
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Segmentation, Tracking, and Shape Modeling for 3D Time-lapse Microscopy Images

Permalink
https://escholarship.org/uc/item/7xv0864x

Author
Jiang, Jiaxiang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xv0864x
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Segmentation, Tracking, and Shape Modeling for 3D

Time-lapse Microscopy Images

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Jiaxiang Jiang

Committee in charge:

Professor B.S. Manjunath, Chair
Professor Kenneth Rose
Professor Nina Miolane
Professor Michael Liebling

December 2022

The Dissertation of Jiaxiang Jiang is approved.

Professor Kenneth Rose

Professor Nina Miolane

Professor Michael Liebling

Professor B.S. Manjunath, Committee Chair

November, 2022

Segmentation, Tracking, and Shape Modeling for 3D Time-lapse Microscopy Images

Copyright © 2022

by

Jiaxiang Jiang

iii

Dedicated to my family and friends.

iv

Acknowledgements

I want to take a moment to thank those who helped me along the way on my disser-

tation journey.

First and most importantly, I would like to express my sincere gratitude to Professor

B.S. Manjunath, who has advised my research with consistent support, patience, and

inspiration. His guidance not only helped me find my research direction in computer

vision and image analysis field but also taught me how to do research.

Second, I am grateful to Professor Nina Miolane, Professor Kenneth Rose, and Profes-

sor Michael Liebling, for being on my dissertation committee, discussing research topics,

and offering insightful suggestions. Many thanks to Professor Daniel B. Szymanski and

Professor William Smith who provided an excellent environment for interdisciplinary re-

search. I am also thankful to NSF award # 1715544, NSF SSI award # 1664172, and

NIH funding # 5R01NS103774-04 that financially supported my Ph.D. study.

It has been a pleasure to collaborate with Amil Khan, Shailja, Michael Goebel, Po-

Yu Kao, Samuel A. Belteton, Cezar Borba, Chandrakanth Gudavalli, and Rahul Vish-

wakarma. Technical discussions with Amil Khan, Michael Goebel, Shailja, Po-Yu Kao,

Aditya Jonnalagadda, Fei Xu, Thuyen Ngo, and Utkarsh Gaur are really helpful for com-

ing up with research ideas. Regular meetings with Samuel A. Belteton and Cezar Borba

not only help me trim my research topic but also provide me more insights about the

biology impact of my dissertation. I am also grateful for Kerrianne Ryan for her time and

amazing EM image annotations. I enjoyed the time I spent interacting with all Vision Re-

search Lab members: Austin McEver, Satish Kumar, Devendra Jangid, Raphael Ruschel

Dos Santos, Abu Saleh Mohmmed Iftekhar Niloy, Angela Zhang, Ekta Prashnani, Ivan

Arevalo, Connor Levenson, Aditya Ramakrishnan, Anmol Kapoor, Griffin Danninger,

Carlos Torres, Dmitry Fedorov, Christian Lang, Archith John Bency, Kristian Kvilekval,

v

Xudong Lin, Zency Young, Tao Deng, Oytun Ulutan, and Lingyun Song.

Finally, special thanks to my family, especially my parents who love me and support

me unconditionally. Without them, I could not have gone this far. I would like to thank

all my friends who support me on this journey.

vi

Curriculum Vitæ
Jiaxiang Jiang

Education

November 2022 Doctor of Philosophy
Electrical and Computer Engineering
University of California, Santa Barbara, USA.

May 2017 Master of Science
Electrical and Computer Engineering
The Ohio State University, USA.

June 2016 Bachelor of Science
Electrical Engineering
University of Electronic Science and Technology of China, China.

Honors & Awards

2022 ECE Department Dissertation Fellowship, UCSB

2020 2nd Place on Cell Tracking Challenge, ISBI

2019 Conference Travel Grant, UCSB Graduate Student Association

2019 ICIP Conference Travel Grant, IEEE Signal Processing Society

2015 Second of People’s Scholarship, UESTC

2014 Province Third Place Award, Mathematics Contest in Modelling

2014 First of People’s Scholarship, UESTC

2013 Second of People’s Scholarship, UESTC

Publications

Deep Learning Enabled Time-Lapse 3D Cell Analysis, Jiaxiang Jiang, Amil Khan, S.
Shailja, Samuel A. Belteton, Michael Goebel, Daniel B. Szymanski, B.S. Manjunath,
Submitted to Nature Scientific Reports, 2022

Geographic Atrophy Lesion Segmentation Using Multimodal Deep Learning Networks,
Theodore Spaide, Jiaxiang Jiang, Jasmine Patil, Neha Anegondi, Verena Steffen, Michael
Kawczynski, Liz Newton, Christina Rabe, Simon Gao, Aaron Lee, Frank G. Holz, Srini-
Vas Sadda, Steffen Schmitz-Valckenberg, and Daniela Ferrara, Submitted to IOVS, 2022

Effects of activation method and temperature to III-nitride micro-light-emitting diodes
with tunnel junction contacts grown by metalorganic chemical vapor deposition, Matthew
S. Wong, Nathan C. Palmquist, Jiaxiang Jiang, Philip Chan, Changmin Lee, Panpan
Li, Ji Hun Kang, Yong Hyun Baek, Chae Hon Kim, Daniel A. Cohen1, Tal Margalith,
James S. Speck, Shuji Nakamura, and Steven P. DenBaars, Applied Physics Letters,
November 2021

vii

Analysis of numerical feature extraction from automated geographic atrophy segmen-
tation, Theodore Spaide, Jasmine Patil, Jiaxiang Jiang, Neha Anegondi, Michael
Kawczynski, Verena Steffen, Simon S Gao, Investigative Ophthalmology & Visual Sci-
ence, June 2021

Semi Supervised Segmentation and Graph-based Tracking of 3D Nuclei in Time-lapse
Microscopy, S. Shaija∗, Jiaxiang Jiang∗ (∗denotes equal contribution), B.S.Manjunath,
2021 International Symposium on Biomedical Imaging (ISBI), Nice, France

Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmenta-
tion by Leveraging Location Information, Po-Yu Kao, Shailja, Jiaxiang Jiang, Angela
Zhang, Amil Khan, Jefferson W. Chen, B.S. Manjunath, Frontier Computational Neuro-
science, 2020

Accurate 3D Cell Segmentation Using Deep Feature and CRF Refinement, Jiaxiang
Jiang, Po-Yu Kao, Samuel A. Belteton, Daniel B. Szymanski, B.S. Manjunath, 2019
International Conference on Image Processing (ICIP), Taipei, Taiwan

Experience

07/2017-Present Graduate Student Researcher, Vision Research Lab, UCSB

06/2021-09/2021 Graduate Technical Intern, Intel Labs

06/2020-09/2020 Research Intern, Genentech Clinical Imaging Group

Programming Languages
Python, Matlab, C++, C

Service

2021-Present IEEE Transaction on Computational Imaging Reviewer

2021 ICIP 2021 Reviewer

viii

Abstract

Segmentation, Tracking, and Shape Modeling for 3D Time-lapse Microscopy Images

by

Jiaxiang Jiang

Time lapse 3D images are important resources for biology research because they not

only provide 3D structural information but also provide temporal information. Much of

the analysis of these data are manual and subjective, and does not scale well with the

large amount of imaging data that is routinely collected these days. This is especially

true for 3D and time-lapse imagery. Fundamental problems such as detecting cells, sub-

cellular features, tracking of such structures in 3D over time, and modeling 3D shapes

in robust manner, remain. The problems addressed in this dissertation are motivated by

two bio-imaging problems:

1. Understanding the plant pavement cell growth pattern. The pavement cell growth

controls the leaf expansion patterns and rates which are the key determinants of the

overall photosynthetic rates of the canopy. Time lapse image stacks from 3D confocal

imagery are a good resource to study the pavement cell growth process. To better

understand this process, machine learning methods are developed to detect and track

cellular and sub-cellular features. We developed a deep learning enabled time-lapse 3D

analysis pipeline that includes novel boundary tagged 3D segmentation method, and a

graph based sub-cellular feature extraction and tracking method. Detailed quantitative

evaluation results demonstrate the robustness and state-of-the art performance of the

proposed methods.

2. Neuron morphology analysis. Cell morphology especially neuron morphology plays

an important role in biology because neuron functions are closely related to neuron

ix

morphology. In this dissertation, we propose a robust computational 3D skeleton model

to analyze neuron morphology. It is the first deep learning method to compute a 3D

neuron skeleton model directly from discrete 3D surface points for neuron classification.

The main innovation is in formulating the learning problem associated with computing

the medial axis transform that represents the 3D skeleton. We apply our method on

two Datasets, Ciona neuron dataset and C.elegan neuron dataset for classification. It

results in an accurate and robust skeleton representation, and achieves state-of-the-art

performance in classifying neuron types.

The implementation of the methods developed above and the associated data are

made available on GitHub and also as a software service through the UCSB BisQue

platform.

x

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiii

List of Tables xviii

1 Introduction 1
1.1 Challenges . 3
1.2 Summary of Contributions . 4
1.3 Dissertation Organization . 5

2 Microscopy Cell Images, Datasets, and Tools 7
2.1 Microscopy Imaging Modalities . 8
2.2 Datasets . 9
2.3 Tools . 15

3 Deep Learning Enabled Time-Lapse 3D Cell Analysis 27
3.1 Introduction . 28
3.2 Method . 32
3.3 Datasets . 44
3.4 Results . 45
3.5 Summary . 55
3.6 CELLECT2.0 . 55
3.7 Segments evaluation . 56

4 Neuron Morphology Analysis 61
4.1 Introduction . 62
4.2 Method . 67
4.3 Dataset . 78
4.4 Conclusion . 90

xi

5 Conclusions and Future Work 94
5.1 Future Directions . 95

Bibliography 97

xii

List of Figures

2.1 3D example image stacks from Dataset 1. Each image is a 3D rendering of
a cell membrane tagged confocal image stack from three different volumes. 10

2.2 Four consecutive image slices from a single volume in Dataset 1. The data
is tagged for cell membranes. 11

2.3 3D example image stacks from Dataset 2. Each image is a 3D rendering
of a cell membrane tagged confocal image stack. One image stack has
multiple layers of cells. 12

2.4 Four consecutive image slices from a single volume from Dataset 2. Each
image is one xy plane of the same 3D membrane tagged confocal image
stack. 12

2.5 3D example image stacks from Dataset 3. Each image is a 3D rendering
of a nuclei tagged confocal image stack. 13

2.6 Four consecutive image slices from a single volume from Dataset 3. Each
image is one xy plane of the same 3D nuclei tagged confocal image stack. 13

2.7 3D neuron surface point examples from Dataset 4. This figure shows three
sets of surface points to represent three neurons. 14

2.8 Three neuron skeleton examples from the NeuroMorpho Dataset. 15
2.9 8 3D CAD shape examples from each category of Dataset 6 [1]. From left

to right, top to bottom: airplane, chair, earphone, guitar, lamp, mug, rifle,
and table. 16

2.10 An image slice from Dataset 1 visualized using ImageJ. Various subcellular
features, such as boundary segments, are manually annotated as shown in
the metadata table on the right. Yellow arrow points to one such segment. 18

2.11 Visualizing segmentation mask overlaying on the original pavement cell
image stack. Top left, top right, and bottom right windows show the
axial, sagittal, and coronal planes of segmentation mask overlaying on the
boundary-tagged confocal images, respectively. Bottom left window shows
the 3D reconstruction from the labels. 19

xiii

2.12 Visualizing segmentation mask overlaying on the original nuclei image
stack from Dataset 3. Top left, top right, and bottom right windows show
the axial, sagittal, and coronal planes of segmentation mask overlaying on
the nuclei-tagged confocal images, respectively. Bottom left window shows
the 3D reconstruction from the labels. 20

2.13 Visualizing 3D neuron meshes using Reconstruct. Different colors of the
mesh represent different neurons. There are six neurons in this figure. . . 21

2.14 Visualizing a set of 3D TEM image stack in TrakEM2. The figure shows
one section (slice) of 3D TEM from 3D TEM image stack. This image is
also manually registered to a reference image in TrakEM2. 22

2.15 3D visualization of a single neuron skeleton in TrakEM2. Top window
shows a list of neuron skeletons and the bottom window shows the skeleton
of a neuron called ACIN3R. 23

2.16 3D visualization an object’s point clouds in MeshLab. The object is a
chair in this case. 24

2.17 3D visualization of a surface mesh in MeshLab. This is a bed’s surface mesh. 24
2.18 BisQue Overview: Datasets and Image Analysis Methods. BisQue can

organize a set of data in a dataset and it also provides a set of analysis
methods for different datasets. 25

2.19 Our analysis method is named CellECT2.0 Module in BisQue. Top left
image shows we have an example of four 3D stacked images from different
time sequences in TIFF format as input to our module. BisQue will auto-
matically parallel process the input images and return the results for each
image. Top right shows the running steps and processes of the module.
Bottom left shows the segmentation mask. Each segmented cell is labeled
with an integer in the segmentation image and each of the outputs have
an associated HDF file containing the cellular and sub-cellular features.
Bottom right shows the cellular/sub-cellular features in a HDF file. . . . 26

3.1 (A) Inter-cellular spaces and (B) Protrusion are indicated by red arrows. 30
3.2 Workflow of proposed method. Modified from [2]. Given a sequence of

3D image stacks, deep feature based rotation equivariance deep learning
model with CRF refinement is used to segment each cell. Then adjacency
graph is built based on segmented image and used for sub-cellular feature
extraction and tracking. Sub-cellular features such as junction of three
cell walls and anticlinal wall segment are illustrated in the figure. Next
detected segments will be used in [3] to detect lobes. This chapter mainly
focuses on Step 1 to Step 3. 32

3.3 A. Segmentation workflow includes rotation equivariant 3D U-Net, 3D wa-
tershed, and CRF refinement. B. In 3D equivariant U-Net, all convolution
layers are rotation equivariant convolution layers. The raw 3D image stack
is truncated into 16 slices and then input to 3D equivariant U-Net. . . . 33

xiv

3.4 (A) Inverted raw image in xy orientation, (B) inverted probability map
from the 3D U-Net, (C) initial segmentation result from 3D watershed. . 36

3.5 Unary potential from initial watershed segmentation mask. 37
3.6 Constructing adjacency graph from the segmentation image and tracking

cells/nuclei in consecutive frames using adjacency graph node features.
Color of nodes denote the label/track of the cell/nuclei. Initially, random
labels are assigned for each node in the adjacency graph. For T+1 frame,
after node matching for time T, track IDs are assigned to each node in T+1. 39

3.7 Illustration of how we compute distance between cells in adjacency graph. 40
3.8 12Cell/nucleus tracking illustration: number is used to represent the unique ID for each track of nucleus. At t=3, cell/nucleus

2 divides into 2 new cell/nuclei 3 and 4 . 42
3.9 The figure shows three 3D segmentation image stacks. The top row is 3D

view of confocal images, and bottom row is the 3D view of segmentation
results. Left three samples are from Dataset 1 and right three samples are
from Dataset 2 . 45

3.10 The figure shows the segmentation results of the cell image with inter-
cellular space or protrusion indicated by a red arrow. (A) Inverted raw
image in xy orientation, (B) MARS, (C) ACME, (D) supervoxel-based
method, (E) proposed method. 49

3.11 3D segmentation evaluation using cell shape descripter including area,
perimeter, circularity, aspect ratio, and solidity (ratio between cell area
and its convex hull area). The difference is in terms of percentage. 50

3.12 A: Extracted junctions of three cell walls, B: Extracted anticlinal wall
segment. 50

3.13 Example of computing 3 cell-wall junctions. (A) using method proposed
in [4], (B) using our method, Note that (A) has several false positives. . . 51

3.14 Expert annotated segments (Left) and our computed segments (Right) . 58
3.15 The figure shows two examples of coupling L. Dashed lines represent

distinct pairs. ∥L∥ is the length of the longest distance of those pairs.
Finally, FD is the minimum of those ∥L∥. 59

3.16 3D segmentation visualization in BisQue. Segmentation mask is overlayed
on the original image and users can toggle segmentation mask on/off. . . 59

3.17 3D visualization in BisQue from our segmentation method. Here a 3D
segmentation mask is presented. 60

4.1 Illustration of MAT by using a 2D shape example. 63
4.2 Three main contributions of our neuron morphology analysis work. . . . 64
4.3 Visualization of a 3D ellipsoid shape and its surface skeleton from two

points of view. Yellow triangle mesh represents object surface. Black
contour represents the outline of the skeleton surface. Magenta and Cyan
line segments represent two closest surface points from the skeleton point.
Two colors are used to differentiate different directions. 65

xv

4.4 Typical scientific description of neurons include number of branches as
important morphology features. The description of neurons is from [5]. . 66

4.5 Overview of our proposed neuron morphology analysis pipeline. Given a
surface point cloud as input, we extract the skeleton mesh. The skeleton
mesh includes skeleton points with their radii as well as the connection of
skeleton points. Then we construct the skeleton graph. Each node in a
skeleton graph represents a skeleton point, and edge in the graph repre-
sents the connection between skeleton points. Next, we propose the graph
analysis method to get length and number of branches of neurons based
on the skeleton graph. We also use the skeleton graph for classification
task by embedding it into a fixed length vector. 67

4.6 Overview of neuron skeleton representation method. Given 3D surface
point cloud as input, PointNet++ [6] is used to extract features of the
input point cloud. Then a geometric transformation learned by MLP will
predict the skeleton points location with their radii. After skeleton points
prediction, two simple priors are used to initially connect some skeleton
points, and a graph auto-encoder is used to predict all links that connect
skeleton points. 68

4.7 PointNet++ Encoder. Each dashed box represents a set abstraction level.
The PointNet++ encoding features are multi-scale grouping features from
multiple spatial scales. 69

4.8 Spoke is a vector connecting a skeleton point and that skeleton point’s
one of two closest surface points. The vector points from the skeleton
point to the surface point. Green lines represent the surface of an object,
blue dot is one skeleton point, and the arrow represents a spoke. Spoke is
perpendicular to the object surface at the surface point. 73

4.9 We use two example skeleton graphs (blue and orange) to demonstrate how
we embed the skeleton graph. Each node of a skeleton graph is encoded
into a feature vector by using graph convolution layers. A fixed length
graph level feature vector (global representation) is obtained by graph-
level pooling operation of each node feature vector. The discriminator
takes inputs both global representation and patch representation to decide
whether they are from the same skeleton graph. In this toy example, there
will be 14 global-patch pairs. 76

4.10 This figure illustrates Ciona larva under environmental changes (light
on/off), real Ciona larva, and Ciona larva brain EM images. 78

4.11 Neurons in Ciona. Different colors represent different types of neurons.
Left: each neuron is represented as a sphere; right: each neuron is repre-
sented by their surface points. 79

4.12 Three examples of surface point clouds from Ciona Dataset 79
4.13 Example skeletons from NeuroMorpho Dataset 80
4.14 Example CAD shapes from ShapeNet . 81

xvi

4.15 The figure shows skeleton extraction results from different methods. From
left to right:Input 3D surface points; skeleton points from surface points
using DPC [7]; skeleton mesh from surface points using Point2Skeleton [8];
skeleton mesh from our method with surface norm cost function. 82

4.16 Five examples of repaired mesh and their surface point clouds. Top row
is the original point clouds and bottom row are repaired meshes. 83

4.17 Qualitative results on Dataset 6. Blue dots are surface point clouds. Red
points with the links represent the skeleton meshes. 85

4.18 Relationships between length and number of branches of neurons using
two animals of Dataset 4. Blue dots represent neurons from animal 1 and
red dots represent neurons from animal 2. 87

4.19 Visualization of how different neurons have different shapes. Neurons
within the same box are the same type. 88

4.20 Confusion matrix of neuron classification on animal 2 (test set) using our
method. 89

4.21 Inter and intra class neuron morphology distance on animal 1 (A) and
animal 2 (B) . Neuron morphology distance is computed by using euclidean
distance between our graph level representation of the skeleton graph. . . 91

4.22 Hierarchical clustering of neurons of animal 1 (A) and animal 2 (B). . . . 92
4.23 Summary of our proposed neuron morphology analysis pipeline 93

xvii

List of Tables

2.1 Single Layer Pavement Cell Dataset [2,9]. It consists of a long-term time-
lapse from A. thaliana’s leaf epidermal tissue that spans over a 12 hour
period with a xy-resolution of 0.212µm and 0.5µm thick optical sections.
The time step is two hours for sequence#2 and is one hour for all other
sequences. Anticlinal cell walls are partially annotated for all sequences.
In addition to that, cells are partially annotated for sequence#5 10

2.2 Multi Layer Pavement Cell Dataset [10]. It contains three layers of cell
walls in the shoot apical meristem of A. thaliana’s that spans over 80 hours
with with a xy-resolution of 0.22µm and 0.26µm thick optical sections.
The time step is 4 hours for all sequences and each sequence has 20 frames.
Cells with track IDs are fully provided. 11

2.3 C.elegans Developing Embryo Nuclei Dataset [11–13]. The resolution of
each image stack is 0.09µm × 0.09µm × 1.0µm. Sequence 1 and 2 are
training set which contains partial nuclei segmentation with track IDs for
training. Sequence 3 and 4 are testing set so no annotations available. . . 13

2.4 Ciona Neuron Dataset . 14

3.1 Datasets Summary and Usage (Note that TRA definition will be described
in Results section) . 44

3.2 Cell Counting Accuracy for Different Methods. For each time sequence,
there is a fixed number of cells. Due to segmentation error, the algorithms
can generate different number of cells for different time points of the se-
quence.In the table, we showed average and standard deviation of number
of detection cells for the whole sequence 46

xviii

3.3 3D Segmentation Performance on L1. If there is a detected boundary
voxel by algorithms within 5 voxels of a ground truth boundary voxel,
then it is a correct detection. If there is not any detected boundary voxel
by algorithms within 5 voxels of a ground truth boundary voxel, then it
is a miss detection. If there is a detected boundary voxel by algorithms
within 5 voxels of a voxel that is not ground truth boundary voxel, then
it is a miss detection. Same evaluation metric for L2 and L3. Numbers
in brackets are standard deviations. Note that ACME and MARS are not
based on machine learning methods so we just provide the average number.
Supervoxel method follows the same training and testing procedure as that
of our method. 48

3.4 3D Segmentation Performance on L2 . 48
3.5 3D Segmentation Performance on L3 . 48
3.6 Quantitative Analysis on Error of Junctions of Three Cell Walls. Precision,

recall, and F1 score are used to evaluate the detection of those junctions 51
3.7 Anticlinal cell wall segment evaluation on Dataset 1 using EDE, FD, LD,

DP . 53
3.8 Cell Tracking Performance on Dataset 2 and Dataset 3 54
3.9 Cellular and Sub-Cellular Features Provided by BisQue 56
3.10 Segments evaluation results. The results include segments’ end points lo-

cation accuracy, segments length accuracy, and Frechet Distance for seg-
ments shape accuracy . 57

4.1 Details of Ciona Dataset. It contains two Ciona animals, one with surface
point cloud annotated and one with skeleton annotated. 79

4.2 Quantitative Comparison with state-of-the-art skeleton model extraction
method on Dataset 1 . 84

4.3 Quantitative Comparison with state-of-the-art skeleton model extraction
method on Dataset 6. Number in the bracket is the standard deviation.
There is no standard deviation for DPC because it is not based on machine
learning. 85

4.4 Sub-cellular feature evaluation results . 86
4.5 Neuron Classification Results . 88

xix

Chapter 1

Introduction

Cogito, ergo sum

René Descartes, 1637

Life science research cannot be conducted without looking into cells. Microscopy

imaging is the primary observation modality for understanding the structure, function

and behavior of cells. Cell function and activities are closely related to cell structure

[14], and change of 3D cellular structure is a key determinant of the cell function. The

modern time-lapse imaging has become a powerful and continuously improving tool for

studying the cellular processes and cell-cell interactions with the applications ranging

from fundamental aspects of molecular and cell biology to medical practice [15,16].

Confocal mircrocopy, Fluorescent imaging, transmission electron microscopy (TEM),

and scanning electron microscopy (SEM) are some examples of commonly used imaging

modalities for cell studies. Those different modalities are suitable for different applica-

tions. For example, fluorescent imaging can show single molecules within cells, confocal

microscopy is preferred for high-quality images and 3D reconstruction of cells, and TEM

is used to view high resolution of thin samples.

1

Introduction Chapter 1

These advanced imaging methods generate vast amount of image data. Manual anal-

ysis of large amount of image data not only laborious but also subjective. In some cases,

such as annotating sub-cellular features in 3D, it is not possible for manual analysis be-

cause of lack of appropriate tools to work with such 3D image stacks, and the problem

gets more challenging for time-lapse imagery. Further, any such manual analysis, even if

possible, is not reproducible. Hence there is an urgent need to develop robust, scalable

and reproducible automated methods for analyzing such imaging data.

Our motivation for the methods presented in this dissertation comes from two biology

problems: 3D pavement cell growth and neuron morphology analysis. As we explain

below, these problems differ from the common computer vision problems that deal with

natural images, and offer new opportunities for research at the intersection of bioimaging

and image analysis.

3D pavement cell growth The epidermal cell, also known as pavement cell, undergoes

a dramatic transformation from a slightly irregular polyhedral cell to a highly convoluted

and multi-lobed morphology. The interdigitated growth mode is widespread in the plant

kingdom [17], and the process by which lobing occurs can reveal how force patterns in

the tissue are converted into predictable shape changes [2]. To analyze the slow and

irreversible growth behavior across wide spatial scales, it is important to track and map

lobing events in the epidermal tissue. It has been shown that cell walls perpendicular

to the leaf surface, referred to as the anticlinal wall, can be used to detect new lobe

formations [3, 18].

Manually segmenting the cells and identifying the anticlinal walls is not only laborious

but mostly impractical. Even with partial annotations of such data, there is significant

subjectivity in the precise localization of the boundaries and cell intersections. In this dis-

sertation, we develop an automatic analysis method to detect, label, and track pavement

2

Introduction Chapter 1

cells and their anticlinal walls from time-lapse 3D confocal images.

Neuron Morphology Analysis The importance of neuronal morphology has been

recognized from the early days of neuroscience [19]. Neuronal morphology plays a funda-

mental role in information processing in the nervous system [19]. The shape, structure

and connectivity of nerve cells are important aspects of neuronal function. Genetic and

epigenetic factors that alter neuronal morphology or synaptic localization of pre- and

post-synaptic proteins contribute significantly to neuronal output. [20]. Similar to the

pavement cell analysis, this requires 3D boundary analysis which is labor intensive, sub-

jective and does not scale well with any manual analysis.

For the neuron morphology analysis, we propose a novel method that takes 3D surface

point clouds as input and builds a shape representation model for neuron classification

and computing sub-cellular features. We propose to use a 3D skeleton representation for

this purpose. Although there are many neuron analysis methods for neurons [20–25], we

are the first to propose to use the skeleton mesh concept for neuron morphology analysis.

We specifically use our method to study the Ciona neuron morphology. Ciona sea

squirt is one of the most widely studied tunicates in neuroscience [5]. Fig 4.11 shows how

Ciona looks like in real life. Its brain is closely related to humans with a much simpler

neuronal structure. A single Ciona larve neural system, it has only about 187 neurons

with about 6600 synapses [5]. Studying the Ciona brain in depth can reveal the general

principles behind the mechanism of how vertebrate brains work [26].

1.1 Challenges

Time-lapse 3D microscopy image analysis is challenging for several reasons. First, the

imaging conditions vary significantly from one experiment to another, posing challenges

3

Introduction Chapter 1

for basic segmentation and detection methods. Further, the 3D data in the form of image

stacks is something that we do not encounter in traditional natural image analysis, so

those methods are not directly applicable. A second challenge comes from lack of well

annotated datasets. As noted previously, annotating 3D imaging data is very laborious.

However, current machine learning methods are data hungry. For example, the well-

known image dataset, ImageNet [27], has more than 14 million annotated images while

one of the largest time-lapse 3D cell image dataset [10] has 6 plants with 120 image

stacks with voxel-wise annotation in the whole dataset. This is further complicated by

the unique nature of certain problems, such as detecting the anticlinal walls that require

precise boundary point computations and a good understanding of the underlying biology

for creating the annotations for training or validation.

1.2 Summary of Contributions

There are mainly four contributions of this dissertation: First, we propose the first

deep learning enabled end-to-end fully automated time-lapse 3D cell analysis method

for pavement cell growth process. Second, we have curated a membrane tagged imagery

with partially (expert) annotated sub-cellular features and fully annotated by our com-

putational method that is now released to the public. Third, we propose a robust neuron

morphology analysis method. We utilize this method to explore the neuron morphology

and function relationships. Fourth, we have curated a Ciona neuron structure dataset

that is made available to other researchers, a first of its kind from point cloud data.

4

Introduction Chapter 1

1.3 Dissertation Organization

In Chapter 2, an overview of microscopy imaging, datasets, and tools used in this cell

research are presented. We introduce (i) different microscope imaging modalities, (ii) the

datasets we use in this dissertation, and (iii) the tools for visualization and annotation.

In Chapter 3, we present a method for time-lapse 3D cell analysis. Specifically, we

consider the problem of accurately localizing and quantitatively analyzing sub-cellular

features, and for tracking individual cells from time-lapse 3D confocal cell image stacks.

The chapter discusses three main components of our analysis method: 3D boundary-

tagged cell segmentation method, tracking method, and sub-cellular feature method. We

describe in detail how we get closed 3D surface while also maintaining high boundary

segmentation accuracy. Following segmentation, we compute the adjacency graph from

the segmentation mask and utilize the adjacency graph to achieve high tracking accuracy

with low computation complexity. We demonstrate the generalizability of the method

to nuclei tagged images.. We conclude with a novel method for computing sub-cellular

features for the pavement cells that could be used in studying their growth behavior.

In Chapter 4, we provide a method to analyze 3D neuron morphology and explore

the relationship between 3D neuron morphology and neuron types. Specifically, a robust

unsupervised deep learning method to get the 3D skeleton model from a set of discrete

3D surface points is presented. Following the skeleton model, a skeleton graph introduced

to compute cellular and sub-cellular features of the neuron such as length and number of

branches and the neuron. At last, a graph embedding network that maximizes mutual

information between graph level embedding and node features is used to compute embed-

ding vectors. These graph embedding vectors are then used to explore the relationship

between structure and functions of neurons, including neuron type classification.

In Chapter 5, we summarize the main methods and contributions of this dissertation,

5

Introduction Chapter 1

and propose potential future work.

6

Chapter 2

Microscopy Cell Images, Datasets,

and Tools

Man can alter his life by altering his

thinking.

William James

This chapter introduces the image modalities, datasets, and tools used in this dis-

sertation. The datasets include 3D time-lapse confocal A. thaliana’s leaf pavement cell

datasets [9, 10], 3D time-lapse fluorescent nuclei microscopy dataset of C.elegans de-

veloping embryo [12, 13], 3D TEM Ciona larva brain [5], NeuroMorpho neuron shape

dataset [28], and ShapeNet with 3D CAD models [1]. We also briefly discuss the ex-

isting commonly used tools in biology research including ImageJ [29], ITK-SNAP [30],

Reconstruct [31], TrakEM2 [32], MeshLab [33], and BisQue [34].

7

Microscopy Cell Images, Datasets, and Tools Chapter 2

2.1 Microscopy Imaging Modalities

Biomedical research is image driven, and microscopes are the primaty tools to gather

such imaging data. In our work we mainly use data from confocal microscopes and

transmission electron microscopes (TEM).

2.1.1 Confocal Microscopy Imaging

Confocal imaging is a specific category of the fluorescence imaging techniques. Fluo-

rescence microscopy is often used to capture specific features or molecules of specimens.

In most cases, the sample of interest is labeled with a fluorescent substance and then illu-

minated through the lens with high energy source. In cellular imaging, plasma-membrane

or cell nuclei are commonly labeled to be visible with the fluorescent substance. In the

traditional wide-field fluorescence microscope, the imaging sample is evenly lighted. The

resulting fluorescence detected by microscope’s photo detector will include a large amount

of unfocused background part. In contrast, a confocal microscope uses point illumination

and a pinhole in an optically conjugate plane in front of the detector to eliminate un-

focused signal. As only light produced by fluorescence very close to the focal plane can

be detected, the image’s optical resolution, particularly in the sample depth direction,

is much better than that of wide-field microscopes. Since confocal microscope can only

image one point in the specimen, scanning over a regular raster (i.e., a rectangular pat-

tern of parallel scanning lines) is required to image the whole specimen. Then successive

slices make up a ”z-stack” to get a 3D image. Confocal microscopy provides the capacity

for direct, noninvasive, serial optical sectioning of intact, thick, living specimens with a

minimum of sample preparation as well as a marginal improvement in lateral resolution

compared to wide-field microscopy [35].

8

Microscopy Cell Images, Datasets, and Tools Chapter 2

2.1.2 Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) is a microscopy technique in which a beam

of electrons is transmitted through a specimen to form an image. An image is formed from

the interaction of the electrons with the specimen as the beam is transmitted through

the specimen. The image is then magnified and acquired onto an imaging device, such

as a fluorescent screen. TEMs are capable of imaging at a very high resolution than

light microscopes, close to atomic scale. Due to TEM’s high resolution capability, in

cell biology research, TEM is used to study the morphology of cells and their organelles.

TEM sample specimens have thickness limitations defined by transmission of the electron

beam. Therefore, to image the whole cell, it is common to image slice by slice and then

obtain 3D images by registering those slices and stacking them.

2.2 Datasets

The main datasets used in this research include the time-lapse 3D confocal pavement

cell datasets, time-lapse 3D fluorescent nuclei microscopy dataset of C.elegans, 3D TEM

Ciona larva brain, and 3D CAD models dataset.

2.2.1 Single Layer Pavement Dataset (Dataset 1) [2, 9] from

Plant Biology Group at Purdue University

The image subject is A. thaliana’s leaf epidermal tissue and it contains only single

layer of cells. This dataset is used to study pavement cell growth process, especially to

understand change of cell wall patterns during the growth process. In this dataset, the

fluorescence is only on cell membrane and therefore, only cell membranes are tagged in

each 3D image stack.

9

Microscopy Cell Images, Datasets, and Tools Chapter 2

It is a long-term time-lapse dataset. The observation time span is over 12 hours

with a spatial (xy-) resolution of 0.212µm and 0.5µm thick optical sections. There are 5

sequences of image stacks. Each sequence has 9-20 image stacks and each stack has 18 to

25 slices containing one layer of cells, and the image dimension of each slice is 512× 512

pixels. Partial ground truth sub-cellular features are provided for this dataset. Details

of this dataset are described in Table 2.1. Example 3D images of this dataset are shown

in Fig. 2.1. Example 2D slices from one image stacks are shown in Fig. 2.2

Table 2.1: Single Layer Pavement Cell Dataset [2, 9]. It consists of a long-term
time-lapse from A. thaliana’s leaf epidermal tissue that spans over a 12 hour pe-
riod with a xy-resolution of 0.212µm and 0.5µm thick optical sections. The time step
is two hours for sequence#2 and is one hour for all other sequences. Anticlinal cell
walls are partially annotated for all sequences. In addition to that, cells are partially
annotated for sequence#5

Dataset Number of Time Points Image Stack Dimension
Sequence 1 20 512× 512× 20
Sequence 2 9 512× 512× 18
Sequence 3 10 512× 512× 30
Sequence 4 13 512× 512× 21
Sequence 5 20 512× 512× 25

Figure 2.1: 3D example image stacks from Dataset 1. Each image is a 3D rendering
of a cell membrane tagged confocal image stack from three different volumes.

10

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.2: Four consecutive image slices from a single volume in Dataset 1. The data
is tagged for cell membranes.

2.2.2 Multi Layer Pavement Dataset (Dataset 2) [10]

The second dataset (Dataset 2) contains cells in the shoot apical meristem of 6 Ara-

bidopsis thaliana [10]. There are 6 image sequences. Each image sequence has 20 image

stacks. In each image stack, there are 129 to 219 slices containing of 3 layers of cells:

outer layer (L1), middle layer (L2), and deep layer (L3), and the dimension of each slice

is 512× 512. The available resolution of each image in x and y direction are 0.22µm and

in z is about 0.26µm. The ground truth voxel-wise cell labels are provided, and each cell

has a unique label. Each cell track also has a unique track ID. Details of this dataset

are described in Table 2.2. Example 3D images of this dataset are shown in Fig. 2.3.

Example 2D slices from one image stacks are shown in Fig. 2.4.

Table 2.2: Multi Layer Pavement Cell Dataset [10]. It contains three layers of cell
walls in the shoot apical meristem of A. thaliana’s that spans over 80 hours with
with a xy-resolution of 0.22µm and 0.26µm thick optical sections. The time step is
4 hours for all sequences and each sequence has 20 frames. Cells with track IDs are
fully provided.

Dataset Image Stack Dimension
Sequence 1 512× 512× 134
Sequence 2 512× 512× 219
Sequence 3 512× 512× 119
Sequence 4 512× 512× 129
Sequence 5 512× 512× 139
Sequence 6 512× 512× 134

11

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.3: 3D example image stacks from Dataset 2. Each image is a 3D rendering
of a cell membrane tagged confocal image stack. One image stack has multiple layers
of cells.

Figure 2.4: Four consecutive image slices from a single volume from Dataset 2. Each
image is one xy plane of the same 3D membrane tagged confocal image stack.

2.2.3 Cell Nuclei Dataset (Dataset 3) [11–13]

The 3D time-lapse video sequences of fluorescent nuclei microscopy image of C.elegans

developing embryo [11–13]. Each voxel size is 0.09× 0.09× 1.0 in microns. Time points

were collected once per minute for five to six hours. There are two videos in the training

set and two videos in the testing dataset. Details of this dataset are described in Table

2.3. Example 3D images of this dataset are shown in Fig. 2.5. Example 2D slices from

one image stacks are shown in Fig. 2.6.

12

Microscopy Cell Images, Datasets, and Tools Chapter 2

Table 2.3: C.elegans Developing Embryo Nuclei Dataset [11–13]. The resolution of
each image stack is 0.09µm × 0.09µm × 1.0µm. Sequence 1 and 2 are training set
which contains partial nuclei segmentation with track IDs for training. Sequence 3
and 4 are testing set so no annotations available.

Dataset Time Step (min) Number of Frames Image Stack Dimension
Sequence 1 1 250 512× 708× 35
Sequence 2 1.5 250 512× 712× 31
Sequence 3 1 190 512× 712× 31
Sequence 4 1.5 140 512× 712× 31

Figure 2.5: 3D example image stacks from Dataset 3. Each image is a 3D rendering
of a nuclei tagged confocal image stack.

Figure 2.6: Four consecutive image slices from a single volume from Dataset 3. Each
image is one xy plane of the same 3D nuclei tagged confocal image stack.

Image Format Dataset 1, Dataset 2, and Dataset 3 contain sequences of image stacks.

Each image stack is in 8-bit or 16-bit Tiff image format.

2.2.4 Ciona Larva Neuron Dataset (Dataset 4) [5] from our

collaborator: the Smith Lab at UCSB

The fourth dataset (Dataset 4) contains two Ciona larva 3D TEM images. The

section thickness for TEM images varies between 35 nm and 100 nm. For each section,

xy resolution is 3.85×3.85 nm. Animal 1 contains 7671 sections and animal 2 contains

13

Microscopy Cell Images, Datasets, and Tools Chapter 2

about 8000 sections. In each Ciona larva, 187 neurons are annotated. Those 187 neurons

can be grouped into 31 types. For animal 1, Ciona neurons are manually segmented using

Reconstruct [31] and 3D surface point clouds are available. For animal 2, Ciona neuron

skeletons are traced using TrackEM2 [32], an ImageJ [29] plugin. Details of this dataset

are described in Table 2.4 Example surface point clouds are shown in Fig. 2.7.

Table 2.4: Ciona Neuron Dataset
Animal xy resolution (nm) section thickness (nm) number of sections annotations
Animal 1 3.85×3.85 35-100 7671 3D surface point cloud of neurons are provided
Animal 2 3.85×3.85 35-100 6928 3D neuron skeletons without skeleton points’ radii

Figure 2.7: 3D neuron surface point examples from Dataset 4. This figure shows three
sets of surface points to represent three neurons.

2.2.5 NeuroMorpho Dataset (Dataset 5) [28]

NeuronMorpho [28] is a publicly available dataset that is used for neuron morphology

research. It has tens of different animals’ neurons. So far, it is the largest neuron

skeletons dataset with associated metadata. In this dissertation, we take a subset of

C.elegans dataset (Dataset 5) from the whole NeuroMorpho dataset to verify our neuron

morphology analysis method. Dataset 5 consists of 299 neuron skeletons (with radii) and

it is classified into 10 different types. Each neuron with detailed metadata information

14

Microscopy Cell Images, Datasets, and Tools Chapter 2

such as number of branches and length of neuron. Three example neuron skeletons are

shown in Fig. 2.8.

Figure 2.8: Three neuron skeleton examples from the NeuroMorpho Dataset.

2.2.6 ShapeNet (Dataset 6) [1]

ShapeNet is a richly-annotated, large-scale dataset of 3D shapes represented by 3D

CAD models of objects. It contains 3D models from a multitude of semantic categories.

In this research, we collect 7088 shapes from 8 categories of ShapeNet, the same as in [8].

Each shape has 2000 sampled 3D surface points. 5/6 of the data from each category are

used for training and the other 1/6 for testing. The network is trained on all 8 shape

categories. Fig. 2.9 shows one 3D example from each category.

2.3 Tools

In this section, we introduce the existing tools used in this research. These tools are

used for visualization, registration, segmentation, and tracing cells/neurons.

15

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.9: 8 3D CAD shape examples from each category of Dataset 6 [1]. From left
to right, top to bottom: airplane, chair, earphone, guitar, lamp, mug, rifle, and table.

16

Microscopy Cell Images, Datasets, and Tools Chapter 2

2.3.1 ImageJ

ImageJ is open source software for processing and analyzing scientific images. It can

display, edit, analyze, process, save, and print 8-bit color and grayscale, 16-bit integer,

and 32-bit floating point images. It supports multiple image file formats, including TIFF,

PNG, GIF, JPEG, BMP, DICOM, and FITS, as well as raw formats. ImageJ can handle

3D image stacks. A 3D image stack is shown in ImageJ as a series of images that

share a single window. It supports standard image processing functions such as logical

and arithmetical operations between images, contrast manipulation, convolution, Fourier

analysis, sharpening, smoothing, edge detection, and median filtering. It does geometric

transformations such as scaling, rotation, and flips. It can also be used to annotate user

defined features and save it as ROI files. In this dissertation, ImageJ is mainly used to

visualize confocal image stacks and to annotate pavement cell sub-cellular features in

Chapter 3. Fig. 2.10 shows the visualization of one image stack from Dataset 1 and their

sub-cellular feature.

Another important feature of ImageJ is that it is designed with an open architecture

that provides extensibility via Java plugins and recordable macros. Custom acquisition,

analysis and processing plugins can be developed using ImageJ’s built-in editor and a

Java compiler. TrakEM2, which we will introduce later, is an example of ImageJ plugin.

2.3.2 ITK-SNAP

ITK-SNAP [30] is a free, open-source, and multi-platform software application used

to visualize and segment structures in 3D biomedical images. It provides manual and

semi-automatic segmentation tools using active contour methods. It also offers image

navigation for 3D biomedical images. The main advantages of ITK-SNAP include (1)

support for multiple 3D image formats, including NIfTI and DICOM, (2) support for

17

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.10: An image slice from Dataset 1 visualized using ImageJ. Various subcel-
lular features, such as boundary segments, are manually annotated as shown in the
metadata table on the right. Yellow arrow points to one such segment.

multi-channel images, (3) overlaying 3D segmentation image over raw image stacks, and

(4) manual segmentation in the sagittal, coronal, and transverse planes at once. Fig.

2.12 and Fig. 2.11 show examples of using ITK-SNAP for visualizing the segmentation

mask of pavement cells and nuclei. ITK-SNAP is used for visualization purposes in our

research.

2.3.3 Reconstruct

For EM images, especially TEM images, it requires reconstruction of serial section

images to form the 3D stack. When each section is cut, mounted and imaged separately,

section images must be montaged and realigned to accurately analyse and visualize the

three dimensional (3D) structure. Reconstruct is a free editor designed to facilitate

montaging, alignment, analysis and visualization of serial sections. The methods used

by Reconstructfor organizing, transforming and displaying data enable the analysis of

18

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.11: Visualizing segmentation mask overlaying on the original pavement cell
image stack. Top left, top right, and bottom right windows show the axial, sagittal,
and coronal planes of segmentation mask overlaying on the boundary-tagged confocal
images, respectively. Bottom left window shows the 3D reconstruction from the labels.

19

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.12: Visualizing segmentation mask overlaying on the original nuclei image
stack from Dataset 3. Top left, top right, and bottom right windows show the axial,
sagittal, and coronal planes of segmentation mask overlaying on the nuclei-tagged
confocal images, respectively. Bottom left window shows the 3D reconstruction from
the labels.

20

Microscopy Cell Images, Datasets, and Tools Chapter 2

series with large numbers of sections and images over a large range of magnifications

by making efficient use of computer memory. Alignments can correct for some types

of non-linear deformations, including cracks and folds, as often encountered in serial

electron microscopy. A large number of different structures can be easily traced and

placed together in a single 3D scene that can be animated or saved. As a flexible editor,

Reconstruct can reduce the time and resources expended for serial section studies and

allows a larger tissue volume to be analysed more quickly. Reconstruct is used to annotate

each of the animal one neurons from Dataset 4, which in turn is used to visualize the

surface mesh of neurons as illustrated in Fig. 2.13

Figure 2.13: Visualizing 3D neuron meshes using Reconstruct. Different colors of the
mesh represent different neurons. There are six neurons in this figure.

2.3.4 TrakEM2

TrakEM2 is an ImageJ plugin for morphological data mining, three-dimensional mod-

eling and image stitching, registration, editing and annotation. In this dissertation,

21

Microscopy Cell Images, Datasets, and Tools Chapter 2

TrakEM2 is used to annotate animal 2 TEM images of ciona dataset. Specifically,

TrackEM2 is used to register serial section EM images, trace neurons from the registered

TEM images, and visualize 3D annotations of neurons. Fig 2.14 and 2.15 demonstrate

example EM images and 3D neurons in TrakEM2.

Figure 2.14: Visualizing a set of 3D TEM image stack in TrakEM2. The figure shows
one section (slice) of 3D TEM from 3D TEM image stack. This image is also manually
registered to a reference image in TrakEM2.

2.3.5 MeshLab

MeshLab is an open source system to process 3D shapes. Specifically, it is oriented

to the management and processing of unstructured large meshes and provides a set of

22

Microscopy Cell Images, Datasets, and Tools Chapter 2

Figure 2.15: 3D visualization of a single neuron skeleton in TrakEM2. Top window
shows a list of neuron skeletons and the bottom window shows the skeleton of a neuron
called ACIN3R.

23

Microscopy Cell Images, Datasets, and Tools Chapter 2

tools for editing, cleaning, healing, inspecting, rendering, and converting meshes. In this

dissertation, we use it for visualization of point clouds and meshes. Fig. 2.16 and Fig.

2.17 show the visualization of point cloud and mesh in MeshLab.

Figure 2.16: 3D visualization an object’s point clouds in MeshLab. The object is a
chair in this case.

Figure 2.17: 3D visualization of a surface mesh in MeshLab. This is a bed’s surface mesh.

24

Microscopy Cell Images, Datasets, and Tools Chapter 2

2.3.6 BisQue

BisQue is a web-based large scale image processing infrastructure that is developed

and maintained at UCSB. It is used to organize, share, annotate, and analyze different

images in the cloud. It is designed for the exchange and exploration of biology images

and it supports various commonly used biomedical image formats. The bisque system is

centered around a database of image and metadata. Novel semantic analysis methods are

integrated into the system. Fig. 2.18 shows screenshots of BisQue. We can see data are

grouped by datasets and several biomedical image analysis methods available on BisQue.

Figure 2.18: BisQue Overview: Datasets and Image Analysis Methods. BisQue can
organize a set of data in a dataset and it also provides a set of analysis methods for
different datasets.

In this dissertation, we use BisQue for two parts. First, we use BisQue to get and

share image processing results with our collaborators. Second, we integrate our analysis

method into BisQue as a service for our collaborators or wider communities to use our

novel image analysis method. Fig. 2.19 shows our developed method in BisQue.

25

Microscopy Cell Images, Datasets, and Tools Chapter 2

STEP 1. Select Input Image(s)

The CellECT 2.0 Module on BisQue
takes as input a single 3D image stack
in TIFF format or a dataset

STEP 2. Parameters

Modify any parameters or use the
defaults

STEP 3. Select Run

BisQue automatically parallelizes
dataset inputs

STEP 4. View Results

Select any of the images to view the
segmented image and extracted
features in HDF format within the
browser

Figure 2.19: Our analysis method is named CellECT2.0 Module in BisQue. Top
left image shows we have an example of four 3D stacked images from different time
sequences in TIFF format as input to our module. BisQue will automatically parallel
process the input images and return the results for each image. Top right shows the
running steps and processes of the module. Bottom left shows the segmentation mask.
Each segmented cell is labeled with an integer in the segmentation image and each
of the outputs have an associated HDF file containing the cellular and sub-cellular
features. Bottom right shows the cellular/sub-cellular features in a HDF file.

26

Chapter 3

Deep Learning Enabled Time-Lapse

3D Cell Analysis

The world as we have created it is a

process of our thinking. It cannot

be changed without changing our

thinking.

Albert Einstein

In this chapter, we present a method for time-lapse 3D cell analysis. Specifically, we

consider the problem of accurately localizing and quantitatively analyzing sub-cellular

features, and for tracking individual cells from time-lapse 3D confocal cell image stacks.

The heterogeneity of cells and the volume of multi-dimensional images presents a major

challenge for fully automated analysis of morphogenesis and development of cells. This

chapter is motivated by the pavement cell growth process, and building a quantitative

morphogenesis model. We propose a deep feature based segmentation method to accu-

rately detect and label each cell region. An adjacency graph based method is used to

27

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

extract sub-cellular features of the segmented cells. Finally, a robust graph based track-

ing algorithm using multiple cell features is proposed for associating cells at different

time instances. We also demonstrate the generality of our tracking method on C.elegans

fluorescent nuclei imagery. Extensive experiment results are provided that demonstrate

the robustness of the proposed method.

3.1 Introduction

The sizes and shapes of leaves are key determinants of the efficiency of light capture

in plants, and the overall photosynthetic rates of the canopy is a key determinant of

yields [36]. The rates and patterns of leaf expansion are governed by the epidermal

tissue [37] but understanding how the irreversible growth properties of its constituent

jig-saw-puzzle piece cells related to organ level shape change remains as a major challenge.

The epidermal cell, also known as pavement cell, undergoes a dramatic transformation

from a slightly irregular polyhedral cell to a highly convoluted and multi-lobed morphol-

ogy. The interdigitated growth mode is widespread in the plant kingdom [17], and the

process by which lobing occurs can reveal how force patterns in the tissue are converted

into predictable shape change [2]. To analyze the slow and irreversible growth behavior

across wide spatial scales, it is important to track and map lobing events in the epidermal

tissue. It has been shown that cell walls perpendicular to the leaf surface, the anticlinal

wall as illustrated in Fig. 3.2, can be used to detect new lobe formations [3, 18].

Time-lapse image stacks from 3D confocal imagery provide a good resource to study

the pavement cell growth process, and to build a quantitative cell morphogenesis model

[2, 9]. 3D confocal microscopy data contain large amount of cell shape and sub-cellular

cell wall structure information. Cell analysis requirements include detecting sub-cellular

features such as junctions of three cell walls and segments shape of anticlinal cell walls

28

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

used to detect lobes, all of which depends on accurate segmentation. These sub-cellular

features are illustrated in Fig. 3.2. Currently, these features are usually acquired manually

from 3D image stacks. Manual extraction and analysis is not only laborious but also

prevents evaluation of large amounts of data necessary to map relationships between

lobe formation to leaf growth.

Existing automatic time-lapse cell analysis methods include mainly two steps: (1)

Detecting and segmenting cells and cell walls spatially and tracking cells in the temporal

dimension, and (2) cellular/sub-cellular feature extraction.

There is an extensive literature on cell segmentation [38–47] and tracking [48, 49].

In [39–41, 45, 50] morphological operations are first used to denoise the images followed

by watershed or level set segmentation methods to get the final cell segmentation. In

[47], the nuclei information is provided for accurate cell segmentation. However, these

methods do not provide accurate localization of the cell wall features that are needed

for quantification of the growth process. In [38, 43, 44], they focus on improving the cell

boundary segmentation accuracy. In [43, 44], they treat the cell segmentation problem

as a semantic segmentation problem, using Generative Adversarial Networks (GAN) to

differentiate between boundary pixels, cell interior, and background. These methods

provide respectable accuracy on cell boundaries but they are not guaranteed to give a

closed cell surface. In 2D cell segmentation, the method proposed in [46] can provide

closed 2D surface while maintaining good 2D cell segmentation boundary results. There

are no existing method that can provide closed 3D surface while maintaining good 3D

cell wall results. It is challenging to do the downstream cell analysis such as cell tracking

without a closed 3D cell surface. There are also some methods that work on 2D image

slices of 3D image stack individually and then fuse the results to get a 3D segmentation

[39, 45]. Finally, post-processing using cell volume or shape heuristic is required for

these 2D based methods. Shape heuristics can be difficult to obtain and it restricts the

29

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

generality of those methods. For these traditional workflow of cell segmentation, post-

processing is subjective, and its parameters are highly dependent on the data. In this

chapter, one of the problems we aim to solve is to accurately identify cell boundaries and

label individual cells in confocal microscopy image stacks. The goal is to generate closed

cell surfaces in the 3D image stack while being able to accurately delineate features of

interest such as the inter-cellular spaces and protrusions, see Fig. 3.1.

A B

Figure 3.1: (A) Inter-cellular spaces and (B) Protrusion are indicated by red arrows.

Based on segmentation or detection of cells, [48,49] rely on Viterbi algorithm to track

cells. They require the global optimization which is inefficient to get the cell trajectory

because it’s time complexity isO(TM4) where T is the length of the time sequence andM

is the maximum number of cells/nuclei. Also, they do not explicitly tackle cellular events

such as mitosis and deaths, and the Viterbi algorithm makes a strong assumption that

cells move according to the Brownian motion model, which is known to be inadequate [51].

This chapter presents a robust, time-lapse cell analysis method building upon our

work [38]. In [38] we use Conditional Random Field (CRF) to get the improved cell

boundaries while maintaining a closed cell surface. To make the segmentation method

more robust to different datasets, we propose a modification to [38] that incorporates

rotation invariance in the 3D convolution kernels [52]. A segmentation map labeling each

individual cell in the 3D stack is thus created and a cell adjacency graph is constructed

from this map. The adjacency graph is an undirected weighted graph with each vertex

30

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

representing a cell and the weight on the edge representing the minimum distance between

two cells. Based on this adjacency graph, sub-cellular features illustrated in Fig. 3.2 are

computed. The cells are tracked by comparing the corresponding adjacency graphs in

the time sequence. Details of the complete workflow are described in Section 3.2.

We demonstrate the performance of the proposed segmentation method on multiple

cell wall tagged datasets. To demonstrate generality of our tracking method, we evaluate

it on both cell wall tagged and nuclei tagged imagery. The methods described in this

chapter are published in [38,52,53].

In summary, the main contributions of this chapter include

• The first deep learning enabled end-to-end fully automated time-lapse 3D cell anal-

ysis method;

• A new 3D cell segmentation network with rotation equivariance that is robust to

different imaging conditions;

• CRF based postprocessing method that is sensitive to 3D local boundary-tagged

image features;

• A novel graph based method for multiple instance tracking and sub-cellular feature

extraction as well as the novel evaluation metrics to evaluate sub-cellular feature

extraction accuracy;

• We will release a new membrane tagged imagery with partially (expert) annotated

sub-cellular features and fully annotated by our computational method.

31

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.2: Workflow of proposed method. Modified from [2]. Given a sequence
of 3D image stacks, deep feature based rotation equivariance deep learning model
with CRF refinement is used to segment each cell. Then adjacency graph is built
based on segmented image and used for sub-cellular feature extraction and tracking.
Sub-cellular features such as junction of three cell walls and anticlinal wall segment
are illustrated in the figure. Next detected segments will be used in [3] to detect lobes.
This chapter mainly focuses on Step 1 to Step 3.

3.2 Method

Our cell analysis method is illustrated in Fig. 3.2. First, we segment cells from

each image stack in the time sequence. Second, the adjacency graph is built based on

segmented images and is used to compute sub-cellular features and cell tracking features.

Finally, quantitative measurements of the cell segmentation (cell wall, cell count, cell

shape), sub-cellular features (junctions of three cell walls detection accuracy, anticlinal

wall segment shape), and tracking results are provided.

3.2.1 Segmentation

The cell segmentation workflow is illustrated in Fig. 3.3A with rotation equivariance

constrained enforced as shown in Fig. 3.3B. 3D U-Net is a reliable method for semantic

segmentation specifically for biomedical images, and 2D rotation equivariance has shown

its robustness to input image orientation [54]. Therefore, we first use a rotation equiv-

ariance 3D U-Net to generate a probability map of each voxel being a cell wall. The

32

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.3: A. Segmentation workflow includes rotation equivariant 3D U-Net, 3D
watershed, and CRF refinement. B. In 3D equivariant U-Net, all convolution layers
are rotation equivariant convolution layers. The raw 3D image stack is truncated into
16 slices and then input to 3D equivariant U-Net.

full 3D U-Net rotation equivariance is achieved by replacing all convolution layers with

rotation-equivariant layers described in the next paragraph. Second, to make sure we can

get closed cell surfaces, a 3D watershed algorithm whose seeds are generated automati-

cally is applied to the cell wall probability map, and outputs the initial cell segmentation

result. The initial cell segmentation boundary is closed but may not be smooth because

watershed segmentation is sensitive to noise. Finally, a conditional random field (CRF)

33

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

model is used to refine the cell boundaries of the initial cell segmentation. The CRF

model takes the cell wall probability map and initial cell segmentation labels as input

and outputs a smooth and closed cell wall. In the following paragraphs, we will discuss

the details of how to generate the cell wall probability map, our rotation-equivariant

convolution layers and the use of CRF to refine the cell segmentation boundary.

Deep Feature Map Generation

We use a rotation-equivariance 3D U-Net to generate the cell wall probability map.

We replace all convolutional layers in 3D UNet encoding part with 3D rotation-equivariance

convolutional layers. The purpose of doing this is to get more abstract features that are

invariant to some 3D rotations.

3D rotation-equivariant layers are a generalization of convolution layers and are equiv-

ariant under general symmetry groups, such as the group of four 90◦ 2D rotations [54].

The corresponding 3D rotation group has 24 rotations as illustrated in Fig. 3.3 (A cube

has 6 faces and any of those 6 faces can be moved to the bottom, and then this bottom

face can be rotated into 4 different positions). To achieve this, convolution operations

on feature maps are operating on a group of features which implies that we should have

feature channels in groups of 24, corresponding to 24 rotations in the group.

For the normalization layers in our deep feature map generation, we use group normal-

ization [55]. In our model, the input are the sub-slices of 3D stack images (of dimensions

512×512×16). Due to computational limitations, we are able to input only 2 batches at

a time. With this small batch size, standard batch normalization is unstable and tends

to have a higher error so we use group normalization instead. The default number of

34

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

groups is set to 4. We use the Huber loss function for training, defined as:

Lδ(y, ŷ(I)) =


1
2
(y − ŷ(I))2, if |y − ŷ(I)| < δ

δ|y − ŷ(I)| − 1
2
δ2, otherwise

(3.1)

where y ∈ {0, 1} is ground truth label representing whether the voxel is membrane, I

is the input image, and ŷ ∈ [0, 1] is the regression function which is learned by the 3D

U-Net. The reason we use Huber loss is that the network is used to learn the regression

function but not the classification function. This loss function is quadratic when the

predicted output is close to the ground truth and linear when the prediction is far from

the ground truth. δ determines the threshold value between quadratic and linear loss.

This loss function is differentiable compared to a mean absolute loss function and less

sensitive to outliers than a mean squared loss function. Fig. 3.4(B) shows an example of

the membrane probability map generated by the 3D U-Net.

3D Watershed Segmentation

A standard 3D watershed segmentation algorithm is now applied to the 3D probability

map. The challenging part of the watershed segmentation is to find seeds for each cell.

In most cell images with a stained or fluorescent-tagged nucleus, the nuclei can be used

as seeds. However, in surface labeled cell images, nuclei information is not tagged and

the seed points need to be automatically generated.

Towards this, we use a standard Otsu’s thresholding on the probability map to get

a binary image, and then compute a 3D distance transform on this binary image. The

distance transform gives the minimum distance with respect to membrane for each voxel.

In order to generate one seed within each cell, a H-maxima transform [56] is applied.

The H-maximum transform suppresses all maxima in this distance transform map whose

35

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

value is less than a threshold H compared to surrounding voxel values. The remaining

maxima are the seed locations, to which the 3D watershed method is applied. Fig. 3.4(C)

shows the result of 3D watershed segmentation.

A B C

Figure 3.4: (A) Inverted raw image in xy orientation, (B) inverted probability map
from the 3D U-Net, (C) initial segmentation result from 3D watershed.

CRF Refinement

The watershed based approach is sensitive to the image signal and likely to smooth

out the boundaries and also miss smaller features that are significant in modeling cell

morphogenesis. For this purpose, we introduce a final processing step based on condi-

tional random fields (CRFs). The CRF refines the watershed boundaries taking into

account the probability map and local voxel boundary information.

For a given cell wall probability map Q and cell labels X, the conditional random

field is modeled by the Gibbs distribution,

P (X|Q) =
1

Z(Q)
exp(− 1

T
E(X|Q)) (3.2)

where denominator Z(Q) is the normalization factor. T is a constant called the temper-

ature and we set it to be 1. The exponent is the Gibbs energy function and we need to

minimize the energy function E(X) to get the final refined label assignments (for nota-

tion convenience, all conditioning is omitted from this point for the rest of the paper).

36

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

In the dense CRF model, the energy function is defined as

E(X) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj) (3.3)

where i and j are the indices of each voxel which iterate over all voxels in the graph, and

xi and xj are the cell labels of vertices i and j. i, j ∈ {1, 2, ..., N} and N is the total

number of voxels in the image stack. xi, xj ∈ {0, 1, 2, ..., L} and L is the total number

of cells identified by the watershed method (0 is the background class). The first term

of eq. 3.3, the unary potential, is used to measure the cost of labeling ith voxel as xi

and it is given by ψu(xi) = − logP (xi), where P (xi) is the probability of voxel i having

the label xi. It is initially calculated based on the cell wall probability map Q and the

label image of the watershed X0 (The superscript 0 is used to denote the initial cell label

assignment after watershed). P (x0i) = 1− qi if voxel i is inside the cell with label x0i after

the watershed or if x0i is the background label, and P (x0i) = 0 otherwise. qi is the ith voxel

value in the probability map from the rotation equivariant 3D U-Net. 1 − qi represents

the probability of voxel being the interior point of the cell. The unary computation is

illustrated in Fig. 3.5.

Figure 3.5: Unary potential from initial watershed segmentation mask.

The pairwise potential in eq. 3.3 takes into account the label of neighborhood voxels

to make sure the segmentation label is closed and the boundary is smooth [57]. It is

37

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

given by:

ψp(xi, xj) = µ(xi, xj)
∑
m

w(m)k(m)(fi, fj) (3.4)

where the penalty term µ(xi, xj) = 1 if xi ̸= xj, and µ(xi, xj) = 0 otherwise. w(m)

is the weight for each segmentation label m ∈ {0, 1, 2, ..., L}, and k(m) is the pairwise

kernel term for each pair of voxels i and j in the image stack regardless of their distance

that capture the long-distance voxel dependence in the image stack. fi and fj are feature

vectors from the probability mapQ. fi incorporates location information of voxel i and the

corresponding value in the probability map: fi =< pi, qi > where pi =< xi, yi, zi >, and

xi, yi and zi are the voxel i in the normalized coordinates in the range [0, 1]. Specifically,

the kernel k(fi, fj) is defined as

k(fi, fj) = γ1 exp(−
||pi − pj||2

2σ2
α

− ||qi − qj||2

2σ2
β

) + γ2 exp(−
||pi − pj||2

2σ2
γ

) (3.5)

where the first term depends on voxel location and the corresponding voxel value in

probability map. The second term only depends on the voxel location. σα, σβ, σγ, γ1, and

γ2 are the hyperparameters in eq. 3.5. Based on our experiments, we have empirically

chosen σα = 3 and σβ = 5, as these values work over a wide range of experimental

data. These two hyperparameters control the degree of nearness and similarity of the

probability map within a segmented region. σγ is determined by the smallest possible

segmentation region (cell size) allowed. γ1, and γ2 are weights for the loss function. The

detailed explanations of each hyperparameter can be found in [57]. Finally, we pick the

best label assignment X∗ as the final cell segmentation that minimizes energy function

E(X). An efficient CRF inference algorithm described in [57] is used to find X∗ which is

the final cell segmentation mask. In our experiments, σγ is set to be 10, and γ1, γ2 are

set to be 1 and 1.

38

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

1
2

3

1

3

5
11

2

3

2

2

2

Construct Adjacency Graph

Compute Distance using Dilations

Node Matching from Adjacency Graph T

EdgeWeight

Number of dilation
operations for two cells to
touch each other

Node Features

• Volume of Cells/Nuclei
• Degree of Nodes
• Average Weighted Degree

Time T 3

1

3

11
13

1

4

4

2

2

Time T + 1

Figure 3.6: Constructing adjacency graph from the segmentation image and tracking
cells/nuclei in consecutive frames using adjacency graph node features. Color of nodes
denote the label/track of the cell/nuclei. Initially, random labels are assigned for each
node in the adjacency graph. For T+1 frame, after node matching for time T, track
IDs are assigned to each node in T+1.

39

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

3.2.2 Tracking and Feature Computation

After segmentation of 3D image stacks, the cells are detected and labeled in 3D space.

Next, we utilize 3D spatial location of cells to build the adjacency graph for sub-cellular

feature extraction and tracking as illustrated in Fig. 3.6.

Adjacency graph G(V,E) is a weighted undirected graph. The vertex vi ∈ V repre-

sents the i−th cell. For each pair of vertices (vi, vj), there is an edge ei ∈ E connecting

them. The weight wi ∈ W of the edge ei is the distance between cell i and j. The distance

between two cells is computed as the number of morphology dilation operations needed

of cells i and j until cell i and j become a single connected component as illustrated in

Fig. 3.7 shows. The details of this adjacency graph construction are given in Algorithm

1 below.

Figure 3.7: Illustration of how we compute distance between cells in adjacency graph.

40

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Algorithm 1 Cell Adjacency Graph Construction

function CellAdjacency(Segmented Image Stack)
Initiate AdjacentGraph
Initiate drawboard (the same shape as segmentation)to be 0
for i = 1 to number of cells do

for j = 1 to number of cells do
entry of drawboard is set to 1 if the voxel belong to cell i or j
if i ̸= j then

3D dilation of drawboard
connected component analysis on drawboard
if number of component is 1 then

append j to ith entry of AdjacentGraph
end if

end if
end for

end for
end function

Sub-cellular Feature Extraction Using Adjacency Graph

Sub-cellular feature extraction is based on the graph representation of the segmented

image. To compute the anticlinal wall segments of cell i, we find all neighbor cells of cell

i. The neighbor cells Ni are defined to be all cells that are at a distance 1 from cell i.

The anticlinal wall segments is found by collecting all points in the segmentation image

shared by cell i and cell j where cell j ∈ Ni. To compute the junctions of 3 cell walls,

we first pick cell j ∈ Ni. Then the junctions of 3 cell walls is computed as the points in

the segmentation image shared by cell i, cell j, and cell k where cell k is Ni ∩Nj.

Tracking Using Adjacency Graph

Cell/nuclei tracking is to reconstruct the lineage of cell/nuclei and match related

cell/nuclei across the whole time sequence. The tracking process will give a trajectory

for each individual nucleus as shown in Fig. 3.8. In the traditional Viterbi cell tracking

algorithm, its complexity is O(TM4) where T is the length of the video sequence and

41

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

M is the maximum number of nuclei. This is because the complexity of the Viterbi

algorithm is linear in T , there can be M2 pairs of nuclei in any two frames, and every

such pair can have as many swap arcs between them as there are pre-existing tracks.

A general assumption, as shown in [58], is that only certain nuclei events (apoptosis,

division, etc) can happen and thus reduces possible swap arcs to some constant. This

reduces the whole tracking complexity to be quadratic in the number of cells/nuclei.

We propose an adjacency graph-based nuclei tracking algorithm utilizing nuclei relative

location information to reduce the complexity to O(TM2). As we explain below, our

method explicitly takes into account cell division and cells that are not visible at any

given time point, thus resulting in an overall improved performance.

Figure 3.8: Cell/nucleus tracking illustration: number is used to represent the unique ID for

each track of nucleus. At t=3, cell/nucleus 2 divides into 2 new cell/nuclei 3 and 4

To make the tracking method more efficient and accurate, we have made the as-

sumption for the cell tracking that in consecutive image stacks, cells should have similar

relative location. For this, we will focus on computing features floc that represent cell

relative location information derived from the adjacency graph.

Cell location feature vector floc is a two dimensional vector (N,D), where N is the

total number of neighbor cells and D is the average distance from all other cells. Consider

the adjacency graph G(V,E) of the segmented image stack. For node i in the graph, the

42

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

location feature vector can be expressed as:

f iloc = (N,D) = (deg(vi),wdeg(vi)) (3.6)

where vi ∈ V , deg(vi) is the cardinality of Ni, and wdeg(vi) is the weighted degree of the

vertex vi. The weighted degree of the vertex vi is defined as:

wdeg(vi) =

∑
j wij

degree(vi)
(3.7)

where degree(vi) represents the degree of the vertex vi. Then we compute the cell size by

counting number of voxels within the cell. Combining the cell location feature and cell

size feature, we get the three dimensional feature vector ftrack. The details of algorithm

used for calculating ftrack is described in Algorithm 2:

Algorithm 2 Cell Tracking Feature Computation

function CellTrackFeature(Segmentation and G(V,E))
Initiate FeatureVector
for i = 1 to number of cells do

cell size Si = number of voxel inside cell i × voxel resolution

wdeg(vi) =
∑

j wij

deg(vi)

append (Si, deg(vi), wdeg(vi)) to FeatureVector
end for

end function

After computing f itrack for all nodes in two consecutive frames, we link two nodes from

different frames based on the following similarity measurement sim(i, j) defined as

sim(i, j) =
|S1i − S2j|

S1i

+
|deg1(vi)− deg2(vj)|

deg1(vi)
+

|wdeg1(vi)− wdeg2(vj)|
wdeg1(vi)

(3.8)

where i and j denote two nodes from two consecutive frames. We define sim so that we

43

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

can allow different units of entries in f itrack. We find i∗ and j∗ that minimizes sim. i∗ and

j∗ are linked only when their sim is below a set threshold value. If some cell/nucleus

in the latter frame has no linked cell/nucleus in the previous frame, it means the new

cell/nucleus comes into the field of view. Thus, based on this measure, we can track

each cell/nucleus in consecutive frames of the recordings. The complexity for finding all

possible links in consecutive frames is O(M2). Therefore, the whole tracking complexity

is O(TM2). In our experiments, the threshold we use is between 0.1 to 0.5.

3.3 Datasets

There are three datasets used in this chapter (Dataset 1, Dataset 2, and Dataset 3).

Details of each of these dataset are described in Chapter 2. We use different evaluation

for different datasets based on these datasets’ imaging subjects and annotations. Table

3.1 summarizes the datasets and their usage in this chapter.

Table 3.1: Datasets Summary and Usage (Note that TRA definition will be described
in Results section)

Dataset Source
Brief Descrip-
tion

Segmentation
Evaluation

Sub-cellular
Feature Ex-
traction Evalu-
ation

Tracking Eval-
uation

Dataset 1

Membrane-
tagged confo-
cal single layer
pavement cells

5 time se-
quences, each
sequence has
9-20 image
stacks, and
each stack with
18-30 slices

Cell count and
cell shape as
evaluation met-
rics

Sub-cellular
feature extrac-
tion results are
provided

Full annotation
is unavailable,
so TRA score is
not provided

Dataset 2

Membrane-
tagged confo-
cal multi layer
pavement cells

6 time se-
quences, each
sequence has
20 image
stacks, and
each stack with
119-139 slices

Segmentation
boundary eval-
uation metrics

Sub-cellular
feature anno-
tations are not
available, so
evaluation is
not possible

TRA evalua-
tion metric is
provided

Dataset 3
Nuclei-tagged
C.elegans
dataset

4 time se-
quences, each
sequence has
140-250 image
stacks, and
each stack with
31-35 slices

not applicable not applicable
TRA score pro-
vided

44

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

3.4 Results

3.4.1 Cell Segmentation

Figure 3.9: The figure shows three 3D segmentation image stacks. The top row is 3D
view of confocal images, and bottom row is the 3D view of segmentation results. Left
three samples are from Dataset 1 and right three samples are from Dataset 2

Since Dataset 1 does not have fully annotated 3D cell boundaries, we train all machine

learning models using the entire Dataset 2. To evaluate different methods’ performance

on Dataset 2, we use the following train/test split. We randomly divide the whole datasets

into three folds (train, validation, and test). To evaluate segmentation performance on

test fold, we train models on all image stacks (volumes) of other two folds. We use above

strategy three times for each layer and compute average and standard deviation with

respect to evaluation metrics in Tables 3.3- 3.5.

We apply our proposed method to the Dataset 1 for the purpose of identifying and

analyzing cells based on the segmentation. The segmentation results of our proposed

method and other state-of-the-art methods are shown in Fig. 3.10. Our proposed method

has visually better segmentation performance with closed cell surface and smooth bound-

ary, and our method is able to identify the inter-cellular spaces and protrusions in the 3D

cell image stack. For Dataset 1, we do not have full cell annotations, so we only evaluate

the cell counting accuracy on this dataset.

45

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Table 3.2: Cell Counting Accuracy for Different Methods. For each time sequence,
there is a fixed number of cells. Due to segmentation error, the algorithms can generate
different number of cells for different time points of the sequence.In the table, we
showed average and standard deviation of number of detection cells for the whole
sequence

Sequence Ground truth ACME [40] MARS [41] Supervoxel Method [42] Our method
Sequence 1 23 21.5 ±3.2 25.5 ±2.2 24 ± 1.1 23.5 ± 0.9
Sequence 2 30 41.1 ±3.1 35.1 ±2.8 32 ± 2.1 30.1 ± 0.8
Sequence 3 25 22.6 ±2.1 27.5 ±3.2 24 ± 1.5 25 ± 0.5
Sequence 4 18 18.8 ±1.2 18.5 ±1.2 18.2 ± 1.2 18 ± 0.6
Sequence 5 28 31.5 ±2.9 24.5 ±2.3 26.2 ± 1.1 27.8 ± 1

For each sequence, there are a fixed number of cells for all time points. Therefore, we

want segmentation algorithms to generate average cell counting results close to ground

truth counting numbers, and the variance of counting results for one sequence should be

as small as possible. Details of the cell counting results are in Table 3.2. Clearly, our

method has the best cell counting performance.

In order to verify if the output of the segmentation can be used for time lapse sequence

analysis, we calculate basic cell shape information from the maximum area plane of the

cells to compare with the expert annotations. The maximum area plane of a cell is

the image plane which has the largest cell area across all z-slices. The shape information

includes area, perimeter, circularity, and solidarity. Fig. 3.11 shows the comparison. Note

that not all cells are annotated so that some cell comparisons are missed. The average

shape difference is 4.5 percent and the largest shape difference is within 10 percent.

Next, we apply our cell segmentation method on Dataset 2. Boundary precision, re-

call, and F1 score are used to evaluate the boundary segmentation accuracy. Specifically,

given a ground truth boundary image G and a computed boundary image B, we can

define the following measurements:

• True Positives (TP): Number of boundary pixels in G for which exist a boundary

pixel in B in range R.

• False Negatives (FN): Number of boundary pixels in G for which does not exist a

46

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

boundary pixel in B in range R.

• False Positives (FP): Number of boundary pixels in B for whose does not exist a

boundary pixel in G in range R

Then boundary precision is defined to be: TP
(TP+FP)

and recall: TP
TP+FN

In our experiment,

we set R to be 5. Tables 3.3 to 3.5 shows the comparison of the final segmentation

boundary result using our proposed method and other methods including ACME [40],

MARS [41] and a supervoxel-based algorithm [42] on L1 to L3 respectively. In terms of

cell wall accuracy, our model shows at least 0.03 improvement in the F-score measure on

average in terms of cell wall segmentation accuracy.

It is noted that the average segmentation time of our proposed model is significantly

shorter compared to the supervoxel-based method [42]. Our proposed method takes

approximately 0.8 seconds to segment one 512×512 image slice on average, whereas

supervoxel-based method takes approximately 6 seconds on a NVIDIA GTX Titan X

with an Intel Xeon CPU E5-2696 v4 @ 2.20GHz. We have also integrated the proposed

segmentation method into BisQue. There are three hyperparameters in the BisQue

segmentation module. “Minimum Distance”is σγ in eq. 3.5. “Label Threshold”relates

to the variation in the cell volumes within the datasets. This is used to ensure small

regions such as protrusions are not labeled as cells. Intensity values below “Threshold”are

ignored. “Threshold”is typically between 0 and 0.1 for a normalized image.

3.4.2 Sub-cellular Feature Extraction

We apply our whole workflow on Dataset 1 to extract sub-cellular features like an-

ticlinal wall segments and junctions of 3 cell walls. Qualitative results of the extracted

sub-cellular features are shown in Fig. 3.12.

The quantitative measurement of accuracy of junctions of 3 cell walls is also provided.

47

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Table 3.3: 3D Segmentation Performance on L1. If there is a detected boundary
voxel by algorithms within 5 voxels of a ground truth boundary voxel, then it is a
correct detection. If there is not any detected boundary voxel by algorithms within
5 voxels of a ground truth boundary voxel, then it is a miss detection. If there is a
detected boundary voxel by algorithms within 5 voxels of a voxel that is not ground
truth boundary voxel, then it is a miss detection. Same evaluation metric for L2

and L3. Numbers in brackets are standard deviations. Note that ACME and MARS
are not based on machine learning methods so we just provide the average number.
Supervoxel method follows the same training and testing procedure as that of our
method.

Algorithm Precision Recall F1
ACME [40] 0.805 0.966 0.878
MARS [41] 0.910 0.889 0.899

Supervoxel method [42] 0.962 (0.031) 0.932 (0.038) 0.947 (0.033)
our method 0.961 (0.010) 0.973 (0.013) 0.967 (0.012)

Table 3.4: 3D Segmentation Performance on L2
Algorithm Precision Recall F1
ACME [40] 0.775 0.980 0.866
MARS [41] 0.921 0.879 0.900

Supervoxel method [42] 0.910 (0.049) 0.932 (0.051) 0.921 (0.044)
our method 0.955 (0.012) 0.971 (0.011) 0.963 (0.012)

Table 3.5: 3D Segmentation Performance on L3
Algorithm Precision Recall F1
ACME [40] 0.745 0.976 0.845
MARS [41] 0.909 0.879 0.894

Supervoxel method [42] 0.982 (0.055) 0.881 (0.053) 0.929 (0.052)
our method 0.955 (0.011) 0.942 (0.018) 0.949 (0.013)

We compare our results with 3D corner detection based method [4] on the raw image

stack, and applying our 3 cell wall junction detection method using the segmentation

image from other state-of-the-art methods [40–42]. The 3 cell wall junction detection

results are shown in Table 3.6. If 3 cell wall junctions are detected within 5 voxels of a

ground truth 3 cell wall junction, it is a correct detection. Then we define false positive

(FP), and false negative (FN) based on the binary detection of 3 cell walls junction.

Specifically, FP is the number of computed 3 cell wall junctions whose does not exist a

ground truth 3 cell junction in range 5 voxels and FN is the number of ground truth 3 cell

wall junctions whose does not exist a computed 3 cell junction in range 5 voxels. Then

we define precision, recall, and F1 based on true positive, FP, and FN, The error (E) is

defined by the summation of FP and FN and normalized by total number of true 3 cell

48

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

Figure 3.10: The figure shows the segmentation results of the cell image with in-
ter-cellular space or protrusion indicated by a red arrow. (A) Inverted raw image in
xy orientation, (B) MARS, (C) ACME, (D) supervoxel-based method, (E) proposed
method.

wall junctions. The results in the Table 3.6 are average values across all image stacks.

From the table, we can see our method has the best 3 cell wall junction detection accuracy

in terms of F1. Compared to the method that directly computes 3 cell wall junctions

from raw image, our method has significantly better performance in terms of FP. This

is because not all corner points are junctions of three cell walls. For example, corner

detection based method gives false positive in the case shown in Fig. 3.13. Our graph

based method for detecting 3-way junctions uses both the boundary voxel information

and the cell labels, including intercellular spaces, thus minimizing false positives.

The anticlinal wall segment is defined by two neighboring junctions of 3 cell walls are

also computed. The partial annotation of such segments are provided. We would like

49

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.11: 3D segmentation evaluation using cell shape descripter including area,
perimeter, circularity, aspect ratio, and solidity (ratio between cell area and its convex
hull area). The difference is in terms of percentage.

A B

Figure 3.12: A: Extracted junctions of three cell walls, B: Extracted anticlinal wall segment.

to note that such manual annotations are very labor intensive and it is impractical to

annotate all anticlinal cell wall segments (see Fig. 3.2) even in a single 3D volume. The

practical difficulties include lack of support for 3D visualization and annotation tools for

tracing. The ground truth segments were annotated by going through each slice in the

image stack, finding the approximate slice where neighboring cell walls touch, and then

tracing the segment in that single slice. Each segment in the ground truth is represented

by a collection of coordinates of the segment in that image slice. Note that different

50

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

A B

Figure 3.13: Example of computing 3 cell-wall junctions. (A) using method proposed
in [4], (B) using our method, Note that (A) has several false positives.

Table 3.6: Quantitative Analysis on Error of Junctions of Three Cell Walls. Precision,
recall, and F1 score are used to evaluate the detection of those junctions

Algorithm Precision Recall F1
Corner Detection [4] 0.893 0.962 0.926

ACME [40] 0.829 0.964 0.891
MARS [41] 0.823 0.980 0.895

Supervoxel method [42] 0.933 0.911 0.922
Our Method 0.980 0.945 0.962

segments can be on different slices. In contrast, each of our computed segments can span

multiple Z slices, hence providing a more accurate 3D representation than is manually

feasible. This also makes it challenging to compare the manual ground truth with the

computed results. Fig. 3.14 shows our computed segments compared with the annotated

segments.

3.4.3 Evaluation metrics for anticlinal wall segments

We propose a set of evaluation metrics for the detected anticlinal wall segments as

there are no prior works on this topic.

1. End-point Displacement Error (EDE) in the end points of the two segments.

Given two segments P with m points and Q with n points, two end points of P are

51

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

p1 and pm and two end points of Q are q1 and qn. EDE is defined as

EDE(P,Q) =
1

2
(∥p1 − pm∥+ ∥q1 − qn∥) (3.9)

where ∥ · ∥ is l2 norm.

2. Fréchet Distance (FD) [59] between the two segments. Fig. 3.15 illustrates the

definition of FD. FD is a measure of shape similarity of two curves and it takes

into account the location and ordering of points along the curves. Mathematically,

consider two curves P with m points and Q with n points. P contains a sequence

of points (p1, ..., pm) and Q contains a sequence of points (q1, ..., qn). A coupling L

between P and Q is a sequence (pa1 , qb1), (pa2 , qb2), ..., (paz , qbz) of distinct pairs from

P and Q such that a1 = 1, b1 = 1, az = m, and bz = n, and for all i = 1, ..., z − 1

we have ai+1 = ai or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi + 1. Thus the order

of those points are kept in the coupling L. The coupling length ∥L∥ is the length

of the longest Euclidean distance in L:

∥L∥ = max
i=1,...,z

d(pai , qbi) (3.10)

where d is the Euclidean distance. Then FD F is defined as:

F (P,Q) = min{∥L∥} (3.11)

where L is a coupling of P and Q.

3. Length Difference (LD), absolute difference in lengths between the two segments

4. Percentage Difference in length (DP), length difference normalized by ground truth

length.

52

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Table 3.7: Anticlinal cell wall segment evaluation on Dataset 1 using EDE, FD, LD, DP
Sequence EDE FD LD DP
Sequence 1 2.80 4.00 2.32 2.90
Sequence 2 6.40 8.40 4.19 6.10
Sequence 3 3.05 3.9 1.74 2.4
Sequence 4 3.02 3.70 2.24 2.3
Sequence 5 2.33 3.40 2.11 2.10

Average EDE between the results using our method and the ground truth is 3.03

voxels, average FD is 3.7 voxels, average LD is 2.24 voxels, and average DP is 2.3 percent.

Evaluation results of different time series are shown in Table 3.7 and evaluation result

for each segment is in the supplemental materials.

We also apply our tracking method on Dataset 2 and Dataset 3. Table 3.8 shows the

quantitative comparison of our method with other state-of-the-art cell/nuclei tracking

methods. The evaluation metric we use is tracking accuracy (TRA), proposed in [12].

TRA measures how accurately each cell/nuclei is identified and followed in successive

image stacks of the sequence. Ground truth tracking results and tracking results gener-

ated from algorithms are viewed as two acyclic oriented graphs and TRA measures the

number of operations needed to modify one graph to another. More specifically, TRA is

defined on Acyclic Oriented Graph Matching (AOGM) as

TRA = 1− min(AOGM,AOGM0)

AOGM0

(3.12)

where AOGM0 is the AOGM value required for creating the reference graph from scratch.

TRA ranges between 0 to 1 (1 means perfect tracking). Our method shows a rough 0.05

TRA measurement improvement on Dataset 2. To demonstrate the robustness of our

tracking method, we also apply it on Dataset 3, a cell nuclei dataset, and achieve a

TRA of 0.895 which is comparable to state-of-the-art tracking methods on IEEE ISBI

CTC2020 cell tracking challenge. State-of-the-art methods ([60] and [58]) are based on

53

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

the traditional Viterbi cell tracking algorithm whose complexity is O(TM4) where T is

the length of the sequence andM is the maximum number of cells/nuclei. This is because

the complexity of the Viterbi algorithm is linear in T , there can be M2 pairs of nuclei

in any two frames, and every such pair can have as many swap arcs between them as

there are pre-existing tracks. A general assumption, as shown in [58], is that only certain

cell/nuclei events (apoptosis, division, etc) can happen and thus reduces possible swap

arcs to some constant. This can reduce the whole tracking complexity to be quadratic in

the number of nuclei. Specifically, for our proposed tracking method, the complexity is

O(TM2). Sequence 1 and 2 are the training data released from the challenge and we run

the state-of-the-art methods on the individual sequence to get TRA evaluation metric.

Sequence 3 and 4 are testing data that is not published by the challenge and TRA values

are given by the challenge organization.

Table 3.8: Cell Tracking Performance on Dataset 2 and Dataset 3
Dataset 2 Viterbi Tracker [48] Cell Proposal [61] Our method
Sequence 1 0.513 0.492 0.571
Sequence 2 0.520 0.512 0.593
Sequence 3 0.488 0.532 0.581
Sequence 4 0.533 0.498 0.566
Sequence 5 0.542 0.525 0.602
Sequence 6 0.518 0.542 0.544
Dataset 3 KIT-Sch-GE [60] KTH-SE [58] Our method
Sequence 1 0.903 0.942 0.931
Sequence 2 0.906 0.893 0.912

Sequence 3 and 4 0.886 0.945 0.895

In summary, we do extensive experiments and use different evaluation metrics to

demonstrate the performance of our method. For segmentation, we use cell counting ac-

curacy in Table 3.2, cell shape evaluation metric Fig. 3.11, and cell boundary segmenta-

tion accuracy in Tables 3.3-3.5 to show the performance of our method. For sub-cellular

feature extraction, we use precision, recall, and F1 score as in Table 3.6 to evaluate 3

54

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

cell wall junctions detection performance, and we use EDE, FD, LD, and DP in Table

3.7 to evaluate the segments detection performance. For tracking, we use TRA in Table

3.8 as the evaluation metric.

3.5 Summary

In this chapter, we present an end-to-end workflow for extracting quantitative infor-

mation from 3D time-lapse imagery. The workflow includes 3D segmentation, tracking,

and sub-cellular feature extraction. The 3D segmentation pipeline utilizes deep learning

models with rotation equivariance. Then an adjacency graph is built for cell tracking

and sub-cellular feature extraction. We demonstrate the performance of our model on

multiple cell/nuclei datasets. In addition, we also curate a new pavement cell dataset

with partial expert annotations that will be made available to researchers.

3.6 CELLECT2.0

The proposed segmentation method is implemented as a computational module in

BisQue [34, 62]. We first dockerize the method and then put it as a module on BisQue.

Users can run the CellECT2.0 module using the following steps: (1) Navigate to BisQue

on their web browser and create an account, (2) Upload their own data in TIFF format or

use suggested example dataset, (3) Select an uploaded TIFF image or use our example,

(4) Set hyper parameters of the module (default value to run Dataset 1) and select

Run and the BisQue service will compute the segmentation results and display it in the

browser. The runtime for a 512 × 512 × 18 image is approximately one minute using a

CPU node with a 24 core Xeon processor and 128GB of RAM. The module also supports

GPU process.

55

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

We have also enabled the better visualization function in BisQue. It is useful to

visualize 3D segmentation mask especially for instance segmentation mask. The seg-

mentation mask is overlayed on the original image and users can toggle on/off for some

instances in the segmentation mask as Fig. 3.16 shows. The segmentation mask can also

be viewed in 3D as shown in Fig. 3.17.

Cellular and sub-cellular features are also provided on Bisque by HDF files. Those

features provided by BisQue are summarized in Table 3.9.

Table 3.9: Cellular and Sub-Cellular Features Provided by BisQue
Different features Example Values or Explanation
Cell Volume number of voxels inside a cell, for example, 358,445
Neighboring (Adjacent) cells for example, cells 1,3,11,14 are neighboring cells of cell 2
3D cell surface list of coordinates of surface of points for one cell
Three cell wall junction points for example, junction point of cell 2,3,11 is (12,207)
Cell Center for example, center of cell 2 is (8,61,8)
Segments list of coordinates of points along that segment

The full cellular and sub-cellular results for this image stack can be accessed here.

3.7 Segments evaluation

Some examples of segments evaluation are summarized in Table 3.7. The evaluation

metrics include: Euclidean error of start (end) points of segments, Fréchet Distance, and

length difference of segments. In Table 3.7, the first column is segment ID. Segment

ID includes two parts: Sequence ID and the segment ID within the sequence. Sequence

ID starts with “LGMTPM” and ends with a 2-digit number to differentiate different

sequences. Segment ID contains information about which frame this segment comes

from. For example, “LGMTPM01 Seg03T28” means this segment comes from frame 28

of sequence 01.

56

https://bisque2.ece.ucsb.edu/client_service/view?resource=https://bisque2.ece.ucsb.edu/data_service/00-oHh2Js78oyQHagKov6K9rk

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Table 3.10: Segments evaluation results. The results include segments’ end points
location accuracy, segments length accuracy, and Frechet Distance for segments shape
accuracy

detected start
point x

detected start
point y

detected start
point z

detected end
point x

detected end
point y

detected end
point z

GT start
point x

GT start
point y

GT end
point x

GT end
point y

euclidean distance
error start point

euclidean distance
error end point

Frechet
Distance

GT
Length

Detected
Length

difference % change

LGMTPM01 Seg03T28 391 215 3 485 203 3 392.7 216.2 481.8 203.3 2.0 3.2 3.9 95.1 93.4 1.7 1.8
LGMTPM01 Seg06T24 121 144 4 195 142 5 124.9 145.3 196.0 139.0 4.1 3.2 4.1 85.6 87.2 1.6 1.9
LGMTPM01 Seg02T01 169 356 2 234 360 4 172.8 358.3 233.3 360.3 4.5 0.7 4.5 66.6 70.3 3.6 5.4
LGMTPM01 Seg05T01 303 274 6 350 320 2 303.5 273.3 346.8 320.0 0.9 3.3 3.3 70.7 72.9 2.2 3.1
LGMTPM01 Seg08T01 200 59 1 299 82 2 204.3 59.8 297.3 81.8 4.3 1.8 4.3 100.6 98.1 2.4 2.4
LGMTPM02 Seg05T23 207 138 4 217 77 5 210.2 143.8 213.3 82.0 6.6 6.2 8.4 68.9 73.1 4.2 6.1
LGMTPM03 Seg02T32 178 212 4 246 183 4 182.7 212.3 243.7 182.7 4.7 2.4 4.1 77.8 80.3 2.5 3.2
LGMTPM04 Seg03T17 286 327 5 328 392 7 289.7 329.3 325.2 395.7 4.3 4.6 4.7 85.2 83.3 2.0 2.3
LGMTPM05 Seg03T01 45 220 3 145 224 5 48.8 219.3 145.3 220.3 3.8 3.8 3.7 106.5 108.1 1.6 1.5
LGMTPM05 Seg03T02 11 198 2 100 200 4 13.5 196.5 101.5 198.0 2.9 2.5 3.0 98.0 100.0 2.0 2.0
LGMTPM05 Seg03T01 12 201 3 100 200 5 13.0 202.5 102.3 203.5 1.8 4.2 2.9 99.3 97.0 2.2 2.3
LGMTPM05 Seg03T03 13 200 10 103 200 8 14.0 199.8 102.5 201.0 1.0 1.1 3.6 98.5 102.1 3.6 3.7
LGMTPM05 Seg03T04 17 208 9 102 211 7 15.5 205.5 104.5 206.3 2.9 5.4 3.7 99.0 103.1 4.1 4.1
LGMTPM05 Seg03T05 16 210 8 105 212 8 15.8 209.3 105.3 210.3 0.8 1.8 3.5 99.5 101.2 1.7 1.7
LGMTPM05 Seg03T06 18 184 6 105 185 8 17.0 182.5 106.8 184.0 1.8 2.0 3.2 95.8 98.1 2.3 2.4
LGMTPM05 Seg03T07 19 216 7 104 218 9 17.0 215.8 106.8 216.5 2.0 3.1 3.3 99.8 101.2 1.5 1.5
LGMTPM05 Seg03T08 18 221 6 105 221 8 17.0 220.0 106.5 220.8 1.4 1.5 3.6 99.6 102.3 2.7 2.7
LGMTPM05 Seg03T09 18 200 6 110 201 7 19.3 199.0 109.5 199.8 1.6 1.3 3.1 100.3 101.3 1.0 1.0
LGMTPM05 Seg03T10 24 192 5 110 195 7 22.0 193.5 112.3 194.0 2.5 2.5 3.3 100.3 102.3 2.1 2.0
LGMTPM05 Seg03T11 23 197 6 115 200 9 22.0 196.9 113.3 197.8 1.0 2.9 3.4 101.3 101.2 0.1 0.1
LGMTPM05 Seg03T12 25 200 11 117 199 9 25.0 198.5 115.3 198.3 1.5 1.8 3.3 100.3 101.4 1.0 1.0
LGMTPM05 Seg03T13 25 201 10 114 198 8 24.3 197.3 116.3 200.5 3.8 3.4 3.2 102.1 104.3 2.2 2.2
LGMTPM05 Seg03T14 27 200 9 118 200 7 25.5 198.5 118.0 200.3 2.1 0.3 3.6 102.5 103.3 0.7 0.7
LGMTPM05 Seg03T15 26 199 7 119 202 7 29.0 197.8 122.5 198.3 3.3 5.1 3.2 103.5 101.5 2.0 2.0
LGMTPM05 Seg03T16 29 195 11 122 199 12 31.3 196.3 125.0 197.8 2.6 3.3 3.4 103.8 100.3 3.5 3.3
LGMTPM05 Seg03T17 32 220 10 126 220 11 33.8 221.0 127.0 222.8 2.0 2.9 3.5 103.3 101.3 2.0 1.9
LGMTPM05 Seg03T18 16 230 9 113 230 10 17.0 229.3 111.8 230.8 1.3 1.5 3.7 104.8 106.4 1.6 1.5
LGMTPM05 Seg03T19 35 231 8 130 232 9 34.8 230.0 129.3 230.8 1.0 1.5 3.6 104.5 107.9 3.4 3.2
LGMTPM05 Seg03T20 37 220 9 130 224 10 37.5 221.3 132.3 222.3 1.3 2.9 3.9 104.8 106.8 2.0 1.9
LGMTPM05 Seg03T21 31 226 8 129 230 8 30.5 225.5 126.5 227.0 0.7 3.9 3.1 106.0 101.3 4.7 4.4
LGMTPM05 Seg03T22 47 220 9 144 223 10 48.8 219.3 145.3 220.3 1.9 3.0 4.0 106.5 105.9 0.6 0.6
LGMTPM04 Seg01T01 365 360 12 433 425 13 366.0 358.0 429.3 424.0 2.2 3.9 3.1 101.4 99.3 2.2 2.1
LGMTPM04 Seg01T02 366 362 13 430 427 14 365.8 362.5 429.0 429.5 0.6 2.7 3.2 102.1 104.0 1.8 1.8
LGMTPM04 Seg01T03 365 370 12 428 436 12 368.0 371.0 431.3 438.0 3.2 3.8 3.2 102.1 104.7 2.5 2.5
LGMTPM04 Seg01T04 367 378 11 429 449 11 367.3 379.3 431.5 445.3 1.3 4.5 4.0 102.1 101.2 0.9 0.9
LGMTPM04 Seg01T05 365 381 12 435 448 13 367.8 383.3 431.3 450.5 3.6 4.5 4.2 103.5 100.9 2.6 2.5
LGMTPM04 Seg01T06 363 375 14 429 453 15 368.3 380.0 433.0 450.0 7.3 5.0 3.6 105.4 102.3 3.0 2.9
LGMTPM04 Seg01T07 369 385 11 433 450 12 369.3 385.5 430.8 450.3 0.6 2.3 3.4 99.3 98.5 0.8 0.8
LGMTPM04 Seg01T08 370 381 11 432 455 11 370.3 385.3 432.8 451.1 4.3 4.0 3.1 100.7 103.7 3.0 3.0
LGMTPM04 Seg01T09 371 388 10 431 452 10 371.0 389.0 433.0 450.0 1.0 2.8 3.9 98.9 96.2 2.6 2.7
LGMTPM04 Seg01T10 373 389 9 433 450 9 375.0 389.3 430.3 451.0 2.0 2.9 3.2 92.8 95.0 2.2 2.4
LGMTPM04 Seg01T11 378 389 11 433 451 9 376.3 389.3 430.3 452.3 1.8 3.1 3.6 93.0 90.0 3.0 3.2
LGMTPM04 Seg01T12 375 389 9 432 455 9 377.8 389.0 430.3 451.0 2.8 4.4 4.9 91.2 96.1 4.9 5.3
LGMTPM04 Seg01T13 366 389 8 443 460 9 370.3 391.3 440.8 458.3 4.9 2.9 4.6 107.1 103.2 3.9 3.6
LGMTPM04 Seg01T14 370 390 10 439 454 10 372.5 392.3 438.5 451.0 3.4 3.0 4.8 98.3 96.1 2.2 2.2
LGMTPM04 Seg01T15 373 386 9 438 453 9 374.3 387.5 436.0 451.0 2.0 2.8 3.2 98.6 101.0 2.4 2.5
LGMTPM04 Seg01T16 372 391 9 430 452 11 375.3 389.5 430.3 451.0 3.7 1.0 3.3 92.5 93.9 1.4 1.5
LGMTPM04 Seg01T17 373 394 9 436 452 9 375.0 392.3 435.0 451.0 2.7 1.4 3.2 94.0 95.2 1.3 1.4
LGMTPM04 Seg01T18 378 389 9 435 450 9 375.3 386.0 430.3 451.0 4.1 4.9 3.5 95.2 92.0 3.1 3.3
LGMTPM04 Seg01T19 379 389 9 437 455 9 377.5 385.8 435.3 451.0 3.6 4.4 3.7 95.1 98.1 3.0 3.1
LGMTPM04 Seg01T20 378 389 9 438 453 9 377.9 388.0 436.3 451.0 1.0 2.7 3.9 95.9 96.1 0.2 0.2
LGMTPM04 Seg01T21 377 389 9 434 452 9 374.3 389.0 431.0 451.0 2.7 3.2 4.1 94.0 92.2 1.8 1.9
LGMTPM04 Seg01T22 370 387 9 439 448 9 369.3 386.0 440.3 451.0 1.3 3.3 5.1 106.3 102.0 4.3 4.0
LGMTPM04 Seg01T23 376 389 9 433 449 9 375.1 388.3 430.3 451.0 1.2 3.4 3.2 93.3 92.6 0.7 0.8
LGMTPM04 Seg01T24 372 389 9 433 449 9 375.3 389.3 430.3 451.0 3.3 3.4 4.0 92.6 92.7 0.1 0.1
LGMTPM03 Seg01T01 210 371 8 243 417 10 212.5 369.7 243.0 419.5 2.8 2.5 4.2 72.4 73.3 0.8 1.2
LGMTPM03 Seg01T02 215 372 9 245 419 11 213.3 370.0 246.5 421.5 2.6 2.9 3.9 71.3 73.6 2.3 3.2
LGMTPM03 Seg01T03 216 375 9 249 420 10 214.5 371.3 248.0 422.8 4.0 2.9 3.6 71.3 70.0 1.3 1.9

57

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.14: Expert annotated segments (Left) and our computed segments (Right)

58

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.15: The figure shows two examples of coupling L. Dashed lines represent
distinct pairs. ∥L∥ is the length of the longest distance of those pairs. Finally, FD is
the minimum of those ∥L∥.

Figure 3.16: 3D segmentation visualization in BisQue. Segmentation mask is overlayed
on the original image and users can toggle segmentation mask on/off.

59

Deep Learning Enabled Time-Lapse 3D Cell Analysis Chapter 3

Figure 3.17: 3D visualization in BisQue from our segmentation method. Here a 3D
segmentation mask is presented.

60

Chapter 4

Neuron Morphology Analysis

Many of life’s failures are people

who did not realize how close they

were to success when they gave up.

Thomas A. Edison

This chapter focuses on 3D neuron shape analysis. We consider the problem of

finding an accurate representation of neuron shapes, extracting sub-cellular features,

and classifying neurons based on neuron shapes. In neuroscience research, the skeleton

representation is often used as the compact and abstract representation of neuron shapes.

However, existing methods are limited to getting and analyzing “curve”skeletons which

can only be applied for tubular shapes. This chapter presents a 3D neuron morphology

analysis method for more general and complex neuron shapes. First, we introduce the

concept of skeleton mesh which is used to represent general neuron shapes and propose

a novel method for computing mesh representations from 3D surface point clouds. A

skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular

features. Finally, an unsupervised learning method is used to embed the skeleton graph

61

Neuron Morphology Analysis Chapter 4

for neuron classification. Extensive experimental results are provided that demonstrate

the robustness of our method to analyze neuron morphology.

4.1 Introduction

The importance of neuronal morphology has been recognized from the early days of

neuroscience [19,63]. There are three obstacles in automatic neuron morphology analysis.

First, we need to have a good shape representation of each neuron. Skeleton representa-

tions are widely used in neuroscience [21–24,64] as they provide a compact and abstract

shape representation. Mathematically, skeletonization or medial axis transform (MAT)

has a rigorous definition for arbitrary shapes. The skeleton of a shape is defined as a

collection of interior points that have at least two closest points on the surface of the

shape. We refer to those interior points as skeleton points and each skeleton points are

associated with a radius. Fig. 4.1 shows an example of MAT. However, in reality, it is

not an easy task to get skeleton representation directly from images. Most automatic

segmentation or manual segmentation outputs surface point clouds of neurons. Thus,

we need to compute the 3D neuron skeleton from 3D surface point clouds. The skeleton

representation further enables computing sub-cellular features such as length and number

of branches of neurons as well as classification of neurons.

The main contribution of this chapter is a robust and efficient method for computing

a skeleton representation from a set of 3D surface points. This 3D skeleton representation

can be used for a quantitative analysis of neuronal cell structures, including sub-cellular

feature calculations and for neuron type classification based on 3D shapes. Fig. 4.2 shows

the three main contributions of this chapter.

There is an extensive literature that tries to solve the neuron skeleton extraction

problem [21,22,25,65]. In [22], the skeleton representation is computed from a 3D mesh

62

Neuron Morphology Analysis Chapter 4

Figure 4.1: Illustration of MAT by using a 2D shape example.

by using a traditional morphological thinning algorithm [66]. This method has two main

drawbacks. First, thinning algorithm is sensitive to noise of 3D mesh. Second, in reality,

we usually get discrete 3D surface points of neurons from the segmentation step, and

constructing 3D mesh from those discrete 3D surface points will introduce additional

noise. To make the skeleton extraction model more robust, [25] proposes to use deep

learning network to learn skeleton representation. The main idea of the paper is to

use the deep learning network to predict skeletons from features of multiple spatial scale

layers. This model still takes a continuous surface as input, as opposed to discrete surface

points. Further, this is a supervised method and it requires training samples. However,

in theory, skeletonization is a well defined mathematical process for continuous surfaces

63

Neuron Morphology Analysis Chapter 4

Figure 4.2: Three main contributions of our neuron morphology analysis work.

and should be computable directly. All above methods are used to get the skeleton

model from continuous surface. In [65], they propose extracting skeleton representations

directly from discrete surface points by using a 3D discrete distance transform. However,

this only works well for curve skeletons and only tubular structures have curve skeletons.

General 3D shapes will result in surface skeletons as shown in Fig. 4.3. In practice,

skeleton mesh is used to represent the surface skeleton. There is no existing method to

extract skeleton mesh from surface point clouds for neuron morphology analysis.

There are also methods to analyze neuron shapes using the skeleton representation.

For skeleton classification task, [22] proposes to compare similarity of skeletons by using

local skeleton features. It breaks a neuron skeleton into short segments and characterize

segments by location and direction of that segments. However, this method only works

well for curve skeletons but not surface skeletons. In [67], they only consider features

from skeleton points for the classification and it does not fully utilize the skeleton mesh

information. We also need to extract sub-cellular features such as number of branches

from the skeleton mesh because these features are important in the scientific description

of neurons as Fig. 4.4 shows.

To analyze general neuron shapes, this chapter presents a robust 3D neuron morphol-

64

Neuron Morphology Analysis Chapter 4

Figure 4.3: Visualization of a 3D ellipsoid shape and its surface skeleton from two
points of view. Yellow triangle mesh represents object surface. Black contour repre-
sents the outline of the skeleton surface. Magenta and Cyan line segments represent
two closest surface points from the skeleton point. Two colors are used to differentiate
different directions.

ogy analysis framework based on the surface skeleton representation of neurons. In [8],

the authors propose an unsupervised deep learning skeleton mesh extraction method.

However, this method does not work well when neurons have concave shapes. Our skele-

ton mesh extraction method is built upon [8], and by using estimated surface norm of

point clouds as part of the optimization function, we address this drawback. Next the

skeleton mesh is converted to an undirected graph called skeleton graph. Inspired by [68],

we embed the skeleton graph by maximizing mutual information, and then classify neu-

rons based on the embedding of each skeleton. To compute cellular/sub-cellular features

of neurons from the skeleton representation, we also utilize the skeleton graph. A simple

65

Neuron Morphology Analysis Chapter 4

Figure 4.4: Typical scientific description of neurons include number of branches as
important morphology features. The description of neurons is from [5].

but effective recursive algorithm is proposed to get number of branches and length of

neurons.

We apply our neuron morphology analysis method to classify Ciona neurons. The

Ciona sea squirt is one of the widely studied tunicates in neuroscience [5]. Its brain is

closely related to vertebrates with a much simpler neuronal structure. In a single Ciona

larva, it has only about 187 neurons with about 6600 synapses [5]. Studying the Ciona

brain in depth can reveal the general principles behind the mechanism of how vertebrate

brains work [26]. Therefore, Ciona nervous system is ideal for the analysis of neuron

circuits with respect to animal behavior.

We also present our results on the NeuroMorpho [28] dataset. In summary, the main

contribution of our paper include

66

Neuron Morphology Analysis Chapter 4

• A robust and efficient skeleton mesh extraction method with novel cost function by

using properties of MAT. To the best of our knowledge, this is the first one to use

skeleton mesh instead of the curve skeleton to analyze neuronal shapes

• A 3D Ciona neuron dataset that can be used for neuron morphology analysis.

4.2 Method

Extract Skeleton
Mesh

Representation
from 3D Surface

Points

Skeleton Graph
from Skeleton

Mesh

Sub-cellular
Feature

extraction

Graph Level
Representation
for Classification

Fixed Length
Vector

Representation

Length and
Branches of

Neurons

Figure 4.5: Overview of our proposed neuron morphology analysis pipeline. Given
a surface point cloud as input, we extract the skeleton mesh. The skeleton mesh
includes skeleton points with their radii as well as the connection of skeleton points.
Then we construct the skeleton graph. Each node in a skeleton graph represents
a skeleton point, and edge in the graph represents the connection between skeleton
points. Next, we propose the graph analysis method to get length and number of
branches of neurons based on the skeleton graph. We also use the skeleton graph for
classification task by embedding it into a fixed length vector.

Fig. 4.5 illustrates our overall neuron morphology analysis method. Given a set of

surface point clouds as input, we introduce an unsupervised deep learning method to get

the skeleton mesh representation of each neuron. This is achieved by using the proper-

ties of the traditional medial axis transform (MAT). The skeleton mesh representation

includes skeleton points with radii as well as the connection of those skeleton points as

shown in Fig. 4.5. Second, the skeleton representation of each neuron is transformed into

a skeleton graph. The skeleton graph is shown in Fig. 4.5. Each node in the skeleton

graph represents a skeleton point. If there is an edge between two nodes, it means those

67

Neuron Morphology Analysis Chapter 4

two skeleton points are connected. The weight of the edge represents distance between

the two skeleton points. Each node in the skeleton graph represents a skeleton point. If

there is an edge between two nodes, it means those two skeleton points are connected.

The weight of the edge represents distance between the two skeleton points. Radii as

well as the location of each skeleton point are attributes of each node. Next, length and

number of branches of neurons are computed from the skeleton graph. To compare differ-

ent shapes of neurons, the graph level representation learning method is used to embed

the skeleton graph. The representation learning method is an unsupervised method by

maximizing mutual information of the skeleton graph.

4.2.1 Skeleton Mesh from 3D Surface Point Cloud

PointNet++
Encoder MLP

Initialize
Links

between
skeleton
points

Skeleton points’
features

Compute
Radii

G
raph

C
onvolution

G
ra

ph

D
ec

od
er

Graph
Auto-Encoder

Figure 4.6: Overview of neuron skeleton representation method. Given 3D surface
point cloud as input, PointNet++ [6] is used to extract features of the input point
cloud. Then a geometric transformation learned by MLP will predict the skeleton
points location with their radii. After skeleton points prediction, two simple priors
are used to initially connect some skeleton points, and a graph auto-encoder is used
to predict all links that connect skeleton points.

Our unsupervised 3D neuron skeleton extraction method is built upon the method

in [8] as illustrated in Fig. 4.6. Given a 3D surface point cloud as input, PointNet++ [6]

is used as the encoder to obtain the sampled surface points with features. Next, a

Multi-Layer-Perceptron (MLP) is used to learn the geometric transformation to predict

the skeleton points with their radii using linear combination of the MLP input points.

68

Neuron Morphology Analysis Chapter 4

Compared to [8], we propose to use properties of skeleton points as the prior knowledge

to make the geometric transformation learning process more robust to general shapes.

After getting skeleton points with radii, a graph auto-encoder is used to predict links

between skeleton points.

skeleton points prediction

Mathematically, given a set of 3D surface points P ∈ RM×3 where M is a number of

points, we want to predict N skeleton spheres si =< ci, ri > where ci is the center of

each sphere and ri is the radius of each sphere.

As illustrated in Fig. 4.6, we first use PointNet++ [6] as the encoder to obtain a set

of sampled input points P′ ∈ RM ′×3 and their associated contextual features F ∈ RM ′×D.

M ′(M ′ < M) is the number of feature points after PointNet++ and D is the feature

dimension of each feature point.

Figure 4.7: PointNet++ Encoder. Each dashed box represents a set abstraction level.
The PointNet++ encoding features are multi-scale grouping features from multiple
spatial scales.

PointNet++ groups points and extract point features hierarchically as Fig. 4.7 shows.

It contains a number of set abstraction levels. For each set abstraction level, there

are three layers: Sampling layer, Grouping layer, and PointNet layer. For the first set

69

Neuron Morphology Analysis Chapter 4

abstraction level, the input is P, a set of M number of 3D surface points. Therefore, the

input size to the first set abstraction level is M × 3. Next, Sampling layer is applied.

The iterative farthest point sampling (FPS) is used to get M ′ sampled points. In the

grouping layer, those M ′ sampled points are used as the centroid points. Then for each

centroid, all M points within a radius are viewed as neighbor points and are grouped

into that local region. Therefore, each centroid has K neighbors and K can vary for

different groups. After Sampling and Grouping layers, PointNet [69] layer is used to

extract features for each local region. The sampling layer, grouping layer, and PointNet

layer consists one set abstraction level, and we stack such abstraction levels to form

a hierarchical architecture to get features at different spatial scales. Next, multi-scale

grouping is applied to concatenate the features from different spatial scales.

As Fig. 4.6 shows, a Mult-Layer-Perceptron (MLP) is used to estimate the geometrical

transformation to get a set of skeleton spheres’ center points C, {c1, c2, ..., cN}. The

geometric transformation we use is a convex combination of input points P′. MLP with

softmax function is used to estimate the weight W ∈ RM ′×N of the convex combination

in eq. 4.1.

C = WTP′ subject to ∀j ∈ {1, ..., N}
M ′∑
i=1

Wi,j = 1 (4.1)

As shown in [8], the same weight matrix W can be used to compute r(c) ∈ R using

eq. 4.2

R = WTD (4.2)

where D ∈ RM ′×1 is a vector collecting all d(p′,C). d(p′,C) is the closest distance of one

surface point p′ to all skeleton points C and is defined as d(p′,C) = minc∈C ||p′ − c||2

70

Neuron Morphology Analysis Chapter 4

A set of loss functions are defined in [8] to train the MLP. The loss function includes

sampling loss Ls, point-to-sphere loss Lp, and radius regularizer loss Lr. The first two

losses are based on the recoverability of skeleton representation. The last loss term is to

encourage larger radii to avoid instability induced by surface noise.

For the sampling loss, we sample points on the surface of each skeleton sphere and

measure the Chamfer Distance (CD) between the set of sampled points T and the input

points P′ as in eq. 4.3:

Ls =
∑
p′∈P′

min
t∈T

||p′ − t||2 +
∑
t∈T

min
p′∈P′

||t− p′||2 (4.3)

Point-to-sphere loss Lp loss measures the reconstruction error by explicitly optimizing

the coordinate of skeleton points and their radii:

Lp =
∑
p′∈P′

(min
c∈C

||p′ − c||2 − r(cmin
p′)) +

∑
c∈C

(min
p′∈P′

||c− p′||2 − r(c)) (4.4)

where C is a set of predicted skeleton points, P′ is a set of sampled surface points from

PointNet++, r(c) is a radius of skeleton point c, and cmin
p′ is the cloest skeleton points

to a point p′.

Radius regularizer loss Lr is defined in eq. 4.5 where r(c) is a radius of the skeleton

point c. By minimizing this loss, it encourages large radii of skeleton points to make the

skeleton points prediction more stable.

Lr = −
∑
c∈C

r(c) (4.5)

However, based on above three losses, predicted skeleton points can be outside of a

shape if the shape is concave. Therefore, we introduce the skeleton-to-surface norm loss

71

Neuron Morphology Analysis Chapter 4

Ln to encourage the skeleton points to be inside the shape. Ln is a term to measure

the reconstruction error by utilizing the property of spoke direction in MAT. Fig. 4.8

illustrates a spoke of a skeleton point in MAT. The length of a spoke of the skeleton point

c is r(c). This is also one of our main contribution compared to [8] for skeleton points

prediction. In theory, the direction of the spoke should be perpendicular to the object

surface at the surface point [67]. Also the spoke direction should be pointing outside of

a shape. To capture this property, we define Ln:

Ln =
∑
c∈C

(1− np′min
c

· p
′min
c − c

||p′min
c − c||2

) +
∑
p′∈P′

(1− np′ ·
p′ − cmin

p′

||p′ − cmin
p′ ||2

) (4.6)

p
′min
c is the closest surface point to the skeleton point c and np′min

c
is the estimated

surface norm of the surface point. · is the dot product between two vectors. To estimate

the norm of each point in the 3D surface points, the adjacent points are found first and

then principal axis of the adjacent points using covariance analysis are calculated. More

details of the norm estimation of each surface point are described in [70]. Ln encourages

the skeleton points to be located within a shape even the shape is concave.

Links prediction

After predicting skeleton points, our target is to predict links to connect skeleton

points to form the skeleton mesh. In theory, for any pair of skeleton points, if all points

that are on the line connecting the two skeleton points are also on the skeleton surface,

there should be links between those two points. We adapt the graph auto encoder (GAE)

as used in [8] to predict links between skeleton points. GAE takes input the initialized

adjacency matrix Aini of the skeleton mesh graph Gmesh and the skeleton points’ features.

Based on two priors, we initialize a set of reliable links and links are divided into

known existing links, known absent links, and unknown links. These two priors are the

72

Neuron Morphology Analysis Chapter 4

Figure 4.8: Spoke is a vector connecting a skeleton point and that skeleton point’s
one of two closest surface points. The vector points from the skeleton point to the
surface point. Green lines represent the surface of an object, blue dot is one skeleton
point, and the arrow represents a spoke. Spoke is perpendicular to the object surface
at the surface point.

topology prior and the recovery prior.

• Topology prior: There is a link between two closest skeleton points and this link

is marked as the known existing link. There will be no link between two farthest

nodes and it is marked as known absent link.

• Recovery prior: If a point p′ has two closest skeleton points ci and cj, then there

is a link between ci and cj and the link is marked as known existing link.

All other links are marked as unknown.

In general, after using these two priors, there are missing links. Therefore, the graph

auto-encoder [8,71] is used to predict links. The encoder is a series of graph convolutional

network layers with residual blocks and a simple inner product decoder to produce the

predicted adjacency matrix Â with each entry as 0 (there is no link) and 1 (there is a

73

Neuron Morphology Analysis Chapter 4

link).

The input of the encoder is the initialized graph (skeleton points with features, ad-

jacency matrix of the graph). The adjacency matrix A is used to represent the input

adjacency matrix. The skeleton points’ features is concatenation of C, R, and WTF. C

are coordinates of skeleton points, R are radii of skeleton points, W is the learned weights

from the MLP, and F is the contextual features of the surface points from PointNet++.

The loss function is a Masked Balanced Cross-Entropy (MBCE) loss as proposed in [72].

Given the input column of adjacency matrix ai and the output column of estimated

adjacency matrix âi, MBCE is defined in eq. 4.7 as:

LMBCE =
m

⊙
LBCE∑

j mj

(4.7)

⊙
is the element wise product. mj ∈ m and mj is the boolean function: mj = 1 if

the jth element of ai is unknown, else mj = 1. LBCE is defined in eq. 4.8 as:

LBCE = −ailog(σ(âi)) · ζ − (1− ai)log(1− σ(âi)) (4.8)

LBCE is the balanced cross-entropy loss with weighting factor ζ = 1− #known present links
#known absent links

,

and σ is the sigmoid function. ζ is used as a weight multiplier for the positive class to

solve the sample imbalance problem because in the skeleton mesh, most pair of skeleton

points will not have links between them.

4.2.2 Sub-cellular feature extraction from the skeleton graph

Skeleton model can be represented as the skeleton graph G(V,E) where V represents

all skeleton points and E represents connection between skeleton points. Note that, the

main difference between the skeleton graph and the graph we use to predict links between

74

Neuron Morphology Analysis Chapter 4

skeleton points is that we also have weights for edges in the skeleton graph. The weight

of the edge represents distance between skeleton points.

Neuron length computation from skeleton graph

We formulate the neuron length computation problem as finding the longest simple

path in the skeleton graph G. A simple path in the graph is a path that does not have

repeat nodes. In G, the length of the path is the sum of all edges’ weights along the

path. Note that our skeleton graph can have loops. To solve this problem, for each node,

we find the longest simple path from that node and denote as path(i) for node i. To

avoid getting stuck during the loop, we mark any node when we visits as shown in the

algorithm below. Next, we find i∗ that maximizes path. We use the following recurrent

algorithm to find the longest simple path from one node in the skeleton graph.

Algorithm 3 Find the longest simple path from node i

D[j] represents the longest path from j to i. Initially, D[j]=0 for all j
function LongestPath(i, currLength)

if Node i is visited then
return

end if
change i status to visited
if D[i] <currLength then

D[i]=currLength
end if
for all nodes j that is connected to i do

LongestPath(j, currLength+edgeweight[i,j])
end for
change i status to not visited

end function

Neuron branch calculation

After finding the longest simple path, we are able to identify a set of nodes on that

path. Those nodes are possible branching nodes. We name a set containing all possible

75

Neuron Morphology Analysis Chapter 4

branching nodes as B For each node i ∈ B, we find the longest simple path from that

node i which does not contain any other nodes in B. Therefore, the branch is identified

as the longest simple path.

4.2.3 Skeleton Model Comparison

Figure 4.9: We use two example skeleton graphs (blue and orange) to demonstrate
how we embed the skeleton graph. Each node of a skeleton graph is encoded into a
feature vector by using graph convolution layers. A fixed length graph level feature
vector (global representation) is obtained by graph-level pooling operation of each
node feature vector. The discriminator takes inputs both global representation and
patch representation to decide whether they are from the same skeleton graph. In this
toy example, there will be 14 global-patch pairs.

We cluster neuron morphology by comparing different skeleton graphs. Specifically,

we embed the skeleton graphs and then cluster neurons based on their embeddings.

We embed the skeleton graph based on InfoGraph [68] as illustrated in Fig. 4.9. The

embedding process is in an unsupervised manner.

First, graph convolutional layers are used to generate node features which we also

call patch representation hj
i (i is the skeleton graph index and j is the node index of the

skeleton graph i). Then graph-level pooling is used on all patch representations to get the

76

Neuron Morphology Analysis Chapter 4

graph level representation (global representation) Hi. We define our mutual information

(MI) estimator on global-patch pairs over the given graph dataset G in eq. 4.9

MI =
∑
i∈K

1

K

∑
j∈Gi

I(hj
i ,Hi) (4.9)

where K is the total number of graphs in the dataset and Gi ∈ G.

MI is the mutual information estimator modeled by the discriminator T . The Jensen-

Shannon MI estimator proposed in [68] as eq. 4.10

I(hj
i ,Hi) = E[−sp(−T (hj

i , Hi)]− E[−sp(−T (hj
i′ , Hi)] (4.10)

where E is the expectation (here it is just average operation) and sp(z) = log(1 + ez).

i and i′ denote two graph samples from the dataset G. The discriminator T estimates

global-patch representation pairs by passing two representations to different non-linear

transformations and then takes the dot product of the two transformed representations.

Both non-linear transformations consist 3 linear layers with ReLU activation functions.

Therefore, the discriminator will output a score between [0,∞) to represent whether the

input patch (node) is from the input graph. If the input global/patch pairs are from

the same graph, we refer to them as positive samples, otherwise negative samples. We

randomly sample pairs as input to the discriminator.

77

Neuron Morphology Analysis Chapter 4

4.3 Dataset

4.3.1 Ciona Neuron EM Dataset from UCSB MCDB the Smith

Group [5]

This dataset (Dataset 4) contains two Ciona larva 3D TEM images. Fig. 4.10 shows

how we use Ciona to study the neuron activities with respect to environmental changes.

The section thickness for TEM images varies between 35 nm and 100 nm. For each

section, xy resolution is 3.85×3.85 nm. Animal 1 contains 7671 sections and animal 2

contains about 7000 sections. In each Ciona larva, 187 neurons are annotated. Those

187 neurons can be grouped into 31 types. Fig. 4.11 shows how Ciona neurons are

located in their brains. For animal 1, Ciona neurons are manually segmented using

Reconstruct [31] and 3D surface point clouds are available. For animal 2, Ciona neuron

skeletons are traced using TrackEM2 [32], an ImageJ [29] plugin. Details of this dataset

are described in Table 4.1

Figure 4.10: This figure illustrates Ciona larva under environmental changes (light
on/off), real Ciona larva, and Ciona larva brain EM images.

78

Neuron Morphology Analysis Chapter 4

Figure 4.11: Neurons in Ciona. Different colors represent different types of neurons.
Left: each neuron is represented as a sphere; right: each neuron is represented by
their surface points.

Table 4.1: Details of Ciona Dataset. It contains two Ciona animals, one with surface
point cloud annotated and one with skeleton annotated.

Animal xy resolution
(nm)

section thick-
ness (nm)

number of sec-
tions

annotations

Animal 1 3.85×3.85 35-100 7671 3D surface
point cloud of
neurons are
provided

Animal 2 3.85×3.85 35-100 6928 3D neuron
skeletons with-
out
skeleton points’
radii

Figure 4.12: Three examples of surface point clouds from Ciona Dataset

79

Neuron Morphology Analysis Chapter 4

4.3.2 C.elegans Neuron Dataset from NeuroMorpho [28]

NeuronMorpho [28] is a publicly available dataset that is used for neuron morphology

research. It has tens of different animals’ neurons. So far, it is the largest neuron

skeletons dataset with associated metadata. In this paper, we take a subset of C.elegans

dataset (Dataset 5) from the whole NeuroMorpho dataset to verify our method. Dataset

5 consists of 299 neuron skeletons (with radii) and it is classified into 10 different types.

Each neuron with detailed metadata information such as number of branches and length

of neuron.

Figure 4.13: Example skeletons from NeuroMorpho Dataset

4.3.3 ShapeNet 3D CAD models [1]

ShapeNet [1] is a richly-annotated, large-scale dataset of 3D shapes represented by 3D

CAD models of objects. It contains 3D models from a multitude of semantic categories.

In this paper, we collect 7088 shapes from 8 categories of ShapeNet, the same as in [8] for

a fair comparison. Each shape has 2000 sampled 3D surface points. This dataset is used

to train the skeleton extraction model and test the robustness of our skeleton extraction

model and the skeleton graph embedding method. Examples from ShapeNet are shown

in Fig. 4.14.

80

Neuron Morphology Analysis Chapter 4

Figure 4.14: Example CAD shapes from ShapeNet

4.3.4 Skeleton Model from 3D Surface Point Cloud

We apply our method on animal 1 neurons from Dataset 1 for the purpose of building

a shape model to analyze neuron morphology. We train our skeleton model extraction

method using all 3D models from Dataset 3. To get the constant number of 3D surface

input points, we use the sampling strategy described in [73]. The main idea of the

sampling strategy is to give each point a weight based on its distance to neighbor points.

Then we sample points based on the weights until we reach the number of points we want.

Details of defining the neighbor points and computing the weight is described in [73].

To evaluate our skeleton extraction method on Dataset 1, we repair surface mesh

using screened poisson surface reconstruction method [74] with spherical harmonics to

smooth the surface as illustrated in Fig

Fig. 4.15 shows the qualitative comparison of our methods and other state-of-the-

art methods [7, 8]. Our method has better visual results. [7] can generate unstructured

skeleton points but it lacks topological constraint. It performs well when neuron has tube

like structure but it is not good when neuron has more circular shape. Compared with [8],

our method can capture more detailed structures which are important for sub-cellular

feature extraction, such as branches. For quantitatively evaluation of our method on

81

Neuron Morphology Analysis Chapter 4

Figure 4.15: The figure shows skeleton extraction results from different methods.
From left to right:Input 3D surface points; skeleton points from surface points using
DPC [7]; skeleton mesh from surface points using Point2Skeleton [8]; skeleton mesh
from our method with surface norm cost function.

Dataset 1, we compute the strictly defined MAT and use the handcrafted method in [8] to

remove insignificant spikes to get the simplified MAT. We sample points on the simplified

MAT as the ground truth skeleton points. Then we compute Chamfer Distance (CD) and

Hausdorff distance (HD) between computed skeleton points and ground truth skeleton

points. CD and HD are both distance measurements to measure distance between two sets

of points. CD is computed by summing he squared distances between nearest neighbor

correspondences of two point clouds. Mathematically, given two sets of point X and Y ,

82

Neuron Morphology Analysis Chapter 4

Figure 4.16: Five examples of repaired mesh and their surface point clouds. Top row
is the original point clouds and bottom row are repaired meshes.

it is defined as:

CD(X, Y) =
∑
x∈X

min
y∈Y

||x− y||2 +
∑
y∈Y

min
x∈X

||x− y||2 (4.11)

HD is the greatest distance of all Euclidean distances from a point in one point cloud to

the closest point in the other point cloud. It is defined as:

HD(X, Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (4.12)

where d(x, y) =
√

||x− y||2. We refer to them as CD-skel and HD-skel. To compute

CD-skel and HD-skel, we shift and rescale each skeleton so that the skeleton center is

located at (0,0,0) and their x,y,z coordinates are all between -1 and 1 for every skeleton.

We also measure the difference between the shapes reconstructed from the skeletons

and ground truth surface points using CD and HD. We refer them as CD-recon and

HD-recon. Similarly, we also shift and rescale the ground truth points so that each

neuron is centered at (0,0,0) and each neuron’s surface coordinates are between -1 and 1.

83

Neuron Morphology Analysis Chapter 4

Other than those four aforementioned evaluation metrics, we also use the reconstructed

neuron volume difference as the evaluation metric considering neuron volume is one of the

important property of neuron. We denote it as vol−pct. Mathematically, it is defined as

vol− pct = |vrecon−vg|
vg

where vrecon is the volume of the reconstructed neurons from the

skeleton model, and vg is the ground truth volume. Table 4.2 gives the detailed results

of different methods. It shows our method has the best performance compared to other

methods on Dataset 1 in terms of all evaluation metrics we use.

Table 4.2: Quantitative Comparison with state-of-the-art skeleton model extraction
method on Dataset 1

CD-recon HD-recon CD-skel HD-skel vol-pct (%)
DPC [7] 0.102 0.298 0.303 0.311 10.1

Point2Skeleton [8] 0.081 0.207 0.155 0.191 8.2
Our method 0.067 0.183 0.090 0.185 5.6

To test the generality of our method, we apply it on Dataset 6. We use the 6 fold

cross validation strategy. We randomly split Dataset 6 into 6 folds. Each time, one fold

is used as the test set and the remaining 5 folds are used to train the model. We do

this 6 times over 6 different testing data and we get mean and standard deviation of

CD-recon, HD-recon, CD-skel, and HD-skel. The same cross validation strategy is used

for Point2Skeleton [8] method. DPC [7] is not learning based method, and we just apply

it on whole Dataset 6. Table 4.3 provides quantitative evaluation results on Dataset

6. The results show that our deep learning method even with estimated surface norms

can accurately encode the original shape information in our skeleton models. Fig. 4.17

shows qualitative results of our skeleton mesh extraction method. The skeleton meshes

are shown overlaying on the surface point clouds.

84

Neuron Morphology Analysis Chapter 4

Figure 4.17: Qualitative results on Dataset 6. Blue dots are surface point clouds. Red
points with the links represent the skeleton meshes.

Table 4.3: Quantitative Comparison with state-of-the-art skeleton model extraction
method on Dataset 6. Number in the bracket is the standard deviation. There is no
standard deviation for DPC because it is not based on machine learning.

CD-recon HD-recon CD-skel HD-skel
DPC [7] 0.063 0.198 0.215 0.281

Point2Skeleton [8] 0.041 (0.008) 0.168 (0.022) 0.073 (0.006) 0.181 (0.029)
Our method 0.028 (0.007) 0.149 (0.020) 0.051 (0.006) 0.162 (0.030)

4.3.5 Sub-cellular feature extraction from skeleton model

We apply our sub-cellular feature extraction method on Dataset 4 and Dataset 5.

We define the length difference percentage (len-pct) and number of branches difference

percentage (num-pct) to measure the neuron length error and number of branches error of

the computation methods. We compare our sub-cellular feature extraction method with

the method proposed in [22]. Table 4.4 gives details of sub-cellular feature computation

results. Since only animal 2 of Dataset 4 has ground truth neuron length and number of

branches, len-pct and num-pct for Dataset 4 is only for animal 2. Our method provides

the better sub-cellular feature extraction results in most cases and the percentage error

is no more than 8 percent.

85

Neuron Morphology Analysis Chapter 4

Table 4.4: Sub-cellular feature evaluation results
len-pct Dataset 4 (%) num-pct Dataset 4 (%) len-pct Dataset 5 (%) num-pct Dataset 5 (%)

NAVIS [22] 7.1 10.5 3.2 6.3
Our method 5.5 7.6 3.8 5.8

For Dataset 4, we also analyze the relationships between length and branches of

neurons computed from our method. For animal 1 in Dataset 4, we first use our skeleton

extraction method to get the skeleton representation of each neuron. Next, we use our

sub-cellular feature extraction method to get length of the neuron and number of branches

of the neuron. Fig. 4.18 shows the relationships between length and branches of neurons.

Blue dots represent neurons from animal 1 and red dots represent neurons from animal

2. Overall, longer neurons tend to have more number of branches. Also animal 1 and

animal 2 have similar results in terms of relationships between neuron length and number

of branches.

4.3.6 Skeleton Model Comparison

As Fig. 4.19 demonstrates, different types of neurons have different shapes visually.

In this chapter, we consider using the skeleton mesh model to quantify those differences.

Also we try to classify them based on this shape difference.

We apply our skeleton model comparison method on Dataset 4 for the purpose of

analyzing Ciona neuron morphology of different neuron types. Given the skeleton model,

we embed it into a vector. Then we use K-means++ to cluster vector representations of

skeleton graphs. For K-means++, the number of clusters is set to be the same as number

of neuron classes. After K-means++, the cluster label is given by using the majority vote

of neuron types within the cluster. We use animal 1 neurons to train the K-means++

model and get the cluster (neuron type) centers. Next, we use animal 2 as the test set.

For each neuron in the test set, we assign the label based on its closest cluster center. The

distance metric we use is the euclidean distance in the vector embedding space. Table 4.5

86

Neuron Morphology Analysis Chapter 4

Figure 4.18: Relationships between length and number of branches of neurons using
two animals of Dataset 4. Blue dots represent neurons from animal 1 and red dots
represent neurons from animal 2.

shows the comparison of clustering (classification) accuracy on both training and test sets

using different neuron classification method. The neuron classification methods include

graph spectrum method, graph2vec [75], s-rep [67] and our graph level representation

method. The graph spectrum method uses the eigen values of the graph’s adjacency

matrix to form the vector representation. Similar to our method, graph2vec method is

another way to convert the skeleton graph to the graph level vector representation. For

the s-rep method, it uses the skeleton points’ features such as spoke direction, spoke

length, and skeleton points’ locations to classify neurons. From Table 4.5, we can see

87

Neuron Morphology Analysis Chapter 4

Figure 4.19: Visualization of how different neurons have different shapes. Neurons
within the same box are the same type.

that grouping neurons by just using basic skeleton graph spectrum can provide decent

classification results on both train and test sets. It shows that neuron types are closely

related to its morphology. Also, our method is a better way to represent skeleton graphs

in terms of clustering accuracy. Fig. 4.20 shows the confusion matrix on the test set

using our classification method. As we see, most cells are classified correctly (on the

diagonal).

Table 4.5: Neuron Classification Results
Graph Spectrum Graph2vec [75] S-rep [67] Our method

Train 0.691 0.767 0.791 0.893
Test 0.632 0.718 0.773 0.871

Based on previous observations, we do further morphology analysis based on our

graph level representation results. After we get the vector representation of each graph,

we compute euclidean distance between each pair of vectors. Then we compute the inter

class and intra class distance based on pairwise neuron distance as Fig. 4.21 shows. As

Fig. 4.21 illustrates, diagonal entries tend to be smaller than other values. It further

confirms our conclusion that neuron types are related to neuron morphology. More

88

Neuron Morphology Analysis Chapter 4

Figure 4.20: Confusion matrix of neuron classification on animal 2 (test set) using our
method.

specifically, neurons within a neuron type tend to have smaller morphology distance

than neurons between different groups. Also, two animals inter and intra distance look

very similar.

Based on this inter and intra class distance, we do hierarchical clustering as Fig.

4.22 shows. The hierarchical clustering results show that BVIN and pr-BTN RN have

larger morphology distances from other neuron types. The BVIN neurons are a broad

group of intrinsic interneurons located in the brain vesicle of Ciona. The main role of

this group is to connect the sensory neurons to other groups within the brain vesicle.

89

Neuron Morphology Analysis Chapter 4

The BVIN neurons have partial subclassification based on sensory input [5]. Receiving

specific sensory information is an indication of functional role, therefore, the BVIN can

be further subdivided into different groups based on the sensory group(s) from which

they receive input. Using the sensory input as criteria, the entire group was split up into

four groups: prIN if receiving photoreceptor input, antIN if receiving antenna cell input,

pr-ant IN if receiving from both, and BVIN if not receiving from either. The pr-BTN

RN only have two neurons and their functions are mostly unknown. According to the

connectome [5], they receive input from both the photoreceptors and the BTN neurons

(neurons involved in processing touch stimuli in the tail), so it’s possible they play a role

in integrating the two inputs. Any functional differences that may exist between the two

are currently unknown, however, the hierarchical clustering suggests that this may be

the case.

4.4 Conclusion

In this chapter, we propose a novel neuron morphology analysis pipeline as shown in

Fig. 4.23. It mainly includes three parts. First, we propose a robust shapre representa-

tion using skeleton mesh. Next, we compute sub-cellular features from the skeleton mesh.

Finally, we compare different neuron shapes using skeleton mesh. To the best of knowl-

edge, this is the first time that such an approach is used to represent and classify neuronal

shapes. The introduction of the estimated surface norm penalty results in a robust mesh

representation that achieves the state-of-the-art performance using well defined metrics.

Based on skeleton graph, we formulate sub-cellular feature computation problem as a

longest simple path problem that can be easily computed. To compare different neuron

morphology, we use a novel unsupervised graph level representation method to get the

vector representation of each skeleton graphs. We provide detailed experimental results

90

Neuron Morphology Analysis Chapter 4

A

B

Figure 4.21: Inter and intra class neuron morphology distance on animal 1 (A) and
animal 2 (B) . Neuron morphology distance is computed by using euclidean distance
between our graph level representation of the skeleton graph.

91

Neuron Morphology Analysis Chapter 4

A

B

Figure 4.22: Hierarchical clustering of neurons of animal 1 (A) and animal 2 (B).

92

Neuron Morphology Analysis Chapter 4

to demonstrate the effectiveness of our method. Specifically, our analysis of the Ciona

dataset demonstrates that shape could be used as a significant feature for classifying

neuronal types.

Figure 4.23: Summary of our proposed neuron morphology analysis pipeline

93

Chapter 5

Conclusions and Future Work

The past is a place of reference, not

a place of residence; the past is a

place of learning, not a place of

living.

Roy T. Bennett

The primary goal of this dissertation is to develop automatic analysis tools for 3D

biomedical images. Specifically, we consider two microscopy cell image analysis problems.

The first problem is 3D pavement cell growth analysis problem. For this problem, we

need to accurately localize and track cell walls and sub-cellar features along the cell walls.

The second problem is to analyze the 3D structure of the neuroins, to create a robust 3D

shape representation that could be used for semantic classification and relating structure

to neuronal function.

To solve the first problem, we propose novel methods for segmentation, tracking, and

computing sub-cellular features. We propose a 3D segmentation pipeline for membrane

tagged confocal cell images. It includes a rotation equivariance 3D UNet to get the

94

Conclusions and Future Work Chapter 5

probability map of cell boundary, 3D watershed for initial segmentation of cells, and con-

ditional random field (CRF) for refinement of cell walls. The novel rotation equivariance

3D UNet has a new 3D rotation equivariance convolutional layers to make it invariant

to 3D rotations of input image data. We are also the first to apply CRF refinement on

cell segmentation task to refine the boundary. After the segmentation, we build an adja-

cency graph on the segmentation mask. A simple but effective computational method is

proposed to extract sub-cellular features such as three cell wall junctions and anticlinal

wall segments. A new efficient but accurate cell tracking method is also developed on

the adjacency graph. The proposed method can be used to analyze nuclei tagged data.

This tracking method won 3rd place in the 2021 ISBI cell tracking challenge [13].

For solving the neuron morphology analysis problem, we propose a skeleton mesh

extraction method from surface point cloud of neurons. Sub-cellular features can then

be computed from this skeleton mesh and a skeleton graph embedding method is pro-

posed for neuron classification. It is the first method to apply skeleton mesh for neuron

morphology analysis task. We use properties of medial axis transform (MAT) to further

improve the skeleton mesh extraction method performance compared to the state-of-the-

art method [8]. We are also the first one to propose the sub-cellular feature extraction

and the skeleton graph embedding method for neuron classification.

5.1 Future Directions

Time-lapse 3D microscopy cell image analysis

In Chapter 3 we proposed an end-to-end workflow for segmenting and tracking cells in

3D. The cell segmentation is first performed on the individual 3D volumes and then the

segmented cells are tracked. Since segmentation is independent of the tracking step, this

might result in different number of cells at each time point and post-processing would be

95

needed to separate the false positive detections from the true ones. A hjoint segmentation-

tracking fraework would be more effective. Currently, there are some methods that do

joint segmentation and tracking for 2D natural images using Transformer [76] or siamese

network [77]. Those methods are good starting points to build a joint segmentation and

tracking pipeline for 3D cell images.

Another opportunity in this problem is to extend our 3D time-lapse cell analysis

pipeline into multiple scale multiscale analysis pipeline. Biologists sometimes view cell

walls at multiple microscopy image scales to analyze how the cell walls grow because

some sub-cellular features are best to analyze under certain spatial scale. It is interesting

to develop a method to fuse information from multiple scales for automatic analysis.

Neuron Morphology Analysis

For the skeleton mesh extraction method, we need to fix number of points for the input

point cloud and output the same number of skeleton points. Sometimes, fewer skeleton

points are needed to make the skeleton mesh more compact and abstract. However,

sometimes, it is good to have more skeleton points to make the skeleton mesh more

similar to the original shape. Therefore, it is helpful to have adaptive skeleton mesh

extraction methods that can output various number of skeleton points based on the

input shape.

Another opportunity is on the application side of the skeleton mesh. We are the first

to introduce the skeleton mesh concept for the neuron morphology analysis. However,

skeleton mesh can represent more general shapes. It is interesting to see if this skeleton

mesh representation is useful for more general cell shapes such as the pavement cell

analysis described previously.

96

Bibliography

[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et. al., Shapenet: An information-rich 3d
model repository, arXiv preprint arXiv:1512.03012 (2015).

[2] S. A. Belteton, W. Li, M. Yanagisawa, F. A. Hatam, M. I. Quinn, M. K.
Szymanski, M. W. Marley, J. A. Turner, and D. B. Szymanski, Real-time
conversion of tissue-scale mechanical forces into an interdigitated growth pattern,
Nature Plants 7 (2021), no. 6 826–841.

[3] T.-C. Wu, S. A. Belteton, J. Pack, D. B. Szymanski, and D. M. Umulis,
Lobefinder: A convex hull-based method for quantitative boundary analyses of lobed
plant cells, Plant Physiology 171 (2016), no. 4 2331–2342,
[http://www.plantphysiol.org/content/171/4/2331.full.pdf].

[4] B. Zhong, K.-K. Ma, and W. Liao, Scale-space behavior of planar-curve corners,
IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (2008), no. 8
1517–1524.

[5] K. Ryan, Z. Lu, and I. A. Meinertzhagen, The cns connectome of a tadpole larva of
ciona intestinalis (l.) highlights sidedness in the brain of a chordate sibling, Elife 5
(2016) e16962.

[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, Advances in neural information processing
systems 30 (2017).

[7] S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-Or, Deep points
consolidation, ACM Transactions on Graphics (ToG) 34 (2015), no. 6 1–13.

[8] C. Lin, C. Li, Y. Liu, N. Chen, Y.-K. Choi, and W. Wang, Point2skeleton:
Learning skeletal representations from point clouds, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4277–4286, 2021.

97

http://xxx.lanl.gov/abs/http://www.plantphysiol.org/content/171/4/2331.full.pdf

[9] S. A. Belteton, M. G. Sawchuk, B. S. Donohoe, E. Scarpella, and D. B. Szymanski,
Reassessing the roles of pin proteins and anticlinal microtubules during pavement
cell morphogenesis, Plant Physiology 176 (2018), no. 1 432–449.

[10] S. H. Jonsson, L. Willis, and Y. Refahi, Research data supporting cell size and
growth regulation in the arabidopsis thaliana apical stem cell niche, [Dataset]
(2017).

[11] J. I. Murray, Z. Bao, T. J. Boyle, M. E. Boeck, B. L. Mericle, T. J. Nicholas,
Z. Zhao, M. J. Sandel, and R. H. Waterston, Automated analysis of embryonic
gene expression with cellular resolution in c. elegans, Nature methods 5 (2008),
no. 8 703–709.

[12] V. Ulman, M. Maška, K. E. Magnusson, O. Ronneberger, C. Haubold, N. Harder,
P. Matula, P. Matula, D. Svoboda, M. Radojevic, et. al., An objective comparison
of cell-tracking algorithms, Nature methods 14 (2017), no. 12 1141–1152.

[13] S. D. Maška M, Ulman V et. al., A benchmark for comparison of cell tracking
algorithms, Bioinformatics 30 (02, 2014) 1609–1617,
[https://academic.oup.com/bioinformatics/article-
pdf/30/11/1609/17143058/btu080.pdf].

[14] C. U. Lowe, The relation between cell structure and cell function, Pediatrics 26
(1960), no. 3 454–458.

[15] J. L. Collins, B. van Knippenberg, K. Ding, and A. V. Kofman, Time-lapse
microscopy, in Cell Culture (R. A. Mehanna, ed.), ch. 3. IntechOpen, Rijeka, 2018.

[16] B. W. Graf and S. A. Boppart, Imaging and analysis of three-dimensional cell
culture models, in Live cell imaging, pp. 211–227. Springer, 2010.

[17] R. V. Vőfély, J. Gallagher, G. D. Pisano, M. Bartlett, and S. A. Braybrook, Of
puzzles and pavements: a quantitative exploration of leaf epidermal cell shape, New
Phytologist 221 (2019), no. 1 540–552.

[18] B. Möller, Y. Poeschl, R. Plötner, and K. Bürstenbinder, Pacequant: a tool for
high-throughput quantification of pavement cell shape characteristics, Plant
physiology 175 (2017), no. 3 998–1017.

[19] M. Halavi, K. A. Hamilton, R. Parekh, and G. A. Ascoli, Digital reconstructions of
neuronal morphology: three decades of research trends, Frontiers in neuroscience 6
(2012) 49.

[20] S. K. Schmitz, J. J. Hjorth, R. M. Joemai, R. Wijntjes, S. Eijgenraam,
P. de Bruijn, C. Georgiou, A. P. de Jong, A. van Ooyen, M. Verhage, et. al.,
Automated analysis of neuronal morphology, synapse number and synaptic
recruitment, Journal of neuroscience methods 195 (2011), no. 2 185–193.

98

http://xxx.lanl.gov/abs/https://academic.oup.com/bioinformatics/article-pdf/30/11/1609/17143058/btu080.pdf
http://xxx.lanl.gov/abs/https://academic.oup.com/bioinformatics/article-pdf/30/11/1609/17143058/btu080.pdf

[21] L. Billeci, C. Magliaro, G. Pioggia, and A. Ahluwalia, Neuronmorphological
analysis tool: open-source software for quantitative morphometrics, Frontiers in
neuroinformatics 7 (2013) 2.

[22] M. Costa, J. D. Manton, A. D. Ostrovsky, S. Prohaska, and G. S. Jefferis, Nblast:
rapid, sensitive comparison of neuronal structure and construction of neuron
family databases, Neuron 91 (2016), no. 2 293–311.

[23] M. Abdellah, J. Hernando, S. Eilemann, S. Lapere, N. Antille, H. Markram, and
F. Schürmann, Neuromorphovis: a collaborative framework for analysis and
visualization of neuronal morphology skeletons reconstructed from microscopy
stacks, Bioinformatics 34 (2018), no. 13 i574–i582.

[24] S. Li, T. Quan, C. Xu, Q. Huang, H. Kang, Y. Chen, A. Li, L. Fu, Q. Luo,
H. Gong, et. al., Optimization of traced neuron skeleton using lasso-based model,
Frontiers in neuroanatomy 13 (2019) 18.

[25] O. Panichev and A. Voloshyna, U-net based convolutional neural network for
skeleton extraction, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

[26] L. K. Scheffer, C. S. Xu, M. Januszewski, Z. Lu, S.-y. Takemura, K. J. Hayworth,
G. B. Huang, K. Shinomiya, J. Maitlin-Shepard, S. Berg, et. al., A connectome and
analysis of the adult drosophila central brain, eLife 9 (2020) e57443.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer
vision and pattern recognition, pp. 248–255, Ieee, 2009.

[28] G. A. Ascoli, D. E. Donohue, and M. Halavi, Neuromorpho. org: a central resource
for neuronal morphologies, Journal of Neuroscience 27 (2007), no. 35 9247–9251.

[29] T. J. Collins, Imagej for microscopy, Biotechniques 43 (2007), no. S1 S25–S30.

[30] P. A. Yushkevich, J. Piven, H. Cody Hazlett, R. Gimpel Smith, S. Ho, J. C. Gee,
and G. Gerig, User-guided 3D active contour segmentation of anatomical
structures: Significantly improved efficiency and reliability, Neuroimage 31 (2006),
no. 3 1116–1128.

[31] K. M. Harris, J. Spacek, M. E. Bell, P. H. Parker, L. F. Lindsey, A. D. Baden,
J. T. Vogelstein, and R. Burns, A resource from 3d electron microscopy of
hippocampal neuropil for user training and tool development, Scientific data 2
(2015), no. 1 1–19.

[32] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch,
M. Longair, P. Tomancak, V. Hartenstein, and R. J. Douglas, Trakem2 software
for neural circuit reconstruction, PloS one 7 (2012), no. 6 e38011.

99

[33] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia,
et. al., Meshlab: an open-source mesh processing tool., in Eurographics Italian
chapter conference, vol. 2008, pp. 129–136, Salerno, Italy, 2008.

[34] K. Kvilekval, D. Fedorov, B. Obara, A. Singh, and B. Manjunath, Bisque: a
platform for bioimage analysis and management, Bioinformatics 26 (2010), no. 4
544–552.

[35] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. R. Anderson,
K. Schwarzenberger, and R. C. Young, Introduction to confocal microscopy,
Journal of Investigative Dermatology 132 (2012), no. 12 1–5.

[36] X.-G. Zhu, S. P. Long, and D. R. Ort, Improving photosynthetic efficiency for
greater yield, Annual review of plant biology 61 (2010) 235–261.

[37] S. Savaldi-Goldstein, C. Peto, and J. Chory, The epidermis both drives and
restricts plant shoot growth, Nature 446 (2007), no. 7132 199–202.

[38] J. Jiang, P.-Y. Kao, S. A. Belteton, D. B. Szymanski, and B. S. Manjunath,
Accurate 3d cell segmentation using deep features and crf refinement, in 2019 IEEE
International Conference on Image Processing (ICIP), pp. 1555–1559, Sep., 2019.

[39] J. Stegmaier, F. Amat, W. C. Lemon, K. McDole, Y. Wan, G. Teodoro, R. Mikut,
and P. J. Keller, Real-time three-dimensional cell segmentation in large-scale
microscopy data of developing embryos, Developmental cell 36 (2016), no. 2
225–240.

[40] K. R. Mosaliganti, R. R. Noche, F. Xiong, I. A. Swinburne, and S. G. Megason,
Acme: automated cell morphology extractor for comprehensive reconstruction of
cell membranes, PLoS computational biology 8 (2012), no. 12 e1002780.

[41] R. Fernandez, P. Das, V. Mirabet, E. Moscardi, J. Traas, J.-L. Verdeil,
G. Malandain, and C. Godin, Imaging plant growth in 4d: robust tissue
reconstruction and lineaging at cell resolution, Nature methods 7 (2010), no. 7
547–553.

[42] J. Stegmaier, T. V. Spina, A. X. Falcão, A. Bartschat, R. Mikut, E. Meyerowitz,
and A. Cunha, Cell segmentation in 3d confocal images using supervoxel
merge-forests with cnn-based hypothesis selection, in Biomedical Imaging (ISBI
2018), 2018 IEEE 15th International Symposium on, pp. 382–386, IEEE, 2018.

[43] H. Tsuda and K. Hotta, Cell image segmentation by integrating pix2pixs for each
class, in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June, 2019.

100

[44] M. Majurski, P. Manescu, S. Padi, N. Schaub, N. Hotaling, C. Simon Jr, and
P. Bajcsy, Cell image segmentation using generative adversarial networks, transfer
learning, and augmentations, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

[45] D. L. Delibaltov, U. Gaur, J. Kim, M. Kourakis, E. Newman-Smith, W. Smith,
S. A. Belteton, D. B. Szymanski, and B. Manjunath, Cellect: cell evolution
capturing tool, BMC bioinformatics 17 (2016), no. 1 88.

[46] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, Cellpose: a generalist
algorithm for cellular segmentation, Nature methods 18 (2021), no. 1 100–106.

[47] W. Han, A. M. Cheung, M. J. Yaffe, and A. L. Martel, Cell segmentation for
immunofluorescence multiplexed images using two-stage domain adaptation and
weakly labeled data for pre-training, Scientific Reports 12 (2022), no. 1 1–14.

[48] D. E. Hernandez, S. W. Chen, E. E. Hunter, E. B. Steager, and V. Kumar, Cell
tracking with deep learning and the viterbi algorithm, in 2018 International
Conference on Manipulation, Automation and Robotics at Small Scales (MARSS),
pp. 1–6, July, 2018.

[49] Z. Zhou, F. Wang, W. Xi, H. Chen, P. Gao, and C. He, Joint multi-frame detection
and segmentation for multi-cell tracking, in Image and Graphics, (Cham),
pp. 435–446, Springer International Publishing, 2019.

[50] Y. Chen, H. Sun, H. Yang, and X. Pan, Level set method of cell image
segmentation based on combinations of edge, region and prior information, in
Systems and Informatics (ICSAI), 2017 4th International Conference on,
pp. 1245–1249, IEEE, 2017.

[51] M. Chen, Cell tracking in time-lapse microscopy image sequences, in Computer
Vision for Microscopy Image Analysis, pp. 101–129. Elsevier, 2021.

[52] J. Jiang, A. Khan, S. Shailja, S. A. Belteton, M. Goebel, D. B. Szymanski, and
B. Manjunath, Deep learning enabled time-lapse 3d cell analysis, arXiv preprint
arXiv:2208.07997 (2022).

[53] S. Shailja, J. Jiang, and B. Manjunath, Semi supervised segmentation and
graph-based tracking of 3d nuclei in time-lapse microscopy, in 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pp. 385–389, IEEE, 2021.

[54] B. Chidester, T.-V. Ton, M.-T. Tran, J. Ma, and M. N. Do, Enhanced
rotation-equivariant u-net for nuclear segmentation, in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2019.

101

[55] Y. Wu and K. He, Group normalization, in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 3–19, 2018.

[56] P. Soille, Morphological image analysis: principles and applications. Springer
Science & Business Media, 2013.

[57] P. Krähenbühl and V. Koltun, Efficient inference in fully connected crfs with
gaussian edge potentials, Advances in neural information processing systems 24
(2011).

[58] K. E. Magnusson, J. Jaldén, P. M. Gilbert, and H. M. Blau, Global linking of cell
tracks using the Viterbi algorithm, IEEE transactions on medical imaging 34
(2014), no. 4 911–929.

[59] T. Eiter and H. Mannila, Computing discrete fréchet distance, .

[60] K. Löffler and T. Scherr, KIT-Sch-GE, Cell Tracking Challenge (2020).

[61] S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä, Cell tracking via proposal
generation and selection, ArXiv abs/1705.03386 (2017).

[62] M. I. Latypov, A. Khan, C. A. Lang, K. Kvilekval, A. T. Polonsky, M. P. Echlin,
I. J. Beyerlein, B. Manjunath, and T. M. Pollock, Bisque for 3d materials science
in the cloud: microstructure–property linkages, Integrating Materials and
Manufacturing Innovation 8 (2019), no. 1 52–65.

[63] S.-Y. Ho, C.-Y. Chao, H.-L. Huang, T.-W. Chiu, P. Charoenkwan, and E. Hwang,
Neurphologyj: an automatic neuronal morphology quantification method and its
application in pharmacological discovery, BMC bioinformatics 12 (2011), no. 1
1–18.

[64] S. Jiang, Z. Pan, Z. Feng, Y. Guan, M. Ren, Z. Ding, S. Chen, H. Gong, Q. Luo,
and A. Li, Skeleton optimization of neuronal morphology based on
three-dimensional shape restrictions, BMC bioinformatics 21 (2020), no. 1 1–16.

[65] P. K. Saha, Y. Xu, H. Duan, A. Heiner, and G. Liang, Volumetric topological
analysis: a novel approach for trabecular bone classification on the continuum
between plates and rods, IEEE transactions on medical imaging 29 (2010), no. 11
1821–1838.

[66] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, Building skeleton models via 3-d medial
surface axis thinning algorithms, CVGIP: Graphical Models and Image Processing
56 (1994), no. 6 462–478.

102

[67] S. M. Pizer, J. Hong, J. Vicory, Z. Liu, J. Marron, H.-y. Choi, J. Damon, S. Jung,
B. Paniagua, J. Schulz, et. al., Object shape representation via skeletal models
(s-reps) and statistical analysis, in Riemannian Geometric Statistics in Medical
Image Analysis, pp. 233–271. Elsevier, 2020.

[68] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information
maximization, in International Conference on Learning Representations, 2019.

[69] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets
for 3d classification and segmentation, in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 652–660, 2017.

[70] Q.-Y. Zhou, J. Park, and V. Koltun, Open3d: A modern library for 3d data
processing, arXiv preprint arXiv:1801.09847 (2018).

[71] T. N. Kipf and M. Welling, Variational graph auto-encoders, arXiv preprint
arXiv:1611.07308 (2016).

[72] P. V. Tran, Learning to make predictions on graphs with autoencoders, in 2018
IEEE 5th international conference on data science and advanced analytics
(DSAA), pp. 237–245, IEEE, 2018.

[73] C. Yuksel, Sample elimination for generating poisson disk sample sets, in Computer
Graphics Forum, vol. 34, pp. 25–32, Wiley Online Library, 2015.

[74] M. Kazhdan and H. Hoppe, Screened poisson surface reconstruction, ACM
Transactions on Graphics (ToG) 32 (2013), no. 3 1–13.

[75] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal,
graph2vec: Learning distributed representations of graphs, arXiv preprint
arXiv:1707.05005 (2017).

[76] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, Trackformer:
Multi-object tracking with transformers, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8844–8854, 2022.

[77] Y. Cui, D. Guo, Y. Shao, Z. Wang, C. Shen, L. Zhang, and S. Chen, Joint
classification and regression for visual tracking with fully convolutional siamese
networks, International Journal of Computer Vision 130 (2022), no. 2 550–566.

103

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Challenges
	Summary of Contributions
	Dissertation Organization

	Microscopy Cell Images, Datasets, and Tools
	Microscopy Imaging Modalities
	Datasets
	Tools

	Deep Learning Enabled Time-Lapse 3D Cell Analysis
	Introduction
	Method
	Datasets
	Results
	Summary
	CELLECT2.0
	Segments evaluation

	Neuron Morphology Analysis
	Introduction
	Method
	Dataset
	Conclusion

	Conclusions and Future Work
	Future Directions

	Bibliography

