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Thomas F. Lang3, Xiaoguang Cheng2

1Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA

2Department of Radiology, Beijing Jishuitan Hospital, Beijing, China

3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San 
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Abstract

Studies using quantitative computed tomography (QCT) and data-driven image analysis 

techniques have shown that trabecular and cortical volumetric bone mineral density (vBMD) can 

improve the hip fracture prediction of dual-energy X-ray absorptiometry areal BMD (aBMD). 

Here, we hypothesize that 1) QCT imaging features of shape, density and structure derived from 

data-driven image analysis techniques can improve the hip fracture discrimination of classification 

models based on mean femoral neck aBMD (Neck.aBMD), and 2) that data-driven cortical bone 

thickness (Ct.Th) features can improve the hip fracture discrimination of vBMD models. We tested 

our hypotheses using statistical multi-parametric modeling (SMPM) in a QCT study of acute hip 

fracture of 50 controls and 93 fragility fracture cases. SMPM was used to extract features of shape, 

vBMD, Ct.Th, cortical vBMD, and vBMD in a layer adjacent to the endosteal surface to develop 

hip fracture classification models with machine learning logistic LASSO. The performance of 

these classification models was evaluated in two aspects: 1) their hip fracture classification 

capability without Neck.aBMD, and 2) their capability to improve the hip fracture classification of 

the Neck.aBMD model. Assessments were done with 10-fold cross-validation, areas under the 

receiver operating characteristic curve (AUCs), differences of AUCs, and the integrated 

discrimination improvement (IDI) index. All LASSO models including SMPM-vBMD features, 

and the majority of models including SMPM-Ct.Th features performed significantly better than 

the Neck.aBMD model; and all SMPM features significantly improved the hip fracture 

discrimination of the Neck.aBMD model (Hypothesis 1). An interesting finding was that SMPM-

features of vBMD also captured Ct.Th patterns, potentially explaining the superior classification 

performance of models based on SMPM-vBMD features (Hypothesis 2). Age, height and weight 

had a small impact on model performances, and the model of shape, vBMD and Ct.Th consistently 

yielded better performances than the Neck.aBMD models. Results of this study clearly support the 

relevance of bone density and quality on the assessment of hip fracture, and demonstrate their 

potential on patient and healthcare cost benefits.
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1. Introduction

Hip fractures have a devastating impact on the lives of elderly people and are imposing an 

increasing financial burden on a rapidly aging society.9 In the United States, the proportion 

of the population older than 65 years will increase from 12.7% in 2000 to 20.3% in 2050,47 

and the number of bone fractures is expected to exceed 3 million by 2025 with associated 

costs in the order of $25.3 billion per year.9 The individual risk of hip fracture depends on 

the structural integrity of the proximal femur and the likelihood of experiencing forces that 

exceed the bone strength.31 With aging, the structural integrity of the proximal femur is 

compromised and the likelihood of falling is higher, predisposing an older person to an 

increase risk of hip fracture. Thus, the ability to identify individuals at high risk for fracture 

has become an imperative goal. Areal bone mineral density (aBMD) derived from dual-

energy X-ray absorptiometry (DXA) is the clinical standard to assess osteoporosis status. 

Studies have consistently demonstrated that aBMD discriminatory and predictive 

capabilities of hip fracture are moderate based on area under the receiver operating 

characteristic curve (AUC) analyses (~0.80).17, 5, 34, 2, 7, 4, 36, 8, 48, 18 The moderate 

performance of aBMD as a fracture predictor has been attributed to a function of factors it 

cannot measure, including microscopic factors such as bone microstructure, material 

properties and composition, and macroarchitectural factors such as bone shape, and the 

three-dimensional (3D) distribution of BMD and cortical bone thickness (Ct.Th). 

Furthermore, roughly half of the people who fracture do so with non-osteoporotic levels of 

aBMD.

Quantitative computed tomography (QCT) has become a leading imaging technique for 

osteoporosis-related research because it enables: 1) 3D macroarchitectural bone assessments 

in the two most clinically relevant skeletal sites, namely the proximal femur and the spine; 

2) measurement of volumetric bone mineral density (vBMD); 3) distinction between cortical 

and trabecular bone compartments; 4) quantification of bone geometry and shape; 5) 

quantification of cortical bone thickness (Ct.Th); and 6) estimations of bone strength using 

subject-specific finite element modeling (FEM). All these characteristics therefore make 

QCT a unique medical imaging technique for comprehensive bone assessments in studies of 

etiology,22 treatment, 32, 3, 42, 29, 35, 19, 21, 23, 20 and intervention.33, 1 However, Black et al.5 

compared the hip fracture predictive capabilities of QCT with DXA in a large prospective 

study –the Osteoporotic Fractures in Men Study (MrOS)6, 38– finding that although specific 

QCT parameters were predictive of incident hip fracture independent of aBMD, adding QCT 

parameters to aBMD-based models did not improve hip fracture prediction. A potential 

explanation for this finding is that QCT parameters were computed based on predefined 

volumes of interest, specifically the femoral neck and a region including both the femoral 

neck and the trochanter. However, recent QCT publications based on Computational 

Anatomy techniques13 have identified specific sub-regions in the proximal femur where 
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bone parameters have been associated with hip fracture.37, 39, 11, 12, 8, 44 Computational 

Anatomy techniques are data-driven and therefore do not require predefinition of volumes of 

interest.

We hypothesized that QCT imaging features derived from data-driven image analysis 

techniques can improve the hip fracture discrimination of classification models based on 

mean femoral neck aBMD (Hypothesis 1). We also hypothesized that data-driven Ct.Th 

features can improve the hip fracture discrimination of vBMD models (Hypothesis 2). Here, 

we tested our hypotheses in a QCT study of acute hip fracture in Chinese women using 

statistical multi-parametric modeling (SMPM)14 with parameters of shape, density and 

structure.10 SMPM is an image analysis technique based on principal component analysis 

(PCA) of spatially normalized parametric maps. SMPM is data-driven and does not require 

predefinition of volumes of interest. SMPM enables the simultaneous analysis of shape with 

multiple parametric maps, basically extending statistical models of appearance15 to multi-

parametric intensity patches. Because of the inherent nature of PCA, SMPM with machine 

learning enable the identification of uncorrelated features that can be efficiently used for 

classification and prediction in studies of etiology, treatment, and intervention. Another key 

characteristic of SMPM is that it enables the display of uncorrelated parametric maps with 

concurrent features of shape.

2. Materials and Methods

2.1 Subjects

One hundred forty-three women were included in this study, 93 with and 50 without hip 

fracture. Inclusion and exclusion criteria were similar to those described by Li and 

colleagues.37 Briefly, women with hip fracture were recruited from the emergency room, 

Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital. Women 

were only included if: 1) their fracture had occurred within the last 48 hours (in order to 

minimize changes in vBMD and body composition factors due to the fracture); 2) were 

previously fully ambulatory, community-dwelling adults; and 3) fractures resulted from a 

low-energy fall from standing or sitting height. Controls were recruited from the surrounding 

community. Only women without conditions affecting bone metabolism, previous 

osteoporosis treatment, and without previous fractures were included in this study. Informed 

consent was obtained from all the participants after explaining them the nature of the study, 

and the study was reviewed and approved by the Internal Review Boards of the participating 

institutions.

2.2 Imaging

QCT imaging was performed with a Toshiba CT scanner (Toshiba Medical Systems 

Division, Tokyo, Japan). Bilateral hip acquisitions for all subjects were obtained in supine 

position from the top of the acetabulum to 3 cm below the lesser trochanter. At the time of 

scanning, a calibration phantom (Mindways Software, Austin, TX, USA) was placed under 

the CT table in order to convert Hounsfield units to equivalent concentrations of liquid 

K2HPO4 in mg/cm3. Acquisitions were obtained with 120kVp, 125mAs, 50cm field of view, 
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and 512×512 matrix in spiral and standard reconstructions with an average of 226 slices per 

subject. Scans were reconstructed to voxels sizes of 0.781mm × 0.781mm × 1mm.

2.3 Image Processing

The left hip for controls and the contralateral unfractured hip for subjects with hip fracture 

were analyzed using an automatic pipeline.10 The pipeline segmented the proximal femora, 

mirrored right hips, represented the periosteal boundaries with triangulated surfaces, and 

identified common anatomical volumes and surfaces of interest (femoral head, femoral neck, 

trochanteric region, and shaft). The pipeline therefore enabled the generation of multi-

parametric maps encoding: 1) voxel-based vBMD, 2) surface-based Ct.Th, 3) surface-based 

mean cortical vBMD (Ct.vBMD), and 4) surface-based mean trabecular vBMD in a layer 

adjacent to the endosteal surface (EndoTb.vBMD).10 Segmentations were manually 

corrected if necessary based on visual assessments, and the femoral head was excluded from 

the surface-based computations due to its thin cortical bone. Using the segmented vBMD 

maps and identified volumes of interest, QCT-derived aBMD maps were generated to 

compute mean femoral neck aBMD (Neck.aBMD) and mean total femur aBMD 

(Total.aBMD) values. Mean integral (cortical and trabecular) vBMD values for the femoral 

neck (Neck.vBMD) and total femur (Total.vBMD) were also computed.

SMPM is basically a statistical model of appearance where the intensity data can be multi-

parametric. According to Cootes et al.,15 a statistical model of appearance (shape and 

intensity) can be generated in three steps. First, PCA is performed on a set of aligned 

coordinates representing corresponding anatomical landmarks in the shapes of the 

population, yielding a statistical shape model (SSM).16 Second, PCA is performed on a set 

of spatially normalized gray-level patches from the images of the population, yielding a 

statistical intensity model. And third, because there may be correlations between shape and 

intensity variations, an additional PCA is performed on the PCA scores of shape and 

intensity, yielding the statistical model of appearance. In order to include shape, SMPM 

follows these three steps, but in the second step either a single or multiple spatially 

normalized parametric maps are included, thus requiring an additional preprocessing step to 

deal with differences in units and dynamic ranges between the parameters.

To create the SSM,16 corresponding anatomical landmarks were automatically identified on 

the periosteal surface of each segmented bone based on 3D registrations with a common 

template of the proximal femur.11 Registrations were based on the segmented femora and 

included affine (3 translations, 3 rotations, and 3 scalings) and nonlinear transformations.11 

Using the identified anatomical landmarks, the periosteal surfaces of the population were 

concurrently aligned to remove differences in position and rotation, thus preserving size and 

shape differences. The SSM was then generated by applying PCA to the set of matched and 

spatially normalized vectors containing the coordinates of the periosteal surfaces in the 

population. Therefore, the SSM was represented by a mean femoral shape x̄ (column vector 

with coordinates of the periosteal surface of the mean shape), a set of orthogonal modes of 

shape variation Psh (matrix where each column represents an orthogonal mode of shape 

variation), and a set of eigenvalues λsh. Using the mean shape and the orthogonal modes of 
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shape variation, the proximal femoral shape xSn of a specific subject was projected into the 

eigenspace of the SSM using Equation 1:

bsh, Sn
= Psh

T (xSn
− x̄) (1)

In Equation 1, bsh,Sn is a column vector representing the scores of the specific shape for 

each orthogonal mode of shape variation, i.e. the coordinates of the specific shape in the 

eigenspace of the SSM. Vectors like bsh,Sn can be used for shape classification and 

prediction problems, so we evaluated their performance for hip fracture discrimination.

To create the multi-parametric feature model –second step towards SMPM that includes 

shape– the vBMD maps and the surface-based feature maps (Ct.Th, Ct.vBMD, and 

EndoTb.vBMD) were spatially normalized. Spatial normalization was performed with the 

transformations computed for the identification of the common anatomical landmarks. In 

order to adjust for differences in units and dynamic ranges between the features, each feature 

was normalized to zero mean and unit variance enabling their individual usage or their 

concatenation in a feature vector for PCA. PCA was then applied to the spatially- and scale-

normalized feature vectors from the population yielding a mean feature vector ȳ, a set of 

orthogonal modes of feature variation Pf, and a set of eigenvalues λf. Using the mean feature 

vector and the set of orthogonal modes of feature variation, the feature vector ySn of a 

specific subject was projected into the eigenspace of the multi-parametric feature model 

using Equation 2:

b f , Sn
= P f

T(ySn
− ȳ) (2)

In Equation 2, bf,Sn is a column vector representing the scores of the specific feature vector 

for each orthogonal mode of feature variation, i.e. the coordinates of the specific feature 

vector in the eigenspace of the multi-parametric feature model. Vectors like bf,Sn can be 

used for feature classification and prediction problems, therefore, we evaluated their 

performance for hip fracture discrimination.

In the final step of SMPM incorporating shape, potential correlations between shape and 

feature variations were removed by first concatenating the individual shape and feature 

scores as:

bm =
Wshbsh

b f
(3)

and then by applying an additional PCA to these vectors. In Equation 3, Wsh is a diagonal 

matrix of weights for each shape parameter adjusting for the differences in units between the 

shape and feature models. This final step therefore also yields a mean shape-feature vector z̄, 

a set of orthogonal modes of shape-feature variation Psh−f, and a set of eigenvalues λsh−f. 

Using the mean shape-feature vector and the set of orthogonal modes of shape-feature 
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variation, the shape-feature vector zSn of a specific subject was projected into the eigenspace 

of the shape-feature model using Equation 4:

bsh − f , Sn
= Psh − f

T (zSn
− z̄) (4)

In Equation 4, bsh−f,Sn is a column vector representing the scores of the specific shape-

feature vector for each orthogonal mode of shape-feature variation, i.e. the coordinates of the 

specific shape-feature vector in the eigenspace of the shape-multi-parametric feature model. 

Vectors like bsh−f,Sn were also used in this work for hip fracture discrimination.

The relevance of performing an additional PCA step to generate the specific shape-feature 

scores as in Equation 4, is summarized in the Appendix.

2.4 Statistical Analysis

For each subject, vectors like those derived from Equations 1, 2 and 4 —bsh, bf, and bsh−f, 

which we will refer in general as b— have a total of n-1 scores, where n is the number of 

subjects used for PCA. However, only few of those scores carry relevant fracture 

information. In order to select those relevant scores, the eigenvalues λsh, λf, and λsh−f were 

used to identify the contribution of each score towards the variance of the population, and 

select those representing 90% of the total variance —bsh,90%, bf,90% and bsh−f,90%, which 

we will refer in general as b90%.

Scores in b90% vectors were used with machine learning logistic LASSO (Least Absolute 

Shrinkage and Selection Operator)43 to perform automatic feature selection and hip fracture 

discrimination. Briefly, LASSO is a machine learning regression technique that shrinks the 

coefficients estimates towards zero, and actually forces some of the coefficient estimates to 

be exactly equal to zero, thus performing feature selection. Neck.aBMD, Total.aBMD, 

Neck.vBMD, and Total.vBMD are the most common clinical and research imaging 

parameters used to assess osteoporosis and hip fracture risk. Therefore, a LASSO model for 

each of these four parameters was evaluated with the aim of selecting a reference model for 

the SMPM models. Based on the performance of these models, the Neck.aBMD model was 

selected as the reference in this study. Therefore, scores from the b90% vectors, i.e. SMPM 

features, were evaluated in terms of their hip fracture discrimination capabilities without 

Neck.aBMD, and in terms of their improvement on hip fracture discrimination when added 

to the Neck.aBMD LASSO model. Furthermore, the hip fracture discrimination performance 

of SMPM features was also assessed after adding demographic and clinical variables —age, 

height and weight— to the different LASSO models. We used Glmnet in Matlab40 for 

logistic LASSO (elastic-net mixing parameter=1, response type=binomial, and penalty 
factors=0 for Neck.aBMD, age, height and weight) and fracture discrimination was assessed 

with AUCs. Model comparisons were performed in terms of differences of AUCs and with 

the integrated discrimination improvement (IDI) index. AUCs were compared using the 

DeLong’s nonparametric approach for two or more correlated AUCs. For AUCs and 

differences of AUCs, 95% confidence intervals were calculated; and for differences in AUCs 
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and IDI indices, p values were computed, which were considered significant at p<0.05. 

SMPM features included those of shape, vBMD, Ct.Th, Ct.vBMD, and EndoTb.vBMD.

Validation of the full approach to assess hip fracture discrimination was performed with 

stratified 10-fold cross-validation. Briefly, the population was randomly partitioned into 10 

sub-groups with equal proportions of controls and fracture subjects. Then 10 iterations were 

executed. At each iteration, one sub-group represented the test data, and the remaining 9 

sub-groups represented the training data. Using the training data, statistical multi-parametric 

models, b vectors and b90% vectors were generated, and LASSO was used for feature 

selection and generation of hip fracture discrimination models. Fracture discrimination was 

then assessed on the test sub-group. Results for all iterations were pooled to calculate the 

different performance metrics. By using cross-validation, we ensured that at each iteration, 

the model is tested on data that was not used for training. The objective of cross-validation is 

to avoid overfitting. Overfitting occurs when the models follow the errors, or noise, too 

closely, yielding a small training mean squared error (MSE) but a large test MSE, where 

MSE is defined by Equation 5:

MSE = 1
k ∑i = 1

k di − f (qi)
2

(5)

In Equation 5, k is the number of data points, di is the true value for the ith observation, and 

f (qi) is the prediction that f  gives for the ith observation.

The full pipeline was implemented in MATLAB (The MathWorks, Inc. Natick, MA) on an 

iMac computer with a 4GHz Intel Core i7 processor and 32GB of RAM, and it is briefly 

outlined in the diagram of Figure 1.

3. Results

Table 1 shows the subject characteristics for the women involved in this study. Controls and 

women with hip fracture had significantly different age (p<0.001) and height (p=0.02), but 

not weight.

Tables 2 and 3 show the hip fracture discrimination performance of different LASSO models 

based on Neck.aBMD, Total.aBMD, Neck.vBMD, Total.vBMD, and SMPM features 

without and with the inclusion of demographic and clinical variables (age, height, and 

weight), respectively. The performance of the LASSO models is given in terms of AUCs, 

and in terms of differences in AUCs and IDI indexes with respect to the Neck.aBMD models 

(without and with age + height + weight). According to Table 2, Total.aBMD, Neck.vBMD, 

Total.vBMD, Ct.vBMD, and shape + Ct.vBMD yielded similar performances than 

Neck.aBMD; while all LASSO models including SMPM-vBMD features performed 

significantly better. Table 2 also shows that with the exception of the shape + Ct.Th model, 

models including SMPM-Ct.Th features also performed significantly better than 

Neck.aBMD. The rest of the parameters in Table 2 yielded inconsistent results between 

AUC differences and IDI indexes. When age, height and weight were added to the LASSO 

models, only shape + vBMD + Ct.Th yielded significantly higher fracture discrimination 
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than the reference model (Hypothesis 2), while the rest of the parameters performed similar 

than the reference model or yielded inconsistent results between AUC differences and IDI 

indexes (Table 3).

Tables 4 and 5 summarize the improvements on hip fracture discrimination when SMPM 

features (i.e. principal component scores b90%) were added to the LASSO models of 

Neck.aBMD, without and with demographic and clinical variables (age, height, and weight), 

respectively. As in Tables 2 and 3, the performances of the models are given in terms of 

AUCs, and in terms of differences in AUCs and IDI indexes with respect to the Neck.aBMD 

models. According to Table 4, when SMPM features were added to the Neck.aBMD model, 

significant hip fracture discrimination improvements were observed in all instances in terms 

of both AUCs (0.041–0.081; p<0.001–p<0.05) and IDI indexes (0.064–0.243; p<0.001). 

When age, height and weight were added to the Neck.aBMD model (Table 5), all models 

incorporating EndoTb.vBMD improved the performance of the Neck.aBMD + age + height 

+ weight LASSO model. Other models showing improvement were: 1) Ct.vBMD, 2) shape 

+ Ct.Th, and 3) shape + vBMD + Ct.Th. The rest of the parameters showed similar 

performance than the reference model or inconsistent results between differences in AUCs 

and IDI indexes.

Figures 2-4 show some representative SMPM features selected as relevant predictors by 

LASSO according to Tables 2-5. Figure 2 shows coronal cross-sections of the mean 

statistical model of vBMD and the mean minus and plus 2.5 standard deviations along the 

directions of the first and second principal components. These two modes were consistently 

selected as predictors in the different k folds. According to Tables 2 and 4, principal 

component scores of vBMD yielded LASSO models that performed better and that 

improved hip fracture discrimination with respect to Neck.aBMD, respectively. While 

Figure 2A shows clear vBMD differences on opposite directions of the first principal 

component effectively in all proximal femoral regions in both the cortical and the trabecular 

bone compartments, Figure 2B shows more subtle differences on opposite directions of the 

second principal component, mainly at the intertrochanteric region and the medial cortex. 

Interestingly, both modes seem to also capture cortical bone thickness patterns. In average, 

the control group showed negative scores (patterns of higher vBMD and thicker cortices), 

while the fracture group showed positive scores (patterns of lower vBMD and thinner 

cortices) for both principal components of vBMD.

In Figure 3, posterior and anterior views of the mean statistical model of Ct.Th together with 

the mean minus and plus 2.5 standard deviations in the direction of the first principal 

component are shown. Mode 1 was consistently selected as predictor in the different k folds. 

According to Tables 2 and 4, principal component scores of Ct.Th yielded LASSO models 

that performed better and that improved hip fracture discrimination with respect to 

Neck.aBMD, respectively. Figure 3 shows clear cortical bone thickness differences on 

opposite directions of the first principal component in focal regions, particularly in: 1) the 

medial cortex, 2) the femoral neck, and 3) and anteriorly in the greater trochanter. In 

average, the control group showed negative scores (patterns of thicker Ct.Th), while the 

fracture group showed positive scores (patterns of thinner Ct.Th) for the first principal 

component of Ct.Th.
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In terms of shape, Figure 4 shows the mean minus and plus 2.5 standard deviations of the 

SSM along the directions of the first (Figure 4A) and second principal components (Figure 

4B), which were consistently selected by LASSO. According to Table 4, shape features 

significantly improved hip fracture discrimination on top of Neck.aBMD. As expected, 

Figure 4A captures size differences in the first mode, while Figure 4B captures differences 

in the neck-shaft angle in the second mode. In average, controls showed negative shape 

scores (towards blue shapes), and fracture cases positive scores (towards gray shapes).

4. Discussion

SMPM is a data-driven image analysis technique that enables the incorporation of multiple 

spatially normalized parameters into models that generate uncorrelated scores suitable for 

feature selection and computation of classification and prediction models. In this work, we 

applied SMPM with machine learning logistic LASSO to discriminate hip fracture in a study 

of acute hip fracture in Chinese women, including 50 controls and 93 with hip fracture. The 

hip fracture discrimination performance of LASSO models based on SMPM features 

without QCT-derived Neck.aBMD, and when SMPM features were added to the 

Neck.aBMD model was evaluated using 10-fold cross-validation to prevent overfitting. 

SMPM features included those of shape, vBMD, Ct.Th, Ct.vBMD, EndoTb.vBMD, and 

some of their combinations. Performances were evaluated in terms of AUCs, and 

comparisons with the Neck.aBMD reference model were done in terms of differences of 

AUCs and IDI indexes. The effects of incorporating demographic and clinical variables (age, 

height, and weight) to these models were also evaluated.

The added value of data-driven techniques incorporating 2D shape and aBMD features in the 

assessment of hip fracture has been demonstrated in DXA studies in the form of statistical 

models of shape, active shape modeling and statistical models of appearance.26, 25, 2, 24 The 

added value of data-driven techniques incorporating vBMD, 3D shape, cortical mass surface 

density and endocortical trabecular bone mineral density in the assessment of hip fracture 

has also been demonstrated in QCT studies, in this case, in the form of regions of interest 

derived from voxel-based morphometry (VBM),37 statistical models of appearance,41, 8 

separate models of shape and vBMD,46 and regions of interest derived from cortical bone 

mapping.44 However, our study is the first QCT study to simultaneously evaluate data-driven 

features of shape, density and structure, and their combinations, for the assessment of hip 

fracture.

LASSO models based on SMPM features yielded high levels of discrimination without 

Neck.aBMD with AUCs ranging from 0.789 to 0.927 (Table 2). Results also showed 

significant hip fracture discrimination improvements when SMPM features of shape, density 

or structure were added to the LASSO model based on Neck.aBMD, with ΔAUCs ranging 

from 0.041 to 0.081, and IDI indices ranging from 0.064 to 0.243 (Table 4), validating 

Hypothesis 1. The incorporation of age, height and weight to the different LASSO models, 

yielded non-significant AUC improvements and minor IDI changes (comparison of Tables 2 

and 3; ~IDI=0.05; ~p<0.001; data not shown). Furthermore, although SMPM features of 

Ct.Th increased neither the AUC nor the IDI of the vBMD and shape + vBMD models (with 

or without age + height + weight; data not shown), the shape + vBMD + Ct.Th + age + 
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height + weight SMPM model was the only model that performed significantly better than 

the Neck.aBMD + age + height + weight model (Table 3; ΔAUC=0.054 and IDI=0.082), 

partially validating Hypothesis 2. The addition of shape, vBMD and Ct.Th SMPM features 

to the Neck.aBMD + age + height + weight model also significantly improved hip fracture 

discrimination (Table 5; ΔAUC=0.043; IDI=0.159).

Our AUCs of 0.844 and 0.872 for Neck.aBMD and Neck.aBMD + age + height + weight, 

respectively, were in agreement with those in the literature.8, 44 Bredbenner et al. reported an 

AUC=0.82 for hip fracture prediction in men based on total hip aBMD, and an AUC=0.83 

when using total hip aBMD + age + BMI;8 while Treece et al. reported an AUC=0.78 for hip 

fracture prediction in men based on aBMD + age + height + clinical site.44 Our SMPM 

results were also in agreement with those of the few data-driven QCT studies of hip fracture 

in the literature.37, 8 The results presented here for hip fracture discrimination using SMPM 

features of vBMD (AUC=0.915) were similar to those in the hip fracture discrimination 

study of Li et al. using VBM (AUC=0.92);37 while the results for shape + vBMD 

(AUC=0.924) were also in agreement with those of the statistical model appearance of 

Bredbenner et al. (AUC=0.94).8 However, it is important to note that there are two main 

differences between the statistical model of appearance of Bredbenner et al. and the SMPM 

presented here. First, in this work, we described the proximal femoral shapes only with 

landmarks on the femoral surfaces, while Bredbenner et al. described the proximal femoral 

shapes with volumetric meshes, i.e. with landmarks on the femoral surfaces and with 

landmarks within the femora. Second, in this work, the 10-fold cross-validation was done for 

the full image processing pipeline: SMPM, feature selection, computation of LASSO 

models, and testing; while Bredbenner et al. used 10-fold cross-validation only for feature 

selection, computation of prediction models, and testing. Nevertheless, it is important to 

highlight the similarity of the results in three different data-driven studies incorporating 

vBMD, which underscores the robustness of these image analysis techniques.

QCT imaging features of shape, density and structure derived from SMPM improved the hip 

fracture discrimination of classification models based on mean femoral neck aBMD 

(Neck.aBMD), validating Hypothesis 1. According to Burge et al.9 the total number of 

female incident hip fractures in the US in 2005 was 222,753. Based on our Table 5, by 

adding SMPM features to a model based on Neck.aBMD + age + height + weight, additional 

4.1% (EndoTb.vBMD)-5.4% (Shape+EndoTb.vBMD) hip fractures could be detected. These 

numbers represent 9,132-12,028 hip fractures which represent 382-503 US million dollars 

associated with hip fracture costs that could be saved in the ideal scenario that this 

methodology works similarly for prediction purposes. These numbers clearly reflect the 

practical importance of these findings. Looking at Figures 2-4, the principal modes that were 

automatically selected by LASSO captured both global and local patterns, suggesting that 

both global and local bone deterioration and adaptation with aging might play significant 

roles on the assessment of bone strength. In addition, Figure 2 also showed an interesting 

finding with the principal modes of vBMD capturing Ct.Th patterns. vBMD and Ct.Th. are 

perhaps the most representative surrogate measures of bone strength that can be derived 

from QCT. Since bone strength plays a critical role in bone fracture, Hypothesis 2 was based 

on the idea that by incorporating two surrogate measures of bone strength, vBMD and 

Ct.Th, the discrimination between controls and fracture cases should be higher than that 
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based on models relying on vBMD alone. While the vBMD + Ct.Th model did not perform 

better than the vBMD model, Ct.Th did contribute to a better classification performance of 

vBMD models based on Figure 2 and Table 3, partially validating Hypothesis 2. A practical 

consideration of these results is that when using SMPM of vBMD maps for classification 

purposes, the inclusion of Ct.Th maps might not be needed to improve the performance 

since this information is embedded in the SMPM-vBMD features. In addition, consistent 

with previous QCT studies of hip fracture, the femoral neck played a major role on the 

assessment of hip fracture.28 Results also demonstrated that processing the same vBMD data 

with a different method —with SMPM— led to a significant improvement on hip fracture 

discrimination compared to Neck.vBMD and Total.vBMD.

This study has four main limitations. First, although women with hip fracture were scanned 

within 48 hours of the occurrence of hip fracture, this is not a prospective study of incident 

hip fracture, and due to the lack of a baseline scan before the occurrence of fractures, results 

cannot be interpreted in the context of hip fracture prediction. Future studies are therefore 

needed to evaluate SMPM for hip fracture prediction in prospective studies such as the 

AGES-Reykjavik27 or MrOS.6, 38 The second limitation of this study is that the population 

was limited to women, and results cannot be extrapolated to men due to known sex 

differences in bone strength.30 Therefore, future studies should evaluate SMPM in male 

populations such as that of the MrOS study.6, 38 The third limitation is related to the 

ethnicity. All women involved in this study were Chinese, however, there are also known 

differences in bone characteristics between Asian and Caucasian women.45 Therefore, the 

performance of SMPM should also be evaluated in populations of different ethnicities. And 

the fourth limitation is the significant difference in age between the control and fracture 

groups. Although we tried to explore the effect of age in our classification models and it was 

found to be small (Tables 3 and 5), the significant age difference might reduce the impact of 

our findings.

In conclusion, we have presented the application of SMPM for the assessment of hip 

fracture discrimination in a study of acute hip fracture in Chinese women. SMPM enables 

the incorporation of multiple spatially normalized parameters and shape into models that use 

PCA and feature selection making them suitable for classification and prediction problems. 

In this study, SMPM features discriminated hip fracture without Neck.aBMD, improved hip 

fracture discrimination based on Neck.aBMD (Hypothesis 1), and demonstrated the 

relevance of Ct.Th on classification models based on vBMD (Hypothesis 2). The findings of 

this study clearly support the relevance of bone density and quality on the assessment of hip 

fracture, and demonstrate their potential on patient and healthcare cost benefits.
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Appendix

This section has the purpose of supporting the necessity of a third PCA step to address 

potential correlations between shape and feature principal component scores.

In this study, for the first 10 principal components, out of 100 correlations of principal 

component scores: 1) 37% between shape and vBMD, 2) 43% between shape and Ct.Th, 3) 

29% between shape and Ct.vBMD, and 4) 40% between shape and EndoTb.vBMD, were 

significant.
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Figure 1. 
Diagram outlining the steps of the SMPM pipeline implemented in this study.
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Figure 2. 
Coronal cross-sections of the mean model of vBMD (center) and the mean minus (left) and 

plus (right) 2.5 standard deviations along the directions of the first (A) and second (B) 

principal components of the statistical model of vBMD. Interestingly, both modes also 

captured Ct.Th patterns.
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Figure 3. 
Posterior and anterior proximal femoral views of the mean model of Ct.Th (middle row) and 

the mean minus (top) and plus (bottom) 2.5 standard deviations along the direction of the 

first principal component of the statistical model of Ct.Th.
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Figure 4. 
Posterior and anterior proximal femoral views of the overlay of the mean shape minus 2.5 

standard deviations (blue) and the mean shape plus 2.5 standard deviations (gray) along the 

first (A) and second (B) principal components of the SSM.
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Table 1.

Descriptive Statistics for the Women Involved in this Study – Mean±SD

Group Age [years]* Height [cm]† Weight [Kg]

Controls 63.7±7.0 156.8±6.0 63.4±9.1

Fracture 71.7±12.2 159.1±5.5 59.6±13.1

*
Significantly different between groups: p<0.001

†
Significantly different between groups: p=0.02

50 controls - 93 hip fracture cases
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Table 2.

Hip Fracture Discrimination and Comparisons to Neck.aBMD

Initial Features in the
LASSO Model

AUC
[95% CI]

AUC Difference
[95% CI] (p-Value)

IDI Index
(p-Value)

Neck.aBMD 0.844
[0.780, 0.908]

Total.aBMD 0.845
[0.781, 0.909]

0.001
[−0.030, 0.031] (NS)

−0.024
(NS)

Neck.vBMD 0.842
[0.778, 0.907]

−0.002
[−0.031, 0.027] (NS)

−0.021
(NS)

Total.vBMD 0.823
[0.755, 0.892]

0.0002
[−0.032, 0.033] (NS)

−0.020
(NS)

Shape 0.789
[0.714, 0.863]

−0.056
[−0.164, 0.053] (NS)

−0.270
(<0.001)

vBMD 0.915
[0.869, 0.962]

0.071
[0.026, 0.116] (<0.01)

0.083
(<0.01)

Ct.Th 0.915
[0.869, 0.962]

0.071
[0.009, 0.133] (<0.05)

0.100
(<0.05)

Ct.vBMD 0.884
[0.830, 0.939]

0.040
[−0.023, 0.104] (NS)

0.048
(NS)

EndoTb.vBMD 0.914
[0.867, 0.961]

0.070
[0.019, 0.121] (<0.01)

0.073
(0.053)

vBMD + CtTh 0.919
[0.874, 0.964]

0.075
[0.027, 0.123] (<0.01)

0.016
(<0.01)

Ct.Th + Ct.vBMD + EndoTb.vBMD 0.925
[0.881, 0.968]

0.081
[0.027, 0.134] (<0.01)

0.093
(<0.05)

vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.919
[0.874, 0.964]

0.075
[0.024, 0.125] (<0.01)

0.086
(<0.05)

Shape + vBMD 0.924
[0.880, 0.968]

0.080
[0.034, 0.126] (<0.001)

0.093
(<0.01)

Shape + Ct.Th 0.907
[0.858, 0.955]

0.062
[0.002, 0.123] (<0.05)

0.083
(0.076)

Shape + Ct.vBMD 0.852
[0.789, 0.914]

0.007
[−0.064, 0.079] (NS)

−0.043
(NS)

Shape + EndoTb.vBMD 0.925
[0.882, 0.969]

0.081
[0.027, 0.136] (<0.01)

0.069
(0.091)

Shape + vBMD + Ct.Th 0.923
[0.879, 0.967]

0.079
[0.030, 0.127] (<0.01)

0.108
(<0.01)

Shape + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.915
[0.868, 0.961]

0.071
[0.022, 0.119] (<0.01)

0.083
(<0.05)

Shape + vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.927
[0.884, 0.970]

0.083
[0.038, 0.129] (<0.001)

0.090
(<0.05)

50 controls - 93 hip fracture cases

NS = Non-significant

Features in italic font are SMPM features, i.e. m principal component scores, where m=number of training subjects (minus 1) in the k fold
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Table 3.

Hip Fracture Discrimination and Comparisons to Neck.aBMD with the Inclusion of Demographic and Clinical 

Variables

Initial Features in the
LASSO Model + age +
height + weight

AUC
[95% CI]

AUC Difference
[95% CI] (p-Value)

IDI Index
(p-Value)

Neck.aBMD 0.872
[0.814, 0.930]

Total.aBMD 0.869
[0.810, 0.927]

−0.003
[−0.025, 0.019] (NS)

−0.022
(NS)

Neck.vBMD 0.863
[0.804 0.923]

−0.008
[−0.027, 0.010] (NS)

−0.032
(<0.05)

Total.vBMD 0.863
[0.803, 0.923]

−0.009
[−0.029, 0.011] (NS)

−0.038
(<0.05)

Shape 0.820
[0.751, 0.889]

−0.052
[−0.128, 0.024] (NS)

−0.246
(<0.001)

vBMD 0.917
[0.871, 0.963]

0.045
[−0.001, 0.090] (0.053)

0.039
(NS)

Ct.Th 0.920
[0.876, 0.965]

0.049
[−0.004, 0.101] (0.070)

0.070
(NS)

Ct.vBMD 0.899
[0.848, 0.950]

0.027
[−0.027, 0.081] (NS)

0.028
(NS)

EndoTb.vBMD 0.911
[0.863, 0.959]

0.039
[−0.011, 0.089] (NS)

0.043
(NS)

vBMD + CtTh 0.920
[0.875, 0.965]

0.048
[0.006, 0.090] (<0.05)

0.059
(NS)

Ct.Th + Ct.vBMD + EndoTb.vBMD 0.932
[0.891, 0.973]

0.060
[0.012, 0.108] (<0.05)

0.077
(0.081)

vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.920
[0.876, 0.965]

0.049
[0.002, 0.095] (<0.05)

0.058
(NS)

Shape + vBMD 0.920
[0.876, 0.965]

0.049
[0.002, 0.095] (<0.05)

0.069
(0.078)

Shape + Ct.Th 0.926
[0.882, 0.969]

0.054
[0.003, 0.104] (<0.05)

0.074
(0.084)

Shape + Ct.vBMD 0.864
[0.805, 0.924]

−0.008
[−0.063, 0.048] (NS)

−0.073
(NS)

Shape + EndoTb.vBMD 0.919
[0.874, 0.964]

0.047
[−0.006, 0.101] (0.080)

0.056
(NS)

Shape + vBMD + Ct.Th 0.925
[0.882, 0.969]

0.054
[0.015, 0.092] (<0.01)

0.082
(<0.05)

Shape + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.920
[0.875, 0.965]

0.048
[0.009, 0.088] (<0.05)

0.053
(NS)

Shape + vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.935
[0.895, 0.975]

0.063
[0.026, 0.100] (<0.001)

0.058
(NS)

50 controls - 93 hip fracture cases

NS = Non-significant

Features in italic font are SMPM features, i.e. m principal component scores, where m=number of training subjects (minus 1) in the k fold

Age, height, and weight were forced to be part of all LASSO models
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Table 4.

Improvement on Hip Fracture Discrimination with Respect to Neck.aBMD (0.844 [0.780, 0.908])

Initial Features in the
LASSO Model +
Neck.aBMD

AUC
[95% CI]

AUC Difference
[95% CI] (p-Value)

IDI Index
(p-Value)

Shape 0.886
[0.831, 0.940]

0.041
[0.020, 0.071] (<0.01)

0.064
(<0.001)

vBMD 0.907
[0.858, 0.955]

0.062
[0.023, 0.102] (<0.01)

0.178
(<0.001)

Ct.Th 0.908
[0.859, 0.956]

0.064
[0.012, 0.155] (<0.05)

0.230
(<0.001)

Ct.vBMD 0.924
[0.880, 0.968]

0.080
[0.032, 0.128] (<0.01)

0.230
(<0.001)

EndoTb.vBMD 0.914
[0.867, 0.961]

0.070
[0.025, 0.115] (<0.01)

0.218
(<0.001)

vBMD + CtTh 0.911
[0.864, 0.959]

0.067
[0.022, 0.112] (<0.05)

0.204
(<0.001)

Ct.Th + Ct.vBMD + EndoTb.vBMD 0.920
[0.876, 0.965]

0.076
[0.030, 0.123] (<0.01)

0.236
(<0.001)

vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.914
[0.867, 0.961]

0.070
[0.023, 0.117] (<0.01)

0.220
(<0.001)

Shape + vBMD 0.909
[0.861, 0.957]

0.065
[0.016, 0.114] (<0.01)

0.228
(<0.001)

Shape + Ct.Th 0.920
[0.874, 0.965]

0.075
[0.029, 0.122] (<0.01)

0.243
(<0.001)

Shape + Ct.vBMD 0.906
[0.857, 0.955]

0.062
[0.019, 0.105] (<0.01)

0.174
(<0.001)

Shape + EndoTb.vBMD 0.925
[0.881, 0.968]

0.081
[0.035, 0.126] (<0.001)

0.235
(<0.001)

Shape + vBMD + Ct.Th 0.911
[0.863, 0.959]

0.067
[0.022, 0.111] (<0.01)

0.231
(<0.001)

Shape + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.917
[0.871, 0.963]

0.073
[0.030, 0.116] (<0.001)

0.214
(<0.001)

Shape + vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.918
[0.872, 0.963]

0.074
[0.031, 0.116] (<0.001)

0.222
(<0.001)

50 controls - 93 hip fracture cases

NS = Non-significant

Features in italic font are SMPM features, i.e. m principal component scores, where m=number of training subjects (minus 1) in the k fold

Neck.aBMD was forced to be part of all LASSO models.
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Table 5.

Improvement on Hip Fracture Discrimination with Respect to Neck.aBMD with the Inclusion of Demographic 

and Clinical Variables (0.872 [0.814, 0.930])

Initial Features in the
LASSO Model +
Neck.aBMD + age +
height + weight

AUC
[95% CI]

AUC Difference
[95% CI] (p-Value)

IDI Index
(p-Value)

Shape 0.887
[0.833, 0.941]

0.015
[−0.020, 0.051] (NS)

−0.002
(NS)

vBMD 0.907
[0.858, 0.956]

0.035
[−0.006, 0.076] (0.093)

0.109
(<0.01)

Ct.Th 0.912
[0.864, 0.959]

0.040
[−0.004, 0.083] (0.073)

0.152
(<0.001)

Ct.vBMD 0.925
[0.881, 0.968]

0.053
[0.014, 0.093] (<0.01)

0.158
(<0.001)

EndoTb.vBMD 0.912
[0.865, 0.960]

0.041
[0.003, 0.078] (<0.05)

0.143
(<0.001)

vBMD + CtTh 0.911
[0.863, 0.958]

0.039
[−0.003, 0.081] (0.069)

0.128
(<0.001)

Ct.Th + Ct.vBMD + EndoTb.vBMD 0.923
[0.879, 0.967]

0.051
[0.010, 0.092] (<0.05)

0.163
(<0.001)

vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.913
[0.866, 0.960]

0.041
[0.002, 0.081] (<0.05)

0.145
(<0.001)

Shape + vBMD 0.909
[0.861, 0.957]

0.037
[−0.007, 0.081] (NS)

0.154
(<0.001)

Shape + Ct.Th 0.925
[0.881, 0.968]

0.053
[0.013, 0.093] (<0.01)

0.171
(<0.001)

Shape + Ct.vBMD 0.906
[0.857, 0.955]

0.034
[−0.001, 0.069] (0.059)

0.106
(<0.001)

Shape + EndoTb.vBMD 0.926
[0.883, 0.969]

0.054
[0.010, 0.098] (<0.05)

0.162
(<0.001)

Shape + vBMD + Ct.Th 0.915
[0.868, 0.961]

0.043
[0.006, 0.080] (<0.05)

0.159
(<0.001)

Shape + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.915
[0.868, 0.971]

0.043
[0.004, 0.081] (<0.05)

0.138
(<0.001)

Shape + vBMD + Ct.Th + Ct.vBMD + EndoTb.vBMD 0.918
[0.872, 0.963]

0.046
[0.010, 0.082] (<0.05)

0.148
(<0.001)

50 controls - 93 hip fracture cases

NS = Non-significant

Features in italic font are SMPM features, i.e. m principal component scores, where m=number of training subjects (minus 1) in the k fold

Neck.aBMD, age, height and weight were forced to be part of all LASSO models.
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