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Probability Distributions in Groundwater Hydrology:
Methods and Applications

Hugo A. Loáiciga, F.ASCE1

Abstract: This paper presents the most frequently used probability-density functions in groundwater hydrology and practical ways to apply
them. The paper provides several examples of probability-density functions dealing with (1) their application to various types of groundwater
phenomena, (2) the estimation of their parameters by the method of moments, and (3) the implementation of goodness-of-fit tests in prob-
abilistic groundwater hydrology. The versatility of the log-gamma probability-density function to fit highly skewed groundwater data is
demonstrated. Important univariate probability-density functions are covered, and the multivariate lognormal probability-density function’s
applicability to goodness-of-fit testing and synthetic generation of random fields is elucidated. DOI: 10.1061/(ASCE)HE.1943-5584
.0001061. © 2014 American Society of Civil Engineers.

Author keywords: Probability-density function; Groundwater; Aquifer parameters; Goodness-of-fit tests; Random variable.

Introduction

Groundwater hydrology is a discipline of the earth sciences
concerned with the quantitative study of water flow, water storage,
chemical transport, and related processes in the subsurface.
Groundwater hydrologists measure properties of soils and rocks
to gain an understanding of subsurface hydrologic processes and
to construct predictive models of groundwater phenomena. Those
properties include, but are not limited to, porosity, permeability,
hydraulic conductivity, specific storage, specific yield, and disper-
sivity. Because of the complex nature of geologic materials, mea-
surements of these properties exhibit variability even in strata
considered to be homogeneous on account of their origin and basic
features (such as mineral composition and textural properties).
Hydraulic conductivity measurements, for example, made at differ-
ent locations in an aquifer exhibit substantial variability. This is
exemplified in Fig. 1, which plots 201 measurements of hydraulic
conductivity made in cohesive sediments of lacustrine origin under-
lying Mexico City (data from Loáiciga et al. 2006). The measure-
ments of hydraulic conductivity shown in Fig. 1 vary over five
orders of magnitude. Those measurements—and those of other
aquifer properties—can be analyzed using the laws of probability
and statistics to obtain a proper description of the property (or var-
iable) under study that goes beyond the calculation of its average,
standard deviation, or other indicators of central tendency,
dispersion, and asymmetry. The fitting of an aquifer property with
a proper probability-density function (PDF) is a necessary step to
arrive at a complete description of its probabilistic characteristics.
Analysts can then use the fitted PDF in a variety of analyses and
design modes that provide a wider range of options than those
available when the property is treated deterministically, i.e., as a
nonrandom entity.

It must not be construed from the previous paragraph that all soil
and rock properties vary over a wide numerical range. The porosity

of soil and rocks, for example, takes values between 0 and 1. There-
fore, in the probabilistic analysis of porosity, one must try proba-
bility densities functions defined over a finite domain, or use
truncated probability functions [see Loáiciga et al. (1992) for an
analysis of truncated PDFs in hydrologic applications].

This paper presents (1) several probability-density functions
commonly used in groundwater hydrology and (2) examples on
how PDFs are used to interpret aquifer properties and groundwater
variables in a probabilistic manner. Most of the PDFs used in this
work are univariate or bivariate. The coverage of multivariate PDFs
(involving more than two random variables) focuses on the lognor-
mal case, elucidating its applicability to goodness-of-fit testing and
the synthetic generation of random fields. Several of the examples
rely on hydraulic conductivity data because hydraulic conductivity
is an aquifer property that controls the movement of groundwater
and dissolved chemicals in a fundamental manner. Besides its im-
portance in groundwater hydrology, its variability—as shown in
Fig. 1—makes it well-suited for probabilistic analysis. In addition,
hydraulic conductivity has been more extensively measured in situ
or in the laboratory than any other aquifer property relevant in
groundwater hydrology. Thus, data sets that can be analyzed with
the methods of this paper are more common for hydraulic conduc-
tivity than for any other aquifer property. This makes the hydraulic
conductivity an attractive property to work with when describing
probabilistic methods amenable for the characterization of aquifer
properties. Some of the material presented in this paper has been
borrowed from the works of the author and collaborators (Loáiciga
2004; Loáiciga and Leipnik 2005; Loáiciga et al. 2006, 2008a, b,
2010).

The novelty of this paper rests in (1) identifying the PDFs
most amenable for the analysis of groundwater data; (2) summariz-
ing the PDFs’ properties; (3) describing an efficient method for
PDF parameter estimation (the method of moments); (4) providing
guidance on selecting PDFs suitable for aquifer properties and
conducting goodness-of-fit testing; (5) rendering a consolidated
presentation of PDFs and their application in groundwater hy-
drology; (6) demonstrating the capacity of the three-parameter
log-gamma PDF to fit highly skewed groundwater data; and (7) pre-
senting methods to carry out goodness-of-fit testing and synthetic
generation of random with the multivariate lognormal PDF.
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Definitions

The following definitions are building blocks for the material
presented in this paper.

Probability-Density Function

A PDF is a mathematical formula that assigns a nonnegative value
to any number that is contained in the domain of the PDF. They are
functions of the form fðxÞ, in which x denotes any value at which
the function f is calculated. The set of x values over which the
function f is defined is called the domain of the PDF. The PDF
integrated over its entire domain yields a value of 1. When inte-
grated over part of its domain, it produces a probability between
0 and 1. The mathematical formula of a PDF may take many forms.
Among the best known and more widely used ones are the uniform,
normal (or Gaussian), lognormal, gamma and log-gamma, beta, ex-
ponential, Weibull, Gumbel, Student t, and chi-square PDFs. There
are PDFs in which the x values are strictly integer values. These
PDFs are commonly called probability distributions. The binomial,
Poisson, and geometric probability distributions are commonly
used. Discrete probability distributions and hydrologic applications
are exemplified in Loáiciga (2005).

Correlation Coefficient and Covariance

Consider two random variables K1 and K2 with expected values
(or means) μ1 and μ1, and variances σ2

1 and σ2
2, respectively, that

are correlated with correlation coefficient ρ12. The latter is defined
by the following:

ρ12 ¼
E½ðK1 − μ1ÞðK2 − μ2Þ�

σ1σ2

ð1Þ

where E denotes the expectation operator. The correlation
coefficient ρ12 is a normalized measure of the degree of statistical
association between two random variables. Its magnitude is in
the range ½−1; 1�. A value of −1 indicates perfect negative corre-
lation, a value of þ1 denotes perfect positive correlation, and a
value of zero indicates that the variables K1 and K2 are uncorre-
lated. The covariance σ2

12 between the variables K1 and K2 is equal
to ρ12 σ1 σ2.

Spatial Correlation

Spatial correlation is a measure of the degree of statistical associ-
ation among measurements of an aquifer property made at different

locations in an aquifer. Positively correlated measurements occur
when the spatial correlation between two measurements of the
property K1 and K2 made at locations r1 and r2, respectively,
ranges between 0 and 1. The closer the spatial correlation is to
1, the greater the degree of statistical association between the mea-
surements of K1 and K2.

Correlation Scale

Correlation scale is the distance between two locations r1 and r2
beyond which the aquifer property K1 (at r1) and K2 (at r2) cease to
be spatially correlated.

Statistical Homogeneity and Independence

Statistical homogeneity and independence of measurements are
conditions that must be met when attempting to fit a PDF to a
sample of measurements of an aquifer property. Statistical homo-
geneity implies that the PDF of the property in question is the
same everywhere in the aquifer in which measurements are made
with a similar device (deployed in the field or applied in the labo-
ratory to core samples). In this case, the measurements exhibit a
constant average and a spread of values about the average that are
devoid of spatial trends or spatial periodic patterns. Independence
of measurements implies that the value of the measured property at
any location in an aquifer is not related in a probabilistic sense to
any other of its values measured at other locations in the same
aquifer. Independent measurements are uncorrelated. Property
measurements can be statistically homogeneous and correlated si-
multaneously. In the latter instance, one must resort to geostatis-
tics, a field of statistics concerned with the study of spatially
correlated variables (Journel and Huijbregts 1978; Dagan 1989;
Loáiciga et al. 2010). From a physical standpoint, statistical homo-
geneity is approximated in the field when geological processes
produce unconsolidated deposits (clays, silts, sands, gravels, or
combinations of these) or consolidated deposits (also called bed-
rock aquifers) of similar texture, porosity characteristics, and min-
eral composition. Independence requires physical separations
among property measurement locations that ensure the vanishing
of any statistical dependence among its values. Measurement
locations so chosen produce samples of measurements that are un-
correlated. The minimal spatial separation among measurements
must exceed the correlation scale of the saturated hydraulic con-
ductivity. The correlation scale can be estimated by using geostat-
istical procedures (Loáiciga et al. 2010).

Basic Notation and Key Statistics

A sample of n measurements of an aquifer property K is assumed
available for statistical inference. The individual measurements
are denoted by k1; k2; : : : ; kn, or symbolically by kj, where j ¼
1,2; : : : ; n. The natural logarithm of K is denoted by Y ¼ lnK.
The sample of Y values is denoted by yj (¼ ln kj), where
j ¼ 1; 2; : : : ; n. The logarithmic transformation is commonly ap-
plied to permeability, hydraulic conductivity, or other aquifer prop-
erties that are frequently found to be lognormally distributed. That
is, the property is rendered normally distributed upon undergoing
the logarithmic transformation. The following subsections intro-
duce several important statistics that describe the central tendency,
the degree of spread about a measure of central tendency, and the
skewness of data. The statistics are necessary in fitting PDFs to
measurements of aquifer properties.

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

-30 -25 -20 -15 -10 -5 0

K
 (
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/s

)

Elevation below datum (m)

data average K

Fig. 1. Measurement of hydraulic conductivity in the lacustrine sedi-
ments underlying Mexico City; the horizontal line is the average,
3.94 × 10−8 cm=s
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Sample Average and Median

Calculate the sample average of the property K by using the
following:

K̄ ¼ 1

n

Xn
j¼1

kj ð2Þ

The sample average K̄ is an estimate of the unknown population
average of K, μK . The sample average is a measure of the central
tendency of the data it represents.

The sample average of the log property Y is calculated with the
following:

Ȳ ¼ 1

n

Xn
j¼1

yj ð3Þ

The sample average Ȳ is an estimate of the unknown population
average of Y;μY .

The sample median of a sample of measurements is defined as
the value so that half the sample measurements are larger and half
the sample measurement values are smaller. It is denoted by K̄0.50,
where the 0.50 subscript indicates that the median equals the 50%
quantile, that is, the probability that the random variable K be equal
to or less than K0.50 equals 50%.

Geometric Mean

Calculate the sample geometric mean of K with the following:

K̄G ¼ eȲ ð4Þ
The sample geometric mean is an estimate of the unknown pop-

ulation geometric mean, KG ¼ expðμYÞ. The geometric mean is
sometimes used as an effective saturated hydraulic conductivity
in groundwater hydrology. The effective saturated hydraulic con-
ductivity is a parameter that relates the average groundwater spe-
cific discharge to the average hydraulic gradient.

Standard Deviation and Variance

Calculate the sample standard deviation of the property K as
follows:

σ̄K ¼
�

1

n − 1

Xn
1

ðkj − K̄Þ2
�
1=2

ð5Þ

The sample’s standard deviation σ̄K is an estimate of the un-
known population standard deviation of K, σK . The sample vari-
ance of the property K is equal to σ̄2

K . The sample standards
deviation measures the spread of the data about its average.

The sample standard deviation of the log property (σ̄Y ) is cal-
culated as follows:

σ̄Y ¼
�

1

n − 1

Xn
1

ðyj − ȲÞ2
�
1=2

ð6Þ

The sample standard deviation σ̄Y is an estimate of the unknown
population standard deviation of Y, σY . The sample variance of log
conductivity equals σ̄2

Y .

Coefficient of Skew

The sample coefficient of skew measures the degree of asymmetry
of a set of measurements of the property K. It may take positive or

negative values. The larger the coefficient of skew, the more asym-
metric the PDF of the property K. A symmetric PDF, such as the
normal PDF, has a coefficient of skew equal to zero. The sample
coefficient of skew is calculated by using the following:

C̄sK ¼ n
ðn − 1Þðn − 2Þ

Xn
j¼1

�
kj − K̄

σ̄K

�
3

ð7Þ

The sample coefficient of skew in Eq. (7) estimates the popu-
lation coefficient of skew CsK. The sample coefficient of skew of
the log property Y is calculated as follows:

C̄sY ¼ n
ðn − 1Þðn − 2Þ

Xn
j¼1

�
yj − Ȳ

σ̄Y

�
3

ð8Þ

The sample coefficient of skew in Eq. (8) estimates the popu-
lation coefficient of skew CsY. If the log property Y is normally
distributed, then its coefficient of skew equals zero. In this instance,
the sample coefficient of skew of the log property Y tends to zero.
In practice, if −0.05 ≤ C̄sY ≤ 0.05, then the log property Y can be
assumed to be normally distributed, or equivalently, that the prop-
erty K follows a lognormal PDF. Otherwise, that is, if jC̄sY j > 0.05,
use a skewed PDF to fit the log property Y.

The average, standard deviation, median, and coefficient of
skew can be calculated expeditiously and accurately by using func-
tions available in commercial spreadsheets and numerical software
such Microsoft Excel and MATLAB.

PDFs Frequently Used in Groundwater Hydrology

This paper presents several PDFs that have been used to model
aquifer properties or groundwater processes. Several applications
are included in the following sections.

Lognormal PDF

The lognormal PDF has been found to fit well many types of data,
including aquifer properties such as permeability and hydraulic
conductivity. Freeze (1975) provided early impetus for using the
lognormal PDF as a statistical model to fit hydraulic conductivity
data. Over time, the lognormal PDF has been accepted as a viable
model for describing a variety of aquifer properties [see a discus-
sion of this topic in Loáiciga et al. (2006)]. The following are at-
tractive features of the lognormal PDF in the modeling of some
aquifer properties: (1) it can fit positively skewed data; (2) the
parameters of a normally distributed log property Y, symbolically
Y ∼ NðμY ;σ2

YÞ, are the population mean μY and the population vari-
ance σ2

Y , which are estimable by using the standard sample estima-
tors for the mean and variance introduced previously. Moreover, the
quantiles of Y can be obtained straightforwardly from tabulated
quantiles of the standard normal PDF Nð0; 1Þ or from statistical
software. Conversely, the lognormal PDF cannot be used to model
either skewed log data or negatively skewed aquifer data. Although
the lognormal PDF allows positive lower bounds on aquifer data, it
does not allow upper bounds. In contrast, the log-gamma PDF, a
generalization of the gamma PDF, can fit skewed data, with upper
and lower bounds, or with upper or lower bounds, as shown in the
following.

Properties of Lognormal PDF

Let K and θ denote an aquifer property and its lower bound, re-
spectively, and Y ¼ lnðK − θÞ be the log property. Evidently,
K ¼ expðYÞ þ θ. The three-parameter lognormal PDF is given

© ASCE 04014063-3 J. Hydrol. Eng.
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by the following (μY denotes the population mean of the log
property Y):

fKðsÞ ¼
1

ðs − θÞσY

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
lnðs − θÞ − μY

σY

�
2
�

s > θ

ð9Þ

in which the lower bound θ is, from physical feasibility, nonneg-
ative. The lower bound θ is generally assumed equal to zero in most
applications of the lognormal PDF in groundwater hydrology. The
lognormal PDF in Eq. (9) implies a number of formulas for the
property K, the log property Y, and their parameters. These are pre-
sented in the following.

Expected Value of Property K

The expected value of the property K can be shown to be equal to

μK ¼ eðμYþσ2Y Þ þ θ ð10Þ

The expected value μK is estimated by the sample average
in Eq. (2).

Median and Geometric Mean of Property K (K 0.50)

The median is

K0.50 ¼ eμY þ θ ð11Þ

The sample estimator, K̄0.50, of the median K0.50 is obtained by
replacing μY in Eq. (11) with the sample average Ȳ introduced in
Eq. (3). The geometric mean of the property K is

KG ¼ θþ expðμYÞ ð12Þ

usually with θ ¼ 0, in which case the geometric mean and median
of lognormally distributed data K are equal to each other. Eq. (11)
is convenient to estimate the lower bound θ. To do so, the sample
estimator K̄0.50 and sample average of log values Ȳ are obtained
from a sample of measurements, and then K0.50 and μY are re-
placed, respectively, in Eq. (11), which is then solved for an esti-
mate of θ. Alternatively, and preferably, θ could be estimated
through maximum likelihood, a parameter estimation method that
is not covered in this work. It is commonly assumed in practical
applications in groundwater hydrology that θ ¼ 0.

Mode of Property K

The mode (KM) is the most likely value of K

KM ¼ eμY−σ2Y þ θ ð13Þ

Eqs. (10), (11), and (13) show that KM < K0.50 < μK .

Variance of Property K (σ2K )

The following formula provides a relation between the variance of
the property K and that of its log property Y:

σ2
K ¼ e2μYþσ2Y · ðeσ2Y − 1Þ ð14Þ

The variance of K is estimated by the square of the sample stan-
dard deviation in Eq. (5).

Coefficient of Variation of K �CvK �

CvK ≡ σK

μK
¼ ðeσ2Y − 1Þ1=2 ð15Þ

The coefficient of variation is a dimensionless ratio that measures
the magnitude of the standard deviation of K relative to its
mean. The larger the coefficient of variation, the larger the variabil-
ity of K about its mean. It is calculated from a sample of measure-
ments by the ratio of the sample standard deviation σ̄K over the
sample average K̄.

Coefficient of Skew of Property K (CsK )

CsK ≡ E½K − μK�3
σ3
K

¼ ðe3σ2
Y − 3eσ

2
Y þ 2Þ

C3
vK

ð16Þ

where CvK is given by Eq. (15). The CsK in Eq. (16) is always
positive. It is estimated by Eq. (7)

Quantiles of Property K

For 0 < p < 1, PðK ≤ KpÞ ¼ p defines the pth quantile (Kp) of the
property K. Kp is estimated by the following:

K̄p ¼ expðȲ þ zpσ̄YÞ þ θ̄ ð17Þ

where θ̄ = estimator of the parameter θ; and zp ¼ pth quantile of
the standard normal variate with zero mean and unit variance,
which is readily obtained with a software such as Excel, in which
case by using the function zp = norm.s.inv(p). The estimate of the
quantile Kp can be obtained directly as follows:

K̄p ¼ expðȲpÞ þ θ̄ ð18Þ

where the pth quantile estimator Ȳp of the log property Y can be
obtained with the norm.inv(p, Ȳ, σ̄Y ) function of Excel.

The lower bound θ̄ in Eqs. (17) and (18) is commonly assumed
equal to zero in applications.

Gamma PDF and Its Special Case, Exponential PDF

The gamma PDF is a versatile model that is used in many fields of
science and engineering, including groundwater hydrology. The
gamma PDF offers great flexibility in fitting a wide range of natural
phenomena while preserving mathematical simplicity. Loáiciga
(2004) proposed the gamma PDF as an alternative to the lognormal
PDF in an analysis of stochastic groundwater flow and solute trans-
port. Loáiciga and Leipnik (2005) applied the bivariate correlated
gamma PDF to model water-quality variables.

Properties of Gamma PDF
The PDF of a three-parameter gamma-distributed aquifer property
K is

gKðsÞ ¼
�
s−θ
β

	
αjs − θj−1e−½ðs−θÞ=β�

ΓðαÞ
s ≥ θ if β > 0; s ≤ θ if β < 0 ð19Þ

where α and β = shape and scale parameters, respectively, and
α > 0; θ = lower bound of the variable K when β > 0 and upper
bound when β < 0. Most applications in groundwater hydrology
assume that θ ¼ 0. Γ denotes the gamma function as follows:

© ASCE 04014063-4 J. Hydrol. Eng.
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ΓðαÞ ¼
Z ∞
0

e−ννα−1dν ð20Þ

The gamma function is widely tabulated and programmed in
commercial software (Excel,MATLAB,Mathematica). The domain
of the gamma PDF is ½−∞; θ� when β < 0, which contains negative
numbers and thus violates the nonnegativity of positive-valued
aquifer properties. When θ ¼ 0, α ¼ 1, and β > 0, the gamma
PDF in Eq. (20) becomes the exponential PDF with parameter
λ ¼ 1=β. The exponential PDF is

hKðsÞ ¼ λe−λs s ≥ 0; λ > 0 ð21Þ

The following subsection summarizes the properties of the
gamma PDF for positive or negative scale parameter β.

Expected Value (Mean) of Property K

μK ¼ αβ þ θ ð22Þ

Median of Property K

K0.50 ¼ ψ0.50β þ θ ð23Þ
where ψ0.50 must be obtained from the integral equation

1

ΓðαÞ
Z

ψ0.50

0

e−ννα−1dν ¼ 1

2
ð24Þ

The integral on the left-hand side of Eq, (24) is called the in-
complete gamma function γðα;ψ0.50Þ (e.g., Gradshteyn and Ryzhik
1994), so that Eq. (24) can be shortened to

1

ΓðαÞ γðα;ψ0.50Þ ¼
1

2
ð25Þ

The left-hand side of Eq. (25) can be evaluated by using the
GAMMA.INV(probability, alpha, beta) function in the software
Excel, with probability ¼ 1=2, alpha ¼ α, and beta ¼ β ¼ 1,
which returns the value of ψ0.50.

Mode of Property K
When α > 1

KM ¼ ðα − 1Þ · β þ θ ð26Þ
KM is equal to θ when 0 < α ≤ 1.

Variance of Property K

σ2
K ¼ αβ2 ð27Þ

Coefficient of Variation of Property K

CvK ¼ jα1=2βj
jαβ þ θj ð28Þ

Coefficient of Skew of Property K

CsK ¼ 2αβ3

σ3
K

ð29Þ

where the sign of the skew is determined by that of the shape
parameter β. CsK > 0 when β > 0, in which case the PDF is pos-
itively skewed with lower bound θ. CsK < 0 when β < 0, in which
case the PDF is negatively skewed with upper bound θ.

Moment Estimators of α, β, and θ Parameters
These are deducible from the various properties of the gamma PDF
listed previously. The moment estimators are

ᾱ ¼ 4

C̄2
sK

ð30Þ

β̄ ¼ σ̄KC̄sK

2
ð31Þ

θ̄ ¼ K̄ − 2σ̄K

C̄sK
ð32Þ

where K̄, σ̄K , and C̄sK in Eqs. (30–32) represent the sample estima-
tors of the mean, variance, and coefficient of skewness of the prop-
erty K, respectively. The estimators in Eqs. (30–32) are estimable
also through the maximum likelihood method, which is not covered
in this paper.

Quantiles of Property K
For 0 < p < 1, P½K ≤ Kp� ¼ p defines the pth quantile. In particu-
lar, K0.50 equals the median. In general, Kp is estimated by the
following:

K̄p ¼ K̄ þ
�
ψqC̄sK

2
− 2

C̄sK

�
σ̄K ð33Þ

where ψq must be obtained from the following integral equation
(0 < p < 1):

1

ΓðᾱÞ
Z

ψq

0

e−ννᾱ−1dν ¼ p if C̄sK > 0 ðwhen β̄ > 0Þ ð34Þ

with ᾱ ¼ 4=C̄2
sK , or from

1

ΓðᾱÞ
Z

ψq

0

e−ννᾱ−1dν ¼ 1 − p if C̄sK < 0 ðwhen β̄ < 0Þ

ð35Þ
where ᾱ ¼ 4=C̄2

sK . All the special functions used in the previous
equations related to the gamma PDF are available in commercial
software, and their calculation is expeditious. In particular, the
left-hand side of Eqs. (34) and (35) can be evaluated by using
the GAMMA.INV(probability, alpha, beta) function in Excel, with
probability q ¼ p (if C̄sK > 0) or 1 − p (if C̄sK < 0), alpha ¼ ᾱ,
and beta ¼ β̄ ¼ 1, which returns the value of ψq. In the limit
C̄sK → 0, the factor within brackets in Eq. (33) tends to the stan-
dard normal quantile zp. Specifically

lim
C̄sK→0

�
ψqC̄sK

2
− 2

C̄sK

�
→ zp ð36Þ

so that the quantile K̄p in Eq. (33) becomes K̄p ¼ K̄ þ zpσ̄K .
In other words, the gamma PDF approaches the normal PDF
when the coefficient of skew tends to zero.

Log-Gamm PDF
A variant of the gamma PDF is the log-gamma PDF (also called
log-Pearson Type III), which is used by federal agencies in the
United States to fit annual streamflow peaks at gauged sites
(e.g., USGS 1982). It is particularly well suited for modeling ex-
treme values and highly skewed data. When using the log-gamma
PDF, it is assumed that the logarithm of the property K
(i.e., Y ¼ lnðKÞ) follows the gamma PDF in Eq. (19) with the shape
and scale parameters replaced by αY and βY , respectively. In this
instance, θ ¼ θY in Eq. (19) denotes the lower bound of Y when
βY > 0 or its upper bound when βY < 0. The log property Y has
the following gamma PDF:

© ASCE 04014063-5 J. Hydrol. Eng.
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gYðsÞ ¼
�s−θY

βY

	αY js − θY j−1e−½ðs−θY Þ=βY �

ΓðαYÞ
s ≥ θY if βY > 0; s ≤ θY if βY < 0 ð37Þ

Evidently, K ¼ expðYÞ = expðYÞ, which is positive with lower
or upper bound expðθYÞ depending on whether βY > 0 or βY < 0,
respectively. The PDF of the log-gamma-distributed K is

hKðsÞ ¼
�lnðsÞ−θY

βY

	αY j lnðsÞ − θY j−1e−½lnðsÞ−θY=βY �

sΓðαYÞ
ð38Þ

where s ≥ eθY if βY > 0 or 0 < s ≤ eθY if βY < 0. Key properties of
the log-gamma-distributed propertyK are derivable from its PDF in
Eq. (38). These are presented next.

Expected Value of Property K

μK ¼ eθY

ð1 − βYÞαY
ð39Þ

Geometric Mean of Property K

KG ≡ eEðYÞ ¼ eαYβYþθY ð40Þ

Median of Property K

K0.50 ¼ eψ0.50βYþθY ð41Þ
where ψ0.50 is obtained from the solution of the integral Eq. (25).

Mode of Property K
When α > 1

KM ¼ e½ðαY−1Þ βY
βYþ1

þθY � ð42Þ
The mode equals eθY if 0 < αY ≤ 1.

Variance of Property K

σ2
K ¼ μ2

K ·

��ð1 − βYÞ2
ð1 − 2βYÞ

�
αY − 1

�
ð43Þ

where μK (the expected value of K) is given by Eq. (39).

Coefficient of Variation of Property K

CvK ¼
��ð1 − βYÞ2

ð1 − 2βYÞ
�
αY − 1

�
1=2

ð44Þ

Coefficient of Skew of Property K

CsK ¼
h
ð1−βY Þ3
ð1−3βY Þ

i
αY − 3

h
ð1−βY Þ2
ð1−2βY Þ

i
αY þ 2

C3
vK

ð45Þ

where CvK is given by Eq. (44).

Moment Estimators of Log Parameters αY , βY , and θY

Moment estimators are obtained by resorting to the fact that Y ¼
lnðKÞ is gamma distributed. Letting Ȳ, σ̄Y , and C̄sY be the estimates
of the mean, standard deviation, and coefficient of skew of Y,
respectively, one obtains

ᾱY ¼ 4

C̄2
sY

ð46Þ

β̄Y ¼ σ̄YC̄sY

2
ð47Þ

θ̄Y ¼ Ȳ − 2σ̄Y

C̄sY
ð48Þ

Quantiles of Property K
For 0 < p < 1, P½K ≤ Kp� ¼ p defines the pth quantile (Kp) of the
property K. In particular, K0.50 equals the median. In general, the
estimate of Kp is given by the following:

K̄p ¼ exp

�
Ȳ þ

�
ψqC̄sY

2
− 2

C̄sY

�
σ̄Y

�
ð49Þ

where ψq must be obtained from the following integral equations
(0 < p < 1):

1

ΓðᾱYÞ
Z

ψq

0

e−ννᾱY−1dν ¼ p if C̄sY > 0 ði:e:; β̄Y > 0Þ ð50Þ

where ᾱY ¼ 4=C̄2
sY , or

1

ΓðᾱYÞ
Z

ψq

0

e−ννᾱY−1dν ¼ 1 − p if C̄sY < 0 ði:e:; β̄Y < 0Þ

ð51Þ
where ᾱY ¼ 4=C̄2

sY . The left-hand side of Eqs. (50) and (51) can be
evaluated by using the GAMMA.INV(probability, alpha, beta)
function in the software Excel, with probability q ¼ p (if
C̄sY > 0) or 1 − p (if C̄sY < 0), alpha ¼ ᾱY , and beta ¼ β̄Y ¼ 1,
which returns the value of ψq.

In the limit C̄sY → 0, the factor within parentheses on the right-
hand side of Eq. (49) tends to the standard normal quantile zp.
Specifically,

lim
C̄sY→0

�
ψqC̄sY

2
− 2

C̄sY

�
→ zp ð52Þ

so that the estimate of the quantile Kp in Eq. (49) becomes

K̄p ¼ exp½Ȳ þ zpσ̄Y � ð53Þ

Therefore, the log-gamma PDF approaches the lognormal PDF
when the coefficient of skew tends to zero [compare Eq. (53) with
Eq. (17), after setting θ̄ ¼ 0 in the latter equation].

Illustrative Examples

The following sections present applications of the lognormal,
gamma, log-gamma, and exponential PDFs to various groundwater
problems, including fitting aquifer data, groundwater flow, and
water quality.

Application of Lognormal PDF to Hydraulic
Conductivity Data

The hydraulic conductivity data shown in Fig. 1 have an average of
K̄¼3.94×10−8 cm=s and a standard deviation of σ̄K¼3.70 ×10−7,
which implies an extraordinarily large coefficient of variation of
CvK ¼ 9.4. The coefficient of skew equals 13.7, a testimony to
an acutely right-skewed hydraulic conductivity data. The K data

© ASCE 04014063-6 J. Hydrol. Eng.
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were log transformed to produce the log conductivity data Y in an
attempt to reduce the asymmetry and facilitate fitting a PDF to the
hydraulic conductivity data. The sample average (Ȳ), standard
deviation (σ̄Y), and coefficient of skew (C̄sY ) of the log conductivity
data equal−20.30, 2.08, and 0.592, respectively. Although the skew
coefficient was reduced by the log transformation, a histogram of the
Y data shown in Fig. 2 confirms that it is skewed to the right.

If the log conductivity Y were normally distributed, its PDF
would be (setting θ ¼ 0)

fYðyÞ ¼
1

2.08
ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
y − ð−20.3Þ

2.08

�
2
�

ð54Þ

It is customary in applications to assume that the log conduc-
tivity Y is sufficiently close to a normal PDF, and then use Eqs. (17)
or (18) to estimate quantiles of the hydraulic conductivity K. For
example, if the lower quartile (K0.25) and upper quartile (K0.75) of
the hydraulic conductivity were needed in a simulation study of
groundwater flow and chemical and heat transport, these two values
could be approximated as follows [using Eq. (17) with θ ¼ 0]:

K̄0.25 ¼ eȲþz0.25σ̄Y ¼ e−20.3þð−0.6745Þ2.08 ¼ 3.75 × 10−10 cm=s

ð55Þ

K̄0.75 ¼ eȲþz0.75σ̄Y ¼ e−20.3þ0.6745·2.08 ¼ 6.21 × 10−10 cm=s ð56Þ
Under the assumption that hydraulic conductivity K is approx-

imately lognormally distributed, its PDF is

fKðsÞ ¼
1

sð2.08Þ ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
lnðsÞ − ð−20.3Þ

2.08

�
2
�

ð57Þ

Eq. (57) is graphed in Fig. 3. Because of the wide range of the
hydraulic conductivity and the complexity of Eq. (57) relative to
the normal PDF Eq. (54), the latter formula is easier to work with
when making calculations aimed at inferring hydraulic conduc-
tivity values.

Application of Log-Gamma PDF to Fit Hydraulic
Conductivity Data

The example of the previous section showed how the logarithmic
transformation of hydraulic conductivity data can reduce its asym-
metry to the point that a normal PDF can be fitted to the log con-
ductivity data reasonably well. One can go one step farther and fit
an asymmetric PDF to skewed log conductivity data. Furthermore,
one can carry out a formal statistical goodness-of-fit test to ascer-
tain whether the proposed (asymmetric) PDF is an acceptable
match to the hydraulic conductivity data. With these two aims,
that is, fitting a PDF and testing the fit, the log-gamma PDF in

Eq. (38) was fitted to the hydraulic conductivity data graphed in
Fig. 1. Recall that the sample average, standard deviation, and co-
efficient of skew of log conductivity are Ȳ ¼ −20.3, σ̄Y ¼ 2.08,
and C̄sY ¼ 0.592, respectively. These were used to calculate
the log-gamma parameters ᾱY ¼ 11.4, β̄Y ¼ 0.616, θ̄Y ¼ −27.3
by using Eqs. (46–48), respectively. Because C̄sY is positive, the
hydraulic conductivity has lower bound equal to expðθ̄YÞ ¼
1.39 × 10−12. The log-gamma PDF of hydraulic conductivity K is

hKðsÞ ¼
h
lnðsÞ−ð−27.3Þ

0.616

i
11.4 j lnðsÞ − ð−27.3Þj−1e−



lnðsÞ−ð−27.3Þ

0.616

�

sΓð11.4Þ ð58Þ

Eq. (58) is graphed in Fig. 4.
Use Eq. (49) to calculate the quantiles of a log-gamma-

distributed property. Suppose that the quantiles of log conductivity
K0.25, K0.50, and K0.75 are wanted. The values Ψq¼p for p ¼ 0.25,
0.50, and 0.75 equal 8.98, 11.1, and 13.5, respectively. Estimate
the values of the desired quantiles by using Eq. (49): K̄0.25¼
3.43×10−10, K̄0.50 ¼ 1.25 × 10−9, and K̄0.75 ¼ 5.45 × 10−9 cm=s.

Goodness-of-Fit Testing: Chi-Square Test

The chi-square goodness-of-fit test is a formal procedure used to
accept or reject a proposed PDF to fit specific data. The procedure
can be used for any type of data. Goodness-of-fit tests other than the
chi-square test are available. Benjamin and Cornell (1970) and
Gilbert (1987) review several goodness-of-fit tests. The following
steps must be implemented in applying the chi-square test:
1. Calculate R saturated hydraulic conductivity (or other ground-

water variable) quantiles, denoted by KΔp < K2Δp < · · · <
KRΔp, using the appropriate equation for quantile calculation.
In the notation KrΔp, the probability corresponding to the
quantile is r · Δp, where r ¼ 1,2; : : : ;R, and the probability
incrementΔp is defined by Eq. (58). A suitable range for R is

Fig. 2. Log conductivity data Y graphed in Fig. 1
Fig. 3.Normal PDF fitted to the log conductivity data graphed in Fig. 1

Fig. 4. Log-gamma PDF fitted to the hydraulic conductivity K data
shown in Fig. 1

© ASCE 04014063-7 J. Hydrol. Eng.
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4 ≤ R ≤ 9. The quantiles KrΔp with r ¼ 1,2; : : : ;R are cho-
sen so that they define Rþ 1 equal-probability, nonoverlap-
ping intervals of hydraulic conductivity

P½KrΔp ≤ K ≤ Kðrþ1ÞΔp� ¼ PðK < KΔpÞ
¼ PðK > KRΔpÞ ¼ Δp ð59Þ

for r ¼ 1,2; : : : ;R − 1, where

Δp ¼ 1

Rþ 1
ð60Þ

is the probability of each of the Rþ 1 intervals of saturated
hydraulic conductivity defined by the quantiles KrΔp,
r ¼ 1,2; : : : ;R. The quantiles satisfy the probability statement

PðK ≤ KrΔpÞ ¼ r · Δp r ¼ 1,2; : : : ;R ð61Þ

2. The expected number of K measurements that fall in any of the
Rþ 1 (equal-probability) intervals equalsn · Δp, wheren is the
number of K measurements available. This number compares
with the actual number of K measurements observed in the
rth interval, nr, r ¼ 1,2; : : : ;Rþ 1. Calculate the test statistic

D ¼ 1

n · Δp

XRþ1

r¼1

ðnr − n · ΔpÞ2 ð62Þ

3. Determine the chi-square critical value associated with a 5%
significance level and R − f degrees of freedom, χ2

0.05;R−f.
The number of degrees of freedom of the chi-square critical
value is customarily R. However, f = two parameters (Ȳ
and σ̄Y) must be estimated from K data for the lognormal
PDF (with lower bound equal to zero), and f = three para-
meters (αY , βY , θY) must be estimated from data for the
log-gamma PDF. Therefore, the number of degrees of freedom
of the chi-square critical value becomes R − f. The chi-square
critical value is tabulated in the technical literature. It can
also be obtained by using commercial software. In Excel, the
function CHISQ.INV.RTV(0.05, R − f) returns the critical va-
lue χ2

0.05;R−f . The software MATLAB returns the critical value
χ2
0.05;R−f by using the command chi2inv(0.95, R − f).

4. If the test statistic D exceeds χ2
0.05;R−f, reject the fitted PDF as

a suitable probability model for the K data. Otherwise, accept
the fitted PDF.

Calculation Example on How to Fit and Test
the Log-Gamma PDF

The goodness-of-fit of the log-gamma PDF to the K data shown
in Fig. 1 is assessed. Recall the basic statistics pertaining to the
K data are average K̄ ¼ 03.94 × 10−8 cm=s, standard deviation
σ̄K ¼ 3.70 × 10−7, and coefficient of skew CsK ¼ 13.7. Choose
R ¼ 9. Quantify nine quantiles KΔp < K2Δp < · · · < K9Δp by using
Eq. (49), which define Rþ 1 ¼ 9þ 1 ¼ 10 equal-probability in-
tervals. The probability associated with each interval is Δp ¼
1=10 ¼ 0.10 so that the expected number of K measurements in
each interval is nΔp ¼ 201 × 0.10 ¼ 20.1. The number of mea-
surements observed in each interval is counted from the K sample.
The test statistic [D, Eq. (62)] is calculated, and the chi-square criti-
cal value determined. Results are summarized in Table 1.

D ¼ 6.91 < χ2ð0.05; 9 − 3 ¼ 6Þ ¼ 12.59; thus, the log-gamma
PDF is accepted as a suitable probability model for the K data used
in this example. Fig. 5 summarizes the key features of this example.

Application of Exponential Function to Hydraulic
Conductivity Data

The exponential PDF has found applications in many fields of in-
quiry, including groundwater hydrology. Its PDF is

hKðsÞ ¼ λe−λs s ≥ 0; λ > 0 ð63Þ

The parameter λ can be estimated from the sample average of
the property (e.g., hydraulic conductivity), K̄, as follows:

λ̄ ¼ 1

K̄
ð64Þ

The pth quantile of the exponential PDF is calculated as
follows:

K̄p ¼ 1

λ̄
ln

�
1

1 − p

�
ð65Þ

Table 2 lists the hydraulic conductivity values measured with
constant-head permeameter in a silty sand derived from weathered
sandstone and shale. The exponential PDF was fitted to the K data
in Table 2 to yield hKðsÞ ¼ 0.538 expð−0.538Þ with sample aver-
age K̄ ¼ 1.86 and parameter λ̄ ¼ 0.538.

Table 3 summarizes the results of the chi-square test imple-
ment to assess the goodness-of-fit of the exponential PDF to the

Table 1. Results of Goodness-of-Fit Test for Data in Fig. 1 and Log-
Gamma PDF

Interval
number (r)

Upper limit
of interval
(cm=s)

Expected
number
(n · Δp)

Observed
number
(nr)

ðnr − n · ΔpÞ2=
ðn · ΔpÞ

1 K̄0.10 ¼ 1.248 × 10−10 20.10 24 0.757
2 K̄0.20 ¼ 2.559 × 10−10 20.10 20 0.000
3 K̄0.30 ¼ 4.494 × 10−10 20.10 14 1.851
4 K̄0.40 ¼ 7.505 × 10−10 20.10 19 0.060
5 K̄0.50 ¼ 1.245 × 10−9 20.10 16 0.836
6 K̄0.60 ¼ 2.119 × 10−9 20.10 28 3.105
7 K̄0.70 ¼ 3.859 × 10−9 20.10 19 0.060
8 K̄0.80 ¼ 8.097 × 10−9 20.10 22 0.180
9 K̄0.90 ¼ 2.433 × 10−8 20.10 20 0.000
10 ∝ 20.10 19 0.060

Note: D ¼ 6.91; χ2ð0.05; 6Þ ¼ 12.59.
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Fig. 5. Observed and expected numbers of K values (cm=s) in
10 equal-probability (Δp ¼ 0.10) intervals; the expected number of
K values equals 20.1 and is represented by the white bars
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hydraulic conductivity data in Table 2. D ¼ 1.23 < χ2ð0.05;
4 − 1 ¼ 3Þ ¼ 7.81; the exponential PDF is accepted as a suitable
model for the data of Table 2. Fig. 6 graphs the results of the chi-
square test.

Application of Gamma PDF to Residence Time and
Age of Groundwater

The residence time of a groundwater particle (t1) extends from the
moment when the particle enters a groundwater flow system until it
exits it. In contrast, the age of a water particle (t2) moving in
groundwater is the time elapsed since the particle entered the
groundwater flow system (e.g., Loáiciga 2005). Let L be the total
distance traveled by a groundwater particle in its journey through
an aquifer, and let K denote the hydraulic conductivity of the

aquifer. It is assumed that groundwater flow takes place under a
constant hydraulic gradient g. The aquifer’s porosity is n. The
residence time of a groundwater particle equals the total travel dis-
tance L divided by the average groundwater velocity. The latter is
obtained from Darcy’s law. The residence time is then given by
Eq. (66)

t1 ¼
n
g
L
K

ð66Þ

L and K are independent random variables. A gamma PDF
is proposed to characterize the probabilistic characteristics of K.
Therefore, the proposed PDF of K is a two-parameter gamma
distribution

fKðsÞ ¼
sa2−1e−s=b2
Γða2Þba22

a2 > 1; b2 > 0; s ≥ 0 ð67Þ

where a2 and b2 = shape and scale parameters of the gamma
distribution, respectively; and Γð·Þ = gamma function defined as
follows:

ΓðuÞ ¼
Z ∞
0

e−vvu−1dv ð68Þ

The distribution of the total travel distance L is modeled by a
two-parameter gamma distribution

fLðsÞ ¼
sa1−1e−s=b1
Γða1Þba11

a1 > 1; b1 > 0; s ≥ 0 ð69Þ

The hydraulic conductivity K and total travel distance L have
expected values a1b1 and a2b2, respectively. Eq. (66) implies that
the residence time is the scaled ratio of two independent gamma
variables, in which the scaling ratio is the constant n=g≡ a > 0.
The PDF fðt1Þ of the residence time t1 was derived by Loáiciga
(2004)

f1ðtÞ ¼
Γða1 þ a2Þ
Γða1ÞΓða2Þ

�
a
b1
b2

�
a2 ta1−1

ðtþ ab1
b2
Þa1þa2

t ≥ 0; a¼ n=g ≥ 0

ð70Þ

The average residence time is derived from Eq. (70) (letting
β ¼ ab1=b2), as follows:

T1 ¼
Z ∞
0

tf1ðtÞdt ¼ a
b1
b2

a1
ða2 − 1Þ ð71Þ

The average turnover time (T) of groundwater storage is defined
as the storage (V) divided by the average rate of aquifer recharge
(or discharge, R). Recharge into an aquifer displaces existing
groundwater, so that the average time that it takes the recharge
to replace the groundwater already in storage equals T. A plausible
connection between T and T1 is intuitive. The key to decipher this
connection is the groundwater age. The age of a groundwater par-
ticle (t2) moving through an aquifer is the time elapsed since the
particle entered the aquifer. Its PDF is denoted by f2ðtÞ. The latter
PDF may not be specified independently of f1ðtÞ, the PDF of the
residence time, because t1 and t2 are interdependent. Such inter-
dependency is deducible from basic mass-balance considerations,
as shown in Loáiciga (2005), who proved that the PDF of the
groundwater age, f2ðtÞ is (with β ¼ ab1=b2)

Table 2. Measurements of Hydraulic Conductivity in Silty Sand Obtained
with Constant-Head Permeameter (Data from Loáiciga et al. 2008b)

Sample
number

Sample
identification code K (m=day)

1 GB1-2 0.14
2 GB1-4 3.52
3 GB1-6 1.12
4 GB1-7 4.58
5 GB2-1.5 2.42
6 GB2-3 0.23
7 GB3-2 5.36
8 GB3-3.5 0.63
9 GB3-5 2.51
10 GB4-3 0.72
11 GB4-4 0.95
12 GB5-4 1.21
13 GB5-6 0.76

Note: Average K̄ ¼ 1.86; λ̄ ¼ 0.538.

Fig. 6. Example histogram of K data on Table 2, indicative of an
exponential PDF

Table 3. Results of Chi-Square Goodness-of-Fit Test Applied to Data in
Table 2 and Exponential PDF

Interval
number (r)

Interval
of K Δp n · Δp nr

ðnr − n · ΔpÞ2=
ðn · ΔpÞ

1 <0.41 0.2 2.6 2 0.36
2 0.41–0.95 0.2 2.6 4 1.96
3 0.95–1.70 0.2 2.6 2 0.36
4 1.70–2.99 0.2 2.6 2 0.36
5 >2.99 0.2 2.6 3 0.16

Note: D ¼ 1.23; χ2ð0.05; 3Þ ¼ 7.81.

© ASCE 04014063-9 J. Hydrol. Eng.
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f2ðtÞ ¼
1

T
½1−F1ðtÞ�

¼ 1

T

�
1− Γða1 þ a2Þ

Γða1ÞΓða2Þ
ta1

a1βa1
· 2F1

�
a1 þ a2;a1;a1 þ 1;− t

β

��

ð72Þ

where F1ðtÞ = cumulative distribution function of the residence
time, which is equal to the integral of f1ðtÞ; 2F1 = Gauss’ hyper-
geometric function (Gradshteyn and Ryzhik 1994); T = expected
turnover time of groundwater storage introduced previously. Differ-
entiating in Eq. (72) produces the following relationship between
f1ðtÞ and f2ðtÞ:

f1ðtÞ ¼ −T df2ðtÞ
dt

ð73Þ

Eq. (73) allows the average residence time to be written as
follows:

T1 ¼
Z ∞
0

tf1ðtÞdt ¼ −T
Z ∞
0

t
df2ðtÞ
dt

dt ¼ T ð74Þ

Eq. (74) states that the average residence time equals the average
turnover time, that is, T1 ¼ T. T1 was given in Eq. (71). The equal-
ity T1 ¼ T ¼ V=R introduces a constraint involving T1, V, and R.
For example, if the average recharge rate R is known, the storage
volume must be V ¼ T1R. If V and R are known, then, from
Eq. (71), a · b1 · a1=½b2ða2 − 1Þ� ¼ T1 ¼ V=R, which imposes a
constraint on the gamma parameters a1, a2, b1, and b2.

Taking into consideration the PDF f2ðtÞ given in Eq. (72), the
expected groundwater age is (with β ¼ ab1=b2, in which a2 > 2 to
achieve convergence to a finite T2)

T2 ¼
1

T

Z ∞
0

t

�
1 − Γða1 þ a2Þ

Γða1ÞΓða2Þ
ta1

a1βa1

× 2F1

�
a1 þ a2; a1; a1 þ 1;− t

β

��
dt ð75Þ

The average age of groundwater expressed by Eq. (75) must be
calculated numerically.

The results presented in this section demonstrate the versatility
of the gamma PDF in modeling basic groundwater processes ana-
lytically. The next section expands on the power of the gamma PDF
to model real-world data.

Application of Gamma PDF to Model Water Quality of
Springs: Correlated Gamma Variables

Spring water in Las Palmas Creek, Santa Barbara, California, was
tested to study the ratio of fecal coliforms (FC) to fecal streptococ-
cus (FS) in it. Fecal coliforms and fecal streptococcus are enteric
bacteria (i.e., they live in the intestinal tract of warm-blooded ani-
mals) and are frequently used as indicators of fecal contamination
of water bodies (Loáiciga and Leipnik 2005). Loáiciga and Leipnik
(2005) fitted FC and FS values with univariate gamma PDFs,
allowing for correlation between them. The FC/FS ratio was deter-
mined from each pair of FC and FS values obtained from a single
water sample. This procedure yielded 38 experimental values of
FC/FS. The FC/FS ratio is of interest because, under suitable con-
ditions, it may be used to discern the origin of enteric bacteria.
In Las Palmas Creek, a FC/FS ratio in the interval [0, 0.4] was
deemed of equine origin, whereas a FC=FS ratio ≥ 3.0 was con-
sidered to be human in origin. The range 0.4 < FC=FS < 4.0 was
associated with mixed origin (i.e., humans, horses, and wildlife,

Loáiciga and Leipnik 2005). If the sources of enteric bacteria are
correctly identified, management actions are taken to counter the
contamination of the spring water. Letting X1 ¼ FC and X2 ¼ FS,
the correlated (four-parameter) gamma PDFs are

fX1
ðx1Þ ¼

x 0γα1−1
1 e−x 0

1
=b1

Γðγα1Þbγα1

1

x1 ≥ ξ1 if b1 > 0; x1 ≤ ξ1 if b1 < 0

ð76Þ

fX2
ðx2Þ ¼

x 0γα2−1
2 e−x 0

2
=b2

Γðγα2Þbγα2

2

x2 ≥ ξ2 if b2 > 0; x2 ≤ ξ2 if b2 < 0

ð77Þ

where x 0
j ¼ xj − ξj; j ¼ 1; 2; γα1 and γα2 = marginal shapes of the

PDFs of X1 and X2, respectively; (b1, b2) and (ξ1, ξ2) = scale and
location parameters, respectively; and γ = collective shape param-
eter of the bivariate distribution of X1 and X2. α1, α2, and γ are
positive. The correlation coefficient ρ is defined in terms of the
means (μ1, μ2) and variances (σ2

1,σ
2
2) of X1 and X2, respectively,

and a parameter β introduced by Loáiciga and Leipnik (2005) to
induce statistical dependence between X1 and X2

ρ≡ μ1;1

σ1σ2

¼ E½ðx1 − μ1Þðx2 − μ2Þ�
σ1σ2

¼ βγ
σ1σ2

¼ β
b1b2

ffiffiffiffiffiffiffiffiffiffi
α1α2

p ð78Þ

The sample estimator of the correlation coefficient is (Priestly
1989)

ρ̄ ¼ 1

σ̄1σ2

·
1

n

Xn
j¼1

ðx1j − X̄1Þðx2j − X̄2Þ ð79Þ

where (X̄1, X̄2) and (σ̄1, σ̄2) = sample estimators of the means and
standard deviations of X1 ¼ FC and X2 ¼ FS.

The goal of this application is to present the PDF of the
ratio Z ¼ X1=X2 ¼ FC=FS. This PDF allows a characterization
of Z and, thus, of the origin of enteric bacteria in a probabilistic
manner. The ratio PDF of the two correlated gamma variables
was derived by Loáiciga and Leipnik (2005), as follows (with
ξ1 ¼ ξ2 ¼ 0):

gZðzÞ ¼
X∞
n¼0

Xn
k¼0

Xn
j¼0

ð−1Þnþkþj

�
β

bα1

1 bα2

2

�
n
�−γ

n

��
n

k

��
n

j

�

×

�
b−ðγα1þkÞ
1

bγα2þk
2

�
·

Γðλ1,2Þ · zλ1þk−n−1

Γðλ1 − nþ kÞ · Γðλ2 − nþ jÞ · z 0λ1,2
ð80Þ

where λj ¼ αjðnþ γÞ; j ¼ 1; 2; λ1,2 ¼ λ1 þ λ2 þ kþ j − 2n

z 0 ¼ z
b1

þ 1

b2
ð81Þ

and

�
λ
k

�
¼ λðλ − 1Þ · · · ðλ − kþ 1Þ

k!
ð82Þ

is the binomial coefficient for any real λ and nonnegative integer k.
The estimated parameters in the Las Palmas Creek study were
b̂1 ¼ b̂2 ¼ 1.0; α̂1 ¼ 2.471; α̂2 ¼ 8.245; β̂ ¼ 1.417; γ̂ ¼ 0.35;
and ρ̂ ¼ 0.40.
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Fig. 7 shows the empirical (observed × 100) and calculated
(model × 100) frequencies of the FC/FS ratio in Las Palmas Creek

)1999–2000 ). The empirical frequency in each range was calcu-
lated by dividing the number of observations within the range
by the sample size (= 38), and then scaling it by 100 for ease of
interpretation. The model frequency in each range was calculated
by integrating Eq. (80) and then scaling it by 100 for ease of in-
terpretation. In Fig. 7, the range labeled 0.1 equals the interval [0.0,
0.1], that labeled 0.2 equals [0.1, 0.2], and so on. The last range is
≥2.0. Fig. 7 shows an overall excellent agreement between the em-
pirical and calculated probabilities. The observed and model-
calculated probabilities PðZ ≤ 0.4Þ were 71.1 and 66.1%, respec-
tively, which provides strong evidence of the predominance of
equine fecal bacteria in Las Palmas Creek. A chi-square good-
ness-of-fit test was implement to ascertain the suitability of the
PDF gðzÞ [Eq. (80)] for the ratio Z ¼ FC=FS to describe the
FC/FS data. The chi-square statistic χ2ð0.05; 32Þ ¼ 46.19 is larger
than the test statistic D ¼ 24.70. Thus, the null hypothesis of a
gamma ratio distribution was not rejected at a 5% significance
level. The P value in this case was approximately 0.85, which dem-
onstrates the robustness of the fit of the model probability to the
empirical data.

Multivariate Lognormal PDF: Testing
Goodness-of-Fit to Data and Synthetic Generation

There are situations in groundwater hydrology when multiple
random variables are not independent. In this case, statistical
dependence is commonly expressed in terms of spatial correlation.
Conforming to physical plausibility, correlation functions are such
that the degree of spatial association between random variables
decreases with increasing distance separating them. The spatial cor-
relation can be exploited in various ways, a common one being
the spatial interpolation using geostatistics (e.g., Journel and
Huijbregts 1978; Loáiciga et al. 2010). The application of geosta-
tistics for spatial interpolation does not require the specification of a
multivariate PDF for the random variables representing, for exam-
ple, the value of rock porosity at various locations in a geologic
formation. In its simplest form, called ordinary kriging, geostatis-
tical interpolation assumes (1) a constant mean for the regionalized

variable (i.e., a random variable defined over geographic space)
and (2) a correlation function that expresses the degree of spatial
association among the realizations of the random variable at various
locations in a geologic formation. With those two assumptions, it is
possible to obtain a best linear unbiased estimator (BLUE) of the
regionalized variable at locations where measurements are not
available using measurements of the regionalized variable at neigh-
boring sites.

Other applications in groundwater hydrology require the speci-
fication of a multivariate PDF governing the realization of values of
measurable aquifer properties. One example is the goodness-of-fit
testing of a data set to a multivariate PDF. Another example is the
synthetic generation of random fields (i.e., generation of values in
physical space) of hydraulic conductivity and porosity in a geologic
formation. The generated random fields may be used as part of
Monte Carlo simulations implemented in conjunction with numeri-
cal models with the intention of assessing the probabilistic nature of
groundwater flow and contaminant transport. The goodness-of-fit
testing of the multivariate lognormal PDF and the synthetic gener-
ation of variables that have a multivariate lognormal PDF are elab-
orated upon in the following.

Testing Goodness-of-Fit of Multivariate Lognormal PDF

Assume that the log-transformed variable Y ¼ lnðKÞ is normally
distributed, where Y could represent an aquifer property, such as
log hydraulic conductivity or log porosity. A measurement or reali-
zation of K or Y is denoted by k or y, respectively. It has been
shown in a previous section that the logarithmic transformation fre-
quently reduces groundwater data to near normally or near symmet-
rically distributed variables. Assume Y is measured at various
locations in a geologic formation, giving rise to a vector of random
variables Y ¼ ðY1;Y2; : : : ;YnÞwith vector of expected values μ ¼
ðμ1;μ2; : : : ;μnÞ and covariances σ2

ij between any two variables Yi
and Yj; i; j ¼ 1; 2; : : : ; n. The elements μi of the vector of expected
values need not be equal to one another. It is convenient to write the
covariances σ2

ij compactly by defining the covariance matrixΣ of
the vector of log variables Y, as follows:

Σ ¼

2
666664

σ2
1 σ2

12 · · · σ2
1n

σ2
12 σ2

22 · · · σ2
2n

..

. ..
. . .

. ..
.

σ2
1n σ2

2n · · · σ2
nn

3
777775

ð83Þ

The multivariate PDF of the log vector Y is as follows
(Anderson 1970):

fYðyÞ ¼
1

ð2πÞn=2 · jΣj1=2 e
−1=2·ðy−μÞT ·Σ−1 ·ðy−μÞ ð84Þ

where jΣj and Σ−1 = determinant and inverse of the covariance ma-
trix Σ, respectively; superscript T = transpose of a vector or matrix;
and yT ¼ ðy1; y2; : : : ; ynÞ = vector of transformed measurements
yi ¼ lnðkiÞ. If a multivariate data set y is available and need be
tested for multivariate normality, implying the normality of the
raw variables Ki ¼ eYi , one resorts to the fact that there exists a
nonsingular matrix C such that CΣCT ¼ I, where I denotes the
(n × n) unit or identity matrix (Anderson 1970; Rao 1973; Golub
and van Loan 1984). The matrix C can be obtained by means of
the Cholesky decomposition of the inverse matrix Σ−1 ¼ CCT .
There are numerically efficient algorithms for calculating the Cho-
lesky matrix C (e.g., Golub and van Loan 1984). The transformed
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Fig. 7. Empirical (observed × 100) and calculated (model × 100)
frequencies of the FC/FS ratio at Las Palmas Creek, Santa Barbara,
California (1999–2000)
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vector of random variables Z ¼ CY is multivariate normal with
mean vector Cμ and covariance matrix CΣCT ¼ I; that is, the
components Zi of the transformed random variable Z ¼ CY are
independently distributed normal variables with unit variances
and mean vector Cμ.

The test for multivariate lognormality of the variables Ki ¼ eYi

proceeds as follows: (1) given a data set of measurements
k1;k2; : : : ; kn of the raw variable K, log transform them to obtain
y, and specify the covariance Σ of the vector of log variables Y;
(2) determine the matrix C such that CΣCT ¼ I, that is,
Σ−1 ¼ CCT , and obtain the transformed data set z ¼ Cy; (3) sub-
tract the mean vector Cμ from the vector z to obtain a vector x
of independent and normally distributed variates with zero mean
and unit variance; (4) apply the chi-square test described in a
previous section of this paper to the transformed data vector
xT ¼ ðx1; x2; : : : ; xnÞ; (4) if the xis are found to be normally dis-
tributed, then the log-transformed variable Y follows the multivari-
ate normal PDF in Eq. (84), and the raw variable K1;K2; : : : ;Kn
are multivariate lognormally distributed.

Synthetic Generation of Random Fields with
Multivariate Lognormal PDF

The synthetic generation of m random variables that are multivari-
ate and lognormally distributed proceeds in a manner that is
the inverse analog of that followed in the goodness-of-fit approach
of the following subsection. The steps are as follows: (1) use a
suitable random number generator algorithm to produce m inde-
pendent and identically normally distributed variates xT ¼
ðx1; x2; : : : ; xmÞ, with zero means and unit variances; (2) multiply
the vector xT ¼ ðx1; x2; : : : ; xmÞ by the (m ×m) matrix D, where
D satisfies the Cholesky decomposition Σ ¼ DDT , to produce
a zero-mean vector with specified covariance Σ; (3) add the mean
vector μ to the vector Dz 0 to obtain a vector yT ¼ ðy1; y2; : : : ; ymÞ
of log-transformed variates drawn from a multivariate lognormal
PDF with mean μ and covariance matrix Σ; (4) obtain a random
field of raw variates ki; i ¼ 1; 2; : : : ;m, by using the transforma-
tion ki ¼ eyi , which follow a multivariate lognormal PDF as de-
sired. The covariance σ2

K;ij between any two variables Ki, Kj is
related to the covariance σ2

ij of the transformed variables Yi, Yj
by the following formula:

σ2
K;ij ¼ σ2

K
eσ

2
ij − 1

eσ
2
Y − 1

ð85Þ

where σ2
K and σ2

Y = variances of the raw variable K and the log-
transformed variable Y. Steps 1 through 4 are repeated as many
times as necessary following a Monte Carlo design to generate
random fields with desired multivariate lognormal PDF. The
method for synthetic generation of random fields described in this
section is not limited to only one type of random variable, such as
hydraulic conductivity. It also includes situations in which the vec-
tor of log-transformed random variable includes two or more types
of random variable, for example, hydraulic conductivity and poros-
ity. The case of two types of random variable considered jointly
gives rise to a vector of log-transformed variables with two com-
ponent subvectors, yT ¼ ðyT

1
; yT

2
Þ, in which the subvectors y

1
and

y
2
(each with subvectors of mean values μ

1
and μ

2
, respectively)

can be defined to represent subsets of hydraulic conductivity and
porosity variables, respectively. The procedures described in this
section remain unaltered, provided that the covariance matrix Σ
be redefined to contain the covariances (Σ11 and Σ22) of each
subvector and the cross covariances (Σ12 ¼ Σ21) between the two
subvectors.

Current theory for multivariate PDFs other than the lognormal is
not well developed and is bedeviled by mathematical complexity,
complicating its application to probabilistic, multidimensional
problems in groundwater hydrology and other fields of inquiry.
This is an active area of research in applied statistics and probability
(Genest and Favre 2007).

Conclusion

This paper has demonstrated the power of PDF methodologies to
analyze groundwater phenomena. The examples in this paper
have shown that probabilistic modeling of asymmetric aquifer
properties, such as the hydraulic conductivity, can be accom-
plished with the log-gamma PDF with succinct flexibility. Other
examples in this work illustrate the versatility of PDFs in eluci-
dating the probabilistic nature of aquifer properties. The gamma
PDF, for example, was shown to exhibit remarkable versatility
to model groundwater processes, such as residence time and
age. In the multivariate case, this paper presented algorithms
to tackle goodness-of-fit testing and synthetic generation of ran-
dom fields with desired probabilistic characteristics based on the
lognormal PDF.
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