

max
1≤i≤n

{
λ− 1

2
tr
[
σσt

(
A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)

)]
, |uxi | − 1

}
= 0, x ∈ Rn.

(4.29)
Using the methods we presented in this paper, it can be shown that for each A ∈ S(n), there
is a unique λ(A) such that there is a continuous viscosity solution u of the (4.29) satisfying

lim
|x|→∞

u(x)∑n
i=1 |xi|

= 1.

This defines the function that appears in (4.4) and will be crucial to rigorously establish the
limit described above.

The methods we have employed must be augmented and strengthened to establish the
analog of the limit established by G. Barles and H. Soner. Two technical issues that now
arise are that 1) the PDE (4.27) has a unbounded domain for the p variable, so appropriate
growth conditions must be required of solutions; and 2) the function determining the gradient
constraint

H(p) = max
1≤i≤n

|pi| − 1, p ∈ Rn

is not uniformly convex (recall the assumptions of Theorem 2.0.1), so we will expect to have
less regularity of solutions of equation (4.29). We hope to resolve these issues in future
research and prove the following conjecture.

Conjecture 4.4.2. Solutions zε of (4.1) converge locally uniformly to a viscosity solution
of the PDE (4.28) satisfying the terminal condition ψ(T, p) = g(p), p ∈ (0,∞)n, as ε→ 0+.

2When r 6= 0, ψt + e−r(T−t)λ
(
er(T−t)d(p)D2

pψd(p)
)

+ rp ·Dpψ − rψ = 0.
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Chapter 5

Concluding remarks

In this dissertation, we considered three problems involving PDE of the form (1.1)

max
{
F (D2u,Du, u, x), H(Du)

}
= 0

where F is elliptic and H satisfies a monotonicity condition. Regarding the first problem,
we showed the Dirichlet problem associated with the PDE

max{Lu− h(x), H(Du)} = 0

is well-posed, where L is a linear, uniformly elliptic operator. Moreover, if H is uniformly
convex, the solution of the Dirichlet problem belongs to C1,1

loc .
For the second problem, we proved that there is unique λ∗ ∈ R such that the PDE

max {λ−∆u− h(x), |Du| − 1} = 0, x ∈ Rn

has a solution u satisfying

lim
|x|→+∞

u(x)

|x|
= 1.

Moreover, we showed that associated to λ∗ is a convex solution u∗ belonging to C1,1(Rn).
In the third problem, we established under technical assumptions that appropriate limits

(as ε tends to 0) of solutions zε of the PDE

max

{
zt −

(
∆xz +

1

ε
|Dxz + y|2

)
, |Dyz| −

√
ε

}
= 0

must satisfy a non-linear, parabolic equation of the form

ψt = λ
(
D2ψ

)
.

Moreover, we find that the non-linearity λ : S(n) → R is the solution of an eigenvalue
problem associated with the PDE

max
{
λ− tr

(
A+ AD2uA+ (x+ ADu)⊗ (x+ ADu)

)
, |Du| − 1

}
= 0
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where A ∈ S(n).
These PDE arose naturally in mathematical models involving the optimal control of

singular stochastic processes. We regard this work as progress in rigorously interpreting
the PDE that arise in these applications. However, many fundamental questions remain
unanswered about these equations and in general about the PDE in the class (1.1). We close
by discussing some interesting, yet largely unexplored research directions.

Consider the Dirichlet problem associated to equation (1.1):{
max {F (D2u,Du, u, x), H(Du)} = 0, x ∈ O

u = g, x ∈ ∂O
,

where g ∈ C(O), F is fully non-linear and elliptic, and H may satisfy (1.4). What are the
appropriate structural conditions on g, F , and H so that the above equation has a unique
(viscosity) solution? In particular, is there an analog for Theorem 2.0.1 in the case where F
is uniformly elliptic and H is uniformly convex? In general, we are asking: how do solutions
of fully non-linear, elliptic PDE behave when a pointwise gradient constraint is imposed?

Next, we inquire about the local geometry of the free boundary associated to (1.1). This
is defined to be the boundary of the set

Ω = {x ∈ Ω : H(Du(x)) < 0} .

We ask: what are the local regularity properties of ∂Ω? This question is motivated by results
for the PDE

max{Lv − h(x), v − g(x)} = 0.

Here is known that if h and g are sufficiently regular functions, the boundary of the set

Ω′ = {x ∈ Ω : v(x) < g(x)}

is locally the graph of a smooth function (at most points) [4]. A regularity result about ∂Ω
may have modeling implications, as well, as optimal controls for singular control problems
can be constructed via reflected diffusions, provide ∂Ω is smooth enough [20] [21].

As a final remark, we mention that it would also be of great interest to design a general
problem involving asymptotic analysis of PDE to which our results on Chapter 3 on eigen-
value problems can be applied. We presented a very involved example of this in Chapter 4,
and we now seek a simple yet interesting model problem for such phenomena. The motiva-
tion for this question is from the theory of periodic homogenization, where the fundamental
cell problem is a non-linear eigenvalue problem and is used to understand non-trivial limits
of solutions of PDE [9].
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Appendix A

Monotonicity of A 7→ trf (A)

In this appendix, we prove Proposition 4.2.7, which we restate for the reader’s conve-
nience.

Proposition A.0.3. Let f ∈ C(R) be monotone non-decreasing. Then S(n) 3 A 7→ trf(A)
is monotone non-decreasing with respect to the partial ordering on S(n).

We first prove a version of this proposition for smooth functions.

Proposition A.0.4. Let f ∈ C∞(R) and N ∈ S(n). For each A ∈ S(n), we have

Dtr[f(A)]N := lim
t→0

trf(A+ tN)− trf(A)

t
= tr[f ′(A)N ]. (A.1)

Proof. A = OΛOt, where OtO = In and Λ is diagonal; we shall also write A = (aij)1≤i,j≤n
and Λ = diag(λ1, . . . , λn). With this notation,

trf(A) =
n∑
i=1

f(λi).

Now λk = AOek ·Oek and A =
∑n

i,j=1 aijeie
t
j. Therefore

∂λk
∂aij

= eie
t
jOek ·Oek + A

∂

∂aij
Oek ·Oek + AOek ·

∂

∂aij
Oek

= etjOek · etiOek + 2AOek ·
∂

∂aij
Oek

= OikOjk + 2λkOek ·
∂

∂aij
Oek

= OikOjk + λk
∂

∂aij
|Oek|2

= OikOjk,
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since OtO = In.
Let N ∈ S(n). We have from the definition of Dtr[f(A)]N in (A.1), the chain rule, and

the above computations that

Dtr[f(A)]N =
n∑

i,j=1

∂

∂aij
trf(A)Nij

=
n∑

i,j=1

n∑
k=1

f ′(λk)
∂λk
∂aij

Nij

=
n∑
k=1

f ′(λk)
n∑

i,j=1

OikOjkNij

=
n∑
k=1

f ′(λk)(O
tNO)kk

= tr[f ′(A)N ].

Lemma A.0.5. Let f ∈ C∞(R) be non-decreasing. Then S(n) 3 A 7→ trf(A) is non-
decreasing.

Proof. Let A,B ∈ S(n) with B ≥ A. From the above proposition,

trf(B)− trf(A) =

∫ 1

0

d

dt
trf(A+ t(B − A))dt

=

∫ 1

0

Dtrf(A+ t(B − A))(B − A)dt

=

∫ 1

0

tr[f ′(A+ t(B − A))(B − A)]dt

≥ 0,

as the matrix f ′(A+ t(B − A)) ≥ 0 for all t ∈ [0, 1] and B − A ≥ 0.

Proof. (Proposition (4.2.7)) Let f ε denote the standard mollifier of f and suppose A,B ∈
S(n) with B ≥ A. By the above lemma, trf ε(B) ≥ trf ε(A) for all ε > 0 as f ε is non-
decreasing. Letting ε→ 0+ implies trf(B) ≥ trf(A).
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Appendix B

Technical convergence lemma

Here, we verify Lemma 4.3.2, which we restate for the reader’s convenience.

Lemma B.0.6. Assume m ≥ 1, U ⊂ Rm is open, and for each 0 < ε ≤ 1, uε ∈ C(U ×Rn).
Moreover, suppose that that for each compact U ′ ⊂ U

lim
|y|→∞

uε(x, y)

|y|
= −1 (B.1)

uniformly in 0 < ε ≤ 1 and in x ∈ U ′ and that

lim
ε→0+

max
x∈U ′√
ε|y|≤η

|uε(x, y)| = o(1) (B.2)

as η → 0+. Then there is a sequence of positive numbers εk tending to 0, as k → ∞, such
that

U 3 x 7→ sup
y∈Rn

uεk(x, y)

converges to 0, as k →∞, locally uniformly in U .

Proof. 1. Fix a compact U ′ ⊂ U . We first aim to show there is a sequence of ε → 0+ such
that

lim
ε→0+

max
x∈U ′

∣∣∣∣ sup
y∈Rn

uε(x, y)

∣∣∣∣ = 0. (B.3)

Note that (B.1) implies
lim
|y|→∞

uε(x, y) = −∞

for each ε ∈ (0, 1] and x ∈ U ′, and (B.2) implies

uε → 0 locally uniformly in U ′ × Rn.
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In particular, for each ε ∈ (0, 1] and x ∈ U ′ there is yε,x such that

max
y∈Rn

uε(x, y) = uε(x, yε,x).

As
x 7→ max

y∈Rn
uε(x, y)

is continuous and U ′ is compact, there is xε ∈ U ′ such that

max
x∈U ′

∣∣∣∣max
y∈Rn

uε(x, y)

∣∣∣∣ =
∣∣uε (xε, yε,xε)∣∣

for 0 < ε ≤ 1.
2. The sequence (

√
εyε,x

ε
, 0 < ε ≤ 1) must be bounded for all ε > 0 and small enough.

Otherwise, there exists a sequence (
√
εkyk)k∈N such that

xk = xεk , k ∈ N
yk := yεk,xk , k ∈ N
limk→∞ εk = 0

limk→∞
√
εk|yk| =∞

.

Necessarily limk→ |yk| =∞, and by assumption (B.1)

lim
k→∞

uεk(xk, yk)√
εk|yk|

= −1. (B.4)

It follows that
lim
k→∞

uεk(xk, yk) = −∞;

however, this contradicts

limk→∞u
εk(xk, yk) ≥ limk→∞u

εk(xk, 0) = 0, (B.5)

which holds by local uniform convergence.
3. Let (

√
εkyk)k∈N be a convergent subsequence of (

√
εyε,x

ε
, 0 < ε ≤ 1) and set

ηk :=
√
εk|yk|, k ∈ N.

Without loss of generality, we assume the sequence (ηk)k∈N converges to some limit η0. If
η0 = 0, then we conclude (B.3) by noting

lim
k→∞

max
x∈U ′

∣∣∣∣max
y∈Rn

uεk(x, y)

∣∣∣∣ = lim
k→∞

max
x∈U ′

∣∣∣∣ max√
εky≤ηk

uεk(x, y)

∣∣∣∣
≤ lim

k→∞
max
x∈U ′√
εky≤ηk

|uεk(x, y)|

= 0.
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The last equality above follows from assumption (B.2). If η0 > 0, |yk| must tends to +∞.
Again we would have (B.4), which implies

lim
k→∞

uεk(xk, yk) ≤ 0;

As (B.5) still holds, we have
lim
k→∞

uεk(xk, yk) = 0,

and in particular,

lim
k→∞

max
x∈U ′

∣∣∣∣max
y∈Rn

uεk(x, y)

∣∣∣∣ = lim
k→∞
|uεk(xk, yk)| = 0.

Therefore, we have established (B.3).
4. Since U ′ was an arbitrary compact subset of the open set U , we can employ a stan-

dard diagonalization argument (see the proof of Theorem 2.0.1) to conclude that there is a
sequence εk → 0, as k →∞, such that

U 3 x 7→ sup
y∈Rn

uεk(x, y)

converges to 0 locally uniformly on U , as k →∞.




