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Neutrophil Recruitment in
Pneumococcal Pneumonia
Catherine S. Palmer and Jacqueline M. Kimmey*

Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz,
CA, United States

Streptococcus pneumoniae (Spn) is the primary agent of community-acquired
pneumonia. Neutrophils are innate immune cells that are essential for bacterial
clearance during pneumococcal pneumonia but can also do harm to host tissue.
Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of
host disease outcomes. During Spn infection, detection of the bacterium leads to an
increase in proinflammatory signals and subsequent expression of integrins and ligands
on both the neutrophil as well as endothelial and epithelial cells. These integrins and
ligands mediate the tethering and migration of the neutrophil from the bloodstream to the
site of infection. A gradient of host-derived and bacterial-derived chemoattractants
contribute to targeted movement of neutrophils. During pneumococcal pneumonia,
neutrophils are rapidly recruited to the pulmonary space, but studies show that some
of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil
migration is necessary for us to understand the dynamics of pneumococcal infection.
Here, we summarize what is known about the pathways that lead to migration of the
neutrophil from the capillaries to the lung during pneumococcal infection.

Keywords: neutrophil, pneumonia, Streptococcus pneumoniae (pneumococcus), lung, migration
INTRODUCTION

Streptococcus pneumoniae (Spn) is a Gram-positive bacterium and regular member of the
microbiota in the upper respiratory tract of about 0-40% of adults (Esposito et al., 2016; Smith
et al., 2020) and 27-65% of children (Weiser et al., 2018). Though usually an asymptomatic
colonizer in the upper respiratory tract, Spn can also cause clinical syndromes including pneumonia,
bacteremia and meningitis. Pneumonia is the most common outcome of Spn infection (Brooks and
Mias, 2018) and can cause disruption of lung integrity, leading to further invasion of the pathogen to
the bloodstream and brain, causing bacteremia and meningitis, respectively. Although the severity
of infection depends partly on the specific strain and serotype of Spn (Melin et al., 2010; Hyams
et al., 2013), the host’s immune response also plays a critical role in pathogenesis and disease
outcome. Initial detection of Spn in the lung is mediated by resident alveolar macrophages (Cole
et al., 2014; Dockrell and Brown, 2015) and epithelial cells (Yamamoto et al., 2014), leading to
significant infiltration of neutrophils into the lung. Recent work has also shown the importance of
complement (Agarwal and Blom, 2015) and T cells (Ivanov et al., 2014) in modulating the innate
gy | www.frontiersin.org May 2022 | Volume 12 | Article 8946441
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immune response to Spn in the lung (Kadioglu and Andrew,
2004). Following infection, a rapid return to homeostasis and
resolution of inflammation is crucial for host outcome
(Kumar, 2020).

A hallmark of pneumococcal pneumonia is the rapid influx of
neutrophils which play a crucial role in controlling Spn burden.
Neutrophils can kill Spn intracellularly through phagocytosis but
are better recognized for their diverse and highly specialized
extracellular antimicrobial defenses mediated by degranulation
(Amulic et al., 2012). Degranulation is a regulated process by
which activated neutrophils release effectors, including cationic
antimicrobial peptides, serine proteases, myeloperoxidase, and
reactive oxygen species (ROS) (Effah et al., 2021). Neutrophils
can also release DNA to trap bacteria in neutrophil extracellular
traps (NETs) through a process known as NETosis (Effah et al.,
2021). Finally, neutrophils play a critical role in regulation of
inflammation through the production of cytokines which recruit
additional leukocytes to the site of infection (Tecchio et al.,
2014). These defenses can be very effective against Spn and are
critical for control of symptomatic infection. Neutropenic
patients are at increased risk for pneumonia (Rolston, 2001)
and patients with a deficiency in degranulation experience
recurrent infection and have a diminished ability to kill Spn
(Ganz et al., 1988), a finding recapitulated in mouse models
(Borsa et al., 2019).

However, like most successful pathogens, Spn has evolved
myriad strategies to evade neutrophil-mediated immunity, which
we will highlight in this review. Furthermore, because neutrophil
defenses occur largely through the release of highly damaging
compounds into the extracellular milieu, neutrophilic
inflammation almost always causes immunopathology which
can increase disease severity. Neutrophil recruitment and
activity must be tightly controlled. Significant evidence exists
indicating these two features can be coupled - the signals
neutrophils receive during recruitment can influence effector
functions at the site of infection. This review centers on the first
phenomenon - mechanisms of neutrophil recruitment during
pulmonary Spn infection.
NEUTROPHIL DYNAMICS IN
MURINE MODELS

Murine models have been a powerful tool to understand the
dynamics of neutrophil recruitment and will be the focus of this
review, though it is important to note that all findings in murine
systems must be validated to assess relevance to human disease.
Pulmonary infection can be established through intranasal or
intratracheal inoculation of Spn (Jeong et al., 2011). Pathogenesis
is dependent on the bacterial strain (Mizrachi-Nebenzahl et al.,
2003; Melin et al., 2010; Seyoum et al., 2011; Naucler et al., 2013;
Paton and Trappetti, 2019) and is highly influenced by murine
background (Gingles et al., 2001; Ripoll et al., 2010), age (Boyd
et al., 2012; Williams et al., 2015; Janesch et al., 2018), and sex
(Kadioglu et al., 2011a). Neutrophil infiltration into the lung
occurs within the first day of infection and the infection is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
typically resolved (either by clearance of bacteria or death of
mice) within a week. An ~100 fold increase in pulmonary
neutrophils occurs following infection with Spn TIGR4,
peaking at 18 hours post-infection (Bou Ghanem et al., 2015).
The early recruitment of neutrophils is critical to bacterial
clearance and host survival. Delays in recruitment lead to
increased bacterial loads in the lung (Nieminen et al., 2008;
Kadioglu et al., 2011b) and systemic neutrophil depletion results
in higher bacterial burden and increased mortality (McNamee
and Harmsen, 2006; Bou Ghanem et al., 2015). Although
neutrophil influx is often correlated with neutrophil function
in pneumococcal pneumonia, the link between these two
phenomena requires more robust research.

Prolonged or excessive neutrophil recruitment, however, can
cause damage to the pulmonary barrier and increase Spn
invasion into the blood (Domon and Terao, 2021). In contrast
to the detrimental effect of neutrophil depletion at the onset of
infection, a protective effect is observed if neutrophil depletion is
initiated at 18 hours post-infection, when neutrophil recruitment
has already reached its peak. Depletion at this point reduces
bacterial burden in the blood and increases survival (Bou
Ghanem et al., 2015). Thus, damage caused by uncontrolled
neutrophil inflammation can outweigh the antimicrobial benefit
of the neutrophils and therefore must be tightly regulated. IL-10
is a potent anti-inflammatory signal responsible for modulation
of inflammation. IL-10-/- mice have increased expression of
proinflammatory cytokines, exacerbated recruitment of
neutrophils to the lungs, and increased susceptibility to Spn
infection (Peñaloza et al., 2015). The regulation and dynamics of
neutrophils recruitment to the pulmonary space is therefore a critical
determinant of outcome following pneumococcal pneumonia.
RECOGNITION OF Spn

To initiate neutrophil recruitment, tissue-resident immune cells
and pulmonary epithelial cells recognize pneumococcal
components by pattern recognition receptors (PRRs) such as
Toll-Like Receptors (TLRs) and NOD-Like Receptors (NLRs)
which results in production of cytokine and chemokines
(reviewed extensively (Calbo and Garau, 2010; Hartl et al.,
2018; Koppe et al., 2012; MacCain and Tuomanen, 2020;
Paterson and Mitchell, 2006). A major downstream output of
PRR signaling is the activation of the master transcription
regulator NF-kB, which is required for optimal recruitment of
neutrophils during Spn infection (Alcamo et al., 2001). Mice
lacking TLR-adaptor MyD88 have defects in neutrophil
recruitment to the lung (Albiger et al., 2005), indicating TLR
signaling is important for detection of Spn. Of the 12 TLRs that
exist in mice, TLR1, TLR2, TLR3, TLR4, TLR7, TLR9, and
TLR13 have been shown to detect Spn ligands (Branger et al.,
2004; Schmeck et al., 2006; Spelmink et al., 2016; Famà et al.,
2020). However, not all have a significant impact on neutrophil
influx (Craig et al., 2009). Knockout of TLR2 (Knapp et al., 2004;
Dessing et al., 2008a) leads to defects in neutrophil recruitment,
while knockout of TLR9 (Albiger et al., 2007) or TLR4 does not
May 2022 | Volume 12 | Article 894644
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(Branger et al., 2004; Srivastava et al., 2005; Dessing et al., 2008b).
Triple knockout mice lacking TLR7/9/13 have defects in
generation of neutrophil-attracting chemokines and increased
susceptibility almost as severe as MyD88-/- mice. However, single
deletion is not sufficient to cause susceptibility demonstrating
these sensors show functional compensation in vivo (Famà et al.,
2020). Another important family of PRR activated by Spn is
cytosolic NOD1 and NOD2 that detect peptidoglycan (Zheng
et al., 2018). Deletion of either does not affect neutrophil influx
but does lead to bacterial burden increase in some tissues
(Lysenko et al., 2007; Davis et al., 2011).

In addition to activation of PRRs, bacterial ligands can also
serve as direct chemoattractants for neutrophils (Bloes et al.,
2015). Neutrophils can sense N-formyl peptides (fMLP)
produced by Spn via fMLP receptor. Administration of fMLP
receptor antagonist prior to Spn infection decreased neutrophils in
bronchoalveolar lavage (BALF) (Fillion et al., 2001). Pneumolysin,
a major virulence factor produced by Spn, also has myriad effects
on neutrophil migration. Recombinant pneumolysin is sufficient
to induce neutrophil migration in transwell assays, demonstrating
it can serve as a chemoattractant (Moreland and Bailey, 2006).
Recent work has demonstrated that pneumolysin-induced
neutrophil migration is mediated through the formation of
pores by pneumolysin and subsequent generation of
inflammatory lipids which act as chemoattractants (Adams
et al., 2020). Additionally, pneumolysin is a pore-forming toxin
and causes damage-induced inflammation in vivo (Rubins et al.,
1992; Rubins et al., 1993; Rayner et al., 1995; Witzenrath et al.,
2006; Garcıá-Suárez et al., 2007). Pulmonary inoculation of
recombinant pneumolysin is sufficient to cause neutrophil influx
in vivo and Spn lacking pneumolysin results in decreased
neutrophil infiltration. However, as pneumolysin is a crucial
virulence factor, this attenuated strain is rapidly cleared in many
animal models which likely contributes to decreased inflammation
(Rubins et al., 1995; Kadioglu et al., 2000).
MIGRATION OF NEUTROPHILS TO
THE LUNG

Neutrophils are bone marrow-derived cells that circulate in the
bloodstream until recruited into tissue. Inflammation induces
vasodilation to slow blood flow, allowing neutrophils to
sequentially migrate through the endothelium, interstitium,
basement membrane and the epithelium (Figure 1). Each of
these steps is orchestrated through interactions between the
neutrophil and membrane-bound ligands or soluble factors
(Adams et al., 2021). Some chemoattractants are known to
play a role in specific movements across the endothelium,
epithelium or through a specific space. For example, CD73,
which plays a role in adenosine production, contributes to
transendothelial but not transepithelial migration. We will
highlight these nuances during our discussion of specific factors.

Transendothelial migration from the blood begins when
inflammatory cytokines upregulate adhesion molecules on the
endothelial surface. In most tissues, neutrophil migration occurs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
in post-capillary venules. Migration into the alveolar space,
however, occurs in the capillaries which have a smaller
diameter and it is thought that mechanical entrapment may be
important for neutrophil migration (Doyle et al., 1997). Capture
of neutrophils is typically mediated by E-selectin (CD62E) and
P-selectin (CD62P). However, pulmonary neutrophil migration
during Spn uniquely happens independently of these interactions
(Mizgerd et al., 1996). Consistent with this, mice lacking
neutrophilic P-selectin glycoprotein ligand-1 (PSGL-1), which
interacts with endothelial E- and P-selectin, show no defect in
pulmonary migration during Spn (Ramos-Sevillano et al., 2016).
However, PGSL-1 knockout mice show increased bacterial
burden in the lung and blood indicating PGSL-1 has other
roles in the prevention of invasive disease. Bacteria lacking a
protease that can degrade PGSL-1 (Spn DzmpC) stimulate
increased neutrophil inflammation (Surewaard et al., 2013),
pointing towards a potential role for PGSL-1 or similar
integrins during infection. Surface expression of other adhesion
molecules involved in neutrophil recruitment including CD54
(ICAM-1), CD102 (ICAM-2), CD106 (VCAM-1), and E-selectin
is not upregulated on pulmonary endothelium following
exposure to two different serotypes of Spn (Bullard et al., 1995;
Moreland et al., 2004), suggesting these are not major drivers
regulator of neutrophil influx during Spn infection.

Integrins are heterodimers consisting of an a and b subunit
and are upregulated during inflammation to promote neutrophil
attachment to the endothelial surface. CD18 is a b subunit that
can dimerize with four different a subunits (CD11a, CD11b,
CD11c, and CD11d). CD11a/CD18 (LFA-1) is canonically an
important integrin for neutrophil arrest and has a known role in
several bacterial pneumonias (Maas et al., 2018). However,
inhibition or deletion of CD11a or CD18 does not affect
neutrophil recruitment during Spn infection (Mizgerd et al.,
1997; Mizgerd et al., 1999; Maas et al., 2018). Similarly, ICAM-
1 (CD54), the canonical binding partner of CD11a/CD18, does
not contribute to pulmonary recruitment during infection.
ICAM-1 expression is not upregulated on pulmonary
epithelium by Spn (Burns et al., 1994) and mutation of ICAM-
1 lead to defects in peritoneal, but not pulmonary recruitment
during Spn infection (Bullard et al., 1995). Therefore, ICAM-1
plays a tissue-specific role in neutrophil recruitment. Another b
integrin, very-late antigen 4 (VLA-4), is increased on neutrophils
during in vitro Spn infection (Kubes et al., 1995). Studies in mice,
however, did not observe this increase and antibody blockade of
VLA-4 has no effect during Spn infection (Tasaka et al., 2002).
Redundancy in adhesion molecules likely contributes, at least in
part, to modest phenotypes in recruitment defects. However, a
double-mutant lacking both P-selectin and ICAM-1 still shows
no defect in Spn-mediated neutrophil recruitment (Bullard et al.,
1995) indicating mechanisms of neutrophil recruitment are
unique to Spn compared to other bacterial pneumonias.

Following sequestration on the endothelial surface, neutrophil
movement is canonically mediated by the neutrophilic integrin L-
selectin (CD62L) and gap junction protein connexin 43. Knockout
of L-selectin does not affect neutrophil recruitment in response to
Spn in mice (Doyle et al., 1997) and work in the rabbit lung
May 2022 | Volume 12 | Article 894644
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associated Spn infection with downregulation of L-selectin on
neutrophils (Burns and Doerschuk, 1994). While connexin 43
plays an important role in pneumococcal meningitis (Bello et al.,
2020), it has not been well studied in pneumonia. Once the
neutrophil migrates through the endothelium, it must travel
through the interstitium and cross the basement membrane.
Overall, these processes are not well-characterized, but attention
has been brought to glycosaminoglycans as a key component of
the extracellular space and as modulators of the inflammatory
response (Souza-Fernandes et al . , 2006). Studies in
nasopharyngeal tissue implicate glycosaminoglycans in Spn
attachment to epithelial cells (Tonnaer et al., 2006). Expression
of certain glycosaminoglycans may therefore benefit the bacterium
more than mediate neutrophil recruitment; however these
processes are not well studied in the lung and therefore more
research is needed to understand how neutrophils cross the
endothelium, interstitium and basement membrane.

After crossing the basement membrane, neutrophils undergo
transepithelial migration which consists of basolateral adhesion,
paracellular transit and alveolar entry. Like transendothelial
migration, migration of neutrophils across the epithelium is
orchestrated by ligand-integrin binding. The best-characterized
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
receptor for basolateral adhesion of neutrophils is CD11b/CD18
(Mac-1). During Spn infection, blockade or knockout of CD11b
decreased neutrophil influx and increased bacterial lung burden
(Kadioglu et al., 2011b). ICAM-1 is a ligand for CD11b/CD18 (as
well as the aforementioned CD11a/CD18 endothelial
transmigration integrin), but knockout or antibody blockade of
ICAM-1 did not affect neutrophil infiltration (Moreland et al.,
2004; Kadioglu et al., 2011b). The role of ICAM-1 in canonical
transepithelial and transendothelial migration has been reported,
but this ligand does not seem to be necessary for pneumococcal
pneumonia. Instead, galectin-3 is a ligand for CD11b/CD18 that
is upregulated in lungs infected with Spn but not other bacterial
species (Nieminen et al., 2008). Galectin-3 deficient mice showed
decreased neutrophil influx and increased bacterial load in
response to pneumococcal pneumonia, indicating galectin-3 is
a Spn-specific integrin that aids in migration of neutrophils.

To cross the epithelial barrier during paracellular transit,
n eu t roph i l s r e l e a s e s e r ine pro t ea s e s and mat r i x
metalloproteases that degrade intercellular junctions.
Neutrophil elastase, cathepsin G and proteinase 3 can all
degrade junction proteins such as E-cadherin. Recent work in
human lung tissue showed that pneumococcal infection reduced
FIGURE 1 | Neutrophil recruitment in the lung during pneumococcal pneumonia differs from canonical neutrophil recruitment to the lung. Left: Canonical neutrophil
recruitment into pulmonary tissue. Selectins impart weak interactions between the endothelium and neutrophil which allows tethering by the integrin PSGL-1. LFA-1
and VLA-4 on the neutrophil then interact with ICAM-1 and ICAM-2 on the endothelial surface allowing the neutrophil to cross the endothelium. ICAM-1 and ICAM-2
also allows the neutrophil to bind to the epithelium via the integrin Mac-1 and subsequently migrate into the pulmonary space. Right: Neutrophil recruitment to the
lung during Spn infection. White molecules represent factors that are important for canonical neutrophil recruitment but do not play a role in pneumococcal
pneumonia. Selectins are dispensable for neutrophil recruitment for pneumococcal pneumonia. Mechanical entrapment in the thinner vessels likely plays a role in
initial attraction of the neutrophil to the endothelium. The canonical integrin-ligand pairs that allow the neutrophil to bind to the endothelium seem to be non-essential
in pneumococcal pneumonia, so unknown ligands and integrins on the endothelium and the neutrophil may play a role here. Once the neutrophil is in the interstitial
space, ligands on the epithelium capture the neutrophil. Although canonical ligands like ICAM-1 and ICAM-2 have been shown to be indispensable here, Galectin-3
has a significant role in subsequent movement of the neutrophil into the pulmonary space. Spn, Streptococcus pneumoniae. Created with BioRender.com.
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the junction components occludin, ZO-1, claudin-5 and VE-
cadherin but did not change the presence of other claudins (Peter
et al., 2017). Pneumolysin also increases the permeability of the
pulmonary lining through disruption of intercellular junctions
(Rubins et al., 1993; Rayner et al., 1995; Knippenberg et al., 2015)
which may allow neutrophils to cross the epithelium more easily.
Once neutrophils pass the intercellular junctions of the
epithelium, they interact with the apical side of the epithelium
and enter the pulmonary space.
CHEMOKINES AND CYTOKINES

Neutrophil migration is ultimately accomplished through the
cooperation of integrin-ligand interactions and directed
migration down a gradient of intermediate-target and end-
target attractants. The gradient of chemokines, inflammatory
lipids, serum proteins and bacterial components induce
migration through activation of G-protein coupled receptors
(GPCRs) on neutrophils. Intermediate-target attractants
control directed neutrophil migration en route to the site of
inflammation, whereas end-target attractants are preferred by
neutrophils and determine local neutrophil activity once in
the lung.

Chemokines are important intermediate-target chemoattractants
that interact with the neutrophil en route to the lung. In mice,
the chemokines CXCL1 (KC), CXCL2 (MIP-2), and CXCL5
(LIX) mediate the neutrophils’ basolateral adhesion to the lung
epithelium (Adams et al., 2021). CXCL1 and CXCL2 are
produced primarily by myeloid cells (Fillion et al., 2001; Craig
et al., 2009), whereas epithelial cells are the predominant
sources of CXCL5 (Yamamoto et al., 2014).

CXCL1 is produced in response to TLR-mediated NF-kB
activation (Paudel et al., 2019) and plays a crucial role in the
recruitment of neutrophils (McColl and Clark-Lewis, 1999) after
Spn. Mice lacking CXCL1 showed decreased neutrophil
abundance in the BALF as well as increased bacterial burden
in the lung, blood and BALF. CXCL1 is also required for
emergency granulopoiesis during Spn infection, which also
contributes to decreased neutrophil numbers recruited to the
lungs (Paudel et al., 2019). Once neutrophils reach the
pulmonary space, they make CXCL2 upon stimulation by local
cues produced by myeloid and epithelial cells (Kamata et al.,
2016). CXCL2 is canonically a potent chemoattractant in
bacterial pneumonia (Adams et al., 2021), but its role has not
been well-studied with Spn. One study showed that the
administration of the proinflammatory cytokine IL-12 could
improve innate defense in the lung against Spn by inducing
IFN-g production, enhancing CXCL2 expression, and thereby
increasing neutrophil recruitment to the lung after infection (Sun
et al., 2007). This suggests a direct role for CXCL2 in neutrophil
migration during pneumococcal pneumonia.

In addition to the myeloid-derived CXCL1 and CXCL2,
epithelial-derived CXCL5 enhances neutrophil recruitment
(Gibbs et al., 2014; Yamamoto et al., 2014). Mice with previous
Spn infection had faster bacterial clearance upon secondary
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
infection in part to prolonged stability of the chemokine ligand
CXCL5 transcripts by IL-17a (Shenoy et al., 2020) resulting in
more rapid neutrophil recruitment to the lung. Mice with
heightened levels of CXCL5 had increased neutrophil influx,
better control of pulmonary burden and increased survival upon
Spn infection (Mancuso et al., 2018).

CXCL1, CXCL2 and CXCL5 all bind to CXCR1 and CXCR2
receptors on neutrophils and therefore these chemokines and
receptors are emerging as exciting therapeutic targets to control
neutrophil influx (Planagumà et al., 2015; Sundaresh et al., 2021).
The role of CXCR1 has not been explored in pneumococcal
pneumonia, but CXCR2 is important for optimal bacterial
clearance. Spn infection of CXCR2 knockout mice or mice
given a CXCR2 antagonist resulted in a defect in neutrophil
influx and an associated increase in bacterial counts in BALF and
lungs (Eash et al., 2010; Herbold et al., 2010).

Production of proinflammatory cytokines such as TNF-a, IL-
1, and IL-17 are also important for neutrophil regulation
(Bergeron et al., 1998). Antibody blockade (Takashima et al.,
1997) or knockout (Jeong et al., 2015) of TNF-a lead to increased
bacterial burden and mortality, though it did not directly affect
neutrophil recruitment. Mice with defects in IL-1b but not IL-1a
showed significantly worse immunopathology, bacterial burden
and mortality following pulmonary infection with Spn (Kafka
et al., 2008). A triple mouse mutant deficient in TNF-a receptors
(TNFR1, TNFR2) and IL-1 receptor (IL-1RI) also had reduced
neutrophil influx to the lung (Jones et al., 2005). The cytokine IL-
17, typically associated with neutrophilic responses, acts in
concert with TNF-a and IL-1 to promote inflammation. IL-
17A can be either beneficial or detrimental depending on the
strain of Spn, a process attributed to the abundance and function
of recruited neutrophils (Ritchie et al., 2018). For example, mice
lacking IL-17a had decreased neutrophil influx following
infection with several strains of Spn, but had strain-dependent
correlation with mouse survival. Together proinflammatory
cytokines influence neutrophil migration at multiple levels
including activation of myeloid cell effector function,
upregulation of epithelial, endothelial, and neutrophil adhesion
molecules, and activation of neutrophil extravasation. As such,
the contribution of each of these factors may not directly reflect
on neutrophil numbers, but interruption of their signaling may
alter neutrophil migration and function.
NON-CHEMOKINE CHEMOATTRACTANTS

Cleavage or processing of host molecules like extracellular
matrix, complement proteins and phospholipids also produces
a variety of chemoattractants. Matrikines are degraded
components of the extracellular matrix that can act as
intermediate chemoattractants for neutrophils during
pulmonary inflammation (Adams et al., 2021). These
components have not been well-studied in pneumococcal
infection, but producers of the canonical matrikine proline-
glycine-proline (PGP) are upregulated in response to Spn
(Akthar et al., 2015). Activation of the host complement
May 2022 | Volume 12 | Article 894644
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system generates classical neutrophil chemoattractants including
the end-target attractant C3a and C5a, which increase in lungs
during Spn infection (Angel et al., 1994; Paterson and Mitchell,
2006). The role of C3a has not been directly tested during Spn,
but C5a neutralization did not affect neutrophil numbers in
BALF (Müller-Redetzky et al., 2020) suggesting complement is
not a main driver of neutrophil influx.

Inflammatory lipids are another important mediator which
are produced upon phospholipid cleavage by phospholipase A2

to generate arachidonic acid (Rubins et al., 1994). Arachidonic
acid modification by lipoxygenases produces chemoattractants
leukotriene B4 (LTB4) and hepoxilin A3 (HXA3) (Dobrian et al.,
2011). LTB4 is an intermediate stage chemoattractant produced
by the lipoxygenase 5-LOX and is canonically important for
transepithelial migration (Palmblad et al., 1981). Mice lacking 5-
LOX exhibited increased susceptibility to pneumococcal
pneumonia which could be reversed by exogenous
administration of LTB4 (Mancuso et al., 2010). Interestingly,
the pneumococcal virulence factor pneumolysin increases
activity of phospholipase A2 and production of LTB4 in human
neutrophils (Cockeran et al., 2001a; Cockeran et al., 2001b;
Bhowmick et al., 2012; Bhowmick et al., 2017). HXA3 is
another phospholipase A2-derived end-target chemoattractant
that acts mostly on the apical side of the lung epithelium. HXA3

robustly attracts neutrophils across the lung epithelium during
Spn infection (Bhowmick et al., 2013; Adams et al., 2020) and
induced pulmonary inflammation (Bhowmick et al., 2017).

Another important host-derived modulator of neutrophil
function is purinergic signaling. Purine nucleotides such as
ATP, ADP, and adenosine differentially activate purinergic
receptors including P2X (activated by ATP), P2Y (activated by
ATP and ADP) and P1 receptors (activated by adenosine)
(Huang et al., 2021). In homeostatic conditions, extracellular
ATP is minimal due to rapid hydrolysis by surface associated
nucleases including CD39 (converts ATP to AMP) and CD73
(converts AMP to adenosine), and extracellular nucleosides
(degrade adenosine) (Baron et al., 2015). During inflammation,
extracellular ATP can be acutely increased by secretion via
connexins or pannexins (Muñoz et al., 2021) or upon loss of
membrane integrity due to cell death. In the context of Spn, the
virulence factor pneumolysin colocal izes with and
transcriptionally upregulates P2X7R on neutrophils (Domon
et al., 2016). A separate study (Cuypers et al., 2020) showed
that experimental augmentation of extracellular ATP can protect
from pneumolysin-induced neutrophil degranulation, though
the effect was not dependent on P2X7R, suggesting a role for
other P2 receptors or downstream signaling. For example,
extracellular adenosine contributes to bacterial clearance and
survival of mice following Spn infection. This effect is mediated
in part by CD73-dependent generation of adenosine from AMP
and can be pharmacologically augmented by preventing
adenosine degradation (Bou Ghanem et al . , 2015).
Additionally, the role of CD73-dependent neutrophil attraction
is specific to transendothelial migration and does not have a role
in transepithelial migration. The mechanism of adenosine-based
protection is not well-defined in Spn, but several P1 adenosine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
receptors (A1, A2B, A3) have immunomodulatory roles in
endotoxin-induced pulmonary inflammation, and thus remains
an open area for exploration during Spn infection (Ngamsri
et al., 2010; Schingnitz et al., 2010; Wagner et al., 2010).
DISCUSSION

Neutrophils are critical mediators of pneumococcal pneumonia
and their rapid influx from the bloodstream into the pulmonary
space is required for clearance of Spn. Once recruited to the
lungs, neutrophils produce proinflammatory cytokines, perform
phagocytosis, NETosis or degranulation and can cause
considerable damage to host tissue if infection is not resolved
in a reasonable time. Therefore, neutrophil influx to the lung is a
critical factor in pneumococcal pneumonia pathogenesis.

The process of directed neutrophil migration from the blood
across the endothelial and epithelial barriers depends on
integrin-ligand interactions between the neutrophil and barrier
cells as well as GPCR-mediated sensing of a gradient of
chemoattractants. After detection of Spn through PRRs,
resident myeloid cells and epithelial cells generate cytokines
that signal to endothelial and epithelial cells to upregulate
ligands with which to attract and tether neutrophils. The
canonical neutrophil chemokines in mice, CXCL1, CXCL2,
and CXCL5 as well as other chemoattracts created by the host
(C5a, C3a, LTB4, HXA3) and Spn (fMLP, pneumolysin), guide
the neutrophil to the lung through GPCR recognition by the
neutrophil and subsequent movement. Neutrophils receive
cytokine signals to express integrins and produce granules that
aid in migration. Some of the canonical integrins that mediate
neutrophil migration are dispensable in Spn infection and more
research is needed to characterize mediators that dictate
neutrophil movement from the bloodstream (Table 1). In
part icular , the necessary l igand-integr in pairs for
transendothelial migration are not known for pneumococcal
pneumonia and further studies in this particular process
are needed.

Improved models of neutrophil recruitment throughout
infection may help elucidate our understanding of the
contribution of these immune effectors to the pathophysiology
of Spn infection. Although murine models have allowed us to
gain a better understanding of neutrophil recruitment, the
application of other physiologically relevant models such as
human organoids (Gkatzis et al., 2018), intravital microscopy
(Alizadeh-Tabrizi et al., 2021), and humanized mice (Zheng
et al., 2022) to the study of pneumococcal pneumonia will be
indispensable in developing our understanding of
human infection.

Furthermore, host changes such as age (Tseng and Liu,
2014), neutrophil age (Simmons et al., 2021), time of day
(Scheiermann et al., 2018), and co-infection (Jochems et al.,
2018) modulate neutrophil recruitment and but their
contribution to the pathophysiology of Spn infection of the
lung is not well-studied and requires more attention. For
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example, neutrophils in aged hosts show aberrant chemotaxis
and reduced NETosis. Pneumococcal pneumonia is particularly
prevalent in older patients, but the precise interactions that lead
to this dysfunction require more research (Grudzinska et al.,
2020). The respiratory microbiome is also an increasingly
compelling contributor to pulmonary disease which may be
necessary for understanding neutrophil recruitment in
pneumococcal pneumonia (Li et al., 2019). Additionally, it
has been increasingly recognized in the field of neutrophil
biology that not all neutrophils are alike but rather that there
are subpopulations of neutrophils. Definitions of N1 and N2
neutrophil subsets as pro-inflammatory and anti-inflammatory
respectively have emerged out of cancer biology (Ohms et al.,
2020) and these classifications have not been explored with
regard to pneumococcal pneumonia but may provide insight to
the complex role of neutrophils in Spn infection.

The precise inflammatory landscape caused by excessive
recruitment of neutrophils is of interest for therapeutic reasons
(Németh et al., 2020). For example, dampening neutrophil
recruitment with a CXCR2 antagonist has been shown to
alleviate respiratory inflammation in patients with COPD
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Rennard et al., 2015). Therefore, further studies defining
mediators of neutrophil recruitment that are active in
pneumococcal pneumonia may allow for the development of
clinical therapeutics.
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