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Abstract. A recent result of Alon, Ben-Eliezer and Fischer establishes an induced removal
lemma for ordered graphs. That is, if F is an ordered graph and ε > 0, then there ex-
ists δF (ε) > 0 such that every n-vertex ordered graph G containing at most δF (ε)nv(F )

induced copies of F can be made induced F -free by adding/deleting at most εn2 edges. We
prove that δF (ε) can be chosen to be a polynomial function of ε if and only if |V (F )| = 2,
or F is the ordered graph with vertices x < y < z and edges {x, y}, {x, z} (up to com-
plementation and reversing the vertex order). We also discuss similar problems in the non-
induced case.
Keywords. Ordered graph, removal lemma
Mathematics Subject Classifications. 05C35, 05C75

1. Introduction

Graph removal lemmas are among the most powerful tools in combinatorics, with further ap-
plications in number theory, logic, and property testing. The celebrated graph removal lemma,
which originates in the work of Ruzsa and Szemerédi [RS78], states that ifF is a graph and ε > 0,
then there exists δ = δF (ε) > 0 such that every n-vertex graph G containing at most δnv(F )

copies of F can be made F -free by deleting at most εn2 edges. Alon, Fischer, Krivelevich and
Szegedy [AFKS00] established an analogue of this for induced subgraphs. This result, known
as the induced removal lemma, states that if G contains at most δF (ε)nv(F ) induced copies of a
graph F , then G can be made induced F -free by adding/deleting at most εn2 edges. A general-
ization to arbitrary hereditary graph properties was later obtained by Alon and Shapira [AS08].
For a general survey on graph removal lemmas, we refer the reader to [CF13].

In this paper, we are interested in ordered variants of the graph removal lemma. An ordered
graph is a graph with a linear ordering ⩽ on its vertex set. An ordered graph H is a subgraph
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of an ordered graph G if there exists an order preserving embedding from V (H) to V (G) which
maps edges into edges, and an induced subgraph if it also maps non-edges into non-edges. The
natural analogue of the induced (and also non-induced) removal lemma for ordered graphs was
established by Alon, Ben-Eliezer and Fischer [ABEF17]; see also [ABE20] for related results.

All of the above results build on the regularity lemma of Szemerédi [Sze75] or its appropriate
generalizations. Consequently, the lower bounds on δF (ε) supplied by these proofs are quite
poor. Even in the case of the original graph removal lemma, the current best known bound
is 1/δ ⩽ tower(O(log 1/ε)), as proved by Fox in [Fox11]. Here, tower(x) denotes a tower of x
exponents. On the other hand, in some special cases better bounds are known. This motivated
the natural question of characterizing the cases in which the removal lemma has polynomial
bounds, namely, when 1/δ can be taken as a polynomial function of 1/ε. By now there are
several results of this type. In the case of graphs, Alon [Alo02] showed that the F -removal
lemma has polynomial bounds if and only if F is bipartite. For the case of induced subgraphs,
a result of Alon and Shapira [AS06] tells us that the induced F -removal lemma does not have
polynomial bounds, unless |V (F )| = 2, or F ∈ {P3, P3, P4, C4, C4}, where Pk, Ck are the path
and cycle on k vertices, respectively. A polynomial bound in the case F = P3 is easy to show.
Alon and Fox [AF15] proved that the induced-P4-removal lemma has polynomial bounds as
well. The case F = C4 is still open, see [GS19, GS21] for the currently best known bounds.
The results of [AS05] and [GT21] completely characterize the k-uniform hypergraphs which
admit polynomial induced removal lemmas, for k ⩾ 3.

1.1. Polynomial induced removal lemma for ordered graphs

In the extended version of [ABEF17], Alon, Ben-Eliezer and Fischer proposed the problem of
finding ordered graph properties with polynomial induced removal lemmas. Addressing this
question, we give a complete characterization of ordered graphs F for which the induced-F -
removal lemma has polynomial bounds. It turns out that there is essentially only one such
nontrivial ordered graph. For an ordered graph G, we denote by G the complement of G,
and by G← the ordered graph obtained by reversing the vertex order. It is easy to see that the
(induced/non-induced) removal lemma forF is equivalent to the (induced/non-induced) removal
lemma forF←. In the induced case, there is also symmetry with respect to complementation: the
induced removal lemma forF is equivalent to the induced removal lemma forF . In the rest of the
paper we will denote by D the ordered graph with vertices x < y < z and edges {x, y}, {x, z}.

Theorem 1.1. For an ordered graph F , the induced F -removal lemma has polynomial bounds
if and only if |V (F )| = 2, or F ∈

{
D,D←, D,D←

}
.

A graph is chordal if it contains no induced cycle of length at least 4. It is well known that
a graph is chordal if and only if it has a vertex ordering such that the resulting ordered graph is
induced D-free (such an ordering is called a perfect elimination order), see e.g. [FG65]. It was
recently proved by de Joannis de Verclos [dV19] that the property of being chordal also admits a
polynomial removal lemma. Despite the similarity with Theorem 1.1, it is unclear whether there
are any implications between these two results, as the ordering imposes additional structure.
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1.2. Polynomial (non-induced) removal lemma for ordered graphs

We also consider the non-induced variant of the previous theorem. In the case of directed graphs
(digraphs), Alon and Shapira [AS04] gave a complete characterization of digraphs F such that
the F -removal lemma has polynomial bounds. This result can be stated as follows. A homo-
morphism from a digraph G1 to a digraph G2 is a function φ : V (G1) → V (G2) that satisfies
(u, v) ∈ E(G1) ⇒ (φ(u), φ(v)) ∈ E(G2). The core of a digraph G is the smallest subgraph K
for which there is a homomorphism from G to K. Then, for a connected digraph F , the F -
removal lemma has polynomial bounds if and only if the core of F is an oriented tree or a
directed cycle of length 2.

In a highly parallel manner, we propose a conjecture characterizing ordered graphs which
admit a polynomial removal lemma, and prove its “only if” part. A homomorphism between
ordered graphs is a graph homomorphism which also preserves the vertex orderings. For-
mally, for two ordered graphs G1, G2, a map φ : V (G1) → V (G2) is a homomorphism if
{φ(x), φ(y)} ∈ E(G2) for every {x, y} ∈ E(G1), and φ(x) ⩽ φ(y) for every x, y ∈ V (G1)
satisfying x ⩽ y. Observe that for such φ, the preimage of each vertex of G2 is an interval in G1

which spans an independent set. For an ordered graph G, the core of G, denoted by core(G), is
the smallest subgraph of G (in terms of number of vertices) to which there is a homomorphism
from G. In the preliminaries, we will show that the core is well defined, that is, the smallest such
subgraph is unique up to isomorphism. We prove that if core(F ) is not a forest, then F has no
polynomial removal lemma.

Theorem 1.2. Let F be an ordered graph such that core(F ) is not a forest, let ε > 0 be suffi-
ciently small, and let n ⩾ n0(ε). Then there exists an ordered graph G on n vertices such that G
contains at most εΩ(log 1/ε)nv(F ) copies of F , but one has to remove at least εn2 edges to destroy
all copies of F in G.

Unfortunately, we were unable to prove that the converse also holds in general, and leave it
as an interesting open problem.

Conjecture 1.3. For an ordered graph F , if core(F ) is a forest, then the F -removal lemma has
polynomial bounds.

In order to prove Conjecture 1.3, it is enough to show that it holds when F itself is a forest.
Indeed, let K = core(F ) and suppose that the K-removal lemma has polynomial bounds. Let
us assume that V (K) = [k] and that the vertex order on V (K) is given by the natural order
on [k]. Let si be the number of vertices of F mapped to i ∈ [k] under some fixed homomor-
phism φ : F → K. Let G be an ordered graph which is ε-far from being F -free. Then G is also
ε-far from beingK-free (becauseK is a subgraph ofF ), and henceG contains at least δnk copies
of K, where δ = δK(ε) = poly(ε). Consider the k-uniform hypergraph on V (G) whose edges
correspond to copies of K. It is easy to show, using a standard Kővári-Sós-Turán-type argument,
that this hypergraph contains at least (1 − o(1))δs1···skns1+···+sk = poly(ε)nv(F ) copies of the
complete k-uniform hypergraph K

(k)
s1,...,sk in which the side of size si appears before the side of

size sj for every 1 ⩽ i < j ⩽ k. Every such copy of K(k)
s1,...,sk contains a copy of F in G.

We remark that ordered forests are quite hard to analyze in many contexts, so it is not sur-
prising that the corresponding question about removal lemmas is also difficult. For example, the
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extremal numbers (also known as Turán numbers) of ordered forests are already not understood.
This problem is the subject of the celebrated Füredi-Hajnal conjecture [FH92], see [KTTW19]
for the state of the art.

Let us note that the results of this paper can also be stated in the language of property testing.
A tester for a graph property P is a randomized algorithm which, given an input graph G and
an approximation parameter ε, distinguishes between the case that G satisfies P and the case
that G is ε-far from P , with success probability at least 2

3
in both cases. Here, G being ε-far

from P means that one must add/delete at least εn2 edges to turn G into a graph satisfying P ,
where n = |V (G)|. The algorithm works by sampling vertices of G and making edge-queries
on pairs of sampled vertices. The measure of complexity, called query complexity, is the total
number of queries that the algorithm makes. It turns out that many properties can be tested with
query complexity which depends only on ε, i.e., is independent of the size of the input graph.
This is in particular true for every hereditary property, as proved in [AS08] for (unordered)
graphs, and in [ABEF17] for ordered graphs. A tester has one-sided error if it outputs the correct
answer with probability 1 in the case that G satisfies P . It is not hard to see that the optimal
query complexity of a one-sided-error tester for (induced) F -freeness is essentially given by the
bounds for the (induced) F -removal lemma. Hence, Theorem 1.1 implies that in ordered graphs,
induced F -freeness can be tested with query complexity poly(1/ε) with one-sided error if and
only if |V (F )| = 2 or F ∈

{
D,D←, D,D←

}
. For more on property testing, we refer the reader

to the book of Goldreich [Gol17].

1.3. Preliminaries

Given an (ordered) graph G, we denote by v(G) its number of vertices, and by e(G) its number
of edges. Also, if A,B ⊆ V (G) are disjoint, then EG(A,B) = E(A,B) is the set of edges
between A and B, and eG(A,B) = e(A,B) = |E(A,B)|. Moreover, Ē(G) is the set of non-
edges of G, ē(G) = |Ē(G)|, ĒG(A,B) = Ē(A,B) is the set of non-edges between A and B,
and ēG(A,B) = ē(A,B) = |Ē(A,B)| = |A||B| − e(A,B).

For a vertex v and a set X , we denote by NX(v) the neighbourhood of v inside X . We denote
by d(X) = e(X)/

(|X|
2

)
the density of X , where e(X) is the number of edges inside X . We say

that a graph is a disjoint union of cliques if its vertex set partitions into cliques with no edges
between them (equivalently, if the graph has no induced path with three vertices).

Given a set X and a linear ordering ⩽ on X , an interval in X is a set of the form
{x ∈ X : a ⩽ x ⩽ b} for some a, b ∈ X . We say that an (ordered) graph G on n vertices
is ε-far from an (ordered) graph property P , if one has to add/delete at least εn2 edges in G in
order to turn it into a graph which has property P .

As promised in the introduction, let us show that core(G) is well defined. LetK be a smallest
subgraph ofG to which there is a homomorphism fromG. Observe that every homomorphism φ
from K to itself is surjective and hence bijective; indeed, otherwise one could compose φ with
a homomorphism from G to K to obtain a homomorphism from G to a proper subgraph of K,
in contradiction to the minimality of K. It follows that every homomorphism from K to itself is
an isomorphism. Since a homomorphism must also preserve the vertex order, it follows that the
only homomorphism from K to itself is the identity map. An ordered graph K with the property
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that every homomorphism from K to itself is the identity will be called a core. Note that K is
a core if and only if core(K) = K.

If K1, K2 are two smallest subgraphs of G to which there are homomorphisms φi : G → Ki,
then φ1|V (K2) and φ2|V (K1) are both surjective, which implies that K1 and K2 are isomorphic.

2. Polynomial bounds for the induced-D-removal lemma

In this section we prove the positive direction of Theorem 1.1. By symmetry with respect to
complementation and order reversal, it is enough to prove the following:

Theorem 2.1. There exists c > 0 such that the following holds. Let G be an n-vertex ordered
graph which is ε-far from being induced D-free. Then G contains at least Ω(εc) · n3 induced
copies of D.

We prepare the proof with a few lemmas. One of our key lemmas shows that an ordered
graph with few induced copies of D can be partitioned into a constant number of almost-cliques
and one additional set which contains few edges. In order to prove this, we first show that if G is
a dense ordered graph containing few copies of D, then G contains a very dense subset of linear
size.

Lemma 2.2. Let G be an n-vertex ordered graph and let γ, δ > 0. If e(G) ⩾ γn2 and G
contains at most δγ3n3/32 induced copies of D, then there exists X ⊆ V (G) with |X| ⩾ γn/2
and d(X) ⩾ 1− δ.

Proof. For each v ∈ V (G), let Nv be the forward neighbourhood of v, namely, the set of ver-
tices u > v such that {u, v} ∈ E(G). Since

∑
v∈V (G) |Nv| = e(G) ⩾ γn2, there is a set U of

at least γn/2 vertices v with |Nv| ⩾ γn/2. If there exists v ∈ U such that d(Nv) ⩾ 1− δ, then
we are done. Otherwise, each v ∈ U is the first vertex in at least δ

(|Nv |
2

)
⩾ δ
(
γn/2
2

)
⩾ δγ2n2/16

induced copies of D. Altogether, this gives γn/2 · δγ2n2/16 = δγ3n3/32 induced copies of D,
a contradiction.

Lemma 2.3. Let G be an n-vertex ordered graph and let γ, δ > 0. If G contains at most
δγ3n3/32 induced copies of D, then there is a partition V (G) = X1 ∪ · · · ∪ Xm ∪ Y with the
following properties:

1. |Xi| ⩾ γn/2 and d(Xi) ⩾ 1− δ for i = 1, . . . ,m.

2. e(Y ) ⩽ γn2.

Proof. Set V0 = V (G). For i ⩾ 0, if e(Vi) ⩽ γn2 then set Y = Vi and stop. Otherwise, set
β := γn2/|Vi|2 and apply Lemma 2.2 to G[Vi] with parameters β (instead of γ) and δ. Note
that δβ3|Vi|3/32 = δγ3n6/(32|Vi|3) ⩾ δγ3n3/32. Hence, the number of induced copies of D
in G[Vi] is at most δβ3|Vi|3/32, as required by Lemma 2.2. Therefore, there is a set Xi+1 ⊆ Vi

satisfying d(Xi+1) ⩾ 1− δ and |Xi+1| ⩾ β|Vi|/2 = γn2

2|Vi| ⩾ γn/2. Set Vi+1 = Vi \Xi+1. This
process eventually terminates, resulting in the desired sequence X1, . . . , Xm, Y .
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Let G be an ordered graph. For disjoint A,B ⊆ V (G), we write A < B to mean that a < b
for all a ∈ A, b ∈ B. A subset A′ ⊆ A is called a suffix of A if for all a1, a2 ∈ A, if a1 ∈ A′ and
a1 < a2 then a2 ∈ A′. Similarly, A′ is a prefix of A if for all a1, a2 ∈ A, if a2 ∈ A′ and a1 < a2
then a1 ∈ A′.

We now describe the structure of an induced D-free graph consisting of two cliques. Lemma
2.4 handles the case when one of the cliques precedes the other one. Lemma 2.5 then takes care
of the general case.

Lemma 2.4. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques with A < B.
Then G[A ∪B] is induced D-free if and only if for every b ∈ B, NA(b) is a suffix of A.

Proof. Using that A and B are cliques, if G contains three vertices x < y < z such that
{x, y}, {x, z} ∈ E(G) and {y, z} ̸∈ E(G), then we must have x, y ∈ A and z ∈ B. For a
given z, the existence of such x and y is equivalent to the statement that NA(z) is not a suffix
in A.

Lemma 2.5. LetG be an ordered graph and letA,B ⊆ V (G) be disjoint cliques. ThenG[A∪B]
is induced D-free if and only if there is a partition V (G) = I ∪ J into intervals with I < J ,
such that the following holds:

1. The bipartite graph between A ∩ I and B ∩ I is empty.

2. The bipartite graph between A ∩ J and B ∩ J is complete, i.e. (A ∪B) ∩ J is a clique.

3. For every b ∈ B ∩ J , NA∩I(b) is a suffix of A ∩ I .

4. For every a ∈ A ∩ J , NB∩I(a) is a suffix of B ∩ I .

Proof. We first check that if there is a partition V (G) = I ∪ J satisfying 1-4 then G[A ∪ B] is
induced D-free. Suppose that x < y < z form an induced copy of D. Without loss of generality,
suppose that x ∈ A. If x ∈ J then y, z ∈ J , but (A ∪ B) ∩ J is a clique, contradicting that
{y, z} /∈ E(G). So we must have x ∈ I . If z ∈ I , then y ∈ I , but I∩(A∪B) is the disjoint union
of cliques by item 1, so G[I ∩ (A ∪ B)] cannot contain an induced copy of D. Hence, z ∈ J .
But then y ∈ I by item 2. This also implies y ∈ A, as otherwise {x, y} is a non-edge by item 1.
It now follows that z ∈ B, as {y, z} is a non-edge and A is a clique. However, this setup runs
into a contradiction with item 3, so x, y, z cannot induce a copy of D.

Now we show that if G[A ∪ B] is induced D-free then there is a partition V (G) = I ∪ J
satisfying 1-4. Take J to be a maximal suffix of V (G) with the property that the bipartite graph
between A ∩ J and B ∩ J is complete. So item 2 holds by definition. If J = V (G) then we
are done. Otherwise, setting I = V (G) \ J , we show that the bipartite graph between A ∩ I
and B ∩ I is empty. Let x be the largest element of (A ∪ B) ∩ I , and suppose without loss
of generality that x ∈ A. By the maximality of J , there is y ∈ B ∩ J with {x, y} /∈ E(G).
Suppose, for contradiction, that {a, b} ∈ E(G) for some a ∈ A ∩ I , b ∈ B ∩ I . Assume first
that a < b. If {x, b} /∈ E(G) then a, b, x form an induced copy of D, and if {x, b} ∈ E(G)
then b, x, y form an induced copy of D. Assume now that b < a. If {a, y} /∈ E(G) then b, a, y
form an induced copy of D, and if {a, y} ∈ E(G) then a, x, y form an induced copy of D. This
proves item 1. Items 3-4 follow from Lemma 2.4.
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We now prove the removal versions of Lemmas 2.4 and 2.5.

Lemma 2.6. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques with A < B.
For γ > 0, if G[A ∪ B] contains at most γ2|A|2|B|/4 induced copies of D, then G[A ∪ B] can
be made induced D-free by adding/deleting at most γ|A||B| edges between A and B.

Proof. Fix any b ∈ B. If b has at most γ|A|/2 non-neighbours in A, then add all edges be-
tween b and A. Suppose now that b has at least γ|A|/2 non-neighbours in A, and let Ab be a
suffix of A such that b has exactly γ|A|/2 non-neighbours in Ab. Observe that if a ∈ A \ Ab

is a neighbour of b and a′ ∈ Ab is a non-neighbour of b, then a, a′, b span an induced D.
So, letting db := |NA\Ab

(b)|, we see that b participates in at least db · γ|A|/2 induced copies
of D of this form. Summing over all b ∈ B, we get γ|A|/2 ·

∑
b∈B db induced copies of D.

Hence, by assumption, γ|A|/2 ·
∑

b∈B db ⩽ γ2|A|2|B|/4 and so
∑

b∈B db ⩽ γ|A||B|/2. For
each b ∈ B, add all edges between b and Ab and delete all edges between b and A \ Ab. This
way we make at most γ|A|/2 + db edge changes for each b ∈ B, resulting in a total of at most
γ|A||B|/2 +

∑
b∈B db ⩽ γ|A||B| edge changes. By construction, after these changes NA(b) is

a suffix of A for every b ∈ B. Hence, G[A ∪B] is induced D-free by Lemma 2.4.

Lemma 2.7. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques. Let γ > 0

and suppose that |A|, |B| ⩾ 8/γ. If G[A∪B] contains at most γ2

64
|A||B|min{|A|, |B|} induced

copies of D, then G[A ∪ B] can be made induced D-free by adding/deleting at most γ|A||B|
edges between A and B.

Proof. If ē(A,B) ⩽ γ|A||B| then add all edges between A and B to make G[A ∪ B] a clique
and hence induced D-free. Suppose now that ē(A,B) > γ|A||B|. Let J be the minimal suffix
of V (G) with the property that ē(A ∩ J,B ∩ J) ⩾ γ|A||B|/8. By minimality,

ē(A ∩ J,B ∩ J) ⩽ γ|A||B|/8 + max{|A|, |B|} ⩽ γ|A||B|/4.

Let I = V (G) \ J . If {a1, b1} ∈ E(A ∩ I, B ∩ I) and {a2, b2} ∈ Ē(A ∩ J,B ∩ J), then
G[{a1, a2, b1, b2}] contains an induced copy of D; this follows from Lemma 2.5 applied to
{a1, a2}, {b1, b2}. Each induced copy of D is counted at most max{|A|, |B|} times this way.
Hence, G contains at least

e(A ∩ I, B ∩ I) · ē(A ∩ J,B ∩ J)

max{|A|, |B|}
⩾

e(A ∩ I, B ∩ I) · γ|A||B|
8max{|A|, |B|}

induced copies ofG. Therefore, by our assumption on the number of induced copies ofD, we get

e(A ∩ I, B ∩ I) ⩽ γ|A||B|/8.

Make the bipartite graph betweenA∩J andB∩J complete, and the bipartite graph betweenA∩I
and B ∩ I empty. This requires at most e(A ∩ I, B ∩ I) + ē(A ∩ J,B ∩ J) ⩽ γ|A||B|/2 edge
changes altogether. Let s be the number of edge changes required to make G[(A∩ I)∪ (B ∩J)]
induced D-free. By Lemma 2.6, applied to the two cliques A ∩ I < B ∩ J and with parameter

β :=
s

|A ∩ I||B ∩ J |
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instead of γ, there are at least

β2

4
· |A ∩ I|2 · |B ∩ J | = s2

4|B ∩ J |

induced copies of D in G. By assumption, s2

4|B∩J | ⩽ γ2|A|2|B|/64, and hence s ⩽ γ|A||B|/4.
Therefore,G[(A∩I)∪(B∩J)] can be made inducedD-free by adding/deleting at most γ|A||B|/4
edges. Symmetrically, the same is true for G[(B∩I)∪(A∩J)]. With these changes and the ones
done in the previous step, the total number of edge additions/deletions is at most γ|A||B|. After
the changes, items 1-4 of Lemma 2.5 are satisfied, and hence G[A ∪B] is induced D-free.

For an ordered set V and disjoint subsets A1, . . . , Ak ⊆ V , an (A1, . . . , Ak)-sequence is a
sequence v1 < v2 < · · · < vk of elements of V with vi ∈ Ai. The next lemma we need is a
removal lemma for ordered sequences, which follows from the main result of [RR21].

Lemma 2.8. Let k ⩾ 1, then there exists ck > 0 such that the following holds. Let V be an
ordered set of size n and let A1, . . . , Ak ⊆ V be disjoint subsets. For ε > 0, if the number of
(A1, . . . , Ak)-sequences is at most ckεknk, then there is a set S ⊆ V , |S| ⩽ εn, which intersects
every (A1, . . . , Ak)-sequence.

What was actually proved in [RR21] is that if a sample of q = O(k/ε) elements of V , taken
uniformly at random and independently, contains no (A1, . . . , Ak) sequence with probability
larger than 1

3
, then there is a set S ⊆ V , |S| ⩽ εn, which intersects every (A1, . . . , Ak)-sequence.

Observe that if the number of (A1, . . . , Ak)-sequences is N , then the probability that such a
sample contains an (A1, . . . , Ak)-sequence is at most (q/n)kN . Hence, if N ⩽ ckε

knk then this
probability is less than 2/3 (with an appropriate choice of ck), and Lemma 2.8 follows.

We now move on to the following lemma, which is one of the main ingredients in the proof
of Theorem 2.1.

Lemma 2.9. Let c = c3/64, where c3 is the constant defined in Lemma 2.8. Let G be an n-vertex
ordered graph with a vertex-partition V (G) = X1∪ · · · ∪Xm such that X1, . . . , Xm are cliques
and G[Xi ∪ Xj] is induced D-free for all i < j. Let γ > 0 and suppose that G has at most
cγ6n3/m15 induced copies of D. Then there is a set S ⊆ V (G), |S| ⩽ γn, and a partition of
V (G) \ S into intervals I1, . . . , It, t ⩽ 2m3, such that the following holds: for every 1 ⩽ j ⩽ t,
G[Ij] is a disjoint union of cliques, each of the form Ij ∩ (

⋃
i∈M Xi) for some M ⊆ [m].

Proof. For each 1 ⩽ i < j ⩽ m, Lemma 2.5 states that there is a partition V (G) = Ii,j ∪ Ji,j
into intervals such that the bipartite graph between Xi ∩ Ii,j and Xj ∩ Ii,j is empty, and the
bipartite graph between Xi ∩ Ji,j and Xj ∩ Ji,j is complete. Let I ′1, . . . , I ′s be the common
refinement of the partitions {Ii,j, Ji,j : 1 ⩽ i < j ⩽ m}. Then s ⩽

(
m
2

)
+ 1 ⩽ m2/2, as the

right endpoints of the intervals Ii,j together with the last vertex of V (G) are the right endpoints
of the intervals I ′1, . . . , I ′s. Observe that for each 1 ⩽ ℓ ⩽ s and 1 ⩽ i < j ⩽ m, the bipartite
graph between Xi ∩ I ′ℓ and Xj ∩ I ′ℓ is either complete or empty, because I ′ℓ ⊆ Ii,j or I ′ℓ ⊆ Ji,j .

Fix any 1 ⩽ ℓ ⩽ s. If |I ′ℓ| < γn/m2 then put all vertices of I ′ℓ into S. This puts at
most s · γn/m2 ⩽ γn/2 vertices in S altogether. Suppose now that |I ′ℓ| ⩾ γn/m2. We run the
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following process. If there are distinct 1 ⩽ i1, i2, i3 ⩽ m such that the number of (Xi1 , Xi2 , Xi3)-
sequences inside I ′ℓ is at least 1 and at most c3( γ

2m3 )
3|I ′ℓ|3, then use Lemma 2.8 to delete γ

2m3 · |I ′ℓ|
vertices from I ′ℓ and thus destroy all (Xi1 , Xi2 , Xi3)-sequences in I ′ℓ. Add the deleted vertices
to S and update I ′ℓ. Let I ′′ℓ ⊆ I ′ℓ be the interval at the end of the process. Note that each triple
i1, i2, i3 can only cause vertex-deletion once (because following this vertex-deletion, there are
no more (Xi1 , Xi2 , Xi3)-sequences in I ′ℓ). Hence, the total number of deleted vertices is at most
m3 · γ

2m3 · |I ′ℓ| =
γ
2
|I ′ℓ|. So |I ′′ℓ | ⩾ (1 − γ

2
)|I ′ℓ| ⩾ |I ′ℓ|/2 ⩾ γn/(2m2). Doing this step for every

1 ⩽ i ⩽ ℓ adds a total of at most γ/2 ·
∑s

ℓ=1 |I ′ℓ| ⩽ γn/2 vertices to S. Thus, the total number
of vertices in S at this point is at most γn.

Observe that after this step, for every triple of distinct 1 ⩽ i1, i2, i3 ⩽ m, either there are no
(Xi1 , Xi2 , Xi3)-sequences inside I ′′ℓ , or the number of these sequences is at least

c3

( γ

2m3

)3
|I ′′ℓ |3 ⩾ c3

( γ

2m3

)3
·
( γn

2m2

)3
= cγ6n3/m15.

For each 1 ⩽ i ⩽ m, let J ℓ
i be the minimal subinterval of I ′′ℓ which contains the set Xi ∩ I ′′ℓ .

By minimality, the first and last elements of J ℓ
i belong to Xi. Now take the common refinement

of the intervals J ℓ
1, . . . , J

ℓ
m, giving a partition of I ′′ℓ into at most 2m + 1 intervals. Doing this

for every 1 ⩽ ℓ ⩽ s, we get a partition I1, . . . , It of V (G) \ S into t ⩽ s · (2m + 1) ⩽
m2/2 · (2m + 1) ⩽ 2m3 intervals. For 1 ⩽ ℓ ⩽ s and 1 ⩽ j ⩽ t with Ij ⊆ I ′′ℓ , observe that if
Xi ∩ Ij ̸= ∅, then Ij ⊆ J ℓ

i , which means that there is an element of Xi ∩ I ′′ℓ which is smaller
or equal to the first element of Ij (indeed, the first element of J ℓ

i satisfies this), as well as an
element of Xi ∩ I ′′ℓ which is bigger or equal to the last element of Ij (indeed, the last element of
J ℓ
i satisfies this).

Let us show that I1, . . . , It have the property stated in the lemma. Fix any 1 ⩽ j ⩽ t.
By construction, there is 1 ⩽ ℓ ⩽ s such that Ij is a subinterval of I ′′ℓ . Recall that for all
1 ⩽ i1 ̸= i2 ⩽ m, the bipartite graph between Xi1 ∩I ′′ℓ and Xi2 ∩I ′′ℓ is either complete or empty.

Note that if G[Ij] is not a disjoint union of cliques, then there are distinct 1 ⩽ i1, i2, i3 ⩽ m
such that Xi1 , Xi2 , Xi3 all intersect Ij , and the bipartite graphs (Xi1 ∩ Ij, Xi2 ∩ Ij) and (Xi1 ∩
Ij, Xi3 ∩ Ij) are complete, and the bipartite graph (Xi2 ∩ Ij, Xi3 ∩ Ij) is empty. But then we also
have that the bipartite graphs (Xi1 ∩ I ′′ℓ , Xi2 ∩ I ′′ℓ ) and (Xi1 ∩ I ′′ℓ , Xi3 ∩ I ′′ℓ ) are complete, and the
bipartite graph (Xi2 ∩ I ′′ℓ , Xi3 ∩ I ′′ℓ ) is empty. Since Xi1 intersects Ij , there exists xi1 ∈ Xi1 ∩ I ′′ℓ
such that xi1 is smaller or equal to the first element of Ij . Similarly, since Xi2 and Xi3 intersect
Ij , there exist xi2 ∈ Xi2 ∩ I ′′ℓ and xi3 ∈ Xi3 ∩ I ′′ℓ such that xi2 , xi3 are bigger or equal to the
last element of Ij . Without loss of generality, suppose that xi2 < xi3 . Then (xi1 , xi2 , xi3) is a
(Xi1 , Xi2 , Xi3)-sequence contained in I ′′ℓ . By construction, there are at least cγ6n3/m15 such
sequences. Now observe that each such sequence spans an induced copy of D, contradicting the
assumption of the lemma. This completes the proof.

In the next lemma we prove a D-removal lemma for graphs which can be partitioned into
two intervals, each of which induces a disjoint union of cliques. An important feature is that
edge changes are only made between the intervals, not inside them, so that each interval remains
a disjoint union of cliques after the changes.
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Lemma 2.10. Let G be an ordered graph, let I, J ⊆ V (G) be disjoint intervals with I < J , and
suppose that each of the graphs G[I], G[J ] is the disjoint union of at most m cliques. Let γ > 0,
and suppose that G[I ∪J ] contains at most γ15

240m9 |I||J |min{|I|, |J |} induced copies of D. Then
G[I∪J ] can be made induced D-free by adding/deleting at most γ|I||J | edges between I and J .

Proof. Suppose that G[I] is the disjoint union of cliques A1, . . . , Ak and G[J ] is the disjoint
union of cliques B1, . . . , Bℓ. By assumption, k, ℓ ⩽ m. We will make G[I ∪ J ] induced D-free
in two steps.

Step 1. Set

δ :=
γ6

216m3
.

Fix i ∈ [k] and j ∈ [ℓ] with |Ai| ⩾ γ|I|
4m

and |Bj| ⩾ γ|J |
4m

. Then δ2|Ai|2|Bj|/4 ⩾ γ15

240m9 |I|2|J |. By
assumption, the number of induced copies of D in G[Ai ∪ Bj] is at most δ2|Ai|2|Bj|/4. Apply
Lemma 2.6 to make G[Ai∪Bj] induced D-free with at most δ|Ai||Bj| edge changes. By Lemma
2.4, the neighbourhood in Ai of each vertex in Bj is now a suffix of Ai. Performing step 1 for
all pairs i ∈ [k], j ∈ [ℓ] requires at most δ|I||J | edge changes altogether.

Step 2. For every i ∈ [k] and j ∈ [ℓ], delete all edges between Ai and Bj if either e(Ai, Bj) ⩽
γ|Ai||Bj|/4 or |Ai| ⩽ γ|I|

4m
or |Bj| ⩽ γ|J |

4m
. This step requires at most γ|I||J |/4 + 2m · γ|I||J |

4m
=

3γ|I||J |/4 edge changes overall. So together with step 1, the total number of edge changes is at
most γ|I||J |.

We claim that after step 2, G[I ∪ J ] is induced D-free. Suppose that this is not the case.
Note that G[I] and G[J ] are induced D-free because each is a disjoint union of cliques. If an
induced copy of D has two vertices in I and one in J , then it must be contained in Ai ∪ Bj for
some i, j, since A1, . . . , Ak are cliques with no edges between them. However, in steps 1 and 2
we made sure that G[Ai ∪ Bj] is induced D-free for all i, j, so this is impossible. Hence, the
induced D-copy must be of the form a, b, b′ with a ∈ Ai, b ∈ Bj and b′ ∈ Bj′ for some i ∈ [k],
j, j′ ∈ [ℓ]. Since a is adjacent to b and b′, we did not make any edge changes in the bipartite
graphs (Ai, Bj) and (Ai, Bj′) in step 2. Hence, it must be the case that

|Ai| ⩾
γ|I|
4m

, |Bj|, |Bj′| ⩾
γ|J |
4m

(2.1)

and
e(Ai, Bj) ⩾

γ|Ai||Bj|
4

, e(Ai, Bj′) ⩾
γ|Ai||Bj′ |

4
. (2.2)

Since b and b′ are not adjacent, j ̸= j′. There are no edges between Bj and Bj′ . Recall that the
neighbourhood in Ai of each vertex in Bj ∪Bj′ is a suffix of Ai. This means that if a1, a2 ∈ Ai

and a1 < a2, then NBj
(a1) ⊆ NBj

(a2) and NBj′
(a1) ⊆ NBj′

(a2). Let A′ be the set of the
last γ|Ai|/8 elements of Ai. Due to (2.2), there exist at least γ|Ai|/8 vertices a′ ∈ A with
|NBj

(a′)| ⩾ γ|Bj|/8. Since NBj
(a1) ⊆ NBj

(a2) for a1 < a2, we must have that |NBj
(a′)| ⩾

γ|Bj|/8 for every a′ ∈ A′. Similarly, |NBj′
(a′)| ⩾ γ|Bj′|/8 for every a′ ∈ A′. Every a′ ∈ A
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forms an induced copy of D with every pair in NBj
(a′)×NBj′

(a′). This gives a total of at least

|A′| · γ|Bj|
8

· γ|Bj′ |
8

=
γ3

29
· |Ai| · |Bj| · |Bj′| ⩾

γ3

29
· γ|I|
4m

·
(
γ|J |
4m

)2

=
γ6

215m3
|I||J |2 = 2δ|I||J |2

induced copies of D, each having one vertex in I and two in J . The at most δ|I||J | edges we
added/deleted in step 1 can participate in at most δ|I||J |2 of these copies. Hence, at least δ|I||J |2
must be present in the original graph, a contradiction to the assumption of the lemma.

In the following lemma we show that under certain conditions, if there are few induced D-
copies of a certain type, then they can be destroyed by deleting few vertices (rather than by
adding/deleting edges). This is useful because vertex deletion, as opposed to edge changes,
cannot create new induced copies.

Lemma 2.11. Let G be an ordered graph and let A,B,C ⊆ V (G) be disjoint cliques with
A < B < C, whose union is V (G). Suppose that G[A ∪ B], G[A ∪ C] and G[B ∪ C] are
induced D-free. For s ⩾ 1, if G[A∪B∪C] has at most s3/12 induced copies of D, then there is
a set S of at most 3s vertices whose deletion destroys every induced copy of D in G[A∪B ∪C].

Proof. Clearly, if G contains a copy of D with vertices a < b < c, then a ∈ A, b ∈ B, c ∈ C.
Let (a1, b1, c1), . . . , (ar, br, cr) be a maximum collection of vertex-disjoint induced copies of D
with ai ∈ A, bi ∈ B, ci ∈ C (i = 1, . . . , r). It is enough to show that r ⩽ s, because then
S = {ai, bi, ci : i ∈ [r]} suffices. Assume without loss of generality that a1 < · · · < ar. By
Lemma 2.4, the neighbourhood of each vertex of B ∪ C in A is a suffix of A (as G[A ∪B] and
G[A ∪ C] are induced D-free). For each 1 ⩽ i ⩽ r, ai is adjacent to bi and ci. Hence, for each
pair of indices 1 ⩽ j ⩽ i ⩽ r, ai is adjacent to bj and cj .

For each 1 ⩽ i ⩽ r, {bi, ci} /∈ E(G). This implies that for every 1 ⩽ j < k ⩽ r, at least
one of the pairs {bj, ck}, {cj, bk} must be a non-edge. Indeed, otherwise bj, cj, bk, ck span an
induced 4-cycle, which must contain an induced copy of D, contradicting the assumption that
G[B ∪C] is induced D-free. We have shown that for every triple of indices 1 ⩽ j < k ⩽ i ⩽ r,
ai forms an induced copy of D with one of the pairs {bj, ck} or {cj, bk}. This gives a total of at
least

∑r
i=1

(
i
2

)
=
(
r+1
3

)
⩾ r3/12 induced copies of D. By the assumption of the lemma, r ⩽ s,

as required.

In the following lemma we prove a D-removal statement in the following setting. Suppose
that V (G) = X ∪ Y , Y is independent, and G[X] is induced D-free. Then one can efficiently
destroy the remaining induced D-copies by deleting edges between X and Y .

Lemma 2.12. Let G be an ordered graph and let V (G) = X ∪ Y be a vertex partition such
that Y is an independent set and G[X] is induced D-free. Let γ > 0 with |Y | ⩾ 4/γ. Suppose
that G has at most γ2

32
|X||Y |min{|X|, |Y |} induced copies of D. Then G can be made induced

D-free by deleting at most γ|X||Y | edges between X and Y .

Proof. We delete edges in two steps. For each x ∈ X , let dx be the number of y ∈ Y , y > x,
such that {x, y} ∈ E(G). Let e :=

∑
x∈X dx be the number of edges in which the first vertex is

in X and the second in Y . We claim that e ⩽ γ|X||Y |/2. If e ⩽ 2|X| then this holds because
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|Y | ⩾ 4/γ by assumption. Suppose that e ⩾ 2|X|. Observe that as Y is an independent set,
each x participates in

(
dx
2

)
induced copies of D, in which the other two vertices are from Y . By

using our assumption on the one hand and Jensen’s inequality on the other, we get

γ2

32
|X||Y |2 ⩾

∑
x∈X

(
dx
2

)
⩾ |X|

(
e/|X|
2

)
⩾

e2

4|X|
,

where the last inequality uses e ⩾ 2|X|. So indeed e ⩽ γ|X||Y |/2. Delete all edges in which
the first vertex is in X and the second in Y . This destroys all induced D-copies in which the first
vertex is in X (since G[X] is induced D-free by assumption).

Next, for each y ∈ Y , let Ny ⊆ X be the set of all x ∈ X , x > y, with {x, y} ∈ E(G). Let
My be a largest matching of non-edges insideNy. Observe that for every {x1, x2}, {x3, x4}∈My,
at least one of the pairs {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4} must be a non-edge. Indeed, oth-
erwise x1, x2, x3, x4 span an induced 4-cycle, which must contain an induced copy of D, in
contradiction to the assumption that G[X] is induced D-free. Note that y forms an induced
D-copy with every non-edge inside Ny. Hence, y is part of at least |My| +

(|My |
2

)
⩾ |My |2

2
in-

duced D-copies, in which the other two vertices are from X . Using our assumption and Jensen’s
inequality, we get

γ2

32
|X|2|Y | ⩾

∑
y∈Y

|My|2

2
⩾

|Y |
2

·

(
1

|Y |
∑
y∈Y

|My|

)2

=

(∑
y∈Y |My|

)2
2|Y |

,

Hence
∑

y∈Y |My| ⩽ γ|X||Y |/4. For each y ∈ Y , delete the edges between y and x1, x2 for
every {x1, x2} ∈ My. By the choice of My, after this step the set {x ∈ X : x > y, {x, y} ∈
E(G)} is a clique. Hence, this step destroys all induced D-copies in which the first vertex is
in Y (recall that Y is an independent set). The number of edge deletions in this second step is
2
∑

y∈Y |My| ⩽ γ|X||Y |/2. Hence, the total number of edges deleted is at most γ|X||Y |.

We are finally in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We may and will assume that n is larger than some suitable polynomial
function of 1/ε. Set

ε1 :=
ε5

1000
,

ε2 :=
ε3 · ε361
2100

,

ε3 := min

{
c · ε6 · ε151

240
,

ε181 · ε182
2100

}
,

and
δ :=

ε23 · ε31
512

.

Here, c is the constant from Lemma 2.9. We show that if G contains less than N := δε31n
3/32

induced copies of D, then we can make G induced D-free by adding/deleting at most εn2 edges.
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First, apply Lemma 2.3 with parameters γ = ε1 and δ. As G contains less than δε31n
3/32

induced copies of D, there exists a partition V (G) = X1∪· · ·∪Xm∪Y satisfying the following
properties.

1. |Xi| ⩾ ε1n/2 and d(Xi) ⩾ 1− δ for i ∈ [m],

2. e(Y ) ⩽ ε1n
2.

Note that m ⩽ 2/ε1. Let X = X1 ∪ · · · ∪Xm. If X = ∅, then we can make G induced D-free
by deleting all the edges, which is at most ε1n2 ⩽ εn2 changes. So we can assume that X ̸= ∅,
which implies that |X| ⩾ ε1n/2. We will modify G in 6 steps.

Step 1. Make X1, . . . , Xm cliques and Y an independent set. This requires at most
δ ·
∑m

i=1

(|Xi|
2

)
⩽ δ

(|X|
2

)
⩽ δ|X|2/2 edge changes inside X := X1 ∪ · · · ∪ Xm, and at

most ε1n2 edge changes inside Y . Set K1 := δ|X|2/2 + ε1n
2. Denote the resulting graph

by G1. Note that every modified edge participates in at most n induced copies of D, and in
at most |X| induced copies of D which are contained in X . Hence, G1[X] contains at most
M1 = N + δ|X|3/2 < δ|X|3 induced copies of D.

Step 2. For every 1 ⩽ i < j ⩽ m, make G1[Xi∪Xj] induced D-free. By Lemma 2.7, this can
be done by at most ε3|Xi||Xj| edge changes. Indeed, otherwise G1[Xi ∪Xj] contains at least

ε23
64

|Xi||Xj|min{|Xi|, |Xj|} ⩾
ε23
64

·
(ε1n

2

)3
= δn3

induced copies of D, contradiction. Executing these changes for all pairs 1 ⩽ i < j ⩽ m
requires adding/deleting at most ε3

(|X|
2

)
⩽ ε3n

2/2 =: K2 edges altogether. Let G2 be the
resulting graph. Note that G2[X] contains at most M2 = M1 + ε3|X|3/2 < ε3|X|3 induced
copies of D.

Let us now apply Lemma 2.9 to G2[X] with parameter γ = ε/12. Note that

c
( ε

12

)6 |X|3

m15
⩾ c

( ε

12

)6 |X|3

(2/ε1)15
⩾ ε3|X|3 > M2.

Hence, G2[X] contains at most c
(

ε
12

)6 |X|3
m15 induced copies of D, meaning that the condition of

Lemma 2.9 is satisfied. Therefore, there is a set S ⊆ X of size at most εn/12 and a partition
of X \ S into t ⩽ 2m3 ⩽ 16/ε31 intervals I1, . . . , It such that for every j ∈ [t], G2[Ij] is the
disjoint union of cliques, each clique of the form Ij ∩ (

⋃
i∈M Xi) for some M ⊂ [m]. It follows

that G2[Ij] is induced D-free. From this point on, we will make no edge changes inside the sets
I1, . . . , It, so this property will continue to hold.

Step 3. We will make G2[Ii ∪ Ij] induced D-free for every 1 ⩽ i < j ⩽ t, as follows. If
|Ii| or |Ij| is smaller than ε2|X|

4t
, then delete all edges between Ii and Ij . Doing this for all such

pairs 1 ⩽ i < j ⩽ t requires at most t · ε2|X|
4t

· |X| = ε2|X|2
4

edge changes altogether. Now fix a
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pair 1 ⩽ i < j ⩽ t with |Ii|, |Ij| ⩾ ε2|X|
4t

. Apply Lemma 2.10 to Ii, Ij with parameter γ = ε2.
We have
ε152

240m9
|Ii||Ij|min{|Ii|, |Ij|} ⩾

ε152
240m9

(
ε2|X|
4t

)3

⩾
ε182

240(2/ε1)9(64/ε31)
3
|X|3 ⩾ ε3|X|3 > M2

so the number of induced copies of D in G[Ii∪ Ij] satisfies the required condition of the lemma.
Therefore, we can make G2[Ii ∪ Ij] induced D-free by adding/deleting at most ε2|Ii||Ij| edges
between Ii and Ij . Altogether, in step 3 we make at most

ε2|X|2/4 + ε2
∑

1⩽i<j⩽t

|Ii||Ij| ⩽ ε2|X|2/4 + ε2

(
|X|
2

)
⩽ 3ε2|X|2/4 =: K3

edge changes. Denote the resulting graph by G3. Note that the number of induced copies of D
in G3[X] is at most M3 = M2 + 3ε2|X|3/4 < ε2|X|3.

Step 4. Fix any 1 ⩽ j1 < j2 < j3 ⩽ t and 1 ⩽ i1, i2, i3 ⩽ m. Apply Lemma 2.11 to the
cliques Xi1 ∩ Ij1 , Xi2 ∩ Ij2 , Xi3 ∩ Ij3 with parameter s = εn

3m3t3
. The number of induced copies

of D in G3[(Xi1 ∩ Ij1) ∪ (Xi2 ∩ Ij2) ∪ (Xi3 ∩ Ij3)] is at most M3, and we have

s3

12
=

1

12
·
( εn

3m3t3

)3
⩾

1

12
·
(

εn

3 · (2/ε1)3(16/ε31)3

)3

> ε2n
3 > M3.

So the condition in Lemma 2.11 is satisfied. Therefore, there is a set Sj1,j2,j3,i1,i2,i3 of size
3s = εn

m3t3
which intersects each such induced D-copy. Add the elements of Sj1,j2,j3,i1,i2,i3 to S.

Doing this for every 1 ⩽ j1 < j2 < j3 ⩽ t and 1 ⩽ i1, i2, i3 ⩽ m increases the size of S by
at most

(
t
3

)
m3 · εn

m3t3
⩽ εn/6. Hence, after this step we have |S| ⩽ εn/12 + εn/6 = εn/4.

Observe that after step 4, there are no induced copies of D in G3[X \ S].

Step 5. Delete all edges touching the vertices in S. This requires at most |S|n ⩽ εn2/4 =: K5

edge changes. Note that if |Y | ⩽ εn/2, then by deleting all edges touching Y , of which there
are at most |Y |n ⩽ εn2/2, we make the graph induced D-free. Since the total number of edge
changes in all previous steps is at most K1 +K2 +K3 +K5 < 2ε1n

2 + εn2/4 ⩽ εn2/2, this
would contradict the assumption that G is ε-far from being induced D-free. Hence, |Y | ⩾ εn/2.
By similar reasoning, we may assume that |X \ S| ⩾ εn/2, since otherwise we may delete all
the at most εn2/2 edges touching X \ S and thus make the graph empty (recall that G3[Y ] is an
empty graph).

Step 6. Note that G3[(X \ S)∪ Y ] contains at most N + (K1 +K2 +K3)n ⩽ 2ε1n
3 induced

copies of D. We have

ε2

32
· |X \ S| · |Y | ·min{|X \ S|, |Y |} ⩾

ε2

32

(εn
2

)3
> 2ε1n

3,

hence, we can apply Lemma 2.12 with parameter γ = ε to make G3[(X \S)∪Y ] induced D-free
by changing at most ε|X \ S||Y | ⩽ εn2/4 =: K6 edges between X \ S and Y . This makes the
entire graph induced D-free. The overall number of edge changes in all steps is at most

K1 +K2 +K3 +K5 +K6 < εn2,
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contradicting the assumption that G is ε-far from being induced D-free. This completes the
proof.

3. Lower bounds

In this section we prove the “only if” part of Theorem 1.1, as well as Theorem 1.2. Two subgraphs
of a graph G will be called pair-disjoint if they share at most one vertex. We will use the obvious
fact that if G contains a collection of εn2 pairwise pair-disjoint (induced) copies of F , then G is
ε-far from being (induced) F -free. We need the following simple claim.

Lemma 3.1. For k ⩾ 2 and r ⩾ 2k, there is a collection R ⊆ [r]k, |R| ⩾ r2/4, such that any
two k-tuples in R coincide on at most one coordinate.

Proof. Let p be a prime such that r/2 <p⩽r, which exists by Bertrand’s postulate. For a, b∈Fp,
let xa,b ∈ Fk

p be the k-tuple xa,b(i) = a+ (i− 1)b, i = 1, . . . , k. For (a1, b1) ̸= (a2, b2), there is
at most one 1 ⩽ i ⩽ k with xa1,b1(i) = xa2,b2(i). Indeed, if there are two such 1 ⩽ i ̸= j ⩽ k,
then a1+(i− 1)b1 = a2+(i− 1)b2 and a1+(j− 1)b1 = a2+(j− 1)b2. Solving this system of
equations gives a1 = a2 and b1 = b2, a contradiction. Here we use the fact that i ̸≡ j (mod p),
which follows from p > r/2 ⩾ k.

We will adapt the constructions in [Alo02] and [AS06] to ordered graphs. These construc-
tions use generalizations of Behrend’s example [Beh46] of large sets of integers with no 3-term
arithmetic progressions, see Lemma 3.1 in [Alo02] and Lemma 4.1 in [AS06]. We will use the
following common generalization of these two lemmas.

Lemma 3.2. For every k ⩾ 3 and m, there is S ⊆ [m] of size at least m · e−ck
√
logm such that

for every 3 ⩽ t ⩽ k and for every choice of integers p1, . . . , pt−1 ⩾ 1 with p1 + · · ·+ pt−1 ⩽ k,
if s1, . . . , st ∈ S satisfy p1s1 + · · ·+ pt−1st−1 = (p1 + · · ·+ pt−1)st then s1 = · · · = st.

The proof of Lemma 3.2 is very similar to the proofs of the aforementioned lemmas from
[Alo02, AS06] (which themselves closely follow Behrend’s original argument). The proof is
thus omitted.

The proof of the “only if” part of Theorem 1.1 involves a case analysis over several small
ordered graphs, each of which needs a slightly different variant of a construction from [Alo02].
To avoid repetitions, we now introduce a general setting in which this construction can be applied.
A pattern P is a complete ordered graph, say on [k] with the natural ordering, whose edges are
colored with the colors black, white and gray. An ordered graph G is said to have the pattern
P if there is a partition V (G) = V1 ∪ · · · ∪ Vk into independent sets with V1 < · · · < Vk, such
that the following condition is satisfied: for every 1 ⩽ i < j ⩽ k, if {i, j} is colored black then
the bipartite graph (Vi, Vj) is complete, and if {i, j} is colored white then the bipartite graph
{i, j} is empty. The partition (V1, . . . , Vk) is called a P -partition of G. A completion of P is
an ordered graph F on [k] which has pattern P , i.e. {i, j} ∈ E(F ) if {i, j} is black in P and
{i, j} /∈ E(F ) if {i, j} is white in P . In other words, a completion is obtained by recoloring the
gray edges with black/white. Let A be a set of subsets of V (P ). We say that F is (P,A)-good
if for every ordered graph G with P -partition (V1, . . . , Vk) and for every induced copy F ′ of F
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in G, there is A ∈ A and vertices vi ∈ Vi ∩ V (F ′), i ∈ A, such that (vi : i ∈ A) form an
(ordered) induced copy of F [A]. Note that in such a copy, vi must play the role of i due to the
vertex order. If A = {A} then we will simply write “(P,A)-good” in place of “(P, {A})-good”.
The following is a generalization of the aforementioned construction from [Alo02].

Lemma 3.3. Let P be a pattern on [k], let A be a set of subsets of V (P ), and suppose that there
is a bijection σ : [k] → [k] such that for every A ∈ A, there is a cycle i1, . . . , it, i1 of gray edges
in P [A] such that σ(i1) < · · · < σ(it). Let F be a completion of P which is (P,A)-good. Then
for every small enough ε and n ⩾ n0(ε), there is an n-vertex ordered graph G with the following
properties:

1. G has pattern P .

2. G contains εn2 pair-disjoint induced copies of F .

3. G contains at most εΩ(log 1/ε)nv(F ) induced copies of F .

Proof. As above, we assume that V (F ) = V (P ) = [k] (with the natural vertex order). Let m
be the maximal integer satisfying e−ck

√
logm ⩾ 4k4ε, where ck is from Lemma 3.2. It is easy

to see that m ⩾ (1/ε)Ω(log 1/ε). Let S be the set guaranteed by Lemma 3.2; so |S| ⩾ 4k4εm by
our choice of m. Let σ : [k] → [k] be a bijection as in the statement of the lemma. We start
by defining an ordered graph H , as follows. The vertex-set of H consists of k pairwise-disjoint
independent sets V1, . . . , Vk with V1 < · · · < Vk. For each 1 ⩽ i ⩽ k, the set Vi is identified
with [σ(i) ·m]. So |V (H)| =

∑k
i=1 i ·m ⩽ k2m. For each x ∈ [m] and s ∈ S, add a copy of F

on vertices v1, . . . , vk, where vi = x+(σ(i)− 1) · s ∈ Vi; this copy is denoted by Fx,s. Next, for
each black edge {i, j} of P , make the bipartite graph (Vi, Vj) complete, and for each white edge
{i, j} of P , make the bipartite graph (Vi, Vj) empty. This agrees with the copies Fx,s, since F
has pattern P . Finally, for each gray edge {i, j} of P and for each vi ∈ Vi, vj ∈ Vj , if {vi, vj} is
not contained in any of the copies V (Fx,s), then make {vi, vj} an edge of H if {i, j} /∈ E(F ),
and a non-edge of H if {i, j} ∈ E(F ). By construction, H has pattern P with P -partition
(V1, . . . , Vk).

For distinct pairs (x1, s1), (x2, s2) ∈ [m] × S, the copies Fx1,s1 and Fx2,s2 are pair-disjoint.
Indeed, if Fx1,s1 and Fx2,s2 have the same vertex in Vi and Vj (for some 1 ⩽ i < j ⩽ k),
then x1 + (σ(i) − 1)s1 = x2 + (σ(i) − 1)s2 and x1 + (σ(j) − 1)s1 = x2 + (σ(j) − 1)s2.
Solving this system of equations, we get that x1 = x2 and s1 = s2. So we conclude that the
copies (Fx,s)(x,s)∈[m]×S of F are pair-disjoint and hence induced. The number of these copies is
m|S| ⩾ 4k4εm2.

Now, let G be the n
v(H)

-blowup of H . For 1 ⩽ i ⩽ k, denote by Wi the blowup of Vi. It
is easy to see that G has pattern P with P -partition (W1, . . . ,Wk). Each induced copy of F in
H gives rise to

(
n

2v(H)

)2 pair-disjoint induced copies of F in G, by Lemma 3.1 with parameter
r = n

v(H)
. Hence, G contains a collection of 4k4εm2 ·

(
n

2v(H)

)2
⩾ εn2 pair-disjoint induced

copies of F .
To complete the proof it remains to show that item 3 holds. So let F ′ be an induced copy

of F in G. Since F is (P,A)-good, there is A ∈ A and vertices wi ∈ Wi ∩ V (F ′) for i ∈ A,
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such that (wi : i ∈ A) form an induced copy of F [A] (in G). For i ∈ A, let vi ∈ Vi be such
that wi belongs to the blowup of vi. Then (vi : i ∈ A) form an induced copy of F [A] in H .
By the assumption of the lemma, there is a cycle i1, . . . , it, i1 in P [A] consisting of gray edges,
such that σ(i1) < · · · < σ(it). By the construction of H , for every gray edge {i, j} of P [A],
it must be that {vi, vj} is contained in V (Fx,s) for some x ∈ [m], s ∈ S. Indeed, if {vi, vj} is
not contained in any Fx,s, then the adjacency relation of {vi, vj} is opposite to the adjacency
relation of {i, j} in F . So we see that for every 1 ⩽ j ⩽ t, there are xj ∈ X, sj ∈ S such
that {vij , vij+1

} ⊆ V (Fxj ,sj) (with indices taken modulo t). For 1 ⩽ j ⩽ t− 1, this means that
vij = xj+(σ(ij)−1)sj and vij+1

= xj+(σ(ij+1)−1)sj; hence, vij+1
−vij = (σ(ij+1)−σ(ij))·sj .

Similarly, for j = t we have vi1 = xt + (σ(i1)− 1) · st and vit = xt + (σ(it)− 1) · st, and hence
vit−vi1 = (σ(it)−σ(i1)) ·st. So we get that (σ(i2)−σ(i1)) ·s1+ · · ·+(σ(it)−σ(it−1)) ·st−1 =
(σ(it)− σ(i1)) · st. Now we use our choice of S via Lemma 3.2, taking p1, . . . , pt−1 in Lemma
3.2 to be pj = σ(ij+1) − σ(ij). (Here we use that σ(i1) < · · · < σ(it) so that p1, . . . , pt−1 are
positive.) We obtain that s1 = · · · = st =: s. We now get that xj = vij+1

− (σ(ij+1)− 1) · s =
xj+1 (for every 1 ⩽ j ⩽ t− 1), and hence x1 = · · · = xt.

So far we have shown that for every induced copy F ′ of F in G, there exist x ∈ [m], s ∈ S,
a set A ∈ A, a cycle i1, . . . , it, i1 in P [A], and vertices vij ∈ Vij and wij ∈ Wij ∩ V (F ′),
such that wij belongs to the blowup of vij , and vi1 , . . . , vit ∈ V (Fx,s). There are |A| ⩽ 2k =
O(1) choices for A, and fixing A determines i1, . . . , it. The number of choices for (x, s) is
m|S| ⩽ m2, and fixing x, s determines vi1 , . . . , vit . Now, given vi1 , . . . , vit , there are

(
n

v(H)

)t
choices for wi1 , . . . , wit , and at most nk−t choices for the remaining k− t vertices of F . Hence,
given vi1 , . . . , vit , the number of choices for an induced copy of F is at most

(
n

v(H)

)t · nk−t ⩽(
n

v(H)

)3 · nk−3 = nk/v(H)3 ⩽ nk/m3. So overall, the number of induced copies of F in G is at
most O(1) ·m2 · nk/m3 = O(nk/m) ⩽ εΩ(log 1/ε)nk, as required.

Evidently, for every specific cycle i1, . . . , it, i1 in P , one can choose a bijection σ : [k] → [k]
with σ(i1) < · · · < σ(it). Hence, a bijection σ as in Lemma 3.3 always exists when A = {A}.
We therefore have the following corollary:

Lemma 3.4. Let P be a pattern, and let A ⊆ V (P ) such that P [A] has a cycle consisting of
gray edges. Let F be a (P,A)-good completion of P . Then the conclusion of Lemma 3.3 holds.

Lemma 3.3 implies the following statement, which extends a construction from [AS06] to
ordered graphs.

Lemma 3.5. Let F be an ordered graph which contains a triangle. Then for every sufficiently
small ε > 0 and n > n0(ε), there is an n-vertex ordered graph G which contains εn2 pair-
disjoint induced copies of F , but only εΩ(log 1/ε)nv(F ) induced copies of F altogether.

Proof. Take P to be the pattern on V (F ) in which all non-edges of F are white and all edges of
F are gray. Take A to be the set of all (vertex sets of) triangles in F . Observe that F is (P,A)-
good. Indeed, let G be an ordered graph with P -partition (V1, . . . , Vk) and let F ′ be a copy of F
in G. Then F ′ has a triangle, say on vertices vi ∈ Vi, vj ∈ Vj, vℓ ∈ Vℓ. Then {i, j}, {i, ℓ}, {j, ℓ}
must be gray edges in P and hence must be edges in F . So i, j, ℓ is a triangle in F , meaning that
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vi, vj, vℓ form a copy of F [A] for A = {i, j, ℓ} ∈ A. Now take σ : [k] → [k] to be an arbitrary
bijection. For a triangle it is always possible to choose a starting point and an orientation such
that the triangle (as a cycle) is increasing with respect to σ. So the conditions of Lemma 3.3 are
satisfied, and the assertion follows from Lemma 3.3.

Lemma 3.4 easily implies the following:

Lemma 3.6. Let K be an ordered core which has a cycle. Then for every small enough ε and
large enough n, there is an n-vertex ordered graph G with the following properties:

1. G is homomorphic to K.

2. G contains εn2 pair-disjoint induced copies of K.

3. G has at most εΩ(log 1/ε)nv(K) (not necessarily induced) copies of K.

Proof. We reduce to Lemma 3.4. Let P be the pattern on [k] = V (K) in which {i, j} is gray if
{i, j} ∈ E(K) and white if {i, j} /∈ E(K). Observe that an ordered graph G has pattern P if
and only if G is homomorphic to K. The fact that K is a core implies that K is (P, V (P ))-good.
Apply Lemma 3.4 to get an ordered graph G satisfying items 1-3 in Lemma 3.3. Then G is
homomorphic to K because G has pattern P . Observe that every copy of K in G is induced
because K is a core and G is homomorphic to K. Lemma 3.6 follows.

Using Lemma 3.6, we can prove Theorem 1.2.

Proof of Theorem 1.2. Let K be the core of F , and suppose that V (K) = [k]. Apply Lemma
3.6 with parameters v(F )2 · ε (in place of ε) and n

v(F )
(in place of n) to obtain an ordered graph

G′ on n
v(F )

vertices with the properties stated in the lemma. Since G′ is homomorphic to K, we
have V (G′) = V1 ∪ · · · ∪ Vk for independent sets V1 < · · · < Vk. Let G be the v(F )-blowup of
G′, and denote by Wi the blowup of Vi (for i = 1, . . . , k). By item 2 in Lemma 3.6, G′ contains
a collection K1, . . . , KM of M ⩾ v(F )2 · ε · ( n

v(F )
)2 = εn2 pair-disjoint copies of K. For

each 1 ⩽ i ⩽ M , let Bi be the v(F )-blowup of Ki, and let Ei be the set of edges of Bi which
go between the sets W1, . . . ,Wk. Since K1, . . . , KM are pair-disjoint, the sets E1, . . . , EM are
disjoint. Observe that each Bi contains a copy of F , and that in order to destroy this copy one
must delete some edge of Ei. Since E1, . . . , EM are disjoint, one must delete at least M ⩾ εn2

edges from G to make it F -free, as required.
To complete the proof, let us bound the number of copies of F in G. Since K is a subgraph

of F , every copy of F must contain a copy of K. Each copy of K can be completed to a copy
of F in at most nv(F )−k ways. Since K is a core and G′ (and hence also G) is homomorphic
to K, every copy of K in G corresponds to a copy of K in G′. On the other hand, each copy
of K in G′ gives rise to at most v(F )k = O(1) copies of K in G. By item 3 in Lemma 3.6,
G′ has at most εΩ(log 1/ε) · nk copies of K. Hence, the number of copies of F in G is at most
O(1) · εΩ(log 1/ε) · nk · nv(F )−k = εΩ(log 1/ε)nv(F ), as required.

Next, we prove the “only if” part of Theorem 1.1, which we restate as follows:
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Theorem 3.7. Let F be an ordered graph, v(F ) ⩾ 3, F /∈
{
D,D←, D,D←

}
. Then for every

sufficiently small ε > 0 and n > n0(ε), there is an n-vertex ordered graph G which is ε-far from
being induced F -free but contains at most εΩ(log 1/ε)nv(F ) induced copies of F .

Proof. If F contains a triangle then the assertion follows from Lemma 3.5. By symmetry with
respect to taking graph complements, the same is true if F contains an independent set of size
3. This in particular proves the theorem for F on at least 6 vertices, since every such F contains
a triangle or an independent set of size 3. We will assume that F contains neither of these.

Denote by Pmon
k the monotone path with k vertices, that is, the ordered path with vertex set

[k] and edges {i, i + 1} for i = 1, . . . , k − 1. It is easy to see that Pmon
k is (P, V (P ))-good for

the pattern P on [k] in which {1, 2}, {2, 3}, . . . , {k − 1, k}, {k, 1} are gray and all other edges
are white.

If v(F ) = 3, then F = Pmon
3 or F = Pmon

3 . So in this case, the assertion follows from
Lemma 3.4. If v(F ) = 5 then F must be a 5-cycle, because every other 5-vertex graph contains
a triangle or an independent set of size 3. Every ordered 5-cycle is a core (because the homo-
morphic image of an odd cycle must itself contain an odd cycle). So for these F , the assertion
follows from Lemma 3.6.

It remains to handle the case v(F ) = 4. The only 4-vertex (unordered) graphs which have
no triangle and no independent set of size 3 are the 4-cycle, the complement of the 4-cycle, and
the path with four vertices.

We first consider the 4-cycle. There are 3 non-isomorphic ordered 4-cycles. Assuming the
vertices are 1, 2, 3, 4, these 4-cycles are: C

(1)
4 = 1, 2, 3, 4, 1; C(2)

4 = 1, 3, 2, 4, 1; and C
(3)
4 =

1, 2, 4, 3, 1. See Figure 3 for an illustration.

C
(1)
4 : It is easy to see that C(1)

4 is a core, so this case follows from Lemma 3.6.

C
(2)
4 : Let us consider the complement C(2)

4 , which is the ordered graph with vertices 1, 2, 3, 4
and edges {1, 2}, {3, 4}. We show that this graph is P -good for a suitable pattern P . Let
P be the pattern on [4] in which {1, 2}, {3, 4} are black and all other edges are gray. Then
C

(2)
4 is (P, V (P ))-good. Indeed, let G be a graph with pattern P , and let (V1, V2, V3, V4)

be a P -partition of G. Note that the bipartite graphs (V1, V2) and (V3, V4) are complete.
Let C be an induced copy of C(2)

4 in G, and let ai be the vertex of C playing the role of
i (for i = 1, . . . , 4). It is enough to show that |C ∩ Vi| = 1 for all 1 ⩽ i ⩽ 4, as this
would imply that ai ∈ Vi. Suppose by contradiction that |C ∩ Vi| ⩾ 2 for some i. Then
|C ∩ Vi| = 2 because Vi is an independent set and C is does not have an independent set
of size 3. The two vertices in C ∩ Vi must play the role of some non-edge e of C. If e is
{a1, a3}, {a2, a4} or {a1, a4}, then |C ∩ Vi| ⩾ 3, because for each of those edges, there
is another vertex of C between the endpoints of the edge. Hence e = {a2, a3}. Since a1
comes before Vi and a4 after Vi, it must be that i = 2 or i = 3; without loss of generality,
i = 2. Then a1 ∈ V1. But then a1 is adjacent to a3 ∈ V2 because the bipartite graph
(V1, V2) is complete, a contradiction.

The assertion of Theorem 3.7 for C(2)
4 now follows by applying Lemma 3.4 to C

(2)
4 and

taking complements.
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Figure 3.1: The ordered 4-cycles.

C
(3)
4 : Here we will use Lemma 3.3. Let P be the pattern on [4] with white edge {2, 3} and

all other edges gray. Let A = {{1, 2, 4}, {1, 3, 4}}. We claim that C(3)
4 is (P,A)-good.

Indeed, let G be a graph with pattern P , and let (V1, V2, V3, V4) be a P -partition of G.
Note that the bipartite graph (V2, V3) is empty. Let C be an induced copy of C(3)

4 in G,
and let ai be the vertex of C playing the role of i (for i = 1, . . . , 4). We need to show that
a1 ∈ V1, a4 ∈ V4, and a2 ∈ V2 or a3 ∈ V3. Observe that a2, a3 ∈ V2 ∪ V3, because a1, a4
are adjacent to both a2 and a3, a1 comes before a2, a3, and a4 comes after a2, a3. If a2 ∈ V2

and a3 ∈ V3 then we must have a1 ∈ V1 and a4 ∈ V4, so we are done. Suppose then that
a2, a3 ∈ V2 or a2, a3 ∈ V3; without loss of generality, we may assume that a2, a3 ∈ V2.
This implies that a1 ∈ V1. Also, since the bipartite graph (V2, V3) is empty, we must have
a4 ∈ V4. Therefore, C(3)

4 is (P,A)-good. So the assertion of Theorem 3.7 for C(3)
4 follows

from Lemma 3.3 (with σ being the identity map).

It remains to consider ordered paths with four vertices. Up to complementation and order
reversal, there are only four possible such paths: Pmon

4 ; P (1)
4 = 2, 1, 4, 3; P (2)

4 = 2, 1, 3, 4; and
P

(3)
4 = 3, 2, 1, 4. See Figure 3 for an illustration. We already established the case Pmon

4 . For the
other three cases, we again use Lemma 3.4.

P
(1)
4 : Let P be the pattern on [4] in which {1, 3} and {2, 4} are white, and all other edges are

gray. Then P
(1)
4 is (P, V (P ))-good. Indeed, let G be a graph with pattern P , and let

(V1, . . . , V4) be a P -partition of G. Then the bipartite graphs (V1, V3) and (V2, V4) are
empty. Let X be an induced copy of P (1)

4 in G, and let ai be the vertex of X playing the
role of i (for i = 1, . . . , 4). It is enough to show that |X ∩Vi| = 1 for all 1 ⩽ i ⩽ 4, as this
will imply that ai ∈ Vi, showing that P (1)

4 is (P, V (P ))-good. Suppose by contradiction
that |X ∩ Vi| ⩾ 2 for some i. Then |X ∩ Vi| = 2 because Vi is an independent set and X
has no independent set of size 3. The two vertices in X ∩ Vi must play the role of some
non-edge e of X . If e = {a1, a3}, {a2, a4} then |X ∩ Vi| ⩾ 3, because for each of those
e, there is another vertex of X between the endpoints of e. Hence e = {a2, a3}. Since a1
comes before Vi and a4 after Vi, it must be that i = 2 or i = 3; without loss of generality,
i = 2. Then a1 ∈ V1. It follows that a4 ∈ V4, because a4 is adjacent to a1 and there are
no edges between V1 and V3. But now, a4 is not adjacent to a3 ∈ V2, as there are no edges
between V2 and V4. This is a contradiction.
Lemma 3.4 now confirms the case of P (1)

4 .

P
(2)
4 : Take P to be the pattern on [4] with edges {2, 3}, {2, 4} white and all other edges gray,

and take A = {1, 3, 4}. Then P
(2)
4 is (P,A)-good. Indeed, let G be an ordered graph with
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Figure 3.2: The ordered paths P (i)
4 .

pattern P , and let (V1, V2, V3, V4) be a P -partition of G. Note that the bipartite graphs
(V2, V3) and (V2, V4) are empty. Let X be an induced copy of P (2)

4 in G, and let ai be
the vertex of X playing the role of i (for i = 1, . . . , 4). We need to show that ai ∈ Vi for
i = 1, 3, 4. We first claim that a3 ∈ V3. Since a1, a4 are adjacent to a3, a1 comes before a3,
and a4 comes after a3, it must be that a3 ∈ V2 ∪ V3. If a3 ∈ V2 then a4 cannot be adjacent
to a3 because the bipartite graphs (V2, V3) and (V2, V4) are empty, a contradiction. So
a3 ∈ V3. It follows that a4 ∈ V4. Similarly, as the bipartite graph (V2, V3) is empty, it must
be that a1 ∈ V1, as required.
We apply Lemma 3.4 to conclude.

P
(3)
4 : Take P to be the pattern on [4] with edges {2, 4}, {3, 4} white and all other edges gray,

and take A = {1, 2, 3}. Similarly as in the previous case, one can check that P (3)
4 is

(P,A)-good. Therefore, we can again apply Lemma 3.4 to finish the proof.
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