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Metric Unfolding Revisited: Straight Answers to Basic Questions 

Abstract 

Marketing researchers commonly interpret joint-space solutions as if the distances between the points 

from different sets are meaningful. This is our practice despite appropriate warnings from the authors of 

joint-space methods that the origin (or metric) of the row objects is not the same as the origin (or metric) 

of the column objects – making inter-set distances meaningless. We develop a method of metric unfolding 

where, given only the inter-set judgments, we still retrieve a joint space in which inter-set distances are 

meaningful. We illustrate this method using: a) a classic car-preference data typically analyzed with 

MDPref, b) an example involving children’s wear in which splitting the stimuli into two groups and 

collecting inter-set similarities substantially reduces the data collection burden, while providing a readily 

interpretable perceptual map, c) individual level inter-set judgments of soft drinks to obtain individual 

level perceptual maps, d) adjective-association data for athletic shoes to produce a joint space for brand 

image, and e) asymmetric switching data from the Japanese beer market to reflect clout and vulnerability. 

The ability to properly employ inter-set distances as simple distances greatly facilitates interpretation of 

these joint-space solutions. 

 

Keywords: Multidimensional Scaling & Classification, Market Structure, Measurement. 
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INTRODUCTION 

We believe that marketing practitioners and academics have lost interest in multidimensional 

scaling (MDS) in general, and joint-space solutions in particular, in recent years because neither 

marketing academics nor psychometricians have developed straightforward answers for the most 

compelling questions.  Users look at a perceptual map and interpret the distance between objects as just 

that – a distance.  Yet, with most current methods we cannot interpret the distance between an ideal 

point for an individual and a brand as a simple distance. The metric among brands it typically a distance, 

but the metric between brands and people is a function of squared distance or a function of angles 

between a personal preference vector and the brands. When we try to relate the words people use to 

describe brands to the positions of those brands in a perceptual space, the simple meaning of distance is 

lost.  The origin for the relations between brands is not the same as the origin for the relations between 

adjectives, leaving the distance between brands and adjectives as undefined. Using MDS to represent 

brand switching patterns over purchase occasions has not been possible without linguistic gymnastics that 

leave even sophisticated investigators scratching their heads. The distance of a brand at time one from an 

average time-one profile compared to the distance of a brand at time two from the average time-two 

profile, is too convoluted to follow. Thus we take the shortcut, and inappropriately interpret the apparent 

distance as if it were a real distance. 

These basic marketing-research questions inherently involve two sets of objects: people and 

brands, brands and adjectives describing those brands, or brands at time one versus brands at time two.  

For instance, when we collect consumers’ judgments about their preferences for brands or how they 

describe brands, these are in reality inter-set judgments, since they relate one set of objects (adjectives) 

with another set of objects (brands).  As we describe below, simple distance solutions for these basic 

inter-set data have never been developed.  We want a common space for the objects in both sets, and a 

simple distance to properly represent what we see in that common spatial map.  This work develops that 

common map, and illustrates its utility representing marketing data from both historic examples and new 

research. 

 

Background 

Most multidimensional scaling (MDS) methods are conceptually based on some measures of 

distance.  Observed similarity (or proximity) measures between objects are assumed to be monotonically 
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decreasing functions of inter-object distances in some hypothetical space, and attempts are made to 

recover their coordinates.  In those cases in which distances among a set of objects may be assumed to 

be Euclidean, the object coordinates can be easily recovered by forming the squared-distance matrix, 

double-centering to produce a matrix of “scalar products,” then applying the Eckart-Young (1936) 

singular-value decomposition to it to find the coordinates of the objects in a Euclidean space (c.f., 

Torgerson 1958).  We note that the major problem of MDS of course lies in the fact that it is difficult to 

define a clear-cut and accurate measure of distance for most MDS problems.  But, since various models 

have been already developed to deal with problems of this type, we will not pursue them further here. 

 This paper addresses itself to the multidimensional scaling of partial (or “rectangular”) distance 

matrices, rows and columns of which correspond to different sets of objects: what Carroll and Arabie 

(1980) classify as two-mode, two-way data.  Suppose that Euclidean distances from a set of m objects 

(row points, ideal points, origins, etc.) to another set of n objects (column points, brands, destinations, 

etc.) are known.  Is it possible to recover the coordinates of entire m+n objects from this partial distance 

matrix?  This is the question that lies at the core of the so-called “unfolding” models of Coombs (1950, 

1964).  The literature, instead of directly answering it, mostly discusses the conditions (or “constraints”) 

under which estimated object coordinates approximate the observed similarity data.  For example, after 

discussing the constraints for symmetrical square matrices, Shepard (1972, p. 26) summarizes the 

constraints for rectangular (distance) matrices as follows.  

 “Since so much data are missing from the implied ‘complete’ matrix, constraints are more difficult to 

formulate.  In particular, the conditions having to do with the diagonal (a’) and symmetry (b’) are no 

longer available.  However, it is still possible to formulate some weaker condition relating to the 

analog of the triangle inequality (c’)”. 

(In the above paragraph, an implied “complete” matrix means a super-matrix formed by inter-object 

distances of all m+n objects.)  Other writers take a similar stance (cf. Lingoes 1972).  We suspect that 

this tendency to circumvent the question directly stems from a tacit belief that it is unanswerable in a 

general way. 

Schönemann (1970) mounted the first systematic attempt at a metric unfolding solution. 

Coombs’ (1950, 1964) original method was nonmetric (ordinal) unfolding in both the input dominance 

data and the output scaling space (i.e., the output solution simply ordered the objects and people on each 

dimension of the final space).  While Schönemann laid out the basic algebra (equivalent to our 
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Proposition 1 and 3 below), his efforts fell short on two aspects.  First, he only hints at the existence 

proof that we provide in Proposition 2. Our Proposition 2 provides the key linkages to a robust calibration 

procedure.  And second, his calibration procedure for real data is cumbersome, at best, and is partially 

wrong, as we describe later. 

To his credit, Schönemann approached the inter-set distance problem as a distance problem. Most 

attempts have used surrogates for distance, such as squared distance (DeSarbo and Rao, 1984), or other 

monotonic transformations of distance (cf. Carroll, 1980).  The advantage of a distance solution to the 

inter-set distance problem is that the final joint space has an intuitive interpretation: the not only do the 

relative distances within each set make sense (object-to-object distances and person-to-person distances), 

but also the inter-set, person-to-object, distances make the same sense.  All entities are related to a 

common origin with a common metric.  The lack of a common origin and metric has been one of the 

basic obstacles to interpretation in correspondence analysis (Hoffman and Franke, 1986; Hoffman and de 

Leeuw, 1992).  In correspondence analysis the origin for the spatial configuration of row objects is the 

average row profile across the columns.  The origin for the columns is the average column profile across 

the rows.  So while a general understanding is obtained for the relations of row objects to each other and 

column objects to each other, the inter-set comparison is meaningless. 

In the following, we will show that all m+n object coordinates (and consequently all inter-object 

distances) are recoverable from a partial distance matrix under a condition on the dimensionality (or rank) 

of the implicit “complete” distance matrix.  Even if this condition is not met, we will still be able to use 

the same theory to obtain the approximate coordinates for all objects. 

To be more precise, let D be the “complete” distance matrix for all m+n points.  D is (m+n) by 

(m+n).  Suppose that only those elements of D in the first m rows and the last n columns are known.  

Let this partial distance matrix be called Dmn .  (See Figure 1.) 

Figure 1  D and Dmn 

        “column objects” 

 

                  “row objects” 
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The main question in this paper is restated as follows: Is it possible to recover the coordinates of all m+n 

objects from Dmn?  How ever unlikely it may seem, we show that, by applying the singular value 

decomposition (SVD) to the “partial” scalar products of Dmn and linearly transforming the results, we can 

recover the coordinates of both row and column objects, provided that the dimensionality of the complete 

distance matrix is less than m or n. 

 In the next section we develop a series of propositions that are useful in proving the existence 

of linear transformations from the SVD results to object coordinates.  We will then discuss some 

computational problems that are encountered in the recovery of object coordinates.  Numerical and 

practical examples will be presented to show the applicability of the proposed approach. 

 

THEORETICAL CONSIDERATIONS 

Recovery of Coordinates from a Full Distance Matrix 

 We first demonstrate that singular-value decomposition of the scalar products of D yields the 

coordinates of all m+n objects.  Form a squared-distance matrix, D2, by squaring each element of D.  If 

we let the true coordinates of objects be X*, then D2 may be written in a matrix notation as 

D2 = diag(X*X*`) J + J diag(X*X*`) – 2X*X*`, 

where J is an (m+n)×(m+n) matrix of all 1s and diag(X*X*`) denotes the diagonal matrix that is formed 

by taking the diagonal elements of X*X*`.  Considering an origin at the centroid of all m+n point, the 

scalar product matrix, S, of D is obtained by double-centering D2 , as follows:  

   S = -(I – J/(m+n)) D2 (I – J/(m+n))/2 =(I – J/(m+n)) X*X*`(I – J/(m+n)),     (1) 

where I is an (m+n)×(m+n) identity matrix.2   

Equation (1) suggests that (I – J/(m+n)) X* may be recovered by Eigen-decomposing S and 

letting 

   X = WE1/2                                                        (2) 

where:  W = Eigen vectors of S 

E = the diagonal matrix of positive Eigen-values of S. 

Obviously S = XX`.  We shall call X the “Eigen” solution for the true coordinates.  If h is the number 

of positive Eigen-values of S, then X is an (m+n)×h matrix.  X is not necessarily identical to X*, nor 

                                                           

2 This result was derived by Tucker, Green, and Abelson, and reported by Torgerson (1958), p. 258. 
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unique in the sense that they are determined up to an arbitrary orthogonal rotation.  But, unless X* is 

known a priori, we are obliged to treat X as the “true” coordinates in the following sections. 

 

Relationship between Full and Partial Scalar Products Matrices 

Let X1 be the first m rows and X2 be the last n rows of X, respectively.  S may be partitioned as  

   S =  X1X1`  X1X2`    

    X2X1`  X2X2`  . 

The partial squared-distance matrix, D2mn , which is formed by squaring each element of Dmn , may be 

re-written in a matrix notation as follows.  

D2mn = diag(X1X1`) Jmn + Jmn diag(X2X2`) – 2X1X2`,                     (3) 

where Jmn is an (m×n) matrix of 1s.  We define the partial scalar product matrix, Smn , as follows. 

   Smn = -(Im – Jm/m)D2mn(In – Jn/n)/2                                 (4)  

where:   D2mn = an m×n matrix formed by squaring each element of Dmn  

 Im , In = an m×m and n×n identity matrix, respectively, 

 Jm , Jn = an m×m and n×n matrix of 1s’, respectively. 

Our next task is to show the relationship between S and Smn .  

 

Proposition 1 

   Smn = (Im – Jm/m) X1X2`(In – Jn/n) . 

 

Proof of Proposition 1:  From equations (3) and (4), we have 

Smn = -(Im – Jm/m)D2mn(In – Jn/n)/2 

= -(Im – Jm/m)[diag(X1X1`) Jmn + Jmn diag(X2X2`) – 2X1X2`](In – Jn/n)/2 

= (Im – Jm/m) X1X2` (In – Jn/n) . 

The last equation holds because 

   Jmn (In – Jn/n) = (Im – Jm/m) Jmn = 0 (= a matrix of all 0s). 

 

The most important implication of Proposition 1 is that the “true” (or Eigen) coordinates X1 and 

X2 cannot be recovered by simply applying the SVD to Smn.  Because X1 and X2 are separately 

“centered” (that is, the column means are subtracted from each value), the locations of X1 and X2 relative 
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to the true origin are unknown.  This leads to the interpretability problem for the joint space in 

correspondence analysis. 

 

Existence of Linear Transformations 

 Next we proceed to the proof of the proposition that X1 and X2 may be recovered by 

linear-transforming the SVD results of Smn .  We write the SVD results as 

   Smn = ULV` 

where  U, V = the left and right orthogonal vectors, respectively 

 L = the diagonal matrix of singular values. 

We will call the following coordinates, which are computed from the SVD results, the “SVD” solution. 

  Y1 = UL1/2 

  Y2 = VL1/2                                                                     (5) 

Since only positive singular values in L are used in (5), Y1 and Y2 are an m×k and an n×k matrix, 

respectively, where k is the number of positive elements in L.  Clearly, Smn = Y1Y2`.  Unfortunately, Y1 

and Y2 are not good substitutes for X1 and X2 for the present purposes, because in general they do not 

reproduce Dmn correctly. 

 In the following analysis we use the fact that Y1 and Y2 are linear functions of X1 and X2  

when k = h.  If this were true, then the reverse must be also true.  From Proposition 1, we have 

   Smn = (Im – Jm/m) X1X2`(In – Jn/n) , 

and hence 

   SmnSmn` = (Im – Jm/m) X1 [X2`(In – Jn/n)(In – Jn/n) X2]X1`(Im – Jm/m) . 

Since the matrix within [ ] in the above equation is an h×h symmetric matrix, it can be factored as 

   X2`(In – Jn/n)(In – Jn/n) X2 = F1F1`, 

where F1 is an h×h matrix.  That 

   SmnSmn` = (Im – Jm/m) X1 [F1F1`]X1` (Im – Jm/m) = UL2U`, 

suggests that we may write 

   Y1
 = UL1/2 = (Im – Jm/m) X1F1 L-1/2 .                          (6) 

It is clear that Y1 is a linear function of X1. 

Similarly, if we replace the h×h symmetric matrix [X1` (Im – Jn/m) (In – Jn/m) X1] by F2F2`, 

where F2 is an h×h matrix, we have 
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   Smn`Smn = (In – Jn/n) X2 [F2F2`] X2` (In – Jn/n) = VL2V`. 

One may write Y2 as a linear function in X2 as follows. 

   Y2 = VL1/2 = (In – Jn/n) X2F2 L-1/2                                           (7) 

 The following proposition is the consequence of the above derivations. 

 

Proposition 2 

 There exist linear transformations from the SVD solutions, Y1 and Y2, to the “true” (or Eigen) 

coordinates, X1 and X2, provided that the number of columns in Y and X are equal (i.e., k = h). 

 

Proof of Proposition 2:  Rewrite equations (6) and (7) as, 

 Y1 = (X1 – Jm X1/m)(F1L-1/2) 

 Y2 = (X2 – Jn X2/n)(F2L-1/2) . 

Taking inverse transformations from Ys to Xs, we have the desired results. 

 X1 = Y1 A1 + B1 

 X2 = Y2 A2 + B2 

where: A1 = (F1L-1/2) -1  

 A2 = (F2L-1/2) -1  

 B1 = Jm X1/m 

 B2 = Jn X2/n . 

The proviso is necessary because the number of columns of Y, k, may be less than the number of columns 

of X, h, in many applications.  When k < h, it is obvious that X1 and X2 cannot be exactly reproduced 

from Y1 and Y2.  Those cases for which k < h (to be called “non-exact” cases) will be dealt with in a 

later section. 

 Proposition 2 gives us an important clue as to the recovery of the “true” (or Eigen) coordinates, 

X.  Since we now know that X1 and X2 are linear functions in Y1 and Y2, we first obtain the SVD 

solution from Smn .  Then we calibrate the linear parameters (A1, A2, B1, and B2) in such a way that the 

partial distance matrix, Dmn , is correctly reproduced.  But, before we move to the calibration procedure 

in the next section, we will prove another proposition that is useful in reducing the number of parameters 

to be calibrated. 
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Constraints on Parameters 

 At present the total number of parameters in the linear transformations A1(k×k), A2(k×k), 

B1(m×k) and B2(n×k) is (2h+m+n)×k, where k is the number of positive singular values in L.  (We are 

still assuming that k = h.)  Even for a small k (3, say), the m×n elements of Dmn may be too small to 

calibrate all the parameters.  Fortunately, there are two important constraints on A1, A2, B1, and B2 that 

work to reduce the number of parameters. 

From Proposition 1, we have 

(Im – Jm/m) X1X2`(In – Jn/n) = Smn = Y1 Y2` .   

Hence the parameters are constrained in such a way that 

(Im – Jm/m) (Y1 A1+ B1) (Y2 A2 + B2)` (In – Jn/n) ≡ Y1 Y2` .                (8) 

But 

(Im – Jm/m) Y1 A1 = Y1 A1 

(In – Jn/n) Y2 A2 = Y2 A2 

(Im – Jm/m) B1 = (In – Jn/n) B2 =0 (= a matrix of all 0s). 

These relationships hold because column means of Y1 are 0 and all rows of B1 are equal.  The same is 

true for Y2 and B2.  After the simplification of the left-hand side, equation (8) becomes 

   Y1 A1 A2`Y2` ≡ Y1 Y2` . 

In order for the above constraint to hold, the following relationship must exist between A1 and A2 . 

A2 = ( A1
-1)` 

This shows that we need to calibrate only one k×k matrix instead of two. 

Also, there is a constraint placed on B1 and B2.  Since the overall column sums of X are 0 

(because the sums of Eigen-vectors are 0 in Equation (2)), it is necessary that the column sums of X1 and 

X2 must sum to 0, that is, 

   1m X1 + 1n X2 = 0 (= a vector of all 0s) 

where 1m and 1n are an (1×m) and an (1×n) matrix (row vector) of 1s, respectively.  From the definition 

of the Bs in Proposition 2,  

   1m B1 + 1n B2 = 11 Jm X1/m + 1n Jm X2/n = 1m X1 + 1n X2 =0           (9) 

because 1m Jm /m = 1m and 1n Jn /n = 1n.  

 We summarize the above results in the following proposition.  
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Proposition 3 

 The parameters of linear transformations defined in Proposition 2 are constrained in the 

following manner. 

 (a)   A2 = ( A1
-1)` 

 (b)   1m B1 = –1n B2 

 

Proposition 3 reduces the number of parameters to be calibrated greatly.  The constraint on B1 

and B2 suggests that we should let b = 11mX1 and construct B1 such that it’s every row is equal to b/m.  

Similarly, let every row of B2 be –b/n.  In this manner constraint (9) is satisfied and the number of 

parameters in B1 and B2 to be calibrated is reduced from (m+n)×k to k.  A1 contains k×k elements and B 

contains k elements, and hence the total number of parameters to be calibrated is now only (k+1)×k.  In 

the next section we will discuss the calibration procedure using the m×n elements in Dmn. 

 

CALIBRATION PROCEDURE 

Formulation of Problem: Exact Solution Case 

 We first consider the cases for which k = h, that is, the number of positive Eigen-values in E is 

equal to the number of positive singular values in L.  We will call those cases “exact,” because 

Proposition 2 tells us that in those cases there exist exact linear transformations from the SVD solution to 

the Eigen solution.  It remains for us to find the right linear transformations that reproduce Dmn correctly. 

 The calibration procedure for the exact solution case may be formally stated as follows. 

 

Minimization Problem 

 Minimize Q =ΣiΣj(dij – d̂ ij)2 with respect to A and b    (10)  

where:     dij = the (i, j) th element of Dmn 

   d̂ ij = square root of the (i, j) th element of D2mn 

   D2mn = diag(X
^

1X
^

1`) Jmn + Jmn diag (X
^

2X
^

2`) – 2X
^

1X
^

2` 

   X
^

1 = Y1 A + Jmk diag(b/m) 

   X
^

2 = Y2 (A-1)` – Jnk diag(b/n) 

and Jmk and Jnk are an m×k and an n×k matrix of all 1s’, respectively. 
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 It may be possible to derive the first- and second-order derivatives of the objective function 

(10) with respect to A and b, and analytically solve for their optimal values.  However, since Proposition 

2 guarantees the existence of A and b, it is much simpler to use a numerical analysis algorithm (such as 

Excel Solver) and directly minimize Q to find the optimal values. 

 A numerical example is given to illustrate the proposed approach.  Table 1 gives the 

2-dimensional coordinates of seven objects and suppose that they represent the Eigen solution, X, of 

equation (2).   

 

Table 1  True Coordinates(X)  Table 2  Partial Squared-Distances (Dmn)   
 Dimensions  Objects 4 5 6 7 
Objects 1 2  1 2 2 9 13 

1 -1.414 0.000  2 2 10 13 5 
2 0.000 -1.414  3 10 10 5 1 
3 1.414 0.000  Table 3   Partial Scalar Products (Smn)   
4 -1.414 -1.414  Objects 4 5 6 7 
5 -1.414 1.414  1 1.167 2.5 -0.167 -3.5 
6 0.707 2.121  2 1.667 -1.0 -1.667 1.0 
7 2.121 -0.707  3 -2.833 -1.5 1.833 2.5 

 

Table 2 gives the partial squared-distance matrix, D2mn (rather than Dmn), between the first 3 objects and 

the last 4 objects.  We are to recover the coordinates in Table 1 from the knowledge of D2mn. 

First we compute the partial scalar products matrix, Smn (shown in Table 3), and derive the SVD 

solution from it (Table 4).  Next we calibrate A and b by solving the minimization problem stated above.  

Table 6 gives the calibrated values of A and b.  The recovered coordinates (Table 5) are indeed identical 

to the Eigen solution, except that the direction of both axes is reversed in the former.  In practical 

applications this is not a problem because the Eigen solution itself is rotationally indeterminate.  The 

important point is that we recovered a set of coordinates, which reproduce Dmn perfectly.  We will call 

the resultant coordinates of X the “Linear” solution for obvious reasons. 

Table 4  SVD Solution (Y)    Table 5  Linear Solution (X
^

) 
 Dimensions  Dimensions 

Objects 1 2  Objects 1 2 
1 1.732 -0.749  1 1.414 0.000 
2 0.000 1.498  2 0.000 1.414 
3 -1.732 -0.749  3 -1.414 0.000 
4 1.155 1.113  4 1.414 1.414 
5 1.155 -0.668  5 1.414 -1.414 
6 -0.577 -1.113  6 -0.707 -2.121 
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7 -1.732 0.668  7 -2.121 0.707 
     
Table 6 Calibrated Parameters       
 Dimensions  Dimensions 
A 1 2  B 1 2 
 0.81650 0   0 1.41421 
  0 0.62933       

 

Some Issues in Calibration 

 In obtaining the parameters in Table 6, we encountered a number of minor problems that could 

not be ignored entirely. 

1. Recovery of Partial Scalar Products: Depending on the method used to obtain the SVD solution, Y1 

and Y2 may not reproduce the partial scalar product matrix, Smn, correctly, and it may become 

necessary to change the signs of some columns of either Y1 or Y2 .  It is advisable to check the 

recovery of partial scalar products before other steps in the calibration procedure are taken. 

2. Initial Values for Iteration: Almost all numerical optimization routines require initial values for 

parameters to be calibrated.  It was found that the proposed minimization problem was rather 

sensitive to the choice of initial values, so much so that initial values determined the calibration 

outcomes.  An easy choice for the initial values for the example problem would be an identity 

matrix for A and a zero vector for b, but these initial values did not lead to the global optimum 

(namely, 0) for the objective function.  After an exhaustive grid search for the right combination of 

initial values, we discovered that they were limited to only a very small region around the optimum 

values of A and b in Table 6.  

      A useful strategy in searching the right combination of initial values is as follows. 

(1) Fit b first, using an identity matrix for A. 

(2) Let the diagonal values of A be diag(A).  Try various initial values for diag(A), holding the 

values of b obtained at the first step.  The search range between 0 and 2 for the elements of 

diag(A) seems adequate in most cases. 

This strategy seems to work because the discrepancies between X and Y are due in large part to 

separate centering operations (i.e., subtraction of the respective means) applied to X1 and X2 to 

obtain Y1 and Y2. 

3.  Orthogonality of Recovered Coordinates: The dimensions of the recovered coordinates (i.e., the 
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Linear solution) must be orthogonal because those of the Eigen solution are orthogonal.  Hence it is 

necessary to find an orthogonal rotation, T, such that T`(X
^

`X
^

)T is a diagonal matrix, where X
^

 

represents the coordinates computed from calibrated values of A and b.  This is easily 

accomplished by Eigen-decomposing X
^

`X
^

 and taking the Eigen vectors as T.  Post-multiplication 

of X
^

 by T results in the Eigen solution.  Note that post-multiplying X
^

 by T does not affect the 

reproduction of Dmn . 

 

Non-exact Solution Case 

 It is unreasonable to think that the assumption that k = h always holds.  In many applications 

the number of positive Eigen-values, h, (that is, the number of columns for the Eigen solution) may be 

greater than min(m, n).  Furthermore, h is not usually known beforehand in practical applications.  In 

those cases for which k is suspected to be less than h (i.e., in “non-exact” cases), we cannot expect that X 

will be exactly recovered from Y.  However, we may still apply the calibration procedure developed for 

exact cases because the Linear solution, X
^

, may be considered as a least-squares estimate of X in 

non-exact cases.  In the following we discuss some issues that are associated with non-exact cases. 

1.  Since the Linear solution, X
^

, represents at best an approximate solution when k < h, after the Linear 

solution is computed, adjustments will have to be made to the resultant X
^

 in order to increase their 

fit to Dmn.  We propose that a useful procedure in this situation is to fit the coordinates of row 

objects and those of column objects to Dmn alternately.  The objective function (Equation (10)) is 

the same as the minimization problem (i.e., Equation 10) but the variables to be optimized in this 

case are object coordinates.  Q in (10) is minimized with respect to X1 first, holding the values of 

X2 constant.  Then the optimal values of X2 are computed, holding the current values of X1 constant, 

and so on, until there is no more improvement in Q.  Because of the structure of the objective 

function, this process amounts to the optimization of the coordinates of each object in turn, holding 

the coordinates of all other objects constant.  The minimization task is not a great one and can be 

performed easily with a numerical optimization algorithm such as Excel Solver.  Our experience 

suggests that this alternate minimization procedure converges to a solution within a finite number of 

cycles.  We will call the resultant solution the alternating least-squares or “ALS” solution (cf. de 

Leeuw, Young, and Takane, 1976). 

2.  As was already pointed out, it is impossible to reproduce Dmn perfectly from the recovered 
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coordinates when k < h.  This means that the optimal value of the objective function (10) in the 

minimization problem is no longer 0, and therefore searching for the right combination of initial 

values becomes all the more difficult, especially when min(m, n) is small.  But, if min(m,n) is fairly 

large (over 5, say), the choice of initial values is not a serious problem, and it is advisable to use the 

Linear solution as the initial values for the alternate-least squares iterations. 

3.  It is recommended to rotate the resultant coordinates again to make them orthogonal to each other.  

By the adjustments made through the alternating least-squares procedure stated above, the 

coordinates tend to deviate from the orthogonality requirement.  Also, we may want to rotate the 

coordinates later to increase interpretability, in which case it is better to begin with a set of 

coordinates that are known to be orthogonal. 

  

PRACTICAL EXAMPLES 

 It would not be far fetched to state that the researchers in the field of asymmetrical MDS so far 

had little interest in metric unfolding, because their attention had been directed mostly toward non-metric 

methods.  But there are many instances in business and marketing where, with only a simple 

transformation of original data, metric inter-set distances may be defined and measured.  In the 

following we will present four examples to which metric unfolding is applied with a minimum number of 

additional assumptions.  Metric unfolding solutions of these examples add much to the interpretation of 

original data, due mostly to the ability of metric unfolding to give joint-space graphic presentations of 

both row- and column-objects.   

 

Car Preference Example 

 In a classic example of the internal analysis of preference (SAS Ver. 8 Sample Data Libraries), 

25 judges rated 17 makes (or models) of passenger cars on a 0 to 9 scale in accordance with their 

preference to each make (0: no preference, 9: strong preference).  The original data is listed in Table 7.  

The original preference scores were converted to distances using the following simple transformation.   

 Distance = 9 – Preference Score + 0.5 

0.5 in the above transformation was added to avoid a distance of 0 between objects.  The calibration 

procedure for non-exact cases was applied to the resulting distance measures.  In order to indicate the 

degree of fit, we computed the Pearson correlation coefficients, r, and squared values of r, R2, between 
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observed and calibrated distances from successive solutions.  They are given in Table 8. 

 

Table 8  Correlations between Observed and Computed Inter-set Distances 

Solutions          r         R2 

                           SVD         0.691     0.478 

                           Linear       0.863     0.745 

                            ALS        0.899     0.791   

The final (e.g., ALS) solution is shown in Table 9.  Only three dimensions are shown here, though the 

final solution was 17-dimensional.  The three dimensions cumulatively explain 86.8% of variations in 

the final solution.  A three-dimensional graph of the coordinates is shown in Figure 1(a) and 1(b). 

[Figure 1(a) and 1(b) about here.] 

Since this car-preference example was created originally to be analyzed by MDPref (Chang 

and Carroll, 1969), a three-dimensional MDPref solution was obtained and shown in Table 10 for 

comparison purposes.  Since distance-based metric unfolding solutions and vector-based MDPref 

solutions were not directly comparable, an attempt was made to reconstruct the preference scores from 

the coordinates in Table 9 and 10 and Pearson correlation coefficients were computed between the 

original preference scores and reconstructed scores.  

Table 11  Correlation Coefficients between Original and Reconstructed Preference Scores 

Methods    r   R2    

MDPref   0.788   0.621 

Metric Unfolding   0.845  0.714 

Metric Unfolding gives a slightly better fit to the original scores, but this is a heuristic comparison, and 

we basically assert that both methods are approximately equal in reproducing the original scores.  

Two-dimensional graphs for the metric unfolding and MDPref solutions are given in Figure 2 and 3, 

respectively. 

[Figure 2 and 3 about here.] 

Though the basic assumptions of those two models are greatly different, interpretations of those two 

graphs as to brand preferences are approximately the same: each judge’s order of preferences can be 

approximately read from those two graphs. 

More basic, however, than merely the increase in statistical fit, we believe that the ideal-point 
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model is a better representation of the psychological-judgment process.  The MDPref model is almost a 

statistical convenience.  Think of a two by two matrix, where the columns are Internal Analysis of 

Preferences (IAP) and External Analysis of Preferences (EAP), and the rows are Ideal-Point Model (IPM) 

and Vector Model (VM) below. 

                  Table 12  Classification of  Preference Analysis             

               IAP                          EAP             

IPM      Metric Unfolding      LEAP-IM or PREFMAP-IP 

VM         MDPref                 LEAP-VM or PREFMAP-VM 

Metric Unfolding is the concern of our current work.  LEAP is Logistic External Analysis of Preferences 

(Cooper and Nakanishi, 1983).  Three of these four cells are filled with models of human judgments that 

are distance based.  Only one (MDPref) is scalar-products based.  In the EAP Models, R2 will 

necessarily increase from VM to IPM and a reduced model test will tell if the extra parameters of the IPM 

are statistically worthwhile.  We can make this call because the human-judgment model in both cases is 

distance based.  In judging between Metric Unfolding and MDPref, we have a distance-based model 

and a scalar-product-based model.  These certainly are not nested.  Simple R2 comparisons only tell us 

these are in the same general range.  So we have a more defensible model of human judgments that 

provides a more natural and interpretable visual map of preference relations without sacrifice in terms of 

fit to the original data. 

 

Cognitive Mapping of Brands 

 Cognitive mapping of brands based on brand similarity measures had been in vogue in the 

1960’s and 70’s, but fallen into disuse in recent years, perhaps because ranking of the similarity of 

m×(m-1) brand pairs (where m is the number of brands) imposed a heavy mental burden on the 

respondent when m was even moderately large. In this example, we will show that an interpretable result 

may be obtained by applying metric unfolding to a similarity data set collected by a method less taxing to 

the respondent. 

A manufacturer of children’s wears (brand X) surveyed 170 of its most valuable customers 

(who purchased this company’s products in excess of $1600 per year) and asked how similar brand X was 

to six competing brands.  Note that the respondents only answered six 5-point interval scales (0: 

extremely similar; 4: not similar at all) for this questionnaire. 
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 It is theoretically possible to apply metric unfolding to the 170 by 6 matrix of similarity ratings, 

but too many dots for respondents would blot out six brand positions and make 3D maps difficult to read.  

In our example, we first clustered the respondents with the SAS Proc Cluster procedure (Ward method), 

before metric unfolding was applied to the data.  Four clusters (X1~X4) were identified, and the average 

similarity scores for each cluster were computed (shown in the following table).   

    Table 13  Average Similarities by Cluster   
           Brands     Cluster 
Cluster A B C D E F Size 

X0 1.982 1.207 2.729 2.345 1.170 2.098 66
X1 1.636 1.087 2.500 2.261 1.043 1.421 25
X2 2.000 1.238 2.650 2.350 1.150 1.667 23
X3 1.737 1.278 2.600 2.250 1.316 1.941 21
X4 1.964 1.414 2.517 2.286 1.143 1.842 35

Cluster X0 is a group of respondents who were excluded from the SAS procedure because of some 

missing data.  (The SAS Cluster procedure excludes missing data list-wise.)  The size of each cluster is 

listed in the last column of Table 13. 

We may treat this table as a partial distance matrix and apply metric unfolding to it.  The next 

table shows the final (linear-fitted and rotated) solution for this data.  This four-dimensional solution 

happened to be an exact one; that is, a linear transformation of the SVD solution reproduced the original 

distance matrix (Table 13) perfectly.  The final (ALS) solution is given in Table 14. 

  Table 14  ALS Solution 
      Coordinates   
Objects Dim_1 Dim_2 Dim_3 Dim_4 
X0 -1.008 -0.430 -0.400 -0.132
X1 -0.744 -0.030 0.452 -0.230
X2 -0.833 0.823 0.013 0.099
X3 -0.658 -1.023 0.113 -0.165
X4 -0.795 0.649 -0.404 -0.288
A 0.863 -0.192 0.210 -0.132
B -0.297 -0.131 0.061 0.675
C 1.651 0.094 -0.232 -0.410
D 1.268 -0.112 -0.406 0.337
E -0.026 0.030 -0.147 0.228
F 0.579 0.323 0.738 0.019

 

[Figure 4 and 5 about here.] 

Figures 4 and 5 give 2-dimensional and 3-dimensional maps of the final solution.  The size of a red 

circle in those maps represents the relative size of the corresponding cluster.  All cluster centroids (X0 ~ 
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X4) are gathered in the left side of the maps, indicating that the best customers of brand X share a fairly 

common view of competitive brands.  From these maps we can see that all best customers perceive 

brand B and E to be similar to brand X, but brand C and D, which happened to be the two largest 

competitors, are perceived to be dissimilar.  Perhaps this is a competitively defensible position for brand 

X, since its best customers are not likely to be easily lured away to two largest competitors.  Marketing 

strategies of Brand X will only have to be focused on two less powerful competitors. 

 There are several advantages of the above approach to cognitive mapping of brand similarity 

data.  Firstly, the amount of respondent efforts is much less than the usual procedure of ranking or rating 

m×(m-1) pairs of objects in the order of similarity.  Secondly, the resulting map becomes more legible 

by clustering respondents and by showing the relative sizes of clusters in the map.  And finally, the 

clusters may be further analyzed for the possibility of segmentation by brand similarity perception.  On 

the other hand, this approach is limited to “our brand against other brands” comparisons.  It will be 

better to have some variations in brand similarity perceptions to give a solution (and the resulting map) 

greater interpretability. 

 

Individual Level Similarity Judgments 

 In this section we show that metric unfolding may be applied to similarity judgment data at the 

individual level.  Two subjects were asked to supply similarity judgments between pairs of beverages in 

both ranking and rating formats.  Six kinds of beverages (Ginger Ale, Apple Juice, Grapefruit Juice, 

Coca Cola, Orange Juice, and Grape Juice) were divided into two groups, and nine pairs of objects were 

formed by selecting one kind from each group.  The respondents were asked to rank them (to be called 

the “ordinal” data) and also to rate them on a 5-point interval scale (the “interval” data).  The following 

tables give the responses to those two types of questions. 

  Table 15  Similarity Judgments from Two Subjects     
Subject 1: Coca Orange Grape Subject 2: Coca Orange Grape 
Ordinal Data Cola Juice Juice Ordinal Data Cola Juice Juice 
Ginger Ale 1 6 7 Ginger Ale 2 6 5
Apple Juice 8 3 4 Apple Juice 9 3 4
Grapefruit Juice 9 2 5 Grapefruit Juice 8 1 7
Subject 1: Coca Orange Grape Subject 2: Coca Orange Grape 
Interval Data Cola Juice Juice Interval Data Cola Juice Juice 
Ginger Ale 1 5 5 Ginger Ale 1 5 4
Apple Juice 5 2 4 Apple Juice 3 2 3
Grapefruit Juice 5 1 4 Grapefruit Juice 4 1 2
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The Pearson correlation coefficients between ordinal and interval data are 0.918 for subject 1 and 0.622 

for subject 2.  The final solutions for all four data sets are shown in the following figures.  All solutions 

were two-dimensional.  (The interval data for subject 2 yielded an exact solution.)  

[Figure 6 and 7 about here.] 

 All the maps appear to have a degree of face validity since likely objects (Orange Juice and 

Grapefruit Juice [both are citrus] and Coca Cola and Ginger Ale [both are carbonated]) are grouped 

together in them.  Though the two maps for subject 1 are in fair agreement, the maps for subject 2 are 

different (especially in the location of Apple Juice is very different).  Those examples suggest a simple 

rule of thumb: if the correlation between ordinal and interval data for a subject were high, the final 

solutions would be also in good agreement.   

The reliability of ordinal and interval scales probably depends on the task conditions for 

similarity judgment.  Rating with an interval scale may be a much easier task for the subjects when the 

number of object pairs is large, except that the subjects may give less serious thoughts to rating (in which 

each pair of objects is rated independently from other pairs) than to straight ranking, which requires 

comparisons among pairs.  We should expect a greater degree of internal consistency in distances 

computed from ranks, but internal consistency does not guarantee that a psychologically valid 

configuration of objects will be recovered.  Thus we are faced with a rather difficult choice between 

reliability (ranking) and easy to use (rating).  There seems no uniform answer to this choice problem. 

 

Brand Association Example 

 In this section we describe an application in branding.  A group of forty college students were 

given a list of 10 sneaker brand names and asked to write down as many adjectives as came to their minds 

in association with each brand name.  Table 16 gives the frequencies of adjectives mentioned by the 

respondents.  Of 78 adjectives mentioned, only top 20 adjectives are listed here. 

Several factors affect the frequencies of adjectives associated with each brand name.  Given the 

assumption that the human memory structure is associative, the strength of association between concepts 

in long-term memory may be modeled as the “distance” in a hypothetical space; that is, the greater the 

strength of association between two concepts, the shorter the distance between them.  If this assumption 

is adopted as a working hypothesis, then, by estimating the distances from the frequencies, we may be 

able to find positions (coordinates) of both brands and adjectives in the common “semantic” space. 
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But, because of the data collection procedure used here, adjective frequencies are influenced by 

another factor that may be called the “Popularity” effect.  Suppose that 30 respondents are aware of 

brand A and 10 respondents are aware of brand B.  Suppose also that 15 of the former group and 10 of 

the latter group chose adjective “Economical”.  Do we conclude that this adjective is closer to brand A 

than to brand B in the semantic space?  But, considering the fact that all of respondents who are aware of 

brand B and only 50% of those who are aware of brand A mentioned this adjective, we are led to conclude 

that brand B is closer to this adjective is than brand A.  In order to estimate the distances between brands 

and adjectives, we will have to take account of such “popularity” effects from the frequencies.  The 

number of respondents who are aware of each brand is given in Table 16.  In this example the awareness 

level is very high for all brands, but the popularity effect may be a critical factor when the awareness 

levels are greatly different among brands. 

To incorporate these two factors we propose the following multiplicative model for adjective 

frequencies. 

E(nij) = ni c dij
-λ      

                                                                          (11) 

where:  E(nij) = expected number of the j-th adjective for brand i 

 ni  = number of respondents who are aware of brand i 

 dij = distance between brand i and adjective j 

 c, λ = parameters to be specified. 

If we let pij = nij / ni and assume that λ = 2 for simplicity, we obtain estimated values of dij
2 as 1/pij

 .  

(Since c is only a scaling constant, we may assume c=1 without the loss of generality.) 

 Now we turn to the task of finding the coordinates of both brands and adjectives in a common 

space.  First, the squared-distance matrix was computed from Table 16 by using equation 11 and then the 

SVD solution was obtained.  The number of positive singular values, k, was 9.  The Linear and ALS 

solutions were successively computed from the SVD solution.  The fit of reconstructed distances to the 

“observed” distances (calculated from the frequencies by model (11)) improved significantly as we 

moved toward the ALS solution.  The r and R2 values are given in Table 17.  The ALS solution is given 

in Tables 18(a) and (b).  Judging from the value of R2, the ALS solution is able to account for about 

94.1% of the total variance in observed distances. 

Table 17  Correlations between Observed and Computed Inter-set Distances 

Solutions          r         R2 
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SVD 0.834 0.696
Linear 0.936 0.877 
ALS 0.970 0.941

Figures 8 and 9 give the 2-dimensional and 3-dimensional representations of brands and adjectives in the 

“semantic” space. 

[Figure 8 and 9 about here.] 

Though it would be over reaching to derive definite conclusions from this one example, it 

appears that the center of the semantic space is occupied by those adjectives that are characteristic of the 

product category (sneakers in this case) and surrounded by brands. If an attribute is prototypical enough 

of the whole category to be shared by all brands in it, we would expect that attribute to be close to 

equidistant from all brands. The centroid of the brands is our closest approximation (in a least-squares 

sense) to such a point without increasing the dimensionality of the configuration. Adjectives that are not 

characteristic of all brands in the product category comprise the outer-most layer. When those adjectives 

are extreme enough they can help name the dimensions involved. In Figure 8 we see a 

masculine-feminine dimension characterizing the vertical alignment and a  

economical-stylish/fashionable dimension as characterizing the horizontal alignment. This three-layered 

structure seems to suggest that a brand’s unique character is determined, not by the adjectives in the 

center, but by the adjectives in the outer fringes of the semantic space.  This conjecture may be highly 

relevant to brand identity research, but we will refrain from making further comments because of the 

small and biased nature of the sample.  This example illustrates the advantage of metric unfolding 

methods over correspondence analysis.  With only a simple transformation of the original data, we 

obtain a joint-space representation of both row- and column-objects (brands and adjectives in this 

example) for which there is no interpretive problem as to inter-set comparisons. 

 

Asymmetric Competitive Maps 

Colombo and Morrison (1989) describe a simple procedure for estimating the proportion of 

potential switchers by comparing the conquesting ratios in the southwest boxes of the switching matrices, 

and noting the ultimate parameters, πi , must sum to 1.0.  Table 19 gives a brand-switching matrix for a 

group of Japanese beer brands.  Different sizes for a brand are separately listed in this table.  From this 

table one may compute the row-conditional, transition-probability matrix that shows the likelihood that a 

person purchasing the beer in the row on the last occasion will purchase the beer in the column on the 
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next.  The diagonal entry in the transition probability matrix shows the repeat-purchase probabilities 

composed of both true loyals and potential switchers.  Except for the diagonal entry, the entries in a 

column reflect the draw or conquesting potential of the column brand. The column average excluding the 

diagonal entry summarizes this draw or conquesting potential.  Renormalizing the draw or conquesting 

probabilities provides our estimates of parameter πi .  The procedure for estimating πi amounts to 

forming the row-conditional, transition-probability matrix, deleting the diagonals, finding the column 

averages as the raw draw of each brand, and renormalizing so that the sum is 1.0. 

With these estimates of πi we can estimate the proportion of true loyals, αi , from Colombo 

Morrison equation (1): 

 pii =  αi + (1 – αi) πi  

We set up a squared-error criterion and used Excel Solver to accomplish the estimation.  With these 

estimates we can translate the number of repeat buyers in the diagonals of the original transition matrix 

into the number of true loyals and the number of potential switchers who simply didn’t switch this time 

around.  The vulnerability of each brand would be reflected in the sum of the entries in a row minus the 

number of true loyals for the row brand.  The clout of each brand would be reflected in the sum of the 

actual switchers into the column brand from other brands, plus the true loyals to that brand. 

The distance matrix is based on the original transition matrix, T, with the true loyals removed 

from the appropriate diagonal.  Let L be a diagonal matrix with the number of true loyals in each 

appropriate diagonal. Let V be a diagonal matrix with the vulnerability measure on each diagonal. And let 

C be a diagonal matrix with the clout measure on each diagonal. 

T – L = V• [ f(D) ]• C . 

Or 

f(D) =V-1 • (T – L) • C-1.  

In our example we used a simple function for D, that is, f(dij)=dij
2 and applied metric unfolding to the 

resultant D matrix.  Figure 10 summarizes the result of analysis. 

[Figure 10 about here.] 

Those three dimensions cumulatively accounts for approximately 75% of total variance in the 

D matrix.  A red circle represents the vulnerability and a blue circle represents the clout of the 

corresponding brand/size combination.  The relative size of those circles indicates the strength of either 

clout or vulnerability.  The closer a brand’s clout position is to another brands vulnerability position, the 
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more competitive pressure it exerts.  What a brand manager would want to see in his or her brand is a 

large, centrally located bubble reflecting the brand’s clout, and a tiny bubble reflecting that brand’s 

vulnerability.  This would reflect a brand exerting broad competitive pressure, while being insulated 

from the counterinfluence. 

 First, we see the competition is more within size groups than between size groups. Note that 

the smallest size, 135ml is a little over one-third of a standard 12oz. glass.  These small serving sizes 

have no clout over the larger (350ml or 500ml) size offering, but are also not vulnerable to the pressures 

from those much larger sizes.  Within the 135ml size offerings we see the distance between Asahi Super 

Dry (S135C) and Kirin Draft (D135V) is much smaller than the distance between Kirin Draft (D135C) 

and Asahi Super Dry (S135V).  This reflects Asahi Super Dry (S135C) exerting more competitive 

pressure on Kirin Draft (D135V) than Kirin Draft (D135C) can return.  Second, within the larger sizes 

the dominant competitive pressures come from Kirin Ichibanshibori (I350C) and Asahi Super Dry 

(S350C).  Kirin Ichibanshibori gets more support in exerting competitive pressure from its large size 

(I500C) than Asahi Super Dry, since we see that 500ml Asahi Super Dry is remote (both S500C and 

S500V are at the far left of the map).  Sapporo’s Hokkaido brand has a small, relatively loyal following, 

but exerts little competitive pressure on others (H350C).  It is aligned to be competitively vulnerable to 

Kirin Ichibanshibori (I350C), but its high loyalty (reflected in the small size of the vulnerability bubble of 

H350V) indicates not much will be lost.  Sapporo’s Hokkaido needs to work to maintain that loyalty, 

since without it the brand is positioned to be very vulnerable to Kirin Ichibanshibori.  We also see that 

the Kirin Lager offerings (L500, L350, and L250) tend to be on the right side of this map, while the Asahi 

Super Dry offerings (S500, S250, and S350) tend to be on the left.  These brands compete very little 

with each other. 

 

CONCLUSIONS 

We believe that researchers and managers are going to interpret perceptual maps in terms of 

distances whether or not the underlying analysis allows such interpretation.  Squared distances are not 

distances.  Scalar-product distances are not distances.  Non-comparable inter-set distances are just that 

– non-comparable.  The joint-space maps that reflect the basic and compelling problems in marketing 

applications of perceptual mapping need to have the simple distance interpretation users of these 

techniques expect, or misinterpretation will result.  We could try to change the behavior of all the users 
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who need these maps, or we could develop a method that allows for the straightforward interpretation of 

these maps.  We chose the later approach. 

By revisiting the basic problem of metric unfolding we have derived a method that provides a 

simple distance interpretation of joint spaces, even when only the inter-set distance judgment exist.  We 

have developed widely available estimation procedures using Excel Solver, and applied this method to 

classic examples of internal analysis of preference, cognitive mapping of brands, individual similarity 

judgments, brand association data, and brand switching data.  In each of those examples, we made a 

simple – albeit naïve – assumption to derive distance measures from the original data.  The simplicity of 

assumptions was intentional.  We wanted to demonstrate that metric unfolding may be applied to those 

diverse data with a minimum number of additional assumptions, and yet yield rich and managerially 

meaningful interpretations.  We hope this effort will rekindle interest in and proper use of 

multidimensional scaling for addressing marketing problems. 
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Table 7   Preference Ratings for Automobiles
17 Makes - 25 Judges

_NAME_ j01 j02 j03 j04 j05 j06 j07 j08 j09 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 j23 j24 j25
Eldorado 8 0 0 7 9 9 0 4 9 1 2 4 0 5 0 8 9 7 1 0 9 3 8 0 9
Chevette 0 0 5 1 2 0 0 4 2 3 4 5 1 0 4 3 0 0 3 5 1 5 6 9 8
Citation 4 0 5 3 3 0 5 8 1 4 1 6 1 6 4 3 5 4 4 7 4 7 7 9 5
Malibu 6 0 2 7 4 0 0 7 2 3 1 2 1 3 4 5 5 4 5 6 6 8 6 5 8
Fairmont 2 0 2 4 0 0 6 7 1 5 0 2 1 4 4 3 5 3 0 6 4 8 6 5 5
Mustang 5 0 0 7 1 9 7 7 0 5 0 2 1 1 0 1 8 5 0 6 5 7 5 5 5
Pinto 0 0 2 1 0 0 0 3 0 3 0 3 0 2 0 1 5 0 0 5 1 4 0 7 8
Accord 5 9 5 6 8 9 7 6 0 9 6 9 9 9 5 2 9 9 8 9 7 5 0 7 8
Civic 4 8 3 6 7 0 9 5 0 7 4 8 8 8 5 2 5 6 7 7 6 5 0 7 5
Continental 7 0 0 8 9 9 0 5 9 2 2 3 0 4 0 9 9 6 2 0 9 1 9 0 9
Gran Fury 7 0 0 6 0 0 0 4 3 4 1 0 1 1 0 7 3 3 3 4 5 8 7 0 8
Horizon 3 0 0 5 0 0 5 6 3 5 4 6 1 3 0 2 4 4 4 6 7 5 6 5 5
Volare 4 0 0 5 0 0 3 6 1 4 0 2 1 6 0 2 7 5 4 4 7 6 5 5 5
Firebird 0 1 0 7 8 9 5 6 1 3 2 0 1 2 0 6 9 5 8 2 6 5 9 0 7
Dasher 4 8 5 8 6 9 6 5 0 8 8 7 7 7 9 5 3 7 7 8 9 5 0 0 0
Rabbit 4 8 5 8 5 0 9 7 0 9 6 9 5 7 9 5 4 8 7 8 8 5 0 0 0
Saab DL 9 9 8 9 9 9 8 9 0 9 9 9 9 9 8 7 9 8 9 9 1 9 0 0 0



2

Models Dim 1 Dim 2 Dim 3 Judges Dim 1 Dim 2 Dim 3
Eldorado 3.083 2.919 - 0.462 Judge 1 1.071 2.147 - 0.248
Chevette 1.447 - 4.093 - 3.056 Judge 2 - 5.076 1.105 0.118
Citation 1.013 - 3.402 - 0.183 Judge 3 - 3.873 - 1.931 - 3.094
Malibu 2.727 - 1.595 - 0.555 Judge 4 0.270 1.483 0.656
Fairmont 1.891 - 3.355 1.708 Judge 5 - 0.489 3.141 - 0.801
Mustang 2.164 - 0.764 3.028 Judge 6 0.533 3.881 0.352
Pinto 2.199 - 4.967 - 1.819 Judge 7 - 2.875 - 0.643 2.413
Accord - 1.864 0.336 0.231 Judge 8 0.323 - 0.849 0.828
Civic - 2.566 - 0.881 0.968 Judge 9 5.117 3.518 - 2.279
Continental 3.149 2.905 - 0.524 Judge 10 - 2.321 - 0.435 0.666
Gran Fury 4.005 - 0.139 - 0.448 Judge 11 - 3.696 1.405 - 2.027
Horizon 1.905 - 2.198 1.293 Judge 12 - 2.817 - 0.573 - 0.486
Volare 2.564 - 1.935 2.644 Judge 13 - 4.737 0.590 - 0.029
Firebird 2.289 2.179 0.979 Judge 14 - 2.240 0.478 0.456
Dasher - 2.932 1.512 0.010 Judge 15 - 4.331 - 0.501 - 0.871
Rabbit - 2.999 0.140 0.738 Judge 16 1.963 2.736 - 1.578
VolvoDL - 2.290 0.782 - 0.073 Judge 17 1.388 1.195 0.841

Judge 18 - 0.874 1.829 0.948
Judge 19 - 2.362 0.900 - 0.289
Judge 20 - 1.637 - 1.696 0.256
Judge 21 1.222 1.559 0.748
Judge 22 0.743 - 1.663 0.573
Judge 23 4.804 0.493 - 0.012
Judge 24 0.716 - 5.128 - 0.623
Judge 25 3.395 - 0.484 - 0.996

Table 9  Metric
Unfolding Solution
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Figure 1 (a)  Joint-Space Presentation of 
Metric Unfolding Solution
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Figure 1 (b)  Joint-Space Presentation of 
Metric Unfolding Solution
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Models Prin 1 Prin 2 Prin 3 Judges Prin 1 Prin 2 Prin 3
Eldorado - 0.832 2.072 - 0.738 Judge 1 0.288 0.622 0.299
Chevette - 0.804 - 1.429 - 1.568 Judge 2 0.955 0.046 - 0.217
Citation - 0.059 - 0.872 0.634 Judge 3 0.771 - 0.318 - 0.155
Malibu - 0.410 - 0.037 0.970 Judge 4 0.507 0.732 0.320
Fairmont - 0.430 - 0.894 1.142 Judge 5 0.482 0.709 - 0.258
Mustang - 0.396 - 0.194 1.613 Judge 6 0.272 0.695 0.000
Pinto - 1.068 - 1.384 - 1.328 Judge 7 0.792 - 0.163 0.230
Accord 1.365 0.106 - 0.959 Judge 8 0.516 - 0.046 0.718
Civic 0.927 - 0.453 - 1.014 Judge 9 - 0.499 0.726 - 0.212
Continental - 0.853 2.176 - 0.762 Judge 10 0.932 - 0.206 0.044
Gran Fury - 0.923 0.137 0.717 Judge 11 0.854 0.125 - 0.280
Horizon - 0.357 - 0.415 - 0.035 Judge 12 0.833 - 0.104 - 0.365
Volare - 0.502 - 0.225 0.652 Judge 13 0.942 - 0.020 - 0.151
Firebird - 0.489 0.873 0.497 Judge 14 0.832 0.181 - 0.088
Dasher 1.354 0.230 - 0.867 Judge 15 0.856 - 0.189 - 0.088
Rabbit 1.419 - 0.070 - 0.173 Judge 16 0.000 0.802 0.040
VolvoDL 2.058 0.379 1.219 Judge 17 0.114 0.655 0.267

Judge 18 0.730 0.600 0.086
Judge 19 0.783 0.113 - 0.043
Judge 20 0.764 - 0.583 0.125
Judge 21 0.086 0.662 - 0.123
Judge 22 0.237 - 0.452 0.750
Judge 23 - 0.752 0.359 0.278
Judge 24 - 0.174 - 0.749 - 0.176
Judge 25 - 0.763 0.168 - 0.253

Table 10  MDPref
Solution
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Figure 2  Joint-Space Presentation of 
Metric Unfolding Solution – 2 Dimensions
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Figure 3  Joint-Space Presentation of MDPref Solution
– 2 Dimensions
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Figure 4  Brand Cognitive Map -2 Dimensions-
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Figure 5  Brand Cognitive Map -3 Dimensions-
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Figure 6  Individual Similarity Perception
-Subject 1-
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Figure 7  Individual Similarity Perception
-Subject 2-
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Table 17  Adjective Frequencies by Brands 

Adjectives N o. 
B rand N am es 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Aw are
N IKE 8 9 13 18 7 9 11 11 12 6 12 12 5 6 2 2 1 4 4 36
AD ID AS 11 7 7 8 7 5 7 6 6 5 5 3 5 3 2 4 5 2 1 3 37
N EW B ALAN C E 8 5 13 4 7 5 5 2 7 3 6 4 3 6 2 5 3 3 4 3 36
C O N VERSE 15 5 8 6 7 6 4 4 1 5 3 2 7 5 10 2 4 4 1 35
PU M A 14 6 1 3 4 4 3 5 3 3 4 3 4 3 3 3 3 2 1 38
AIRW ALK 2 2 3 7 2 2 5 4 5 3 3 6 4 1 1 1 28
ASIC S 7 6 7 8 1 2 2 1 4 4 1 3 32
FILA 7 6 2 2 6 2 3 1 2 3 2 1 2 1 1 3 7 2 36
REEB O K 8 5 3 1 2 3 1 4 2 5 1 3 3 1 2 1 36
PRO  KED S 11 4 2 2 1 2 1 1 9 1 1 2 35
      List of Adjectives:

1 Popular 6 Easy to U se 11 C ool 16 Easy to Fit
2 Active 7 Stylish 12 Innovative 17 Traditional
3 C om fortable 8 Tasteful 13 M asculine 18 Refreshing
4 Fashion-C onscious 9 Fashionable 14 Vivid 19 Fem inine
5 B right 10 Lively 15 Econom ical 20 D urable
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Table 18(a)  ALS (Rotated) Solution  for Brands

Dimension 1 2 3 4 5 6 7 8 9
Brand Names:
NIKE 2.7644 - 0.4184 0.0682 0.5461 1.0620 1.7654 - 1.0838 - 1.1789 - 0.7205
ADIDAS 1.7273 0.8508 - 0.1413 - 0.8700 0.2434 - 0.8848 - 0.1122 - 0.7626 1.9988
NEWBALANCE 0.6497 - 1.0363 - 0.4741 - 0.2280 - 0.5884 - 1.4055 1.9569 - 1.2032 - 0.9118
CONVERSE - 1.0309 - 2.1658 1.5124 - 2.7451 - 1.6952 0.8009 - 0.5808 0.2096 - 0.0202
PUMA 0.5504 1.3283 2.6393 - 0.6375 1.6856 - 1.4937 - 0.3080 1.0562 - 0.6643
AIRWALK 2.2593 0.7287 0.3261 1.5351 - 1.5012 1.0944 1.0715 1.4957 0.2380
ASICS - 0.5865 2.0330 - 3.7833 - 1.5828 0.1451 0.1046 - 0.3503 0.6497 - 0.4925
FILA - 0.6183 - 3.3499 - 1.3648 1.9399 0.1891 - 1.2390 - 1.0610 0.6376 0.1915
REEBOK - 2.6414 2.5667 0.9546 1.7168 - 1.4832 - 0.2357 - 0.8218 - 0.9024 - 0.1400
PRO KEDS - 3.0741 - 0.5371 0.2628 0.3254 1.9430 1.4933 1.2894 - 0.0016 0.5210
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Table 18(b)  ALS (Rotated) Solution  for Adjectives

Dimesion 1 2 3 4 5 6 7 8 9
Adjectives:
Popular - 1.6241 0.2258 - 0.2902 0.1242 0.9801 0.0644 - 0.5069 0.3317 0.1577
Active - 1.2729 0.2840 - 0.5707 0.3841 0.8634 0.1134 - 0.7804 0.3748 0.0365
Comfortable 1.0407 - 0.7985 - 2.4574 - 1.1275 - 1.6015 1.3107 0.3415 - 0.4422 0.4145
Fashion- Conscious 1.6580 - 0.9326 0.7758 - 0.1452 - 0.3838 0.3485 0.1092 0.8993 0.7596
Bright - 0.5577 - 0.8706 1.0662 1.0248 0.0619 - 0.3694 - 0.4327 - 0.6320 0.8361
Easy to Use 0.2127 - 0.2745 - 1.0331 - 1.4739 1.3723 0.7036 0.4562 1.4229 - 0.4021
Stylish 0.8597 - 0.4620 0.8359 1.0022 - 1.0529 - 0.3757 - 0.6864 - 0.0219 0.4682
Tasteful 0.5813 1.8540 0.7632 - 0.5353 - 0.8705 0.9618 - 1.1365 0.3684 - 0.2277
Fashionable 1.9973 - 0.0171 - 0.0893 1.7249 1.1657 - 0.7742 1.2891 0.2613 0.3177
Lively - 0.7483 0.2439 0.0228 0.6820 - 0.2473 0.5971 - 0.7675 0.4291 0.5594
Cool 1.5152 - 0.8060 0.7142 0.0235 0.2513 - 0.3325 0.3038 0.5346 - 0.0835
Innovative 1.0526 1.0734 1.2411 0.6544 - 0.7784 0.8218 0.7139 - 0.5256 - 0.8443
Masculine 0.5749 3.0930 - 0.6068 1.0667 0.0094 - 0.2270 0.1018 - 0.1217 - 0.8456
Vivid 0.5402 - 1.3701 0.6419 - 0.9965 0.4765 - 0.7423 - 0.6337 - 0.7995 - 0.8766
Economical - 2.3074 0.5813 1.7323 - 0.4310 1.0448 1.5311 0.8819 - 0.8182 0.4256
Easy to Fit 0.2656 - 0.3131 1.1304 - 2.1544 - 0.0782 - 0.6959 0.7675 - 0.6767 0.0921
Traditional - 1.3599 2.1684 - 0.5187 - 1.3993 - 0.8578 - 2.1849 0.2720 0.3037 0.5711
Refreshing 0.1628 - 1.6613 0.1363 - 0.2471 0.3369 - 0.4659 - 1.1264 - 0.1015 - 0.8191
Feminine - 3.0197 - 1.9652 - 0.5806 1.2648 - 1.5417 - 0.2386 1.0122 0.5111 - 0.7979
Durable 0.4289 - 0.0529 - 2.9132 0.5585 0.8498 - 0.0461 - 0.1789 - 1.2977 0.2584
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Figure  8  2D Configuration of Adjectives and Brands
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Figure  9  3D Configuration of Adjectives and Brands
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Table 19  Brand Switching Matrix for Japanese Beer
Brands/Size Combinations

(20 weeks from August 1990 to January 1991)
I350 I500 S350 S500 S135 S250 L500 L350 L250 D135 H350

I350 440 189 29 16 13 14 19 52 21 9 19
I500 172 360 23 29 8 5 17 8 16 4 9
S350 33 22 430 134 7 47 22 27 11 4 8
S500 17 31 138 297 3 28 8 3 2 1 4
S135 16 11 8 5 141 22 3 5 3 7 4
S250 18 3 52 31 20 146 1 4 13 4 3
L500 17 22 28 8 3 3 336 93 26 3 2
L350 46 6 29 3 5 2 96 240 58 9 2
L250 18 11 8 2 6 25 34 51 245 17 5
D135 12 7 6 2 16 2 1 9 17 75 5
H350 13 5 9 8 3 1 4 7 6 4 105

Abbreviations: I=Ichibanshibori (Kirin), S=Super Dry (Asahi), 
L=Lager (Kirin), D=Draft (Kirin), H=Hokkaido (Sapporo)

From  A. Inoue (1992), "A System for Identifying Competitive Groups with Population Heterogeneity,“
JIMS Marketing Science, Vol. 1, No. 1・2, 12-37.
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Figure 10  Asymmetric Competitive Map for 
Japanese Beer Brands/Sizes

- Clout (Blue) and Vulnerability (Red) Positions -
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