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Abstract

Visualization is a valuable tool in problem solving, especially for citizen science games. In this 

study, we analyze data from 36,351 unique players of the citizen science game Foldit over a period 

of 5 years to understand how their choice of visualization options are affected by expertise and 

problem type. We identified clusters of visualization options, and found differences in how experts 

and novices view puzzles and that experts differentially change their views based on puzzle type. 

These results can inform new design approaches to help both novice and expert players visualize 

novel problems, develop expertise, and problem solve.

Keywords

citizen science game; visualization; expertise

Introduction

Visualization is a valuable tool in problem solving [6]. Although previous research has 

demonstrated a connection between expertise and visualization approaches [18], we still 

don’t understand the generalized process of how visualization aids problem solving and how 

expertise affects one’s visualization techniques.

Experts and novices vary in many ways with respect to problem solving, including what 

information they store in memory, their attitudes toward the problem, their strategies 

applied, and their visualization techniques [1]. For example, one study found that expert 
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mathematicians rely on visualizations to guide their planning and execution more than 

novices [19].

The process of visualizing a problem in order to solve it is especially practical for citizen 

science games, in which citizen scientists attempt to solve creative, difficult, complex, and 

novel problems through the power of crowdsourcing [4]. Visualization in citizen science 

games is also important because players cite the visual appeal as a key factor in their 

motivation for playing [5, 20].

Improper visualizations can make problem solving more difficult by adding perceptual or 

cognitive load. Perceptual load can be thought of as clutter: irrelevant information on-screen 

can distract the user and reduce their attention and awareness toward task-relevant 

processing [8]. Additionally, more complex information representations can increase 

cognitive load and subsequently decrease task performance if it exceeds the user’s working 

memory limitations [2].

Additionally, previous research has explored how a user interface conveys information in 

games, such as through sound [14] and “immersive” (i.e., diegetic) displays [9]. Researchers 

have also recently begun exploring the user experience of data visualizations in general [16].

Finally, the value of understanding how problems are visualized in citizen science games is 

that the games can be customized and adjusted to the needs of the player. Most commercial 

games offer customizable visual options of some kind, such as adding subtitles or toggling 

the visibility of certain user interface elements. In the citizen science game EyeWire1, 

players can even customize their roles: after earning a particular rank, they may opt into new 

abilities which let them fundamentally alter how they play the game. From colorblind modes 

to advanced user interfaces, games let their players change how they view and approach their 

tasks. Understanding how and why players choose to visualize their games can inform 
better user-centered visual design.

In this paper, we examine Foldit [3], a citizen science puzzle game about protein folding, to 

explore how players visualize novel problems. The importance of visualization for this class 

of problem is well-known, as illustrated by the existence of graphical tools for molecular 

visualizations (similar to that of Foldit), such as PyMOL [17] and UnityMol [10]. We 

consider the following research questions:

RQ1. How do players view Foldit puzzles?

RQ2. Do experts and novices view puzzles differently?

RQ3. Do players view puzzles differently based on the type of problem?

1https://eyewire.org/
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Methodology

Data Collection

Gameplay data were collected2 from 72,041 unique players of Foldit3 between June 2011 

and August 2016. Each log was collected automatically at the end of each game session 

when the player exited the game. In total, 578,191 logs were collected across 1,973 unique 

puzzles. We cleaned our dataset by removing corrupted logs and logs that came from tutorial 

or practice (“Beginner”) puzzles. After this filtering process, there remained 439,469 logs 

from 36,351 unique players with a mean of 12.09 (SD = 139.44) logs per player.

Each data log contained meta-data (e.g. anonymized player ID and timestamp) as well as 

data on the visualization option settings themselves (henceforth called the player’s “view”). 

There were 46,509 unique views. A summary of the relevant options used by players are 

described in Table 1. We operationally defined expert players as those who earned a high 

score in at least two unique puzzles, where a high score is defined as being in the top 5% of 

all scores for that puzzle. Although choosing two high scores is an arbitrary distinction, this 

resulted in defining only 1,007 experts (2.8% of the original user population), yet the 

experts’ collective data make up 71.0% of all post-processed logs. This is intuitive, since 

most experts play very frequently, while most novices may only interact with the game a few 

times. For all analyses comparing experts to novices (i.e., non-experts), we randomly 

selected an equal number of novices (n=1,007) from novices who had at least one log of 

each puzzle category analyzed (Design, Prediction, Electron Density, and Hand-Folding). 

These same novices were used in all expert/novice comparisons.

Clustering

To answer RQ14, we applied agglomerative clustering5 to the 46,509 unique views using 

Euclidean distance and Ward linkage. Because this technique gives weight to the number of 

distinct views rather than the popularity of views, we see artifacts such as all clusters having 

“advanced mode” enabled, since this option allows more distinct views to be set than the few 

options available when advanced mode is disabled. However, this approach allowed us to 

compare view settings more fairly. We considered only unique views to avoid biasing toward 

either expert or novice data and instead clustered by the similarity of the views themselves. 

We found that experts contributed many more unique views, yet this is a finding rather than 

a bias.

In order to determine how many clusters to use, we visualized the dendrogram of the data 

and plotted the average sum of squared errors per cluster by the number of clusters. Through 

these methods, we determined 6 clusters to be the most reasonable grouping; these clusters 

provide an answer to RQ1, expressing the most central ways of viewing the puzzles.

As shown in Figure 1, Cluster 1 captures all default settings, so we interpret this as the 

Default cluster. Cluster 2, Minimalist, seems to capture a pared-down view, which may 

2Before playing, all players must consent to a user agreement of data collection based on Institutional Review Board guidelines.
3From the version of Foldit available on its website (https://fold.it/).
4How do players view Foldit puzzles?
5From the Python package scikit-learn [12].
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allow the player to focus on the secondary structure of the protein without the added 

complexity of the sidechains. Cluster 3, Show Sidechains, is the reverse of minimalism, 

showing much more detail in how the sidechains are organized. Although it was not used 

very often, this cluster seems to represent the middle ground between Clusters 1 and 5. 

Cluster 4, Color Coded, is unique in using both CPK coloring and relative score coloring: 

none of the other clusters use either of these color schemes. Cluster 5, Show Everything, is 

the most detailed, and seems to be useful for identifying issues such as exposed 

hydrophobics6. Finally, Cluster 6, Dark Minimalist, seems to mirror Cluster 2 but with a 

thinner structure and darker background.

Results

To answer RQ27, we compared the frequencies of views in each cluster8 between expert and 

novice (i.e., non-expert) players. For each player, we counted how many of their views were 

in each cluster, then normalized this count to a weight of exactly 1. For example, if a player 

had 2 views in Cluster 1 and 3 views in Cluster 4, we counted this as frequency weights of 

0.4 and 0.6, respectively. In this way, all players contributed an equal proportion to how the 

frequencies were calculated. Finally, we performed a chi-square test of goodness of fit to 

determine whether experts and novices used similar views. The groups were significantly 

different, χ2 (5, N = 2,014) = 1,578.80, p < 0.001. As shown in Table 2, this result is driven 

by novices primarily using clusters 1 and 5, whereas experts tend to diversify across clusters.

To answer RQ39 we further analyzed the difference between experts and novices by four 

puzzle categories: Design, Prediction, Electron Density, and Hand-Folding. To determine 

whether puzzle category had an effect on the player’s views, we performed multiple chi-

square tests of independence on the frequency of views in a contingency table. For experts 

and novices, we first ran an omnibus test across all puzzle categories; if the test was 

significant, we ran post-hoc tests comparing each puzzle type to all others. We applied 

Bonferroni corrections in these post-hocs to account for multiple comparisons. For novices, 

no significant effects of puzzle category were detected (see Table 3). For experts, the 

omnibus test was significant (χ2 (5, N = 1,007) = 49.94, p < 0.001). Post-hoc analyses 

showed that both Prediction (χ2 (5, N = 1,007) = 15.28, p < 0.01) and Hand-Folding (χ2 (5, 

N = 1,007) = 24.34, p < 0.001) puzzles were significantly different than expected after 

correction (see Table 4). Differences in Prediction seem to be driven by an increase in the 

frequency of views being in Clusters 1 and 5 and a decrease in the frequency of remaining 

clusters, while differences in Hand-Folding were driven by the opposite: primarily an 

increase in the frequencies of Clusters 2, 3, and 4 and a decrease in the rest.

6These are represented as yellow bubbles on the protein structure.
7Do experts and novices view puzzles differently?
8For this analysis, we consider view settings by cluster instead of analyzing raw option variables for two reasons. First, we can more 
easily analyze differences in post-hoc analyses. Second, several options are rarely or never used, complicating statistical analysis.
9Do players view puzzles differently based on the type of problem?
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Discussion

By applying hierarchical agglomerative clustering to all of the unique views in our dataset, 

we identified 6 clusters to represent the different views of the players analyzed (Figure 1). 

Cluster 1 (Default Settings) captured over half of all novice data since novices are less likely 

to change their view settings. Clusters 2 (Minimalist) and 6 (Dark Minimalist) seem 

especially useful for earning a high score: high scoring views use Cluster 2 between 24–34% 

of the time and Cluster 6 between 18–22% of the time for the four main puzzle categories 

analyzed.

Additionally, we contacted five expert players about their view preferences. Overall, their 

comments were of the form “when attempting task X, I use option Y” which supports our 

findings that experts (1) use a wider variety of views and (2) differentially adjust their views 

to the task. Indeed, they explicitly mentioned that view settings are context-dependent. 

Notably, four experts expressed that they have a “default” way of viewing the puzzle when 

they aren’t using a task-specific view, three of which were described in form and function as 

matching the Minimalist clusters. The fourth expert’s default setting resembled the “Show 

Everything” cluster, albeit with the addition of CPK coloring, which the expert removes for 

“rough drafts” of a puzzle solution. Other task-specific preferences were expressed, such as 

aligning sheets (Show bondable atoms) and managing disulfide bonds (there were a variety 

of responses for how they approach this task). Additionally, one expert requested new 

visualization features and another requested more hotkey shortcuts to access toggling these 

options, further suggesting that experts make heavy use of these features and that 

customizable view options support task performance. Interestingly, none of the experts 

expressed a need for “preset” settings to toggle between popular use cases. This is perhaps 

because their needs are more nuanced than presets would allow.

To these experts, there are many types of problems, both general (shape of the protein, the 

formation of hydrogen bonds) and specific (viewing ligands or electron density clouds). 

Details on how expert players assess these puzzles in Foldit has also been researched by 

Ponti et al. [13].

Future work can examine how visualization preferences are impacted by the existence of 

communities of practice [21] or knowledge communities [11]. Specifically, when individuals 

attempt problem solving as a group, collaboration may either lead to sharing resources and 

converging on knowledge or divergence and specialization among collaborators [7]. The 

extent to which the group collaborates is based on the created “joint problem space” [15]. 

Therefore, it would be worthwhile to investigate how players specialize or collaborate in the 

way they view the problem.

Design Considerations

From these results, we can conclude that experts solving a complex visual task use and 

require customizable visualization options. However, for novices these customizations may 

be cognitively out of reach. Although none of the expert players expressed a need for preset 

views, such groupings (e.g., our clusters) may be helpful for introducing novices to a wider 

array of views as part of their paths to expertise. Moreover, to the untrained eye, the value of 
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each visualization option is unclear. One solution would be to add tooltips on hover to 

describe possible use cases of each option. Finally, the game could define more helpful 

default settings based on the user’s activity.

For experts, their primary needs are (1) additional autonomy and flexibility and (2) reduced 

effort for frequent inputs. In commercial games, this need is most often resolved by an active 

modding community [22].

Limitations

The major limitation of this study was that it analyzed only one game’s data. Future work 

may extend this analysis beyond Foldit to other games with customizable visualization 

options to more fully understand the effects of customizing visualizations. We also 

acknowledge that in this analysis we are assuming that the players make use of the 

visualization settings they have enabled (or disabled). For example, when the view is 

composed of default settings, the player may be simply working with the visualization being 

offered rather than choosing that view to make use of the information it provides. 

Additionally, some tutorial levels override these default settings to demonstrate features of 

the game, which may explain why many novices were using views in Cluster 5, even if they 

did not change those settings themselves. Although we excluded data from tutorial levels, 

they may have impacted the default settings of some players which were not explicitly 

accounted for in our analysis.

Conclusion

In this study, we analyzed the view options settings of Foldit players to understand how 

players’ choice of visualizations are affected by expertise and problem type. We found 

significant differences in how experts view puzzles compared to novices and that experts 

differentially change their view based on puzzle type. Through input from expert players, we 

qualitatively support these findings from the human perspective. We discuss how these 

results can inform design changes for the needs of both novices (e.g. guided customization) 

and experts (e.g. mod support).
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CCS Concepts

• •Human-centered computing → Visualization; Graphical user interfaces; 
User interface design;
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Figure 1: 
Visualization of View Option Clusters. Each screenshot represents the centroid of a cluster 

from the agglomerative clustering. To visualize the centroid, we selected the nearest option 

value (i.e., by rounding binary options and selecting the majority value for categorical 

options). We interpret these clusters as: (1) Default Settings; (2) Minimalist; (3) Show 

Sidechains; (4) Color Coded; (5) Show Everything; (6) Dark Minimalist.
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Table 1:

Summary of View Options used by Players. Options not related to views, not changed from the default, or not 

visibly different in our clustering analysis are not shown here. We included 61 view options total in our 

analysis. Default options are marked with an asterisk (*) when first shown on the table. We interpret these 

clusters as: (1) Default Settings; (2) Minimalist; (3) Show Sidechains; (4) Color Coded; (5) Show Everything; 

(6) Dark Minimalist.

Option C1 C2 C3 C4 C5 C6

Show sidechains Stubs only* No Yes Yes Yes No

Dark background No* No No Yes No Yes

CPK coloring No* No No Yes No No

Relative score coloring No* No No Yes No No

Thin rendering style No* No Yes Yes No Yes

Show bondable atoms No* No Yes No Yes No

Show clashes Yes* No No No Yes No

Show issues No* No No No Yes No

Show hydrogen bonds Yes* No Yes No Yes No

Pulse when working Yes* No Yes No Yes No
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Table 2:

Percentage of View Frequencies by Cluster. Percents are rounded to the nearest integer for readability.

Experts Novices

C1 41 54

C2 17 5

C3 7 3

C4 5 1

C5 22 35

C6 9 1

Proc Annu Symp Comput Hum Interact Play. Author manuscript; available in PMC 2021 April 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 12

Table 3:

Percentage of Novice Views by Cluster and Puzzle Category. Percents are rounded to the nearest integer for 

readability.

Design prediction Electro Density Hand -Folding

C1 55 50 51 48

C2 5 6 8 8

C3 3 3 3 4

C4 1 1 2 2

C5 35 38 35 38

C6 1 2 1 1
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Table 4:

Percentage of Expert Views by Cluster and Puzzle Category. Percents are rounded to the nearest integer for 

readability.

Design prediction Electro De Hand -Folding

C1 34 38 33 30

C2 19 18 22 23

C3 9 8 7 11

C4 7 5 7 11

C5 20 22 17 15

C6 11 10 13 10
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