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ABSTRACT OF THE DISSERTATION
A Rearrangement Inequality for Diffusion Processes
by

Teng Gao
Doctor of Philosophy in Mathematics
University of California, San Diego, 2013

Professor Patrick Fitzsimmons, Chair

Let {B;}~o be a Brownian motion on [0, 1), reflected at O and absorbed at 1. Let
x; = i/n,fori = 0,1,--- ,n—1, and l’}”l be the local time of the process at x; up to
T, =inf{t > 0: B, = 1}. Given a positive sequence {d;,- -, A,}, {4}, -+, 4;} is its
non-decreasing rearrangement. The main result of this thesis is the following local time

rearrangement inequality:

e e )

Such an inequality holds true for a more general diffusion process {X;};>o satisfying
dX, = o(X,)dB,,

where o(x) > € > 0 for all x € [0, 1].



Chapter 1
Introduction

We begin with a problem that motivates our main result. {B,};»o is a Brownian
motion traveling on a dangerous “alley way”, denoted by the interval [0, 1). Assuming

the process has survived until time ¢, there is a small chance
k(B))dt + o(dt)

that the process will be annihilated in the time interval (¢, f + dt). Here, k(x) is thought of
as the risk associated with the location x, so it is assumed to be positive and Lebesgue

integrable on the interval [0, 1]. For a traveler who starts at x € [0, 1), the probability of

T
E* [exp {—f k(B,)dt}], (1.1)
0

where T, = inf{r : B, = 1} is the usual hitting time of the process at level one.

surviving-until-escape is

If the process starts at 0, since it spend more time near the starting point, intuition
will suggest that the likelihood of survival will increase if the dangers in the alley are
arranged so as to be more concentrated near the exit. More precisely, let k* denote the

unique increasing right-continuous function from [0, 1] — [0, co) such that
meas{x € [0,1): k'(X) > A} =meas{x€[0,1): kx)> A}

for all A > 0. (Here “meas" refers to Lebesgue measure.) We then have the following

statement:



Theorem 1.

T Ty
E° [exp {— f k(Bt)dt}] <E° [exp {— f k*(B,)dtH . (1.2)
0 0

By an approximation argument, we can reduce the problem to the case in which
k is continuous. It begins with the local time process {/; : 0 < x < 1} which tracks

how much time the Brownian motion spends near a point x € [0, 1). There is the integral

T 1
f k(B,)dt = f k(x)l7, dx. (1.3)
0 0

Because k is continuous, the integral on the right side of (1.3) can be approxi-

formula

mated by Riemann sums
n—1
1
- > k()i
. ZO] ()l

in which x; = i/n. To prove (1.2), it therefore suffices to show that

n—1
exp[ /Lgl) exp[ Z b g]} (1.4)
i=0

for any sequence {1y, A, - , 4,1} of strictly positive constants and its non-decreasing

rearrangement {4, 45, --- , 4;_,}. (Here we identify &; with l’}il J)

There are two results that are related to (1.2). Alexander R. Pruss in 1997 [10]
proved an analogous rearrangement inequality in the discrete random walk setting (The
detailed statement of Pruss’ result can be found in the appendix). By the invariance
principle, the scaled reflecting random walk will converge in distribution to a Brownian
motion, so Pruss’ result is naturally connected to ours.

By the Feynman-Kac equation, setting

T
o(x) = E* [exp {— f k(B,)dt}],
0

where k is a piece-wise constant, non-negative function, we have ¢(x) satisfies the

boundary value problem

1
3¢ =kg, ¢'(0)=0, and @(1)=1. (1.5)

Then, (1.2) will imply
¢(0) < ¢*(0),



where ¢* is the function obtained from replacing & in (1.5) by its non-decreasing rear-
rangement k*.

A similar rearrangement result was first proved by M. Essén in 1975 [4]. It is
worth pointing out that although (1.2) can be deduced from the results of Essén, they do
not imply (1.4). However, (1.4) does imply Essén’s result.

The tool that allows us to prove (1.4) is a result derived from a paper of J. Rosen

and M. Marcus [9] to show

eXp[ Z ! g)] det(l FIA)

where A is the n by n diagonal matrix with
Aij = A6,
and X is the n by n matrix with the entries
2i; = G(xi, x;),

where G is the Green function for the process.
Thus the proof of our main result reduces to proving the following determinant
inequality:
det({ + ZA) > det( + ZA"),

where

€ %
Ay = A6

Our result can be extended to a bigger class of diffusion process {X;}»o with

some restriction on its infinitesimal parameters o and u , where
p(x) = lﬁg E*[X(h) - X(O)],

and

2 1 X _ 2
oo(x) = 1}%115 [(X(h) — X(0)°].

The outline of this thesis is as follow. In chapter 2, we will go over the set-up.

We will give the definition of local time, and list some relevant results used in our proof.



We will state the result of M. Marcus and J. Rosen, and give a detailed calculation of
the Green function with boundary conditions appropriate for our case.
The proof of our main result is given in Chapter 3. In Chapter 4, we will derive

the identity

T
B [exp {— f (k1[a,b)(Bs)+k1[b,c)(Bs))ds}]
0

—E [exp {— fOT”kl[a,b)(Bs)ds}]-Eb [exp {—go'(b)lf;] . kl[b,c>(Bs)ds}],

where

Ty
cp(x) =FE* [GXP {— f kl[a’b)(Bs)dS}] ,
0

for x € [a,b) and a < b < ¢. We will use this idenity to give an alternative proof of
(1.2) that is based on Essén’s method. Some interesting probabalistic conclusions can
be drawn from such an approach.

In chapter 5, we give a proof that extends Essén’s result to the class of postive
integrable functions, and we show that our main result will hold for Brownian motion
with constant drift.

In chapter 6, we will give an application of the main result. By the method of
time change, we contruct a birth-death process on the state space {0, 1, - - - , N}, reflected
at 0, and absorbed at N, with equal birth and death rate on each states except the end
points. Applying our main result gives a holding rate rearrangement inequality for such

a process.



Chapter 2
Marcus and Rosen Identity

Let {X}};>0 be a diffusion process on the interval [0, 1) with a reflecting boundary

at 0, and an absorbing boundary at 1, satisfying the stochastic differential equation:
dX, = o(X,)dB; + u(X,)dt, (2.1)

where {B;};»o is a Brownian motion.
To ensure the existence of a weak solution, here and in what follows, we assume
the continuity of u(x) and o(x). In addition, o?(x) > € > 0 for all x € [0, 1].
We have
P(T) < ) =1, Vx € [0, 1).

We will show in this chapter that the diffusion process {X;},»o satisfies the iden-

tity:
n—1
[exp { Z ! f}] det(I TzAy e &=l 2.2)

Here, X is a matrix whose entries are given by the Green function of the process as
Z.; = G(x;, x;), A is a diagonal matrix whose entries is Z;; = 4,6 ;, and [} is the local
time of the process at x; = i/n up to time t.

Additionally, we will show that given two process {X,(D}IZO and {X,(Z)},Zo, such
that their corresponding infinitesimal generators satisfying the inequality

H1(x) S H2(X)
oi(x)  ox)

forall xe€]0,]1],



then 1 1
EY [exp {— Z /1,-1’}"1} > ES [exp {— Z /l,-l’}il} .
i=0 i=0
We will begin this section with a brief discussion on local time and Green func-
tions.

2.1 Local Time

In this section, we will review the definition of local time and give a list of results
that will be used in the ensuing sections. The main goal is to show that for a positive

continuous function &, and an equal space partition of the interval [0, 1], we have

T) 1 n—1
f k(X,)ds = lim — Z kel m(x) s (2.3)
0 n—oo N pary

where x; = i/n.

Here, m is the speed measure, and it is defined as

2d
m(dy) = ——>

- 2.4
a?(y)s(y) 4

where s is the scale density, defined as

"y
S(y)=eXP{— fo 2#(6)/02(6)616}- 2.5)

Additionally, I; denotes the Markov local time at the point x; up to time 7.

It is important to point out that there is a difference between semi-martingale
local time, and Markov local time. Here, and in what follows, we will use L (resp. /) for
semi-martingale local time (resp. Markov local time). We will introduce the definition
of semi-martingale local time first. More detail can be found in D. Revuz and M. Yor
[11].

Given a continuous semi-martingale {Y;},»9, the local time process at a point
a is defined to be positive increasing process appearing as the remainder term when

expanding |Y; — a| by the Tanaka’s formula. The precise statement is as follows:

Theorem 2. For each real number a, there exists an increasing continuous adapted

process L°, called the local time of Y in a, such that

!
|n—m:m—m+jkywrﬂmn+w, 2.6)
0



Notice that because L? is an increasing process, we can associate to it a random
measure dL; on R,. It can be shown that this random measure is singular to Lebesgue’s

measure.
Proposition 1. The measure dLf is a.s. carried by the set {t : Y, = a}

Proof. First, we apply Itd’s formula to the semimartingale |Y; — al, and get
(Y, —a} =(Yo—a)* +2 fol |Ys — ald(|Y — al)s +<|Y], 1Y)
and using Tanaka’s formula, we can expand the term further
Yy — a)2 + jo‘[ |Ys —alsgn(Yy —a)dY, + 2 jo‘t |Ys —aldLi + (YY),
However, by applying It6’s formula to (Y; — a)* we get
(Y, - a)* = (Yo - a)’ +2£1|Ys —aldY; + (YY),

Thus, we reach the conclusion that

!
f Y, — aldL = 0
0

In fact, Tanaka’s formula is part of a more general result:

Theorem 3. (Ito-Tanaka formula) If fis the difference of two convex functions and if Y

is a continuous semimartingale

' 1
JX¥) = f(Yo) + fo fLX)dYs + 5 fR L} f"(da)

If we let f be a positive and twice differentiable function, comparing 1t6-Tanaka

formula and It&’s formula, gives us that

f FOANT, Y, = f f@)Lida @.7)
0 —00

By monotone class argument, we can conclude the above result will hold for all
positive Borel measurable f.
Heuristically, the local time L{ can be thought of as the amount of time the

process Y spends around the point a up to time ¢. The next result illustrates this point.



Proposition 2.

1 !
L = lim — ligare)(Y)d(Y,Y); a.s. (2.8)
Remark 1. L in equation (2.8) refers to a semi-martingale local time. Markov local

time, denoted lf, is defined as,

1 !
4 =lim —— Ligare)(Yo)ds. 2.9
! ;H)lm([a,a+8))f0 jaave)(Ys)dls (2.9)

In the next section, we will show that ]Ex[lyTl] = G(x,y), for the Green function G.
Comparing equation (2.8) and (2.9), we have the relationship between the two as,
«_ L

= R am@ (2.10)

The last result we list here points out that the local time L{ is cadlag with respect

to the spacial variable, so it enables us to approximate (2.3) using Riemann sum.

Theorem 4. For any continuous semimartingale {Y,};so, there exists a modification of
the process {L{,a € R, t € R,} such that the map (a,t) — L is a.s. continuous in t and

cadlag in a. Moreover, if Y = M +V, then

! 1
L? - L?_ = ZL‘ l{YS:a}st = ZL 1{era}dYS.

Thus, in particular, if {Y,};s0 is a local martingale, there is a bicontinuous modi-

fication of the family L* of local times.

Remark 2. For a diffusion process {X,}=0 with continuous drift u(x) and variance pa-
rameter o*(x), the occupation time formula (2.7) implies,

t 1
@ ja- _ _ px) o
-1 =2 fo Ly —qu(X,)ds = 2 fo ooy Lidx = 0

The last equality is a consequence of the fact that Lidx is absolutely continu-
ous with respect to Lebesgue measure. Thus, for the process we consider, L! is jointly

continuous in (t,a). From equation (2.10), we also have the joint continuity of [.



2.2 Green Function

In this section, we will show that with the appropriate normalization of the Green

function G, we have
E'L ] = G(x, ).
We will derive the above equation with the corresponding boundary condition that is
suitable for our purpose.
For the diffusion process {X,},so with drift (x) and variance parameter o-(x) > 0,

its infinitesimal generator is

2
L= %O‘ (x)d— +y(x)—

In the next chapter, we will show that for a positive integrable function f, the

function ¢ defined as:

T
o(x) = E* [exp {—/l f(XS)ds}] , (2.11)
0
satisfies
Lo = Afe. (2.12)
Differentiating both sides of (2.11) with respect to A, due to the fact that
T
exp {—/1 f(Xs)ds} <1
0
and
T, T T
f(Xy)ds exp {—/l f(Xs)ds} < f(Xy)ds < oo.
0 0 0

we can switch the order of - and the expectation E*, obtaining

P
aﬁ E"[ f f(X, )dsexp{ f f(X, )ds}]

0

oy
C [—= = - 2.1
01 Y= oA =Jet /lf (2.13)

Let 4 — 0, with the help of dominated convergence theorem,

oy Ti
) — 1, and ey — —-E* f(Xyds]|.

0



10

If we define w as:

Ty
w(x) = E* [f f(Xs)ds] , for x€(0,1), (2.14)
0

equation (2.13) becomes
Lw = —f. (2.15)

The solution to such an ordinary differential equation is well-known, and is given

as
1
w(x) = fo Gxy) fIm(dy). 2.16)

where G is the Green function.
Combining (2.14) and (2.16) we get:

T 1
E* [ fo f(Xs)dS] _ fo Gxy) f(Im(dy).

By Proposition 2, if we set f = mlwﬂ) and let € | 0, we get the desired
identity:
E*[£, 1= G(x, ).

Now we will construct the Green function. More detail can be found in Itd6 and

McKean [7].
Here, we denote the scale derivative g* as:
.8y —gx) f *
*(y) = lim >——="~ S(x) = s(n)dn.
g0 ) =5 (x) ) (mdn

Let g; (resp. g») be the increasing (resp. decreasing) solution to
Lg =0, (2.17)

with
g0)=0 and g(1)=0,
Both g, and g, are uniquely determined up to a positive constant. Moreover, the

Wronskian W = gfg> — g5¢ is a constant, so g; and g, are linearly independent. The

Green function is:

G(x,y) = Gy, x) = g1(0)g20)/ W, x < y. (2.18)
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By the strong Markov property and the terminal time property, for x < y, we can

write: Ty = Ty + Ty o 0r,, where 0. is the shift operator, and have:
G(x,y) = B = B 1L, + by, 1= B ] = GG, Y). (2.19)

Equations (2.19) and (2.18) tells us that the g; is a constant, and without loss of
generality, we set g; = 1.
Moreover, from the fact that G(1,1) = E'[l.] = 0, consistent with the right

boundary condition
g (1) = 0.

A simple calculation will show that we can take

1 ¢
g2(x) = f s(¢)d¢é  and  s(§) = exp{— j: 2u(m) /o (mdn). (2.20)

so that the Wronskianis W = 1.

Summarizing:
G(x,y) = g2(x V),
where g; is given by (2.20).

We can now check that w(x) defined as in (2.14), solves the boundary value

problem:
Lw=—f
w(0)=0 .
w(l)=0

First, we rewrite w as:
1 X
\mh&mf&@mmmnamﬁgwmmml

It is easy to see that w(1) = g»(1) fol g1 fy)m(dy) = 0.
Also,

W =g [ s fom
Clearly, w'(0) = 0.
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Next,
W) =) [ @00 - 20
0

Hence, Lw = —f.
Remark 3. 7o see that w is the unique solution to the boundary value problem, suppose
wy and w, solve the same boundary value problem. Then, for g(x) = wi(x) — wa(x), g
satisfies g'(0) = 0 and g(1) =

Notice £Lg = 0 implies g"”(x) = —(2u(x)/0*(x))g’(x). Let h(x) = g'(x), then solv-
ing the first degree differential equation will give h(x) = C - exp{— u[)x =2u(n)/o*(n)dn).
h(0) = g’(0) implies C = 0. In other words, g must be a constant, and since g(1) =0, g

must be identically zero.

Remark 4. For a Brownian motion on [0, 1), reflected at 0 and absorbed at 1. We
have u(x) = 0 and o*(x) = 1. Therefore, g,(x) = 1 — x, and the Green function is
Gx,y)=1-(xVy).

2.3 Marcus and Rosen Identity

The main tool we will be using to prove our main result is the identity:

Proposition 3.

["'XP { Z A 5}] det(I +2A)’ 2:21)

where &; = l)}il,for 0=x; <---<x, <1. XisthenXnmatrix with entries
by ji= G(x,-,xj), and Z,"j = /1,'6,"]'.

Here, Ay, -, A, are all strictly positive.

To show (2.21), we will use the following result from M. Marcus and J. Rosen

[9]:

Lemma 1. (Marcos and Rosen) Let X be a Markov process with continuous 0—potential

density u(x,y). Assume that a local time I, exists for each y, normalized so that B*[L,] =
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u(x,y). Let X be the matrix with element X;; = u(x,y), i,j = 1,---,n. Let A be the
matrix with elements {\}; ; = A;6; ;. For all A,,--- , A, sufficiently small and 1 < [ < n,
)| det( —EA)
EY ALY = ————,
{GXP {Z‘ w}] det(I - ZA)
where ’2\.,-,;( =2k — 2k Jk=1--,n

From previous calculations, we have
% = G(xi, X)) = g2(x; V X)),
Forl < j,k

1. _ I _ vl
z ko = z"j,k z"l,k

g8(x; VvV x) — gV xp)

g(x;) —glx), if j >k,

0, Jj <k,
SO
gla) —g(x)), Jj>k,
(I-ZA); = 1, j =k,
0, j<k.
Therefore, we have det(/ — /Z\JA) = 1 in the case where x; = 0. Setting & = l;"l,
we have

Olexp { Z A; fl}} det(l TIA) for A; sufficiently small.

Remark 5. In the paper of M.Marcus and J. Rosen [9], there is a more general lemma

than the one given above. The precise statement is given as follow:

Lemma 2. Let X be a Markov process with finite 0—potential density u(x,y). Assume

that a local time L. exists for each y, normalized so that E*[L,] = u(x,y). Let ©® be the
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matrix with elements ©; ; = u(x;, x;), i, j = 1,-+- ,n. Let A be the matrix with elements

{A}ij = A6, ;. Forall Ay,--- , A, sufficiently small and 1 <1 < n,

exp {i /lilfjj} =
i=1

here A" denotes the matrix obtained by replacing the Ith column of the n X n matrix A

det((I - OA)D)
det(l — OA)

E"

by a column of 1.

The following calculation shows that both lemmas lead to the same identity. We

set g = g2(x;).
1 g2/12 gn/ln
1 1+24, --- WAy
det((I +TA)V) = det| 27T

1 I+ gndy
1 &2 o gudy
0 1 0

= det|
0 (gn—8)A -+ 1

= 1.

The second to third equality is obtained by using row reduction.

Our next task is to remove the restriction on the size of A;. The constraint on the
n
exp {— Z /l,-lfj,}] and 1/ det(I + XA) are represented

i=1
as a formal power series (if the series converges absolutely):

A;’s is due to the fact that both E¥

- 1
A lx‘ D*ZEA) 1)} _— 2.22
[exp{ Z } ZO< FEN TN = oy (2.22)
as functions of (4, -+, 4,) € R", wherever such power series is well-defined.

Analytic continuation will enable us to extend the validity of the identity to a

larger domain to where both E* {exp {— Z /lilff;}] and 1/ det(I + £A) are defined.

i=1

Our first step is to find a modest bound on 4;’s, so that the formal power series

will converge. For simplicity, we choose the open ball B(0,qg) € C", with center at the
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origin and radius ¢ < 1.

Lemma 3. Assuming u(x) > 0, forall x € [0,1], andn - A; < g <1 fori=1ton. Then,

Z [(EAY 1) (2.23)
k=0

Proof. First, notice that for a; € (0, 1), have

1 t
gi=ga) = f exp {—f 2u(s)/0'2(s)ds} dr < 1.
a; 0

Next, we claim that

(A1 <4

We will proceed by induction on k.
For k =1,

(EAIh =D gidi < D A <n-(max ) <gq < 1.

and
(EA 1Y = {EnEA T
< {¢'EM1'}
— C]k+1.
Finally, we have
Z (EAF1), < qu < oo
k=0 k=0
O
For each i, both Eo[exp{— Z /lil;"l }] and 1/ det(/ + £A) are functions of A;, and
i=1
they are continuous and differentiable on Q = {(z;,---,z,) € C" : Real(z;) > 0,V i}.

By Osgood’s lemma, both function are holomorphic on Q (see Appendix C). Both

Eo[exp{— Z /lil’}"l }] and 1/det({ + ZA) can be represented by the formal power series
i=1
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(o8]

Z{(ZA)" 1'}; on the open set B(0, ¢) () Q. Thus, by the Identity Theorem (see Appendix

k=0
C), the two functions are equal on Q.

In Pruss’ paper, he shows that if the probability of the random walk jumping up
is increased, the probability of safe arrival at the end point will also increase. In the

context of our set up, we have the following analogous inequality.

Theorem S. Let {Ay,--- ,A,_1} be all positive numbers, and 0 = xo < ---x,-1 < 1.
Consider diffusions XV and X®, such that their corresponding infinitesimal generators
satisfying the inequality

H1(x) S Ha(X)
o2(x) o)

forall xe€]0,1].

In this case,

E? > E)

exp {— "Z‘l“ /lil’}"l}

i=0

exp {— HZ_E Al H .
i=0

Proof. Let g% and g\ denote the decreasing right boundary solution for X" and X®

discussed before respectively. Recall from our discussion of Green function, that

1 1
(v = I ANTI0)) O f {_ f‘ 12(n) }
g (%) —fx exp{ ‘fonO_%(n)dn} dé < g5y'(x) = ) exp ; 20’%(77)6177 dé.

Thus, we have

Y] Y] 2 2
Zi,j =g (xiVx)< Zi,} = gz)(xi V X)),

SO
det(I + ZVA) < det(I + ZPA),

which gives the desire inequality. m|

Chapter 2 is based on the paper “A Local Time Inequality for Reflecting Brown-
ian Motion” written jointly with Patrick Fitzsimmons, which is currently in preparation.

The dissertation author is the primary author of this work.



Chapter 3

Proof of Main Result

We will focus our effort on reflecting Brownian motion. In what follows, {B};»o

denotes a Brownian motion on [0, 1) with reflecting boundary at 0, and an absorbing

boundary at 1. The interval [0, 1) is partitioned into n equal space subintervals so that

i ) ) )
x; = — fori = 0ton — 1. Thus, the entries of the matrix X in our set up
n

n—1
1
0 _E AéEN = ——m—— = [
eXP{ : ¢ det(I + ZA)’ & =1In,

i=0

are

iNj
2ii=8iNg = (xl/\x])_l_T

Let {4, -, A;_,} be the increasing rearrangement of the sequence {Ao, - - -

With equation (3.1), to show

[exp{ Zag,} .

it is suffices to show the corresponding inequality

n—1
[exp {— Z /lffi}], where & =17,

i=0

det(/ + ZA) > det(/ + ZA"),

where

A;; = A6,

i,j»

3.1

’/ln—l}-

Instead of rearranging the order of A;’s all at once, we will do it in steps. For a

17
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positive sequence of distinct numbers {1y, - - - , 4,_1}. We pick two indices s and k by:
s = max{j: Adp<---<4;< _rnjl}/li},
2]+

k = {l: A =minA;}.

i>s

We set
A, for 0<j<s, or j>k,

Aj=9 Aoy, for s<j<k

A, for j=s+1.

Clearly, by repeating the above step in which {1} is replaced by {1}, we can
rearrange A;’s into increasing order.
We set M(s+1, k) = det(I+EA), and M(s+1, k) = det(I+ZA), where A, ; = 4,6, ;.

Thus, to get the desired result, it is suffices to show

M(s + 1,k) > M(s + 1, k).

3.1 Preliminary and Notation
To simplify the caculation, we observe that by row reduction

det(/ + ZA) = det( + N),

where
N = -1, j=i+1,
0, j>i+l.

Next, notice that although the position of the entries from A, to 4, have changed,
the position from Ay to A, and from A, to 4,_; is the same for both M(s + 1, k) and
J/\\{(s + 1, k). Thus, it makes sense to break those two determinant down into parts.

To simplify our discussion, we adopt the following notation:

1+ -1 .. 0 1+ -1 ... 0
A= : . |, and A, =

do 4. 14+ 4 do LA

n n n n n n
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For [ > 0, A; is the determinant of the matrix with the indices of the entries
starting at 0 and ending at /, and A, is the determinant of the matrix that is the same as
. . A
that of A; except the entry1 + L in the position of (/, [) replaced by -y
n n

By expanding along the last coloumn, we have the relation:

Lemma 4.

A=A+ Al_

In the subsequent calculations, we will use this lemma in the case when / = 1.
In order to keep the notation consistent, we set A_; = 1 and A" = 0.
In the more general context, if the entries of the matrix start at A, and end at 4;,

we use the notation

l+&% -1 ... 0 l+% -1 ... 0

n n

Ar=| ..+ |, and TAS=|
A e 4 L Aw oA
n n 1+n n n n

‘We have the relation
Lemma 5.
A=A +7A

Remark 6. Similar to the previous remark, we will be using the above lemma in the

: - Ay
case when s = . In this case, A} = — and A3 = 1 + ~AS, so we set A* | = 1.
n

Another special case is when the indices of the entries start at / and end at n — 1.

‘We use the notation

1+4 -1 ... 0
n
n _
Al_
4 S s
n n n

We can also evaluate the value of A7 and A] by expanding along the first row.

To keep the calculation tidy, we adopt the following notation:

“1 0 1 -1

1+% ... 0 | 1 1+
B; = | o . and 'Bj = "

S = 3=

S =
s |
—
+
|>
f—
S|
f—
+
|
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1
Obviously, B; = —IB‘;.
n

By expanding along the first row we have

Lemma 6.

A = A, B+ A,
é . lBls+l +sz+l.
n

For the special case where the indices of the entries start at / and end atn — 1, we

use the notation

1 -1
L1+
B, =,
1 A cee ] 4 A
Additionally, we have
% -1 -~ 0 1 -1
142 o0 | 1 1+4
By =" " | ad By=| 7

1 A Rl 1 A 'l

Here are some additional properties of these determinants

Lemma 7.
A A
A = (1+=2) A7+ =12 (3.2)
n n
/ls K K
Al = ;-1B1“+Al“ (3.3)
/l ) —AS N —AS
Ay = (1+#)'A;—1+ AL =AL +7A) (3.4)
Bl o= A+B (3.5)
\) 1 s R
B = ;.A‘,+B,+1 (3.6)
B! = "Bi+B!,. (3.7)

Remark 7. Mindful of the fact that the above identities also works for the end points,

we adopt the following conventions:
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An-

. . Ap-
e First, notice that A" | = (1 + = Ly A" + B:m
n

and B! ., = 0. By the same token, we set AS*' = 1 and 'B$* = 0.

Therefore, we set Al =

o Second, B}  =A! +1=A" +B), sowesetB) = 1. By the same token, we set
1B§+1 — 1, B§+l 1 Cll’ldBl — %
e Third, BS* = rll "B+ B”l "Bl Likewise, "B = 1.

As As
o Lastly, — ="A} = —As 1+ A, sowe have A | = 0.
n

The next lemma allows us the break down the determinant A; at points other

than the end points.

Lemma 8. For s <r <,
AS =AY AT A5 IR

Proof. We will use induction. First, let k = s + 1, and evaluate the determinant A; by

expanding along first row.

As

s 1y s+2
Al - Bl
n

Ay
1+=)- At 4+
n
= A A LAY IR

Using the inductive hypothesis, for general entry s < k < [,

Als — A]i . A5<+1 + —AS . lBk+2
A A
— A]i ((1 k+1) Ak+2 k+1 X 1B§+3) + —Ai . (A]l(+2 + IB;(+3)
n

ALy a5 L —as At o5 — s
((1+ ) g Ak)-A§+2+( e+ Ak)-lB’,‘+3

_ K} k+2 —AS 1 k+3
= A ATTHTAL BT
|

There are times when, in order to show recursive relation, we need to expand IBIS

other than at the diagonal end points. In those instance, the next lemma will be useful.

Lemma 9.

A
B = (1+ =) "B + AL
n



Proof.

1B;

3.2 Main Steps

s 1 s+1
A+ B

A
s IB;+1 +A;+1 + lBiH-l
n

1+
n

. IB;H +sz+1.

We are now ready for the main steps. Using Lemma 8, we have

M(s + 1,k)

Ag-A"  + A B!

s+2

We break down ﬁ(s + 1, k) the same way:

Mes+ 1k = A, (AP - A+ AP BLo) + AL (B

To be more clear,

1+& -]
/lk /l.y+]
st | I+55

k= . .

Ak Ast1

n n

We let
_ +1 * +1
L. () =A7 -"A,

2. (II) = A — A,
3. (D) = 'By? - 'BM,

4. (IV) =B - B

Our next result shows that

—As+l
AT =

Ak

22

Ag- (A AL + AT Bl,) + AL - ('BY? AL, + BT By,).

n 1,— s+l 1
A+ B 'Bk+2)-




Lemma 10.

M(s + 1,k) — M(s + 1,k)
= A (DAL +UD - Bl,y) + A - (UID - A, + (V) - By,)

=0 ((/13+1+j - 4) B+ L (o — ) - AS+2+j) A"

Pally k+2+j
= A,-
a ) S+2+j 1
B ( j=0(Asr1ej = A1) - Bk—l—j) Bin
y S+2+j
( im0 k—j = Asrrsj) - Bk—Z—.i) A
+A -

k+1

= 2o (Qerre = AW B + 1 (y - WA - B,

k=1-j k-2

where
k=s=3 .
=, k—s isodd,
y =
k‘;_z, k—s iseven.
Proof.

(I) — Ai+] _ *Az+l
/lk 5 —AS /1k N A
= (1+ ;)~Aki} + AT — (1 + 7)A,;} - A - B

_ - s+2 — A SH2 - s+2 s+2
= A1 B+ AL - A B — A B

, Ay , ' 1 '
= (e = A BT+ T AT AT - S AT - 4 B
Ak-1 — A

_ - s+2 s+2 — A SH2 s+3
= (A — ) B+ A2 TASE 0 B

Notice the recursive relation

; ; o Apei—j— A ; .
— A+ s+2+) _ —m 2+ k=1-j ko sH24) | - p s+
AL —AB = (A =) - "B T+ — AL AL A B
By repeating the steps, we have
— ps+] 2
() = "A5 - 4B
v—1
o Ao — A .
—y $+2 k—1-j k s+2 1
= > ((AHH,- ) B T A e

J=0

23

s+3+)
k=2-j°



24

where v and I! are to be determined next.
k—s-3

Case 1: k— s is odd. In this case, wehave s+v+2 =k—-v—1,0rv = >

and

1 _ = As+v+l s+v+2
Iv - Ak—v—l - Ak ’ Bk—v—l
kv — A
_ 2 k—v—1 k
= (As+v+1 - /1k) : B}iiii] + —I’l .
) k—s—2
Case2: k—siseven. s+v+1=k—-v—-1l,ory= ——.
2
1 _ = As+tv+l s+v+2
I, = Ak—v—l — Ak Bk—v—l
Ay — A
—
Thus, we set
== k-5 1isodd,
k > 3k dd
Yy =
% k— s 1iseven.
(g = A) - BT 4 sty = A,
I _
I, =
Aey1—Ak _ k=s=2
n V="
(In = “AF A
/1]( s+1 | — a8+l /lk — A S+l - s+2
= — AL AL -+ =) AL -4 B
n n
_ /lk —As+1 As+1 —As+1 1 /1/6 —As+1 1 —Bs+2
= — 1 P TADL (T —) - TAT - A4 "B
n n
/lk s+1 - s+2
R A A B
Ak Ak ,
= = (A B+ A) - T= 4B - 4B
n n
Ay w2 A +2 —s+2
= (Ags1 = A1) - B5 + - A -4 TB
/1]( s+2 /lk — A S+2 s+2 /lk — A SH2 —-ms+3
= S B (A A7) - (; A4, Bk_z)
Ay 2 A 2
Ty s+3
= (Age1 — A1) - BS + - AT - A TB.
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Notice the recursive relation

A

s+1+j —mS+2+) Ak S+2+J Ak s+2+) —s+3+j
Ak—Z—j_/lk Bk—l—j - ; (Asr14j = Ak-1-j) - Bk 2-j 7 A1«37]'_/116 Bk—2—j'

By keeping the notation consistent with the previous calculation, we denote

(H)—— Z(amﬂ Aoy BT+ 1.
j=0

Casel: s+v+2=k—-v—-lors+v+1=k—-v-2.

/lk ﬂk /ls+v+l - /lk—v—l

1 - Ss+v+2
AS+Vt _/1](' B__ - "
k—v—2 k—v—1 n n

Case2: s+v+1=k—-v-—-1.

] 1
Recall from our remark that AS"*! = [ and "B+ = —,
k—v-2 k—v—1 n

/lk As+v+l /1 Bl_§+;+% — 0

s+v+2

Keeping v the same as the previous calculation, and we set

/l.v+v+l;/lk—v—l , y = k—;—?)’
2 _
Iv+1 -
— k=s=2
0, v="=

By Lemma 9

(a1 = "B -'Bf

(14 2y 1o 4 g2 _ (1 4 Hor
n

1
) A 1B}z+% A€+2

(= A) - B + (CAZ + B - (AL - A)

A RS /ls s s
(= ) B + (2L B 4 B - (22 B 4 A7)

= (A= A1) BT + (ot — A0) - B + B — AL

We use the recursive relation, which can be deduced from the second and fifth

equality,

l—ms+l+j y+1+] ) i S+2+] —ms+2+] s+2+]
Bk—j A = (- i S+J+1) Bk—j 1 Bk j-1 Ak—l—j'
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We can write
v—1 .
() = > (M= Asrjon) - B+ 1.
=0

Casel: s+v+2=k—-v-1.

L—ms+l+v _ A s+l+v _ L TRSH2+Y IL,-pmk=v=1 _ pk-v-1
Bk—v Ak—v - (/lk—l’ /lS‘FV‘H) Bk—v—l + Bk—v—l Ak v—1

2
= (Ao — Agiyr1) - Bitvt‘l/
Case2: s+v+1=k—-v-1
1,—-s+v+l s+v+l
B AT =0.

Thus, we set

s+2+v — k=s-3
(/lk—v - /ls+v+l) : Bk—v—l’ V= 7

0 v = k—s-2
. = .

Lastly, we show that (IV) = —(I).

(IV) LByt - BT

A 1,—ms+2 s+2 1,—ms+2 As+1 1,—s+2 | — A S+2 1,—ms+2
(;( B +Bk—2)+ | Bk—l)_(( P "B+ Ak—1)+ ’ Bk—l)

(/1k - /ls+1) . _B]it% + /lk . thé _ _Alzt%

Recall from the remark 6 and 7, we can simplify the notation of ! I? and If,

vy Ty

and the result is the identity as stated in the lemma. O



Lemma 11.

M(s + 1,k) — M(s + 1,k)

(Zhoortes = A0 - BT 4 L (s - A - AT - AL
= Iks
+2 (B0t = Do) - BUSY) - BL,
v s+2+j n
(Zj:()(/lk—j - /1s+1+j) : Bktltj) : Ak+1
+A]
~(Zhcorres = ) - "B L (o - A - A - BL,
o Qe = 20 -8B + Ly - B
! + (o1 = AL - L1 - A - 0, - BGH)

where

Ak

Li=An, 'AZH - As_ 'BILZ’ and L, = ; A Bllc+2 - A; ’ AZH'

Proof. For j=0,---,v—1

st = A) - Ag - BT AL+ (Uej — Agrrey) - AL - B

k-1-j

- - j A
~(Aesrej = A0 - A7 BT B + =5 (L = der) A B

Arj— A )
+—

" k—2—j

= (Ag1rj— A - (A — A7) - _Biftj A

(= ) AT BT AL+ (= Agnsy) - A

Ai

= oy = A A= ) A BLT B,

. A1
".AS.A”Z*J.AZH_%.A;.A

i

k=2

s+2+] n
k=1-j A

s+2+) Bl

k+1

_Bs+2+j. + Bs+2+j

k—1—j

s+2+j 1

k=2—j " B2
n

k-2- j) AL
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Aj—1-j— A ,
+ 2 T (AL +AD) A;ijij AN

Ao — A ; .
-1-j k - S+2+j 1 - 5+3+) n
., A AL Bropt (e — A - Ay - B LT - Ay

= (- — ) - Ay - B,iij CAL L+ (Agrre — ) - {Ll : _ijij + L - B,:;tj}

A s j
+;k(/lk = Ak—1-j) - Ay - Bkiitj ’ B/1+2

B 1 s . s . i
H(Aem1-j = ) - Ay (; AT Bkjt;) A

Ap—1-j— A
+k1] k

n ) (Asfl ) Z+1 - Ay Bllc+2) ) Al:titj - (/lkflfj — A - Ay Bléct;t]/ ’ AZH

= (D= A AT BT AL = (G — A - AL B AL

F(Ags14j — ) - {51 : _B,Sj: + Ly Biiij}

1 K j K j
+(Agr-j = A - {; Ly AT - Ly Bkiiij} :

S+2+]

Notice for this step, we have an extra term (A;—; — A) - A[ - B P A7, and we

need to borrow a term (Aj_j—j — Ax) - A - B,i;ij - A}, | from the next step of calculation.

The borrowed term is needed for the identity

S+2+j s+3+) _ myst2+]
Ak—2—j Bk—2—j - Bk—2—j‘

Since there are no more terms to borrow from for the last step, we need to treat
those two cases separately.

Before further calculation, recall that for the first case when k — s 1s odd, and we



_ k=s=3
setv = —

(A1 =) - BT+

+ : +

AS : + (/Lv+1+v - /?'k) ' _Bl]:%::i +
+% : ((/1x+1 — ) B 4+
+ Al (A1 =) - BT+
- + : +
+ (/ls+1+v - /lk) : _BI]:%:: +

For the end point,

Lo (et — ) - A

1
n

((/lk - /15+1) : Blbci% +--- (/lk—v - /ls+1+v) : Bk_l_v) : An

k=2

. n
k+1

r e (Aeioy = )

: (/Lv+l+v - /1](—1—1/)) ' B]er

k—1-v k+1

Lo (e — ) - A
: ’ BIlc+2

L Qs = )

grrar = A - Ay BT Ay + (Uey = Agnrt) - Ay - BT - A

kel e Agiiey — Adkci—y
~(Assrey = ) - A - Bi—%—v ’ B11c+2 + gk . % ’ B11c+2
A1y — Ak n A1y — A,
— Ay Ay T -A7 By,

= (o — W) - A BT - AL

FAssrar = ) - (Asr - ALy — AT -BL,) - "B

/lx+1+v -
+
n

+/11<—1—v — Ay
n

= (o — W) - A B2 - AL

A A
u '(_k'AS'BIIﬁZ_A;'AZH)

n

n - - n /lk
) ((As—l ’ Ak+1 —A;- Bllc+2) + (As ’ Ak+1 - ; A BI]<+2))

29
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e, 1 ety — A
+(Ayrray — ) - {Ll BRI 4 ~ Lz} ¢ A L - L)

n

For the second case where k — s is even, and v = ==, we have

A1 =) - B+ L - ) - AL

k=2
+ : 4 :
+ Aoy = A TBIEY L (e — A AT A
A -

e — )

+% ’ ((/lSH = A1) - BI:% +ot Ay — Asy) - Biﬂj) ) B11c+2

((/lk — Agi1) Biﬁ +eee 4 % (e — /1S+1+V)) AP
(g1 = A - _B/S;ﬁ + % (g1 = ) - A/i%

| + Q=) BE + Lo, - AR B,

+ % ' (/ls+l+v - /lk)

Bear in mind that A, ., = A4_1_,. The last term becomes

/lk—l—v - /lk /lk—v - /ls+l+v - /lk—l—v - /lk - 1
et S N O o e 2 L P N e A Y Sl -
n k+1 n s k+1 n s k+2
Doy — A Doty — A
- u.A;.AZ+I+M.LI,
n n

With our previous adopted notation, the calculation results in the identity of the
lemma. |

From the previous lemma, we can see that to show M(s + 1, k) — ﬁ(s +1,k) >0,
it is enough to show that

- . s+2+4) . s+2+j - S+2+j . s+2+j
p Ly Ak—Z—j Lo Bk—Z—j >0, and L, Bk—l—j + L, Bk—2—j > 0.
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It is worth pointing out that the latter is considerably easier, so we will proceed
with the first inequality. To that end, we will first need to break down the expression of

L and 05.
Lemma 12.

Ly = Ay 'AZH - A_ 'Bllc+2

k1 — Ay _
= o A Bllc+2+AS 2° Ak+2 As—l'Bllc+3

n
u
/lk+1+l As-1
= Z Ao Bk+2+l+'c,u+1
1=0

where yu = min{s — 1,n — k — 2}, and

n
Ll _ Ak+s+l’ H
pu+l =

=s—-1,
A i /J:n_k_2~

Proof. We have the following recursive relation.

Asr- Ak+1 A_ ’ Bllc+2
Ay (Bl gl oA LA +A ) B
=117, k2 T 0| — Pl T A ) B

/lk 1 _/ls n
= A B, (AL AL AL, AL (Ak+2+Bk+3)

n
/lk+1 - /ls 1
— n - 1
— T 'AS_] 'Bk+2 +AS_2.A]{+2_AS—1 ']Bk+3.

For the end points, first setu = s — 1,

A - Ak+s A Bl£+s+]
/lk+s /ll An

_ CTkts M ol
- n Bk+s+1 k+s+1°

For the second case, setk+u+1=n-1,

Aspr - An = A, 'B:l

/ln—l - /ls—,u A
n

/ln—l - /ls—n+k+2

= " : As—n+k+l + As—n+k-

s—1—-u + As—Z—y

Note: With our assumption, £; > 0. O



Lemma 13.

=Ly = A 'AZH - ; 'AS'B}(+2
A1 — A _ 4 As — Ak
_ A -B A, A
n s k+2 . 1 k+2
_ " Ak
+AL A - W Ay B11<+3

U
Dewtor — A T "
- ) (M AL Bl + T A Ak+2+z) + L,

u+1

where u = min{s — 1,n — k — 2}, and

—%-Bl u=s-1,

k+s+2°
’6;24+1 =
As_—n+k’ /'t_n_k_z
Proof.
o
AS ‘Ak+1 - ; 'AS 'B/1’+2
— /lk 1 n /lk -
= AS . (T+ 'Bli+2 + Ak+2) - ; : (As + As—l) ’ Bllc+2
A = A - no_ ”
= +T . AS . Bli+2 + (; . As—l + As—l) . Ak+2 - ; ' As—l (Ak+2 + B/1<+3)

k1 — A Ay — A4
- M'A_'B;l+z+7k'As—1'AZ+z

For the end points, the first case is clear because A; = 0.

For the second case, setk+ 1+u=n—-1l,oru=n—-k—-2

A

- n

As—y ’ An—l - 7 ’ AS—M
/ln—l - /lk _ /13—;1 - /lk -

= TR AL TS A Ay,
Aot — A, As—nrke2 _

= T ’ As—n+k+2 A ik As—n+k'

By combining the two previous lemmas, we obtain



Lemma 14.

1 o o
—'L _A3++]._L 'BA++].
n I . 2" Pr-2—j
u
_ l /1k+1+l /1k A B . AS+2+j
- n k+2+1 k—2—j
=0
M
Arr1er — Ak ey
J
+ " AL By B
=0
M
Ak = A 1 s+2+) j
- j n S+2+]
+ Z — As—l—l By A = By B
=0
s+2+j s+2+)
L,u+1 Ak 2—j +'£‘,u+1 Bk+2+j'
Lemma 15.
1 . .
S+2+j n S+2+j
n Bk+2+z Al i k24 B j
_ Asi24j = Aks24i . B! B 4 2. Bl DA pn Al
- n k+3+1 k=2—j k+3+1 k—2—j k+3+1 k—2—j
mj(l) 1
_ s+2+}+t k+2+1+t s34 )+t
= Broaii - B, 50+ M,
=0
where mj(l) = min{fk — s —4 -2j,n—k -2 -1}, and
Ip1 D=k—-—s—4-27
an+4+1+m_,(z)’ mil) =k—-s—-4-12j,
Mm_,~(l)+l =
s+3+ j+m () _
_Bk—Z—j , mi(D)=n—-k-2-1

Proof. First, we prove the following recursive relation:

1 . .
S+2+j n S+2+)
r_l B1<+2+z Ak_z_ i k+2+l’Bk_z_j
1 . .
+2+ +2+
= - Z+2+l ’ Ali—z—]' - Z+2+l ) Alsc—z—j'
n I n J
1 : .
s+2+j n s+3+j
Bk+3+l Ak—Z—j T 24l Bk—Z—j
_ /1S+2+j — Ak+2+1 B Bs+3+J 1 B As+3+j N . Bs+3+j
= k+3+1 " Pk-2—j k3+1 " - k34 Pr—2—j

n
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In other words, we have

1 .
S+2+j+t S+2+ j+t
Bk+2+l+t Ak 2—j _Ak+2+l+t Bk—z—j
_ /1s+2+]+t _/lk+2+l+t B Bs+3+j+z
- k+3+1+t k=2—j
n
1 . .
1 S+3+j+t n S+3+ j+t
o Brsei A0~ A B

Next, we will deal with end points where the recursion ends.
The first case iswhen s + 2+ j+m(l) =k—-2—jorm;(l) =k—s—4-2j. Itis
important to note that we can safely assume k — s — 4 — 2j > 0, otherwise both the term

AR and Bf{jﬁ?ﬂ will vanish. Recall that in our notation

k=2—j
k=1-j _ k—1-j 1
Ak_z_J— 1, and Bk—Z—j_;l'
We have
L pp L
k3 tlemil) ket 3+1+m () = k+d++m (1)

Otherwise, have k+2+1+myl) =nor mj(l) =n—k—1[-2. In this case, we
have B! = A" = 1, and the remainder term is

s+2+ j+mj(l) s+2+j+m(l) s+3+ j+m ()
Ak—Z— j - Bk—Z— j - _Bk—2— j

O
Remark 8. Here, we use the notation m(l) to emphasize the fact that it depends on both

[ and j. For each step of calculation, j is fixed, but | varies from O to u. Moreover, it is

obvious that mj(u) < --- < m;(0).
Again, we will combine the two previous lemmas, to express

1 s+2+j j
- j S+2+]
Ly A — Ly By

1 [< /lk+1+l Ak 42+ S e — A '
— J +1+/ k S43+]
n Z A By AL T AL By B

k—2—j
=0 n
@ mj(l)
/lk /15+2+ i — A
J+t k+2+1+t S3+ )+t
+ As -1 § Bk+3+l+t By i +Mmj(l>+1
n
=0 t=0
1 s+2+j j
j S+2+J
L#H AL i +LIJ+l k2

(3.8)
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. . 1 s+2+j s+2+j -
Before we move on, we will deal with =L, - A;" + L2 - B">"™ in the case
n o H —2-j H k=2—-j

when u =s— 1.

Lemma 16.
l AN _As+2+j _ ﬂ . Bl _Bs+2+j
n k+s+1 k—2—j n k+s5+2 k=2—j
mj(s—1)
_ I Apesirer — A Bl ASTEH Ass2sjrr = Ak n B3I
= S o S R 2 VT PP - P S
J J
n n : n
=0
+m(s)s
where
1 s+3+ j+m;(s) _
"Ak—z—j , mi(s)=n—k—s-2,
3mj(S) = 1 Akrst2em =4k Bl
T a0 Pts .
n ]n +s5+3+m;(s) , m,(s) — k — 5= 4 _ 2]
_— n ’
+n Ak+s+3+mj(s)

Proof. As usual, we begin with a recursive relation,

o . ASTE A B! . .BH
n k+s+1 k—2—j n k+s+2 k—2—j
1 /lk+s+l j % 1 i j
_ 1 n S+2+) k 1 S+2+] s+3+)
= ; . ( . »Bk+s+2 + Ak+s+2) : Ak—Z—j - ; ‘Bk+s+2 ’ ; 'Ak—z—j + IB3k—2—j
_ l /lk+s+1 - /lk B] As+2+j
n n k+s+2 k—2—j
Ay 1 AR :
n s+2+] s+3+j s+3+) k n 1 s+3+]
+Ak+s+2 . (—l’l : Bk—Z—j + ;l : Ak—Z—j - ; ’ ts+2 T Bk+s+3 ’ Bk—2—j
o A — A Bl LA Asvarj = A&, BT
= " —n k+s+2 k—2—j n k+5+2 k—2—j
1 A j
n s+3+) k 1 s+3+)
+Z LY SN Ak—Z—j - ; Brisis - Bk—2—j'

For the end points, we have eitherk+ s+ 1+t=n—1lors+2+ j+t=k—-2—-j.
Thus, we have eithert =n—k—s—2ork—s—4-2j. Notice, this is m;(/) when [ = s.

If t = n — k — 5 — 2, the result is clear since we have A? = 1 and B! | = 0.

k-1-j k-1-j
For the second case, Ak_z_j. =1 and Bk_z_j. = 1. We have

l LA — l . ﬂ . B!

n k+s+2+m(s) n o n k+s+3+m(s)

1 /1k+s+2+m_,-(s) - /lk Bl " n

n n k+s+3+mj(s) n k+s+3+m(s)*
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O

By Wl‘itil’lg /ls+2+j+t — Apsoger = As+2+j+t — A + Ay — Aks24040, WE CaAN Split the last
sum of equation (3.8) into two parts.

m(l)

M
Ak — Asy A /ls+2+j+t — Ak 24141 Bl BS+3+J+, M
t 11 k+3+l+r ~ P2 + mj(l)+1
=0 n =0 n

u mi(l)
/lk - v+2+j+t - /lk A B Bs+3+j+t
n s=1=1 " Ly34 /41 k-2—j
=0 =0
u m(l)
+ /lk /lk - /lk+2+l+t B . BA+3+]+I‘ +M
Agig- T Tk P mj(h+1
=0 t=0

With our assumption, the first sum is positive and the second sum is negative, so
our remaining job is to show that it is smaller than the first two sums of equation (3.8).

First, observe that for various / and ¢ such that [ + ¢t = wy, for some constant wy,

. . Y T Ve VI $34 )4t
their corresponding terms — . cAgi - Biss - B have the
n n e
A = Ao
common term ————— . B, 1o Thus, we set r = 7, and let r varies from 0 to wy,

n
and let wy varies from O to u + m;(0). We can relabel

u mi(l)
A — Ay A . Ak = Aps21141 B! B M
e T Dkl P mj)+1
=0 t=0

p+m;(0)+1 wo

. Z Leowr g Mwo),

wo=0 r=0
where
A= de2ewy ol . Bs+3+j+r rs mJ(WO —r)
n k+3+wo k—-2—j
and wy—r <y,
r=m;wy—r)+1
J
M, (wo) = Mmj(l)ﬂ,
and wy—r <y,
r>mijwy—r)+1
0,
or wy—r>pu.
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- /1s—wo+r DA

wo /l
k .
For each wy and Z s—1-wo+r - M (Wp), we pick two terms, from
n
r=0

. I Aps2swy — Ak ;
the first and second sum of equation (3.8), — - ———~—=.B] , oy Ao A,t?_'j and
n n

pl -4 ‘
Akt2two = 2k i A ]Bf:;fj to show that

n k+3+wq s—wo+1

Aes24wy =k B]

(1. L AST24] - RSt
n k+3+wo (n AS_I_WO Ak—Z—j+As—l—wo Bk—2—j

/l _/lvfw r
+ ZWO = As—l—w0+r : j\/[:r("vO) > 0.

r=0 n

To do that, we need the next lemma.

Lemma 17.

s+2+j - s+3+j
: As—wo—l : Ak—Z—j + As—wo—l ' Bk—Z—j

~ I =

s+2+) 7 /lS—WO s+3+j 1 s+3+j - s+d+j
— Ayt Bk_z_j + p Ay, -Ak_z_j +AL, ~Bk_2_j
¢

/ls+2+ i — A i
_ J+r S—wo+r s+3+j+r
- E n ! As—w0—1+r : Bk—Z—j + W§+l’

r=0

where { = min{wy, k —4 — s — 2]}, and

1 s+3+j+wo _ S+4+ j+wg _
p A AL HACBIL T, L= wo,

W§+1:
LA i (=k—-5-4-2]

n

Proof.

1 . .
S+2+j - s+2+j
; : As—wo—l : Ak_z_j + Ax—wo—l ' Bk—2—j

_ /ls+2+j - /ls—wo A Bs+3+j " /lS_WO A BS+3+1

— -_— o _1 . A o _1 . A
n S=wo k=2-j n S=Wo k=2—j
1

s+3+j - s+3+j
+; A - -Ak_z_j +AL 1 ~Bk_2_j

Agpo4j— A i 1 . :
B s j s=wo e A L AST3H) - RS+
= —n Ay -1 Bk—Z—j + n Ay Ak_z_j + As—wo Bk—2—j

Asi24j— A ] /
_ J s—Wwo s+3+) s+3+]
= - AS—W()—I : Bk—z—j + ;AS—WO_I ' Ak—Z—j

n
1 s+3+j i
_ 2 Jj s+4+j
+A, (nAk—Z— it B
/ls+2+ = A j 1 i /
_ Jj s—wo LRSIt L AST3H) - L RSTA
= —n As—wo—l Bk—2—j + " As—wo Ak_z_j + AS—W() Bk—Z—j'
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Here, the recursion ends either when s —wy+{ =sors+2+ j+{=k—-2—j.

In the first case, we have the tail term being

/1s+2+j+wo - /ls s+3+j+wo

1 . |
. As—l . Bk—z—j + — . As . AS+3+J+W0 + A .BS+4+1+W0.
n n

k-2—j s Pr-2-j

i1 _
In the latter case, we can use the fact that Bi_;_; = — and Blg_é_j = 0 to conclude
n

. 1
the tail term is — - A, 4. O
n
We are now ready to show

Lemma 18.

1 oy Y
;-Ll-Azigt{,—Lz-B;jijzo. (3.9)

Proof. First, notice that > wy. Second, with our assumption, A2+ . > A forall r = 0

to wo. Thus, in the case when wy < u and r < m;(wy — r), Lemma 17 gives us

Ak24wy — Ak 1 j j
0 1 s+2+j - s+3+]
T Breaew (5 Ao A Ao B

wo

n /lk - /ls—w0+r . /lk - /lk+2+w0 A . Bl . Bs+3+j+r
s—1-wo+r k+3+wo k=2—j
n n
r=0
Pl A S A -

_ k+2+wy — Ak 1 S+2+j+r STWOTT A BS+3+1+V W
- —n C Pk+34wg n C B s—wo—1+r " k=2—j + {+1

r=0

wo
N Z Ak = Asmwgrr - Ak — Akr24m

1 s+3+j+r
: As—l—w0+r B ‘B > 0.
n n

k+3+wo k-2—j
r=0

We need to pay special attention to the case when u = s — 1, and wy > u. In such
case, we have s —wo— 1 +r =0, and Ay = 1, so the term

wo
/lk - /ls—w r
Z Ly As—l—wo+r . Mr(WO)’

n
r=wo—s+1

cannot be dealt with as before. Instead, we will need to borrow the term

1 . /lk+s+1+t - /lk 'Bl . As+2+j+t
Z n kts+2+t "~ Fp—s—j
from the decomposition of
n As+2+j /lk B 1 Bs+z+j
n By SRR By S, N n " Phts+2 " Pro2-j
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as stated in Lemma 16. By picking a 7 such that t = wy—s+ 1, which implies k+s+1+¢ =

k + 2 + wy, the above term becomes

1 /1k+2+wo - /l AWO+3+j

- " B . i
n n k+3+wo k—2—j

We can modify the previous lemma by relabel the recursive relation as:

1
—-A,- A+ A B!
n
Ai = Agiy i 1 i - i
= Tq~Aq-Bh”+Z-Aq+1-Ah”+Aq-Bh+2.

By settingg =0andi = s+ 2 + j+ ¢, we have

B
1 —
- w0+3+J E Awgs3+jra = Aari W0+4+j+a
a=0

In this setting, 8 = min{s — 1,k —wy—6—2j}, and Wp, remains the same except
for the change on the index.

For the case r < m;j(wy — r) and w, > u, we have

wo

1 /lk+2+w - /l P /l - /1 —
0 wo+3+j k S—wo+r
Z ’ n Bk+3+wo ’ Ak—2—j + Z n ’ As—l—Wo+V - M, (wo)
r=wo—s+1
1 2 -2 B Apsssiva — A
_ k+2+wq k 1 wo+3+j+a a+1 A BW0+4+j+a W
= T Pk n TBa By, 0+ W
a=0
2wo—s+1
/lk - /1a+1 ) /1k - /lk+2+w0 A B . BW0+4+1+Q > 0.
n n k+3+wg k—-2— j
a=0
The rest of the cases are clear, and we have the desire result. O

Next, we will show that

s+2+j S+2+j
L Bklj+'52 Bk2]>0

We will need the following Lemma.

Lemma 19.

- S+2+] S+2+j
Ap- B A B, 20, for 1<qg<s.
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Proof. First, we have the recursive relation:

—ms+2+] s+2+]
Agr BT - A B

k—1—j
_ Aq_l . (/lk;ll—j . B;:i?—j _B?—?—j) (% . Aq—l + A;—l) . B;i;tj
= DT B (A4 Ag) B

~4 - (B + BT
= —ﬂk‘l"i_ Y g, B AL B AL B

For the end point, if ¢ = 1, we have

_BS+2+j _ ﬂ . BS+2+j _ /lk_l_j_t -4 . Bs+2+j n BS+2+]
k=1=j=t = k=2—j-t — n k—2—j~t k=2—j-t’
Iftk—1-j—-t=s5+2+ j, wehave
— 2 1 — 1 /ls+2+ A 1
Agor B:Q:] A s AL Ay + = A
J n n n

Forl < g < s,andftfrom0Otok—s—3—2j, we have A, < A4_1_j—,. Thus we

have the result of the lemma. O

Lemma 20.

2 2
Ly Bli+l+j + L, - Bs+ +] > 0.

Proof. Recall that for u = min{s — 1,n — k — 2},

n — o Aml — o _
Ak+r+1’ H=S 1 2 _ Bk+s+2’ H=S 1
Lﬂ+1 = , and Lo =
A ik, H=n—-k-2 -AT o H=n—k-=2
we have
s+2+) S+2+j
L1 - Bk 1] + Ly - Bk—Z—j
5 Aevrar —
+1+ s+2+j
Z Ay B k+2+1 +'£/1+1 Bk—l—j
1=0
- Ak = Axr /1k+1+1 _ Ak — As— s+24)
+ Z AT Blaoy + — Asi Aoy L,m By
1=0
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Now, we match the term

Akp141 — As—i A=A /

— 1 —S+2+] k k+1+1 - 1 S+2+)
T . As_l—l : Bk+2+l ' Bk—l—j + n ’ As—l ' Bk+s+l ) Bk—2—j
Ak — As—

_ 1 — s+2+1
- TAs—l—l'Bmzu' Bk—l—l

/lk+l+l - /lk i j
1 - S+2+j — s+2+j
+ ) “Biiaw - (As—l—l B AL B )

By setting g = s — [ for the previous Lemma, we have

— SH2+) — S+2+j
A BT - AL BT 20,

FOI'LI _Bs+2+j _ Lz BS+2+]:

prl © Bl w1 - By 5 ) in the case when u = s — 1, there is nothing

- 1
to prove. For the case whenu =n -k -2, weset £ ., = A" |

+ A_,14-1- By setting

q = s—n+k—1, (recall from our calculation in Lemma 12, in such case, s—n+k+1 < s)

we have
— S+2+] — s+2+]
AS—I’!‘Fk—l * Bk—l—j - As—n+k * Bk—z—j 2 0.
O
With the above step, we conclude our proof that
M(s + 1,k) = M(s + 1, k).
Clearly, by iterating such rearrangements, we can conclude
Theorem 6. For A, -- , A, strictly postive, and A3, --- , A’ | its increasing rearrange-
ment, and x; = i/n, a Brownian motion on [0, 1), reflected at 0 and absorbed at 1,
satisfies
n-1 n—1
E° |exp {— Z a,-g,-} < E°|exp {— Z a;gl}] . where, &=L} (3.10)
i=0 i=0

We can now conclude our main result by applying the occupation time formula.

Theorem 7. Given k(x) > 0 is continuous on the interval [0, 1], let k* be its unique
right continuous non-decreasing rearrangement. Let B be a Brownian motion on [0, 1)

reflected at O and absorbed at 1. Then

T Ty
E° [exp {— f k(Bt)dt}] <E° [exp {— f k*(B,)dtH . (3.11)
0 0
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Proof. Recall the occupation time formula for Brownian motion:

T 1
f k(B,)dt = f k()7 dx.
0 0

We have also shown earlier that /7. is jointly continuous. Thus, by a Reimann

sum approximation we have:

T 1 n—1
k(B)dt = lim — ) k(x)L; a.s.
‘f(; ! n—oo N ; T

where x; = i/n.

Likewise, we have,

T\ 1 n—1 .
j; K(B)dr = lim ~ ZO: k() as.

If we set A; = k(x;)/n, and apply inequality (3.10) to get

exp{ Z/ll } exp{—gﬂfl’}"l}].

n—1
exp {— > /l,-l;"l} <1 as. (3.12)
i=0

Dominated convergence theorem will now allows us to pass to the limit to obtain in-

Clearly,

equality (3.11). O

Remark 9. One might ask whether our rearrangement result will hold for a broader set
of diffusion processes. Here, we propose a simple extension to our result.
For a diffusion process {X;}=o with drift u(x) = 0 and o*(x) > € > 0 for all

x € [0, 1], the decreasing right boundary condition of the Green function is:

1
g200) = f exp{— f' = 2(")}d§
x o*(n) (3.13)

=1-x,

Thus, without any modification to our proof, we retain the same rearrangement

inequality for such diffusion process.
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However, recall from the previous chapter, the speed measure is no longer iden-

tically 1, but instead becomes

2
m(dx) = UZ—(x)dx' (3.14)

The occupation time formula says

Ty 1
f k(X)dt = f k(x)l7, m(dx). (3.15)
0 0
The Riemann-sum approximation is:
1R 2-k) (T
lim ~ ; o fo KX)dt  a.s. (3.16)
. 2k(x;)
If we keep the same set up, we will have A; = T) However, we cannot have
o“(X;
. [2kG) ) )
;= % because 2|0 (x;) is part of the speed measure, and its position is fixed.

Thus, for a diffusion process X with infinitesimal generator o(x) > 0 for all

x €10, 1] and u = 1, we still have the local time rearrangement inequality

Ao Eollepol £

but it will not translate into the rearrangement inequality

T Ty
E° [exp {— f k(Xt)dt}] <E° [exp {— f k*(x,)dt}] ,
0 0

without some restriction on o(x). We have not explored such possibilities further.

Remark 10. Our method of rearranging the entries is motivated by that of Essén. It is
worth pointing out that some of the simpler rearrangement schemes will not work in our
context. For example, the “bubble sort” method of switching the order of two adjacent
entries by moving the smaller entry to the front will not work.

To find a counter example, we can take advantage of the identity we have from Lemma
11. Letk = s+ 2 and M*(s + 1,5 + 2) denotes the determinant resulting from the

rearrangement. We have

Aoy — A,
M(s+1,5+2) - M(s+1,s+2)= %2 o (3.17)

n
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Recall from the expression of £, the sufficient condition for £; > 0is A; < A;
foralli < sand j > s+ 1. Thus, it is easy to come up with a counter example. The

reader can check that
/11 = 10, /12 = 4, /13 = 2, /14 = 1, and /l5 =0.

Then,
M(2,3) < M*(2,3).

Even if we keep the set up same as before, but swap just the position of Ay

and Ay, and keep the position of Ay, through A;_; unchanged, such method won’t work

either. We let
=1, 2=10, A3=1000, A4 =2, As=1, and A¢=1.
Here, we switch the position of A, and As, and after the rearrangement, we have
=1 A=1A;=1000, A,=2, A;=10, and ;=1

Let M(2,5) be the determinant of the original matrix, and M*(2,5) be the deter-

minant of the matrix after the rearrangement. The reader can check
M(2,5) < M*(2,5).

Chapter 3 is based on the paper “A Local Time Inequality for Reflecting Brown-
ian Motion” written jointly with Patrick Fitzsimmons, which is currently in preparation.

The dissertation author is the primary author of this work.



Chapter 4

Alternative Proof of the
Rearrangement Inequality and its

Probabilistic Interpretation

In this chapter, we will present two Feynman-Kac identities, and use them to

give an alternative proof of the rearrangement inequality of last chapter

T Ty
E° [exp {— f k(Bs)ds}] <E° [exp {— f k*(Bs)ds}] . 4.1)
0 0

Many of our calculations came from Essén’s proof, and we will keep our no-
tation conistent with his paper [4]. However, such approach allows us to draw several
interesting conclusions from the rearrangement result.

We begin with the statement of Essén’s result:

Theorem 8. Let p : [—00,0] — [0, 00) be a lower semi-continuous, piece-wise constant
function such that the range of p is finite. Assume that there exists a solution ®© of the
inequality

@"'(1) — p(£)*D(r) > 0, —00 <t <0,

such that ®(0) = 1, and lim,_,_,, D(t) exists.
Let ty be given, ty < 0. If inf, p(¢) > O, there exists a non-negative solution ®* of

the equation
(1) — (P (D (1) = 0,

45
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such that ®*(0) = 1, ®*(—o0) = 0 and
D(ty) < O (to).

Here, p* is the measure preserving, non-decreasing rearrangement of p on [ty, 0]

and p*(t) = inf p(s) for t < t,.

Remark 11. Since p is a piecewise function, @ needs not be continuous. In the case

when p is discontinuous at x = a, we define

D" (a) = lim D" (x).

4.1 Feynman-Kac Equation

The process {B;};>o is a Brownian motion on [0, 1) with a reflecting boundary at

0, and an absorbing boundary at 1. Proposition 5 of Appendix C says that

Ty
o(x) =E* [exp {— f k(Bs)ds}] ,
0
1

5¢”=k90, and ¢(1)=1, ¢'(0)=0.

By setting k to be a positive piecewise constant function, ¢ satisfies the condition

satisfies

of Essén’s result after appropriate shifting. Thus, Essén’s result gives a probabilistic

interpretation as:

Theorem 9. Let {B,},-9 be a Brownian motion on [0, 1) with a reflecting boundary at 0,
and a absorbing boundary at 1. k is a positive piecewise constant function and k* is its

non-decreasing rearrangement. We have

T T
E° [exp {— f k(BS)ds}] <E° [exp {— f k*(Bs)ds}] . (4.2)
0 0

Remark 12. Inequality (4.2) does not hold if the starting point O is replaced by an
arbitrary x € [0, 1]. For a simple-counter example, we can set k(x) = 1[0’%], so k*(x) =

1[%’1]. We can see from the graph that ¢(0.8) > ¢*(0.8).
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094

0.8+

0.6+

Figure 4.1: Example of ¢(x) vs ¢*(x)

To examine Essén’s proof more closely, we need a scheme that will allow us to
break the process {B,};>o on the interval [0, 1] into four conditionally independ processes
on segments: [0, Ay), [A1, A1 +24), [A+ A, D), and [A, 1], where A = A+ A+ A,. We use
the fact that a Brownian motion can be split into two independent reflecting processes
via the method of time change. It results in the theorem given next. We will give a short
proof using Proposition 5 and Proposition 6. In the next section, we will discuss the

method of time change in more detail, and give an alternative proof of the theorem.

Theorem 10. Let k be a positive integrable function on [0, 1], and for 0 < a < 1, define
ki = klyq and k, = kl,,). Let {B,};>0 be a Brownian motion on [0, 1) reflected at 0 and
absorbed at 1. {Bgl)},zo is a Brownian motion on |a, 1) reflected at a and absorbed at 1.

Define

] T,
©(x) E* |exp {— (k1(By) + kz(BS))ds}] , for xel0,1].
| 0

- T,
o1(x) = B exp{—f kl(BS)ds}], for xe€[0,al.
I 0

- /
¢ (x) = E exp{—go;(a)l%— f k2(3§1>)ds}], for xela,1].
| 0
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Then for x € [0, a)

Ty
E* [GXP {— (ki (By) + kZ(BS))dS}]
0

- n (4.3)
=E* [exp {— f kl(BS)ds}]-E“ [exp {—(p'](a)l‘}l —~ f kz(Bg“)ds}].
0 0
Proof. Let
o)
N0 = o

Then, ¥, satisfies the initial condition

Y1(0) =1, ¢1(0)=0.

Since 1(a)
— = 1 = (pl a
ei(@)=1, ¢i(a) = 210) and yi(a) = @1(0)’
Define
__»®
Yo(x) = ©1(0)px(a)’

Then, ¥, satisfies the initial condition:

1
Yo(a) = 20) = ¢(a),
Proposition 6 says that ¢/ (a) = ¢}(a)¢2(a). Thus
pa i@ _ Vi@,
©1(0)¢p2(a)  ¢1(0)
Note that y1(a) = ¢2(a), and ¥/ (a) = ¥)(a). Thus, Y(x) = Y1l + Y2lian, 1S
continuously differentiable, and ¢ satisfies

Wila) =

Lﬁ" _ { kyy, for xe€l0,a) L w0y =1, W(0)=0.

2 ky for xela,1]

The uniqueness part of Proposition 6 implies that ¢(x) = S = W) , and for
Y(l)  yYo(l)
x€[0,a)

Y ()

Ua(1) — ya(l)

i a® @i (0)a(a)
@O @i(0) (1)
e1(x)pa(a).

p(x) =
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4.2 Method of Time Change and Knight’s Theorem

We can split a Brownian motion B on [0, 1] into two process B! (resp. B?) on

[0, a] (resp. [a, 1]) for some O < a < 1 via the method of time change:

I(# = meas{f0<s<t: B;e[0,a]},

s1(7) inf{s >0: TI(s)>7},

1
B. = Byq.

Likewise, we define B? the same way.
Then {Bl};»o C [0,a] and {B?};»o C [a,1]. Next, with the theorem by F. B.
Knight, we can show that on the shifted filtrations, (B!, F;,)) and (B2, F,,«)) are inde-

pendent.

Theorem 11. (E.B. Knight) Let M = {M, = (M!,M?,--- ,M?), F,,0 <t < o)} be a
continuous, adapted process such that the M'’s are continuous local martingales with

lim,_,co{M"), = oo P-a.s., and
(M MY, =0; 1<i#j<d, 0<t<oo.
Define
Ti(s) Zinf{t > 0: (M), >s); 0<s<oo, 1<i<d,

so that for each i and s, the random time T;(s) is a stopping time for the (right-continuous)

filtration {F,}. Then the processes
Bis:MiT,-(s); 0<s<oo, 1<i<d,

are independent, standard, one-dimensional Brownian motions.

Lemma 21. (B, F,, ) and (B2, F,«x)) are independent P* a.s.

Proof. Let[y(f) = I° — I and (1) = I! — [°.

Let s; and s; be the right continuous inverses of I'; and I'; respectively.



We define I' and /2 as follow:

') = L(s1(7)
! !
= max fl[O,a](Bv)dBv_ min fl[O,a](Bv)dBv
0 0

0<t<s1(1) 0<t<s1(1)
s1(1) s1(1)
= 051’11"11%?));7]; l[O,a](Bv)dBv - OSIII}LI)ISTJ(; 1[O,a](Bv)dBv
s1(0) s1(0)
= maxf I[Q’a](BV)dBV - mlnf I[O,a](Bv)dBv-
o<i<t J, o<i<t Jo

Likewise,

P(r) = hL(s1)
s2(0) s2(1)
= maxf l[a’l](B,,)dBv—minf l[a,l](Bv)dBv~
0 0<izz Jo

0<I<u

Then P* almost surely, we have:

! ! !
<f 1[O,a](Bs)staf1[a,l](Bs)st> = fl{a}(Bs)ds
0 0 0
1
= fl{a}(x)lfdx
0

= 0.

$1(7)
By the Knight’s theorem, we have { f I[O,Q](Bs)st} independent of
0 >0

52(7)
{f 1[a,1](Bs)st} P* as.
0 >0

Consequently, we have [! independent of /> P* -a.s. as well.

By the Skorohod representation, we can rewrite B' and B as follow:

51(7) s1(0)
BI(T) = j(: 1[0,a](Bs)st+gr<llEL§jO\ 1[O,a](Bv)dBv

s1(0)
— min f l[o’a](Bv)dBv.
0

O<i<t

and

5 s2(0) s2(1)
B (T) = vf(; 1[a,1](Bs)st + g;lagéﬁ l[a,l](Bv)dBv

s2(1)
— min f l[a,l](Bv)dBv-
0

0<i<t

Hence, B! and B? are independent P* a.s.

50
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For the next lemma, we will use the same notation for B! and B>.

Lemma 22. Let T be a stopping time of 52(t) = Fy,). Define & := 17, where Ty =

inf(r >0: BX) = 1}and T} = influ>0:0

B! (t) = Bi(t A Té}) and EZ(T) = B*(t A'T)) are independent.

> &), Then given &, the processes

Proof. When € is given, Tg is a stopping time of the filtration of G,(7) = Ty, ). Since

B, and B, are independent, B! and B? are as well. O

Lemma 23. Let Ty = inf{s > 0 : I? > &}, where & is a positive constant. Then
E'le™] = p(x) exp{~¢ - ¢' (D).
Proof. By equation (B.6), and taking expectations on both side, we have:
Te
E'[¢(Br,)e "] = p(x) ~ E* [ f e—stﬂ;] ¢'(b).
0

Notice that ¢(Br,) = ¢(b) = 1. Thus the left hand side becomes E*[e "],
By making the substitution u(s) = 2, we get s = inf{t > 0 : I’ > u} = T,,. With

Fubini, the expectation on the right becomes,

Te
E* [ f e sdl’;]: f E*[e % ]dpu.
0 0

If we define a function of & as f(£) = E*[e "], we have the following equation:

f(©) = ¢(x) — ¢'(b) jjf(u)dy.

Clearly, f(0) = ¢(x), and we also have the differential equation

& =-¢B)f ().

By solving the differential equation with initial condition, we get

(&) =E e ] = p(x)e#¢ @,

We are now ready to give an alternative proof for Theorem 10.
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Proof. By Knight’s Theorem, (B!, &) and (B2, F,,)) are independent.
We setn = %lg(Tl), where T = inf{r > 0 : Bﬁ = 1} C Fy,r), and [5(2) refers to
the local time of B? at point a up to time t. T, =inf{r > 0: [{(t) > n}, where [{(¢?) is

the local time of B! at point a up to time 7. Then, first by Lemma 22 and next by Lemma

i -
E*|exp {—f (ki(By) + k2(Bs))ds}]
L 0

- T, T
E*|E* [exp{—f kl(le)dsl} U] B [GXP{—f kZ(Bsz)dSZ}
i 0 0

: T1
E*|¢1(0)E [eXp{—w’l(X)l‘%,]— fo kz(BSZ)dSz} 77”

T
o1(x)E* [exp {—go’l(x)l”}1 - f kg(Bs)ds}].
0

23, we get

|

4.3 Set-Up and Preliminary

We will concentrate on the inductive step of the proof. To keep our notation
consistent with in Essén’s paper [4], we let p be a piecewise constant function with

values be oy < 0] < -+ -, such that:

<oy, for x€][0,4))

>0, for xe[A;, A +A)

P’ = . “4.4)
oy, for xe[Aa+A4,0)

>0, for xel[a,l]

where A = Ay + Ay + A.
(p*)? is the function resulting from taking the segment whose level is o; and

pushing it to the left in the following way.

<oy, for x€][0,4))

oy, for xel[A,A+A

pyY={"" L1, 81+ 82) 4.5)
>0, for x€[Aa;+ Ay A0)

>0y, for xe[a,l1]
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Figure 4.2: Example of p(x) vs p*(x).

Remark 13. It is clear that for a simple function p, we have (p*)* = (p*)>. For a
Lebesgue measurable function p, we can pick a sequence of simple functions {p,} such
that p, — p almost everywhere. A result from next chapter will show that p, — p*
almost everywhere. Thus, we have (p*)* = (p*)* for Lebesgue measurable function as

well.
To simplify our calculation, we consider ¢ (resp. ¢*) satisfying
¢" = p’p. (resp. ¢ (4.6)

The next few lemmas give us the tools to prove our result. We will translate
equation (4.6) into a Ricatti equation, which simplifies many of the calculations.

If ¢ is a solution to (4.6), for x > 0, and ¢ > 0, then define

glx) = w, for x>0.
@(x)
Then g satisfies the Riccati equation
g'(x) = p*(x) - &°(%). 4.7

For what follows, p satisfies (4.4).
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Lemma 24. Let o be a strictly positive constant such that p*(x) > o for all x > 0. Let
z solved equation (4.6) with

200=A>0, 7Z(0)=-B<0, (4.8)

such that
o -z(0) > =Z'(0).

Then, z(x) > 0 for all x > 0.

Proof. Let g be the solution to (4.7) with initial condition g(0) = z’(0)/z(0). Then con-

sider )
¢Q0=Z@Nﬂp{£.gnm}.
Notice,
¢'(x) = gx)p(x)
¢'(x) = gXe(x)+ g(x)¢'(x)

(P*(x) — g (0))p(x) + g2 (x)p(x)

PH(Op(x).

Since ¢(0) = z(0) and

, Z(0) ,
¢'(0) = g(0) - ¢(0) = -2(0) = 2(0).
2(0)
we have ¢(x) = z(x).
Because, B/A > —o, we have g is bounded. Hence, z(x) > 0. |

Remark 14. The conclusion of Lemma 24 could fail if the condition (4.8) is not satisfied.
One counter-example is as follows.
Let z;(x) = cosh(ox), and z,(x) = o' sinh(o-x) where 0 < o < 1.

Then, 0(z1(0)—22(0)) < (25(0)—2](0)), but z;(x) < z2(x) when x > o tanh™! (o).

Lemma 25. Suppose both ¢, and ¢, solve equation (4.6), with

01(0) = a;, ¢:(0) = ay,
¢1(0) = by, ¢5(0) = by,
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such that a; > a, and b, < b,.
IfI‘)IClZi(I)lpz(x) > oy and
oi(ar —a) = (by —b1) 20, (4.9)
then ¢1(x) > @y(x) for all x > 0.
Lemma 26. Suppose ¢ satisfies equation (4.6) on the interval [0, A] with
e(l)y=1, and ¢'(0)=0.

Define
p(r)=Cy, and ¢'(b)=D.

If p> < oy on [0, A], then

Ci—o;'D; >0.

¢'(x)
@(x)

Proof. We set g(x) =
Thus,

. Then p? < o) implies than g(x) < o for all x € [0, A].

Ci
AN)=—X .
g(2) Dl_O'l

O

Lemma 27. Let ¢ satisfy equation (4.6) on the interval (A, A+ A) = (a, b) with bound-
ary conditions
eb) =1, ¢'(a) =o1pa).
Then,
o' (b) > 0.
Proof. Let
¢'(x)
@(x)
Then, g satisfies the Riccati equation with initial condition

glx) = for x € (a,b).
g=p"-¢ ga=o.

Because p*(x) > o for all x € (a, b), we have g’(a) > 0. Hence, g(b) > o,

which is the desired inequality. O
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Lemma 28. Let ¢ be the solution of (4.6) on (a, b) with the boundary conditions

eb) =1, ¢'(a)=-oipa).

Then
¢'(b) > —0o.
Proof. Again, we let
o) = ¢'(x)
@(x)

Then g’(x) > O for all x € (a, b).

Hence g(b) > —o1, which is the same as the inequality we want to prove. O

Lemma 29. Given that p*(x) > o on the interval (A1, A + A) = (a,b). Let vi and v,

be the solutions of (4.6) on the same interval such that
vit@)=1, vi(@)=0, wn@)=0, va=1,
vi(b) = Ay, vi(b) = By, vy(b) =A,, Vy(b)=B,.
Then,
B, — 02A, > 0|B, - Al (4.10)
Proof. Letv =v; + ov,. Then v(a) = 1 and v'(a) = 0. Notice, if we set

p(x) = b

then ¢ solves equation (4.6) on the interval (a, b) with the boundary condition

o) =1, ¢'(a)=o0¢(a).

By Lemma 27, we have

A
1-

¢'(b) = D 2

Hence, we have
V(b) > ov(b),

which implies
By + 0By > oA, + 07A,. (4.11)



57

Similarly, setting v = v{ — o-yv, and

_ V)
v = S

which implies

y(b) =1, ¥'(a)=-oya.

By Lemma 28, we get
V(D) 2 —ov(b),

or

B, — 0By > —0 1A + T3 A,. (4.12)

Combining (4.11) and (4.12) gives the desire inequality. O

4.4 Alternative Proof of the Rearrangement Inequality

To keep our notation consistent, we set

T)
o(x) =B [exp {— f %pz(BS)ds}],
0

where p is defined as in the previous section. Therefore

¢" =p*p, @(1)=1, and ¢'(0)=0.
We can restate our rearrangement result as

Theorem 12. Let {B,};s0 be a Brownian motion on [0, 1) reflected at O and absorbed at
1. Suppose p and p* are piece-wise positive function on [0, 1] as defined in (4.15) and
(4.5), respectively. Then

T T
E° [exp {— f % pz(Bs)ds}] <E° [exp {— f %(p*)z(Bs)ds}] . (4.13)
0 0

Proof. Let BV, B® B® and B® be Brownian motion on the interval [0, A), [A, b),
[b, A) and [A, 1) respectively, with lower reflecting boundary and upper absorbing bound-

ary.
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Define,
p1(x) = exp{ pl(B“))ds}]
Tb
ea(x) = exp{ @i (Al)l Pz(B(sz))dS}],
(4.14)
@3(x) = eXP{ 902(19)1” p3(3(3))dS}]
904(X)=EZ[ { %(A)l p4(B§4))dS}],
where
1, 1, 1, 1,
pr=30lwsn: P2=50 e, P =50 lpw, pa= S0 (4.15)

By repeatedly applying Theorem 10, we have

Ty
@(0) = E° [exp {— f 1pz(Bods}]
0o 2 (4.16)

= 01(0) - 92(21) - 3(b) - p3(B).

We calculate ¢y, ---, ¢4 (resp. ¥y, - ,¥4), by calculating their corresponding

initial condition solutions &y, - -+ , &, (resp. i, ,{4.), as

£0) =1, &(ar+0) = &b +4), &) =E(D), E(b) = &(D),
£(0) =0, &(a1+20)=E&(n1+2), &b)=Eb), &) =E®).

and set:
&i1(x) &(x) &(x) &4(x)
= . = -, =, d = .
®1(x) £1(00) ®2(x) £2(b) @3(x) 6 and @4 &)
We denote

Ei(a)=Cy and  €((a)) = Dy.
Let v; and v, be the solution of (4.6) on [A;, b) with the initial condition
vita) =1, vi(a)=0; w(a)=0, vy(a)=1.
and we denote

vi(b) = Ay, V'l(b) = B;; w(b) =A,, Vlz(b) =B
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Setting &, be the solution of (4.6) on [A}, b) with initial condition

E(a) =Cy,  &(ar) =Dy
Then
&(x) = Cvi(x) + Diva(x).

Hence,

&(b) = C1A| + DiAy; &5(b) = C By + DB,
Setting &; be the solution of (4.6) on [b, A) with initial condition
&(b) = &(b), &) = &(b).

Then,

&(x) = &(b) cosh(o(x — b)) + 52( )

sinh(o(x — b)).

Now consider p*, and
Y=y (4.17)
Recall that p is a piecewise function, so 2(p?)* is the increasing rearrangement

of 2p?. Setting ¢ = A + Ay, we denote

P =5 Yloay P = (P Y liso, Pi= (P Y15, andpy = 5P Y1z

(4.18)
We have
Yi(x) =E exp{ p (W“))ds}]
T
%®=Eem{%mm“ p%WM%}
r (4.19)
Y3(x) = B exp{ @S fo pg(WE”)ds}],

Ty
Ya(x) = E* [exp {—l//3(A)lT1 —f P4(W§4))ds}}a
L 0

where WO, W@ W® and W® are Brownian motions on the intervals [0, A;), [A1, ¢),
[c,7) and [A, 1) respectively, with lower reflecting boundary and upper absorbing bound-

ary.
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Thus, we have

T
w©=wkw{j‘¥ﬁﬂmw”
0o 2 (4.20)
= ¢1(0) - Ya(21) - Y3(C) - Ya(D).
Likewise, we set

L) H() 5() i)
’ = s = P d = .
Loy PO oey B9 LE ™M BT L0

Note that &;(x) = ;(x). For the next two intervals, we have

Yi(x) =

D
C, cosh(oi(x — A})) + == sinh(or; (x — A)),
a1

$H(x)
&H(b)
gé(b) = ClBl+Dle.

C1A1 + D]Az,

G(X) = (A1 + 8)vi(x = Ag) + L(A1 + Bo)va(x — Ay),
H) = H(A1+ M)A+ 5(A1 + 82)A;
= (C, cosh(o A7) + 07' Dy sinh(01A2))A| + (07, C sinh(o; A7)
+Dj cosh(o;Ar))A,
= (C,A; + D1A))cosh(aiAy) + (07'D1A| + 01C1Ay) sinh(0r A,),
L(A) = (C1By + D1By)cosh(o14,) + (7' D By + 07,C, B,) sinh(c; A).

We have

o1(&(8) — () [C1(B) — 0jA2) + Dy(By — A))] - sinh(or 2,),

L(8) = &)

[0\C1(A] — By) + Di(01Ay — 077" By)] - sinh(c; A).
Thus,
Ti1(&(B) = 5(8) = (G(8) - £(8)
= [B) - Ayo: — (B, — A))] - (C; — o]' D)) - sinh(0r 2,)
By Lemma 26, we have

Ci—o;'D; >0. (4.21)
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Also, by Lemma 29
By — Ayo — 0 (By — Ay) > 0. (4.22)

Thus, condition (4.9) of Lemma 25 is satisfied, and we have

&4(1) > Lu(1).
Recall that
2(0) = £10) &A1) &(D) ,§4(Z) _ 1
&i(a) &B) &) &) &)
Likewise, ¥(0) = 442 O Hence
@(0) < ¥ (0).

4.5 Some Observations of the Proof

As we can see, Essén’s rearrangement scheme is a very important part of his
proof. To get equation (4.21), we need n[10ax) p*(x) < oy; equation (4.22) requires
x€10,A1

min pz(x) > o1; and the condition for
XE[A],A1+A)

a1(3(8) = 5(2) = (G(8) = £(2) 2 0, (4.23)

to imply ¢(0) < ¢(0) is min pz(x) > o1. As a counter example exhibited in Chapter 3
xe[A,1]
has shown, this type of rearrangement is necessary.
In fact, those restrictions on the value of p(x) have interesting probabilitic mean-

ings. To examine them more closely, we first need to rewrite Lemma 25 as:

Theorem 13. Let {B,};~0 be a Brownian motion on [b, 1) for some 0 < b < 1, with
a reflecting boundary at b and an aborbing boundary at 1. Suppose p is a positive

piece-wise function on |b, 1], such that rr[lgr}] P’(x)> 0 > 0.
xe[b,
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Given as > ay and B, > B, define
T 1
o(x) = a;-E* [exp {—ﬁll?1 — f Epzl[b,l)(Bs)ds}] ,
0
T 1
Y(x) = a3 E° [exp {—ﬁzll%l - f Epzl[b,l)(Bads}].
0

If

Br-ay =B (4.24)

<0y,
ar — ]

then y(b) > ¢(b).

Let pi1, ps, p3 be defined as in (4.15). Define

T3
o(x) E* [GXP {— ; (p1(By) + p2(B;) + p3(Bs))ds}]

Ty
@0) = E [exp{— f lpz(Bs)ds}]
0o 2
T
= (0)-E® [exp{—@'(&)l’%— f p4<B§4>)ds}].
0
Likewise,

Tz
g(x) = E [exp{— i (pl(Bs)+p§(Bs>+p§<Bs)>ds}]

T
Y 0) = EO[@XP{— fo %(p*)z(Bs)dS}]
Ty
= §(0)-E* [exp{—@'(l)l% - f p4(B§4>)ds}].
0

From the previous calculation, we have

a1 = ¢0) = 1/&(n), B = ¢ (&) = E(8)/&(p),
@y = (0) = 1/5(8), B2 = ' (&) = () /().
The condition (4.24) can be written explicitly as
V(2)-¢0) - ¢()-§0) _
= o
¥(0) — &(0)

Next, we break the event into two parts: the process starts from 0 and reaches A

1.

for the first time; and the process starts from A and reaches 1. Using the strong Markov
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property, we have

E" [exp —f Ep (By)ds
0
51 2 A 1 2
exp _f Ep (Bv)ds ‘B exp _f Ep (Bv)ds .
0 0

Since &(A) > £3(2), we have @, > «;. In the context of (4.25), it means that by

(4.25)
="

moving the “safer” interval [A; + A, A) closer to the entrance, the probability of “safe
arrival” to the level A will improve.
With £5(2) > &,(a), we have
— _ T,
E* [exp {—@’(Z)l% - fo m(B?”)ds}

> EA

_ T
exp {—J/(Z)z;l -~ f p4(B§4>)ds}] .
0
(4.26)
Recall from Theorem 10, if we set x — A, (or by matching the terms in (4.25))

we have

T _ _ T
B* [exp {— fo %pz(Bs)ds}] =E* [exp {—@'(Z)l%l - fo p4(B(s4))ds}]. 4.27)

Hence,

T _ T
E* [exp {— fo %pz(Bs)ds}] > B* [exp {— fo %(pz)*(Bs)ds}]. (4.28)

Such an inequality makes sense, since for a process that starts at A, it spend
more time on average near A, making the traversal on the interval [0, A) more “danger-
ous” after the rearrangement. Note that @'(A) (resp. §'(2)) is the “risk” the process
accumulated from traversing the interval [0, A) starting at A.

At last, we should keep in mind that in order to get ¢(0) < ¥(0), we need
min pz(x) > 01. Meaning, if there is any sub-interval / C [A, 1] that is “safer” than that

xe[a,1]
in [A] + A, A), we should move the interval [ first.



Chapter 5
Extension of Main Result

Some conditions of our main result can be relaxed. In this chapter, we show two
of such refinements. First, we can weaken the requirement for k from being positive
continuous to positive L! integrable. We will begin this discussion by introducing the
concept of a general measure preserving rearrangement function.

Second, since our main result holds for diffusion process with zero drift, it is
natural to ask whether the same result will hold if we introduce drift to the process. In
the case when the process is a Brownian motion, a Girsonov’s argument will allows us
to show the same rearrangement result for a Brownian motion with a constant upward

drift.

5.1 General Measure Preserving Rearrangement

For a general Lebesgue measurable function f on the interval [0, 1], we define

its equi-measurable non-decreasing rearrangement by first defining 7(s) as:
T(s) =meas{f0 <t<1: f(t)<s}, .

where “meas" is the Lebesgue measure.

Then the equi-measurable non-decreasing rearrangement f™ is defined as:

ffO=inf{s>0: 7(s)> 1} (5.2)

64
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Remark 15. Clearly, 7(s) is non-decreasing. Moreover, given a sequence s, | s, we

have {f(t) < s} = m{ f(t) < s,}, and by continuity from above of the Lebesgue measure,

we conclucde that ;(t) is right-continuous.
The following result can be found in the paper by K.M. Chong. ([1], [2])
Proposition 4. . f* is non-decreasing, and right-continuous.

2. Forany s >0,

meas{f0 <t<1: f(t)<s}j=meas{0<t<1: f(t)<s}h

3. If { fulnso is uniformly integrable, so is {f, }n0.
4. If f, — f pointwise, a.e, or in measure, f,, — f* in like manner.

5. If there exists a sequence of L'[0, 1] functions f, and f such that f, — f in L',
then, {7 and f* are also in L' and f* — f*in L'

Proof. 1. ForO <t <t, <1, lets; = f*(t), then, 7(s;) > t;. Since m is non-

decreasing and right-continuous, we have either 7(s;) > t, or there exists s, > s

such that 7(s;) > t,. Taking the infimum on all the s,, we have f*(t,) > f*(#;).

To show that f* is right continuous, let f*(#)) = sy where #, and s, are given.

0 . o . )
For any 6 > 0, we set 7(s + 5) = t;. Then, f*(t;) — f*(t)) < R Since f is
non-decreasing, for all ¢ € (¢, #,), f*(£) — f*(t) < 6.

Hence, f™ is right-continuous.
2. Suppose s > 0 1is given, and f*(7(s)) = s’. Since f* is right-continuous, we have

meas{0 <t<1: s<f(t)<s'}=0
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which implies

meas{fO <t<1:f(t)<s} = meas{0<t<1:f1(t) <s}

. From the previous item, we also have

1 1
f IOl 020dt = f SO wzadt.
0 0
Thus, the rearrangement preserve uniform integrability.

. The statement for pointwise and a.e convergence are obvious. If f, — f in mea-

sure, we can pick a subsequence {f,,} converges to f a.e, and we can pick another

subsequence { f,,l./,} that converges to f pointwise. Thus, we have {f, } converges
’ '

to f* pointwise, which implies f; — f* in measure.

. Since the space has finite measure, f, — f in L' will imply convergence in mea-
sure, whence f,” — f* in measure. Moreover, the rearrangement preserve uniform
integrability. Thus, we have f* — f*in L!.

O

Theorem 14. Let k € L'[0, 1] be non-negative, and let { B,},so be a Brownian motion on

[0, 1) reflected at O and absorbed at 1. Then

T Ty
E° [exp {— f k(Bs)ds}] <E° [exp {— f k*(BS)ds}] . (5.3)
0 0

Proof. Since step functions are dense in L![0, 1], we can pick a sequence k, — k in L'.

By the occupation time formula:

Ty 1
f k(By)ds = f k(x)17 dx, 5.4
0 0

l;l is continuous with respect to x € [0, 1] almost surely. Therefore, l;l dx is absolutely

continuous with respect the Lebesgue measure. Consequently, k, — k in L' will imply

1 1
f k()7 dx — f k()17 dx, a.s.
0 0

T, T
exp {—f kn(Bs)ds} — exp {—f k(Bs)ds} a.s..
0 0

Hence,
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Both exp {— fOT] kn(BS)ds} and exp {— fOT' k(BS)ds} are bounded by 1. By Dom-

inated convergence theorem, we get

T T
lim E° [exp {— f k,,(BS)ds}] = E° [exp {— f k(Bs)ds}] .
n—eo 0 0

By item three of the previous theorem, we have k' — k* in L. Thus we have

T T
lim E° [exp {— f kZ(BS)dsH = E° [exp {— f k*(Bs)ds}] .
n—oo 0 0

By theorem 1.2, we have

T1 T]
B [exp {— f k,,(Bs)ds}] <E° [exp {f kZ(BS)ds}] .
0 0

Taking limit on both sides of the above inequality gives us:

T Ty
E° [exp {— f k(BS)ds}] <E’ [exp {— f k*(Bs)dsH .
0 0

5.2 Reflecting Brownian Motion with Constant Drift

Given the rearrangement inequality for reflecting Brownian motion, with the
help of Girsonov’s transform, our next result gives a simple proof that the rearrangement

inequality holds true for all reflecting Brownian motion with a constant drift u.

Theorem 15. Let Y, = B, + ut where {B,}, is a Brownian Motion on [0, 1) reflected
at 0 and absorbed at 1, and u is a constant. Then, for a positive integrable function k
on [0, 1] and k* its measure preserving increasing rearrangement function, {Y,};so also

satisfies the rearrangement inequality:

T Ty
E® [exp {— f k(YS)ds}] <E° [exp {— f k*(Ys)ds}] ,
0 0

where Ty = inf{t > 0,Y, = 1}.
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Proof. By dominating convergence theorem, it is suffice to prove the result for the case

when k is a piecewise constant function. Given a partition 0 = xp < --- < x, = 1, and

positive sequence {1y, - - , 4,}, we define

k() = ) A'(x),  where  T'(x) = gy, (%),

i=1

Define K, = fot k(By)ds. By Girsonov’s theorem we have

Ty
E° [exp {— f k(Ys)ds}]
0

IA

1
E°[exp{—K7, + uBr, — =*T1}]

e'E°

e'E°

eME°

2
» : 1 2 h i
wp%2w+y{£1wmw
L i=1
» C 1 2\ h i
wp42@+?wl:umm>
L i=1

: A
a4%2w+yjﬂfwmﬁl
L i=1

1
E° [eXp {—KE + uBr, — 51°T) }]

2

Ty
E° [exp{—f k*(YS)ds}]
0



Chapter 6
An Application of the Main Result

In this chapter, we show that by picking an appropriate continuous additive func-
tional, we can construct a birth-death process on the state space of {0,---, N} from a
Brownian motion B on [0, 1), reflected at O and absorbed at 1. More detail of such
construction can be found in Sharpe [12]. We can then apply our main result to the
constructed birth-death process to give a holding rate rearrangement inequality.

Recall from our main result (1.2) that the set of points we pick for the local time
inequality are equally spaced. In our construction, we set 0 = xgp,- -, xy_1, Xy = 1,
such that x; = i/N. By, -+ ,Bn-1 are all strictly positive. Define a continuous additive

functional A by
N-1
A=) Bl
i=0

7 is the right continuous inverse of A
T(a) =inf{s >0 : A; > a}.
We define a process Y as
Y, := §(Bry),

where S(x;) =ifori=0,1,---,N.
Y is reflected at O and absorbed at N. With respect to the time changed filtration,
Y is a strong Markov process (see Sharpe [12] Lemma (65.8) and Theorem (65.9) ). It

is clear that Y is a birth-death process. Moreover, starting at state i, fori = 1,--- ,N -1,
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the probability for Y to reach i + 1 and i — 1 are the same, since the probability of the
underlying Brownian motion to reach x;_; and x;,; are the same when it starts at x;. The
birth rate and the death rate are the same for each of those states. To determine the

holding rate for state O to N — 1, conisider the process B that starts at x;, the holding time

for Y before it reaches the next state (x;.; or x;_;) is ,B,l ,where T =T, AT, , and
T, and T, _, are the hitting time to x;;; and x,_; respectively.
Using Tanaka’s formula,
A
|B, — xi| = f sgn(B; — x;)dB; + ['. (6.1)
0

Taking expectation of both sides and setting 7' = T, , A T, , yields
E" [|Br - x{] = E" [1}]. (6.2)
We know

. 1 1 1
E*[|1Br — xil] = E(xm - X))+ E(xi = Xi-1) = N =
Thus, the holding rate ; = 1/x,8;.
Let T be the stopping time of the process B reaching level 1. The lifetime of Y

N-1
is Bl
i=0

Recall our main result says:

ol oo 3

with {8;} bemg the non-decreasing rearrangement of {3}
Settlng ZF=1/xiB;, ¥ are in non-increasing order. In the context of birth-death

process, we have

Theorem 16. Let Y be a birth-death process on {0, 1,--- , N} that has strictly positive
holding rate {{i}fi o (the death rate at 0 is zero), and its birth rate and death rate are
equal on the states of 1,--- ,N — 1. The process starts at O and stop the first time it
reaches state N, and T is its lifetime.

Denote {{; #} U as the non-increasing rearrangement of | gitie A 1 . T* is the lifetime

of the process Y* results from replacing the holding rate from {; to {f. Then

E[exp{-T}] < E[exp{-T"}]. (6.3)



Appendix A
Statement of Pruss’ Result

Let Z; = {0} UZ". Fix p € [0,1]. Let {rf’ : i € Z;} be a random walk on
{1,2,--- ,N+ 1}, with r{ =1,

PGt =17+ 1r7) = p,
Pl =n—-1rf=n)=1-p, if n>1

and
P(rﬁr1 = 1|rf’ =1)=1-p.
Thus, r” is a random walk on a “blind alley".
Let s, 52,---,sy € [0, 1] be given as the probability of survival at the site n.
P (s1,- -+, sn) be the probability that the random walk has survived all the time up to

its arrival at the point N + 1. The precise statement of Pruss’ result is:

Theorem 17. Let 51, 55,--- , sy € [0, 1], and 57, 55, -+ , s}, be the non-decreasing rear-

rangement. Then for p € [0, 1], we have
PQ(S],"' 7SN) SPZ(ST’ ’S;k\l)'

The intuition behind this theorem is that the random walk spends more time
further away from the site N+1 than near it. Therefore, we improve safety by rearranging
the order of the danger so that it is more concentrated toward the exit.

The next result implies that if a random walk has more of a tendency to move up

then, its chance of safe arrival to site N + 1 increases.
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Theorem 18. Let 0 < p <r < 1, and let sy,--- , sy € [0, 1]. Then,
PL(s1, -+, sn) < Py(si, -+, sy).

with equality if and only if one of the following conditions holds:

1. s, =0 for someke{l,---,N},

2. sy=---=sy=1land p>0.
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Appendix B

Feynman-Kac Equation

Let {X;};>0 be a diffusion process on the interval [0, 1] with a reflecting boundary

at 0, an absorbing boundary at 1, and its infinitesimal generator be:

1,

o*(x) > e > 0 forall x € [0, 1].

We then have the following result:

(B.1)

Proposition 5. Let k be a positive continuous function on [0, 1]. Define K, = fot k(X,)ds,

and T; =inf{t > 0: X, = 1}. Then

1. If ¢ is the unique solution to the boundary value problem

1 4 / /
50'250 +pg =kp,  g0)=0, @(1)=1

then,
¢(x) = E'[exp{—K7,}].

2. Conversely, if ¢ is defined as in (B.3), then ¢ satisfies (B.2).
Proof. By the It6 formula,
t t
eXpe™ = o(Xo) — f e p(X)Kds + f e g/ (X)dX,
0 0

1 f
+— f e K@ (X))o (s)ds.
2 Jo
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(B.2)

(B.3)

(B.4)
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The diffusion {X;},»( satisfies the SDE:
dX, = o(X,)dB; + u(X,)dt + dl’, Xy = x, (B.5)

where {B;};» is a standard Brownian motion, and l? is its local time at O.

Thus, the equation (B.4) becomes

! 1
@(Xo) + fo e (~p(X K + ¢ (Xu(X) + 502(Xs)¢"(Xs))dS

! !
+féﬂﬂxwawm+wmfeﬂw
0 0

©(Xo) + fo t e 6 ¢' (X,)o(X,)dB, (B.6)
Now, taking expectation on both sides, and taking ¢ to be the stopping time 7';:
E*[exp{—K7,}] = ¢(x), 0<x<l.
Conversely, the function

@(x) := E'[exp{—Kr,}]

solves the integral equation:

T
1 —ekn = f exp(—Kr,o6,)dK;.
0

Ty
E* [ f go(x)k(Xs)ds]
0

1
fo G(x, y)p(k(y)m(dy).

Therefore,

1 = o(x)

Hence,

1
¢m:1iﬁGmwm%wmw>

By inspection, we have:

0 =0
e(l) =1
1
590”(x)+u(x)<,0'(x) = k(x)p(x)
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t t
Remark 16. If we replace K, = f k(X;)ds by K, = Al + f k(X,)ds, we have
0 0
dK, = Adl} + k(X;)ds.
The same argument of the proposition will yield

Proposition 6. Let X be a diffusion process with infinitesimal generator satisfying (B.1),

and a reflecting boundary 0 < a < 1, and ¢ be the unique solution to the boundary value

problem
1
Eaz(x)sv” +u(x) =kp, @(1)=1, and ¢'(a)= Ap(a) (B.7)

T
o(x) =E* [exp {—/ll‘}1 - f k(XS)ds}] ,
0

where k is a positive integrable function in [0,1], and T, = inf{t > 0: X, =1}.

for x € [a, 1]



Appendix C
Proof of Marcus and Rosen

Let 1’ denote the transpose of the n-dimensional vector (1,---,1). A? denote
the matrix obtained by replacing the /th column of the n X n matrix A by 1. Also, {Y},

denote the /th element of the vector Y.

Lemma 30. Let X be a Markov process with finite 0— potential density u(x,y). Assume
that a local time L, exists for each y, normalized so that E*[L,] = u(x,y). Let © be the
matrix with elements ©; ; = u(x;, x;), i, j = 1,--- ,n. Let ¥ be the matrix with elements

2 j = A6, Forall A,--- , A, sufficiently small and 1 <1< n,

_ det(I - ©%)"

ALY = .
xp {Z w} det(] — OF)

i=1

E" (C.1)

Proof. By Kac’s moment formula ([5]),

E” [H Lié) = Z u(x, yn(l))u(yn(l)’YH(Z)) T M(Yn(n—l),yn(n))
i=1 Vg
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where the sum goes over all permutation 7 of {1,--- ,n}. Hence

(g

n

= k! Z M(xl’ Xjy )/ljl u(sz’ ujz)/ljzu(sz’ xj3)

Jis k=1
(C.2)
o u(x./k—2’ Xjeoy )/ljk—l u('xjk—l > Xjk )/l.ik

= k! ) (O,

Jie=1

= k{(@x)1')

for all k.
It follows from this that

=) @2 =t -ex1).
Consequently,
(I-0%)Y =1

where Y is an n—dimensional vector with components E¥ [exp {}."_; 4, L3}, [=1,--- ,n.

By Cramér’s theorem, we have the desired result. m]



Appendix D
Analytic Continuation

More detail can be found in R.C. Cunning and H. Rossi [3].

Definition 1. A complex-valued function f defined on an open subset D C C" is called
holomorphic in D if each point w € D has an open neighborhood U, w € U C D, such
that the function f has a power series expansion

[Se]

F@= D @y = W)™ - @ = wa)",

Vi, Vn

which converges for all z € U.

Theorem 19. (Osgood’s Lemma) If a complex-valued function f is continuous in an
open set D C C", and is holomorphic in each variable separately, then it is holomorphic

in D.

Theorem 20. (Identity Theorem) If f(z) and g(z) are holomorphic functions in a con-
nected open set D C C", and if f(z) = g(2) for all point 7 in a non-empty open subset
U c D, then f(z) = g(z) for all points z € D.
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Appendix E

A Short Example of the Main Steps

In this example, we let n = 16. Suppose we have max{d,- -, A4} < Ao,
min{ds,--- , A1} > A2, and min{d;3, - - - , A;5} = A12. Thus, we move 4, to the position
of As, and shift each of the As, - - - , 4;; one position to the right. We denote M(5, 12) the

determinant before the rearrangment, and JV[(S, 12) the determinant after.

M5, 12) — M(5, 12)
/111 - ﬁlZ

(/15—/112)'_13?1"‘ LA,
Aip—A4
+(/l6—ﬂ]2)'_BZO+—1O IZ'A;
W\
Ag— A A 13
+(l—-Ap) - BE+ 221+ 2
= A4. n n
Ag — A2
+
M- 2 Ao — A
5 11'B?0+ 6 10.B;
A, /ln 1 'B}4
ML AL B
n
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(A2 — As) - B?l + (A1 — Ap) - BZO

AT
Ag— A 13
+(/110—/l7)-B§+ 2 8

/111 _/112

(A5 — App) - B, + - A
+ Ay Ao — A2 _

+ (A6 — App) - "B, + A
_ n ml
e A= A | B
+ (17— A1) - "Bj + -(1+7)
Ag— A
+ 8 12
n

1
= (As—Ap)- {51 -TBS, + Lz’B?O} + (A1 — A12) - {Z Ly A8 - Lz'B?o}
1
+(/16_/112)'{L1'_BZO+£’2'B;}+(/110_/112)'{Z°Ll'A;_LZ'B;}
-R8 8 1 Ag 8
+(/17—/112)'{£41' B9+L2'B8]+(/19—/112)' ;'L]'(l‘l‘;)—,ﬁaz'BS

1
+(Ag — A12) - {; ‘[41}-

where
L, = A;-Al, - A B,
A — A4 Ay — A4 Ais— A4
_ A 4-A3-B}4+ 14 3'A2-B}5+ 15 2-A1+1
n
and
A
Ly = AZ'A%_%'AWBh
Apn—A4 A=A
_ 13n IZ-A;-B}4+ 4 12-A3-A’{4
A=A~ o  AB3—Ap
+—— AL B 4+ —— A, A
n 3 15 n 2 15
Ais—A4 A=A
L5 12'A5+2 12~A1
n n

+A]
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To illustrate our steps, we will show

1
L A8 - L, B, 20,
n

and

L) "B +L,-BS >0.

We ommiit the rest of the calculation because they are identical to the one we have shown.

1
Lyl LB
1 (A3-A4 Ay — A Ais—A
- _.{u.A4.B{4+u.A3.B}5+M.A2+AI}A?O
n
A=A A —A4 Ais— A
+{ 13 12-AZ~B}4+ 14 12-A;~B}5+ 15 12'A£+AI}'BZO
n n

n

A=A
Ay Bl - A B

App— A4 1
R NS RPN

A=A 1

= : 'A3'{;'B%4'A?O_A?4'B?O}
|
n

1 (Az-2 Aig = A Ais — 4
= ;{ 13n 2. A4 B, M.A3.Bis+u.A2+Al}.A%
A — A A -4 Ais — A
+{ =2 Ap B+ lz‘Ag'Bis"‘u'Ai"‘Af}'Bzo
n
A=A Adg— A4 A7 =4
12n : A3'{ : n = Bis Bly+ = ls'Bifo_B?O}
A=A Ag— A
L) A 3~A2-{ 6 IS'BZO_B%O}
n
Ap—4 7
+ A -1-B
L

First, we look at

A=Ay As — A

-A;-BL - B’
" " 3° D15 Lo

Aig— A4 1
%'Bis'{Z'ATA?o*‘A;'BZO}"‘

A=A Ag— A
_ A 12'Bi5'{ 6~ A4

1 _
-Ag-BZO+Z-A4-AZO+A4-B’fO}

Ap — A4 Adg— A Ap—A4
LA 4.( 6 2 A 14
n n n
A=A As — Aip
n n

)'A3'B}5'BZO

= 2

1
-A3-B}5~BZO+Z-A4~AZO+AZ-B§OZO.
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Second,
/112_/13'/16_/115'AZ'BZ()'F/I]Z_/M')J_/I]S'A3.B?O
n n n n
Ais— A (1 6 - w7
5772 (C A, AS +AS-B
. (n 20 £y T Ay By
_ /112—/13./16—/112.A2'BZ0+/112_/14./17_/112.A3_B§130
n n n
Ap—=A3 Ap—A4 Adip—Ag Ap—A4
ezt oA, gy et Ade—ds s
n n n n
Ais—A4 Adg— A A=A 1
+ lsn 12.{ 6n S.AZ-BZO+—7 4A3B?O+ZA4A?O+AZB?O}
_ /112_/13-/16_/112-Az-BZO+/112_/l4-/17_/112-A3-B§130
n n n
Ais—=Ap Adg—A4 Ais—Ap ;=4
JAs m A As IZ'AZ'BZO"' 15— 712 A7 12~A3-B§0
n n n n
1
+_.A4.A§O+AZ'B?OZO.
n
Third,
~- A+ Al + AT - Bl
A=A A =4 Aip—=A4
_( Ry E] T Y 4.A3-B?O)
A — A A7 - A A — A 1
= 6n = A1'BZ0 — AZ'B?O : 4'A3'B?O+E'A4'A?O
Ay — A Aa = A Aia = A
+A;-B}3—(12 2 p Bl 2T s, 8 g 22 4-A3-B‘1‘0)
Adg— A A=A Ag =4
= SR A B+ TR Ay B+ A B
1
+— Ay A+ A7 Bl >0.
n
Next, we check
Ly "B + L, TBY,
Ay — A P s — A
= (P A Bl TS Bl T2 A 1) B
n



Ap =4 Ap—=A4
12n 13-AZ~B}4+ 12 4-A3~A’f4
Ap -4 Ap—A4
LA 14-A§-Bi5+ 12 3-A2-A’fs
+ n
Ap—=A4 A =4
LA 15‘A£+ =4 4
n n
+ A7
For the pair
Az =4 Ap =4
Sl Bl B+ B B,
A3 — Ain - -
= T'(AT B?I_A4'B?O)
A=A
#2M Bl B,
A — Ay 6  dio— A3 6
_ Az -4 n s Bip + e Byt
T n | A
" + 2 L .BS+ B
A — Ay

-A;-Bl,-"BS > 0.
n

Adg — A

A -B

6
8
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