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ABSTRACT OF THE DISSERTATION

A Rearrangement Inequality for Diffusion Processes

by

Teng Gao

Doctor of Philosophy in Mathematics

University of California, San Diego, 2013

Professor Patrick Fitzsimmons, Chair

Let {Bt}t≥0 be a Brownian motion on [0, 1), reflected at 0 and absorbed at 1. Let

xi = i/n, for i = 0, 1, · · · , n − 1, and lxi
T1

be the local time of the process at xi up to

T1 = inf{t ≥ 0 : Bt = 1}. Given a positive sequence {λ1, · · · , λn}, {λ∗1, · · · , λ
∗
n} is its

non-decreasing rearrangement. The main result of this thesis is the following local time

rearrangement inequality:

E0

exp

− n−1∑
i=0

λil
xi
T1


 ≤ E0

exp

− n−1∑
i=0

λ∗i lxi
T1


 .

Such an inequality holds true for a more general diffusion process {Xt}t≥0 satisfying

dXt = σ(Xt)dBt,

where σ(x) ≥ ε > 0 for all x ∈ [0, 1].

x



Chapter 1

Introduction

We begin with a problem that motivates our main result. {Bt}t≥0 is a Brownian

motion traveling on a dangerous “alley way”, denoted by the interval [0, 1). Assuming

the process has survived until time t, there is a small chance

k(Bt)dt + o(dt)

that the process will be annihilated in the time interval (t, t +dt). Here, k(x) is thought of

as the risk associated with the location x, so it is assumed to be positive and Lebesgue

integrable on the interval [0, 1]. For a traveler who starts at x ∈ [0, 1), the probability of

surviving-until-escape is

Ex

[
exp

{
−

∫ T1

0
k(Bt)dt

}]
, (1.1)

where T1 = inf{t : Bt = 1} is the usual hitting time of the process at level one.

If the process starts at 0, since it spend more time near the starting point, intuition

will suggest that the likelihood of survival will increase if the dangers in the alley are

arranged so as to be more concentrated near the exit. More precisely, let k∗ denote the

unique increasing right-continuous function from [0, 1]→ [0,∞) such that

meas{x ∈ [0, 1) : k∗(x) > λ} = meas{x ∈ [0, 1) : k(x) > λ}

for all λ > 0. (Here “meas" refers to Lebesgue measure.) We then have the following

statement:

1
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Theorem 1.

E0
[
exp

{
−

∫ T1

0
k(Bt)dt

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bt)dt

}]
. (1.2)

By an approximation argument, we can reduce the problem to the case in which

k is continuous. It begins with the local time process {lx
t : 0 ≤ x < 1} which tracks

how much time the Brownian motion spends near a point x ∈ [0, 1). There is the integral

formula ∫ T1

0
k(Bt)dt =

∫ 1

0
k(x)lx

T1
dx. (1.3)

Because k is continuous, the integral on the right side of (1.3) can be approxi-

mated by Riemann sums
1
n

n−1∑
i=0

k(xi)l
xi
T1
,

in which xi = i/n. To prove (1.2), it therefore suffices to show that

E0

exp

− n−1∑
i=0

λiξi

 ≤ E0

exp

− n−1∑
i=0

λ∗i ξi

 (1.4)

for any sequence {λ0, λ2, · · · , λn−1} of strictly positive constants and its non-decreasing

rearrangement {λ∗0, λ
∗
2, · · · , λ

∗
n−1}. (Here we identify ξi with lxi

T1
.)

There are two results that are related to (1.2). Alexander R. Pruss in 1997 [10]

proved an analogous rearrangement inequality in the discrete random walk setting (The

detailed statement of Pruss’ result can be found in the appendix). By the invariance

principle, the scaled reflecting random walk will converge in distribution to a Brownian

motion, so Pruss’ result is naturally connected to ours.

By the Feynman-Kac equation, setting

ϕ(x) = Ex

[
exp

{
−

∫ T1

0
k(Bt)dt

}]
,

where k is a piece-wise constant, non-negative function, we have ϕ(x) satisfies the

boundary value problem

1
2
ϕ′′ = kϕ, ϕ′(0) = 0, and ϕ(1) = 1. (1.5)

Then, (1.2) will imply

ϕ(0) ≤ ϕ∗(0),
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where ϕ∗ is the function obtained from replacing k in (1.5) by its non-decreasing rear-

rangement k∗.

A similar rearrangement result was first proved by M. Essén in 1975 [4]. It is

worth pointing out that although (1.2) can be deduced from the results of Essén, they do

not imply (1.4). However, (1.4) does imply Essén’s result.

The tool that allows us to prove (1.4) is a result derived from a paper of J. Rosen

and M. Marcus [9] to show

E0

exp

− n−1∑
i=0

λiξi

 =
1

det(I + ΣΛ)
,

where Λ is the n by n diagonal matrix with

Λi, j = λiδi, j,

and Σ is the n by n matrix with the entries

Σi, j = G(xi, x j),

where G is the Green function for the process.

Thus the proof of our main result reduces to proving the following determinant

inequality:

det(I + ΣΛ) ≥ det(I + ΣΛ∗),

where

Λ∗i, j = λ∗i δi, j.

Our result can be extended to a bigger class of diffusion process {Xt}t≥0 with

some restriction on its infinitesimal parameters σ and µ , where

µ(x) = lim
h↓0
Ex[X(h) − X(0)],

and

σ2(x) = lim
h↓0
Ex[(X(h) − X(0))2].

The outline of this thesis is as follow. In chapter 2, we will go over the set-up.

We will give the definition of local time, and list some relevant results used in our proof.
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We will state the result of M. Marcus and J. Rosen, and give a detailed calculation of

the Green function with boundary conditions appropriate for our case.

The proof of our main result is given in Chapter 3. In Chapter 4, we will derive

the identity

Ex

[
exp

{
−

∫ T1

0
(k1[a,b)(Bs) + k1[b,c)(Bs))ds

}]
= Ex

[
exp

{
−

∫ Tb

0
k1[a,b)(Bs)ds

}]
· Eb

[
exp

{
−ϕ′(b)lb

T1
−

∫ T1

0
k1[b,c)(Bs)ds

}]
,

where

ϕ(x) = Ex

[
exp

{
−

∫ T1

0
k1[a,b)(Bs)ds

}]
,

for x ∈ [a, b) and a < b < c. We will use this idenity to give an alternative proof of

(1.2) that is based on Essén’s method. Some interesting probabalistic conclusions can

be drawn from such an approach.

In chapter 5, we give a proof that extends Essén’s result to the class of postive

integrable functions, and we show that our main result will hold for Brownian motion

with constant drift.

In chapter 6, we will give an application of the main result. By the method of

time change, we contruct a birth-death process on the state space {0, 1, · · · ,N}, reflected

at 0, and absorbed at N, with equal birth and death rate on each states except the end

points. Applying our main result gives a holding rate rearrangement inequality for such

a process.



Chapter 2

Marcus and Rosen Identity

Let {Xt}t≥0 be a diffusion process on the interval [0, 1) with a reflecting boundary

at 0, and an absorbing boundary at 1, satisfying the stochastic differential equation:

dXt = σ(Xt)dBt + µ(Xt)dt, (2.1)

where {Bt}t≥0 is a Brownian motion.

To ensure the existence of a weak solution, here and in what follows, we assume

the continuity of µ(x) and σ2(x). In addition, σ2(x) ≥ ε > 0 for all x ∈ [0, 1].

We have

Px(T1 < ∞) = 1, ∀x ∈ [0, 1).

We will show in this chapter that the diffusion process {Xt}t≥0 satisfies the iden-

tity:

E0

exp

− n−1∑
i=0

λiξi


 =

1
det(I + ΣΛ)

, where ξi = lxi
T1
. (2.2)

Here, Σ is a matrix whose entries are given by the Green function of the process as

Σi, j = G(xi, x j), Λ is a diagonal matrix whose entries is Σi, j = λiδi, j, and lxi
t is the local

time of the process at xi = i/n up to time t.

Additionally, we will show that given two process {X(1)
t }t≥0 and {X(2)

t }t≥0, such

that their corresponding infinitesimal generators satisfying the inequality

µ1(x)
σ2

1(x)
≥
µ2(x)
σ2

2(x)
, for all x ∈ [0, 1],

5
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then

E0
1

exp

− n−1∑
i=0

λil
xi
T1


 ≥ E0

2

exp

− n−1∑
i=0

λil
xi
T1


 .

We will begin this section with a brief discussion on local time and Green func-

tions.

2.1 Local Time

In this section, we will review the definition of local time and give a list of results

that will be used in the ensuing sections. The main goal is to show that for a positive

continuous function k, and an equal space partition of the interval [0, 1], we have∫ T1

0
k(Xs)ds = lim

n→∞

1
n

n−1∑
i=0

k(xi)l
xi
T1

m(xi) a.s. (2.3)

where xi = i/n.

Here, m is the speed measure, and it is defined as

m(dy) =
2dy

σ2(y)s(y)
, (2.4)

where s is the scale density, defined as

s(y) = exp
{
−

∫ y

0
2µ(ξ)/σ2(ξ)dξ

}
. (2.5)

Additionally, lxi
t denotes the Markov local time at the point xi up to time t.

It is important to point out that there is a difference between semi-martingale

local time, and Markov local time. Here, and in what follows, we will use L (resp. l) for

semi-martingale local time (resp. Markov local time). We will introduce the definition

of semi-martingale local time first. More detail can be found in D. Revuz and M. Yor

[11].

Given a continuous semi-martingale {Yt}t≥0, the local time process at a point

a is defined to be positive increasing process appearing as the remainder term when

expanding |Yt − a| by the Tanaka’s formula. The precise statement is as follows:

Theorem 2. For each real number a, there exists an increasing continuous adapted

process La, called the local time of Y in a, such that

|Yt − a| = |Y0 − a| +
∫ t

0
sgn(Ys − a)dYs + La

t , (2.6)
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Notice that because La
· is an increasing process, we can associate to it a random

measure dLa
t on R+. It can be shown that this random measure is singular to Lebesgue’s

measure.

Proposition 1. The measure dLa
t is a.s. carried by the set {t : Yt = a}

Proof. First, we apply Itô’s formula to the semimartingale |Yt − a|, and get

(Yt − a)2 = (Y0 − a)2 + 2
∫ t

0
|Ys − a|d(|Y − a|)s + 〈|Y |, |Y |〉t

and using Tanaka’s formula, we can expand the term further

(Y0 − a)2 +

∫ t

0
|Ys − a|sgn(Ys − a)dYs + 2

∫ t

0
|Ys − a|dLa

s + 〈Y,Y〉t

However, by applying Itô’s formula to (Yt − a)2 we get

(Yt − a)2 = (Y0 − a)2 + 2
∫ t

0
|Ys − a|dYs + 〈Y,Y〉t

Thus, we reach the conclusion that∫ t

0
|Ys − a|dLa

s = 0

�

In fact, Tanaka’s formula is part of a more general result:

Theorem 3. (Itô-Tanaka formula) If f is the difference of two convex functions and if Y

is a continuous semimartingale

f (Yt) = f (Y0) +

∫ t

0
f ′−(Ys)dYs +

1
2

∫
R

La
t f ′′(da)

If we let f be a positive and twice differentiable function, comparing Itô-Tanaka

formula and Itô’s formula, gives us that∫ t

0
f (Ys)〈Y,Y〉s =

∫ ∞

−∞

f (a)La
t da (2.7)

By monotone class argument, we can conclude the above result will hold for all

positive Borel measurable f .

Heuristically, the local time La
t can be thought of as the amount of time the

process Y spends around the point a up to time t. The next result illustrates this point.
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Proposition 2.

La
t = lim

ε↓0

1
ε

∫ t

0
1[a,a+ε)(Ys)d〈Y,Y〉s a.s. (2.8)

Remark 1. La
t in equation (2.8) refers to a semi-martingale local time. Markov local

time, denoted la
t , is defined as,

la
t = lim

ε↓0

1
m([a, a + ε))

∫ t

0
1[a,a+ε)(Ys)ds. (2.9)

In the next section, we will show that Ex[ly
T1

] = G(x, y), for the Green function G.

Comparing equation (2.8) and (2.9), we have the relationship between the two as,

la
t =

La
t

σ2(a)m(a)
. (2.10)

The last result we list here points out that the local time La
t is cadlag with respect

to the spacial variable, so it enables us to approximate (2.3) using Riemann sum.

Theorem 4. For any continuous semimartingale {Yt}t≥0, there exists a modification of

the process {La
t , a ∈ R, t ∈ R+} such that the map (a, t) → La

t is a.s. continuous in t and

cadlag in a. Moreover, if Y = M + V, then

La
t − La−

t = 2
∫ t

0
1{Ys=a}dVs = 2

∫ t

0
1{Ys=a}dYs.

Thus, in particular, if {Yt}t≥0 is a local martingale, there is a bicontinuous modi-

fication of the family La of local times.

Remark 2. For a diffusion process {Xt}t≥0 with continuous drift µ(x) and variance pa-

rameter σ2(x), the occupation time formula (2.7) implies,

La
t − La−

t = 2
∫ t

0
1{Xs=a}µ(Xs)ds = 2

∫ 1

0
1{x=a}

µ(x)
σ2(x)

Lx
t dx = 0

The last equality is a consequence of the fact that Lx
t dx is absolutely continu-

ous with respect to Lebesgue measure. Thus, for the process we consider, La
t is jointly

continuous in (t, a). From equation (2.10), we also have the joint continuity of la
t .
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2.2 Green Function

In this section, we will show that with the appropriate normalization of the Green

function G, we have

Ex[ly
T1

] = G(x, y).

We will derive the above equation with the corresponding boundary condition that is

suitable for our purpose.

For the diffusion process {Xt}t≥0 with drift µ(x) and variance parameterσ2(x) > 0,

its infinitesimal generator is

L =
1
2
σ2(x)

d2

dx2 + µ(x)
d
dx
.

In the next chapter, we will show that for a positive integrable function f , the

function ϕ defined as:

ϕ(x) = Ex

[
exp

{
−λ

∫ T1

0
f (Xs)ds

}]
, (2.11)

satisfies

Lϕ = λ fϕ. (2.12)

Differentiating both sides of (2.11) with respect to λ, due to the fact that∣∣∣∣∣∣exp
{
−λ

∫ T1

0
f (Xs)ds

}∣∣∣∣∣∣ ≤ 1,

and ∣∣∣∣∣∣
∫ T1

0
f (Xs)ds exp

{
−λ

∫ T1

0
f (Xs)ds

}∣∣∣∣∣∣ ≤
∫ T1

0
f (Xs)ds < ∞.

we can switch the order of ∂
∂λ

and the expectation Ex, obtaining

∂ϕ

∂λ
= Ex

[
−

∫ T1

0
f (Xs)ds exp

{
−λ

∫ T1

0
f (Xs)ds

}]
.

∂

∂λ
Lϕ = L

∂ϕ

∂λ
= fϕ + λ f

∂ϕ

∂λ
. (2.13)

Let λ→ 0, with the help of dominated convergence theorem,

ϕ(λ)→ 1, and
∂ϕ

∂λ
→ −Ex

[∫ T1

0
f (Xs)ds

]
.
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If we define w as:

w(x) = Ex

[∫ T1

0
f (Xs)ds

]
, for x ∈ (0, 1), (2.14)

equation (2.13) becomes

Lw = − f . (2.15)

The solution to such an ordinary differential equation is well-known, and is given

as

w(x) =

∫ 1

0
G(x, y) f (y)m(dy), (2.16)

where G is the Green function.

Combining (2.14) and (2.16) we get:

Ex

[∫ T1

0
f (Xs)ds

]
=

∫ 1

0
G(x, y) f (y)m(dy).

By Proposition 2, if we set f = 1
m[y,y+ε)1[y,y+ε) and let ε ↓ 0, we get the desired

identity:

Ex[ly
T1

] = G(x, y).

Now we will construct the Green function. More detail can be found in Itô and

McKean [7].

Here, we denote the scale derivative g+ as:

g+(y) = lim
y↓x

g(y) − g(x)
S (y) − S (x)

, S (x) =

∫ x

0
s(η)dη.

Let g1 (resp. g2) be the increasing (resp. decreasing) solution to

Lg = 0, (2.17)

with

g′1(0) = 0 and g2(1) = 0.

Both g1 and g2 are uniquely determined up to a positive constant. Moreover, the

Wronskian W = g+
1 g2 − g+

2 g1 is a constant, so g1 and g2 are linearly independent. The

Green function is:

G(x, y) = G(y, x) = g1(x)g2(y)/W, x ≤ y. (2.18)



11

By the strong Markov property and the terminal time property, for x ≤ y, we can

write: T1 = Ty + T1 ◦ θTy , where θ· is the shift operator, and have:

G(x, y) = Ex[ly
T1

] = Ex[ly
Ty

+ ly
T1◦θTy

] = Ey[ly
T1

] = G(y, y). (2.19)

Equations (2.19) and (2.18) tells us that the g1 is a constant, and without loss of

generality, we set g1 = 1.

Moreover, from the fact that G(1, 1) = E1[l1
T1

] = 0, consistent with the right

boundary condition

g2(1) = 0.

A simple calculation will show that we can take

g2(x) =

∫ 1

x
s(ξ)dξ and s(ξ) = exp{−

∫ ξ

0
2µ(η)/σ2(η)dη}. (2.20)

so that the Wronskian is W = 1.

Summarizing:

G(x, y) = g2(x ∨ y),

where g2 is given by (2.20).

We can now check that w(x) defined as in (2.14), solves the boundary value

problem: 
Lw = − f

w′(0) = 0

w(1) = 0

.

First, we rewrite w as:

w(x) = g1(x)
∫ 1

x
g2(y) f (y)m(dy) + g2(x)

∫ x

0
g1(y) f (y)m(dy).

It is easy to see that w(1) = g2(1)
∫ 1

0
g1(y) f (y)m(dy) = 0.

Also,

w′(x) = g′2(x)
∫ x

0
g1(y) f (y)m(dy).

Clearly, w′(0) = 0.
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Next,

w′′(x) = g′′2 (x)
∫ x

0
g1(y) f (y)m(dy) − 2 f (x)/σ2(x).

Hence, Lw = − f .

Remark 3. To see that w is the unique solution to the boundary value problem, suppose

w1 and w2 solve the same boundary value problem. Then, for g(x) = w1(x) − w2(x), g

satisfies g′(0) = 0 and g(1) = 0.

Notice Lg = 0 implies g′′(x) = −(2µ(x)/σ2(x))g′(x). Let h(x) = g′(x), then solv-

ing the first degree differential equation will give h(x) = C · exp{−
∫ x

0
−2µ(η)/σ2(η)dη}.

h(0) = g′(0) implies C = 0. In other words, g must be a constant, and since g(1) = 0, g

must be identically zero.

Remark 4. For a Brownian motion on [0, 1), reflected at 0 and absorbed at 1. We

have µ(x) ≡ 0 and σ2(x) ≡ 1. Therefore, g2(x) = 1 − x, and the Green function is

G(x, y) = 1 − (x ∨ y).

2.3 Marcus and Rosen Identity

The main tool we will be using to prove our main result is the identity:

Proposition 3.

E0

exp

− n∑
i=1

λiξi


 =

1
det(I + ΣΛ)

, (2.21)

where ξi = lxi
T1

, for 0 = x1 < · · · < xn ≤ 1. Σ is the n × n matrix with entries

Σi, j = G(xi, x j), and Σi, j = λiδi, j.

Here, λ1, · · · , λn are all strictly positive.

To show (2.21), we will use the following result from M. Marcus and J. Rosen

[9]:

Lemma 1. (Marcos and Rosen) Let X be a Markov process with continuous 0−potential

density u(x, y). Assume that a local time ly
t exists for each y, normalized so that Ex[ly

∞] =
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u(x, y). Let Σ be the matrix with element Σi, j = u(x, y), i, j = 1, · · · , n. Let Λ be the

matrix with elements {Λ}i, j = λiδi, j. For all λ1, · · · , λn sufficiently small and 1 ≤ l ≤ n,

Exl

exp

 n∑
i=1

λilxi
∞


 =

det(I − Σ̂Λ)
det(I − ΣΛ)

,

where Σ̂ j,k = Σ j,k − Σl,k, j, k = 1, · · · , n.

From previous calculations, we have

Σi, j = G(xi, x j) = g2(xi ∨ x j).

For l < j, k

Σ̂1
j,k = Σ1

j,k − Σ1
l,k

= g(x j ∨ xk) − g(xl ∨ xk)

=

 g(x j) − g(xk), if j > k,

0, j ≤ k,

so

(I − Σ̂Λ)i, j =


g(xk) − g(x j), j > k,

1, j = k,

0, j < k.

Therefore, we have det(I − Σ̂Λ) = 1 in the case where x1 = 0. Setting ξi = lxi
T1

,

we have

E0

exp

− n∑
i=1

λiξi


 =

1
det(I + ΣΛ)

, for λi sufficiently small.

Remark 5. In the paper of M.Marcus and J. Rosen [9], there is a more general lemma

than the one given above. The precise statement is given as follow:

Lemma 2. Let X be a Markov process with finite 0−potential density u(x, y). Assume

that a local time ly
t exists for each y, normalized so that Ex[ly

∞] = u(x, y). Let Θ be the
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matrix with elements Θi, j = u(xi, x j), i, j = 1, · · · , n. Let Λ be the matrix with elements

{Λ}i, j = λiδi, j. For all λ1, · · · , λn sufficiently small and 1 ≤ l ≤ n,

Exl

exp

 n∑
i=1

λilxi
∞


 =

det((I − ΘΛ)(l))
det(I − ΘΛ)

here A(l) denotes the matrix obtained by replacing the lth column of the n × n matrix A

by a column of 1.

The following calculation shows that both lemmas lead to the same identity. We

set gi = g2(xi).

det((I + ΣΛ)(1)) = det


1 g2λ2 · · · gnλn

1 1 + g2λ2 · · · gnλn
...

...
. . .

...

1 · · · · · · 1 + gnλn



= det


1 g2λ2 · · · gnλn

0 1 · · · 0
...

...
. . .

...

0 (gn − g2)λ2 · · · 1


= 1.

The second to third equality is obtained by using row reduction.

Our next task is to remove the restriction on the size of λi. The constraint on the

λi’s is due to the fact that both Exl

exp

− n∑
i=1

λilxi
∞


 and 1/ det(I + ΣΛ) are represented

as a formal power series (if the series converges absolutely):

E0

exp

− n∑
i=1

λil
xi
T1


 =

∞∑
k=0

{(−1)k(ΣΛ)k1t}1 =
1

det(I + ΣΛ)
, (2.22)

as functions of (λ1, · · · , λn) ∈ Rn, wherever such power series is well-defined.

Analytic continuation will enable us to extend the validity of the identity to a

larger domain to where both Exl

exp

− n∑
i=1

λilxi
∞


 and 1/ det(I + ΣΛ) are defined.

Our first step is to find a modest bound on λi’s, so that the formal power series

will converge. For simplicity, we choose the open ball B(0, q) ∈ Cn, with center at the
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origin and radius q < 1.

Lemma 3. Assuming µ(x) ≥ 0, for all x ∈ [0, 1], and n · λi < q < 1 for i = 1 to n. Then,

∞∑
k=0

{(ΣΛ)k1t}1 < ∞ (2.23)

Proof. First, notice that for ai ∈ (0, 1), have

gi = g(ai) =

∫ 1

ai

exp
{
−

∫ t

0
2µ(s)/σ2(s)ds

}
dt < 1.

Next, we claim that

{(ΣΛ)k1t}1 < qk.

We will proceed by induction on k.

For k = 1,

{(ΣΛ)1t}1 =

n∑
i=1

giλi <

n∑
i=1

λi ≤ n · (max
i
λi) < q < 1.

and

{(ΣΛ)k+11t}1 =
{
(ΣΛ)(ΣΛ)k1t

}
1

< {qk(ΣΛ)1t}1

= qk+1.

Finally, we have
∞∑

k=0

{(ΣΛ)k1t}1 <

∞∑
k=0

qk < ∞.

�

For each i, both E0[exp{−
n∑

i=1

λil
xi
T1
}] and 1/ det(I + ΣΛ) are functions of λi, and

they are continuous and differentiable on Ω = {(z1, · · · , zn) ∈ Cn : Real(zi) > 0,∀ i}.

By Osgood’s lemma, both function are holomorphic on Ω (see Appendix C). Both

E0[exp{−
n∑

i=1

λil
xi
T1
}] and 1/ det(I + ΣΛ) can be represented by the formal power series
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∞∑
k=0

{(ΣΛ)k1t}1 on the open set B(0, q)
⋂

Ω. Thus, by the Identity Theorem (see Appendix

C), the two functions are equal on Ω.

In Pruss’ paper, he shows that if the probability of the random walk jumping up

is increased, the probability of safe arrival at the end point will also increase. In the

context of our set up, we have the following analogous inequality.

Theorem 5. Let {λ0, · · · , λn−1} be all positive numbers, and 0 = x0 < · · · xn−1 ≤ 1.

Consider diffusions X(1) and X(2), such that their corresponding infinitesimal generators

satisfying the inequality

µ1(x)
σ2

1(x)
≥
µ2(x)
σ2

2(x)
, for all x ∈ [0, 1].

In this case,

E0
1

exp

− n−1∑
i=0

λil
xi
T1


 ≥ E0

2

exp

− n−1∑
i=0

λil
xi
T1


 .

Proof. Let g(1)
2 and g(2)

2 denote the decreasing right boundary solution for X(1) and X(2)

discussed before respectively. Recall from our discussion of Green function, that

g(1)
2 (x) =

∫ 1

x
exp

{
−

∫ ξ

0
2
µ1(η)
σ2

1(η)
dη

}
dξ ≤ g(2)

2 (x) =

∫ 1

x
exp

{
−

∫ ξ

0
2
µ2(η)
σ2

2(η)
dη

}
dξ.

Thus, we have

Σ
(1)
i, j = g(1)

1 (xi ∨ x j) ≤ Σ
(2)
i, j = g(2)

2 (xi ∨ x j),

so

det(I + Σ(1)Λ) ≤ det(I + Σ(2)Λ),

which gives the desire inequality. �

Chapter 2 is based on the paper “A Local Time Inequality for Reflecting Brown-

ian Motion” written jointly with Patrick Fitzsimmons, which is currently in preparation.

The dissertation author is the primary author of this work.



Chapter 3

Proof of Main Result

We will focus our effort on reflecting Brownian motion. In what follows, {B}t≥0

denotes a Brownian motion on [0, 1) with reflecting boundary at 0, and an absorbing

boundary at 1. The interval [0, 1) is partitioned into n equal space subintervals so that

xi =
i
n

for i = 0 to n − 1. Thus, the entries of the matrix Σ in our set up

E0

exp

− n−1∑
i=0

λiξi


 =

1
det(I + ΣΛ)

, ξi = lxi
T1
, (3.1)

are

Σi, j = gi ∧ g j = g(xi ∧ x j) = 1 −
i ∧ j

n
.

Let {λ∗0, · · · , λ
∗
n−1} be the increasing rearrangement of the sequence {λ0, · · · , λn−1}.

With equation (3.1), to show

E0

exp

− n−1∑
i=0

λiξi


 ≤ E0

exp

− n−1∑
i=0

λ∗i ξi


 , where ξi = lxi

T1
,

it is suffices to show the corresponding inequality

det(I + ΣΛ) ≥ det(I + ΣΛ∗),

where

Λ∗i, j = λ∗i δi, j, for i = 0, · · · , n − 1.

Instead of rearranging the order of λi’s all at once, we will do it in steps. For a

17
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positive sequence of distinct numbers {λ0, · · · , λn−1}. We pick two indices s and k by:

s := max{ j : λ0 < · · · < λ j < min
i≥ j+1

λi},

k := {l : λl = min
i≥s

λi}.

We set

λ̂ j =


λ j, for 0 ≤ j ≤ s, or j > k,

λ j−1, for s < j ≤ k

λk, for j = s + 1.

Clearly, by repeating the above step in which {λi} is replaced by {λ̂i}, we can

rearrange λi’s into increasing order.

We set M(s+1, k) = det(I+ΣΛ), and M̂(s+1, k) = det(I+ΣΛ̂), where Λ̂i, j = λ̂iδi, j.

Thus, to get the desired result, it is suffices to show

M(s + 1, k) ≥ M̂(s + 1, k).

3.1 Preliminary and Notation

To simplify the caculation, we observe that by row reduction

det(I + ΣΛ) = det(I + N),

where

Ni, j =


λ j/n, j ≤ i,

−1, j = i + 1,

0, j > i + 1.

Next, notice that although the position of the entries from λs+1 to λk have changed,

the position from λ0 to λs, and from λk+1 to λn−1 is the same for both M(s + 1, k) and

M̂(s + 1, k). Thus, it makes sense to break those two determinant down into parts.

To simplify our discussion, we adopt the following notation:

Al =

∣∣∣∣∣∣∣∣∣∣∣∣
1 + λ0

n −1 · · · 0
...

...
. . .

...
λ0
n

λ1
n · · · 1 + λl

n

∣∣∣∣∣∣∣∣∣∣∣∣ , and A−l =

∣∣∣∣∣∣∣∣∣∣∣∣
1 + λ0

n −1 · · · 0
...

...
. . .

...
λ0
n

λ1
n · · ·

λl
n

∣∣∣∣∣∣∣∣∣∣∣∣ .
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For l ≥ 0, Al is the determinant of the matrix with the indices of the entries

starting at 0 and ending at l, and A−l is the determinant of the matrix that is the same as

that of Al except the entry1 +
λl

n
in the position of (l, l) replaced by

λl

n
.

By expanding along the last coloumn, we have the relation:

Lemma 4.

Al = Al−1 + A−l .

In the subsequent calculations, we will use this lemma in the case when l = 1.

In order to keep the notation consistent, we set A−1 = 1 and A−
−1 = 0.

In the more general context, if the entries of the matrix start at λs and end at λl,

we use the notation

As
l =

∣∣∣∣∣∣∣∣∣∣∣∣
1 + λs

n −1 · · · 0
...

...
. . .

...
λs
n

λs+1
n · · · 1 + λl

n

∣∣∣∣∣∣∣∣∣∣∣∣ , and −As
l =

∣∣∣∣∣∣∣∣∣∣∣∣
1 + λs

n −1 · · · 0
...

...
. . .

...
λs
n

λs+1
n · · ·

λl
n

∣∣∣∣∣∣∣∣∣∣∣∣ .
We have the relation

Lemma 5.

As
l = As

l−1 + −As
l .

Remark 6. Similar to the previous remark, we will be using the above lemma in the

case when s = l. In this case, −As
s =

λs

n
and As

s = 1 + −As
s, so we set As

s−1 = 1.

Another special case is when the indices of the entries start at l and end at n − 1.

We use the notation

An
l =

∣∣∣∣∣∣∣∣∣∣∣∣
1 + λl

n −1 · · · 0
...

...
. . .

...
λl
n

λl+1
n · · · 1 + λn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣ .
We can also evaluate the value of An

l and As
l by expanding along the first row.

To keep the calculation tidy, we adopt the following notation:

Bs
l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n −1 · · · 0
1
n 1 + λs

n · · · 0
...

...
. . .

...

1
n

λs
n · · · 1 + λl

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and 1Bs

l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 · · · 0

1 1 + λs
n · · · 0

...
...

. . .
...

1 λs
n · · · 1 + λl

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Obviously, Bs
l =

1
n

1Bs
l .

By expanding along the first row we have

Lemma 6.

As
l = λs · B

s+1
l + As+1

l ,

=
λs

n
· 1Bs+1

l + As+1
l .

For the special case where the indices of the entries start at l and end at n−1, we

use the notation

B1
l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 · · · 0

1 1 + λl
n · · · 0

...
...

. . .
...

1 λl
n · · · 1 + λn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Additionally, we have

−Bs
l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n −1 · · · 0
1
n 1 + λs

n · · · 0
...

...
. . .

...

1
n

λs
n · · ·

λl
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and 1,−Bs

l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 · · · 0

1 1 + λs
n · · · 0

...
...

. . .
...

1 λs
n · · ·

λl
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here are some additional properties of these determinants

Lemma 7.

As
l = (1 +

λs

n
) · As+1

l +
λs

n
· 1Bs+2

l . (3.2)

As
l =

λs

n
· 1Bs+1

l + As+1
l (3.3)

As
l = (1 +

λl

n
) · As

l−1 + −As
l−1 = As

l−1 + −As
l . (3.4)

1Bs
l = As

l + 1Bs+1
l . (3.5)

Bs
l =

1
n
· As

l + Bs+1
l (3.6)

Bs
l = −Bs

l + Bs
l−1. (3.7)

Remark 7. Mindful of the fact that the above identities also works for the end points,

we adopt the following conventions:
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• First, notice that An
n−1 = (1 +

λn−1

n
) · An

n +
λn−1

n
· B1

n+1. Therefore, we set An
n = 1

and B1
n+1 = 0. By the same token, we set As+1

s = 1 and 1Bs+2
s = 0.

• Second, B1
n−1 = An

n−1 + 1 = An
n−1 +B1

n, so we set B1
n = 1. By the same token, we set

1Bs+1
s = 1, Bs+1

s = 1
n , and B1

n = 1
n .

• Third, Bs+1
s = 1

n = −Bs+1
s + Bs+1

s−1 = −Bs+1
s . Likewise, 1,−Bs+1

s = 1.

• Lastly,
λs

n
= −As

s =
λs

n
As

s−1 + −As
s−1, so we have −As

s−1 = 0.

The next lemma allows us the break down the determinant As
l at points other

than the end points.

Lemma 8. For s ≤ r ≤ l,

As
l = As

r · A
r+1
l + −As

r ·
1Br+2

l .

Proof. We will use induction. First, let k = s + 1, and evaluate the determinant As
l by

expanding along first row.

As
l = (1 +

λs

n
) · As+1

l +
λs

n
· 1Bs+2

l

= As
s · A

s+1
l + −As

s ·
1Bs+2

l .

Using the inductive hypothesis, for general entry s ≤ k ≤ l,

As
l = As

k · A
k+1
l + −As

k ·
1Bk+2

l

= As
k ·

(
(1 +

λk+1

n
) · Ak+2

l +
λk+1

n
· 1Bk+3

l

)
+ −As

k ·
(
Ak+2

l + 1Bk+3
l

)
=

(
(1 +

λk+1

n
) · As

k + −As
k

)
· Ak+2

l +

(
λk+1

n
As

k + −As
k

)
· 1Bk+3

l

= As
k+1 · A

k+2
l + −As

k+1 ·
1Bk+3

l .

�

There are times when, in order to show recursive relation, we need to expand 1Bs
l

other than at the diagonal end points. In those instance, the next lemma will be useful.

Lemma 9.
1Bs

l = (1 +
λs

n
) · 1Bs+1

l + As+1
l .
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Proof.

1Bs
l = As

l + 1Bs+1
l

=
λs

n
· 1Bs+1

l + As+1
l + 1Bs+1

l

= (1 +
λs

n
) · 1Bs+1

l + As+1
l .

�

3.2 Main Steps

We are now ready for the main steps. Using Lemma 8, we have

M(s + 1, k) = As · A
n
s+1 + A−s · B

1
s+2

= As ·
(
As+1

k · An
k+1 + −As+1

k · B1
k+2

)
+ A−s ·

(
1Bs+2

k · An
k+1 + 1,−Bs+2

k · B1
k+2

)
.

We break down M̂(s + 1, k) the same way:

M̂(s + 1, k) = As ·
(
∗As+1

k · An
k+1 + −Ãs+1

k · B1
k+2

)
+ A−s ·

(
1Bs+1

k−1 · A
n
k+1 + 1,−Bs+1

k−1 · B
1
k+2

)
.

To be more clear,

∗As+1
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λk
n −1 · · · 0

λk
n 1 + λs+1

n · · · 0
...

...
. . .

...
λk
n

λs+1
n · · · 1 + λk−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, −Ãs+1

k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λk
n −1 · · · 0

λk
n 1 + λs+1

n · · · 0
...

...
. . .

...
λk
n

λs+1
n · · ·

λk−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We let

1. (I) = As+1
k − ∗As+1

k ,

2. (II) = −As+1
k − −Ãs+1

k ,

3. (III) = 1Bs+2
k − 1Bk+1

k−1,

4. (IV) = 1,−Bs+2
k − 1,−Bs+1

k−1.

Our next result shows that
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Lemma 10.

M(s + 1, k) − M̂(s + 1, k)

= As ·
(
(I) · An

k+1 + (II) · B1
k+2

)
+ A−s ·

(
(III) · An

k+1 + (IV) · B1
k+2

)
= As ·


∑ν

j=0

(
(λs+1+ j − λk) · −B

s+2+ j
k−1− j + 1

n · (λk−1− j − λk) · A
s+2+ j
k+2+ j

)
· An

k+1

+λk
n ·

(∑ν
j=0(λs+1+ j − λk−1− j) · B

s+2+ j
k−2− j

)
· B1

k+2


+A−s ·


(∑ν

j=0(λk− j − λs+1+ j) · B
s+2+ j
k−2− j

)
· An

k+1

−
∑ν

j=0

(
(λs+1+ j − λk)−B

s+2+ j
k−1− j + 1

n · (λk−1− j − λk)A
s+2+ j
k−2− j

)
· B1

k+2

 ,

where

ν =


k−s−3

2 , k − s is odd,

k−s−2
2 , k − s is even.

Proof.

(I) = As+1
k − ∗As+1

k

= (1 +
λk

n
) · As+1

k−1 + −As+1
k−1 − (1 +

λk

n
) · As+1

k−1 − λk · B
s+2
k−1

= λs+1 ·
−Bs+2

k−1 + −As+2
k−1 − λk ·

−Bs+2
k−1 − λk · B

s+2
k−2

= (λs+1 − λk) · −Bs+2
k−1 +

λk−1

n
· As+2

k−2 + −As+2
k−2 −

λk

n
· As+2

k−2 − λk · B
s+3
k−2

= (λs+1 − λk) · −Bs+2
k−1 +

λk−1 − λk

n
· As+2

k−2 + −As+2
k−2 − λk · B

s+3
k−2.

Notice the recursive relation

−As+1+ j
k−1− j − λkB

s+2+ j
k−1− j = (λs+1+ j − λk) · −B

s+2+ j
k−1− j +

λk−1− j − λk

n
·As+2+ j

k−2− j + −As+2+ j
k−2− j − λk ·B

s+3+ j
k−2− j.

By repeating the steps, we have

(I) = −As+1
k−1 − λk · B

s+2
k−1

=

ν−1∑
j=0

(
(λs+1+ j − λk) · −B

s+2+ j
k−1− j +

λk−1− j − λk

n
· As+2+ j

k−2− j

)
+ I1

ν ,
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where ν and I1
ν are to be determined next.

Case 1: k− s is odd. In this case, we have s + ν+ 2 = k− ν− 1, or ν =
k − s − 3

2
.

I1
ν = −As+ν+1

k−ν−1 − λk · B
s+ν+2
k−ν−1

= (λs+ν+1 − λk) · −Bs+ν+2
k−ν−1 +

λk−ν−1 − λk

n
.

Case 2: k − s is even. s + ν + 1 = k − ν − 1, or ν =
k − s − 2

2
.

I1
ν = −As+ν+1

k−ν−1 − λk · B
s+ν+2
k−ν−1

=
λk−ν−1 − λk

n
.

Thus, we set

ν =


k−s−3

2 , k − s is odd,

k−s−2
2 , k − s is even.

and

I1
ν =


(λs+ν+1 − λk) · −Bs+ν+2

k−ν−1 + λk−ν−1−λk
n , ν = k−s−3

2 ,

λk−ν−1−λk
n , ν = k−s−2

2 .

(II) = −As+1
k − −Ãs+1

k

=
λk

n
· As+1

k−1 + −As+1
k−1 − (1 +

λk

n
) · −As+1

k−1 − λk ·
−Bs+2

k−1

=
λk

n
·
(
−As+1

k−1 + As+1
k−2

)
+ −As+1

k−1 − (1 +
λk

n
) · −As+1

k−1 − λk ·
−Bs+2

k−1

=
λk

n
· As+1

k−2 − λk ·
−Bs+2

k−1

=
λk

n
·
(
λs+1 · B

s+2
k−2 + As+2

k−2

)
−
λk−1

n
· λk · B

s+2
k−2 − λk ·

−Bs+2
k−2

=
λk

n
· (λs+1 − λk−1) · Bs+2

k−2 +
λk

n
· As+2

k−2 − λk ·
−Bs+2

k−2

=
λk

n
· (λs+1 − λk−1) · Bs+2

k−2 +
λk

n
·
(
−As+2

k−2 + As+2
k−3

)
−

(
λk

n
· −As+2

k−2 + λk ·
−Bs+3

k−2

)
=

λk

n
· (λs+1 − λk−1) · Bs+2

k−2 +
λk

n
· As+2

k−3 − λk ·
−Bs+3

k−2.
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Notice the recursive relation

λk

n
· As+1+ j

k−2− j − λk ·
−Bs+2+ j

k−1− j =
λk

n
· (λs+1+ j − λk−1− j) · B

s+2+ j
k−2− j +

λk

n
· As+2+ j

k−3− j − λk ·
−Bs+3+ j

k−2− j.

By keeping the notation consistent with the previous calculation, we denote

(II) =
λk

n
·

 ν−1∑
j=0

(λs+1+ j − λk−1− j) · B
s+2+ j
k−2− j + I2

ν

 .
Case 1: s + ν + 2 = k − ν − 1 or s + ν + 1 = k − ν − 2.

λk

n
· As+ν+1

k−ν−2 − λk ·
−Bs+ν+2

k−ν−1 =
λk

n
·
λs+ν+1 − λk−ν−1

n
.

Case 2: s + ν + 1 = k − ν − 1.

Recall from our remark that As+ν+1
k−ν−2 = 1 and −Bs+ν+2

k−ν−1 =
1
n

.

λk

n
· As+ν+1

s+ν+2 − λk ·
−Bs+ν+2

k−ν−1 = 0.

Keeping ν the same as the previous calculation, and we set

I2
ν+1 =


λs+ν+1−λk−ν−1

n , ν = k−s−3
2 ,

0, ν = k−s−2
2 .

By Lemma 9

(III) = 1Bs+2
k − 1Bs+1

k−1

= (1 +
λk

n
) · 1Bs+2

k−1 + 1,−Bs+2
k−1 −

(
1 +

λs+1

n

)
· 1Bs+2

k−1 − A
s+2
k−1

= (λk − λs+1) · Bs+2
k−1 +

(
−As+2

k−1 + 1,−Bs+3
k−1

)
−

(
−As+2

k−1 − A
s+2
k−2

)
= (λk − λs+1) · Bs+2

k−1 +

(
λk−1

n
· 1Bs+3

k−2 + 1,−Bs+3
k−2

)
−

(
λs+2

n
· 1Bs+3

k−2 + As+3
k−2

)
= (λk − λs+1) · Bs+2

k−1 + (λk−1 − λs+2) · Bs+3
k−2 + 1,−Bs+3

k−2 − A
s+3
k−2.

We use the recursive relation, which can be deduced from the second and fifth

equality,

1,−Bs+1+ j
k− j − A

s+1+ j
k− j = (λk− j − λs+ j+1) · Bs+2+ j

k− j−1 + 1,−Bs+2+ j
k− j−1 − A

s+2+ j
k−1− j.
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We can write

(III) =

ν−1∑
j=0

(λk− j − λs+ j+1) · Bs+2+ j
k− j−1 + I3

ν .

Case 1: s + ν + 2 = k − ν − 1.

1,−Bs+1+ν
k−ν − As+1+ν

k−ν = (λk−ν − λs+ν+1) · Bs+2+ν
k−ν−1 + 1,−Bk−ν−1

k−ν−1 − A
k−ν−1
k−ν−1

= (λk−ν − λs+ν+1) · Bs+2+ν
k−ν−1.

Case 2: s + ν + 1 = k − ν − 1

1,−Bs+ν+1
k−ν − As+ν+1

k−ν = 0.

Thus, we set

I3
ν =


(λk−ν − λs+ν+1) · Bs+2+ν

k−ν−1, ν = k−s−3
2 ,

0, ν = k−s−2
2 .

Lastly, we show that (IV) = −(I).

(IV) = 1,−Bs+2
k − 1,−Bs+1

k−1

=

(
λk

n
·

(
1,−Bs+2

k−1 + Bs+2
k−2

)
+ 1,−Bs+2

k−1

)
−

((
λs+1

n
· 1,−Bs+2

k−1 + −As+2
k−1

)
+ 1,−Bs+2

k−1

)
= (λk − λs+1) · −Bs+2

k−1 + λk · B
s+2
k−2 −

−As+2
k−1

Recall from the remark 6 and 7, we can simplify the notation of I1
ν , I2

ν and I3
ν ,

and the result is the identity as stated in the lemma. �
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Lemma 11.

M(s + 1, k) − M̂(s + 1, k)

= As


(∑ν

j=0(λs+1+ j − λk) · −B
s+2+ j
k−1− j + 1

n · (λk−1− j − λk) · A
s+2+ j
k−2− j

)
· An

k+1

+λk
n ·

(∑ν
j=0(λs+1+ j − λk−1− j) · B

s+2+ j
k−2− j

)
· B1

k+2


+A−s


(∑ν

j=0(λk− j − λs+1+ j) · B
s+2+ j
k−1− j

)
· An

k+1

−
(∑ν

j=0(λs+1+ j − λk) · −B
s+2+ j
k−1− j + 1

n · (λk−1− j − λk) · A
s+2+ j
k−2− j

)
· B1

k+2


=

ν∑
j=0


(λs+1+ j − λk) · {L1 ·

−Bs+2+ j
k−1− j + L2 · B

s+2+ j
k−2− j}

+ (λk−1− j − λk){ 1n · L1 · A
s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j}


where

L1 = As−1 · A
n
k+1 − A

−
s · B

1
k+2, and L2 =

λk

n
· As · B

1
k+2 − A

−
s · A

n
k+1.

Proof. For j = 0, · · · , ν − 1

(λs+1+ j − λk) · As ·
−Bs+2+ j

k−1− j · A
n
k+1 + (λk− j − λs+1+ j) · A−s · B

s+2+ j
k−1− j · A

n
k+1

−(λs+1+ j − λk) · A−s ·
−Bs+2+ j

k−1− j · B
1
k+2 +

λk

n
· (λs+1+ j − λk−1− j) · As · B

s+2+ j
k−2− j · B

1
k+2

+
λk−1− j − λk

n
· As · A

s+2+ j
k−2− j · A

n
k+1 −

λk−1− j − λk

n
· A−s · A

s+2+ j
k−2− j · B

1
k+2

= (λs+1+ j − λk) ·
(
As−1 − A

−
s
)
· −Bs+2+ j

k−1− j · A
n
k+1

+(λk− j − λk) · A−s · B
s+2+ j
k−1− j · A

n
k+1 + (λk − λs+1+ j) · A−s ·

(
−Bs+2+ j

k−1− j + Bs+2+ j
k−2− j

)
· An

k+1

λk

n
· (λs+1+ j − λk + λk − λk−1− j) · As · B

s+2+ j
k−2− j · B

1
k+2
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+
λk−1− j − λk

n
·
(
As−1 + A−s

)
· As+2+ j

k−2− j · A
n
k+1

−
λk−1− j − λk

n
· A−s · A

s+2+ j
k−2− j · B

1
k+2 ± (λk−1− j − λk) · A−s · B

s+3+ j
k−2− j · A

n
k+1

= (λk− j − λk) · A−s · B
s+2+ j
k−1− j · A

n
k+1 + (λs+1+ j − λk) ·

{
L1 ·

−Bs+2+ j
k−1− j + L2 · B

s+2+ j
k−2− j

}

+
λk

n
(λk − λk−1− j) · As · B

s+2+ j
k−2− j · B

1
k+2

+(λk−1− j − λk) · A−s ·
(
1
n
· As+2+ j

k−2− j + Bs+3+ j
k−2− j

)
· An

k+1

+
λk−1− j − λk

n
·
(
As−1 · A

n
k+1 − A

−
s · B

1
k+2

)
· As+2+ j

k−2− j − (λk−1− j − λk) · A−s · B
s+3+ j
k−2− j · A

n
k+1

= (λk− j − λk) · A−s · B
s+2+ j
k−1− j · A

n
k+1 − (λk−1− j − λk) · A−s · B

s+3+ j
k−2− j · A

n
k+1

+(λs+1+ j − λk) ·
{
L1 ·

−Bs+2+ j
k−1− j + L2 · B

s+2+ j
k−2− j

}

+(λk−1− j − λk) ·
{

1
n
· L1 · A

s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j

}
.

Notice for this step, we have an extra term (λk− j − λk) ·A−s · B
s+2+ j
k−1− j ·A

n
k+1 and we

need to borrow a term (λk−1− j − λk) ·A−s · B
s+3+ j
k−2− j ·A

n
k+1 from the next step of calculation.

The borrowed term is needed for the identity

1
n
· As+2+ j

k−2− j + Bs+3+ j
k−2− j = Bs+2+ j

k−2− j.

Since there are no more terms to borrow from for the last step, we need to treat

those two cases separately.

Before further calculation, recall that for the first case when k − s is odd, and we
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set ν = k−s−3
2

As ·




(λs+1 − λk) · −Bs+2

k−1 + 1
n · (λk−1 − λk) · As+2

k−2

+
... +

...

+ (λs+1+ν − λk) · −Bk−1−ν
k−1−ν + 1

n · (λk−1−ν − λk)

 · An
k+1

+λk
n ·

(
(λs+1 − λk−1) · Bs+2

k−2 + · · · + 1
n · (λs+1+ν − λk−1−ν)

)
· B1

k+2



+ A−s ·



(
(λk − λs+1) · Bs+2

k−1 + · · · + (λk−ν − λs+1+ν) · Bk−1−ν
k−1−ν

)
· An

k+1

−


(λs+1 − λk) · −Bs+2

k−1 + 1
n · (λk−1 − λk) · As+2

k−2

+
... +

...

+ (λs+1+ν − λk) · −Bk−1−ν
k−1−ν + 1

n · (λk−1−ν − λk)

 · B1
k+2


.

For the end point,

(λs+1+ν − λk) · As ·
−Bk−1−ν

k−1−ν · A
n
k+1 + (λk−ν − λs+ν+1) · A−s · B

k−1−ν
k−1−ν · A

n
k+1

−(λs+1+ν − λk) · A−s ·
−Bk−1−ν

k−1−ν · B
1
k+2 +

λk

n
·
λs+1+ν − λk−1−ν

n
· B1

k+2

λk−1−ν − λk

n
· As · A

n
k+1 −

λk−1−ν − λk

n
· A−s · B

1
k+2

= (λk−ν − λk) · A−s · B
k−1−ν
k−1−ν · A

n
k+1

+(λs+1+ν − λk) ·
(
As−1 · A

n
k+1 − A

−
s · B

1
k+2

)
· −Bk−1−ν

k−1−ν

+
λs+1+ν − λk

n
·

(
λk

n
· As · B

1
k+2 − A

−
s · A

n
k+1

)

+
λk−1−ν − λk

n
·

((
As−1 · A

n
k+1 − A

−
s · B

1
k+2

)
+

(
A−s · A

n
k+1 −

λk

n
· As · B

1
k+2

))

= (λk−ν − λk) · A−s · B
k−1−ν
k−1−ν · A

n
k+1
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+(λs+1+ν − λk) ·
{
L1 ·

−Bk−1−ν
k−1−ν +

1
n
· L2

}
+
λk−1−ν − λk

n
· {L1 − L2} .

For the second case where k − s is even, and ν = k−s−2
2 , we have

As ·





(λs+1 − λk) · −Bs+2
k−1 + 1

n · (λk−1 − λk) · As+2
k−2

+
... +

...

+ (λs+ν − λk) · −Bs+1+ν
k−ν + 1

n · (λk−ν − λk) · As+1+ν
k−1−ν

+ 1
n · (λk−1−ν − λk)


· An

k+1

+λk
n ·

(
(λs+1 − λk−1) · Bs+2

k−2 + · · · + (λs+ν − λk−ν) · Bs+1+ν
k−1−ν

)
· B1

k+2



+ A−s ·



(
(λk − λs+1) · Bs+2

k−1 + · · · + 1
n · (λk−ν − λs+1+ν)

)
· An

k+1

−



(λs+1 − λk) · −Bs+2
k−1 + 1

n · (λk−1 − λk) · As+2
k−2

+
... +

...

+ (λs+ν − λk) · −Bs+1+ν
k−ν + 1

n · (λk−ν − λk) · As+1+ν
k−1−ν

+ 1
n · (λs+1+ν − λk)


· B1

k+2



.

Bear in mind that λs+1+ν = λk−1−ν. The last term becomes

λk−1−ν − λk

n
· As · A

n
k+1 +

λk−ν − λs+1+ν

n
· A−s · A

n
k+1 −

λk−1−ν − λk

n
· A−s · B

1
k+2

=
λk−ν − λk

n
· A−s · A

n
k+1 +

λk−1−ν − λk

n
· L1.

With our previous adopted notation, the calculation results in the identity of the

lemma. �

From the previous lemma, we can see that to show M(s + 1, k)−M̂(s + 1, k) ≥ 0,

it is enough to show that

1
n
· L1 · A

s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j ≥ 0, and L1 ·

−Bs+2+ j
k−1− j + L2 · B

s+2+ j
k−2− j ≥ 0.
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It is worth pointing out that the latter is considerably easier, so we will proceed

with the first inequality. To that end, we will first need to break down the expression of

L1 and L2.

Lemma 12.

L1 = As−1 · A
n
k+1 − A

−
s · B

1
k+2

=
λk+1 − λs

n
· As−1 · B

1
k+2 + As−2 · A

n
k+2 − A

−
s−1 · B

1
k+3

=

µ∑
l=0

λk+1+l − λs−l

n
· As−1−l · B

1
k+2+l + L1

µ+1

where µ = min{s − 1, n − k − 2}, and

L1
µ+1 =

 A
n
k+s+1, µ = s − 1,

As−n+k, µ = n − k − 2.

Proof. We have the following recursive relation.

As−1 · A
n
k+1 − A

−
s · B

1
k+2

= As−1 ·

(
λk+1

n
· B1

k+2 + An
k+2

)
−

(
λs

n
· As−1 + A−s−1

)
· B1

k+2

=
λk+1 − λs

n
· As−1 · B

1
k+2 +

(
A−s−1 + As−2

)
· An

k+2 − A
−
s−1 ·

(
An

k+2 + B1
k+3

)
=

λk+1 − λs

n
· As−1 · B

1
k+2 + As−2 · A

n
k+2 − A

−
s−1 · B

1
k+3.

For the end points, first set µ = s − 1,

A0 · A
n
k+s − A

−
1 · B

1
k+s+1

=
λk+s − λ1

n
· B1

k+s+1 + An
k+s+1.

For the second case, set k + µ + 1 = n − 1,

As−µ−1 · A
n
n−1 − A

−
s−µ · B

1
n

=
λn−1 − λs−µ

n
· As−1−µ + As−2−µ

=
λn−1 − λs−n+k+2

n
· As−n+k+1 + As−n+k.

Note: With our assumption, L1 ≥ 0. �
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Lemma 13.

−L2 = A−s · A
n
k+1 −

λk

n
· As · B

1
k+2

=
λk+1 − λk

n
· A−s · B

1
k+2 +

λs − λk

n
· As−1 · A

n
k+2

+A−s−1 · A
n
k+2 −

λk

n
· As−1 · B

1
k+3

=

µ∑
l=0

(
λk+1+l − λk

n
· A−s−l · B

1
k+2+l +

λs−l − λk

n
· As−1−l · A

n
k+2+l

)
+ L2

µ+1

where µ = min{s − 1, n − k − 2}, and

L2
µ+1 =


−
λk
n · B

1
k+s+2, µ = s − 1,

A−s−n+k, µ = n − k − 2.

Proof.

A−s · A
n
k+1 −

λk

n
· As · B

1
k+2

= A−s ·
(
λk+1

n
· B1

k+2 + An
k+2

)
−
λk

n
·
(
A−s + As−1

)
· B1

k+2

=
λk+1 − λk

n
· A−s · B

1
k+2 +

(
λs

n
· As−1 + A−s−1

)
· An

k+2 −
λk

n
· As−1

(
An

k+2 + B1
k+3

)
=

λk+1 − λk

n
· A−s · B

1
k+2 +

λs − λk

n
· As−1 · A

n
k+2

+A−s−1 · A
n
k+2 −

λk

n
· As−1 · B

1
k+3.

For the end points, the first case is clear because A−0 = 0.

For the second case, set k + 1 + µ = n − 1, or µ = n − k − 2

A−s−µ · A
n
n−1 −

λk

n
· As−µ

=
λn−1 − λk

n
· A−s−µ +

λs−µ − λk

n
· As−1−µ + A−s−2−µ

=
λn−1 − λk

n
· A−s−n+k+2 +

λs−n+k+2

n
· As−n+k+1 + A−s−n+k.

�

By combining the two previous lemmas, we obtain
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Lemma 14.

1
n
· L1 · A

s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j

=
1
n
·

 µ∑
l=0

λk+1+l − λk

n
· As−l · B

1
k+2+l

 · As+2+ j
k−2− j

+

 µ∑
l=0

λk+1+l − λk

n
· A−s−l · B

1
k+2+l

 · Bs+3+ j
k−2− j

+

µ∑
l=0

λk − λs−l

n
· As−1−l

(
1
n
· B1

k+2+l · A
s+2+ j
k−2− j − A

n
k+2+l · B

s+2+ j
k−2− j

)
+

1
n
· L1

µ+1 · A
s+2+ j
k−2− j + L2

µ+1 · B
s+2+ j
k+2+ j.

Lemma 15.

1
n
· B1

k+2+l · A
s+2+ j
k−2− j − A

n
k+2+l · B

s+2+ j
k−2− j

=
λs+2+ j − λk+2+l

n
· B1

k+3+l · B
s+3+ j
k−2− j +

1
n
· B1

k+3+l · A
s+3+ j
k−2− j − A

n
k+3+l · B

s+3+ j
k−2− j

=

m j(l)∑
t=0

λs+2+ j+t − λk+2+l+t

n
· B1

k+2+l+t · B
s+3+ j+t
k−2− j + Mm j(l)+1,

where m j(l) = min{k − s − 4 − 2 j, n − k − 2 − l}, and

Mm j(l)+1 =


1
nB

1
k+4+l+m j(l)

, m j(l) = k − s − 4 − 2 j,

−B
s+3+ j+m j(l)
k−2− j , m j(l) = n − k − 2 − l.

Proof. First, we prove the following recursive relation:

1
n
· B1

k+2+l · A
s+2+ j
k−2− j − A

n
k+2+l · B

s+2+ j
k−2− j

=
1
n
· An

k+2+l · A
s+2+ j
k−2− j −

1
n
· An

k+2+l · A
s+2+ j
k−2− j

+
1
n
· B1

k+3+l · A
s+2+ j
k−2− j − A

n
k+2+l · B

s+3+ j
k−2− j

=
λs+2+ j − λk+2+l

n
· B1

k+3+l · B
s+3+ j
k−2− j +

1
n
· B1

k+3+l · A
s+3+ j
k−2− j − A

n
k+3+l · B

s+3+ j
k−2− j
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In other words, we have

1
n
· B1

k+2+l+t · A
s+2+ j+t
k−2− j − A

n
k+2+l+t · B

s+2+ j+t
k−2− j

=
λs+2+ j+t − λk+2+l+t

n
· B1

k+3+l+t · B
s+3+ j+t
k−2− j

+
1
n
· B1

k+3+l+t · A
s+3+ j+t
k−2− j − A

n
k+3+l+t · B

s+3+ j+t
k−2− j .

Next, we will deal with end points where the recursion ends.

The first case is when s + 2 + j + m j(l) = k − 2 − j or m j(l) = k − s − 4 − 2 j. It is

important to note that we can safely assume k − s − 4 − 2 j ≥ 0, otherwise both the term

As+2+ j+t
k−2− j and Bs+2+ j+t

k−2− j will vanish. Recall that in our notation

Ak−1− j
k−2− j = 1, and Bk−1− j

k−2− j =
1
n
.

We have

1
n
· B1

k+3+l+m j(l) −
1
n
· An

k+3+l+m j(l) =
1
n
· B1

k+4+l+m j(l).

Otherwise, have k + 2 + l + m j(l) = n or m j(l) = n − k − l − 2. In this case, we

have B1
n = An

n = 1, and the remainder term is

A
s+2+ j+m j(l)
k−2− j − B

s+2+ j+m j(l)
k−2− j = −B

s+3+ j+m j(l)
k−2− j .

�

Remark 8. Here, we use the notation m j(l) to emphasize the fact that it depends on both

l and j. For each step of calculation, j is fixed, but l varies from 0 to µ. Moreover, it is

obvious that m j(µ) ≤ · · · ≤ m j(0).

Again, we will combine the two previous lemmas, to express

1
n
· L1 · A

s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j

=
1
n
·

 µ∑
l=0

λk+1+l − λk

n
· As−l · B

1
k+2+l

 · As+2+ j
k−2− j +

 µ∑
l=0

λk+1+l − λk

n
· A−s−l · B

1
k+2+l

 · Bs+3+ j
k−2− j

+

µ∑
l=0

λk − λs−l

n
· As−1−l ·

m j(l)∑
t=0

λs+2+ j+t − λk+2+l+t

n
· B1

k+3+l+t · B
s+3+ j+t
k−2− j + Mm j(l)+1


+

1
n
· L1

µ+1 · A
s+2+ j
k−2− j + L2

µ+1 · B
s+2+ j
k−2− j.

(3.8)
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Before we move on, we will deal with
1
n
L1
µ+1 · A

s+2+ j
k−2− j + L2

µ+1 · B
s+2+ j
k−2− j in the case

when µ = s − 1.

Lemma 16.
1
n
· An

k+s+1 · A
s+2+ j
k−2− j −

λk

n
· B1

k+s+2 · B
s+2+ j
k−2− j

=

m j(s−1)∑
t=0

(
1
n
·
λk+s+1+t − λk

n
· B1

k+s+2+t · A
s+2+ j+t
k−2− j +

λs+2+ j+t − λk

n
· An

k+s+2+t · B
s+3+ j+t
k−2− j

)
+Jm j(s),

where

Jm j(s) =



1
n · A

s+3+ j+m j(s)
k−2− j , m j(s) = n − k − s − 2,

1
n ·

λk+s+2+m j(s)−λk

n · B1
k+s+3+m j(s)

+1
n · A

n
k+s+3+m j(s)

, m j(s) = k − s − 4 − 2 j.

Proof. As usual, we begin with a recursive relation,
1
n
· An

k+s+1 · A
s+2+ j
k−2− j −

λk

n
· B1

k+s+2 · B
s+2+ j
k−2− j

=
1
n
·

(
λk+s+1

n
· B1

k+s+2 + An
k+s+2

)
· As+2+ j

k−2− j −
λk

n
· B1

k+s+2 ·

(
1
n
· As+2+ j

k−2− j + Bs+3+ j
k−2− j

)
=

1
n
·
λk+s+1 − λk

n
· B1

k+s+2 · A
s+2+ j
k−2− j

+An
k+s+2 ·

(
λs+2+ j

n
· Bs+3+ j

k−2− j +
1
n
· As+3+ j

k−2− j

)
−
λk

n
·
(
An

k+s+2 + B1
k+s+3

)
· Bs+3+ j

k−2− j

=
1
n
·
λk+s+1 − λk

n
· B1

k+s+2 · A
s+2+ j
k−2− j +

λs+2+ j − λk

n
· An

k+s+2 · B
s+3+ j
k−2− j

+
1
n
· An

k+s+2 · A
s+3+ j
k−2− j −

λk

n
· B1

k+s+3 · B
s+3+ j
k−2− j.

For the end points, we have either k + s + 1 + t = n− 1 or s + 2 + j + t = k− 2− j.

Thus, we have either t = n − k − s − 2 or k − s − 4 − 2 j. Notice, this is m j(l) when l = s.

If t = n − k − s − 2, the result is clear since we have An
n = 1 and B1

n+1 = 0.

For the second case, Ak−1− j
k−2− j = 1 and Bk−1− j

k−2− j = 1
n . We have

1
n
· An

k+s+2+m j(s) −
1
n
·
λk

n
· B1

k+s+3+m j(s)

=
1
n
·
λk+s+2+m j(s) − λk

n
· B1

k+s+3+m j(s) +
1
n
· An

k+s+3+m j(s).
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�

By writing λs+2+ j+t − λk+2+l+t = λs+2+ j+t − λk + λk − λk+2+l+r, we can split the last

sum of equation (3.8) into two parts.

µ∑
l=0

λk − λs−l

n
· As−1−l

m j(l)∑
t=0

λs+2+ j+t − λk+2+l+t

n
· B1

k+3+l+r · B
s+3+ j+t
k−2− j + Mm j(l)+1


=

µ∑
l=0

m j(l)∑
t=0

λk − λs−l

n
·
λs+2+ j+t − λk

n
· As−1−l · B

1
k+3+l+t · B

s+3+ j+t
k−2− j

+

µ∑
l=0

λk − λs−l

n
· As−1−l ·

m j(l)∑
t=0

λk − λk+2+l+t

n
· B1

k+3+l+r · B
s+3+ j+t
k−2− j + Mm j(l)+1

 .
With our assumption, the first sum is positive and the second sum is negative, so

our remaining job is to show that it is smaller than the first two sums of equation (3.8).

First, observe that for various l and t such that l + t = w0, for some constant w0,

their corresponding terms
λk − λs−l

n
·
λk − λk+2+l+t

n
· As−1−l · B

1
k+3+l+t · B

s+3+ j+t
k−2− j have the

common term
λk − λk+2+w0

n
· B1

k+3+w0
. Thus, we set r = t, and let r varies from 0 to w0,

and let w0 varies from 0 to µ + m j(0). We can relabel

µ∑
l=0

λk − λs−l

n
· As−1−l ·

m j(l)∑
t=0

λk − λk+2+l+t

n
· B1

k+3+l+r · B
s+3+ j+t
k−2− j + Mm j(l)+1


=

µ+m j(0)+1∑
w0=0

w0∑
r=0

λk − λs−w0+r

n
· As−1−w0+r ·Mr(w0),

where

Mr(w0) =



λk−λk+2+w0
n · B1

k+3+w0
· Bs+3+ j+r

k−2− j ,
r ≤ m j(w0 − r)

and w0 − r ≤ µ,

Mm j(l)+1,
r = m j(w0 − r) + 1

and w0 − r ≤ µ,

0,
r > m j(w0 − r) + 1

or w0 − r > µ.
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For each w0 and
w0∑
r=0

λk − λs−w0+r

n
· As−1−w0+r ·Mr(w0), we pick two terms, from

the first and second sum of equation (3.8),
1
n
·
λk+2+w0 − λk

n
·B1

k+3+w0
·As−w0+1 ·A

s+2+ j
k−2− j and

λk+2+w0 − λk

n
· B1

k+3+w0
· A−s−w0+1 · B

s+3+ j
k−2− j to show that

λk+2+w0−λk

n · B1
k+3+w0

·
(

1
n · As−1−w0 · A

s+2+ j
k−2− j + A−s−1−w0

· Bs+3+ j
k−2− j

)
+

∑w0
r=0

λk−λs−w0+r

n · As−1−w0+r ·Mr(w0) ≥ 0.

To do that, we need the next lemma.

Lemma 17.
1
n
· As−w0−1 · A

s+2+ j
k−2− j + A−s−w0−1 · B

s+3+ j
k−2− j

=
λs+2+ j − λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j +

1
n
· As−w0 · A

s+3+ j
k−2− j + A−s−w0

· Bs+4+ j
k−2− j

=

ζ∑
r=0

λs+2+ j+r − λs−w0+r

n
· As−w0−1+r · B

s+3+ j+r
k−2− j + Wζ+1,

where ζ = min{w0, k − 4 − s − 2 j}, and

Wζ+1 =


1
n · As · A

s+3+ j+w0
k−2− j + A−s · B

s+4+ j+w0
k−2− j , ζ = w0,

1
n · As−w0+r, ζ = k − s − 4 − 2 j.

Proof.

1
n
· As−w0−1 · A

s+2+ j
k−2− j + A−s−w0−1 · B

s+2+ j
k−2− j

=
λs+2+ j − λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j +

λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j

+
1
n
· As−w0−1 · A

s+3+ j
k−2− j + A−s−w0−1 · B

s+3+ j
k−2− j

=
λs+2+ j − λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j +

1
n
· As−w0−1 · A

s+3+ j
k−2− j + A−s−w0

· Bs+3+ j
k−2− j

=
λs+2+ j − λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j +

1
n
As−w0−1 · A

s+3+ j
k−2− j

+A−s−w0
·

(
1
n
As+3+ j

k−2− j + Bs+4+ j
k−2− j

)
=

λs+2+ j − λs−w0

n
· As−w0−1 · B

s+3+ j
k−2− j +

1
n
· As−w0 · A

s+3+ j
k−2− j + A−s−w0

· Bs+4+ j
k−2− j.
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Here, the recursion ends either when s − w0 + ζ = s or s + 2 + j + ζ = k − 2 − j.

In the first case, we have the tail term being

λs+2+ j+w0 − λs

n
· As−1 · B

s+3+ j+w0
k−2− j +

1
n
· As · A

s+3+ j+w0
k−2− j + A−s · B

s+4+ j+w0
k−2− j .

In the latter case, we can use the fact that Bk−1− j
k−2− j =

1
n

and Bk− j
k−2− j = 0 to conclude

the tail term is
1
n
· As−w0+ζ . �

We are now ready to show

Lemma 18.
1
n
· L1 · A

s+2+ j
k−2− j − L2 · B

s+2+ j
k−2− j ≥ 0. (3.9)

Proof. First, notice that ζ ≥ w0. Second, with our assumption, λs+2+ j+r > λk for all r = 0

to w0. Thus, in the case when w0 ≤ µ and r ≤ m j(w0 − r), Lemma 17 gives us

λk+2+w0 − λk

n
· B1

k+3+w0
·

(
1
n
· As−1−w0 · A

s+2+ j
k−2− j + A−s−1−w0

· Bs+3+ j
k−2− j

)

+

w0∑
r=0

λk − λs−w0+r

n
·
λk − λk+2+w0

n
· As−1−w0+r · B

1
k+3+w0

· Bs+3+ j+r
k−2− j

=
λk+2+w0 − λk

n
· B1

k+3+w0
·

 ζ∑
r=0

λs+2+ j+r − λs−w0−r

n
· As−w0−1+r · B

s+3+ j+r
k−2− j + Wζ+1


+

w0∑
r=0

λk − λs−w0+r

n
·
λk − λk+2+w0

n
· As−1−w0+r · B

1
k+3+w0

· Bs+3+ j+r
k−2− j ≥ 0.

We need to pay special attention to the case when µ = s− 1, and w0 > µ. In such

case, we have s − w0 − 1 + r = 0, and A0 = 1, so the term
w0∑

r=w0−s+1

λk − λs−w0+r

n
· As−1−w0+r ·Mr(w0),

cannot be dealt with as before. Instead, we will need to borrow the term

1
n
·
λk+s+1+t − λk

n
· B1

k+s+2+t · A
s+2+ j+t
k−s− j ,

from the decomposition of

1
n
· An

k+s+1 · A
s+2+ j
k−2− j −

λk

n
· B1

k+s+2 · B
s+2+ j
k−2− j,
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as stated in Lemma 16. By picking a t such that t = w0−s+1, which implies k+s+1+t =

k + 2 + w0, the above term becomes

1
n
·
λk+2+w0 − λk

n
· B1

k+3+w0
· Aw0+3+ j

k−2− j .

We can modify the previous lemma by relabel the recursive relation as:

1
n
· Aq · A

i
h + A−q · B

i+1
h

=
λi − λq+1

n
· Aq · B

i+1
h +

1
n
· Aq+1 · A

i+1
h + A−q · B

i+2
h .

By setting q = 0 and i = s + 2 + j + t, we have

1
n
· Aw0+3+ j

k−2− j =

β∑
a=0

λw0+3+ j+a − λa+1

n
· Aa · B

w0+4+ j+a
k−2− j + Wβ+1.

In this setting, β = min{s−1, k−w0−6−2 j}, and Wβ+1 remains the same except

for the change on the index.

For the case r ≤ m j(w0 − r) and wo > µ, we have

1
n
·
λk+2+w0 − λk

n
· B1

k+3+w0
· Aw0+3+ j

k−2− j +

w0∑
r=w0−s+1

λk − λs−w0+r

n
· As−1−w0+r ·Mr(w0)

=
1
n
·
λk+2+w0 − λk

n
· B1

k+3+w0
·

 β∑
a=0

λw0+3+ j+a − λa+1

n
· Aa · B

w0+4+ j+a
k−2− j + Wβ+1


+

2w0−s+1∑
a=0

λk − λa+1

n
·
λk − λk+2+w0

n
· Aa · B

1
k+3+w0

· Bw0+4+ j+a
k−2− j ≥ 0.

The rest of the cases are clear, and we have the desire result. �

Next, we will show that

L1 ·
−Bs+2+ j

k−1− j + L2 · B
s+2+ j
k−2− j ≥ 0.

We will need the following Lemma.

Lemma 19.

Aq−1 ·
−Bs+2+ j

k−1− j − A
−
q · B

s+2+ j
k−2− j ≥ 0, for 1 ≤ q ≤ s.
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Proof. First, we have the recursive relation:

Aq−1 ·
−Bs+2+ j

k−1− j − A
−
q · B

s+2+ j
k−2− j

= Aq−1 ·

(
λk−1− j

n
· Bs+2+ j

k−2− j + −Bs+2+ j
k−2− j

)
−

(
λq

n
· Aq−1 + A−q−1

)
· Bs+2+ j

k−2− j

=
λk−1− j − λq

n
· Aq−1 · B

s+2+ j
k−2− j +

(
A−q−1 + Aq−2

)
· −Bs+2+ j

k−2− j

−A−q−1 ·
(
−Bs+2+ j

k−2− j + Bs+2+ j
k−3− j

)
=

λk−1− j − λq

n
· Aq−1 · B

s+2+ j
k−2− j + Aq−2 ·

−Bs+2+ j
k−2− j − A

−
q−1 · B

s+2+ j
k−3− j.

For the end point, if q = 1, we have

−Bs+2+ j
k−1− j−t −

λ1

n
· Bs+2+ j

k−2− j−t =
λk−1− j−t − λ1

n
· Bs+2+ j

k−2− j−t + −Bs+2+ j
k−2− j−t.

If k − 1 − j − t = s + 2 + j, we have

Aq−1 ·
−Bs+2+ j

s+2+ j −
1
n
· A−q =

1
n
·
λs+2+ j − λq

n
· Aq−1 +

1
n
· Aq−2.

For 1 ≤ q ≤ s, and t from 0 to k − s − 3 − 2 j, we have λq ≤ λk−1− j−t. Thus we

have the result of the lemma. �

Lemma 20.

L1 ·
−Bs+2+ j

k−1− j + L2 · B
s+2+ j
k−2− j ≥ 0.

Proof. Recall that for µ = min{s − 1, n − k − 2},

L1
µ+1 =

 A
n
k+s+1, µ = s − 1

As−n+k, µ = n − k − 2
, and − L2

µ+1 =


λk
n B

1
k+s+2, µ = s − 1

−A−s−n+k, µ = n − k − 2
,

we have

L1 ·
−Bs+2+ j

k−1− j + L2 · B
s+2+ j
k−2− j

=

 µ∑
l=0

λk+1+l − λs−l

n
· As−1−l · B

1
k+2+l + L1

µ+1

 · −Bs+2+ j
k−1− j

+

 µ∑
l=0

(
λk − λk+1+l

n
· A−s−1−l · B

1
k+2+l +

λk − λs−l

n
· As−1−l · A

n
k+2+l

)
− L2

µ+1

 · Bs+2+ j
k−2− j
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Now, we match the term

λk+1+l − λs−l

n
· As−1−l · B

1
k+2+l ·

−Bs+2+ j
k−1− j +

λk − λk+1+l

n
· A−s−l · B

1
k+s+l · B

s+2+ j
k−2− j

=
λk − λs−l

n
As−1−l · B

1
k+2+l ·

−Bs+2+l
k−1−l

+
λk+1+l − λk

n
· B1

k+2+l ·
(
As−1−l ·

−Bs+2+ j
k−1− j − A

−
s−l · B

s+2+ j
k−2− j

)
.

By setting q = s − l for the previous Lemma, we have

As−1−l ·
−Bs+2+ j

k−1− j − A
−
s−l · B

s+2+ j
k−2− j ≥ 0.

For L1
µ+1 ·

−Bs+2+ j
k−1− j − L2

µ+1 · B
s+2+ j
k−2− j, in the case when µ = s − 1, there is nothing

to prove. For the case when µ = n − k − 2, we set L1
µ+1 = A−s−n+k + As−n+k−1. By setting

q = s−n+k−1, (recall from our calculation in Lemma 12, in such case, s−n+k+1 ≤ s)

we have

As−n+k−1 ·
−Bs+2+ j

k−1− j − A
−
s−n+k · B

s+2+ j
k−2− j ≥ 0.

�

With the above step, we conclude our proof that

M(s + 1, k) ≥ M̂(s + 1, k).

Clearly, by iterating such rearrangements, we can conclude

Theorem 6. For λ1, · · · , λn−1 strictly postive, and λ∗1, · · · , λ
∗
n−1 its increasing rearrange-

ment, and xi = i/n, a Brownian motion on [0, 1), reflected at 0 and absorbed at 1,

satisfies

E0

exp

− n−1∑
i=0

λiξi


 ≤ E0

exp

− n−1∑
i=0

λ∗i ξi


 , where, ξi = lxi

T1
. (3.10)

We can now conclude our main result by applying the occupation time formula.

Theorem 7. Given k(x) ≥ 0 is continuous on the interval [0, 1], let k∗ be its unique

right continuous non-decreasing rearrangement. Let B be a Brownian motion on [0, 1)

reflected at 0 and absorbed at 1. Then

E0
[
exp

{
−

∫ T1

0
k(Bt)dt

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bt)dt

}]
. (3.11)
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Proof. Recall the occupation time formula for Brownian motion:∫ T1

0
k(Bt)dt =

∫ 1

0
k(x)lx

T1
dx.

We have also shown earlier that lx
T1

is jointly continuous. Thus, by a Reimann

sum approximation we have:∫ T1

0
k(Bt)dt = lim

n→∞

1
n

n−1∑
i=0

k(xi)l
xi
T1

a.s.

where xi = i/n.

Likewise, we have,∫ T1

0
k∗(Bt)dt = lim

n→0

1
n

n−1∑
i=0

k∗(xi)l
xi
T1

a.s.

If we set λi = k(xi)/n, and apply inequality (3.10) to get

E0

exp

− n−1∑
i=0

λil
xi
T1


 ≤ E0

exp

− n−1∑
i=0

λ∗i lxi
T1


 .

Clearly,

exp

− n−1∑
i=0

λil
xi
T1

 ≤ 1 a.s. (3.12)

Dominated convergence theorem will now allows us to pass to the limit to obtain in-

equality (3.11). �

Remark 9. One might ask whether our rearrangement result will hold for a broader set

of diffusion processes. Here, we propose a simple extension to our result.

For a diffusion process {Xt}t≥0 with drift µ(x) ≡ 0 and σ2(x) ≥ ε > 0 for all

x ∈ [0, 1] , the decreasing right boundary condition of the Green function is:

g2(x) =

∫ 1

x
exp

{
−

∫ ξ

0
2
µ(η)
σ2(η)

}
dξ

= 1 − x,
(3.13)

Thus, without any modification to our proof, we retain the same rearrangement

inequality for such diffusion process.



43

However, recall from the previous chapter, the speed measure is no longer iden-

tically 1, but instead becomes

m(dx) =
2

σ2(x)
dx. (3.14)

The occupation time formula says∫ T1

0
k(Xt)dt =

∫ 1

0
k(x)lx

T1
m(dx). (3.15)

The Riemann-sum approximation is:

lim
n→∞

1
n

n−1∑
i=0

2 · k(xi)
σ2(xi)

lxi
T1

=

∫ T1

0
k(Xt)dt a.s. (3.16)

If we keep the same set up, we will have λi =
2k(xi)
σ2(xi)

. However, we cannot have

λ∗i =

(
2k(xi)
σ2(xi)

)∗
because 2/σ2(xi) is part of the speed measure, and its position is fixed.

Thus, for a diffusion process X with infinitesimal generator σ(x) > 0 for all

x ∈ [0, 1] and µ ≡ 1, we still have the local time rearrangement inequality

E0

exp

− n−1∑
i=0

λil
xi
T1


 ≤ E0

exp

− n−1∑
i=0

λ∗i lxi
T1


 ,

but it will not translate into the rearrangement inequality

E0
[
exp

{
−

∫ T1

0
k(Xt)dt

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Xt)dt

}]
,

without some restriction on σ(x). We have not explored such possibilities further.

Remark 10. Our method of rearranging the entries is motivated by that of Essén. It is

worth pointing out that some of the simpler rearrangement schemes will not work in our

context. For example, the “bubble sort" method of switching the order of two adjacent

entries by moving the smaller entry to the front will not work.

To find a counter example, we can take advantage of the identity we have from Lemma

11. Let k = s + 2 and M∗(s + 1, s + 2) denotes the determinant resulting from the

rearrangement. We have

M(s + 1, s + 2) −M∗(s + 1, s + 2) =
λs+1 − λs+2

n
· L1. (3.17)
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Recall from the expression of L1, the sufficient condition for L1 ≥ 0 is λi ≤ λ j

for all i < s and j > s + 1. Thus, it is easy to come up with a counter example. The

reader can check that

λ1 = 10, λ2 = 4, λ3 = 2, λ4 = 1, and λ5 = 0.

Then,

M(2, 3) <M∗(2, 3).

Even if we keep the set up same as before, but swap just the position of λs+1

and λk, and keep the position of λs+2 through λk−1 unchanged, such method won’t work

either. We let

λ1 = 1, λ2 = 10, λ3 = 1000, λ4 = 2, λ5 = 1, and λ6 = 1.

Here, we switch the position of λ2 and λ5, and after the rearrangement, we have

λ∗1 = 1, λ∗2 = 1, λ∗3 = 1000, λ∗4 = 2, λ∗5 = 10, and λ∗6 = 1.

Let M(2, 5) be the determinant of the original matrix, and M∗(2, 5) be the deter-

minant of the matrix after the rearrangement. The reader can check

M(2, 5) <M∗(2, 5).

Chapter 3 is based on the paper “A Local Time Inequality for Reflecting Brown-

ian Motion” written jointly with Patrick Fitzsimmons, which is currently in preparation.

The dissertation author is the primary author of this work.



Chapter 4

Alternative Proof of the

Rearrangement Inequality and its

Probabilistic Interpretation

In this chapter, we will present two Feynman-Kac identities, and use them to

give an alternative proof of the rearrangement inequality of last chapter

E0
[
exp

{
−

∫ T1

0
k(Bs)ds

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bs)ds

}]
. (4.1)

Many of our calculations came from Essén’s proof, and we will keep our no-

tation conistent with his paper [4]. However, such approach allows us to draw several

interesting conclusions from the rearrangement result.

We begin with the statement of Essén’s result:

Theorem 8. Let p : [−∞, 0]→ [0,∞) be a lower semi-continuous, piece-wise constant

function such that the range of p is finite. Assume that there exists a solution Φ of the

inequality

Φ′′(t) − p(t)2Φ(t) ≥ 0, −∞ < t ≤ 0,

such that Φ(0) = 1, and limt→−∞Φ(t) exists.

Let t0 be given, t0 < 0. If inft p(t) > 0, there exists a non-negative solution Φ∗ of

the equation

Φ∗
′′

(t) − (p∗)2(t)Φ∗(t) = 0,

45
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such that Φ∗(0) = 1, Φ∗(−∞) = 0 and

Φ(t0) ≤ Φ∗(t0).

Here, p∗ is the measure preserving, non-decreasing rearrangement of p on [t0, 0]

and p∗(t) = inf
s

p(s) for t < t0.

Remark 11. Since p is a piecewise function, Φ′′ needs not be continuous. In the case

when p is discontinuous at x = a, we define

Φ′′(a) = lim
x→a+

Φ′′(x).

4.1 Feynman-Kac Equation

The process {Bt}t≥0 is a Brownian motion on [0, 1) with a reflecting boundary at

0, and an absorbing boundary at 1. Proposition 5 of Appendix C says that

ϕ(x) = Ex

[
exp

{
−

∫ T1

0
k(Bs)ds

}]
,

satisfies
1
2
ϕ′′ = kϕ, and ϕ(1) = 1, ϕ′(0) = 0.

By setting k to be a positive piecewise constant function, ϕ satisfies the condition

of Essén’s result after appropriate shifting. Thus, Essén’s result gives a probabilistic

interpretation as:

Theorem 9. Let {Bt}t≥0 be a Brownian motion on [0, 1) with a reflecting boundary at 0,

and a absorbing boundary at 1. k is a positive piecewise constant function and k∗ is its

non-decreasing rearrangement. We have

E0
[
exp

{
−

∫ T1

0
k(Bs)ds

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bs)ds

}]
. (4.2)

Remark 12. Inequality (4.2) does not hold if the starting point 0 is replaced by an

arbitrary x ∈ [0, 1]. For a simple-counter example, we can set k(x) = 1[0, 1
2 ], so k∗(x) =

1[ 1
2 ,1]. We can see from the graph that ϕ(0.8) > ϕ∗(0.8).
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Figure 4.1: Example of ϕ(x) vs ϕ∗(x)

To examine Essén’s proof more closely, we need a scheme that will allow us to

break the process {Bt}t≥0 on the interval [0, 1] into four conditionally independ processes

on segments: [0,41), [41,41 +4), [41 +4, 4̃), and [4̃, 1], where 4̃ = 41 +4+42. We use

the fact that a Brownian motion can be split into two independent reflecting processes

via the method of time change. It results in the theorem given next. We will give a short

proof using Proposition 5 and Proposition 6. In the next section, we will discuss the

method of time change in more detail, and give an alternative proof of the theorem.

Theorem 10. Let k be a positive integrable function on [0, 1], and for 0 < a < 1, define

k1 = k1[0,a) and k2 = k1[a,1]. Let {Bt}t≥0 be a Brownian motion on [0, 1) reflected at 0 and

absorbed at 1. {B(1)
t }t≥0 is a Brownian motion on [a, 1) reflected at a and absorbed at 1.

Define

ϕ(x) = Ex

[
exp

{
−

∫ T1

0
(k1(Bs) + k2(Bs))ds

}]
, for x ∈ [0, 1].

ϕ1(x) = Ex

[
exp

{
−

∫ Ta

0
k1(Bs)ds

}]
, for x ∈ [0, a].

ϕ2(x) = Ex

[
exp

{
−ϕ′1(a)la

T1
−

∫ T1

0
k2(B(1)

s )ds
}]
, for x ∈ [a, 1].
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Then for x ∈ [0, a)

Ex

[
exp

{
−

∫ T1

0
(k1(Bs) + k2(Bs))ds

}]
=Ex

[
exp

{
−

∫ Ta

0
k1(Bs)ds

}]
· Ea

[
exp

{
−ϕ′1(a)la

T1
−

∫ T1

0
k2(B(1)

s )ds
}]
.

(4.3)

Proof. Let

ψ1(x) =
ϕ1(x)
ϕ1(0)

.

Then, ψ1 satisfies the initial condition

ψ1(0) = 1, ψ′1(0) = 0.

Since

ϕ1(a) = 1, ψ1(a) =
1

ϕ1(0)
and ψ′1(a) =

ϕ′1(a)
ϕ1(0)

.

Define

ψ2(x) =
ϕ2(x)

ϕ1(0)ϕ2(a)
.

Then, ψ2 satisfies the initial condition:

ψ2(a) =
1

ϕ1(0)
= ψ1(a),

Proposition 6 says that ϕ′2(a) = ϕ′1(a)ϕ2(a). Thus

ψ′2(a) =
ϕ′2(a)

ϕ1(0)ϕ2(a)
=
ϕ′1(a)
ϕ1(0)

= ψ′1(a).

Note that ψ1(a) = ψ2(a), and ψ′1(a) = ψ′2(a). Thus, ψ(x) = ψ11[0,a) + ψ21[a,1], is

continuously differentiable, and ψ satisfies

1
2
ψ′′ =

 k1ψ, for x ∈ [0, a)

k2ψ for x ∈ [a, 1]
, ψ(0) = 1, ψ′(0) = 0.

The uniqueness part of Proposition 6 implies that ϕ(x) =
ψ(x)
ψ(1)

=
ψ(x)
ψ2(1)

, and for

x ∈ [0, a)

ϕ(x) =
ψ(x)
ψ2(1)

=
ψ1(x)
ψ2(1)

=
ψ1(x)

ϕ1(0)ψ2(1)
=
ϕ1(x)
ϕ1(0)

·
ϕ1(0)ϕ2(a)
ϕ2(1)

= ϕ1(x)ϕ2(a).

�
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4.2 Method of Time Change and Knight’s Theorem

We can split a Brownian motion B on [0, 1] into two process B1 (resp. B2) on

[0, a] (resp. [a, 1]) for some 0 < a < 1 via the method of time change:

Γ1(t) = meas{0 ≤ s ≤ t : Bs ∈ [0, a]},

s1(τ) = inf{s ≥ 0 : Γ1(s) > τ},

B1
τ = Bs1(τ).

Likewise, we define B2 the same way.

Then {B1
τ}τ≥0 ⊂ [0, a] and {B2

τ}τ≥0 ⊂ [a, 1]. Next, with the theorem by F. B.

Knight, we can show that on the shifted filtrations, (B1
τ,Fs1(τ)) and (B2

τ,Fs2(τ)) are inde-

pendent.

Theorem 11. (F.B. Knight) Let M = {Mt = (M1
t ,M

2
t , · · · ,M

d
t ), Ft, 0 ≤ t < ∞)} be a

continuous, adapted process such that the Mi’s are continuous local martingales with

limt→∞〈Mi〉t = ∞ P-a.s., and

〈Mi,M j〉t = 0; 1 ≤ i , j ≤ d, 0 ≤ t < ∞.

Define

Ti(s) , inf{t ≥ 0 : 〈Mi〉t ≥ s}; 0 ≤ s < ∞, 1 ≤ i ≤ d,

so that for each i and s, the random time Ti(s) is a stopping time for the (right-continuous)

filtration {Ft}. Then the processes

Bi
s = Mi

Ti(s); 0 ≤ s < ∞, 1 ≤ i ≤ d,

are independent, standard, one-dimensional Brownian motions.

Lemma 21. (B1
τ,Fs1(τ)) and (B2

τ,Fs2(τ)) are independent Px a.s.

Proof. Let l1(t) = l0
t − la

t and l2(t) = l1
t − la

t .

Let s1 and s2 be the right continuous inverses of Γ1 and Γ2 respectively.
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We define l1 and l2 as follow:

l1(τ) := l1(s1(τ))

= max
0≤t≤s1(τ)

∫ t

0
1[0,a](Bv)dBv − min

0≤t≤s1(τ)

∫ t

0
1[0,a](Bv)dBv

= max
0≤Γ1(t)≤τ

∫ s1(t)

0
1[0,a](Bv)dBv − min

0≤Γ1(t)≤τ

∫ s1(t)

0
1[0,a](Bv)dBv

= max
0≤l≤τ

∫ s1(l)

0
1[0,a](Bv)dBv − min

0≤l≤τ

∫ s1(l)

0
1[0,a](Bv)dBv.

Likewise,

l2(τ) := l2(s2(τ))

= max
0≤l≤µ

∫ s2(l)

0
1[a,1](Bv)dBv − min

0≤l≤τ

∫ s2(l)

0
1[a,1](Bv)dBv.

Then Px almost surely, we have:〈∫ t

0
1[0,a](Bs)dBs,

∫ t

0
1[a,1](Bs)dBs

〉
=

∫ t

0
1{a}(Bs)ds

=

∫ 1

0
1{a}(x)lx

t dx

= 0.

By the Knight’s theorem, we have
{∫ s1(τ)

0
1[0,a](Bs)dBs

}
τ≥0

independent of{∫ s2(τ)

0
1[a,1](Bs)dBs

}
τ≥0

Px a.s.

Consequently, we have l1 independent of l2 Px -a.s. as well.

By the Skorohod representation, we can rewrite B1 and B2 as follow:

B1(τ) =

∫ s1(τ)

0
1[0,a](Bs)dBs + max

0≤l≤τ

∫ s1(l)

0
1[0,a](Bv)dBv

−min
0≤l≤τ

∫ s1(l)

0
1[0,a](Bv)dBv.

and

B2(τ) =

∫ s2(l)

0
1[a,1](Bs)dBs + max

0≤l≤τ

∫ s2(l)

0
1[a,1](Bv)dBv

−min
0≤l≤τ

∫ s2(l)

0
1[a,1](Bv)dBv.

Hence, B1 and B2 are independent Px a.s. �
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For the next lemma, we will use the same notation for B1 and B2.

Lemma 22. Let T be a stopping time of G2(τ) = Fs2(τ). Define ξ := la
T1

, where T1 =

inf{t ≥ 0 : B2(t) = 1} and T 1
ξ = inf{µ ≥ 0 : la

s1(τ) > ξ}. Then given ξ, the processes

B̂1(τ) = B1(τ ∧ T 1
ξ ) and B̂2(τ) = B2(τ ∧ T1) are independent.

Proof. When ξ is given, T 1
ξ is a stopping time of the filtration of G1(τ) = Fs1(τ). Since

B1 and B2 are independent, B̂1 and B̂2 are as well. �

Lemma 23. Let Tξ = inf{s ≥ 0 : lb
s > ξ}, where ξ is a positive constant. Then

Ex[e−KTξ ] = ϕ(x) exp{−ξ · ϕ′(b)}.

Proof. By equation (B.6), and taking expectations on both side, we have:

Ex[ϕ(BTξ)e
−KTξ ] = ϕ(x) − Ex

[∫ Tξ

0
e−Ksdlb

s

]
ϕ′(b).

Notice that ϕ(BTξ) = ϕ(b) = 1. Thus the left hand side becomes Ex[e−KTξ ].

By making the substitution µ(s) = lb
s , we get s = inf{t ≥ 0 : lb

t > µ} = Tµ. With

Fubini, the expectation on the right becomes,

Ex

[∫ Tξ

0
e−Ksdlb

s

]
=

∫ ξ

0
Ex[e−KTµ ]dµ.

If we define a function of ξ as f (ξ) = Ex[e−KTξ ], we have the following equation:

f (ξ) = ϕ(x) − ϕ′(b)
∫ ξ

0
f (µ)dµ.

Clearly, f (0) = ϕ(x), and we also have the differential equation

f ′(ξ) = −ϕ′(b) f (ξ).

By solving the differential equation with initial condition, we get

f (ξ) = Ex[e−KTξ ] = ϕ(x)e−ξϕ
′(b).

�

We are now ready to give an alternative proof for Theorem 10.
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Proof. By Knight’s Theorem, (B1
τ,Fs1(τ)) and (B2

τ,Fs2(τ)) are independent.

We set η = 1
2 la

2(T1), where T1 = inf{τ ≥ 0 : B2
τ = 1} ⊂ Fs2(τ), and la

2(t) refers to

the local time of B2 at point a up to time t. Tη = inf{t ≥ 0 : la
1(t) > η}, where la

1(t) is

the local time of B1 at point a up to time t. Then, first by Lemma 22 and next by Lemma

23, we get

Ex

[
exp

{
−

∫ T1

0
(k1(Bs) + k2(Bs))ds

}]
= Ex

[
Ex

[
exp

{
−

∫ Tη

0
k1(Bs1)ds1

}∣∣∣∣∣∣ η
]
· Ex

[
exp

{
−

∫ T1

0
k2(Bs2)ds2

}∣∣∣∣∣∣ η
]]

= Ex

[
ϕ1(x)Ea

[
exp

{
−ϕ′1(x)la

Tη −

∫ T1

0
k2(Bs2)ds2

}∣∣∣∣∣∣ η
]]

= ϕ1(x)Ea

[
exp

{
−ϕ′1(x)la

T1
−

∫ T1

0
k2(Bs)ds

}]
.

�

4.3 Set-Up and Preliminary

We will concentrate on the inductive step of the proof. To keep our notation

consistent with in Essén’s paper [4], we let p be a piecewise constant function with

values be σ0 < σ1 < · · · , such that:

p2 =



< σ1, for x ∈ [0,41)

> σ1, for x ∈ [41,41 + 4)

σ1, for x ∈ [41 + 4, 4̃)

> σ1, for x ∈ [4̃, 1]

(4.4)

where 4̃ = 41 + 42 + 4.

(p∗)2 is the function resulting from taking the segment whose level is σ1 and

pushing it to the left in the following way.

(p∗)2 =



< σ1, for x ∈ [0,41)

σ1, for x ∈ [41,41 + 42)

> σ1, for x ∈ [41 + 42, 4̃)

> σ1, for x ∈ [4̃, 1]

(4.5)
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Example:

Figure 4.2: Example of p(x) vs p∗(x).

Remark 13. It is clear that for a simple function p, we have (p2)∗ = (p∗)2. For a

Lebesgue measurable function p, we can pick a sequence of simple functions {pn} such

that pn → p almost everywhere. A result from next chapter will show that p∗n → p∗

almost everywhere. Thus, we have (p2)∗ = (p∗)2 for Lebesgue measurable function as

well.

To simplify our calculation, we consider ϕ (resp. ϕ∗) satisfying

ϕ′′ = p2ϕ. ( resp. ϕ∗) (4.6)

The next few lemmas give us the tools to prove our result. We will translate

equation (4.6) into a Ricatti equation, which simplifies many of the calculations.

If ϕ is a solution to (4.6), for x ≥ 0, and ϕ > 0, then define

g(x) =
ϕ′(x)
ϕ(x)

, for x ≥ 0.

Then g satisfies the Riccati equation

g′(x) = p2(x) − g2(x). (4.7)

For what follows, p satisfies (4.4).



54

Lemma 24. Let σ be a strictly positive constant such that p2(x) ≥ σ for all x ≥ 0. Let

z solved equation (4.6) with

z(0) = A > 0, z′(0) = −B < 0, (4.8)

such that

σ · z(0) ≥ −z′(0).

Then, z(x) > 0 for all x ≥ 0.

Proof. Let g be the solution to (4.7) with initial condition g(0) = z′(0)/z(0). Then con-

sider

ϕ(x) = z(0) exp
{∫ x

0
g(t)dt

}
.

Notice,

ϕ′(x) = g(x)ϕ(x)

ϕ′′(x) = g′(x)ϕ(x) + g(x)ϕ′(x)

= (p2(x) − g2(x))ϕ(x) + g2(x)ϕ(x)

= p2(x)ϕ(x).

Since ϕ(0) = z(0) and

ϕ′(0) = g(0) · ϕ(0) =
z′(0)
z(0)

· z(0) = z′(0).

we have ϕ(x) = z(x).

Because, B/A ≥ −σ, we have g is bounded. Hence, z(x) > 0. �

Remark 14. The conclusion of Lemma 24 could fail if the condition (4.8) is not satisfied.

One counter-example is as follows.

Let z1(x) = cosh(σx), and z2(x) = σ−1 sinh(σx) where 0 < σ < 1.

Then, σ(z1(0)−z2(0)) < (z′2(0)−z′1(0)), but z1(x) < z2(x) when x > σ−1 tanh−1(σ).

Lemma 25. Suppose both ϕ1 and ϕ2 solve equation (4.6), with

ϕ1(0) = a1, ϕ2(0) = a2,

ϕ′1(0) = b1, ϕ′2(0) = b2,
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such that a1 > a2 and b1 < b2.

If min
x≥0

p2(x) > σ1 and

σ1(a1 − a2) − (b2 − b1) ≥ 0, (4.9)

then ϕ1(x) > ϕ2(x) for all x ≥ 0.

Lemma 26. Suppose ϕ satisfies equation (4.6) on the interval [0,4] with

ϕ(1) = 1, and ϕ′(0) = 0.

Define

ϕ(4) ≡ C1, and ϕ′(4) ≡ D1.

If p2 ≤ σ1 on [0,4], then

C1 − σ
−1
1 D1 ≥ 0.

Proof. We set g(x) =
ϕ′(x)
ϕ(x)

. Then p2 ≤ σ1 implies than g(x) ≤ σ1 for all x ∈ [0,4].

Thus,

g(4) =
C1

D1
≤ σ1.

�

Lemma 27. Let ϕ satisfy equation (4.6) on the interval (41,41 +4) = (a, b) with bound-

ary conditions

ϕ(b) = 1, ϕ′(a) = σ1ϕ(a).

Then,

ϕ′(b) ≥ σ1.

Proof. Let

g(x) =
ϕ′(x)
ϕ(x)

for x ∈ (a, b).

Then, g satisfies the Riccati equation with initial condition

g′ = p2 − g2, g(a) = σ1.

Because p2(x) ≥ σ1 for all x ∈ (a, b), we have g′(a) ≥ 0. Hence, g(b) ≥ σ1,

which is the desired inequality. �
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Lemma 28. Let ϕ be the solution of (4.6) on (a, b) with the boundary conditions

ϕ(b) = 1, ϕ′(a) = −σ1ϕ(a).

Then

ϕ′(b) ≥ −σ1.

Proof. Again, we let

g(x) =
ϕ′(x)
ϕ(x)

.

Then g′(x) ≥ 0 for all x ∈ (a, b).

Hence g(b) ≥ −σ1, which is the same as the inequality we want to prove. �

Lemma 29. Given that p2(x) > σ1 on the interval (41,41 + 4) = (a, b). Let v1 and v2

be the solutions of (4.6) on the same interval such that

v1(a) = 1, v′1(a) = 0, v2(a) = 0, v′2(a) = 1,

v1(b) = A1, v′1(b) = B1, v2(b) = A2, v′2(b) = B2.

Then,

B1 − σ
2
1A2 ≥ σ1|B2 − A1|. (4.10)

Proof. Let v = v1 + σ1v2. Then v(a) = 1 and v′(a) = σ1. Notice, if we set

ϕ(x) =
v(x)
v(b)

,

then ϕ solves equation (4.6) on the interval (a, b) with the boundary condition

ϕ(b) = 1, ϕ′(a) = σ1ϕ(a).

By Lemma 27, we have

ϕ′(b) =
v′(b)
v(b)

≥ σ1.

Hence, we have

v′(b) ≥ σ1v(b),

which implies

B1 + σ1B2 ≥ σ1A1 + σ2
1A2. (4.11)
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Similarly, setting v = v1 − σ1v2 and

ψ(x) =
v(x)
v(b)

,

which implies

ψ(b) = 1, ψ′(a) = −σ1ψ(a).

By Lemma 28, we get

v′(b) ≥ −σ1v(b),

or

B1 − σ1B2 ≥ −σ1A1 + σ2
1A2. (4.12)

Combining (4.11) and (4.12) gives the desire inequality. �

4.4 Alternative Proof of the Rearrangement Inequality

To keep our notation consistent, we set

ϕ(x) = Ex

[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]
,

where p is defined as in the previous section. Therefore

ϕ′′ = p2ϕ, ϕ(1) = 1, and ϕ′(0) = 0.

We can restate our rearrangement result as

Theorem 12. Let {Bt}t≥0 be a Brownian motion on [0, 1) reflected at 0 and absorbed at

1. Suppose p and p∗ are piece-wise positive function on [0, 1] as defined in (4.15) and

(4.5), respectively. Then

E0
[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]
≤ E0

[
exp

{
−

∫ T1

0

1
2

(p∗)2(Bs)ds
}]
. (4.13)

Proof. Let B(1), B(2), B(3), and B(4) be Brownian motion on the interval [0,4), [4, b),

[b, 4̃) and [4̃, 1) respectively, with lower reflecting boundary and upper absorbing bound-

ary.
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Define,

ϕ1(x) = Ex

[
exp

{
−

∫ T4

0
p1(B(1)

s )ds
}]
,

ϕ2(x) = Ex

[
exp

{
−ϕ′1(41)l41

Tb
−

∫ Tb

0
p2(B(2)

s )ds
}]
,

ϕ3(x) = Ex

[
exp

{
−ϕ′2(b)lb

T4̃
−

∫ T4̃

0
p3(B(3)

s )ds
}]
,

ϕ4(x) = E4̃
[
exp

{
−ϕ′3(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
,

(4.14)

where

p1 =
1
2

p21[0,41), p2 =
1
2

p21[41,b), p3 =
1
2

p21[b,4̃), p4 =
1
2

p21[4̃,1]. (4.15)

By repeatedly applying Theorem 10, we have

ϕ(0) = E0
[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]

= ϕ1(0) · ϕ2(41) · ϕ3(b) · ϕ3(4̃).
(4.16)

We calculate ϕ1, · · · , ϕ4 (resp. ψ1, · · · , ψ4), by calculating their corresponding

initial condition solutions ξ1, · · · , ξ4 (resp. ζ1, · · · , ζ4.), as

ξ1(0) = 1, ξ2(41 + 4) = ξ1(41 + 4), ξ3(b) = ξ2(b), ξ4(4̃) = ξ3(4̃),

ξ′1(0) = 0, ξ′2(41 + 4) = ξ′1(41 + 4), ξ′3(b) = ξ′2(b), ξ′4(4̃) = ξ′3(4̃).

and set:

ϕ1(x) =
ξ1(x)
ξ1(41)

, ϕ2(x) =
ξ2(x)
ξ2(b)

, ϕ3(x) =
ξ3(x)
ξ3(4̃)

, and ϕ4 =
ξ4(x)
ξ4(1)

.

We denote

ξ1(41) = C1 and ξ′1(41) = D1.

Let v1 and v2 be the solution of (4.6) on [41, b) with the initial condition

v1(41) = 1, v′1(41) = 0; v2(41) = 0, v′2(41) = 1.

and we denote

v1(b) = A1, v′1(b) = B1; v2(b) = A2, v′2(b) = B2.
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Setting ξ2 be the solution of (4.6) on [41, b) with initial condition

ξ2(41) = C1, ξ′2(41) = D1.

Then

ξ2(x) = C1v1(x) + D1v2(x).

Hence,

ξ2(b) = C1A1 + D1A2; ξ′2(b) = C1B1 + D1B2.

Setting ξ3 be the solution of (4.6) on [b, 4̃) with initial condition

ξ3(b) = ξ2(b), ξ′3(b) = ξ′2(b).

Then,

ξ3(x) = ξ2(b) cosh(σ1(x − b)) +
ξ′2(b)
σ1

sinh(σ1(x − b)).

Now consider p∗, and

ψ′′ = (p∗)2ψ. (4.17)

Recall that p is a piecewise function, so 2(p2)∗ is the increasing rearrangement

of 2p2. Setting c = 41 + 42, we denote

p1 =
1
2

(p∗)21[0,41), p∗2 =
1
2

(p∗)21[41,c), p∗3 =
1
2

(p∗)21[c,4̃), andp4 =
1
2

(p∗)21[4̃,1].

(4.18)

We have

ψ1(x) = Ex

[
exp

{
−

∫ T41

0
p1(W (1)

s )ds
}]
,

ψ2(x) = Ex

[
exp

{
−ψ′1(41)l41

Tc
−

∫ Tc

0
p∗2(W (1)

s )ds
}]
,

ψ3(x) = Ex

[
exp

{
−ψ′2(c)lc

T4̃
−

∫ T4̃

0
p∗3(W (3)

s )ds
}]
,

ψ4(x) = Ex

[
exp

{
−ψ′3(4̃)l4̃T1

−

∫ T1

0
p4(W (4)

s )ds
}]
,

(4.19)

where W (1), W (2), W (3) and W (4) are Brownian motions on the intervals [0,41), [41, c),

[c, 4̃) and [4̃, 1) respectively, with lower reflecting boundary and upper absorbing bound-

ary.
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Thus, we have

ψ(0) = E0
[
exp

{
−

∫ T1

0

1
2

(p2)∗(Bs)ds
}]

= ψ1(0) · ψ2(41) · ψ3(c) · ψ4(4̃).
(4.20)

Likewise, we set

ψ1(x) =
ζ1(x)
ζ1(41)

, ψ2(x) =
ζ2(x)
ζ2(b)

, ψ3(x) =
ζ3(x)
ζ3(4̃)

, and ψ4 =
ζ4(x)
ζ4(1)

.

Note that ξ1(x) = ζ1(x). For the next two intervals, we have

ζ2(x) = C1 cosh(σ1(x − 41)) +
D1

σ1
sinh(σ1(x − 41)),

ζ2(b) = C1A1 + D1A2,

ζ′2(b) = C1B1 + D1B2.

ζ3(x) = ζ2(41 + 42)v1(x − 42) + ζ′2(41 + 42)v2(x − 42),

ζ3(4̃) = ζ2(41 + 42)A1 + ζ′2(41 + 42)A2

= (C1 cosh(σ142) + σ−1
1 D1 sinh(σ142))A1 + (σ1C1 sinh(σ142)

+D1 cosh(σ142))A2

= (C1A1 + D1A1) cosh(σ142) + (σ−1
1 D1A1 + σ1C1A2) sinh(σ142),

ζ′3(4̃) = (C1B1 + D1B2) cosh(σ142) + (σ−1
1 D1B1 + σ1C1B2) sinh(σ142).

We have

σ1(ξ3(4̃) − ζ3(4̃)) = [C1(B1 − σ
2
1A2) + D1(B2 − A1)] · sinh(σ142),

ζ′3(4̃) − ξ′3(4̃) = [σ1C1(A1 − B2) + D1(σ1A2 − σ
−1
1 B1)] · sinh(σ142).

Thus,

σ1(ξ3(4̃) − ζ3(4̃)) − (ζ′3(4̃) − ξ′3(4̃))

= [B1 − A2σ
2
1 − σ1(B2 − A1)] · (C1 − σ

−1
1 D1) · sinh(σ142)

By Lemma 26, we have

C1 − σ
−1
1 D1 ≥ 0. (4.21)
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Also, by Lemma 29

B1 − A2σ
2
1 − σ1(B2 − A1) ≥ 0. (4.22)

Thus, condition (4.9) of Lemma 25 is satisfied, and we have

ξ4(1) > ζ4(1).

Recall that

ϕ(0) =
ξ1(0)
ξ1(41)

·
ξ2(41)
ξ2(b)

·
ξ3(b)
ξ3(4̃)

·
ξ4(4̃)
ξ4(1)

=
1

ξ4(1)
.

Likewise, ψ(0) =
1

ζ4(1)
. Hence

ϕ(0) < ψ(0).

�

4.5 Some Observations of the Proof

As we can see, Essén’s rearrangement scheme is a very important part of his

proof. To get equation (4.21), we need max
x∈[0,41)

p2(x) ≤ σ1; equation (4.22) requires

min
x∈[41,41+4)

p2(x) ≥ σ1; and the condition for

σ1(ξ3(4̃) − ζ3(4̃)) − (ζ′3(4̃) − ξ′3(4̃)) ≥ 0, (4.23)

to imply ϕ(0) ≤ ψ(0) is min
x∈[4̃,1]

p2(x) ≥ σ1. As a counter example exhibited in Chapter 3

has shown, this type of rearrangement is necessary.

In fact, those restrictions on the value of p(x) have interesting probabilitic mean-

ings. To examine them more closely, we first need to rewrite Lemma 25 as:

Theorem 13. Let {Bt}t≥0 be a Brownian motion on [b, 1) for some 0 ≤ b < 1, with

a reflecting boundary at b and an aborbing boundary at 1. Suppose p is a positive

piece-wise function on [b, 1], such that min
x∈[b,1]

p2(x) > σ1 > 0.
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Given α2 > α1 and β2 > β1, define

ϕ(x) = α1 · E
x

[
exp

{
−β1lb

T1
−

∫ T1

0

1
2

p21[b,1)(Bs)ds
}]
,

ψ(x) = α2 · E
x

[
exp

{
−β2lb

T1
−

∫ T1

0

1
2

p21[b,1)(Bs)ds
}]
.

If
β2 · α1 − β1 · α2

α2 − α1
< σ1, (4.24)

then ψ(b) > ϕ(b).

Let p1, p2, p3 be defined as in (4.15). Define

ϕ̂(x) = Ex

[
exp

{
−

∫ T4̃

0
(p1(Bs) + p2(Bs) + p3(Bs))ds

}]
ϕ(0) = E0

[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]

= ϕ̂(0) · E4̃
[
exp

{
−ϕ̂′(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
.

Likewise,

ψ̂(x) = Ex

[
exp

{
−

∫ T4̃

0
(p1(Bs) + p∗2(Bs) + p∗3(Bs))ds

}]
ψ(0) = E0

[
exp

{
−

∫ T1

0

1
2

(p∗)2(Bs)ds
}]

= ψ̂(0) · E4̃
[
exp

{
−ψ̂′(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
.

From the previous calculation, we have

α1 = ϕ̂(0) = 1/ξ3(4̃), β1 = ϕ̂′(4̃) = ξ′3(4̃)/ξ3(4̃),

α2 = ψ̂(0) = 1/ζ3(4̃), β2 = ψ̂′(4̃) = ζ′3(4̃)/ψ3(4̃).

The condition (4.24) can be written explicitly as

ψ̂′(4̃) · ϕ̂(0) − ϕ̂′(4̃) · ψ̂(0)
ψ̂(0) − ϕ̂(0)

< σ1.

Next, we break the event into two parts: the process starts from 0 and reaches 4̃

for the first time; and the process starts from 4̃ and reaches 1. Using the strong Markov
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property, we have

E0
[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]

=E0
[
exp

{
−

∫ T4̃

0

1
2

p2(Bs)ds
}]
· E4̃

[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]
.

(4.25)

Since ξ3(4̃) > ζ3(4̃), we have α2 > α1. In the context of (4.25), it means that by

moving the “safer” interval [41 + 4, 4̃) closer to the entrance, the probability of “safe

arrival” to the level 4̃ will improve.

With ζ′3(4̃) > ξ′3(4̃), we have

E4̃
[
exp

{
−ϕ̂′(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
≥ E4̃

[
exp

{
−ψ̂′(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
.

(4.26)

Recall from Theorem 10, if we set x → 4̃, (or by matching the terms in (4.25))

we have

E4̃
[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]

= E4̃
[
exp

{
−ϕ̂′(4̃)l4̃T1

−

∫ T1

0
p4(B(4)

s )ds
}]
. (4.27)

Hence,

E4̃
[
exp

{
−

∫ T1

0

1
2

p2(Bs)ds
}]
≥ E4̃

[
exp

{
−

∫ T1

0

1
2

(p2)∗(Bs)ds
}]
. (4.28)

Such an inequality makes sense, since for a process that starts at 4̃, it spend

more time on average near 4̃, making the traversal on the interval [0, 4̃) more “danger-

ous” after the rearrangement. Note that ϕ̂′(4̃) (resp. ψ̂′(4̃)) is the “risk” the process

accumulated from traversing the interval [0, 4̃) starting at 4̃.

At last, we should keep in mind that in order to get ϕ(0) ≤ ψ(0), we need

min
x∈[4̃,1]

p2(x) > σ1. Meaning, if there is any sub-interval I ⊂ [4̃, 1] that is “safer” than that

in [41 + 4, 4̃), we should move the interval I first.



Chapter 5

Extension of Main Result

Some conditions of our main result can be relaxed. In this chapter, we show two

of such refinements. First, we can weaken the requirement for k from being positive

continuous to positive L1 integrable. We will begin this discussion by introducing the

concept of a general measure preserving rearrangement function.

Second, since our main result holds for diffusion process with zero drift, it is

natural to ask whether the same result will hold if we introduce drift to the process. In

the case when the process is a Brownian motion, a Girsonov’s argument will allows us

to show the same rearrangement result for a Brownian motion with a constant upward

drift.

5.1 General Measure Preserving Rearrangement

For a general Lebesgue measurable function f on the interval [0, 1], we define

its equi-measurable non-decreasing rearrangement by first defining τ(s) as:

τ(s) = meas{0 ≤ t ≤ 1 : f(t) ≤ s}, (5.1)

where “meas" is the Lebesgue measure.

Then the equi-measurable non-decreasing rearrangement f ∗ is defined as:

f ∗(t) = inf{s ≥ 0 : τ(s) > t} (5.2)

64
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Remark 15. Clearly, τ(s) is non-decreasing. Moreover, given a sequence sn ↓ s, we

have { f (t) ≤ s} =
⋂

n

{ f (t) ≤ sn}, and by continuity from above of the Lebesgue measure,

we conclucde that τ(t) is right-continuous.

The following result can be found in the paper by K.M. Chong. ([1], [2])

Proposition 4. 1. f ∗ is non-decreasing, and right-continuous.

2. For any s > 0,

meas{0 ≤ t ≤ 1 : f(t) ≤ s} = meas{0 ≤ t ≤ 1 : f∗(t) ≤ s}.

3. If { fn}n≥0 is uniformly integrable, so is { f ∗n }n≥0.

4. If fn → f pointwise, a.e, or in measure, f ∗n → f ∗ in like manner.

5. If there exists a sequence of L1[0, 1] functions fn and f such that fn → f in L1,

then, f ∗n and f ∗ are also in L1 and f ∗n → f ∗ in L1.

Proof. 1. For 0 ≤ t1 < t2 ≤ 1, let s1 = f ∗(t1), then, τ(s1) > t1. Since m is non-

decreasing and right-continuous, we have either τ(s1) > t2 or there exists s2 > s1

such that τ(s2) > t2. Taking the infimum on all the s2, we have f ∗(t2) ≥ f ∗(t1).

To show that f ∗ is right continuous, let f ∗(t0) = s0 where t0 and s0 are given.

For any δ > 0, we set τ(s +
δ

2
) = t1. Then, f ∗(t1) − f ∗(t0) ≤

δ

2
. Since f is

non-decreasing, for all t ∈ (t0, t1), f ∗(t) − f ∗(t0) < δ.

Hence, f ∗ is right-continuous.

2. Suppose s > 0 is given, and f ∗(τ(s)) = s′. Since f ∗ is right-continuous, we have

meas{0 ≤ t ≤ 1 : s ≤ f(t) ≤ s′} = 0
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which implies

meas{0 ≤ t ≤ 1 : f∗(t) ≤ s} = meas{0 ≤ t ≤ 1 : f(t) ≤ s}.

3. From the previous item, we also have∫ 1

0
fn(t)1{ fn(t)≥s}dt =

∫ 1

0
f ∗n (t)1{ f ∗n (t)≥s}dt.

Thus, the rearrangement preserve uniform integrability.

4. The statement for pointwise and a.e convergence are obvious. If fn → f in mea-

sure, we can pick a subsequence { fni} converges to f a.e, and we can pick another

subsequence { fni j
} that converges to f pointwise. Thus, we have { f ∗ni j

} converges

to f ∗ pointwise, which implies f ∗n → f ∗ in measure.

5. Since the space has finite measure, fn → f in L1 will imply convergence in mea-

sure, whence f ∗n → f ∗ in measure. Moreover, the rearrangement preserve uniform

integrability. Thus, we have f ∗n → f ∗ in L1.

�

Theorem 14. Let k ∈ L1[0, 1] be non-negative, and let {Bt}t≥0 be a Brownian motion on

[0, 1) reflected at 0 and absorbed at 1. Then

E0
[
exp

{
−

∫ T1

0
k(Bs)ds

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bs)ds

}]
. (5.3)

Proof. Since step functions are dense in L1[0, 1], we can pick a sequence kn → k in L1.

By the occupation time formula:∫ T1

0
k(Bs)ds =

∫ 1

0
k(x)lx

T1
dx, (5.4)

lx
T1

is continuous with respect to x ∈ [0, 1] almost surely. Therefore, lx
T1

dx is absolutely

continuous with respect the Lebesgue measure. Consequently, kn → k in L1 will imply∫ 1

0
kn(x)lx

T1
dx→

∫ 1

0
k(x)lx

T1
dx, a.s.

Hence,

exp
{
−

∫ T1

0
kn(Bs)ds

}
→ exp

{
−

∫ T1

0
k(Bs)ds

}
a.s..
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Both exp
{
−

∫ T1

0
kn(Bs)ds

}
and exp

{
−

∫ T1

0
k(Bs)ds

}
are bounded by 1. By Dom-

inated convergence theorem, we get

lim
n→∞
E0

[
exp

{
−

∫ T1

0
kn(Bs)ds

}]
= E0

[
exp

{
−

∫ T1

0
k(Bs)ds

}]
.

By item three of the previous theorem, we have k∗n → k∗ in L1. Thus we have

lim
n→∞
E0

[
exp

{
−

∫ T1

0
k∗n(Bs)ds

}]
= E0

[
exp

{
−

∫ T1

0
k∗(Bs)ds

}]
.

By theorem 1.2, we have

E0
[
exp

{
−

∫ T1

0
kn(Bs)ds

}]
≤ E0

[
exp

{∫ T1

0
k∗n(Bs)ds

}]
.

Taking limit on both sides of the above inequality gives us:

E0
[
exp

{
−

∫ T1

0
k(Bs)ds

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Bs)ds

}]
.

�

5.2 Reflecting Brownian Motion with Constant Drift

Given the rearrangement inequality for reflecting Brownian motion, with the

help of Girsonov’s transform, our next result gives a simple proof that the rearrangement

inequality holds true for all reflecting Brownian motion with a constant drift µ.

Theorem 15. Let Yt = Bt + µt where {Bt}t≥0 is a Brownian Motion on [0, 1) reflected

at 0 and absorbed at 1, and µ is a constant. Then, for a positive integrable function k

on [0, 1] and k∗ its measure preserving increasing rearrangement function, {Yt}t≥0 also

satisfies the rearrangement inequality:

E0
[
exp

{
−

∫ T1

0
k(Ys)ds

}]
≤ E0

[
exp

{
−

∫ T1

0
k∗(Ys)ds

}]
,

where T1 = inf{t ≥ 0,Yt = 1}.
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Proof. By dominating convergence theorem, it is suffice to prove the result for the case

when k is a piecewise constant function. Given a partition 0 = x0 < · · · < xn = 1, and

positive sequence {λ1, · · · , λn}, we define

k(x) =

n∑
i=1

λiIi(x), where Ii(x) = 1[xi−1,xi)(x).

Define Kt =
∫ t

0
k(Bs)ds. By Girsonov’s theorem we have

E0
[
exp

{
−

∫ T1

0
k(Ys)ds

}]
= E0[exp{−KT1 + µBT1 −

1
2
µ2T1}]

= eµE0

exp

−(
n∑

i=1

(λi +
1
2
µ2)

∫ T1

0
Ii(Bs)ds)




≤ eµE0

exp

−(
n∑

i=1

(λi +
1
2
µ2)∗

∫ T1

0
Ii(Bs)ds)




= eµE0

exp

−(
n∑

i=1

(λ∗i +
1
2
µ2)

∫ T1

0
Ii(Bs)ds)




= E0
[
exp

{
−K∗T1

+ µBT1 −
1
2
µ2T1

}]
= E0

[
exp

{
−

∫ T1

0
k∗(Ys)ds

}]
�



Chapter 6

An Application of the Main Result

In this chapter, we show that by picking an appropriate continuous additive func-

tional, we can construct a birth-death process on the state space of {0, · · · ,N} from a

Brownian motion B on [0, 1), reflected at 0 and absorbed at 1. More detail of such

construction can be found in Sharpe [12]. We can then apply our main result to the

constructed birth-death process to give a holding rate rearrangement inequality.

Recall from our main result (1.2) that the set of points we pick for the local time

inequality are equally spaced. In our construction, we set 0 = x0, · · · , xN−1, xN = 1,

such that xi = i/N. β0, · · · , βN−1 are all strictly positive. Define a continuous additive

functional A by

At =

N−1∑
i=0

βil
xi
t .

τ is the right continuous inverse of A

τ(a) = inf{s ≥ 0 : As > a}.

We define a process Y as

Yt := S (Bτ(t)),

where S (xi) = i for i = 0, 1, · · · ,N.

Y is reflected at 0 and absorbed at N. With respect to the time changed filtration,

Y is a strong Markov process (see Sharpe [12] Lemma (65.8) and Theorem (65.9) ). It

is clear that Y is a birth-death process. Moreover, starting at state i, for i = 1, · · · ,N − 1,
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the probability for Y to reach i + 1 and i − 1 are the same, since the probability of the

underlying Brownian motion to reach xi−1 and xi+1 are the same when it starts at xi. The

birth rate and the death rate are the same for each of those states. To determine the

holding rate for state 0 to N−1, conisider the process B that starts at xi, the holding time

for Y before it reaches the next state (xi+1 or xi−1) is βil
xi
T , where T = Txi+1 ∧ Txi−1 , and

Txi+1 and Txi−1 are the hitting time to xi+1 and xi−1 respectively.

Using Tanaka’s formula,

|Bt − xi| =

∫ t

0
sgn(Bs − xi)dBs + lxi

t . (6.1)

Taking expectation of both sides and setting T = Txi+1 ∧ Txi−1 yields

Exi [|BT − xi|] = Exi
[
lxi
T

]
. (6.2)

We know

Exi [|BT − xi|] =
1
2

(xi+1 − xi) +
1
2

(xi − xi−1) =
1
N

= x1.

Thus, the holding rate ζi = 1/x1βi.

Let T1 be the stopping time of the process B reaching level 1. The lifetime of Y

is
N−1∑
i=0

βkl
xi
T1

.

Recall our main result says:

E0

exp

− N−1∑
i=0

βil
xi
T1


 ≤ E0

exp

− N−1∑
i=0

β∗i lxi
T1


 ,

with {β∗i }
N−1
i=0 being the non-decreasing rearrangement of {βi}

N−1
i=0 .

Setting ζ#
i = 1/x1β

∗
i , ζ#

i are in non-increasing order. In the context of birth-death

process, we have

Theorem 16. Let Y be a birth-death process on {0, 1, · · · ,N} that has strictly positive

holding rate {ζi}
N
i=0 (the death rate at 0 is zero), and its birth rate and death rate are

equal on the states of 1, · · · ,N − 1. The process starts at 0 and stop the first time it

reaches state N, and T is its lifetime.

Denote {ζ#
i }

N−1
i=0 as the non-increasing rearrangement of {ζi}

N−1
i=0 . T # is the lifetime

of the process Y# results from replacing the holding rate from ζi to ζ#
i . Then

E[exp{−T }] ≤ E[exp{−T #}]. (6.3)



Appendix A

Statement of Pruss’ Result

Let Z+
0 = {0} ∪ Z+. Fix p ∈ [0, 1]. Let {rp

i : i ∈ Z+
0 } be a random walk on

{1, 2, · · · ,N + 1}, with rp
0 = 1,

P(rp
i+1 = rp

i + 1|rp
i ) = p,

P(rp
i+1 = n − 1|rp

i = n) = 1 − p, if n > 1

and

P(rp
i+1 = 1|rp

i = 1) = 1 − p.

Thus, rp is a random walk on a “blind alley".

Let s1, s2, · · · , sN ∈ [0, 1] be given as the probability of survival at the site n.

Pp
N(s1, · · · , sN) be the probability that the random walk has survived all the time up to

its arrival at the point N + 1. The precise statement of Pruss’ result is:

Theorem 17. Let s1, s2, · · · , sN ∈ [0, 1], and s∗1, s
∗
2, · · · , s

∗
N be the non-decreasing rear-

rangement. Then for p ∈ [0, 1], we have

Pp
N(s1, · · · , sN) ≤ Pp

N(s∗1, · · · , s
∗
N).

The intuition behind this theorem is that the random walk spends more time

further away from the site N+1 than near it. Therefore, we improve safety by rearranging

the order of the danger so that it is more concentrated toward the exit.

The next result implies that if a random walk has more of a tendency to move up

then, its chance of safe arrival to site N + 1 increases.
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Theorem 18. Let 0 ≤ p < r ≤ 1, and let s1, · · · , sN ∈ [0, 1]. Then,

Pp
N(s1, · · · , sN) ≤ Pr

N(s1, · · · , sN).

with equality if and only if one of the following conditions holds:

1. sk = 0 for some k ∈ {1, · · · ,N},

2. s1 = · · · = sN = 1 and p > 0.



Appendix B

Feynman-Kac Equation

Let {Xt}t≥0 be a diffusion process on the interval [0, 1] with a reflecting boundary

at 0, an absorbing boundary at 1, and its infinitesimal generator be:

1
2
σ2(x)

d2

dx2 + µ(x)
d
dx
, (B.1)

σ2(x) ≥ ε > 0 for all x ∈ [0, 1].

We then have the following result:

Proposition 5. Let k be a positive continuous function on [0, 1]. Define Kt =
∫ t

0
k(Xs)ds,

and T1 = inf{t > 0 : Xt = 1}. Then

1. If ϕ is the unique solution to the boundary value problem

1
2
σ2ϕ′′ + µϕ′ = kϕ, ϕ′(0) = 0, ϕ(1) = 1 (B.2)

then,

ϕ(x) = Ex[exp{−KT1}]. (B.3)

2. Conversely, if ϕ is defined as in (B.3), then ϕ satisfies (B.2).

Proof. By the Itô formula,

ϕ(Xt)e−Kt = ϕ(X0) −
∫ t

0
e−Ksϕ(Xs)Ksds +

∫ t

0
e−Ksϕ′(Xs)dXs

+
1
2

∫ t

0
e−Ksϕ′′(Xs)σ2(s)ds. (B.4)
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The diffusion {Xt}t≥0 satisfies the SDE:

dXt = σ(Xt)dBt + µ(Xt)dt + dl0
t , X0 = x, (B.5)

where {Bt}t≥0 is a standard Brownian motion, and l0
t is its local time at 0.

Thus, the equation (B.4) becomes

= ϕ(X0) +

∫ t

0
e−Ks(−ϕ(Xs)Ks + ϕ′(Xs)µ(Xs) +

1
2
σ2(Xs)ϕ′′(Xs))ds

+

∫ t

0
e−Ksϕ′(Xs)σ(Xs)dBs + ϕ′(0)

∫ t

0
e−Ksdl0

s

= ϕ(X0) +

∫ t

0
e−Ksϕ′(Xs)σ(Xs)dBs (B.6)

Now, taking expectation on both sides, and taking t to be the stopping time T1:

Ex[exp{−KT1}] = ϕ(x), 0 ≤ x < 1.

Conversely, the function

ϕ(x) := Ex[exp{−KT1}]

solves the integral equation:

1 − e−KT1 =

∫ T1

0
exp(−KT1◦θs)dKs.

Therefore,

1 − ϕ(x) = Ex

[∫ T1

0
ϕ(x)k(Xs)ds

]
=

∫ 1

0
G(x, y)ϕ(y)k(y)m(dy).

Hence,

ϕ(x) = 1 −
∫ 1

0
G(x, y)ϕ(y)k(y)m(dy).

By inspection, we have:

ϕ′(0) = 0

ϕ(1) = 1
1
2
ϕ′′(x) + µ(x)ϕ′(x) = k(x)ϕ(x)

�
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Remark 16. If we replace Kt =

∫ t

0
k(Xs)ds by Kt = λla

t +

∫ t

0
k(Xs)ds, we have

dKt = λdla
t + k(Xs)ds.

The same argument of the proposition will yield

Proposition 6. Let X be a diffusion process with infinitesimal generator satisfying (B.1),

and a reflecting boundary 0 < a < 1, and ϕ be the unique solution to the boundary value

problem
1
2
σ2(x)ϕ′′ + µ(x)ϕ′ = kϕ, ϕ(1) = 1, and ϕ′(a) = λϕ(a) (B.7)

for x ∈ [a, 1]

ϕ(x) = Ex

[
exp

{
−λla

T1
−

∫ T1

0
k(Xs)ds

}]
,

where k is a positive integrable function in [0, 1], and T1 = inf{t > 0 : Xt = 1}.



Appendix C

Proof of Marcus and Rosen

Let 1t denote the transpose of the n-dimensional vector (1, · · · , 1). A(l) denote

the matrix obtained by replacing the lth column of the n × n matrix A by 1t. Also, {Y}l
denote the lth element of the vector Y .

Lemma 30. Let X be a Markov process with finite 0− potential density u(x, y). Assume

that a local time ly
t exists for each y, normalized so that Ex[ly

∞] = u(x, y). Let Θ be the

matrix with elements Θi, j = u(xi, x j), i, j = 1, · · · , n. Let Σ be the matrix with elements

Σi, j = λiδi, j. For all λ1, · · · , λn sufficiently small and 1 ≤ l ≤ n,

Exl

exp

 n∑
i=1

λiLxi
∞


 =

det(I − ΘΣ)(l)

det(I − ΘΣ)
. (C.1)

Proof. By Kac’s moment formula ([5]),

Exl

 n∏
i=1

Lyi
∞

 =
∑
π

u(x, yπ(1))u(yπ(1), yπ(2)) · · · u(yπ(n−1), yπ(n))
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where the sum goes over all permutation π of {1, · · · , n}. Hence

Exl


 n∑

i=1

λiLxi
∞

k
= k!

n∑
j1,··· , jk=1

u(xl, x j1)λ j1u(x j2 , u j2)λ j2u(x j2 , x j3)

· · · u(x jk−2 , x jk−1)λ jk−1u(x jk−1 , x jk)λ jk

= k!
n∑

jk=1

{(ΘΣ)k}l, jk

= k!{(ΘΣ)k1t}l

(C.2)

for all k.

It follows from this that

Exl

exp

 n∑
i=1

λiLxi
∞

 =

∞∑
i=0

{
(ΘΣ)k

}
l
= {(I − ΘΣ)−11t}l.

Consequently,

(I − ΘΣ)Y = 1t

where Y is an n−dimensional vector with components Exl
[
exp

{∑n
i=1 λiL

xi
∞

}]
, l = 1, · · · , n.

By Cramér’s theorem, we have the desired result. �



Appendix D

Analytic Continuation

More detail can be found in R.C. Cunning and H. Rossi [3].

Definition 1. A complex-valued function f defined on an open subset D ⊂ Cn is called

holomorphic in D if each point w ∈ D has an open neighborhood U, w ∈ U ⊂ D, such

that the function f has a power series expansion

f (z) =

∞∑
v1,··· ,vn

av1···vn(z1 − w1)v1 · · · (zn − wn)vn ,

which converges for all z ∈ U.

Theorem 19. (Osgood’s Lemma) If a complex-valued function f is continuous in an

open set D ⊂ Cn, and is holomorphic in each variable separately, then it is holomorphic

in D.

Theorem 20. (Identity Theorem) If f (z) and g(z) are holomorphic functions in a con-

nected open set D ⊂ Cn, and if f (z) = g(z) for all point z in a non-empty open subset

U ⊂ D, then f (z) = g(z) for all points z ∈ D.
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Appendix E

A Short Example of the Main Steps

In this example, we let n = 16. Suppose we have max{λ1, · · · , λ4} ≤ λ12,

min{λ5, · · · , λ11} > λ12, and min{λ13, · · · , λ15} ≥ λ12. Thus, we move λ12 to the position

of λ5, and shift each of the λ5, · · · , λ11 one position to the right. We denote M(5, 12) the

determinant before the rearrangment, and M̂(5, 12) the determinant after.

M(5, 12) − M̂(5, 12)

= A4 ·





(λ5 − λ12) · −B6
11 +

λ11 − λ12

n
· A6

10

+ (λ6 − λ12) · −B7
10 +

λ10 − λ12

n
· A7

9

+ (λ7 − λ12) · −B8
9 +

λ9 − λ12

n
· (1 +

λ8

n
)

+
λ8 − λ12

n


· An

13

λ12
n ·


λ5 − λ11

n
· B6

10 +
λ6 − λ10

n
· B7

9

+
λ7 − λ9

n
· B8

8

 · B1
14
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+ A−4 ·



 (λ12 − λ5) · B6
11 + (λ11 − λ6) · B7

10

+ (λ10 − λ7) · B8
9 +

λ9 − λ8

n

 · An
13

−



(λ5 − λ12) · −B6
11 +

λ11 − λ12

n
· A6

10

+ (λ6 − λ12) · −B7
10 +

λ10 − λ12

n
· A7

9

+ (λ7 − λ12) · −B8
9 +

λ9 − λ12

n
· (1 +

λ8

n
)

+
λ8 − λ12

n


· B1

14


= (λ5 − λ12) ·

{
L1 ·

−B6
11 + L2 · B

6
10

}
+ (λ11 − λ12) ·

{
1
n
· L1 · A

6
10 − L2 · B

6
10

}

+(λ6 − λ12) ·
{
L1 ·

−B7
10 + L2 · B

7
9

}
+ (λ10 − λ12) ·

{
1
n
· L1 · A

7
9 − L2 · B

7
9

}

+(λ7 − λ12) ·
{
L1 ·

−B8
9 + L2 · B

8
8

}
+ (λ9 − λ12) ·

{
1
n
· L1 · (1 +

λ8

n
) − L2 · B

8
8

}

+(λ8 − λ12) ·
{

1
n
· L1

}
.

where

L1 = A3 · A
n
13 − A

−
4 · B

1
14

=
λ13 − λ4

n
· A3 · B

1
14 +

λ14 − λ3

n
· A2 · B

1
15 +

λ15 − λ2

n
· A1 + 1

and

−L2 = A−4 · A
n
13 −

λ12

n
· A4 · B

1
14

=
λ13 − λ12

n
· A−4 · B

1
14 +

λ4 − λ12

n
· A3 · A

n
14

+
λ14 − λ12

n
· A−3 · B

1
15 +

λ3 − λ12

n
· A2 · A

n
15

+
λ15 − λ12

n
· A−2 +

λ2 − λ12

n
· A1

+A−1



81

To illustrate our steps, we will show

1
n
· L1 · A

6
10 − L2 · B

6
10 ≥ 0,

and

L1 ·
−B6

11 + L2 · B
6
10 ≥ 0.

We ommit the rest of the calculation because they are identical to the one we have shown.

1
n
· L1 · A

6
10 − L2 · B

6
10

=
1
n
·

{
λ13 − λ12

n
· A4 · B

1
14 +

λ14 − λ12

n
· A3 · B

1
15 +

λ15 − λ12

n
· A2 + A1

}
· A6

10

+

{
λ13 − λ12

n
· A−4 · B

1
14 +

λ14 − λ12

n
· A−3 · B

1
15 +

λ15 − λ12

n
· A−2 + A−1

}
· B7

10

+



λ12 − λ4

n
· A3 ·

{
1
n
· B1

14 · A
6
10 − A

n
14 · B

6
10

}
+
λ12 − λ3

n
· A2 ·

{
1
n
· B1

15 · A
6
10 − A

n
15 · B

6
10

}
+
λ12 − λ2

n
· A1 ·

{
1
n
· A6

10 − B
6
10

}


=

1
n
·

{
λ13 − λ12

n
· A4 · B

1
14 +

λ14 − λ12

n
· A3 · B

1
15 +

λ15 − λ12

n
· A2 + A1

}
· A6

10

+

{
λ13 − λ12

n
· A−4 · B

1
14 +

λ14 − λ12

n
· A−3 · B

1
15 +

λ15 − λ12

n
· A−2 + A−1

}
· B7

10

+



λ12 − λ4

n
· A3 ·

{
λ6 − λ14

n
· B1

15 · B
7
10 +

λ7 − λ15

n
· B8

10 − B
9
10

}
+
λ12 − λ3

n
· A2 ·

{
λ6 − λ15

n
· B7

10 − B
8
10

}
+
λ12 − λ2

n
· A1 ·

{
−B7

10

}


First, we look at

λ14 − λ12

n
· B1

15 ·

{
1
n
· A3 · A

6
10 + A−3 · B

7
10

}
+
λ12 − λ4

n
·
λ6 − λ14

n
· A3 · B

1
15 · B

7
10

=
λ14 − λ12

n
· B1

15 ·

{
λ6 − λ4

n
· A3 · B

7
10 +

1
n
· A4 · A

7
10 + A−4 · B

8
10

}
+
λ12 − λ4

n
·

(
λ6 − λ12

n
+
λ12 − λ14

n

)
· A3 · B

1
15 · B

7
10

= 2 ·
λ14 − λ12

n
·
λ6 − λ12

n
· A3 · B

1
15 · B

7
10 +

1
n
· A4 · A

7
10 + A−4 · B

8
10 ≥ 0.
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Second,

λ12 − λ3

n
·
λ6 − λ15

n
· A2 · B

7
10 +

λ12 − λ4

n
·
λ7 − λ15

n
· A3 · B

8
10

+
λ15 − λ12

n
·

(
1
n
· A2 · A

6
10 + A−2 · B

7
10

)
=

λ12 − λ3

n
·
λ6 − λ12

n
· A2 · B

7
10 +

λ12 − λ4

n
·
λ7 − λ12

n
· A3 · B

8
10

+
λ12 − λ3

n
·
λ12 − λ15

n
· A2 · B

7
10 +

λ12 − λ4

n
·
λ12 − λ15

n
· A3 · B

8
10

+
λ15 − λ12

n
·

{
λ6 − λ3

n
· A2 · B

7
10 +

λ7 − λ4

n
· A3 · B

8
10 +

1
n
· A4 · A

8
10 + A−4 · B

9
10

}
=

λ12 − λ3

n
·
λ6 − λ12

n
· A2 · B

7
10 +

λ12 − λ4

n
·
λ7 − λ12

n
· A3 · B

8
10

+
λ15 − λ12

n
·
λ6 − λ12

n
· A2 · B

7
10 +

λ15 − λ12

n
·
λ7 − λ12

n
· A3 · B

8
10

+
1
n
· A4 · A

8
10 + A−4 · B

9
10 ≥ 0.

Third,

1
n
· A1 · A

6
10 + A−1 · B

7
10

−

(
λ12 − λ2

n
· A1 · B

7
10 +

λ12 − λ3

n
· A2 · B

8
10 +

λ12 − λ4

n
· A3 · B

9
10

)
=

λ6 − λ2

n
· A1 · B

7
10 +

λ7 − λ3

n
· A2 · B

8
10 +

λ8 − λ4

n
· A3 · B

9
10 +

1
n
· A4 · A

9
10

+A−4 · B
10
10 −

(
λ12 − λ2

n
· A1 · B

7
10 +

λ12 − λ3

n
· A2 · B

8
10 +

λ12 − λ4

n
· A3 · B

9
10

)
=

λ6 − λ12

n
· A1 · B

7
10 +

λ7 − λ12

n
· A2 · B

8
10 +

λ8 − λ12

n
· A3 · B

9
10

+
1
n
· A4 · A

9
10 + A−4 · B

10
10 ≥ 0.

Next, we check

L1 ·
−B6

11 + L2 ·
−B6

10

=

(
λ13 − λ4

n
· A3 · B

1
14 +

λ14 − λ3

n
· A2B

1
15 +

λ15 − λ2

n
· A1 + 1

)
· −B6

11
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+



λ12 − λ13

n
· A−4 · B

1
14 +

λ12 − λ4

n
· A3 · A

n
14

+
λ12 − λ14

n
· A−3 · B

1
15 +

λ12 − λ3

n
· A2 · A

n
15

+
λ12 − λ15

n
· A−2 +

λ12 − λ2

n
· A1

+ A−1


· B6

10.

For the pair

λ13 − λ4

n
· A3 · B

1
14 ·

−B6
11 +

λ12 − λ13

n
· A−4 · B

1
14 · B

6
10

=
λ13 − λ12

n
·
(
A3 ·

−B6
11 − A

−
4 · B

6
10

)
+
λ12 − λ4

n
· A3 · B

1
14 ·

−B6
11

=
λ13 − λ12

n
·


λ11 − λ4

n
· A3 · B

6
10 +

λ10 − λ3

n
· A2 · B

6
9 +

λ9 − λ2

n
· A1 · B

6
8

+
λ8 − λ1

n
· B6

7 + −B6
7


λ12 − λ4

n
· A3 · B

1
14 ·

−B6
11 ≥ 0.
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