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1 Abstract

We use data-driven methods to understand the formation of impurity phases in BiFeO3 thin film synthe-

sis through the sol-gel technique. Using a high-quality dataset of 331 synthesis procedures and outcomes

extracted manually from 177 scientific articles, we trained decision tree models that reinforce important ex-

perimental heuristics for the avoidance of phase impurities, but ultimately show limited predictive capability.

We find that several important synthesis features, identified by our model, are often not reported in the lit-

erature. To test our ability to correctly impute missing synthesis parameters we attempted to reproduce

9 syntheses from the literature with varying degrees of “missingness”. We demonstrate how a text-mined

dataset can be made useful by informing new controlled experiments and forming a better understanding

for impurity phase formation in this complex oxide system.
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2 Background & Introduction

At its core, the design process for synthesizing inorganic materials, like many design processes, encompasses

iterations of experiment planning, execution, and characterization of the outcome [1, 2]. The choice of syn-

thesis conditions is critical for realizing new materials but is often made by analogy to similar materials

and with limited quantitative motivation. This choice is further complicated by the expansiveness of the

condition space, especially when pre-firing steps (e.g., mixing, stirring, chelation) are considered. A thorough

understanding of how the choice of conditions may influence a synthesis would allow one to realize which

precursors and reagents could be used at which conditions in order to achieve the appropriate evolution of

phases toward a desired target [3]. Recent studies have shown how computed thermochemical reaction ener-

gies can be used to understand synthesis pathways [4–7]; however, these studies focus primarily on precursor

choice and temperature as the fundamental conditions of interest, whereas many additional conditions are

known to be relevant to inorganic synthesis [8, 9]. As the number of these conditions grows, the dimensional-

ity of this problem increases and the harder it becomes to model the effects of these conditions on synthesis

pathway determination.

Data-driven methods in synthesis prediction have the advantage of capturing effects of features in very

high dimensional spaces, a task that is difficult for humans. A significant bottleneck in this effort is the

acquisition of sufficient data. The rapid gathering of relevant synthesis data can be accomplished directly

through autonomous, high-throughput synthesis [10–13], where a synthesis machine learns optimal synthesis

conditions for a specific target material or property by taking patterns from historical syntheses and their

results into account. Existing studies show the promise of autonomous synthesis in accelerating the drive

toward efficient materials discovery, though there are still pitfalls such as a need for condition initialization

and informing experiments based on historical data [14]. These autonomous setups can be directed by

historical datasets of existing syntheses, such as through a review of reported syntheses in the scientific

literature, where a wealth of historical syntheses and their detailed conditions have already been reported.
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State-of-the-art natural language processing (NLP) tools make the process of text-mining from the liter-

ature achievable on a large scale, without the need for a coalition of human annotators, and such methods

have recently been applied to the materials science literature [15–33]. Most of the efforts in this sub-field

have been in the extraction of relevant material entities, such as chemical formulae, material properties, and

processing conditions; meanwhile, efforts on large-scale text-mining of synthesis pathways remain limited,

largely since most studies in text-mining synthesis tend to assume pure target formation, without the con-

sideration of incomplete reactions or reactions that form persistent impurity phases. Exploratory synthesis,

on the other hand, rarely yields phase-pure target phases. Instead, precursors or intermediate phases may

persist to the end of the reaction or the target may form and then partially decompose, leaving behind

impurity phases. These impurities often have deleterious effects on material performance, but can also give

insights into underlying reaction mechanisms. Unfortunately, descriptions of “failed” experiments (e.g. those

that do not achieve a pure target) are rare in the published literature. There is also the problem of incom-

plete descriptions of procedures, which hinders meaningful modeling of the effects of synthesis conditions

and makes faithful reproducibility studies difficult. Nonetheless, experimental articles mentioning impurity

phase formation do exist and, with enough collected, one may be able to impute such missing parameters

and, ultimately, construct a meaningful model of impurity phase formation as a function of relevant synthesis

conditions. We approach such a task in this work using BiFeO3 (BFO) as a case study.

BFO is a promising multiferroic material with applications in spintronics as well as photovoltaic and

memory devices [34–36]. BFO in bulk has been synthesized as early as the 1960s [37, 38]. It is commonly

synthesized in nanoparticle form via either solid state [39] or sol-gel technique [40], or in thin film form

via sol-gel [41] or physical vapor deposition (PVD) [42]. Sol-gel is a low-cost and scalable approach to

synthesize thin films, which are important in device industries, making it attractive for commercialization.

Reports of the synthesis of BiFeO3 thin films emerged in earnest between 2003 and 2006 [43–45]. As

in other synthesis methods, impurity phases are common in sol-gel-derived BiFeO3 thin film synthesis,
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including iron-rich Bi2Fe4O9 [46] as well as bismuth-rich Bi25FeO39 [47] and Bi25FeO40 [48]. Synthesis

choices that avoid the formation of these phases largely rely on heuristics. For instance, a handful of studies

highlight the effect of annealing temperature on the final phase composition in this sol-gel setting [47, 49, 50],

generally indicating that BiFeO3 has a rather narrow stability window that avoids impurity phase formation

between 500◦C − 650◦C; this narrow stability is consistent with the results from computational work [51,

52]. Additionally, it has been shown that a Bi:Fe > 1 ratio is helpful to avoid bismuth loss, but bismuth in

excess higher than 10% may lead more frequently to Bi-rich secondary phases [53]. Although methods for

synthesizing phase pure BiFeO3 are known [54, 55], understanding of the fundamental mechanisms governing

the interplay between synthesis conditions and impurity formation remains limited.

With the goal of machine learning the effects of synthesis conditions on the formation of competing

impurity phases, we manually compiled a dataset of 331 synthesis procedures and outcomes from 177 articles

describing the sol-gel synthesis and resulting phase content of BiFeO3 thin films. This aim is illustrated in

Figure 1. Using this data, we trained decision tree classifiers and find that these confirm known heuristics

for impurity phase formation. The models indicate that two of the most important determinants for phase

impurity formation are annealing temperatures outside the window of around 500◦C and 650◦C and Bi:Fe

metal ratios greater than 1.1 or less than 1.0, which is in line with known heuristics in the field. Feature

importance analysis shows that several features related to the precursor solution preparation, such as the

Bi:Fe ratio and mixing conditions, are strong predictors of phase purity. However, statistical analysis of the

dataset shows that several of these features are often missing from publications, between 21% to 47% of

the time depending on the condition. We conducted a set of 9 experimental syntheses aimed at replicating

procedures from the published literature with varying degrees of “missingness” of synthesis conditions and

show to what extent missing synthesis values can be hypothesized from the body of literature. Additionally,

we discovered noticeable gaps in the synthesis condition space covered by the dataset, which lead us to

conduct 12 new syntheses that navigate previously unexplored regions of the synthesis condition space.
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This modeling-experiment interaction represents a single generation in a potential active learning cycle for

synthesis prediction between modeling from text-mining and real experiment.

Figure 1: Visual summary of text-mining to aide materials synthesis. Left : Schematic depiction
of design choices for sol-gel-derived BiFeO3 thin films, including choices of solution precursors and reagents
as well as heating and timing conditions; the final result is desired to be phase pure, as would be indicated
by phase identification in x-ray diffraction. Right : Opportunities presented by text-mining such synthesis
procedures, including the development of predictive models (decision tree at bottom left) or convenient
visualizations of reported synthesis conditions (pairwise distribution visualization at bottom right).

3 Methods

3.1 Text-Mining and Modeling

3.1.1 Compiling BiFeO3 Synthesis Corpus

To supply sufficient data for this text-mining study, we first performed a keyword search over a database of

full-text materials science articles to identify syntheses with frequent discussion of impurity phase formation.

This search was performed over a body of nearly 5 million materials science publications that were scraped

and parsed from online publishers, including Elsevier, Wiley, the Royal Society of Chemistry, Nature Pub-
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lishing Group, the American Institute of Physics, Springer, the American Chemical Society, the American

Physical Society, and the Electrochemical Society, with journals specific to materials science identified man-

ually. Details on this process are described in Kononova et al. [16]. Only articles published after the year

2000 and that are in HTML/XML format were scraped and parsed because PDFs (comprising the majority

of article formats prior to 2000) are difficult to accurately parse for scientific writing (e.g. complex chemical

formulae), even through state-of-the-art optical character recognition methods [56]. We performed a regular

expression [57] search over the full text of every paper for phrases and vocabulary related to phase purity (e.g.

“impurity phase”, “secondary phase”, “phase pure”) via an Apache Solr-based full-text search tool developed

in-house (described in Cruse et al. [18]). This search yielded 82,196 articles. Of these 82,196 articles, Chem-

ical Named Entity Recognition [15] was applied to the abstracts to extract any chemical names or formulae,

under the assumption that a synthesized material of interest would be mentioned in the abstract. After

normalizing the extracted names (e.g. through name-to-formula mapping, correcting for various spellings,

etc.), we determined BiFeO3, SrTiO3, and LiFePO4, to be the most frequently discussed, with 966, 680,

and 659 articles, respectively, and selected impurity phase formation for BiFeO3 as our focus area. Since

the mechanisms for impurity phase formation vary across synthesis methods and desired morphology, we

narrowed our study to BiFeO3 thin films synthesized through a sol-gel method. Of the 966 BiFeO3 articles

extracted above, 328 were determined to be related to sol-gel synthesis based on a previously developed syn-

thesis paragraph classifier [58]. Of those 328, 121 were manually determined to be related to sol-gel synthesis

of BiFeO3 thin films and contain enough synthesis information to be suitable for the dataset (the remain-

ing articles were related to the sol-gel synthesis of nanoparticles, synthesis of doped BiFeO3 thin films, or

contained relevant synthesis protocols but contained no phase characterization in the text). To supplement

this set, we performed a search over Clarivate Analytics’ Web of Science, specifically to supply more data

for articles published after 2020 (the most recent large-scale scrape for our database). This supplementary

search yielded an additional 57 relevant articles, totaling 178 articles for sol-gel-derived BiFeO3 thin film
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synthesis.

3.1.2 Extraction of Published Sol-Gel Route Thin Film Syntheses

We manually extracted 340 sol-gel synthesis procedures from the 178 papers in our corpus. We removed 9

procedures that lead to an amorphous product, leading to a final dataset of 331 procedures from 177 papers.

The sol-gel synthesis protocols described in the text are often very complex, spanning many values for a

given condition (e.g. if the authors are studying the effects of various annealing temperatures). Additionally,

the phase purity characterization is most frequently reported in a separate paragraph from the synthesis

description, which makes automatic connection of the codified recipe to the appropriate phase purity out-

come difficult. Because of these challenges and the relatively small number of collected synthesis articles, the

dataset of synthesis conditions and phase purity results constructed for this work was developed manually.

This was accomplished by two human experts in text-/data-mining, machine learning, and materials science

who read each paper (and supplementary information, if necessary) individually for the relevant synthe-

sis conditions and outcomes. The conditions extracted include the choice of precusor, names of solvents,

chelating agents, and other reagents, spin coating speeds and times, and the combination of temperatures

and times for various heating steps (discussed in more detail in Section 4). These consisted of a total of

50 synthesis features. The outcome for each experiment was represented as a list of any specific impurity

phases that formed. The full schema for the extracted dataset is given in the Supplementary Information

(Table S1).

3.1.3 Data Processing

For data visualization and modeling, we assigned numerical values to all the features in the BiFeO3 sol-gel

synthesis recipes dataset. After all processing, the dataset consists of 47 unique features. These processing

steps are summarized below:

Reported Impurity Phases. For our various modeling frameworks, we implemented both binary (0 =⇒
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“phase pure” vs. 1 =⇒ “phase impure”) and multilabel (0 =⇒ “phase pure” vs. 1 =⇒ “Fe-rich impurity”

vs. 2 =⇒ “Bi-rich impurity” vs. 3 =⇒ “both kinds of impurity”) encodings of the reported impurity

phases.

Bi and Fe Precursors. The majority of published syntheses of BiFeO3 thin films through the sol-gel route

use nitrate precursors for the Bi and Fe sources. We used label encoding where 1 indicates that nitrate

precursors are used for both Bi and Fe sources, 0 indicates that either the Bi or Fe source is not from a

nitrate, and -1 indicates that both Bi and Fe source are not nitrate-based.

Chemical Embeddings. Because of the complex nature of sol-gel synthesis, it is important to retain

as much information about the chemicals involved as possible. One-hot encoding of these components to

the synthesis is not satisfactory for dimensionality reduction or modeling purposes because two chemicals

would be treated as orthogonal entities, even though their function in the synthesis may be more or less

similar to one another. An NLP-inspired method for capturing this similarity or dissimilarity in chemicals

is mol2vec [59]. We implemented the trained and published embedding model provided by Jaeger et al.

[59] for our purpose, which was trained over a corpus of amino acids and organic molecules. The trained

embeddings contain 300 dimensions, so to reduce this dimensionality we performed principal component

analysis (PCA) over the embeddings of the set of possible chemicals in this material space, leading to 61

principle components. To determine the appropriate number of PCA components that does not lead to

redundant representations but compresses the data as much as possible, we investigated the convergence

of pairwise cosine similarity between every chemical from 0 to 61 principal components. Based on this

convergence, a reasonable number of principal components was determined to be 15. Although this is still

a high number of features for one synthesis component, we find it suitable for compressing the larger data

representation while also maintaining sufficient fidelity. Convergence details and a table of related cosine

similarities for these chemical representations are provided in the Supplementary Information (Section S1.2).

Substrate choice. The choice of substrate, which is largely driven by device application, has an effect
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on nucleation site preference and thus final phase homogeneity and purity. The majority of substrates in

our dataset consist of Pt/Ti/SiO2/Si, tin-based, or glass substrates. We represent substrate choice using

one-hot encoding, with a separate column representing each of the aforementioned types, one column for

choices other than these three, and one column for a missing substrate description. A plot depicting the

most common substrates used in the dataset is provided in our Supplementary Information, Figure S4.

Separate Hydrolysis. Some reports [60, 61] specify the importance of mixing the bismuth and iron nitrate

precursors separately in the solvent due to their different hydrolysis rates. For this, we used binary encoding

to indicate whether or not the bismuth and iron precursors underwent separate dissolution.

Annealing atmosphere. According to extracted data, the most typical annealing atmospheres for BiFeO3

thin films via sol-gel are air, oxygen, and nitrogen, with one study using argon. One-hot encoding was used

to represent the annealing atmosphere.

Filling in Missing Data for exploratory data analysis (EDA). To deal with missing values in our dataset

prior to exploratory data analysis, we set all remaining quantitative values to 0 if they were not provided.

Filling in Missing Data for Modeling. For modeling purposes it is necessary to impute missing data

that would be necessary to replicate the synthesis (e.g. precursor concentration, Bi:Fe ratio) or implied

to exist but were simply not provided (e.g. a prebake step was used and the temperature was given, but

the time was not). More details on the frequency of such missing information is provided in Section 5.1

and the Supplementary Information (Figure S2). There are many techniques available to impute such data,

known as missing value imputation (MVI) methods. In our study, we implement the most popular statistical

(substituting median values) and machine-learned (k-nearest neighbors) imputation methods according to

reviews of MVI methods [62, 63]. For k-nearest neighbors imputation, we found k = 5 to be an adequate

number of neighbors to consider when imputing missing values, based on an analysis of imputing randomly-

masked values in our dataset. Details on this analysis are given in Section S1.4 in the Supplementary

Information.
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3.1.4 Decision Tree Modeling

We wish to train an interpretable machine learning model that provides insights into the effects of synthesis

conditions on the formation of impurity phases. While there are many classifier algorithms available with

robust predictive power, we found that more advanced models perform similarly to the decision tree on

our text-mined dataset. Because of this performance similarity and our prioritization of easily interpretable

predictions, we decided to move forward with the decision tree classifier for this task, using sci-kit learn’s

Decision Tree Classifier module (https://scikit-learn.org/stable/modules/tree.html). Details on our

comparison of different classifiers are provided in our Supplementary Information Section S1.5.

In our comparison, we considered 4 model frameworks using a different combination of missing value

imputation (between median value and k-nearest neighbors imputation) and prediction scheme (between

binary and multilabel). For evaluation, we only considered the binary prediction task: phase pure vs. phase

impure. Within each of these frameworks, we considered 10 different randomized splits for training and

testing data, with 20% of the data held out for testing in each, resulting in 40 possible models. In each

of these splits, appropriate hyperparameters were determined through cross-validation. The best estimator

from each split was then applied to the held-out test data to obtain evaluation metrics. Details on the

hyperparameters of interest and the various evaluation metric values are given in SI section 1.5.1. Model

comparison showed comparable performance between all models, as shown in SI section 1.5.2. Because we

prioritize easy interpretability, we decided to move forward with the simple decision tree model. With our

best performing decision tree models, we constructed learning curves from each of these 40 estimators by

fitting the models to an increasing number of training samples (from 10% to 80% of the total dataset).
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3.2 Experiments

3.2.1 BiFeO3 Synthesis

Film Fabrication. Experimental syntheses were performed either for exploratory purposes or as an attempt

to replicate one of four published procedures [46, 64–66]. Precursor solutions were prepared by dissolving

Bi(NO3)3 · 5H2O(≥99%, Sigma Aldrich) and Fe(NO3)3 · 9H2O (≥99%, Sigma Aldrich) in 2-methoxyethanol

[2-ME] (anhydrous, 99.9%, Sigma-Aldrich). The stoichiometry of Bi:Fe was varied between 0.9 to 1.05

depending on the experiment. For films prepared with a chelating agent, citric acid (99.9%, Sigma-Aldrich)

was added to the precursor solution with molar ratio of citric acid:metal salt (4:1). Stirring temperatures and

times were between 25◦C − 90◦C and 2 hr-24 hr, respectively, depending on the experiment. Each solution

had a concentration of either 0.25 M or 0.4 M depending on the experiment. After complete dissolution of the

precursors, the solution was spin-coated on either glass substrates, or the relevant substrate if the experiment

is an attempt to replicate a published synthesis (see Section 5.3), at 3000 rpm for 30 sec. Then the sample

was dried on a hot plate at 80°C or 200°C for 2 min or 10 min and baked on a hot plate at 350°C or 400°C for

5 min according to the experiment. All drying and baking was performed in air. The spin coating/baking

procedure was repeated 5 times to obtain thick films. The as-cast baked films were annealed in tube furnace

at 550°C or 640°C with various annealing times for exploratory experiments or at the reported temperature

for replication experiments. Film preparation was performed in air or O2 atmosphere depending on the

experiment.

X-ray diffraction (XRD). XRD measurements were performed at room temperature in the 2θ range of

10 − 60◦ with a step size of 0.01◦ and a scan speed of 4◦ min−1, using an X-ray diffractometer (Rigaku,

SmartLab) with Cu Kα radiation (1.5406 Å), and a HyPix-3000 high-energy-resolution multidimensional

semiconductor detector.
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4 Typical Sol-gel-derived BiFeO3 Thin Film Synthesis

To provide context for this synthesis space and its existing heuristics, we provide a walkthrough of a typical

sol-gel BiFeO3 synthesis. As discerned from the dataset constructed for this work and a review of sol-gel

BFO thin film synthesis by Zhang et al., [41] the primary steps of such syntheses include: (a) solution (“sol”)

preparation and gelation (“gel”), (b) deposition and spin-coating along with possible drying and pyrolysis

steps, (c) post-deposition pyrolysis, and (d) the final crystallization (see Figure 2). Details for each step

depicted in Figure 2 are described below.

Figure 2: Schematic of typical sol-gel BiFeO3 thin film synthesis. (a) Metal precursor salts are mixed
with solvents and other reagents under choice of heating and stirring time. (b) Mixed solution is deposited
onto a spinning substrate, usually in multiple layer-by-layer steps to reach the desired film thickness; the
repetitive layer-by-layer coating procedures can be applied either after drying, prebaking, or annealing steps.
(c) Optional pyrolysis (or prebake) step to remove any remnant organic species. (d) Annealing to crystallize
final phase.

(a) The preparation of the solution involves mixing metal salt precursors with a solvent and possible

chelating agent. Bi and Fe precursors are most typically nitrate-based, though several studies (particularly

early sol-gel thin film syntheses) use acetate-based precursors. The Bi precursor is often added in excess

of the Fe precursor due to the volatility of bismuth metal during annealing [67]. Typical solvents include

2-methoxyethanol and ethylene glycol or a combination of the two. Chelating agents such as citric acid,

acetic acid, and acetic anhydride are frequently used in solution preparation since they balance the rates of

hydrolysis and condensation of metal-organic complexes, which aides in the formation of the ultimate “gel”
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without unwanted precipitation [41]. During mixing of the solution components, the mixture may be heated

beyond room temperature to improve homogeneity, particularly if solid citric acid is used as a chelating

agent. The solution may be aged on the order of days prior to deposition.

(b) The prepared solution is then deposited onto a substrate, which is spun to create an evenly coated

layer. The spinning step may include only one step or two (the second step having a higher spinning rate

than the first). The process should be repeated several times in order to reach the desired thickness. The

thin film is then often dried, which takes place at temperatures of ∼ 100◦C.

(c) Pyrolysis (prebaking) may be included to remove extraneous solvent and organic material. This

occurs either after all layers are spun onto the substrate or between every layering step (“layer-by-layer

pyrolysis”, depicted by the greyed out portion in Figure 2b). This typically takes place at slightly higher

temperatures (∼ 300◦C).

(d) Annealing for crystallization is the highest temperature step (generally between 500− 600◦C). This

may be executed once after all layers are deposited or between every layering step (“layer-by-layer annealing”,

depicted by the greyed out portion in Figure 2b). Sometimes, experimentalists use a different temperature

during the final annealing compared to the layer-by-layer steps.

The phase composition of the final sample is then determined using XRD. Impurity phases are often

detected in the final film, including the binary oxides Bi2O3 and Fe2O3, Fe-rich Bi2Fe4O9, and several Bi-

rich phases such as Bi25FeO30, Bi25FeO40, and Bi36Fe24O57. The mullite Bi2Fe4O9 and sillenite Bi25FeO39

(and other related) phases are known to be thermodyamically competitive with the target BiFeO3 phase

[68]. Hypotheses for the mechanisms leading to the formation and frequent persistence of these two phases

have been investigated previously for solid-state settings, including the possibility of competing diffusional

processes [39] and pseudo-ternary phase competition between the starting bismuth and iron precursors

and metal oxide impurities present in those precursors [69]. For sol-gel synthesis, in-depth studies on the

chemical processes encountered in the precursor solution have been conducted [70]; however, mechanistic

14



understanding for the formation of these impurity phases in wet chemical environments (such as in sol-gel

synthesis which is the focus of this study) are largely driven by analogy or extrapolation from these solid-state

studies.

5 Results

We divide the results of our study into four sections: (1) a summary of the conditions extracted in our text-

mined synthesis dataset, (2) results from predictive modeling of impurity phase formation using decision

trees, and results from informed experiments focused on (3) reproducing existing results and (4) exploring

underexamined synthesis condition spaces.

5.1 Text-mined Dataset

Across all 331 extracted experiments, 24.2% resulted in a sample containing one or more impurity phases;

across all 177 articles, 21.4% contain at least one experiment resulting in phase impurities. The most

commonly appearing impurity phase is the Fe-rich Bi2Fe4O9. Several Bi-rich phases, such as Bi25FeO30, make

up the next most prevalent impurity phases, followed by binary oxides Bi2O3 and Fe2O3. The overwhelming

majority of syntheses (317 out of the 331 extracted syntheses) use hydrated nitrates as the metal precursors.

A visual summary of common chemical reagents (solvents and chelating agents), processing temperatures,

and frequently omitted information is provided in Figure 3.
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Figure 3: Summary of reported synthesis conditions. (a) Most frequently used combinations of
solvents and chelating agents (out of 331 synthesis procedures); 2ME = 2-methoxyethanol, AAnhyd = acetic
anhydride, AA = acetic acid, CA = citric acid, EG = ethylene glycol, NA = nitric acid. (b) histograms
for drying, prebake, and annealing temperatures (c) box and whisker plots for the values of the missing
synthesis conditions that are considered necessary for proper replication of a procedure and which are most
frequently missing; orange lines indicate median value, bottom and top box boundaries are 1st and 3rd
quartiles, respectively; whiskers represent 1.5x extension from quartile bounds; individual points represent
outliers; bold percentages in x-axis indicate the percentage of articles missing that condition.

The most common combinations of chemicals used to build the precursor solution are given in Figure

3a. The most frequently used solvent is 2-methoxethanol (“2ME”) and it is most often mixed with chelating

agents such as acetic anhydride (“AAnhyd”), acetic acid (“AA”), or a combination of the two. Another

common chelating agent that is sometimes mixed with 2-methoxyethanol is citric acid (“CA”). Ethylene

glycol (“EG”) is used less frequently and is usually mixed with citric acid and nitric acid (“NA”).

The range of choices for temperature in the various heating steps in this synthesis process is illustrated

through the histograms in Figure 3b. “Layer-by-layer” and “final” prebake and annealing steps are combined

for their respective distributions, which is why the “Annealing” histogram contains more than 331 counts.

Each step shows a skewed overall distribution (leftward for drying and annealing steps and rightward for
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prebake). Additionally, each step has a fairly substantial spread of temperatures, ranging across about 200◦C

for drying steps, 300◦C for prebake steps, and over 400◦C for annealing steps. The normalized standard

deviation is 0.38, 0.22, and 0.12 for the drying, prebake, and annealing steps, respectively. The extent

to which samples need extensive drying and prebaking will depend on the organic reagents used and the

concentration of the precursor; thus, their value will depend on those experimental choices, partly explaining

why drying and prebake temperatures have larger normalized standard deviations; conversely, the annealing

temperature for crystallization of the target phase is less dependent on these choices and more on an historical

understanding for the typical temperatures needed to achieve a phase-pure product, in this case between

500− 600◦C.

While the statistics for the extracted values in such synthesis choices are helpful in verifying appropriate

diversity and breadth of sampling for the dataset, it is also important to understand the level of “missingness”

of conditions in the procedures extracted here. In fact, many of the syntheses extracted in the dataset are

missing conditions that should be considered vital to successfully reproduce the synthesis, which we highlight

in Figure 3c (note that supplementary information was inspected during extraction, as well). The minimum

information for such reproducibility is debatable, particularly since those familiar with the field may be able

to intuit certain conditions based on the total literature. For the purposes of learning synthesis directly from

the literature, however, we consider the following information at a minimum to be necessary for a “complete”

recipe (with any other omitted information assumed to simply not be included in the synthesis, such as aging

times):

• precursors and reagents used (including metal nitrates, solvents, and chelating agents)

• precursor and reagent amounts

• Bi:Fe molar ratio

• precursor solution molar concentration
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• stirring conditions (time, temperature)

• annealing conditions (time, temperature)

We acknowledge that this variable list may not be exhaustive to completely describe a synthesis. Of

these conditions, the least frequently omitted are the metal precursor and reagent choice and the choice of

annealing conditions, all of which are left out of only 2 articles. Figure 3c provides a statistical breakdown

of values employed for the remaining experimental conditions listed above along with their frequency of

omission. The box-and-whisker plots illustrate the range of values employed for each of these conditions,

along with the median value (orange line), 1st and 3rd quartiles (bottom and top of boxes, respectively), 1.5x

extension from the quartile bounds (whiskers), and remaining outliers (points). The bold percentages in the

x-axis labels represent the fraction of recipes in the dataset that are missing that condition. The Bi:Fe ratio

is missing from 38 articles (21%) of articles. This is an important condition to consider for these syntheses

because too little bismuth may lead to bismuth loss (due to its volatility) but too much will often lead to

Bi-rich impurity phases [53]. The distribution of values for the Bi:Fe ratio is fairly concentrated around 1.05;

nonetheless, studies [53, 71] have shown that even small deviations in this ratio (∆Bi:Fe ∼ 0.03) will effect

the resulting phase composition. Precursor concentration and mixing conditions (temperature and time)

all show fairly wide distributions of values, making it difficult to reliably assume the value that was used

for a given synthesis if that information is omitted. The concentration of the precursor solution is missing

from 54 articles (31%). This value is also important to include since the metal nitrate concentration in the

solution is expected to influence the homogeneity of the coated layers, as well as the chances of unwanted

precipitation during gelation [41]. Finally, the most frequently omitted processing conditions are the time

(69 articles, 39%) and temperature (83 articles, 47%) of solution stirring. These conditions are important

to include since they will also determine the homogeneity of the pre-deposited solution, particularly when

solid reagents with dissolution temperatures above room temperature, such as citric acid, are used. This

overall lack of a uniform and complete synthesis procedure ontology [72] also causes problems in modeling
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where missing values must either be replaced by (possibly erroneous) interpolated values or require entire

data points to be removed, leading to worse model performance. We deal with such missing values using

statistical (from the median value) and machine-learned (from k-nearest neighbors) imputation methods in

our modeling. A larger scale visualization of the frequency of missing data is given in the SI, Figure S5.

5.2 Interpretable Phase Impurity Formation Modeling

To predict the formation of impurity phases based on synthesis conditions, we trained decision tree models

using the text-mined dataset. Our attempts to construct an interpretable model that predicts impurity

phase formation based on synthesis conditions proved to have limited performance. Nevertheless, we are

still able to recover well-known heuristics for phase pure synthesis and we identify important determinants

of impurity phase formation in the preparation of the precursor solution.

We chose to model this task using a decision tree for its easy interpretability (as if training a new bench

chemist how to make a set of decisions based on available resources) and ability to capture non-linear re-

lationships. The details for data featurization and training are described in Sections 3.1.3 and 3.1.4 and

the performance and inferences made by the model are summarized in Figure 4. In Figure 4a, we show

the learning curves for four different model frameworks: binary classification using median imputation for

missing values; binary classification using k-nearest neighbors imputation for missing values; multilabel clas-

sification using median imputation for missing values; and multilabel classification using k-nearest neighbors

imputation for missing values. We did not need to consider the imputation of any categorical variables since

those were frequently reported.

Because our dataset shows an imbalance between phase pure and phase impure syntheses (75.8%:24.2%),

an appropriate evaluation metric should be chosen so as not to misrepresent the predictability of the model.

Unlike traditional accuracy scores, the F1 score, which represents a harmonic mean between the precision and

recall of a classifier, takes into account the false negatives and false positives (in this case, syntheses predicted
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to be phase pure but actually contain phase impurities and syntheses predicted to have phase impurities

but actually are phase pure, respectively). It should be noted that the F1 score does not completely remove

issues from evaluating imbalanced classification tasks, such as the fact that the class distribution during

training and even testing may not persist when the model is used out-of-the-box. Nevertheless, it is a partial

solution for evaluating the present task. We include evaluation on additional metrics, such as the Mathews

Correlation Coefficient, in the Supplementary Information.

Both multilabel models show better performance compared to their binary classifier counterparts, show-

ing that providing more information to the model (here, what specific types of impurity phases form) helps

improve prediction ability. The variation in F1 score for all models is quite substantial but seems to improve

with the addition of more data points, indicating that a larger dataset can help improve model stability fur-

ther. Both missing value imputation methods perform similarly, with kNN-based imputation showing slightly

better variation in F1 score, highlighting a slight preference for ML-based imputation when consistency in

performance is desired.
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Figure 4: Predictive modeling of text-mined dataset. (a) F1 scores across increasing training set
size (from 10% to 80% of total data, using 20% of data for test set in each evaluation). Error bars are
generated through six different randomizations in train/test split for each number of training samples. Each
curve represents a different combination of missing value imputation and output labeling: “mmvi” =>
mean/median value imputation; “knn” => k-nearest neighbors missing value imputation; “binary” => model
predicts whether synthesis results in phase pure synthesis or has phase impurities; “multilabel” => model
predicts outcomes among “phase pure”, “Fe-rich impurities”, “Bi-rich impurities”, “both kinds of impurities”.(b)
Root of sample decision tree trained over text-mined dataset; specific features and decisions made at each
node are provided. (c) Visual representation of important numerical features used as decision boundaries
in decision tree model: layer-by-layer annealing temperature and Bi:Fe molar ratio; (c)[i] and (c)[iii] panels
show the distribution of values found from the literature for each of these parameters across phase pure
(blue) and impure (orange) syntheses, with crossover between these outcomes indicated in purple; smooth
distributions are constructed through Gaussian kernel density estimation (KDE); (c)[ii] panel shows decision
boundaries learned by this decision tree estimator, with blue regions indicating a phase pure sample and
orange regions indicating a sample with impurity phases. A scatter plot of individual data points overlays
the decision boundaries; phase pure points are empty blue circles, phase impure points are solid orange
circles, and square points represent syntheses using 2-methoxyethanol + citric acid (corresponding to the
second decision made in (b)).
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Despite the limited predictive power of these models, our best-performing models are able to identify

decision boundaries that corroborate known experimental heuristics. Feature importance values from our

modeling were tabulated and averaged across each training. The top 5 most important features were deter-

mined to be, in order, (1) the layer-by-layer annealing temperature, (2) the Bi:Fe ratio, (3) the final annealing

temperature, and the (4) mixing temperature and (5) time. These rankings are in line with known heuristics

in the field, as discussed in Section 3.2.1 and, incidentally, highlight the risk of not including vital synthe-

sis details such as the Bi:Fe ratio and mixing conditions, both of which are often omitted from procedure

descriptions as mentioned in Section 5.1. To assess the importance of these under-reported variables and

the possible ineffectiveness of missing value imputation we conducted 9 experiments aimed at reproducing

reported syntheses with varying degrees of missingness (see Section 5.3).

We further inspect the ability of our models to distinguish important boundaries in the synthesis condition

space through the top of the tree for one of these models as shown in Figure 4b. We note that the order in

which decisions appear does not necessarily reflect the order of decisions that would be made in a laboratory,

but rather reflect the hierarchy of importance of the features in predicting the final phase purity of the

sample as determined by the model. From the root of the tree in Figure 4b, the model first observes whether

the synthesis employs layer-by-layer annealing at a temperature above (traversing to the right) or below (to

the left) 655◦C. This value is not a specific value found in the dataset, but rather a boundary in the 47

dimensional feature space determined by the decision tree model to most effectively discriminate between

phase pure and impure syntheses. Syntheses that anneal above this temperature are decidedly impure, and

those below this temperature encounter further decisions. A visualization of the values for the parameters

reflected in Figure 4b along with the synthesis outcome (phase pure or impure) is shown in Figure 4c. Here,

Figure 4c,i illustrates the distribution of layer-by-layer annealing temperatures employed across the dataset,

with distributions (calculated using Gaussian kernel density estimation) distinguished between phase pure

and impure syntheses. The y-axis units are arbitrary, since the distributions are scaled according to the
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number of samples in that subset (i.e. pure or impure). The distributions support the first decision made

by the tree, since we see a noticeable shift in the centers of the distributions for phase pure syntheses and

impure syntheses at temperatures of 500◦C and higher. Following now the left-hand branches of Figure 4b,

the next observation made by the model is whether the metal nitrates are dissolved in a mixture of 2ME

and CA (traversing to the right) or some other chemical mixture (traversing to the left). The majority

of syntheses in the dataset traverse the leftward path, and all of those traversing to the right result in a

phase pure sample. Upon inspection of the dataset, every procedure (27 total) that uses only 2ME and

CA as its precursor solution reagents (i.e. traveling to the right from this node) results in a phase pure

sample. Samples from the text-mined dataset using this combination of chemicals are depicted as squares in

Figure 4c,ii and all of those are blue, representing phase pure synthesis. Because this decision is made on a

non-diversified subset of the dataset (i.e. every relevant data point is phase pure), such a result presents an

opportunity for hypothesis testing (e.g. “does the specific combination of 2ME+CA mitigate the formation of

impurity phases more than other reagents?”) and to probe underexplored regions of the synthesis condition

space. Finally, the model queries whether the Bi:Fe ratio is greater than (to the right) or less than or equal

to (to the left) 1.1. Investigating the Bi:Fe molar ratio distributions for phase pure and impure syntheses in

the bottom-right panel of Figure 4c,iii, we see that, indeed, a noticeable peak and tail in the distribution of

phase impure syntheses are seen at Bi:Fe ratios at and above 1.1:1.

We emphasize the overall complexity in predicting phase purity based on the provided synthesis conditions

through the pairwise scatterplot between these two parameters, shown in the bottom-left panel of Figure

4c,ii. Here, individual phase pure (blue circles/squares) and phase impure (orange dots) syntheses overlay

the decision boundaries made by the decision tree model from Figure 4b, with orange regions representing

phase impure synthesis and blue regions being phase pure. Compared to the single-condition distributions

shown in Figure 4c,i and Figure 4c,iii, 4c,ii makes it apparent that distinguishing regions of combinations

of conditions leading with certainty to a phase pure sample from those leading to phase impurities becomes
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more difficult as the number of conditions considered increases. This is particularly true for less predictive

parameters, as is seen in the full set of pairwise purity visualizations in Figure S6. Additionally, despite

the easy interpretability of decision tree modeling, the decisions made are not always physically reasonable.

For instance, the strip of blue predicting “phase pure” syntheses above Bi:Fe ratio= 1.1 is within the typical

window of phase pure syntheses when considering annealing temperature; however, every synthesis above

that Bi:Fe ratio shows phase impurities. The density of points in this region is low, so additional testing in

this subspace would help to improve the quality of decisions made here.

5.3 Reproducibility of Published Procedures

To investigate the importance of specific synthesis condition variables in reproducing published experiments,

we conducted a set of 9 experiments aimed at replicating the results from 4 separate papers. The syntheses

from these papers [46, 64–66] were chosen specifically because they were missing what we believed to be

vital information to the successful replication of the experiments (discussed more in Section 5.1). For these

missing conditions, we substituted either median values or typical choices from the literature (particularly

if a median value does not make sense for another given condition, such as stirring at room temperature

while using citric acid), or we considered ranges of possible reasonable values. The conditions, results, and

predictions made by our models for these are provided in Table 1.

Our attempt to reproduce the phase pure synthesis in A1 [64], which was missing only the mixing tem-

perature, was successful when we substituted 25◦C, the median mixing temperature. Our best performing

models predict that this synthesis would be phase pure 95% of the time. Inspection of the decision trees

reveals that the use of 2-methoxyethanol and ethylene glycol together in the precursor solution often con-

tributed to the 5% of phase impurity predictions. Experiment A2 [66], which resulted in phase pure BiFeO3

in the literature, was missing the amount of chelating agent (citric acid in this case) and the mixing temper-

ature. Our replication attempt was successful when using the typical amount of citric acid chelating agent
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Exp. ID DOI Missing In-
formation

Substituted
Values

Reported
Impurity
Phases

Replication
Impurity
Phases

Predicted
Phase
Pure

A1 10.3390/ma12091444 Mixing
Temperature 25◦C - - 95%

A2 10.1002/ange.201406044

Amount of
Chelating

Agent,
Mixing

Temperature

4:1 (CA:Fe),
75◦C - - 87.5%

A3 10.1007/s10854-013-1374-0

Precursor
Concentra-

tion
0.25M Bi2Fe4O9

- 97.5%

A4 0.4M - 100%

A5
0.25M, 0.9,
75◦C for 2 hr
(anneal in O2)

amorphous 32.5%

A6
0.25M, 1.00,
75◦C for 2 hr
(anneal in O2)

Bi2O3 32.5%

A7 10.1002/smll.201603457

Precursor
Concentra-
tion, Bi:Fe

Ratio,
Stirring

Conditions

0.25M, 1.05,
75◦C for 2 hr
(anneal in O2)

- - 80%

A8

0.25M, 1.05,
90◦C for 24
hr (anneal in

O2)

- 100%

A9

0.4M, 1.05,
90◦C for 24
hr (anneal in

O2)

- 100%

Table 1: Suggested experimental conditions to reproduce experiments in the literature with missing values. Pre-
dicted outcome based on percentage of "phase pure" predictions among the 10 best performing models from each
randomization seed and 4 modeling frameworks (40 predictions total).

(4:1 CA:Fe) and median mixing temperature for synthesis in the literature that includes citric acid (75◦C).

Our decision trees correctly predict this synthesis leading to a phase-pure result 87.5% of the time. Of note,

this procedure combines 2-methoxyethanol and citric acid in its precursor solution, which was shown to be a

useful predictor for phase purity in this dataset (see Section 5.2). A3-A4 [46] reported a Bi2Fe4O9 impurity

phase and was missing the concentration of the precursor solution. We were unable to reproduce this re-

sult since we were only able to produce phase-pure BiFeO3 using either the median precursor concentration
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(0.25M) or a higher-than-typical precursor concentration (0.4M). Interestingly, our model predictions for

this set returned a high percentage of phase-pure predictions, which agrees with our results but disagrees

with what was originally reported. Inspection of the decision tree paths traversed for this procedure shows

that the annealing temperature of 500◦C and the combination of 2-methoxyethanol with ethanolamine in

the precursor solution are frequently considered as factors leading to phase pure predictions. The high per-

centage of phase-pure predictions along with the lack of production of impurity phases indicates that the

actual precursor concentration used may have been less than the median value contained in the text-mined

dataset. Finally, A5-A9 [65] reported phase pure BiFeO3 and was missing the precursor concentration,

the Bi:Fe ratio, and the stirring conditions. Our first replication attempt, A5, used the median precursor

concentration (0.25M), a 0.9:1 Bi:Fe metal ratio (lower-than-typical), and the median stirring temperature

and time provided in the dataset for synthesis with citric acid. This attempt resulted in an amorphous

film and thus failed to reproduce the reported results. Our second attempt, A6, used the same precursor

concentration and stirring conditions, but we increased the Bi:Fe ratio to 1:1. This led to a binary Bi2O3

impurity phase. We then increased the Bi:Fe metal ratio once more to the median value, 1.05:1, in A7,

which successfully reproduced the reported result. We extended these trials by increasing both the stirring

time and temperature (due to the limited solubility of solid citric acid, lower stirring temperatures produce

an inhomogeneous precursor solution) and precursor concentration (since, according to the dataset, lower

precursor concentration has a higher tendency to lead to phase impurities compared with higher precursor

concentrations). Both of these attempts, A8 and A9, also produced a phase pure target, indicating that the

Bi:Fe metal ratio may be the most vital missing information in this case, which is in line with the feature

importance values determined by our decision trees in Section 5.2. It should be noted that the intuition for

a greater-than-one Bi:Fe ratio would require domain knowledge from a prospective experimenter attempting

to replicate such a recipe; still, this points to the importance of specifying this information, particularly if

the volatility of a particular precursor is not explicitly discussed. Additionally, our models predicted phase
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pure syntheses much less frequently for A5 and A6 than for A7-A9, which agrees with our results where

phase impurities only formed for experiments A5 and A6. The most decisive factor leading to phase impure

predictions for A5 and A6 is the lower-than-median Bi:Fe ratio. The majority of predictions made for A7-A9

were phase pure; however, the regions of the conditions space covering these procedures are data poor, espe-

cially for A8 and A9. This local lack of diverse data inspired additional syntheses to explore these synthesis

condition regions of interest, as is discussed in Section 5.4.

5.4 Informing New Experiments

We identified areas in the synthesis condition space that lacked data and proposed experiments to fill in

those gaps. With the results of these experiments, our decision tree model was then retrained to update

the decision boundaries. This exploration and retraining is depicted in Figure 5. Following Figure 3b, we

focused our attention on regions of synthesis conditions that are under-reported. Figures 5a and 5c depict

the visualizations of solution stirring temperatures with (a) solution precursor concentrations and (c) final

sample annealing times reported in the literature, respectively. Regions of interest that appear unexplored

are identified by dashed black ovals. For (a), we see that the use of a precursor concentration higher than the

median (0.25M) appears to improve the final phase purity of the sample, so we tested this by extrapolating

to higher precursor concentrations (specifically 0.4M, which had no data from the literature in combination

with this high of a stirring temperature). For (c), we wished to fill in a gap from the literature for a relatively

frequently reported condition, in this case the annealing time. We therefore suggested a set of 12 experiments

that explore these two data-poor regions, while filling in the remaining conditions with median values from

the rest of the dataset or values that would further interrogate the decisions made by our trained model,

such as the propensity to predict phase pure synthesis when using only 2-methoxyethanol and citric acid as

the solvent and chelating agent, respectively (see Section 5.2). These suggested experiments are shown in

Table 2, along with the resulting phase purity and any specific impurity phases that formed. These results
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were then incorporated back into the synthesis dataset, with those results highlighted in Figures 5b and 5d.

Figure 5: Pairwise Condition Distributions with Targeted Regions of Interest (ROIs) and Re-
sulting Syntheses. (a, c) Pairwise condition distributions for various synthesis conditions (stirring temper-
ature, precursor concentration, and final annealing time) taken from the literature with ROIs for additional
experiments indicated by dashed black ellipses. (b, d) The results from the suggested syntheses are then
incorporated into the dataset and the condition distributions are re-visualized (b, d). Orange points and
regions represent syntheses resulting in phase impurities and blue points and regions represent phase-pure
syntheses. Square points represent the use of citric acid as a chelating agent and circles represent syntheses
without citric acid.

Overall, the development of impurity phases in these experiments appears somewhat random. Still, we can

make some observations that indicate the importance of these under-reported conditions in determining final

phase purity and which highlight ambiguous effects of the inclusion of citric acid in the precursor solution.

From our experiments exploring higher precursor concentration across a range of stirring temperatures,

represented by Figure 5b and B1-B6 of Table 2, the only sample to form impurity phases corresponded to

the intermediate stirring temperature (notably with citric acid included). This could indicate that other

synthesis conditions that were not recorded (or are not typically reported) lead to both Bi-rich and Fe-rich
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impurity phases. We can, however, begin to see the formation of a positive correlation between precursor

concentration and mixing temperature in achieving a phase pure outcome as seen in Figure 5b, particularly

at intermediate to high stirring temperatures. Our experiments that explored longer annealing times across a

range of stirring temperatures, represented by Figure 5d and B7-B12 of Table 2, show that impurity phases

only form when the solution is mixed at a lower temperature. Additionally, this mix of impurity phases

forms when citric acid is not incorporated into the solution. From this we may reinforce the need to include

some chelating agent in order to achieve a suitable gel prior to deposition [40]. However, the fact that the

inclusion of citric acid in B5 seemed to be the deciding factor leading to an impurity phase (compared to

the phase pure synthesis from B2 without citric acid) indicates that there remains something to be learned

about the effects of citric acid on synthesis pathway in this synthesis space. We recently investigated this

effect of citric acid through in situ XRD experiments inspired by our text-mined dataset, as well as through

first principles modeling, leading to a conclusion that the use of citric acid helps to mitigate the formation

of the Bi2Fe4O9 impurity phase through the development of an intermediate bismuth subcarbonate phase

[73].

Exp. ID Bi:Fe Solvent Chelating
Agent Conc. Stir

Temp.
Anneal
Temp.

Anneal
Time Impurity Phase(s)

B1 80 -
B2 1.05 2-ME - 0.4M 60 550◦C 0.5h -
B3 40 -
B4 80 -
B5 1.05 2-ME Citric Acid 0.4M 60 550◦C 0.5h M-Bi2O3, Bi2Fe4O9

B6 40 -
B7 70 -
B8 1.05 2-ME - 0.25M 55

550◦C 3h -

B9 40 T-Bi2O3, Bi2Fe4O9,
Bi25FeO39

B10 70 -
B11 1.05 2-ME Citric Acid 0.25M 55 550◦C 3h -
B12 40 -

Table 2: Suggested experimental conditions for exploratory synthesis of sol-gel-derived BiFeO3 thin films
based on ROIs identified in Figure 5.
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6 Discussion

6.1 Utility of Manually Text-Mined Dataset in Outcome Prediction and Vari-

able Completion

Curating a dataset relating synthesis procedures to phase purity outcomes allowed us to train a decision tree

model capable of recovering some well-known heuristics and highlighting several features that are considered

important predictors for obtaining phase pure BiFeO3. However, several of these important predictors (such

as the Bi:Fe ratio and other precursor solution conditions) are often not reported in published synthesis

descriptions, as seen from our summary of the completeness of our dataset in Section 5.1. Replication of

published results is an important part of the research process, and is hampered when important parameters

are omitted from the reported procedure. It can be possible to impute these values, such as through a

review of other similar published procedures that include more complete descriptions. As shown by our

experiments from Section 5.3, reproducing published procedures that do omit synthesis information often

leads to ambiguous outcomes. Still, our reproducibility results indicate that substituting median or typical

values from the literature for missing synthesis conditions can help to produce results consistent with those

reported, highlighting the utility of large-scale text-mining for rational data gap imputation. These findings

are only based on the reproduction of 4 syntheses reported in the literature, and a more thorough study

should be conducted to make an assessment of the reproducibility of sol-gel thin film syntheses in general.

To meet our modeling goals, we curated our dataset manually. However, automated text extraction

using state-of-the-art NLP tools is gaining popularity in many fields, including materials science. Despite

the convenience of these methods, they are not perfect and tend to struggle with complex synthesis extrac-

tion and procedure-outcome linking. Addressing these problems is becoming more approachable with the

proliferation of new large language models like GPT-3, which has been proven useful in creating materials

science chatbot assistants [32], the extraction of complex synthesis procedures for gold nanorods [74] and
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structured information extraction of materials properties, structure, and application [75, 76]. Nonetheless,

analyses performed on our manually curated dataset represent an upper limit of what can be learned through

literature mining alone for the end-to-end synthesis pathways of a particular material.

6.2 Future Work in Experiments Inspired by Text-Mining

To our knowledge there have been no published studies that perform direct experiments based on modeling

and imputation from a text-mined dataset to study the impact of synthesis conditions on phase purity. Our

set of suggested experiments in Table 2 is an example of how text-mining the synthesis literature can be used

to inform syntheses that evaluate previously under-reported conditions and their effects on phase purity. In

order to increase throughput for such exploratory experiments, a combination of automatic identification of

regions of interest to explore in the synthesis condition space and execution of high-throughput experiments

through robotic synthesis labs could be implemented in the future. The results from these and additional

informed experiments can also aid in constructing hypotheses regarding the effect of synthesis conditions

and choices on reaction mechanisms, which can be further interrogated through first-principles models [77]

or directly investigated through in-situ phase characterization [78].

7 Conclusion

In this work, we constructed a text-mined dataset of sol-gel synthesis procedures and phase purity outcomes

for BiFeO3 thin films with the goal of developing a machine learning model that predicts the presence of

impurity phases as a function of synthesis conditions. The decision tree models we trained for this task

achieved limited performance, with F1 scores between 0.47 - 0.52, though they confirmed a number of known

heuristics for the avoidance of impurity phases, namely employing (1) an annealing temperature below

∼ 650◦C and (2) bismuth excess of ∼ 5%. Statistical analysis of the dataset revealed that many conditions

are often missing from synthesis descriptions in the literature, and our modeling showed that several of
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these features (particularly the Bi:Fe ratio and mixing conditions) are important predictors of phase purity.

Experimental attempts to replicate published syntheses while substituting typical values from the literature

for these missing conditions can aid in successfully reproducing published syntheses. These values are not

always obvious (such as the Bi:Fe ratio), and so these successes reflect the utility of data-driven experimental

design. Some syntheses were still irreprodicible after substituting missing values, highlighting the importance

of reporting these vital conditions for replication, namely the concentration of the precursor solution and the

Bi:Fe ratio. Finally, new exploratory experiments were inspired by visible gaps in the synthesis condition

coverage of the dataset. The results of these experiments highlight several of the synthesis conditions in

precursor solution preparation that effect final phase purity, namely the precursor concentration, mixing

conditions, as well as the inclusion of citric acid as a chelating agent. These experiments represent an

example of how a text-mined dataset of synthesis conditions and outcomes can be used to inspire new

syntheses. Because it was manually extracted and validated, our dataset can be considered as a gold standard

for future ML-based synthesis learning tasks in this synthesis space or for automated text-extraction models.

8 Code and Data Availability

Dataset and notebooks for data processing, modeling, and visualization are provided at https://github.com/kevcruse96/bfo-

impurityphase-analysis.

9 Supporting Information

Supporting information includes (1) details on dataset structure, (2) details on Mol2Vec implementation, (3)

frequency of substrates used, (4) details on missing values and k-nearest neighbors imputation, (5) comparison

of classifier model performance, and (6) visualization of condition distributions and phase impurity prevalence

for larger subset of dataset features.
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