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Ping Pong in Church: Productive use of concepts in human probabilistic inference
Tobias Gerstenberg1 (t.gerstenberg@ucl.ac.uk) & Noah D. Goodman2 (ngoodman@stanford.edu)

1Cognitive, Perceptual and Brain Sciences, University College London, London WC1H 0AP
2Department of Psychology, Stanford University, Stanford, CA 94305

Abstract
How do people make inferences from complex patterns of ev-
idence across diverse situations? What does a computational
model need in order to capture the abstract knowledge peo-
ple use for everyday reasoning? In this paper, we explore
a novel modeling framework based on the probabilistic lan-
guage of thought (PLoT) hypothesis, which conceptualizes
thinking in terms of probabilistic inference over composition-
ally structured representations. The core assumptions of the
PLoT hypothesis are realized in the probabilistic programming
language Church (Goodman, Mansinghka, Roy, Bonawitz, &
Tenenbaum, 2008). Using “ping pong tournaments” as a case
study, we show how a single Church program concisely repre-
sents the concepts required to specify inferences from diverse
patterns of evidence. In two experiments, we demonstrate
a very close fit between our model’s predictions and partici-
pants’ judgments. Our model accurately predicts how people
reason with confounded and indirect evidence and how differ-
ent sources of information are integrated.
Keywords: inference; reasoning; causality; language of
thought; probabilistic programming

Introduction
People often make surprisingly accurate inferences about

a person’s latent traits from very sparse evidence. If the sec-
ond author (NG) loses to the first author (TG) in a ping pong
match and afterwards wins against two other lab members,
we are fairly confident that TG is a strong player despite only
having observed him winning a single game. However, if
we consequently find out that NG felt a bit lazy in his match
against TG and did not try as hard as he normally does, our
belief about TG’s strength might change. This reasoning
is not limited to a particular set of potential players, it can
be generalized to related situations (such as team matches),
and it supports inferences from complex combinations of ev-
idence (e.g. learning that NG was lazy whenever he played a
match against a team that included TG) – human reasoning is
remarkably productive.

How can we best model the flexible inferences people draw
from diverse patterns of evidence such as the outcomes of
matches in a ping pong tournament? What assumptions about
the cognitive system do we need to make to be able to ex-
plain the productivity and gradedness of inference? What is
the minimum level of abstraction that mental representations
need to exhibit in order to support the inferential flexibility
that our cognitive machinery displays?

There are two traditional, but fundamentally different
ways of modeling higher-level cognition, each with its own
strengths and drawbacks: Statistical approaches (e.g. Rumel-
hart & McClelland, 1988) support graded probabilistic in-
ference based on uncertain evidence but lack some of the
representational powers of more richly structured symbolic
approaches. Symbolic approaches (e.g. Newell, Shaw, & Si-
mon, 1958), on the other hand, are confined to operating

in the realm of certainty and are ill-suited to modeling peo-
ple’s inferences in a fundamentally uncertain world. More
recently, researchers have started to break the dichotomy be-
tween statistical and symbolic models (Anderson, 1996) and
have shown that much of cognition can be understood as
probabilistic inference over richly structured representations
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

For instance, causal Bayesian networks (CBN; Pearl,
2000) have been proposed as a modeling framework that
combines the strengths of both statistical and symbolic ap-
proaches. Given a particular representation of a task that the
cognitive system faces, a CBN supports inferences about the
probability of competing hypotheses for many different pat-
terns of evidence. However, a CBN is limited to the spe-
cific situation it was designed to model, allowing inferences
from different observations of existing variables, but not from
fundamentally different combinations of objects or events.
While some attempts have been made to model more ab-
stract knowledge by constructing CBNs with richer, hierar-
chical structures (Kemp & Tenenbaum, 2009) or by com-
bining CBNs with propositional logic (Goodman, Ullman,
& Tenenbaum, 2011; Griffiths, 2005), CBNs have only
coarse-grained compositionality insufficient to support pro-
ductive extensions over different objects and situations.

Human thought, in contrast, is characterized by an enor-
mous flexibility and productivity (Fodor, 1975). We can
flexibly combine existing concepts to form new concepts and
we can make use of these concepts to reason productively
about an infinity of situations. The probabilistic language
of thought (PLoT) hypothesis (Goodman & Tenenbaum, in
prep) posits that mental representations have a language-like
compositionality, and that the meaning of these representa-
tions is probabilistic, allowing them to be used for thinking
and learning by probabilistic inference. This view of the rep-
resentation of concepts provides a deeper marriage of the sta-
tistical and symbolic view. Because they are probabilistic,
they support graded reasoning under uncertainty. Because
they are language-like, they may be flexibly recombined to
productively describe new situations. For instance, we have a
set of concepts, such as “strength” and “game”, in the ping
pong domain that we may compose together and apply to
symbols such as TG. These combinations then describe dis-
tributions on possible world states, which we may reason
about via the rules of probability. The PLoT hypothesis has
been realized in existing computational systems, including
the probabilistic programming language Church (Goodman
et al., 2008). Church has several features that enable it to
model productive inference from a small set of concepts – in
particular, it allows reasoning about placeholder symbols and
the forming of complex evidence by composing the concepts.
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Figure 1: Screenshot of a single player tournament. The winner of
each match is indicated by a laurel wreath.

In this paper, we use Church (Goodman et al., 2008), as an
instantiation of the PLoT, to explain aspects of people’s flex-
ible concept use, and use the ping pong scenario as a simple
case study to illustrate our key points while admitting quanti-
tative empirical evaluation. In two separate experiments, we
test the predictions of our modeling approach by examining
people’s inferences based on complex patterns of causal evi-
dence. We conclude by pointing out areas of research that are
likely to benefit from this modeling framework.

Modeling probabilistic inferences in Church

Figure 1 shows an example of the inference task that partic-
ipants faced in the experiments which we will describe below.
What representation would be needed to (a) be sensitive to the
statistical nature of the evidence and (b) capture the abstract,
symbolic structure that remains invariant between this partic-
ular situation and other similar situations that could involve
different players and different outcomes? Figure 2 shows the
Church code that we used to model people’s inferences about
a player’s strength based on the results of ping pong tourna-
ments. We chose the ping pong environment because it can
be summarized by a relatively simple but rich set of concepts
that support productive inferences from a variety of evidence
in a variety of situations. We will first introduce the Church
language and then explain how this representation captures
our intuitive concepts of ping pong.

Church is based on the λ-calculus, with a syntax inher-
ited from the LISP family of languages (McCarthy, 1960).
Thus operators precede their arguments, and are written in-
side grouping parentheses: (+ 1 2). We use define to
assign values to symbols in our program and lambda for cre-
ating functions. We could, for example, create a function
double that takes one number as an input and returns its
double. The code would look like this: (define double
(lambda (x) (+ x x))). What differentiates Church from
an ordinary programming language is the inclusion of random
primitives. For example, the function (flip 0.5) can be in-
terpreted as a simple coin flip with a weight outputting either

(mh-query 1000 100 ;Monte Carlo Inference
  ;CONCEPTS         
  (definedefine personstrengthpersonstrength (memmem (lambdalambda (person) (gaussian 10 3))))
  (definedefine lazylazy (memmem (lambdalambda (person game) (flipflip 0.1))))
  (definedefine (teamstrengthteamstrength team game)
    (sumsum (mapmap (lambdalambda (person)
                (ifif (lazy person game)
                   (/ (personstrength person) 2)
                   (personstrength person)))
                 team)))
  (definedefine (winnerwinner team1 team2 game)
    (ifif (< (teamstrength team1 game)
        (teamstrength team2 game))
        'team2 'team1))
  ;QUERY
  (personstrength 'A)
  ;EVIDENCE
  (andand
    (= 'team1 (winner '(TG) '(NG) 1))
    (= 'team1 (winner '(NG) '(AS) 2))
    (= 'team1 (winner '(NG) '(BL) 3))
    (lazy '(NG) 1) ;additional evidence, used in Experiment 2
  )
)

Figure 2: Church model of the ping pong scenario.

true or false. Every time the function is called, the coin is
flipped afresh. A Church program specifies not a single com-
putation, but a distribution over computations, or sampling
process. This sampling semantics (see Goodman et al., 2008,
for more details) means that composition of probabilities is
achieved by ordinary composition of functions, and it means
that we may specify probabilistic models using all the tools
of representational abstraction in a modern programming lan-
guage.

We now turn to describing the concepts (see CONCEPTS in
Figure 2) that are required to represent the ping pong do-
main (Figure 1). This simple sports domain is built around
people, teams and games. In Church, we can use symbols
as placeholders for unspecified individuals of these types.
This means that we do not need to define in advance how
many people participate, what the size of the teams will be,
or how many games a tournament will have. We define an
individual player’s strength, personstrength, via a func-
tion that draws from a Gaussian distribution with M = 10
and SD = 3. The memoization operator mem ensures that the
strength value assigned to a person is persistent and does not
change between games. We next make the assumption that
players are sometimes lazy. The chance of a person being
lazy in a particular game is 10%, specified by using the func-
tion flip with a weight of 0.1. As mentioned above, we
also want to allow for the possibility that individual players
form teams – we thus need the overall strength of a team,

Table 1: Modeling assumptions.

concept description assumption

personstrength strength of normally distributed,
a player persistent property

lazy chance that p(lazy) = 10%,
a player is lazy not persistent

teamstrength strength of individual strengths
a team combine additively

winner winner of a team with greater
match strength wins
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Table 2: Patterns of observation for the single player tournaments.
Note: An additional set of 4 patterns was included for which the
outcomes of the games were reversed. The bottom row shows the
omniscient commentator’s information in Experiment 2.

confounded strong indirect weak indirect diverse
evidence evidence evidence evidence

(1,2) (3,4) (5,6) (7,8)

A > B A > B A > B A > B
A > B B > C B < C A > C
A > B B > D B < D A > D

lazy,game: B,2 B,1 B,1 C,2

Note: A > B means that A won against B.

teamstrength. Here, we define the team’s strength as the
sum of the strength of each person in the team. If a person in
the team is lazy, however, he only plays with half of his ac-
tual strength. The way in which we can define new concepts
(e.g. teamstrength) based on previously defined concepts
(personstrength and lazy) illustrates the compositional-
ity of Church. Finally, we specify how the winner of a game
is determined. We simply say the the team wins who has
the greater overall strength. This set of function definitions
specifies a simple lexicon of concepts for reasoning about the
ping pong domain. The functions are built up composition-
ally, and may be further composed for specific situations (see
below). What’s more, the set of concept definitions refers to
people (teams, etc.) without having to declare a set of possi-
ble people in advance: instead we apply generic functions to
placeholder symbols that will stand for these people. Table 1
concisely summarizes our modeling assumptions.

Now we have a lexicon of concepts (CONCEPTS) that
we may use to model people’s inferences about a player’s
strength (QUERY) not only in the situation depicted in Figure 1
but in a multitude of possible situations with varying teams
composed of several people, playing against each other with
all thinkable combinations of game results in different tour-
nament formats (EVIDENCE). This productive extension over
different possible situations including different persons, dif-
ferent teams and different winners of each game, renders the
Church implementation a powerful model for human reason-
ing.

A program in Church can be seen as a formal description
of the process that generates observed or hypothesized ev-
idence. The mh-query operator specifies a conditional in-
ference. Both the evidence provided and the question we
are asking are composed out of the concepts that specify the
domain. Church completely separates the actual process of
inference from the underlying representations and the infer-
ences they license. This allows the modeler to focus on defin-
ing the conceptual representation of the domain of interest
without having to worry about the exact details of how in-
ference is carried out; it also provides a framework for psy-
chological investigation of representations and the inferences
that may be drawn, without committing to how these infer-
ences are made – a well-formed level of analysis between
Marr’s computational and algorithmic levels (Marr, 1982).

Table 3: Patterns of observation for the two-player tournaments.
Note: An additional set of 6 patterns was included in which the out-
comes of the games were reversed.

confounded confounded strong indirect
with partner with opponent evidence

(9,10) (11,12) (13,14)

AB > CD AB > EF AB > EF
AB > EF AC > EG BC < EF
AB > GH AD > EH BD < EF

weak indirect diverse round
evidence evidence robin
(15,16) (17,18) (19,20)

AB > EF AB > EF AB > CD
BC > EF AC > GH AC > BD
BD > EF AD > IJ AD > BC

Hence, in contrast to other frameworks for building psy-
chological models of cognition, such as ACT-R (Anderson,
1996), Church does not incorporate any assumptions about
how exactly the cognitive system carries out its computations
but merely postulates that inference accords with the rules of
probability.

Experiment 1: Bayesian Ping Pong
In Experiment 1, we wanted to explore how well our sim-

ple Church model predicts the inferences people make, based
on complex patterns of evidence in different situations. Par-
ticipants’ task was to estimate an individual player’s strength
based on the outcomes of different games in a ping pong tour-
nament. Participants were told that they will make judgments
after having seen single player and two-player tournaments.
The different players in a tournament could be identified by
the color of their jersey as well as their initials. In each tour-
nament, there was a new set of players. Participants were
given some basic information about the strength of the play-
ers which described some of the modeling assumptions we
made (cf. Table 1). That is, participants were told that in-
dividual players have a fixed strength which does not vary
between games and that all of the players have a 10% chance
of not playing as strongly as they can in each game. This
means that even if a player is strong, he can sometimes lose
against a weaker player.
Participants 30 (22 female) recruited through Amazon Me-
chanical Turk participated in the experiment. The mean age
was 31.3 (SD = 10.8).
Materials and Procedure The experiment was programmed
in Adobe Flash CS5.1 Participants viewed 20 tournaments in
total. First, one block of 8 single player tournaments and then
another block of 12 two-player tournaments. The order of the
tournaments within each block was randomized. Participants
could remind themselves about the most important aspects of
the experiment by moving the mouse over the Info field on the
top right of the screen (see Figure 1). Based on the results of

1Demos of both Experiments can be accessed here:
http://www.ucl.ac.uk/lagnado-lab/experiments/demos/
BPP_demos.html
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Figure 3: Mean strength estimates (grey bars) and model predictions (black bars) for the single player (left) and two-player tournaments
(right). Numbers above the bars correspond to the patterns described in Tables 2 and 3. Error bars are ± 1 SEM.

the three matches in the tournament, participants estimated
the strength of the indicated player on a slider that ranged
from -50 to 50. The endpoints were labelled “very weak” and
“very strong”. It took participants 7.4 (SD = 3.3) minutes to
complete the experiment.
Design Table 2 shows the patterns of evidence that were used
for the single player tournaments. Table 3 shows the patterns
for the two-player tournaments. In all tournaments, partici-
pants were asked to judge the strength of player A.

For the single player tournaments, we used four differ-
ent patterns of evidence: confounded evidence in which A
wins repeatedly against B, strong and weak indirect evidence
where A only wins one match herself but B either continues
to win or lose two games against other players and diverse
evidence in which A wins against three different players. For
each of those patterns, we also included a pattern in which the
outcomes of the games were exactly reversed.

For the two player tournaments, we used six different pat-
terns of evidence: In some situations A was always in the
same team as B (confounded with partner) while in other sit-
uations A repeatedly played against the same player E (con-
founded with opponent). As in the single player tournaments,
we also had patterns with mostly indirect evidence about the
strength of A by having his partner in the first game, B, either
win or lose against the same opponents with different team-
mates (weak/strong indirect evidence). Finally, we had one
pattern of diverse evidence in which A wins with different
teammates against a new set of opponents in each game and
one round robin tournament in which A wins all his games in
all possible combinations of a 4-player tournament.

Results and Discussion

In order to directly compare the model predictions with
participants’ judgments we z-scored the model predictions
and each individual participant’s judgments. Furthermore, we
reverse coded participants’ judgments and the model predic-

tions for the situations in which the outcomes of the games
were reversed so that both strength and “weakness” judg-
ments go in the same direction.

Figure 3 shows the mean strength estimates (gray bars) to-
gether with the model predictions (black bars) for the single
and two-player tournaments. The top panels display the situ-
ations in which A won his game(s). The bottom panels show
the situations in which A lost. Our model predicts partici-
pants’ judgments in the single and two-player tournaments
very well with r = .98 and RMSE = .19. A very high median
correlation with individual participants’ judgments of r = .92
shows that the close fit is not merely due to an aggregation
effect.

In describing the data qualitatively, we will focus on the
strength jugdments in the top panels (strength and weakness
judgments were highly correlated, r = .96). In the single
player tournaments, A is judged equally strong when he re-
peatedly wins against the same player (situation 1) or when
strong indirect evidence was provided (3). A is judged weak-
est when only weak indirect evidence is provided (5). A is
judged to be strongest when she won against three differ-
ent players (7). In the two-player tournaments, A is judged
equally strong when the evidence is confounded with the part-
ner or opponent and when strong indirect evidence is pro-
vided (9, 11 and 13). A is judged to be relatively weak when
only weak indirect evidence is provided (15). A is judged to
be strong for the situations in which participant’s received di-
verse evidence about A’s strength (17) and even stronger for
the round robin tournament (19).

There appears to be only one prediction that the model
makes which is not supported by the data. In the single player
tournaments, the model predicts that participants should be
slightly more confident about the strength of A when pro-
vided with strong indirect evidence (situations 3, 4) compared
to when confounded evidence is given (situations 1, 2). How-
ever, there is no significant difference between participants’

1593



judgments for strong indirect evidence (M = 26.2, SD= 15.4)
compared to confounded evidence (M = 27.8, SD = 13.8),
t(29) = 0.44, p > .05.

The results of Experiment 1 show that our model predicts
participants’ inferences very accurately. We have demon-
strated that a single and concise representation of the task is
sufficient to predicts people’s inferences for a great diversity
of patterns of evidence.

The close fit between our model and participants’ infer-
ence also shows that our modeling assumptions (e.g. that the
team’s strength is a linear combination of the individual team
members’ strengths) generally matched participants’ implicit
assumptions (cf. Table 1). However, the fact that the model’s
prediction of a difference between strength judgments based
on strong indirect evidence versus confounded evidence was
not supported by the data, suggests that participants might
have differed in the extent to which they took the chance of
laziness into consideration. In fact, only 16 out of 30 par-
ticipants showed the pattern in the predicted direction. If we
increase the probability of a person being lazy in a particu-
lar game in the model, it matches participants’ average judg-
ments for these situations. Intuitively, if the chances of a per-
son having been lazy in a particular game are increased, there
is a higher chance that player A won his game against player
B in situation 3 because B was lazy in this round. However,
when A wins repeatedly against B, there is hardly any effect
of changing the probability of laziness. For example, it is
very unlikely when A won three times against B, that B (and
not A) was lazy three times in a row.

Experiment 2: Omniscient Commentator
In Experiment 1 we have shown that our model accurately

predicts participants’ inferences for a great variety of patterns
of evidence from different combinations of teams and out-
comes. A still greater variety of evidence is available by com-
posing the basic concepts together in different ways: there
is no reason for evidence not to directly refer to a player’s
strength, laziness, etc. While in Experiment 1, the match re-
sults were the only source of information participants could
use as a basis for their strength judgments, Experiment 2 in-
troduced an omniscient commentator who gave direct infor-
mation about specific players. After participants saw a tour-
nament’s match results, an omniscient commentator, who al-
ways told the truth, revealed that one player was lazy in a
particular game. We were interested in how participants up-
dated their beliefs about the strength of player A given this
additional piece of evidence. Importantly, we do not need to
change anything in the Church code to derive predictions for
these situations since all the necessary concepts are already
defined.
Participants 20 (11 female) recruited through Amazon Me-
chanical Turk participated in the experiment. The mean age
was 34 (SD = 9.8).
Materials, Procedure and Design Participants viewed 10
single player tournaments which comprised the 8 situations
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Figure 4: Mean strength estimates and model predictions. Dark grey
bars = estimates after tournament information only, light grey bars
= estimates after omniscient commentator info, black bars = model
predictions. Error bars are ± 1 SEM.

used in Experiment 1 plus two additional patterns (IR 1, 2).
Participants first judged player A’s strength based merely on
the match results in the tournament. Afterwards, participants
received information from the omniscient commentator about
one player who was lazy in a particular match. Participants
then rated A’s strength for a second time, whereby the slider
was initialized at the first judgment’s position. It took partic-
ipants 9.4 (SD = 4) minutes to complete the experiment.

The bottom row of Table 2 shows what information the
omniscient commentator revealed in each situation. For ex-
ample, in situation 3 in which participants first saw strong
indirect evidence, the commentator then said: “In game 1,
Player B was lazy.” In the additional pattern (IR 2), A wins
against B, B wins against C and D wins against E. The com-
mentator then reveals that E was lazy in game 3. For the
patterns in which A lost his game, the results of each match
as shown in Table 2 were reversed and the corresponding los-
ing player was indicated as having been lazy. For example, in
situation 2, A lost all three games against B and the commen-
tator revealed that A was lazy in game 2.

Results and Discussion

Figure 4 shows the mean strength judgments (gray bars)
together with the model predictions (black bars). The dark
gray bars indicate participants’ first judgments based on the
tournament information only. The light gray bars indicate
participant’s second judgments after they received the com-
mentator’s information. The model predicts participants’ rat-
ings very accurately again with r = .97 and RMSE = 0.29.
The model’s median correlation with individual participants’
judgments is r = .86. Again, strength and weakness judg-
ments for the corresponding patterns were highly correlated,
r = .98.

Generally, participants lowered their estimate of A’s
strength (top panel) and weakness (bottom panel) after hav-
ing received the commentator’s information. The fact that
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participants do not lower their estimates of A’s strength for
the two cases in which they received irrelevant evidence by
the commentator about a player’ laziness who was in no rela-
tionship with A (IR 1, 2), shows that participants did not just
have a tendency to regress towards the mean of the scale in
their second judgments.

As predicted by the model, the degree to which participants
lowered their strength estimates as a result of the laziness
information differed between situations. While participants
only marginally lowered their estimates for the confounded
evidence patterns, estimates went down considerably for the
strong indirect evidence patterns. As mentioned in the dis-
cussion of Experiment 1, finding out in the strong indirect ev-
idence situation that A’s win against B might have only been
due to the fact that B was lazy in this match undermines the
relevance of the additional evidence about B’s performance
in match 2 and 3 for A’s strength.

The results of Experiment 2 show that participants, as
well as our model, have no difficulty in integrating different
sources of evidence to form an overall judgment of a player’s
likely underlying strength. The model predicts participants’
judgments very accurately by being sensitive to the degree to
which the initial strength estimate should be updated in the
light of new evidence provided by the commentator.

General Discussion
In this paper, we have demonstrated a novel modeling

framework that conceptualizes people’s reasoning as proba-
bilistic inference over compositionally structured representa-
tions. With a handful of concepts that can combine compo-
sitionally and support productive extensions over novel situ-
ations and objects, we predict participants’ judgments in two
experiments with thirty different patterns of evidence in total.

The fact that people can reason flexibly based on differ-
ent patterns and sources of evidence illustrates the impor-
tance of modeling our representational capacities on a suf-
ficiently abstract level. People’s use of concepts are not tied
to particular situations but extend productively over differ-
ent contexts. The concept of a winner, for example, applies
to a whole range of possible games or even to domains out-
side of games entirely such as winning an election. We have
provided a concrete working-example of how such a repre-
sentation could look like, using the probabilistic program-
ming language Church (Goodman et al., 2008). The fact that
our model’s predictions corresponded very closely to people’s
judgments can be taken as evidence that the assumptions we
had to make when writing the program, generally matched
the intuitive assumptions that people brought to the task. A
Church program makes the modeling assumptions explicit
and thus allows them to be scrutinized. Furthermore, particu-
lar modeling assumptions can also be treated as parameters in
the model. For example, as outlined above, different partici-
pants seemed to have given unequal weight to the probability
that a player might be lazy in an game. Without changing
the general structure of our representation, we could account

for these individual differences by allowing for flexibility in
our modeling assumptions through, for example, treating the
chance of laziness as a free parameter.

In our experiments, we have focused on a single query and
only used a small number of the possible patterns of evidence.
However, our representation supports many more combina-
tions of queries and evidence. For example, we could ask
about the probability that a particular player was lazy in a
certain game. Or we could ask which of two teams is likely
to win given that we have observed the players perform in
some previous games or based on some direct information
about their strength. Furthermore, it would require only min-
imal additions to the concept lexicon to handle evidence such
as, “all players in the red jerseys were lazy” or “at least one
of the players in the green jerseys is very strong.”

To conclude, we have provided only a small glimpse into
what we see as a broad research program that investigates
people’s flexible use of everyday concepts using the tools
of probabilistic programming – the probabilistic language of
thought hypothesis. We are convinced that this research pro-
gram has the potential to greatly benefit our understanding of
how higher-level capacities of human cognition (such as con-
cept learning, naive physics, and theory of mind) are possible.

Acknowledgments
We thank Andreas Stuhlmüller for insightful comments

and for helping with the Church implementation. This work
was supported by a doctoral grant from the AXA research
fund (TG), a John S. McDonnell Foundation Scholar Award
and ONR grant N00014-09-1-0124 (NG).

References
Anderson, J. R. (1996). Act: A simple theory of complex cognition.

American Psychologist, 51(4), 355–365.
Fodor, J. A. (1975). The language of thought. Harvard University

Press.
Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K., &

Tenenbaum, J. B. (2008). Church: A language for generative
models. In Uncertainty in artificial intelligence.

Goodman, N. D., & Tenenbaum, J. B. (in prep). The probabilistic
language of throught.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learn-
ing a theory of causality. Psychological Review, 118(1), 110.

Griffiths, T. L. (2005). Causes, coincidences, and theories.
(Unpublished doctoral dissertation)

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models
of inductive reasoning. Psychological Review, 116(1), 20.

Marr, D. (1982). Vision: A computational investigation into the
human representation and processing of visual information. W.
H. Freeman.

McCarthy, J. (1960). Recursive functions of symbolic expressions
and their computation by machine, Part I. Communications of the
ACM, 3(4), 184–195.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a
theory of human problem solving. Psychological Review, 65(3),
151.

Pearl, J. (2000). Causality: Models, reasoning and inference. Cam-
bridge University Press.

Rumelhart, D. E., & McClelland, J. L. (1988). Parallel distributed
processing. MIT Press.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D.
(2011). How to grow a mind: Statistics, structure, and abstraction.
Science, 331(6022), 1279.

1595




