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Executive Summary

FASER is a proposed small and inexpensive experiment designed to search for light, weakly-

interacting particles at the LHC. Such particles are dominantly produced along the beam collision

axis and may be long-lived, traveling hundreds of meters before decaying. To exploit both of

these properties, FASER is to be located along the beam collision axis, 480 m downstream from

the ATLAS interaction point, in the unused service tunnel TI18. We propose that FASER be

installed in TI18 in Long Shutdown 2 in time to collect data from 2021-23 during Run 3 of the

14 TeV LHC. FASER will detect new particles that decay within a cylindrical volume with radius

R = 10 cm and length L = 1.5 m. With these small dimensions, FASER will complement the LHC’s

existing physics program, extending its discovery potential to a host of new particles, including

dark photons, axion-like particles, and other CP-odd scalars. A FLUKA simulation and analytical

estimates have confirmed that numerous potential backgrounds are highly suppressed at the FASER

location, and the first in situ measurements are currently underway. We describe FASER’s location

and discovery potential, its target signals and backgrounds, the detector’s layout and components,

and the experiment’s preliminary cost estimate, funding, and timeline.

∗ Contact email: Jamie.Boyd@cern.ch
† Contact email: jlf@uci.edu
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I. INTRODUCTION

For decades, the leading examples of new physics targets at particle colliders were particles
with TeV-scale masses and O(1) couplings to the standard model (SM). More recently,
however, there is a growing and complementary interest in new particles that are much
lighter and more weakly coupled [1]. Among their many motivations, such particles may
yield dark matter with the correct thermal relic density and resolve outstanding discrepancies
between theory and low-energy experiments [2–4]. Perhaps most importantly, new particles
that are light and weakly coupled can be discovered by relatively inexpensive, small, and fast
experiments with potentially revolutionary implications for particle physics and cosmology.

If new particles are light and very weakly coupled, the focus at the LHC on particle
searches at high transverse momentum (pT ) may be completely misguided. In contrast
to TeV-scale particles, which are produced more or less isotropically, light particles with
masses in the MeV to GeV range are dominantly produced at low pT ∼ 100 MeV − GeV.
In addition, because the new particles are extremely weakly coupled, very large SM event
rates are required to discover the rare new physics events. These rates are available, not at
high pT , but at low pT : at the 13 TeV LHC, the total inelastic pp scattering cross section
is σinel(13 TeV) ≈ 75 mb [5, 6], with most of it in the very forward direction. In upcoming
runs at 14 TeV, where the inelastic cross section is very similar, we expect

Ninel ≈ 1.1× 1016 (2.2× 1017) (1)

inelastic pp scattering events for an integrated luminosity of 150 fb−1 at LHC Run 3 (3 ab−1

at the HL-LHC). Even extremely weakly-coupled new particles may therefore be produced
in sufficient numbers in the very forward region. Given their weak coupling to the SM, such
particles are typically long-lived and travel a macroscopic distance before decaying back
into SM particles. Moreover, such particles may be highly collimated. For example, new
particles that are produced in pion or B meson decays are typically produced within angles
of θ ∼ ΛQCD/E or mB/E of the beam collision axis, where E is the energy of the particle.
For E ∼ TeV, this implies that even ∼ 500 m downstream, such particles have only spread
out ∼ 10 cm− 1 m in the transverse plane. A small and inexpensive detector placed in the
very forward region may therefore be capable of extremely sensitive searches.

FASER [7], the ForwArd Search ExpeRiment, is specifically designed to take advantage
of this opportunity. An ideal location exists in TI181, an existing and unused side tunnel
that is 480 m downstream from the ATLAS interaction point (IP). We propose that FASER
be installed along the beam collision axis in TI18 in Long Shutdown 2 (LS2) from 2019-20
in time to collect data in Run 3 from 2021-23. With an active volume of only 0.16 m3,
FASER will complement the LHC’s existing physics program, with remarkable sensitivity to
dark photons, axion-like particles, and other proposed particles. In the following sections,
we discuss FASER’s location and discovery potential, the detector’s layout and components,
backgrounds, and the experiment’s preliminary cost estimate, funding, and timeline.

1 Note added: Since this document was prepared, additional measurements made by the CERN survey

team during LHC Technical Stop 2 in September 2018 have shown that tunnel TI12 on the other side of

LHC interaction point IP1 will more easily accommodate the detector with the dimensions presented here.

TI12 is the same distance from IP1 as TI18 and the expected signal and backgrounds are very similar.

FASER is now expected to be located in TI12.

1



TI18

UJ18
RI18

0 5
m

10
m

FASER
beam axis

IP D1 D2TAN ArcIntersection

0 100 200 300 400  L[m]

TAS

500

FASER

FIG. 1. Location of FASER. Top panel: A schematic drawing of the LHC and the very forward

infrastructure downstream from the ATLAS IP, with FASER located 480 m from the IP, after the

LHC tunnel starts to curve. Bottom panels, left to right: the view toward the ATLAS IP, with

the main LHC tunnel on the left and tunnel TI18 on the right; the beam collision axis marked on

the floor of TI18 by the CERN survey team; the location of the beam collision axis in TI18; and

a map showing the intersection of the beam collision axis and TI18 from above.

II. DETECTOR LOCATION

As shown in Fig. 1, an ideal location for FASER is along the beam collision axis, 480
meters downstream from the ATLAS IP in service tunnel TI18. This tunnel was formerly
used to connect the SPS to the LEP tunnel, but it is currently empty and unused. Light,
weakly-interacting particles produced at the ATLAS IP will travel along the beam collision
axis through matter without interacting, and then can decay in TI18.

In this location, then, FASER harnesses the enormous, previously “wasted,” cross section
for very forward physics to search for light, weakly-coupled new particles. This location also
benefits from the fact that, when long-lived particles (LLPs) are produced at the unprece-
dented center-of-mass energies of the LHC, their large boosts result in decays that are far
beyond the main LHC infrastructure in regions where backgrounds are highly suppressed.

In more detail, as shown in the bottom panels of Fig. 1, the beam collision axis emerges
from the floor of TI18 for a distance of roughly 3.8 m before intersecting the side wall. The
beam collision axis has been located to within a mm by the CERN survey team, but at any
given time, its precise location depends on the beam crossing angle at ATLAS. For example,
the current beam crossing half angle of 150 µrad in the upward direction raises the beam
collision axis by 7 cm in TI18 relative to what is shown in Fig. 1. Prior to installing FASER,
we propose that the floor in TI18 be lowered by 50 cm to allow a longer detector to be
placed along the beam collision axis. This will not disrupt essential services, and no other
excavation is required. Detailed studies are ongoing to assess exactly how long the detector
can be for the different beam crossing angles currently envisioned for Run 3, but preliminary
estimates suggest a length of 5 m will be possible.

III. NEW PHYSICS DISCOVERY POTENTIAL

The potential for discovering new LLPs has been studied for a plethora of new physics
models [7–14], both for FASER and for a possible larger follow-up experiment, FASER 2,
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which would run in the HL-LHC era. To illustrate this discovery potential, here we present
results for three examples of light, weakly-interacting new particles: dark photons [7], axion-
like particles (ALPs) [13], and CP-odd scalars that couple dominantly to SM fermions.

Dark photons: A massive dark photon arises when a hidden sector contains a broken
U(1) gauge symmetry. The hidden sector’s gauge boson can then mix with the SM photon via
kinetic mixing and obtain a small coupling to the SM electromagnetic current proportional
to the kinetic mixing parameter ε, leading to the Lagrangian terms

L ⊃ 1

2
m2
A′A′2 − ε ejµEMA

′
µ , (2)

where ε is naturally small if the mixing is loop-induced. Dark photons are primarily produced
in the decay of light mesons or via dark bremsstrahlung and are therefore very collimated
around the beam collision axis. They can decay into all kinematically-allowed charged
particles. In the parameter space probed at FASER, they decay via A′ → e+e−, and most
of the signal is confined to within 10 cm of the beam collision axis [7].

Axion-like particles (ALPs): ALPs are pseudoscalar SM-singlets that appear as
pseudo-Nambu-Goldstone bosons in theories with broken global symmetries. We consider a
low-energy effective theory in which an ALP couples only to photons through the dimension-
5 interaction, leading to the Lagrangian terms

L ⊃ −1

2
m2
aa

2 − 1

4
gaγγ aF

µνF̃µν . (3)

ALPs reaching FASER are predominantly produced through the Primakoff process by high
energy photons colliding with the TA(X)N [13]. The initial photons are highly collimated
along the beam axis, leading to similarly collimated signal when ALPs decay via a→ γγ.

CP-odd scalars: For our last example, we consider light pseudoscalars that couple
dominantly to SM fermions. Such particles could be ALPs or part of an extended Higgs
sector. Following the model presented in Ref. [15], we require the fermion couplings to be
proportional to Yukawa couplings, leading to the Lagrangian terms

L ⊃ −1

2
m2
AA

2 − i
∑
f

gAff yf Af̄γ
5f . (4)

These LLPs are mainly produced in the heavy quark decay b → sA, leading to a larger
spread around the beam collision axis. At FASER, the leading signal is from A→ µ+µ−.

Figure 2 shows FASER’s sensitivity reach for each of these three models. These results are
for a cylindrical decay volume of radius R = 10 cm and length L = 1.5 m at the 14 TeV LHC
with 150 fb−1. They are N = 3 signal event contours and so assume 100% signal efficiency
and negligible background (see Secs. V and VII). We see that even with such a small active
decay volume, FASER can probe significant new regions of parameter space in a variety of
models. These results use the EPOS-LHC [23] Monte Carlo generator, which is tuned to
the recently available forward scattering data from the LHC [24], to simulate forward light
meson production and FONLL [25] with CTEQ 6.6 to simulate heavy meson production. For
comparison, we also show the projected reach of other proposed experiments. For the CP-
odd scalar model, results for the proposed LHC experiments MATHUSLA [26] and CODEX-
b [27] can be expected to be complementary and probe lower couplings than FASER. We
also show the reach of FASER 2, a possible larger detector with a decay volume of radius
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FIG. 2. Projected sensitivity reaches for FASER at the 14 TeV LHC Run 3 with 150 fb−1 for dark

photons (left), axion-like particles (center), and CP-odd scalars (right). The gray-shaded regions

are excluded by current bounds. For comparison we also show the sensitivities of FASER 2, a

possible upgraded detector running in the HL-LHC era (see text), and other current and proposed

experiments: NA62 assumes 3.9 × 1017 protons on target (POT) while running in a beam dump

mode that is being considered for LHC Run 3 [16]; SeaQuest assumes 1.44 × 1018 POT, which

could be obtained in two years of parasitic data taking and requires additionally the installation

of a calorimeter [12, 17]; the proposed beam dump experiment SHiP assumes ∼ 2 × 1020 POT

collected in 5 years of operation [16, 18]; Belle-II and LHCb assume the full expected integrated

luminosity of 50 ab−1 [19] and 300 fb−1 [20, 21], respectively; and HPS assumes 4 weeks of data

at JLab at each of several different beam energies [1, 22].

R = 1 m and length L = 5 m collecting data at the 14 TeV HL-LHC with 3 ab−1. Such an
upgrade would extend FASER’s reach significantly, particularly towards larger masses.

The general features of the sensitivity curves can be understood as follows: for relatively
large ε, the sensitivity is reduced because the LLPs tend to decay before they reach FASER.
The reach is extremely sensitive to ε, and changing other parameters, for example, requiring
10 signal events instead of 3, or including a 50% signal efficiency factor, leads to almost
imperceptible changes in the sensitivity reach contours. In contrast, for relatively small ε
and large LLP masses, the reach is limited by the LLP production cross section, and larger
datasets can extend the reach in parameter space significantly.

The regions of parameter space probed by FASER are of interest for both particle physics
and cosmology. For example, if a dark photon couples to a dark matter particle with mass
∼ mA′ , the dark matter can have the correct thermal relic density if mA′ ∼ εmweak, where
mweak ∼ 1 TeV. For mA′ ∼ 10 − 100 MeV, one obtains ε ∼ 10−5 − 10−4, which is a region
of parameter space that will be probed by FASER.

Finally, we note that FASER’s physics potential is not restricted to the models mentioned
above. Other particles probed by FASER and FASER 2 include dark Higgs bosons [8],
flavor-specific scalar mediators [9], heavy neutral leptons [10, 11], R-parity violating neu-
tralinos [11], U(1)B−L gauge bosons [12], and inelastic dark matter [14].
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IV. DETECTOR OVERVIEW

A. Signal and Background: General Characteristics

FASER will search for LLPs that are produced at or close to the IP, move along the beam
collision axis, and decay visibly within FASER. The characteristic event is

pp→ LLP +X, LLP travels ∼ 480 m, LLP→ e+e−, µ+µ−, π+π−, γγ, . . . (5)

LLPs that travel in the very forward direction and decay in FASER typically have very high
energies ∼ TeV. The target signal at FASER is therefore striking: two oppositely charged
tracks or two photons with ∼ TeV energies that emanate from a common vertex inside the
detector and have a combined momentum that points back through 90 m of rock to the IP.

When the LLPs decay, because they are light and highly boosted, their decay products are
very collimated. For example, for an LLP with mass m = 100 MeV and energy E = 1 TeV,
the typical opening angle of the decay products is θ ∼ m/E ∼ 100 µrad implying a separation
of only ∼ 100 µm after traveling 1 m. To use these striking kinematic features to distinguish
signal from background, a measurement of the two individual decay products is highly
desirable.

For charged tracks, a magnetic field of 0.5 T, achievable with permanent magnets, is
able to both split the tracks sufficiently and allow for a track momentum measurement, as
discussed in Sec. V A. Tracking layers, surrounded by a magnet to separate highly collimated
tracks, and supplemented by a calorimeter to distinguish electrons from muons and provide
additional energy measurements, will be the key components of FASER.

For the di-photon signal, distinguishing the two photons requires a calorimeter with
exquisite spatial resolution. For this purpose, a pre-shower detector to convert and spatially
resolve the photons is under consideration. As discussed in Sec. VII, however, the expected
background of single, ∼ TeV photons is very low, and so even if di-photon events are mis-
reconstructed as single showers, they may be indicative of new physics.

The natural (rock) and LHC infrastructure (magnets and absorbers) shielding eliminates
most potential backgrounds. Muons and neutrinos are the only known particles that can
transport TeV energies through 90 m of rock between the IP and FASER. The dominant
source of background is radiative processes associated with muons from the IP, which is
identified by the presence of a high-energy muon traversing the full detector. This is sup-
pressed by using a charged particle veto layer at the front of the detector. Additional
backgrounds from neutrino interactions within the detector are small and generally have
different kinematics.

B. Detector Layout

The detector design is driven by the following considerations:

• the detector should be highly sensitive to the signals discussed above and allow multiple
background estimates from the data;

• the active area of the detector should lie close to the floor so that it can intersect the
beam collision axis for all possible beam crossing angles;

5



FIG. 3. Layout of the proposed FASER detector. LLPs enter from the left. The detector

components include scintillators (gray), dipole magnets (red), tracking stations (blue), a pre-shower

detector (light purple), and a calorimeter (dark purple).

• the detector should be inexpensive and robust, using well-established technologies and,
where possible, existing detector components;

• the required services (power, cooling, gas, etc.) should be minimized, since access to the
detector will not be possible when the LHC is running; and

• the detector components are limited by the need to transport them through the LHC
tunnel and over the LHC dipoles at the entrance to TI18.

The layout of the proposed FASER detector is illustrated in Fig. 3. At the entrance to
the detector, a double layer of scintillators is used to veto charged particles coming through
the cavern wall from the IP, primarily high-energy muons. In between the layers is a 20-
radiation-lengths-thick layer of lead for converting any photons produced in the wall into
electromagnetic showers that can be efficiently vetoed by the scintillators.

The veto layer is followed by a 1.5 m long, 0.5 T permanent dipole magnet with a 10 cm
aperture radius. This is the decay volume for LLPs decaying into a pair of charged particles,
with the magnet providing a horizontal kick to separate the decay products to a detectable
distance. The decay volume is not foreseen to be under vacuum.

After the decay volume is a spectrometer consisting of two 1 m long, 0.5 T dipole magnets
with three tracking stations, each composed of layers of precision silicon strip detectors, lo-
cated at either end and in between the magnets. The magnet covering the decay volume, and
those in the spectrometer, will have their fields aligned to give the maximum separation for
charged particles in the bending plane. Scintillator planes for triggering and precision time
measurements are located at the entrance and exit of the spectrometer. The primary purpose
of the spectrometer is to observe the characteristic signal of two oppositely charged parti-
cles pointing back towards the IP, measure their momenta, and sweep out low-momentum
charged particles before they reach the final layer of the spectrometer.

The final component is the electromagnetic calorimeter. This will identify high-energy
electrons and photons and measure the total electromagnetic energy. As the primary signals
are two close-by electrons or photons, these cannot be resolved by the main calorimeter.
It is therefore under consideration to place a high-granularity pre-shower detector between
the last tracking layer and the main calorimeter. This could be constructed from a layer of
tungsten and one or two layers of silicon strip detectors.
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V. DETECTOR REQUIREMENTS, OPTIMIZATION AND PERFORMANCE

The detector is designed to identify the two high-momentum, oppositely-charged particles
from LLP decay and reject backgrounds that are topologically or kinematically inconsistent
with the expected signal.

FASER’s very high energy threshold for analysis is a powerful background rejection tool.
Conservatively requiring A′ decay products above 100 GeV introduces negligible loss of
physics sensitivity, and virtually eliminates non-instrumental SM backgrounds. To identify
the signal with single-event sensitivity, the detector must be able to:

• efficiently tag charged particles entering from the IP direction with energies > 100 GeV,

• locate and distinguish exactly two oppositely-charged, nearly collinear primary particles
(both with energies above 100 GeV) consistent with an origin inside the detector decay
volume and the expected direction, and

• confirm the expected high-energy, electromagnetic character of the signal by robust, in-
dependent means.

A. Tracker

The tracker’s performance is constrained by limited space, services, and budget, as well
as the high energy of the signal. The minimum requirement is the ability to distinguish two
tightly collimated high-momentum charged tracks. If additional primary tracks are present,
the tracker functions as a topological veto. A magnetic field is applied to the decay volume,
even though no measurements are made there, to increase the spatial separation of tracks
before they reach the first tracker plane.

Figure 4 shows the expected track separation in the forward (planes 1 and 2) and central
(planes 3, 4, 5, and 6) tracking stations for mA′ = 100 MeV. There is no significant
dependence on the dark photon mass. The dotted vertical line corresponds to an expected
one/two-track separation threshold of 300 µm. For EA′ > 2 TeV, the oppositely-charged
tracks are typically separated by less than this distance at the first tracking station, but the
majority are sufficiently separated by the second for all energies.

Although the dark photon search does not rely on reconstructing the decaying particle’s
mass, measurement of charged track momenta is a second important goal. Using ATLAS
SCT modules as a point of reference (see Sec. VI C), the hit occupancy in FASER is nearly
zero and the tracks are nearly straight. If the track separation is sufficient to produce dis-
tinct strip clusters, track finding and fitting will present no technical challenges, but the
combination of modest magnetic field and high momentum limits the achievable resolution.
Karimaki [28] has calculated the expected performance of a magnetic spectrometer under
extremely general assumptions. Momentum resolution scales linearly with coordinate reso-
lution and field strength, but quadratically with the length of the detector. The dependence
on the number of measurements and where they are made is more complicated, but also
calculable.

Figure 5 shows FASER’s idealized momentum resolution for different energies and num-
bers of sensor planes, assuming perfect alignment. The momentum resolution naturally
degrades as the curvature of the track (ρ) decreases. The track stiffness (K ≡ 1/ρ) can
be measured with roughly Gaussian errors. As K becomes consistent (within errors) with
zero, the sign of the track’s charge becomes indeterminate and only a lower limit on the
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FIG. 4. Left: Separation of charged tracks from decay of a dark photon (mA′ = 100 MeV) at

three energies. The solid (dashed) histograms are the expected separation in the forward (central)

tracking stations, as defined in the text. Right: Separation of photons from the decay of an ALP

(ma = 100 MeV) at the end of the tracking system. In both panels, the decays are averaged over

longitudinal position, and the vertical line at 300 µm represents a conservative estimate of the

separation required to create isolated clusters in a silicon strip detector.
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represents a reasonable trade-off between performance, cost, and complexity.

momentum is possible. For FASER, this estimated resolution limit is 1.5 TeV at 5σ and
2.5 TeV at 3σ. This implies that when a track is too straight to measure its curvature
accurately, we will be able to set a fairly high bound on its minimum momentum. At low
energies, FASER should have excellent (few percent) momentum resolution to reject tracks
below the 100 GeV analysis threshold.

B. Calorimeter

FASER’s dark photon decay signal consists of extremely high-energy electrons, while the
dominant event rate is extremely high-energy (entering) muons. To demonstrate compelling
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evidence of new physics, it will be important to independently establish the presence of
hundreds of GeV of electromagnetic energy. Extremely precise energy resolution is not
essential, but containment of TeV-energy showers requires a depth of at least 25 radiation
lengths. The LHCb ECAL modules (see Sec. VI D) are a robust and economical design that
would be well-suited to most of our needs. Increased leakage at FASER energies would likely
degrade the nominal energy resolution (σE/E ≈ 10%√

E
⊕ 1%) only slightly.

For ALPs predominantly coupled to two photons, the signature is two, highly collimated
photons; typical separations are shown in the right panel of Fig. 4. This search would
therefore benefit from a pre-shower detector of 1–2 radiation lengths depth, with the finest
possible granularity, to convert and spatially resolve the photons. The possibility of adapting
the silicon strip modules used in the tracker for this purpose is under study.

C. Geant4 Simulation

A GEANT4-based [29] simulation has been developed to model the integration of de-
tector components and their response to the signal. All sensitive elements of the detector
(trigger/veto, tracker, pre-shower detector, and calorimeter) are represented. A simpli-
fied (uniform dipole) magnetic field model is used, pending a full calculation based on the
magnet design. Dark photon decays are generated with the correct kinematics, assuming
uniform solid-angle and log pA′ distributions (which can be re-weighted in subsequent analy-
sis). A clustering algorithm has been developed and tested to validate analytic estimates of
the two-track separation efficiency. Track-finding and reconstruction algorithms using the
ATLAS-derived ACTS framework [30] are under development.

D. Signal Efficiency

The expected tracker resolution and magnetic field will make it possible to realize
FASER’s excellent discovery potential for new physics after applying experimental se-
lections. In the following, we illustrate this by an analytical estimate of the signal efficiency
to detect a dark photon decaying to two charged particles within FASER’s decay volume.
With the proposed detector we would not be able to measure the mass or the decay position
of the LLP, due to the very large energies and small opening angle of the decay particles.
However, to select the signal, we require that the reconstructed particles be consistent with
originating from a common decay point in the decay volume. This requirement should be
100% efficient for signal events.

In addition, we require the dark photon decay products to (1) be completely enclosed in
the tracker within a radius R = 10 cm, and (2) be separated by more than δ = 0.3 mm in
the bending plane at the tracking stations. We consider two possible selection criteria: a
loose requirement, in which we require the tracks to be separated sufficiently in the second
and third stations only, and a tight requirement, in which we require the tracks to be
separated in all three tracking stations. The signal efficiency as a function of dark photon
energy and vertex position is shown in the left panel of Fig. 6. We can see that high-energy
events decaying at the far end of the decay volume have a reduced signal efficiency, which is
further reduced for the tight selection. There is also a slight loss of efficiency for low-energy
(< 500 GeV) events, where the decay products can be swept outside the detector by the
magnetic field. Despite these effects, the signal efficiency has only a limited impact on the
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FIG. 6. Left: Signal efficiency for the loose selection criterion as a function of dark photon energy

and the decay’s longitudinal position, averaged over the transverse position, for the dark photon

benchmark point mA′ = 100 MeV and ε = 10−5. Center: FASER dark photon reach without

signal efficiencies (dotted), with loose selection cuts (dashed), and tight selection cuts (solid). The

“all” and “loose” curves are almost indistinguishable. Right: Energy spectrum of dark photon

decay products in FASER for mA′ = 100 MeV and ε = 2 × 10−5 (solid), ε = 10−5 (dashed) and

ε = 0.7 × 10−5 (dotted). We show the spectrum for all dark photons decaying in FASER (red),

and those passing the loose (green) and tight (blue) selection cuts.

sensitivity reach, which is shown in the central panel of Fig. 6.
In the right panel of Fig. 6 we show the energy spectrum of dark photon decay products

in FASER for mA′ = 100 MeV and three values of the kinetic mixing parameter ε = 2×10−5,
1 × 10−5, 0.7 × 10−5. As can be seen, a softer spectrum is obtained for decreasing values
of ε. This is due to an increasing A′ lifetime, which results in a smaller boost factor for
the A′s that can reach the detector before decaying. The colored lines show the expected
spectra for all dark photons decaying in FASER (red), and those passing loose (green) and
tight (blue) selection cuts. In particular the tight selection reduces the event rate at high
energies, as the most energetic decay products cannot be separated enough before reaching
the first tracking station. We can see that the tracks produced by a dark photon decay in
FASER typically have energies of ∼ 1 TeV and above.

A similar energy spectrum is also expected for photons produced by the decay of an ALP
in FASER. A search for ALP decays into two photons can make use of the full volume of
FASER in front of the calorimeter and requires a very good efficiency for separating two
close-by showers. Importantly, as discussed in Sec. VII B, the expected background of high-
energy photons in FASER is very low and such events will typically be associated with a
collinear charged particle(s) that will be detected in the front veto and the tracker. As a
result, even two-photon events from ALP decays that will be mis-reconstructed as a single
shower in the calorimeter could already be indicative of new physics.

VI. DETECTOR COMPONENTS

A. Magnets

Three dipole magnets are needed to separate energetic pairs of charged particles and to
perform momentum measurements. An electromagnet would provide the strongest field, but,

10



FIG. 7. Left: Halbach dipole magnet diagram (left) and field distribution (right).

FIG. 8. Scintillator layer to be used for veto and trigger layers.

for the large aperture needed, is rather bulky compared to the available space and requires a
significant amount of supporting infrastructure. Therefore a solution with permanent dipole
magnets is preferred. The field strength of such magnets will have some dependence on the
temperature, but given the high momentum of the signal particles, this is not expected to
contribute significantly to experimental uncertainties.

An attractive solution is to use magnets based on a Halbach array [31] constructed from
permanent magnet blocks with different magnetization directions as illustrated in Fig. 7.
Such a magnet design with very similar requirements was prepared by the CERN magnet
group for the N-Tof experimental area, and it is expected this could be adapted for all three
magnets. Using SmCo for the magnet material, a dipole field of 0.52 T can be reached.
With NdFeB the field could be as high as 0.6 T at the cost of a small increased temperature
sensitivity and reduced radiation hardness, which is not expected to be a problem in the
FASER location. As can be seen in the figure, such magnets are very compact compared to
more traditional magnets. A one-meter-long magnet is expected to weigh about 1000 kg.
As shown in Fig. 7, the fringe fields extend out minimally radially, but, due to the large
aperture, will extend out between the magnets. A minimum distance of 200 mm between
magnets will therefore be needed for safety reasons. These openings will be used for detector
elements.
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B. Scintillator Trigger and Veto Layers

Four identical scintillator layers are used to provide efficient veto and trigger signals for
charged particles. The basic design of each layer is shown in Fig. 8 and consists of a 2 cm
thick, 25 cm × 25 cm plastic scintillator connected through a light guide on each side to a
PMT. The transverse size of the scintillator is larger than the magnet aperture to further
ensure no charged particle can enter undetected, and the 2 cm thickness is chosen to provide
a high detector efficiency for these. The dual PMTs on each layer provide redundancy
and ensure a very high veto efficiency for the veto layers as well as improving the timing
resolution. The target efficiency for minimum ionizing particles is 99.99% for each of the
two veto stations with a timing resolution for the trigger chambers that is better than 1 ns.
The time difference between the two trigger layers separated by 2.2 m will provide rejection
of signals not originating from the IP, particularly beam background coming from behind
the detector. By measuring the signal amplitude, each of the trigger layers will also provide
some discrimination power for the number of charged particles traversing the scintillator.

C. Tracker

In the current design FASER will include 8 to 10 tracking layers: two layers in the first
tracking station, four layers in the second station, two layers in the third station, and
possibly two layers inside the calorimeter as a pre-shower. Each layer consists of two single-
sided silicon strip detectors with dimensions 24 cm × 24 cm, corresponding to an area of
0.06 m2, which is sufficient to cover the aperture of the magnets.

Possible candidates for the silicon strip detectors are spare modules of the SemiConductor
Tracker (SCT) in the ATLAS experiment [32, 33]. The SCT has 4 cylindrical barrel layers
and 18 planar endcap discs, covering 60 m2. The SCT consists of 4088 independent modules
which have two single-sided silicon strip detectors with a stereo angle of 40 mrad. Each side
of the modules has 768 strips with a constant pitch of 80 µm. Figure 9 shows a barrel module
with 6 on-detector ASICs per side, which are integrated into the module. These ASICs are
the first stage of the detector readout, as well as setting the detector configuration. The
modules for the barrel region are 6 cm× 12 cm, such that 8 modules would give 1 tracking
layer in FASER. The SCT module design resolution is 17 µm × 580 µm, and the modules
would be arranged in FASER such that the precision measurement is in the bending plane.

During the SCT assembly, more than 400 modules (238 modules for the barrel and
225 modules for the endcap) passing mechanical and electrical tests were kept as spare
modules [34, 35]. The above design could be realized using 80 of these. The ATLAS SCT
power supply and interlock system could also be used in FASER. A crate for the SCT power
supply houses 6 HV cards and 12 LV cards, which provide power for 48 SCT modules [36]. For
FASER, two SCT power supply crates would be sufficient. Given the expected low radiation
levels in the TI18 tunnel, the SCT modules would be operated at room temperature using
a water cooling system to cool the on-detector ASICs (5 W per module).

An attractive solution for the tracker readout would be to use the ATLAS SCT readout
system [37]. It consists of Readout Driver (ROD) VME modules, each of which is connected
to one Back-of-Crate card that connects optically to up to 48 modules, therefore 2 RODs
would be needed for the full FASER system. The RODs are primarily responsible for module
configuration, trigger propagation, and data formatting.
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FIG. 9. A picture of the barrel module of the SCT of the ATLAS experiment.

FIG. 10. Design of the LHCb outer ECAL module [38]. For FASER, the PMT might be replaced

with a more compact sensor that can operate in a magnetic field.

D. Calorimeter

The electromagnetic calorimeter provides strong identification of high-energy electrons
and photons over muons and hadrons and allows to measure their energies. Since for most
signal events the e+e− or photon pair is separated by less than a few millimeters, it is not
feasible to measure the individual particle energies, and the main calorimeter requirement
is therefore to measure the total electromagnetic energy with good accuracy for multi-TeV
deposits in a compact detector.

The planned calorimeter is a Shashlik-type calorimeter, as used in HERA-B and LHCb,
for example, with interleaved scintillator and lead plates, and with wavelength shifting fibers
penetrating the full calorimeter. The baseline is to use the same type of modules as the LHCb
outer ECAL modules [38], shown in Fig. 10. With modules with transverse dimensions of
121.2 mm × 121.2 mm, the full FASER acceptance can be covered with just four modules.
The calorimeter contains 66 layers of 2 mm lead and 4 mm plastic scintillator, for a total
depth of 25 radiation lengths. The energy resolution for TeV deposits in such a calorimeter
is expected to be around 1%, although this will be degraded at the highest energies as 25
radiation length will not fully contain all such showers.

To detect the presence of two electromagnetic showers separated by 300 µm − 2 mm,
particularly for di-photons which are not seen in the tracker, a pre-shower detector could be
placed in front of the main calorimeter. This could be constructed from a layer of tungsten or
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lead followed by two layers of silicon strip detectors with the strips in the two layers oriented
orthogonal to each other. The thickness of the pre-shower detector is being optimized for
efficiency and separation power.

E. Trigger and Readout System

The detector read out will be triggered on either a coincidence in time between the two
trigger scintillator layers or on a minimum amount of energy deposited in the calorimeter.
The latter should provide a very efficient, but low rate selection of events with energetic
electrons and photons, while the scintillator coincidence provides a trigger for signal decays
to a pair of charged particles as well as a large sample of muons from the IP for alignment
and calibration.

The CAEN V1743 VME module is a candidate trigger and readout module for the scin-
tillators and calorimeter PMTs. This module is a 16 channel, switched capacitor digitizer,
which can record up to 1024 12-bit samples at 3.2 GS/s on internally generated triggers
based on combinations of channels passing a discriminator threshold. Recording the full
signal pulse at high precision allows for a very precise timing measurement as well as scru-
tinizing the details of all scintillator and calorimeter channels for non-physical anomalies in
case of a possible signal. The trigger rate will be limited to less than 500 Hz to keep the
dead time low. The trigger outputs will be combined in a programmable logic board, such
as the CAEN V2495 module, with orbit and bunch clock signals from the LHC to align the
trigger signals with IP1 collisions. The module will also generate a trigger signal for the
tracker readout. No attempt will be made to combine data with the ATLAS experiment,
and no signal will be exchanged between the two experiments.

The readout of the CAEN V1743 module and the tracker will be done optically to a PC
located outside the LHC tunnel area. The PC will merge the two data streams and carry out
additional signal processing and compression before recording to local and offline storage for
data analysis. The raw output data is expected to be about 40kB/event, but compressible
to less than 4kB/event, i.e. less than 2MB/s.

F. Support Services

The best access to the TI18 tunnel is to enter the LHC at Point 1 (where the ATLAS
experiment is situated) and to follow the LHC tunnel for 480 m. To enter TI18, one must
then cross over the LHC machine. Informal discussions with the CERN transport, civil
engineering, and cryogenic teams suggest that it should be possible to transport detector
components of up to about 1000 kg to the location and carry them over the LHC into TI18.

Discussions with CERN civil engineering experts suggest that excavating up to 50 cm
down in the tunnel floor should be possible in LS2. This is needed to have enough room for
a 5 m long detector to lie along the beam collision axis of the IP1 collisions.

Investigations are ongoing to find the best location to install the detector services, in-
cluding a chiller for the cooling of the detector electronics, power supplies, and the readout
electronics.
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VII. BACKGROUNDS

FASER’s signal is multiple coincident, collimated particles of very high energy (E ≥
100 GeV). Muons and neutrinos are the only SM particles that can transport such energy
through hundreds of meters of material between the IP and FASER. The CERN Sources,
Targets, and Interactions (STI) group have computed muon fluxes at the FASER location
using a FLUKA simulation. These muon fluxes, in turn, allow estimation of the rate and
energy spectrum of muon-associated radiative processes near the detector. FASER-specific
neutrino flux simulations will be completed in one to two months; in the interim, previous
calculations of LHC neutrino fluxes are used to estimate neutrino-induced backgrounds.

To complement and validate calculated background estimates, an emulsion detector and
a battery-operated radiation monitor (BatMon) began collecting data at the FASER site in
June 2018. These will provide the first in situ measurements.

A. FLUKA Simulation

Recently a study from the CERN STI group [39] using the FLUKA simulation pro-
gram [40, 41] was completed to assess backgrounds and the radiation level in the FASER
location. The study uses a detailed geometry of the LHC and TI18 tunnels and includes the
effects of the LHC infrastructure (magnetic fields, absorbers), the rock between the IP and
FASER, and realistic machine optics. Backgrounds from three sources were considered:

• Particles produced at the IP coming directly into the FASER detector.

• Showers initiated by protons hitting the beam pipe close to the FASER location (in
the dispersion suppressor region of the LHC). These originate from off-momentum (and
therefore off-orbit) protons following diffractive processes at the ATLAS IP.

• Beam-gas interactions in beam-2 (the beam passing FASER in the direction of the ATLAS
IP), which can lead to particles entering FASER without passing through any rock.

The results show that muons are the only high-energy (> 100 GeV) particles entering FASER
from the IP, with an expected rate of 70 Hz (for the expected Run 3 conditions with a peak
luminosity of ≈ 2 × 1034 cm−2 s−1). The study shows that no high-energy particles are
expected to enter FASER from proton showers in the dispersion suppressor or from beam-
gas interactions.

The radiation level expected at the FASER location is very low due to the dispersion
function in the LHC cell closest to FASER (cell 12). Simulations and measurements show
that the radiation level in neighboring cells (50 m upstream and downstream from FASER)
are orders of magnitude larger, as can be seen in Fig. 11. FLUKA predicts that the radiation
level at the FASER location from proton showers in the dispersion suppressor is less than
4 × 10−3 Gy per year or equivalently less than 4 × 107 1 MeV neutron equivalent fluence
per year. Beam-gas interactions are not expected to contribute due to the excellent vacuum
in the LHC beam pipe. Such radiation levels are not expected to be problematic for the
detector components, electronics, or services to be used in FASER.
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FIG. 11. Expected proton loss rate as a function of the LHC cell in the dispersion suppressor

region. FASER is located in cell 12.

B. Muon-associated Radiative Processes

TeV-energy muons will produce photons and electromagnetic and hadronic showers in the
rock surrounding FASER. Kinematics ensures that the scattered muon and any secondary
above FASER’s 100 GeV analysis threshold will be separated by an angle of a few mrad
or less. Thus, tagging the presence of an entering muon is sufficient to differentiate these
events from signal. The rates are nevertheless interesting, since they set the scale of muon
rejection required and illuminate the composition of FASER’s raw data.

Production of secondaries with energies above 100 GeV is very rare, so numerical inte-
gration is an efficient alternative to Monte Carlo. These processes are well understood, and
their properties accurately parameterized [42, 43]. Rates and spectra are calculated from
the FLUKA-predicted muon spectrum, assuming an exposure of 150 fb−1, and summarized
in Table I. Bremsstrahlung is the dominant radiative process, but most photons convert in
the rock before reaching FASER. An estimated 41,000 photons with energies above 100 GeV
will enter FASER unconverted; of these, roughly 7400 will convert in detector material be-
fore reaching the calorimeter. The muon-induced photon spectrum is sharply peaked toward
lower energies (see Fig. 12), and all will be accompanied by the parent muon.

Bremsstrahlung conversions and direct e+e− pair production will lead to muons accom-
panied by electromagnetic showers, and photo-nuclear interactions will produce muons ac-

Process Expected Number of Events
µ 540M
µ+ γbrem 41K
[µ+ (γbrem → e+e−)] [7.4K]
µ+ EM shower 22K
µ+ hadronic shower 21K

TABLE I. Expected number of events for muons and muon-induced processes that enter FASER

from the direction of the IP with energy ≥ 100 GeV in Run 3 with integrated luminosity 150 fb−1.

One muon event occurs for every 170K bunch crossings. The bracketed process is the subset of all

µ+ γbrem events in which the photon pair converts in FASER before reaching the calorimeter.
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FIG. 12. The calculated flux spectrum of muon-induced photons from bremsstrahlung entering

FASER unconverted in an exposure of 150 fb−1. All will be accompanied by the parent muon.

companied by hadronic showers. In these cases, the probability for any single particle (other
than the muon) to reach FASER with 100 GeV or more is very small; the calculated rates
are instead based on the looser requirement that the total shower energy reaching FASER
(attenuated by the number of radiation or hadronic interaction lengths from the interac-
tion, as appropriate) is over 100 GeV. The calculation predicts that roughly 8× 104 muons
entering FASER (one in 7000) will be accompanied by additional, visible, electromagnetic
or hadronic energy above 100 GeV. We see that, with two layers of scintillator at the front
of the detector, each vetoing entering charged particles with an efficiency of 99.99%, the
backgrounds in Table I will all be reduced to negligible levels.

A last muon-induced background is one in which a muon first radiates a high energy
photon in the rock before the detector and then decays. We expect O(0.01) events of this
kind in Run 3.

C. Neutrino-induced Backgrounds

For the large pseudorapidities characteristic of FASER with a 10 cm radius, the dominant
source of neutrinos is in-flight π± decays; heavier mesons play a less important role [44]. A
good estimate of the high-energy neutrino flux can therefore be obtained from the forward
pion spectrum, which can be convoluted with the neutrino interaction cross section to es-
timate the number of neutrino-induced charged current (CC) events in the detector. The
result is that, requiring neutrino energies above 100 GeV (1 TeV), one expects ∼ 10 (∼ 0.1)
CC neutrino events per kg of detector material for 150 fb−1 integrated luminosity [7]. Con-
sidering the small mass of the first tracking station (roughly 500 g) and the air in the decay
volume (60 g), we therefore expect at most a few ∼ 100 GeV CC events, and far fewer
with TeV energies, where most of the signal is. In addition, these neutrino events typically
produce only one high-energy charged track, since the momentum transfer to the nucleus
is form-factor suppressed, resulting in the other scattering products typically having much
lower energy. For the same reason, neutral current (NC) interactions will typically only lead
to low-energy events. One therefore expects neutrino-induced backgrounds to be negligible.
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FIG. 13. Left: Schematic of the emulsion detector structure. Right: The emulsion detector

installed at the FASER location in TS1.

D. In situ Measurements

An emulsion detector was prepared and installed at the FASER location on 21 June
2018, during Technical Stop 1 (TS1). The purpose is to validate the FLUKA background
estimation results. Furthermore, this measurement may pave the way for using emulsion
detectors for LLP searches. Emulsion detectors are made of micro-crystals with a diameter
of about 200 nm, which leads to a position resolution of 50 nm and an angular resolution
of 0.35 mrad with a 200 µm-thick base [45]. The high resolution of emulsion detectors, as
well as their energy-loss (dE/dx) measurement capability, allows them to separate e+e− pair
signals from single electron background. In addition, low-energy components can be rejected
by their multiple Coulomb scattering inside the detector materials.

The installed detector structure is shown in the left panel of Fig. 13. It comprises two
sections. Upstream is a tracking section made of 10 emulsion films interleaved with 10-mm-
thick Styrofoam, designed to detect two almost-parallel tracks. Each emulsion film comprises
two emulsion layers (65 µm thick) that are poured onto both sides of a 200 µm-thick plastic
base. The downstream section builds a sampling calorimeter, the so-called Emulsion Cloud
Chamber (ECC), which has a repeated structure of emulsion films interleaved with 1-mm-
thick or 5-mm-thick lead plates for the electromagnetic shower energy measurement. The
total radiation length in the ECC is 12X0. The emulsion films are vacuum-packed with a
light-tight bag and enclosed in an acrylic box as shown in the right panel of Fig. 13. A
single module, consisting of 31 emulsion films, is 173 mm wide, 124 mm high, and 210 mm
thick. Additionally, two removable emulsion detectors have been placed on the front and
back faces of the acrylic box to provide the possibility of a prompt check of the track density
shortly after TS1.

The energies of electromagnetic showers will be determined by counting the number of
shower tracks in each emulsion film within a circle of radius 100 µm centered on the shower
axis [46]. An energy resolution of 10.6% at 200 GeV has been found in simulations and
validated by experimental data. If high-energy showers are detected in the downstream
ECC section, they will be followed up to the upstream tracking section. Parallel electron
tracks separated by 1 µm can be identified and possible decay points can be estimated.

Concerning the measurement in TS1, the additional two emulsion detectors outside the
box will first be removed and analyzed before TS2. The measured track density in these
layers will then inform the decision of when to remove the rest of the emulsion detector. The
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data readout of the emulsion films will be performed with scanning microscopes [47, 48].
The emulsion readout and reconstruction chain allows one to work with a track density of
up to 106 particles/cm2. The track density and high-energy electromagnetic components
will be measured and compared to the background prediction from the FLUKA simulations.

To validate the FLUKA simulation results on the radiation level at the FASER location,
a BatMon, commonly used in the LHC, was installed in situ in TS1. This will be read out
in TS2 to measure the accumulated dose during this period.

VIII. COST, FUNDING, AND TIMELINE

An essential feature of FASER is its ability to do world-leading physics at a very affordable
cost, thanks to the size and location of the experiment. FASER’s active volume is just
0.16 m3, and the entire experiment fits in a box with dimensions 1 m × 1 m × 5 m. In
addition, FASER’s location in TI18 is exceptionally quiet, so detector components do not
need to be radiation hard, and background radiation for electronics is not a great concern.

The most costly components of the detector are the tracker, calorimeter, and magnets.
To meet the experiment’s cost and schedule goals, we are actively exploring the possibility of
using available spare silicon strip and calorimeter hardware from the larger LHC experiments.
As noted above, roughly 200 spare ATLAS barrel SCT modules exist; FASER would require
about 80 of those. We hope to present a formal proposal and request to the SCT Institutional
Board at their September 2018 meeting. For the calorimeter, the LHCb ECAL project leader
has advised us that the experiment has sufficient spares to consider a similar request from
FASER. While it is important to emphasize that no commitments have been made, initial
discussions are encouraging.

If spare modules are available for the tracker and calorimeter, the largest remaining
construction expense are the magnets. The CERN magnet group estimates that the magnets
will cost 350 kCHF and require one year to construct. Combined with the smaller costs of the
scintillators, PMTs, trigger/readout electronics, support services, and personnel costs such
as graduate student support and collaboration travel, we estimate that FASER’s total cost
is 1–1.5 MCHF. A respected private research foundation has expressed interest in funding
FASER at this level, and FASER will be presented as a top priority by the foundation’s
Program Officer for Science to its Board in late September 2018. A preliminary decision
is expected then, with funding starting as early as January 2019 if CERN approves the
experiment. We also intend to seek funding from national funding agencies and other sources
to support additional operations costs, as well as a possible future upgrade to FASER 2.

The current FASER collaboration is growing and will attract even greater interest once
our proposals for approval and funding are successful. If, as hoped, we are able to use spare
silicon strip and/or calorimeter hardware from existing LHC experiments, we are hopeful
that interested experts from the associated institutions will choose to join us. Also, after
FASER obtains funding, we will be able to offer graduate students a unique opportunity to
take part in all aspects of an LHC experiment.

FASER will be installed in TI18 over LS2 in time to take data during Run 3. To place
FASER on the beam collision axis, the floor of TI18 must be lowered by 50 cm; this is
possible without disrupting essential services and is expected to be sufficient for any beam
crossing angle planned for Run 3. With this aggressive, but feasible, schedule, FASER will
have world-leading sensitivity to a broad array of LLPs, including dark photons, ALPs, and
other CP-odd scalars.
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If FASER is successful, a larger version, FASER 2, with a fiducial decay volume 1 m in
radius and 5 m in length, could be installed over LS3 and take data during the HL-LHC
era. FASER 2 would require extending TI18 or widening UJ18, but would greatly extend
FASER’s sensitivity to more massive dark photons and probe currently uncharted territory
for many other models, including dark Higgs bosons and heavy neutral leptons [7–14].

IX. SUMMARY

FASER will extend the LHC’s physics program by searching for light, weakly coupled
new particles with the potential to discover physics beyond the SM and shed light on dark
matter. If installed in LS2 and collecting data in Run 3, FASER will have unprecedented
sensitivity to dark photons, other light gauge bosons, and axion-like particles with masses
in the 10 MeV to GeV range. A larger detector, FASER 2, running in the HL-LHC era, will
extend this sensitivity to larger masses and will probe currently unconstrained parameter
space for all renormalizable portals (dark photons, dark Higgs bosons, and heavy neutral
leptons), ALPs with photon, fermion, or gluon couplings, and many other new particles.

FASER will be placed in TI18, an existing and unused tunnel 480 m from the ATLAS IP.
To maximally intersect the beam collision axis, the floor should be lowered by 50 cm, but no
other excavation is required. FASER will run concurrently with the LHC, requiring no beam
modifications and interacting with the existing experiments only in requesting luminosity
information from ATLAS and bunch crossing timing information from the LHC.

At present, it appears possible that the cost of design, construction, and installation,
as well as some personnel costs, for FASER will be 1–1.5 MCHF. A private foundation
has expressed interest in funding FASER at this level, with a preliminary approval decision
in late September 2018 and funding beginning as early as January 2019, contingent upon
CERN approval. We also intend to seek funding from national grant agencies and other
sources to support additional operations costs and are actively working to increase the size
of the collaboration.
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P. R. Sala, G. Smirnov, and V. Vlachoudis, “The FLUKA Code: Developments and

Challenges for High Energy and Medical Applications,” Nucl. Data Sheets 120 (2014)

211–214.

[42] D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range tables

10-MeV to 100-TeV,” Atom. Data Nucl. Data Tabl. 78 (2001) 183–356.

[43] A. Van Ginneken, “Energy Loss and Angular Characteristics of High-Energy

Electromagnetic Processes,” Nucl. Instrum. Meth. A251 (1986) 21.

[44] H. Park, “The estimation of neutrino fluxes produced by proton-proton collisions at
√
s = 14

TeV of the LHC,” JHEP 10 (2011) 092, arXiv:1110.1971 [hep-ex].

[45] S. Aoki et al., “Study of tau-neutrino production at the CERN SPS,” arXiv:1708.08700

[hep-ex].

[46] T. Kobayashi, Y. Komori, K. Yoshida, K. Yanagisawa, J. Nishimura, T. Yamagami,

Y. Saito, N. Tateyama, T. Yuda, and R. J. Wilkes, “Observations of High Energy

Cosmic-Ray Electrons from 30 GeV to 3 TeV with Emulsion Chambers,” Astrophys. J. 760

(2012) 146, arXiv:1210.2813 [astro-ph.HE].

[47] A. Ariga and T. Ariga, “Fast 4π track reconstruction in nuclear emulsion detectors based on

GPU technology,” JINST 9 (2014) P04002, arXiv:1311.5334 [physics.ins-det].

[48] M. Yoshimoto, T. Nakano, R. Komatani, and H. Kawahara, “Hyper-track selector nuclear

emulsion readout system aimed at scanning an area of one thousand square meters,” PTEP

2017 no. 10, (2017) 103H01, arXiv:1704.06814 [physics.ins-det].

23

http://cds.cern.ch/record/494264
http://cds.cern.ch/record/898301
http://dx.doi.org/10.1016/j.nds.2014.07.049
http://dx.doi.org/10.1016/j.nds.2014.07.049
http://dx.doi.org/10.1006/adnd.2001.0861
http://dx.doi.org/10.1016/0168-9002(86)91146-0
http://dx.doi.org/10.1007/JHEP10(2011)092
http://arxiv.org/abs/1110.1971
http://arxiv.org/abs/1708.08700
http://arxiv.org/abs/1708.08700
http://dx.doi.org/10.1088/0004-637X/760/2/146
http://dx.doi.org/10.1088/0004-637X/760/2/146
http://arxiv.org/abs/1210.2813
http://dx.doi.org/10.1088/1748-0221/9/04/P04002
http://arxiv.org/abs/1311.5334
http://dx.doi.org/10.1093/ptep/ptx131
http://dx.doi.org/10.1093/ptep/ptx131
http://arxiv.org/abs/1704.06814

	 *.2in LETTER OF INTENT  *.3in FASER  *.1in FORWARD SEARCH EXPERIMENT AT THE LHC *.3in
	Executive Summary
	 Contents
	I Introduction
	II Detector Location
	III New Physics Discovery Potential
	IV Detector Overview
	A Signal and Background: General Characteristics
	B Detector Layout

	V Detector Requirements, Optimization and Performance
	A Tracker
	B Calorimeter
	C Geant4 Simulation
	D Signal Efficiency

	VI Detector Components
	A Magnets
	B Scintillator Trigger and Veto Layers
	C Tracker
	D Calorimeter
	E Trigger and Readout System
	F Support Services

	VII Backgrounds
	A FLUKA Simulation
	B Muon-associated Radiative Processes
	C Neutrino-induced Backgrounds
	D In situ Measurements

	VIII Cost, Funding, and Timeline
	IX Summary
	 Acknowledgments
	 References




