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Abstract

It has been well-recognized that inflammation alongside tissue repair and damage maintaining 

tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the 

accomplishment of having captured most critical inflammation involved molecules, genetic 

susceptibilities, epigenetic factors, and environmental exposures, our schemata on role of 

inflammation in complex disease, remain largely patchy, in part due to the success of reductionism 

in terms of research methodology per se. Omics data alongside the advances in data integration 

technologies have enabled reconstruction of molecular and genetic inflammation networks which 

shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the 

proven beneficial role of anti-inflammation in coronary heart disease as well as other complex 

diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review 

our current understanding of the inflammation molecular and genetic networks underlying major 

human diseases. In this Review, we first briefly discuss the complexity of infectious diseases and 

then highlight recently uncovered molecular and genetic inflammation networks in other major 

human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer 

Disease, Parkinson disease, and sporadic cancer. The commonality and specificity of these 

molecular networks are addressed in the context of genetics based on genome-wide association 

study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or 
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type 2immunity leads to chronic and severe clinical conditions, remains open in terms of the 

inflammasome and the core inflammatome network features. Increasingly available large Omics 

and clinical data in tandem with systems biology approaches have offered an exciting yet 

challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and 

genetic inflammation networks, which hold a great promise in transiting network snapshots to 

video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical 

intervening.

Keywords

complex disease; inflammation; immune response; systems biology; genome-wide association; 
gene coexpression network; gene regulatory networks; gene signature; gene networks; obesity; 
diabetes; coronary heart disease; Alzheimer Disease; Parkinson disease; cancer

 Introduction

A vast majority of human diseases fall into the complex diseases categories, which are 

caused by a combination of genetic, epigenetic, and environmental exposure, most of which 

yet to be identified elaborately. Most common life-threatening and life-quality-impact 

diseases or clinical conditions, including obesity (OB), Type 2 diabetes mellitus (T2DM), 

coronary heart disease (CHD), Alzheimer's disease (AD) and Parkinson's disease (PD), and 

cancer fully meet the criteria of the definition of complex disease, which in general does not 

obey the standard Mendelian patterns of inheritance but can be studied by a means of 

genetic predisposition such as genome-wide association study (GWAS).

The progress of these complex disease phenotypes depends largely on environmental 

exposure and lifestyle. Thus, the interplay between gene products/by-products and 

environmental exposure at the molecular level is a general scenario underlying complex 

diseases. Naturally, such interplays invoke inflammation, which comes from the Latin 

“inflammo”, meaning “I set alight, I ignite”. Inflammation, part of the body's immune 

response, is beneficial initially but can become self-perpetuating as more inflammation is 

created in response to the existing inflammation. If not stopped, it becomes chronic 

inflammation, which is linked to complex diseases, e.g., plaque in AD and genome 

instability in tumor cells.

Vertebrates including humans deploy two types of immunity to defend themselves against 

two distinct types of ‘insult’, namely, the type 1 – invasion of rapidly replicating 

microorganisms, such as bacteria, viruses, protozoa and fungi, and the type 2 – breach of the 

protective barriers of the body by physical trauma. For the first scenario, an antimicrobial 

type 1 immune response characterized by the T helper 1 (TH1) cell-associated cytokines 

interferon-γ and interleukin-12 (IL-12) is invoked, and is directed and enhanced through 

cytokines that are produced by TH1 and TH17 cells of the adaptive immune system; 

however, there is a risk leading to the induction of highly toxic antimicrobial products which 

are capable of damaging consequences for the host tissue. The Type 2 immunity involves 

innate immune cells, such as basophils, eosinophils, mast cells, M2 macrophages (also 
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known as alternatively activated macrophages) and group 2 innate lymphoid cells, with TH2 

cells functioning as the central mediators of the adaptive immune response1.

In-depth one-gene-one-protein-one-lab research has been offering great insights into such 

links. Encouragingly, recent technological advances have led to the generation of large 

amount of high throughput and high dimensional molecular data to study inflammation in a 

more systematic and comprehensive way2-4. Forward genetics discoveries have dissected 

pivotal genetic components, e.g., Mendelian disease genes5 and GWAS6 susceptibility 

genes. Both catalogs could provide meaningful targets for detailed molecular genetic 

explorations. Likewise, genome-wide expression studies (GWES) have revealed many 

molecular phenotypes that are directly linked to disease phenotypes7. Moreover, nuanced 

model based molecular studies that leverage diverse types of large scale molecular data have 

become available for modeling tissue-specific regulatory networks and pinpointing key 

regulators and have advanced our in-depth understanding of molecular mechanisms 

underlying disease progression8. These efforts have been driving an emerging network 

biology of complex diseases, in which pro-inflammatory response is of primary importance. 

Network biology aims to holistically reconstruct interactions, associations, or causal 

relationships among a large number of variables such as genes and proteins in biological 

processes, systems, or pathophysiologic states. As such, network biology has the potential to 

identify novel key variables and interacting pathways underlying a biological function, 

system or state under examination. As an example, the recently uncovered genome-wide 

genetic and transcriptomic data from brain tissues and demonstrated that an inflammation/

microglial enriched subnetwork is most causally linked to AD and further validated that its 

key driver TYROBP was involved in amyloid-β (Aβ) turnover and neuronal damage9. 

Similarly, a causal role of a similar inflammation/macrophage enriched network in 

association with obesity and diabetes has been established and a number of key drivers of 

the network have been validated in vivo4,10,11. Further, the study of the transcriptome of nine 

different tissues from eleven disease models revealed a shared inflammatome signature that 

appears to play causal roles in multiple diseases12.

Infectious diseases remain a significant threat to human health and a major cause of death, 

especially in developing countries. The top three most challenging infectious diseases 

including AIDS, malaria and tuberculosis generate more than 235 million new cases and 

cause more than five million deaths per year 13. Although effective therapeutics have been 

developed for the top three infectious diseases, there are issues in prevention, drug resistance 

and availability. Similar situations exist for other infectious diseases caused by respiratory 

syncytial virus (RSV)14, cytomegalovirus (CMV)15, dengue virus16, Clostridium difficile 
and Staphylococcus aureus17. Since the etiology of infectious diseases are known from the 

pathogen perspective, it has been crucial to elucidate the core component of the 

inflammation system by rigorous study infectious diseases especially with a means of 

focusing on host-pathogen interactions.

Here we review the mechanisms of inflammation in major human diseases including 

infectious disease, OB, T2DM, CHD, AD, PD, and CA in the context of molecular networks 

with identification of several big challenges in understanding the inflammation networks in 

complex diseases.
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 Recognition of pathogens by the innate immune system

The innate immune system plays an essential role in controlling pathogen infection and 

initiating specific adaptive immune response by recognizing microbial pathogen-associated 

molecular patterns (PAMPs) such as viral-/bacterial-nucleic acids and bacterial cell wall 

components 18. Five main families of host germline-encoded pattern-recognition receptors 

(PRRs) have been identified including C-type lectin receptors (CLRs), nucleotide 

oligomerization and binding domain (NOD)-like receptors (NLRs), Pyrin-HIN (PYHIN) 

domain containing receptors (e.g. AIM2), retinoic acid inducible gene-I (RIG-I)-like 

receptors (RLRs), and Toll-like receptors (TLRs) 19. These innate receptors closely interact 

with one another and many other signaling pathways (e.g. MAPK, NF-kB and IRFs20) 

including a recently found connection with autophagy, an eukaryotic pathway induced by 

PRRs to eliminate intracellular microorganisms21. An association between genetic variants 

in the regulatory region of parkin gene (PARK2), a ubiquitin ligase, and susceptibility to 

intracellular pathogen infection was established earlier22 and more recent data suggested that 

parkin actually plays a key role in mediating autophagy of Mycobacterium tuberculosis and 

perhaps other intracellular pathogens since mice deficient in PARK2 are sensitive to various 

intracellular bacterial infections23.

Close interactions between PRRs are further substantiated by the two-signal model mediated 

by TLRs and NLRs for the production of two of the most important pro-inflammatory 

cytokines, IL-1β and IL-18. In this model, TLR agonists stimulate transcription whereas 

NLR agonists activate the inflammasome to release active IL-1β and IL-1824. For examples, 

TLR2 signaling has been shown to activate inflammasome and release IL-1β and IL-18 in 

infection by RSV 25 and Francisella novicida26 infection, respectively. In the former case, 

NLRP3 gene expression was induced by RSV infection and two additional signals, 

potassium (K+) efflux and reactive oxygen species (ROS) were required subsequently to 

promote inflammasome activation for IL-1β secretion. Negash AA et al. 27 found that HCV 

viral RNA induces TLR7 signaling and a potassium efflux to promote IL-1β secretion via a 

NLRP3-containing inflammasome. By performing RNA sequencing analysis of liver from 

chronic hepatitis C patients and HCV-infected THP-1 macrophage cell line, they were able 

to show that intrahepatic IL-1β production by macrophage modulates gene expression 

networks of proinflammatory mediators and is the key driver of liver inflammation.

In addition to detecting pathogen infection by PRRs, cells also express multiple antiviral 

restriction factors which could block virus replication at different stages and in response, 

many viruses develop a plethora of mechanisms to evade host detection28. For examples, 

two genes or open reading frames (ORFs) encoded by varicella-zoster virus (VZV), 

ORF4729 and ORF6130, have been shown to interfere with the host innate immunity by 

inhibiting the activation of IRF3. Recently expression of many antiviral restriction factors 

such as ADAR-1, APOBEC3, IFITM1/3, SAMHD1, Tetherin and TRIM5 were all down-

regulated in VZV-infected MRC-5 cells (Wang IM et al. unpublished results). The type I 

interferon (IFN) family plays a key role in protecting cells from viral infection by 

stimulating hundreds of interferon-stimulated genes (ISGs)31. A lentiviral over-expression 

system was adopted to test the ability of more than 380 ISGs in inhibiting the replication of 

multiple important viruses and the results indicated IRF-1, RIG-I/DDX58, MDA5/IFIH1, 
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and IFITM3 as being broadly acting inhibitors against multiple viruses whereas DDX60, 
IFI6, IFITM2, OASL, TREX1 and IFI44L possess more targeted antiviral activity32,33. 

Consistent with the above finding, Goulet et al.33 showed that a synthetic RIG-I agonist 

activated inflammatory and interferon-stimulated genes including IRF3, IRF7 and STAT1 in 

human lung epithelial A549 cells and protected mice from a lethal challenge with H1N1 

influenza virus at the picomolar range. This RIG-I specific effect offered partial protection 

from influenza-challenged mice in the absence of IFN signaling. Interestingly, a genome-

wide RNAi screening using a similar lentiviral expression system described above identified 

a new negative regulatory role of virus-mediated innate immunity for the WNT/CTNNB1 

signaling pathway34. The information could be used for selecting broad-spectrum antiviral 

agents for preventing inflammatory diseases caused by viral infection.

 Immune dysfunction caused by chronic viral infection

Chronic infection by viruses such as anellovirus, circovirus, adeno-associated virus (AAV), 

polyomavirus, different types of herpesviruses including HHV-6, HHV-7, varicella zoster 

virus (VZV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) is common in humans. 

Some viruses infect more than 90% of the population surveyed and estimated at 8-12 

chronic infections in each person35. Most chronic infections mentioned above do not result 

in discernible disease, at least in healthy hosts but others such as papilloma virus, HBV, 

HCV and HIV could create a persistent low grade inflammation or immune dysfunction 

which predisposes susceptible hosts to other ailments including cardiovascular disease, type 

2 diabetes36 and cancer37. Most discussion in this section will focus on HIV since it's one of 

the best characterized examples of chronic viral infection. Evidences accumulated from the 

past decade indicated that although AIDS-related symptoms are well under control and 

patients’ life expectances significantly prolonged since highly active anti-retroviral therapies 

(HAART) became available, patients’ overall well-beings are still at risk with several 

complications reminiscent of aging. This is due to the latently-infected HIV which maintains 

a low-level systemic inflammation. To achieve a better life span and quality, novel treatment 

approaches targeting this chronic inflammation need to be in place38.

Several key immune signaling pathways involved in shaping a normal physiological state are 

disrupted during viral infection. In the HIV-infected hosts, IFN signaling (and ISG genes), 

cell cycle and proteasome gene networks were perturbed but the transcriptome could be 

reverted in a way comparable to that of uninfected subjects with HAART treatment. By 

combining genome-wide gene expression and single-nucleotide polymorphism (SNP) data, 

it was found that expression of 190 genes was driven by cis-acting genetic variants or 

expression SNP (eSNP) and among them, one of the ISGs, OAS1 was associated with viral 

load39. OAS1 is involved in the innate immunity against viral infection; genetic variants in 

OAS1 have previously been shown to associate with controlling West Nile virus infection 40 

and clinical outcome of dengue virus infection 41.

Non-human primate (NHP) species such as sooty mangabey and African green monkeys are 

natural host for simian immunodeficiency viruses (SIV) and remain asymptomatic upon 

viral infection even in the presence of high viremia. In contrast, SIV-infected rhesus 

macaques, like HIV-infected humans, have depleted CD4+ T cells; elicit generalized 
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immune activation and develop AIDS42. Sooty mangabeys have substantially reduced levels 

of innate immune response upon SIV infection and their plasmacytoid dendritic cells (pDCs) 

produce significantly less type 1 IFN in response to SIV in vivo and TLR7/TLR9 ligands in 
vitro43. Comprehensive transcriptome analysis of human rapid progressors (RPs) and 

nonprogressors (NPs) upon HIV infection showed a clear resemblance of RP gene signature 

to symptomatic SIV-infected rhesus macaques whereas NP signature was more similar to 

that of asymptomatic SIV-infected sooty mangabeys44.

Veazey et al. 45 first indicated that gastrointestinal tract was enriched with CD4+ T cells but 

there was a profound and selective depletion of this cell population in rhesus macaques 

within days after SIV infection. It was later discovered that in both chronically HIV-infected 

human and SIV-infected rhesus macaques, circulating microbial products such as 

lipopolysaccharide (LPS), an agonist for TLR4, was significantly increased and correlated to 

levels of innate and adaptive immune response 46. These microbial products were derived 

from the gastrointestinal tract in a process called microbial translocation 47 due to damage in 

the gut epithelium caused only by the pathogenic infection since the process did not occur in 

nonpathogenic SIV infection of sooty mangabeys and could be partially reversed by 

antiretroviral therapy. Mucosal Th17 cell plays a key role in maintaining the integrity of gut 

epithelial barrier 48 but it's number is reduced and function altered during HIV infection 49; 

however, in SIV-infected rhesus macaques, these abnormalities could be corrected by IL-21 
treatment 50. Using next-generation sequencing (NGS) in SIV-infected rhesus monkeys 51 

and high-resolution bacterial community profiling in HIV-infected humans 52, it was found 

that pathogenic (but not nonpathogenic) SIV infection was correlated to a significant 

broadening of the enteric virome with 32 previously undocumented viruses confirmed by 

independent assays. In this case, no association was evident between the family-level of 

bacteria and pathogenic SIV infection 51. In the HIV-infected patients, markers of chronic 

inflammation, T cell activation and disruption of mucosal immunity was associated with 

enriched Proteobacteria and depleted Bacteroidia members and the level of dysbiosis was 

proportional to two established disease progression markers, tryptophan catabolism and IL-6 52. The different results between SIV-infected NHP and HIV-infected humans are intriguing and should be further investigated.

Functional virus-specific T cells are generated during the early stage of infection but they 

gradually lose their immune competence when the infection becomes chronic – a process 

termed T cell exhaustion 53. Several mechanisms for modulating immune response during 

chronic infections have been proposed based on results from high through-put genome-wide 

analysis. Gene expression of CD8 T cells derived from mice chronically infected with 

lymphocytic choriomeningitis virus (LCMV) was compared with normal functional CD8+ T 

cells and CD8+ T cells from acutely infected mice 54. The results indicated that expression 

of several inhibitory receptors including PD-1, CTLA-4, 2B4, CD160 and LAG-3 were up-

regulated by the exhausted T cells. In vivo administration of antibodies blocking the 

interaction of PD-1 with its ligand, PD-L1 decreased LCMV viral load and restored T-cell 

function of cytokine secretion, cell proliferation and cytotoxic capacity. Other significantly 

modulated pathways include T cell receptor signaling, cytokine signaling and chemotactic 

pathways as well as down-regulation of several metabolic and bioenergetics pathways. The 

finding was then extended to HIV-infected patients 55 and HCV-infected chimpanzees 56. 

PD-1 was significantly up-regulated in CD8+ cells from HIV-infected humans and its 

expression level was positively correlated to viral load and negatively correlated to CD4+ T 
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cell count. Blocking PD-1/PD-L1 interaction increased HIV-specific CD4 and CD8 function 

and improved disease outcome 55. In HCV-infected chimpanzees, PD-1 blockade could 

reduce HCV viremia but the effect was more significant in animals with a broader T cell 

response to HCV.56 It was proposed that PD-1 immunotherapy could also be applied to treat 

other chronic viral infections such as hepatitis B virus and in fact, several anti-PD-1-related 

clinical programs are being actively pursued to treat multiple types of human cancers 

including melanoma, colon and lung cancer5758.

The profound change in the immune system caused by chronic pathogens such as HIV 

suggests the involvement of pleiotropic factors that affect immune cell life span, 

proliferation, differentiation and maturation. One such factors is FOXO3a which was 

originally characterized by an integrated transcriptomic, proteomic and functional analysis 

as being the key transcription factor involved in survival of central memory CD4+ T cells 

(Tcm) 59. Specifically, it was the phosphorylated and hence transcriptionally inactive form 

of FOXO3a which provided protection of Tcm from apoptosis. Roles of FOXO3a include 

transcriptional induction of pro-apoptotic 60, anti-proliferative genes 61, genes regulate 

carbohydrate metabolism 62 and reactive oxygen species (ROS)-related detoxification 63. It 

was subsequently demonstrated that down-regulation of FOXO3a either by small interfering 

RNA (siRNA) or by a dominant-negative form of FOXO3a could extend the life span of 

Tcm cells 64 and increased FOXO3a transcriptional activity resulted in a loss of memory B 

cells via TRAIL-mediated apoptosis 65. The immune dysfunction mediated by FOXO3a is 

reversible even after long-term infection so the pathway could be explored for the 

development of new therapeutics 66.

 Host response to vaccination and infection

Significant progress in systems analysis of host response to vaccination and pathogen 

infection has been made in the past few years due to 1) the advancement in whole blood/

leukocyte transcriptome analysis 67, 68, 69, 70, 71, 72; and 2) the availability of high-through 

put technologies such as DNA microarray, single nucleotide polymorphism (SNP) profiling 

and next-generation sequencing (NGS)-based platforms 73, 74, 75. Instead of using single 

genes, an algorithm was developed by grouping co-expressed blood or PBMC genes from 

large disease data sets into modules which could be easily quantitated and used as potential 

biomarkers for predicting clinical outcomes such as antibody response 76, 77. Advantages of 

the module analysis approach include reduction of data dimensionality and facilitating data 

interpretation since each module usually is associated with a particular biological pathway 

or function. For example, with respect to Staphylococcus aureus infections, Banchereau et 

al. 77 were able to identify gene-network modules related to (i) neutrophil myeloid lineage 

inflammation, (ii) hematopoiesis cell cycle, and (ii) T-cell cytotoxicity lymphoid lineage that 

are correlated with clinical traits. The major transcriptional patterns identified included pro-

inflammatory myeloid signature, linked to sampling early in the course of infection, high 

neutrophil and monocyte counts and elevated C-reactive protein. Inflammatory response, for 

example, is mediated by calmodulin B, interleukin and TLR signaling targeting NF-κB and 

TNFα-mediated pro-inflammatory pathways.
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Similar progress has been made with respect to cell-based model systems. In particular 

advancements in high-thoughput RNAi screens are instrumental to decipher molecular host-

pathogen interaction networks. Watanabe et al. compared published RNAi studies on host-

factors required for influenza infections and identified 128 targets common between at least 

two of each screens78. Novel host processes, such as, V-type ATPases important for 

endocytosis, COPI vesicular transport or the pre-mRNA splicing machinery with PTBP1 and 

splicing factors SF3A1/SF3B1 have been identified. Host-response is certainly gene-context 

dependent, as Ward et al. demonstrated with respect to influenza H1N1 infection. By 

combining RNAi screening data from influenza replication assays with cell viability data, 

Ward et al. 79 identified a pharmacologically addressable network involving cell cycle/DNA 

damage checkpoint protein CHEK1. Employing SB218078, an investigational CHEK1 
inhibitor, severely limited viral protein production in nontransformed bronchial epithelial 

cell lines at single cell resolution. Remarkably, SB218078 had no consequence on H1N1 

replication in A549 cells, a cancer cell line often employed to test for modulators of viral 

replication and host responses (Figure 1A).

Another example of a cancer related molecular network relevant for infectious disease has 

been identified by Mata et al. 80 By chemical screening a class of naphtalimides has been 

identified that activates a novel host-defense factor REDD1 (or DDIT4). When activated, 

REDD1 inactivates the mTORC1 pathway which is required for viral replication, thus 

essentially preventing viral protein production (Figure 1B).

A web-based interactive software tool has been designed for data analysis/visualization and 

was applied for comparative analysis of two vaccines, the trivalent influenza vaccine (TIV) 

and 23-valent pneumococcal vaccine covering polysaccharide components from 23 most 

widely encountered strains of Pneumococcus pneumoniae81. More recently, Li et al. 82 

conducted a similar blood transcription module (BTM) analysis of five vaccines (yellow 

fever YF-17D, trivalent inactivated influenza virus [TIV], live attenuated influenza virus 

[LAIV], meningitis quadrivalent polysaccharide vaccine [MPSV4] and meningitis 

quadrivalent conjugate vaccine [MCV4-PS] which is conjugated to diphtheria toxoid 

[MCV4-DT]) in three different categories (naïve attenuated viral, recall peptide and anti-

polysaccharide vaccines) by using an integrated large-scale network approach employing 

public human blood transcriptome data from 500 studies with more than 30,000 samples. 

The results indicated correlations between antibody titers and 1) type I interferon modules 

for YF-17D vaccine, 2) dendritic cell and complement activation modules for MCV4-PS and 

MPSV4, and 3) BCR signaling/plasma cells–immunoglobulins modules for peptide recall 

responses (i.e. TIV and MCV4-DT). These authors also identified previously unknown 

innate immune networks which should be further investigated to enhance our understanding 

of the vaccine response83. The identification of genes such as TLR5, CASP1, PYCARD, 
NOD2 and NAIP suggested previously unknown mechanistic links between host innate 

immunity and humoral responses. The implication from these analyses is that each category 

of vaccine induces immunogenicity by a different mode of action (MOA) and there is 

probably no consensus gene expression predictor for antibody response.
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 The inflammasome

Inflammasome is the signaling platform of the innate immune system that activates 

proinflammatory cytokines after microbial pathogens are sensed or sterile danger is detected. 

The kinases Syk and Jnk control inflammasome activation by mediating phosphorylation of 

the inflammasome adaptor ASC. Inflammasomes are large intracellular multiprotein 

complexes that control activation of the protease caspase-1, which in turn mediates the 

proteolytic maturation of the highly inflammatory cytokines IL-1β and IL-1884,85. Several 

types of inflammasomes have been identified that can respond to distinct bacterial, viral or 

fungal infections, to sterile cell damage or to other stressors such as metabolic imbalances. 

Inflammasomes are composed of a sensor (such as NLRP3, AIM2 or NLRC4), the adaptor 

ASC and caspase-1. Whereas NLRP3 and AIM2 depend critically on ASC for engagement 

of caspase-1, the inflammasome sensor NLRC4 can directly interact with caspase-1. The 

regulated activation of inflammasomes after microbial infection or injury is critical for the 

maintenance of tissue homeostasis, but deregulated inflammasome activity has emerged as a 

major contributor to the pathogenesis of prevalent diseases, including inflammatory bowel 

disease, coronary heart disease and cancer. Therefore, it is importance to understand how the 

activities of inflammasomes are regulated86.

 The core inflammatome

Given the inflammatory nature of many common chronic diseases, a recent study of multiple 

disease models further demonstrates that chronic diseases share a common inflammatome 

gene signature and network structure12. Specifically, a representative gene signature was 

identified by an integrated analysis of 12 expression profiling data sets derived from 9 

different tissues of 11 rodent inflammatory disease models. This “inflammatome” signature 

significantly overlaps with coexpressed gene modules linked to metabolic disorders, cancer, 

neuron-degenerative diseases. Moreover, the inflammatome signature is highly enriched for 

immune response-related genes tested causal for adiposity, adipokine, diabetes, aortic lesion, 

bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome. 

Integration of this inflammatome signature and gene regulatory networks reconstructed 

based on multiple independent mouse and human cohorts uncovered a set of key regulators, 

which appeared to be more biologically important than the non-drivers in terms of the 

impact on mutant phenotypes. At the conceptual level, the inflammasome is distinct to the 

inflammatome as illustrated in Fig. 2. However, both substantially overlap with the innate 

immunity genes87 (the statistical test result of the intersection of the three sets by 

SuperExactTest, P=2.74E-33). Further, whether such inflammation core gene sets are 

overlapped with infectious disease and complex disease signatures has been examined. For 

influenza virus related signatures, two gene sets were generated, one from a combined 

RNAi-screening data from six studies on host-factors required by the influenza virus for 

replication (I1)78, and a consensus response of 487 (I2, 73 up- and 414 down-regulated) 

genes inferred by an in-house integration of gene-expression profiles (GSE19392, 

GSE28166, GSE31524, GSE33142, GSE36555, GSE37571, GSE37951, GSE40844). Fig.3 
illustrates interested intersections among the GWAS gene sets of the six common complex 

diseases (OB, T2DM, CHD, PD, AD, CA)88, the inflammatory gene signatures (the innate 

immunity and the inflammatome gene sets), and the two influenza signatures. Of 
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particularly interest, the I2 signature is significantly over lapped with the Inflammtome and 

Innate Immunity sets (P=5.40E-05) involving eleven overlapped genes, ABCA1, CCL5, 

CTSB, CXCL10, GRN, IFITM2, IFITM3, MYH9, OAS1, OAS2, and PRKCA. Moreover, 

three genes, AIG1, B2M, C21orf33 have been observed in the intersection of the 

inflammtome, I1 and I2 (P=4.10E-3). Intriguingly, the CDKN2A gene is the element of 

innate immunity, CA, T2DM, as well as CHD. Eight genes, NR, BMP4, SLC41A1, HLA, 
CNNM2, C10orf32, CYP17A1, and SFXN2, consist of the intersection of CA and PD 

GWAS sets (P=7.27E-05). Meanwhile, there are fourteen genes, including ADSS, BCAS3, 

SLC8A1, CNTNAP2, TTLL7, RFC3, CSMD1, GPC6, HECW1, LIPC, MYO16, 

PLEKHG1, DYNC1I1, and SLCO3A1, overlapped between AD and OB(P=1.51E-05). 

These data suggest the instrumental role of inflammation in the molecular and genetic 

pathogenesis of complex diseases connected by the inflammatome. Further, Fig. 4 shows a 

core gene causal network conserved across tissues and species and its key drivers. Highly 

consistent driver genes such as HCK, CD53 and TYROBP have been found being involved 

in many inflammation-related disorders. The discovery of the data-driven “inflammatome” 

gene signature and its corresponding regulatory networks provide a general framework to 

not only study the common mechanisms underlying complex chronic diseases but also 

identify key intervention points as therapeutic targets.

 Molecular and genetic inflammation networks underlying complex 

metabolic diseases

In the context of metabolic disorders, inflammation is considered to be primarily induced by 

nutritional or metabolic perturbations and is of low-grade and chronic nature, in contrast to 

the strong and short-term classic inflammatory response associated with injury and 

infection. The metabolism-induced inflammation is attributable to the tight connection and 

coevolution between metabolism and immune systems, two fundamental and conserved 

mechanisms to ensure survival 36. When the delicate balance between the two processes is 

disrupted by nutrient overAD, as in the typical case of long-term consumption of high fat 

high fructose diet in the modern society, inflammatory processes enter the stage via 

mechanisms that are shared between nutrient sensing and the immune system in central 

metabolic tissues like white adipose tissue (WAT) and liver. Although conventionally 

perceived as an energy and fat storage tissue, WAT is also tightly connected to the immune 

system due to its ability to secrete adipokines with pro- or anti-inflammatory properties 89, 

presence of resident T cells regulating metabolic and inflammatory response 90,91, and 

accumulation of macrophage upon adipocyte expansion92.

In order to better understand the mechanisms of molecular processes involved in the onset of 

inflammation and the downstream events, major research efforts have been focused on 

investigating individual inflammatory mediators and their respective signaling pathways 

using classic molecular biology techniques. Such studies have provided strong evidence 

supporting the causal roles of cytokines, chemokines, and receptors such as tumor-necrosis 

factor alpha (TNF-α), interleukin 6 (IL6), interleukin 18 (IL18), and toll-like receptors 

(TLRs) in mediating metabolic cues such as lipid overAD in the WAT. The detailed 

inflammatory signaling cascades involved have been well illustrated and documented 36. 
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However, the complexity of metabolic disorders that involve multiple organ systems, tissue 

types, and multiple molecular pathways demand a systems view of how inflammation 

interplays with other processes throughout the organism to induce disease onset. In this 

section, we review the recent attempts to obtain such comprehensive views using integrative 

and systems biology approaches that involve objective screening of tissue-specific, genome-

scale molecular information.

 Obesity

Obesity reflects increased adiposity, primarily visceral WAT, in the body. A large number of 

animal and epidemiological studies have consistently revealed low-grade chronic and 

systemic inflammation as a major characteristic of obesity93. However, the extent of 

inflammatory signals in individual obesity-related tissues was poorly evaluated. In a genetic 

and genomic study of an extreme obese population comprising ~1000 individuals who 

underwent gastric bypass surgery, Greenawalt et al. systematically investigated the genetics 

of gene expression, gene-disease correlations, and the gene regulatory network structures in 

four individual tissues including liver, omental adipose tissue, subcutaneous adipose tissue, 

and stomach94. They found that genes correlated with multiple obesity traits such as BMI 

and leptin levels in liver, omental adipose tissue, and subcutaneous adipose tissue were 

significantly enriched for inflammatory signals including macrophage- and spleen-related 

inflammatory genes, immunoglobulins, and genes involved in B-cell and antibody mediated 

immunity. Based on a weighted gene coexpression network analysis, they also identified 

coexpression modules from liver and subcutaneous adipose tissues that were highly 

correlated with obesity traits. Similarly, these modules were primarily enriched for immune 

and inflammatory response genes. This systems genetic study objectively uncovered 

inflammation in liver and WAT (but not in stomach) as the central player in obesity through 

large-scale systems screening. However, the causal nature of inflammatory was not clear 

through these correlative analyses.

To tackle the causal versus reactive nature of inflammation, Kwon et al. conducted a time-

course with 8 time points over 24 weeks to assess changes in adipocyte morphology, 

adipokines and transcriptome in visceral WAT from four depots (epidydimal, perirenal, 

retroperitoneum, mesentery) during the course of high fat diet-induced obesity95. Through 

gene expression microarray analysis, they identified early and sustained activation of the 

immune response and inflammatory genes including multiple TLRs, Irf5 and Cd14 that are 

involved in metabolism-induced inflammatory signaling and their downstream pro-

inflammatory cytokines such as Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, and chemokine (C-C 

motif) ligand genes. These changes were mainly observed in epididymal and mesenteric 

depots and preceded morphological onset of obesity. The early activation of TLR-mediated 

inflammatory signaling cascades revealed from this time course study convincingly placed 

inflammation in visceral WAT into the causal position. Using a similar time course design, 

Oh et al. combined liver gene expression profiles with gene network analysis to identify 

gene networks and key regulators (hubs) of high-fat diet induced obesity and liver non-

alcoholic steatohepatitis. A network associated with inflammatory response was among the 

five core networks uncovered; Tlr2, Cd14, and Ccnd1 were found to be the central regulators 

of this network and these genes appear to interact through the ErbB/insulin signaling 
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pathway. Taken together, these new systems-level genomic studies clearly and consistently 

confirm the central causal role of inflammation in WAT and liver in inducing obesity.

 T2 Diabetes Mellitus

T2DM is often associated with obesity as a consequence of overnutrition with or without 

genetic susceptibility. Impaired insulin signaling, or insulin resistance, usually follows 

obesity onset and precedes T2DM. Evidence has been converging on inflammation as a 

primary cause for insulin resistance as well as for pancreatic islet β-cell deterioration and 

failure, two key events leading to T2DM. Considering the critical role of inflammatory in 

obesity as discussed above, it is intuitive to understand why obesity is a risk factor for 

T2DM. Through analysis of key tissues involved in insulin resistance and insulin secretion – 

adipose, liver, islet and muscle, Imai et al. recently discovered that hormone and cytokine 

production by adipose tissue and infiltration of immune cells such as macrophages in liver, 

adipose, and islet (but not in muscle) are partially responsible for impaired insulin signaling 

and bβ-cell failure in T2DM 96,97.

Recent systems studies have uncovered many inflammatory genes as playing causal roles in 

T2DM development and highlight the key role of adipose tissue inflammation in T2DM 

development. In a series of studies, Butte and colleagues conducted systematic analysis of 

gene expression datasets across 130 independent experiments that included a total of 1,175 

T2DM case-control microarrays, they identified CD44, encoding a T cell-related cell 

adhesion molecule, as the top differentially expressed gene across studies and 

experimentally confirmed its role in modulating adipose tissue inflammation, insulin 

sensitivity, and glycemic control98. In an integrative analysis involving T2DM GWAS, 

genetic of gene expression in liver and adipose tissues, and biological pathways, Zhong et al 

identified complement and coagulation, and antigen processing and presentation as key 

pathways contributing to T2DM pathogenesis99. Recently, Mori et al. conducted an 

extensive comparison between two mouse strains with different susceptibility to T2DM. 

They integrated metabolic characterization, gene expression, protein-protein interaction 

networks, and other analyses of adipose, skeletal muscle, and liver tissue of the two mouse 

strains at two different time points, and identified an inflammation- and immune system-

related adipose subnetwork that predicts and contributes to the differences in T2DM risk100. 

Particularly, increases in T-cell related molecules such as SDF1α, CCL5/RANTES, IFNγ 

and CD80 are accompanied by T-cell and macrophage infiltration in adipose tissue. In 

another study, Gao et al. screened six tissues of two strains of mice at two obesity status and 

two ages. Again inflammatory pathways especially the T cell receptor signaling pathway, 

autoimmune processes, and focal adhesion were predominant in adipose tissue in T2DM, 

whereas metabolic pathways are more prominent in other tissues (e.g., glycolysis/

gluconeogenesis in liver and insulin signaling in muscle) 101.

 Coronary Heart Disease

The role of inflammation in coronary heart disease (CHD) was first captured by C-reactive 

protein (CRP), an acute phase protein released from liver and adipose tissues and a strong 

indicator of coronary heart disease risk 102. Through studies of coronary heart disease, a 

condition characterized by the hardening and narrowing of arteries that is the key feature to 
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coronary heart disease development, increasing evidence supports an important role for 

inflammation in all phases of coronary heart disease, from initiation of the fatty streak to 

final culmination in acute coronary syndromes 103. Numerous inflammatory biomarkers 

including cell adhesion molecules, cytokines, chemokines, and acute-phase reactants such as 

fibrinogen, serum amyloid A, and CRP have been shown to predict coronary heart disease 

events. TLRs, pattern recognition receptors and members of the innate immune system, 

contribute to inflammation and appear to play key roles in coronary heart disease. Similar to 

obesity and T2DM discussed above, coronary heart disease and coronary heart disease are 

also highly complex and involve the interactions among diverse biological processes in 

various tissues and organs. In the past few years, systems biology and integrative genomics 

approaches that aim to provide a comprehensive view of molecular mechanisms 

underpinning coronary heart disease have again highlighted inflammation as a key causal 

mechanism that tightly interact with lipid metabolism 104,105.

In a study involving more than 300 F2 mice derived from a cross between the strains 

C3H/HeJ and C57BL/6J on a hyperlipidemic apolipoprotein E-null background, Wang et al. 

conducted a genetical genomic analysis of coronary heart disease, aiming to objectively 

identify genetic loci and tissue-specific biological processes contributing to coronary heart 

disease. By correlating DNA genotyping with coronary heart disease traits, they identified 

10 quantitative trait loci for lesion size; by performing expression analysis for 23,574 

transcripts of the livers and adipose tissues, they identified genetic loci regulating gene 

expression and genes correlated with atherosclerotic lesion development. Genes involved in 

cholesterol metabolism, mitochondrial oxidative phosphorylation, and inflammation was 

found to be highly over-represented among the lesion-correlated genes106. Taking one step 

further to go beyond correlation into causation, Yang et al. employed a likelihood-based 

causality test 107 to identify causal genes for atherosclerotic lesions108. A total of 292 causal 

genes were identified from liver and adipose tissues and these genes were highly enriched 

for inflammatory genes involved in lymphocyte activation and B cell receptor signaling108. 

Validation experiments in two plaque progression mouse models, in a knockout mouse 

model of C3ar1 (a gene involved in complementation), and via cross-checking with human 

genome-wide association studies (GWAS) confirmed the causal nature of these genes.

Similar systems analyses have been conducted in human populations and inflammation 

related processes were consistently pinpointed as the causal factors of coronary heart 

disease. For instance, Huan et al. carried out an integrative analysis using whole blood gene 

expression profiling data obtained from 188 pairs of coronary heart disease case-control 

individuals in the Framingham Heart Study109. Although few differentially expressed genes 

between cases and controls were identified, gene coexpression network analysis revealed a 

network module comprising genes involved in B cell activation to be highly coexpressed in 

controls but disrupted in coronary heart disease cases. This module was further 

demonstrated to be enriched for genes whose functional genetic variants exhibit association 

with coronary heart disease in the GWAS from the CARDIoGRAM consortium110, thus 

supporting a causal role in coronary heart disease. In two parallel studies of a Finnish cohort 

with ~500 individuals111, Inouye et al. integrated blood transcriptomic, metabolomics, and 

genetic data and constructed gene co-expression networks to capture the molecular 

interactions. They linked network modules to >80 blood metabolites that are relevant to 
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coronary heart disease, such as lipoprotein subclasses and lipids111. A lipid-leukocyte 

module comprising primarily inflammatory genes was highly associated with and largely 

reactive to blood metabolites, and was genetically linked to variants controlling serum 

immunoglobulin IgE levels. The authors postulate that this immune response module is a 

key mediator that senses metabolite variations and then translates metabolic signals into 

inflammatory signals, which in turn contribute to atherogenesis. In one recent 

comprehensive investigation of the genetically perturbed molecular mechanisms of coronary 

heart disease, we systematically integrated diverse types of genomic data including genetic 

associations from GWAS, tissue-specific genetic regulation of gene expression, biological 

pathways, and tissue-specific gene regulatory networks. As a result we identified tens of 

molecular pathways, both known and novel, to be involved in coronary heart disease 

development112. Multiple immune/inflammation related pathways such as 

immunoregulation, antigen processing and presentation, Th1/Th2 differentiation, and 

adhesion and diapesis of lymphocytes are among the top signals. Furthermore, this study 

identified tens of potential key regulators of the significant processes using data-driven 

approaches including PTPRC, NCKAP1L, FCGR1A, FYB, andFCER1G for the 

inflammation gene network and VPS52, PPIL1, GLO1, GFER, and DECR2 for the antigen-

related gene network. These systems studies in both human and mouse revealed tissue-

specific causal genes and unanimously pointed to the central role of inflammation in 

coronary heart disease.

As discussed above, when analyzing individual metabolic disorders separately, inflammation 

emerges as a causal mechanism shared among these diseases. The conclusion remains true 

when these diseases are assessed together. In fact, in two seminal systems biology studies, 

one focusing on data generated from a mouse F2 cross and the other studying an Icelandic 

human population, Chen et al. and Emilsson et al. identified a co-expression network 

module that is conserved between liver and adipose tissues, conserved between human and 

mouse, highly enriched for macrophage- and spleen-related inflammatory genes, and linked 

to various metabolic phenotypes including adiposity, coronary heart disease, and plasma 

lipids, insulin and glucose levels, all essential traits of metabolic disorders 4,113. In our 

recent study, we analyzed 12 tissue-specific gene expression profiling data of eleven 

different mouse and rat disease models of metabolic disorders and other common diseases 

and identified a consistent inflammatome signature that are not only shared among all 

diseases but also demonstrate causal properties114. Therefore, inflammation serves as an 

attractive targeting point for therapeutics. In fact, recent attempts to alleviate metabolic 

diseases by targeting the inflammatory pathways have proven to be successful115,116. Kiechl 

et al. targeted RANKL, the receptor activator of NF-κB signaling and observed the 

preventative potential of the treatment for T2DM. In parallel, Reilly et al. used amlexanox, a 

drug approved for asthma and aphthous ulcers and an inhibitor of IkB kinases TBK1 and 

IKK-ε to treat obese mice and found overall improvement of metabolic profiles.
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 Molecular and genetic inflammation networks underlying 

neurodegenerative diseases

Complex neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease 

(PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) share 

common molecular pathological mechanistic networks involving misfolded proteins, 

especially those prion-like proteins. The aggregation, deposition and propagation of prion-

like proteins is tightly connected to immune response pathways 117. However, the types of 

aggregated proteins and affected neuron cells vary from disease to disease5,118-121. A line of 

Prion-like proteins such as α-synuclein, tau, TDP-43, FUS, and C9orf72, have been 

characterized, with the former two specific to PD and AD respectively while the latter three 

mainly involved in FTD and ALS120.

Blood-brain barrier (BBB) is critical to the brain's normal function. Accordingly, a 

compromise of BBB accompanies many neurologic disorders, and is tightly associated with 

brain inflammatory processes initiated by both infiltrating leukocytes from the blood, and 

activation of glial cells. Those inflammatory processes contribute to determining the severity 

and prognosis of numerous neurologic disorders, and can both cause, and result from BBB 

dysfunction122-127.

A pathological hallmark of AD, aggregation and deposition of amyloid-β peptides, has been 

recognized as a potent activator of microglia-mediated neuroinflammation and neuronal 

dysfunction. Autophagy is a major cellular pathway leading to the removal of aggregated 

proteins of amyloid-β (Aβ) peptides and tau protein. Autophagy not only reduces 

intracellular components to compensate for nutrient deprivation but also selectively 

eliminates organelles to regulate their number and maintain quality control128-130. 

Mitophagy, the specific autophagy elimination of mitochondria, has been identified in yeast, 

mediated by autophagy-related 32 (Atg32)and in mammals during red blood cell 

differentiation , mediated by NIP3-like protein X (NIX; also known as BNIP3L) 131-135. 

Moreover, mitophagy is regulated in many metazoan cell types by PARKIN and PTEN-

induced putative kinase protein (PINK1), and mutations in the gene encoding these proteins 

have been linked to forms of Parkinson's disease132,133,136. Neoechinulin A can significantly 

suppress the production of neurotoxic inflammatory mediator tumour necrosis factor-α 

(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and prostagladin E2 (PGE2) in 

activated BV-2 cells. Activated microglia-mediated apoptosis of PC-12 pheochromocytoma 

cells was significantly repressed by neoechinulin A137. The molecular mechanism studies 

suggested that neoechinulin A may block the phosphorylation of mitogen-activated protein 

kinase (MAPK) molecule p38, apoptosis signal-regulating kinase 1 (ASK-1) and nuclear 

translocation of nuclear factor-κB (NF-κB) p65 and p50 subunits.

Microglial cells constitute the first line of defense of the central nervous system (CNS) 

against microbial invasion. Pathogens are detected thanks to an array of innate immune 

receptors termed pattern recognition receptors (PRRs). PRRs have been thoroughly 

characterized in bone marrow-derived macrophages, but the PRRs repertoire and 

functionality in microglial cells remain largely unknown. Microglial cells express various 

Toll-like Receptors and the Nod1/2 receptors. Recently, a novel innate immune signalling 
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pathway, the inflammasome pathway has been uncovered. Inflammasome activation leads to 

caspase-1 activation, release of the proinflammatory cytokines, IL-1β and IL-18 and cell 

death in a process termed pyroptosis. One inflammasome receptor, NLRP3, has been 

characterized in microglial cells and associated with response to infections and in the 

initiation of neuro-degeneration in an Alzheimer's disease model, illustrating that microglial 

cells detect L. pneumophila infection in a flagellin-dependent manner leading to caspase-1-

mediated bacterial growth restriction, infected cell death and secretion of the 

proinflammatory cytokines IL-1β and IL18. Overall, these data demonstrate that microglial 

cells have a functional Naip5-NLRC4 inflammasome likely to be important to monitor and 

clear CNS infections by flagellated bacteria. A more complete inflammation response 

pathway has been proposed based on data-driven molecular networks9.

Autophagy, a fundamental eukaryotic pathway with multiple effects on immunity, can be 

induced by pattern recognition receptors and, through autophagic adaptors. Detailed 

mechanisms for the elimination of intracellular microorganisms involve controlling 

inflammation through regulatory interactions with innate immune signaling pathways, by 

removing endogenous inflammasome agonists and through effects on the secretion of 

immune mediators138.

Autophagy is an intracellular degradation process that clears long-lived proteins and 

organelles from the cytoplasm (28). It involves the formation of double-membraned 

structures called autophagosomes that can engulf portions of cytoplasm containing 

oligomeric protein complexes and organelles, such as mitochondria. Autophagosomes fuse 

with lysosomes and their contents then are degraded. Failure of autophagy in neurons can 

result in the accumulation of aggregate-prone proteins and neurodegeneration. 

Pharmacological induction of autophagy can enhance the clearance of intracytoplasmic 

aggregate-prone proteins, such as mutant forms of huntingtin, and ameliorate pathology in 

cell and animal models of neurodegenerative diseases. The ways in which dysfunctions at 

multiple stages in the autophagic pathways contribute to numerous neurological disorders 

are highlighted through the use of examples of Mendelian and complex conditions, 

including Alzheimer disease, Parkinson disease and forms of motor neuron disease. The 

different ways in which autophagic pathways might be manipulated for the therapeutic 

benefit of patients with neurodegenerative disorders are also considered. As mitochondrial 

dysfunction is a common observation in these and other neurodegenerative diseases, the 

available data on AD and PD can be incorporated into a single integrated paradigm based on 

mitochondrial genetics and pathophysiology. Rare chromosomal cases of AD and PD can be 

interpreted as affecting mitochondrial function, quality control, and mitochondrial DNA 

(mtDNA) integrity. mtDNA lineages, haplogroups, such haplogroup H5a which harbors the 

mtDNA tRNA(Gln) A8336G variant, are important risk factors for AD and PD. Somatic 

mtDNA mutations are elevated in AD, PD, and Down Syndrome and Dementia (DSAD) 

both in brains and also systemically. AD, DS, and DSAD brains also have reduced mtDNA 

ND6 mRNA levels, altered mtDNA copy number, and perturbed Abeta metabolism. 

Classical AD genetic changes incorporated into the 3XTg-AD (APP, Tau, PS1) mouse result 

in reduced forebrain size, life-long reduced mitochondrial respiration in 3XTg-AD males, 

and initially elevated respiration and complex I and IV activities in 3XTg-AD females which 
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markedly declines with age. Mitochondrial dysfunction provides a unifying genetic and 

pathophysiology explanation for AD, PD, and other neurodegenerative diseases.

 Key molecular pathways and modules in neurodegenerative diseases are typically pro-
inflammatory

Recent advent highlighted the key role of over-activated NALP3 inflammasome linking 

IL-1β and IL-18 pathways in the molecular pathophysiology of Alzheimer's disease139. 

Deposition of Aβ peptide drives cerebral neuroinflammation by activating microglia. Indeed, 

Aβ activation of the NLRP3 inflammasome in microglia is fundamental for interleukin-1β 

maturation and subsequent inflammatory events. They demonstrated strongly enhanced 

active caspase-1 expression in human mild cognitive impairment and brains with 

Alzheimer's disease, suggesting a role for the inflammasome in this neurodegenerative 

disease. Nlrp3−/− or Casp1−/− mice carrying mutations associated with familial Alzheimer's 

disease were largely protected from loss of spatial memory and other sequelae associated 

with Alzheimer's disease, and demonstrated reduced brain caspase-1 and interleukin-1β 

activation as well as enhanced amyloid-β clearance. Furthermore, NLRP3 inflammasome 

deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased 

deposition of amyloid-β in the APP/PS1 model of Alzheimer's disease. These results show 

an important role for the NLRP3/caspase-1 axis in the pathogenesis of Alzheimer's disease, 

and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention 

for the disease.

While dysregulated CD36/TLR4-6 innate immune pathway related to endoplasmic reticulum 

(ER) stress are crucial to common inflammatory disease, it has been underscored that CD36/

TLR4-6 are tightly connected to AD disease pathology92,140-147. Particulate ligands, 

including cholesterol crystals and amyloid fibrils, induce production of interleukin 1β 

dependent on the cytoplasmic sensor NLRP3 in coronary heart disease, AD and diabetes. 

Soluble endogenous ligands, including oxidized low-density lipoprotein (LDL), amyloid-

beta and amylin peptides, accumulate in such diseases. Here we identify an endocytic 

pathway mediated by the pattern-recognition receptor CD36 that coordinated the 

intracellular conversion of those soluble ligands into crystals or fibrils, which resulted in 

lysosomal disruption and activation of the NLRP3 inflammasome. Consequently, 

macrophages that lacked CD36 failed to elicit IL-1beta production in response to those 

ligands, and targeting CD36 in atherosclerotic mice resulted in lower serum concentrations 

of IL-1β and accumulation of cholesterol crystals in plaques. The importance of CD36 in the 

accrual and nucleation of NLRP3 ligands from within the macrophage and position CD36 as 

a central regulator of inflammasome activation in sterile inflammation has been underscored. 

Phagocytosis controls CNS homeostasis by facilitating the removal of unwanted cellular 

debris. Accordingly, impairments in different receptors or proteins involved in phagocytosis 

result in enhanced inflammation and neurodegeneration. They show that the autophagy 

protein beclin 1 is required for efficient phagocytosis in vitro and in mouse brains; beclin 1-

mediated impairments in phagocytosis are associated with dysfunctional recruitment of 

retromer to phagosomal membranes, reduced retromer levels, and impaired recycling of 

phagocytic receptors CD36 and Trem2. Interestingly, in the study, microglia isolated from 

human AD brains show significantly reduced beclin 1 and retromer protein levels. These 
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findings position beclin 1 as a link between autophagy, retromer trafficking, and receptor-

mediated phagocytosis and provide insight into mechanisms by which phagocytosis is 

regulated and how it may become impaired in AD. The mechanisms linking Aβ to NADPH 

oxidase-dependent vascular oxidative stress have not been identified, however. The 

scavenger receptor CD36, a membrane glycoprotein that binds Aβ, is essential for the 

vascular oxidative stress and neurovascular dysfunction induced by Aβ1-40. Thus, topical 

application of Aβ1-40 onto the somatosensory cortex attenuates the increase in cerebral 

blood flow elicited by neural activity or by endothelium-dependent vasodilators in WT mice 

but not in CD36-null mice (CD36(0/0)). The cerebrovascular effects of infusion of Aβ1-40 

into cerebral arteries are not observed in mice pretreated with CD36 blocking antibodies or 

in CD36 (null/null) mice. Meanwhile, CD36 deficiency prevents the neurovascular 

dysfunction observed in transgenic mice overexpressing the Swedish mutation of the 

amyloid precursor protein Tg2576 despite elevated levels of brain Aβ1-40. Thus, CD36 is 

also required for the vascular oxidative stress induced by exogenous Aβ1-40 or observed in 

Tg2576 mice. These observations have established CD36 as a key link between Aβ1-40 and 

the NADPH oxidase-dependent vascular oxidative stress underlying the neurovascular 

dysfunction and suggest that CD36 is a potential therapeutic target to counteract the 

cerebrovascular dysfunction associated with Aβ.

The mixed results from anti-inflammatory drugs for ameliorating AD or amyotrophic lateral 

sclerosis may suggest both local cytotoxic inflammation and protective systemic immune 

response occurs in these disease conditions148. Very recently, a new study offered evidence 

that PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse 

models of AD149. It appears that both systemic and local inflammation plays double-sword 

roles. Taken together, these results highlight the importance of complex immune responses 

both locally and systemically during of the progression of neurodegenerative diseases. To 

dissect the complexity of local and systemic immune responses in the initiation and 

development of complex diseases, systems immunology approaches need be adopted by 

leveraging multiscale network biology schemata and technologies.

 Molecular and genetic inflammation networks underlying cancer

There is an emerging consensus that inflammation and cancer are tightly coupled together 

and mutually causal throughout all carcinoma progression stages spanning from normal 

epithelium, carcinoma in situ, local invasion, to distant metastasis150. Due to the 

complexities of cancer and inflammation, more explicit mechanisms remain elusive. Albeit 

solid epidemiological data revealed on the efficacy of anti-inflammatory drug, such as 

salicylate including aspirin, to preventing cancer151-157, the arising precision medicine 

requires nuanced rational upon pinpointing in-depth mechanistic connections between 

inflammation and cancer 158,159, rather than completely depending on clinical cohort 

studies. In this section, we seek to underscore key principles that govern the functional links 

between inflammation and cancer. This holistic view via molecular networks is intended to 

convey systems molecular pathophysiology insights by highlighting crucial interplays 

between key modules of inflammation and cancer networks 12,160.
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Cancer as a complex disease has been gaining more attentions as a malignant system rather 

than a bag of evil tumor cells solely, leading to substantial emphasis on tumor evolution 

micro-environment161,162. Such a malignant system is essentially consisted of active innate 

and adaptive immune cells which can promote or suppress cancer cell growth, thereby 

coupling cancer and inflammation together tightly37,150,159,163-167. This cellular 

composition heterogeneity appears to be underpinned by genetically and biochemically 

sophisticated molecular networks. Naturally it has been reaching agreement that tumor is 

generally heterogeneous at all levels168-172. These types of complex and heterogeneous 

systems generally result from a multistep development involving newly acquired cellular 

phenotypes, such as sustaining proliferative signaling, evading growth suppressors, resisting 

cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion 

and metastasis173,174. Moreover, two fundamental cancer hallmarks recently highlighted, 

reprogramming of energy metabolism and evading immune destructions, are thought to 

crucial to drive cancer173,174. All of these cellular phenotypes are connected to molecular 

inflammation. Indeed, at the molecular level, both the extrinsic inflammation and the 

intrinsic oncogene activation can lead to activation of pivotal transcription factors, such as 

NF-κ B, STAT3, and HIF1α in tumor cells as well, resulting in the secretion of chemokines, 

cytokines, and prostaglandins 37. These secreted factors further enable recruiting a variety of 

inflammatory cells, including macrophages, mast cells, neutrophils, eosinophil, as well as 

myeloid-derived suppressor cells. Intriguingly, these recruited cells, especially 

macrophages174, have their essential function producing growth factors, chemokines, 

adhesion molecules, as well proteases. Thus, intercellular positive feedback loops can be 

formed, supporting the mutual causality between inflammation and cancer. Furthermore, 

these secreted macromolecules have been shown actively participating in cancer progression 

via a set of complex mechanisms, including promoting cancerous cells transformation, 

carcinoma in situ formation, local invasion, cancer cell homing, as well as tumor 

angiogenesis 37. Apparently, such knowledge underpins the rational for anti-inflammatory 

intervening. Canonical reductionism wisdoms that have been deployed in uncovering crucial 

molecular pathways, such as integrin based cell signaling, metabolic switching controlled by 

AMPK and mTOR pathways, yet have been facing formidable challenges to dissect such 

complexities in terms of reaching a systematic fine-resolution. Therefore, systems biology 

approaches have been holding a great promise to detangle those sophisticated interplays 

between cancer and inflammation. Thus, how to pinpoint rate-limiting network modules has 

been emerging crucial to hold more promises in underpinning nuanced molecular 

mechanisms underlying cancer progression. Recent network biology advances have been 

further illuminating the power of filtering and integrating of large data sets in pinpointing 

key modules and driver genes, as well as novel anti-cancer potentials of classical anti-

inflammatory or anti-diabetes drugs.

There are many lines of compelling evidence indicating the connection between 

carcinogenesis and inflammation in mouse models175. Genetic architecture of mouse skin 

inflammation and tumor susceptibility has illuminated the crucial role of Lgr5 and Vdr in 

coordinated control of epidermal barrier function, inflammation, and tumor susceptibility176. 

Further expression quantitative traits locus (eQTL) analysis from the same research group 

further highlighted the critical role of tumor microenvironment, mitogen-activated protein, 
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kinase signaling, inflammation, and cancer susceptibility175. In ovarian cancer, network of 

inflammatory cytokine interactions appeared crucial to tumor progression162. Furthermore, 

in the prostate carcinogenesis, a hypothesis referred as proliferative inflammatory atrophy 

(PIA) has been proposed, with a specific emphasis on molecular mechanisms of 

inflammation-induced cancers165.

Recently, by exploiting twelve expression data sets profiled from nine distinct types of 

tissues in eleven rodent inflammatory disease models, an inflammatome gene signature has 

been found in which around 2,500 genes and 151 key drivers and the network architecture 

therein are crucial to progressions of eleven representative complex diseases including 

asthma, emphysema, pulmonary fibrosis, lipopolysaccharide (LPS) induced sepsis, 

neuropathic pain, coronary heart disease, stroke, obesity, diabetes, and age-related 

sarcopenia 12. Intriguingly, two most consensus drug targets are Ppara and Prkaa, both of 

which are pivotal during cancer progression12. AMPK encoded by Prkaa in mouse, has been 

demonstrated as a key kinase regulating metabolism and information flux, especially on 

cancer and inflammatory cells metabolism switching (Warberg effect) 159, as well as linking 

epigenetic modification 164. Such efforts offer an opportunity to infer and rank key driver 

modules and genes that underlie the awry cancer genetic architectures Nonetheless, both 

cancer and inflammatory are driven by highly dynamic signaling networks, shared by key 

network attractors 177. This raises a grand challenge to disclose the in-depth fine-resolution 

mapping of the molecular pathophysiology links between inflammation and cancer. 

Diagnostic or prognostic biomarker and lead compounds discover, as well as novel 

druggable targets ranking, have been practically adapted to next generation technologies by 

utilizing large data sets. Epigenetic modification may play key roles in bridging a variety of 

inflammation and cancer mechanistic links. For the long run, it will be exceptionally 

interesting on how to integrate those emerging large data sets (for example, the one million 

cancer genome warehouse) guided by explicit biomedical hypothesis and how to uncover 

sophisticated mechanisms linking information metabolism and metabolite influx by 

borrowing conceptual innovations from those arising mathematical framework on network 

properties, including stability 178,179, resilience 180, as well as dynamics 181,182. In light of 

network biology, more exciting molecular pathophysiology mechanisms that underlie the 

inflammation-cancer axis have been emerging, thereby favoring the arising of next 

generation precise medicine upon complex diseases.

 Immune Repertoire Sequencing

Recent advancement in massively parallel or next-generation sequencing (NGS) technology 

has revolutionized the way to conduct biological and medical research183184185. Among the 

active inflammation-related research fields which benefit from these high-throughput 

sequencing platforms are metagenomic analysis of microbial flora and immune repertoire 

sequencing (Rep-seq)186187188. Many excellent reviews about impacts of microbiome on 

health and disease have been published the past few years189-192. This section will focus 

only on applying Rep-seq in addressing key inflammation-related issues.

The adaptive immune responses mediated by B and T lymphocytes are keys to host defense 

against microbial pathogens and transformed cells or cancers. B cell receptor 
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(immunoglobulin) and T cell receptor are encoded by multiple V (variable), D (diversity) 

and J (Joining) gene segments. The enormous diversity of the immune repertoire required 

for providing protection is generated via a somatic rearrangement of the germline V, D, J 

genes and addition or deletion of nucleotides at the junctional regions during lymphocyte 

development. Traditional Sanger sequencing can at most sequence hundreds of immune 

receptors at a time and it is only when NGS technology become available that a 

comprehensive analysis of the immune repertoire can be achieved193. In oncology area, due 

to the aberrant oligoclonal expansion of T/B lymphocytes in hematological malignancies, 

Rep-seq has been applied to monitor disease progression and response to therapy in 

lymphoma/leukemia194195 and demonstrated better sensitivities in detecting minimal 

residual disease (MRD) than more traditional flow cytometry-based methods196,195. For a 

separate application, a strong correlation has been established between tumor-infiltrating T 

lymphocytes (TILs) and increased survival in multiple cancer types but the current anti-CD3 

immunohistochemistry (IHC) assay to identify TILs is suboptimal in terms of 

interpretability and quantifiability. By using multiple PCR primer sets targeting all 

functional TCR V segments, Robins et al. 197 introduced a Rep-seq based digital DNA assay 

to count and assess TILs and their clonalities in tumor tissues and were able to confirm, in 

ovarian cancer, an positive association between TIL counts and survival. They also made an 

observation that TIL repertoire is diverse with no obvious oligoclonal expansions. When the 

same approach was employed to examine lesions in cervical intraepithelial neoplasias 

caused by human papillomavirus (HPV16), it was found that intensity of CD8+ TILs 

increased significantly in patients receiving a therapeutic vaccine targeting HPV antigens 

and unlike the situation in untreated TILs 197 in other tumors, these CD8+ TILs showed 

clonal expansions, presumably as a result of recognizing cognate antigens 198.

It has been suggested that during CMV infection, T cell diversity rather than abundance 

could be more important in conferring protection to pathogen infection. In fact, CD8+ T cell 

diversity but not the size of CD8+ T cell response, was negatively correlated to CMV-

specific antibody titers in the infected human subjects106. In this case, high anti-CMV 

antibody levels (and therefore low T cell repertoire diversity) were found to be associated 

with increased viral ADs and mortality risks. Patients suffered from septic shock were also 

reported to have a lower T cell repertoire diversity which was predictive of higher mortality 

rate and the development of nosocomial infections199. Combining transcriptional profiling 

and Rep-seq on genital skin and mucosal tissues at the neuronal release sites acquired by 

laser capture micro-dissection (LCM), it was shown that CD8+ T cells play a key immune 

surveillance role in responding to herpes simplex virus 2 (HSV-2) infections and express 

diversified TCR-V region genes with dominant clonotypes overlapping multiple infection 

episodes over extended period of time108.

B cell response to vaccination is critical in providing protective immunity but detailed 

analysis of molecular nature of antibodies present in serum after vaccination remains 

lacking. Lavinder et al. applied high resolution MS proteomic and Rep-seq analysis 

following tetanus toxoid booster vaccination and detected ~100 antibody clonotypes with 3 

constitutes more than 40% of all antibodies. The results also suggested that a small 

proportion of peripheral blood plasmablasts at day 7 post-vaccination and an even smaller 

proportion of memory B cells encode antigen-specific antibodies 9 months later200. Recent 
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published reports indicated that people 65 years or older have significantly lower antibody 

titers and repertoire diversity than younger population in response to pneumococcal 201 and 

influenza vaccines202. Although IgG is the most prevalent antibody isotype in serum and is 

most often correlated to vaccine protection, it is IgA, and to a lesser extent IgM, that show 

the most significant age-dependent titer decrease in the elderly post-vaccination; the 

significance of this observation is yet to be further explored195. It is interesting to note that 

inclusion of a Toll-like receptor (TLR) agonist (as an adjuvant therapy) in a malaria vaccine 

formulation not only increased the antibody diversity but also improved antigen 

neutralization203.

Another large scale analysis has been conducted within the ImmVar project, where the 

impact of genetic variation on the ability of the immune system to protect against pathogen 

has been studied204. Although not by complete genome sequencing but by genotyping, the 

population variation of a cohort of 600 healthy individuals have been assessed and mapped 

to transcriptional responses of peripheral blood mononuclear cells (PBMCs). Transcriptional 

baseline as well as response against IFNβ, influenza virus and lipopolysaccharide (LPS) 

have been analysed. A number of SNPs are cis-eQTLs that are associated with the 

expression of genes encoding regulators, i.e. transcription factors (TFs), in pathways that 

were stimulated. Of these, rs2805435 was the most significant, associating with the 

expression of the master antiviral TF IRF7 in cis only after influenza, IFNβ, or LPS 

stimulation. Seven more genes were associated with this SNP in trans (IFNA4, IFNA5, 
IFNA10, IFNA13, IFNA17, IFNA21, NM1)205.

Perhaps the most advanced and productive immune repertoire analysis was conducted in 

studying the HIV broad neutralizing antibodies206. Combining B cell cloning, antibody 

isolation, B cell Rep-seq, structural analysis and viral genome sequencing, broad 

neutralizing antibodies (BnAbs) defined as cross-reactive antibodies capable of neutralizing 

the majority of HIV-1 strains which are generated in ~20% of HIV patients 2-3 years post-

infection) targeting HIV gp120 207 and V1V2 region of the HIV-1 envelope206 were 

identified and characterized in details. These antibodies contain long complementarity-

determining region 3 (CDR3) and are hyper-mutated. Longitudinal sequencing of BnAbs 

(and their unmutated ancestors) and viral genomes suggested a co-evolutional relationship 

started with a diversified viral population followed by antibody affinity maturation. These 

findings would not have been made without the availability of NGS technology and could be 

integrated into future HIV vaccine development. However, immune repertoire analysis is 

still at its infancy and will require more collaboration among researchers to share best 

practice and to standardize experimental protocols so results obtained from different labs can 

be compared and analyzed together.

 Computational Approaches for Modeling Inflammation and Immune 

Response

Computational approaches have been long developed to model inflammation and 

immunology so as to derive a holistic understanding of immune systems. Seminal studies of 

dynamic models of immune systems by Perelson et al.208, DeBoer et al.209 and Nowak and 
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May210 were based on differential equations. Early network models of host-pathogen 

systems utilized pre-existing knowledge of metabolic pathways. For example, the tryptophan 

biosynthesis pathway was investigated in the case of Chlamydia infection 211. Metabolic 

network databases such as KEGG212, MetaCyc213 or WIT214, were used in tandem with the 

comparative analysis of metabolic networks215 to identify the interdependence and 

connectivity between the pathogen and the host that helped to explain the development of 

the chronic disease caused by the pathogen.

Early predictive multi-scale models have been conducted by Stokes and coworkers at the 

same time. Using the Entelos PhysioLab framework for simulating disease physiology, 

Stokes et al. developed a computation model of asthma216, by combining organ level 

physiological responses with biological pathways and molecular networks. Different steady 

states of this disease, such as chronic asthma including chronic eosinophilic inflammation, 

chronic airway obstruction, airway hyper-responsiveness and elevated IgE levels, can be 

induced in the model. These in silico asthmatic models respond as expected to various drugs, 

such as β2-agonists, glucocorticoids and leukotriene antagonists.

The Ingenuity Pathway Analyzer (IPA) is another commercial tool. It has been successfully 

applied to the network based analysis of systemic inflammation in humans. As discussed in 

the metabolic network based approach, such an approach requires pre-existing knowledge of 

pathways and interactions for network analysis. Identified targets where superimposed with 

network information from the Ingenuity knowledge base. Pathways of highly interconnected 

genes were identified by statistical likelihood calculation217.

Complementary to these model based computational approaches that rely on a priori 

knowledge are de novo network construction methods. A well-established approach in this 

direction is weighted gene co-expression networks (WGCNA)218. The method is based on 

gene-gene correlation using soft-thresholding (weighted) similarity measures to define a co-

expression similarity between genes. Coexpressed gene modules are identified by average 

linkage hierarchical clustering of a topological overlap matrix of the transformed 

coexpression similarity matrix. A recent application of WGCNA showed that inflammatory 

response triggered downregulation of a gene (ADAR2) leading to a decrease in mRNA 

editing of serotonin receptor after spinal cord injury (SCI), which further contributes to a 

post-SCI spasticity219. However, WGCNA enforces the connectivity to exhibit a power-law 

distribution and it doesn't explicitly define more intuitive unweighted coexpression 

networks. To address these issues, Multiscale embedded Gene co-Expression Network 

Analysis (MEGENA)220, an advanced version of Planar Filtered Network Analysis 

(PFNA)221,222, have been developed. MEGENA first employs network embedding technique 

on topological sphere to construct unweighted coexpresion network and then identifies 

multi-scale organizations of coherently co-expressed modules of genes220. MEGENA shows 

superior performance over many existing coexpression network analysis approaches. 

MEGENA revealed a group of multiscale immune response modules that are associated with 

breast cancer220.

For experiments under multiple conditions such as studying gene expression response at 

multiple time points in infectious diseases, cMonkey, which performs biclustering of co-
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regulated genes together with observed experimental conditions223, would be a more 

suitable tool. In cMonkey, each bicluster is modeled via an iterative Markov chain Monte 

Carlo process. The method uses simulated annealing to add genes or conditions to the 

bicluster with high probability of membership and drops genes or conditions from the 

bicluster with low probability of membership. cMonkey has been discussed in an review on 

Systems Biology of Innate Immunity, by Zak and Aderem224.

While the above coexpression network analysis approaches can reveal biologically 

meaningful clustering structures, they are not capable of determining causal relationships 

between genes, which is critical for identification of key causal regulators. Bayesian network 

inference is a natural framework for integrating high throughput multi-omics data as well as 

a priori information into probabilistic causal networks. Integration of large genetic and gene 

expression data has systematically revealed novel causal relationships among genes and key 

causal regulators in complex human diseases such as diabetes and obesity4,107,113,225, 

Alzheimer's disease226. Given the high complexity of Bayesian network construction, an 

emerging trend is to integrate both coexpression and causal networks by performing causal 

network inference on coexpressed gene modules227.

 Summary

Tremendous progresses have been made in exploring the roles of inflammation response in 

complex human diseases in the past two hundred years but only in the last 40 years we are 

able to pinpoint particular specific mechanisms at the molecular level thanks to the 

emergence of genomics. We curated a table (supplement Table S1), in which gene symbol, 

name, function accession including OMIM and COSMIC gene name, as well as relevant 

drugs from a variety of data setting, were cataloged228-230. However, we are still at the early 

stage of depicting a complete inflammation response pathway map because molecular 

mechanisms and physiological functions of inflammation still remain most unknown231. 

Recent progresses in system biology built up upon large-scale genomic, genetic, epigenetic, 

proteomic and pathophysiological data have substantially accelerated the process by 

reconstructing molecular networks in an unbiased manner. For example, for the first time in 

AD research, we could put together genetic, gene expression and pathological data to 

construct and prioritize gene networks that are causally linked to AD9. These predictive 

data-driven networks provide a blueprint to reconstruct inflammation and other pathway 

maps for subsequent hypothesis development and biological validation.

On the other hand, we should keep in mind that inflammation response is only one of many 

pathways contributing to complex human diseases. So, exploration of molecular 

mechanisms and physiological functions of inflammation should be carried out in a more 

global context of pathway-pathway interactions. Again systems/network biology holds the 

key to the success given its unbiased and more disease-relevant nature.

A fundamental goal of understanding inflammation in complex human diseases is to identify 

novel therapeutic targets and effective treatments232. The inflammatome signature 

previously identified was highly enriched with current marketed drug targets233 and could be 

a resource for identifying additional new drugs. Discovery of common features of 
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inflammation related regulation in major human diseases will facilitate the development of 

drugs targeting many inflammatory diseases rather than only in a limited spectrum of 

diseases. Core molecular networks in inflammation and their drivers can be used to identify 

existing drugs that could be used to reverse the states of the networks and drivers.

Recent advances in high-throughput technologies, data analysis algorithm development have 

made integrated Omics analysis an achievable goal, especially in the immunology/

inflammation area234. A well-cited example by Chen et al. performed an integrated personal 

omics profile (iPOP) analysis combining longitudinal genomic, transcriptomic, proteomic, 

metabolomics and autoantibody data from a single individual during healthy and viral-

infected states235. An NIH-sponsored Human Immunology Project Consortium (HIPC) 

generated a large repository of multiple data types including enzyme-linked immunosorbent 

assay (ELISA), enzyme-linked immunospot (ELISPOT), flow cytometry and gene 

expression. HIPC also created a software analysis tool for researchers to use this resource 

(https://immport.niaid.nih.gov/). The other example recently announced by Institute of 

Systems Biology (ISB) is even more ambitious - in additional to key genomics analysis, the 

100 participants involved in the first phase will be asked to continuously record multiple 

physical/biochemical activities including blood glucose, ~100 protein levels (for monitoring 

organ health), immune cell activities, heart rate and sleep patterns. The stool samples will 

also be collected for sequencing major microbial species in the gut. ISB planned on 

expanding the study to 100,000 subjects for up to 25 years if the results from first phase look 

promising236. Although not without significant challenges, these efforts will no doubt bring 

us closer to the goal of achieving personalized medicine in a way envisioned as predictive, 

personalized, preventive and participatory (P4)237.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Example immune response networks
A) A pharmacologically addressable response network is shown. By inhibiting CHEK1, 

viral protein production is severely limited. Node colors (cell viability) and node border 

colors (viral replication) refer to negative (blue) and positive (red) Z-scores after RNAi 

analysis indicating low and high viral replication/cell viability, respectively238. B) 
Regulation of the mTOR pathway by a naphthalimide compound. REDD1 (DDIT4) is 

activated by the compound. Node colors indicate up- (red) and down- (blue) regulated genes 

between compound and DMSO (control) treated A549 cells. Edge colors denote edge scores 

(yellow edges have high score).
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Figure 2. 
The relationship between immune, inflammasome, and inflammatome gene signatures.
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Figure 3. 
A bar chart illustrating all possible intersections among the GWAS gene sets of the six 

common complex diseases and the inflammatory gene signatures. Complex diseases include 

obesity (OB), type II diabetes (T2DM), coronary heart disease (CHD), late onset Alzheimer 

Disease (AD), Parkinson disease (PD), and sporadic cancer (CA). Immune gene sets 

inflammatome (MSB) and innateDB curated immune genes (IMDB). Meanwhile, host 

factors (I1) and immune response signature (I2) are included. The matrix of solid and empty 

circles at the bottom illustrates the “presence” (solid green) or “absence” (empty) of the 

gene sets in each intersection. The numbers to the right of the matrix are set sizes. The 

colored bars on the top of the matrix represent the intersection sizes with the color intensity 

showing the P value significance.
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Figure 4. 
A core causal network in inflammation. The predicted key drivers are highlighted in larger 

size and red color.
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