
UC Davis
IDAV Publications

Title
A Novel Interface for Higher-Dimensional Classification of Volume Data

Permalink
https://escholarship.org/uc/item/7xw8d3kv

Authors
Tzeng, Fan-Yin
Ma, Kwan-Liu
Lum, Eric

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xw8d3kv
https://escholarship.org
http://www.cdlib.org/


A Novel Interface for Higher-Dimensional Classification of Volume Data

Fan-Yin Tzeng Eric B. Lum Kwan-Liu Ma

Department of Computer Science
University of California at Davis

Figure 1: Left: Volume rendering of MRI head with a 1-D transfer function. Middle: 2-D transfer function. Right: 10-D classification
function.

Abstract

In the traditional volume visualization paradigm, the user speci-
fies a transfer function that assigns each scalar value to a color
and opacity by defining an opacity and a color map function. The
transfer function has two limitations. First, the user must define
curves based on histogram and value rather than seeing and work-
ing with the volume itself. Second, the transfer function is inflexi-
ble in classifying regions of interest, where values at a voxel such
as intensity and gradient are used to differentiate material, not tak-
ing into account additional properties such as texture and position.
We describe an intuitive user interface for specifying the classifica-
tion functions that consists of the users painting directly on sample
slices of the volume. These painted regions are used to automat-
ically define high-dimensional classification functions that can be
implemented in hardware for interactive rendering. The classifica-
tion of the volume is iteratively improved as the user paints samples,
allowing intuitive and efficient viewing of materials of interest.

Keywords: classification, graphics hardware, interactive visual-
ization, multidimensional transfer function, neural network, user
interface design, volume visualization

1 Introduction

Direct volume rendering has become a popular technique in visual-
ization, which allows scientists to gain insights into their data sets
through the display of materials of varying opacities and colors.
Volumetric data sets often have a single scalar value per voxel, so
classification of these voxels to assign color and opacity is critical
in obtaining useful visualizations that help to provide understand-
ing into a data set. Without a proper classification function to show
interesting features or remove obscuring data, it is impossible to
correctly interpret the volumetric content.

The transfer function is typically used to perform this classifica-
tion. The traditional one-dimensional transfer function for volume
rendering only considers a voxel’s scalar value; that is, there is a di-
rect mapping of transparency to scalar value. Designing this type of
transfer function is often not intuitive for the users since they must
work in some derived transfer function space (show in the bottom
left of Figure 1), where the users might specify a curve defining a
mapping between scalar values and opacity. In addition, the tra-
ditional transfer function is of limited effectiveness in performing
the actual classification. For example, for the MRI head data set
(also shown in Figure 2), it is difficult to specify a one-dimensional
transfer function that differentiates the brain and the region near the
skull since the scalar values of the two regions are similar. As such,
the user can only show both materials together as shown on the left
of Figure 2, in which case the outer layer might obscure the brain
material of interest. The user could reduce opacity of the outer layer
to make the brain more visible, but the brain would simultaneously
become more transparent and difficult to see as shown on the right
of Figure 2. The user often needs to iteratively try to find a transfer
function that is a compromise between the two, as shown on the left
of Figure 1 which still has some material obscuring the brain, with
the brain to some degree transparent as well.



Recently, there has been research into the use of 2D and 3D
transfer functions which take more information into account such
as first- and second-order gradients [Kindlmann and Durkin 1998;
Kniss et al. 2001]. An example of a visualization of the brain us-
ing a 2D transfer function and its interface are shown in the center
of Figure 1. The additional gradient information allows more re-
fined classification, and works well when a user wants to visualize
the boundaries between different materials. However, other prop-
erties, such as textures and position, are not taken into account. It
is our belief that these additional properties should be used to per-
form better classification. The challenge of using these additional
neighborhood properties is that the complexity of transfer function
specification grows significantly beyond two dimensions.

In our work we describe a new method for specifying high-
dimensional classification functions that consists of the user simply
painting on a few slices from the volume data sets. The user is given
full control of what materials they want to classify by applying one
color paint to parts of the volume they want to see, and another color
paint to regions they do not want to see. Abstracted from the user
is the generation of a high-dimensional classification function us-
ing artificial neural networks. The network uses the painted regions
as training data to ’learn’ a classification function that maps voxels
into uncertainty of whether the given voxel is part of the material
of interest. This uncertainty can then be mapped to opacity during
rendering. The high-dimensional function used in our work uses as
inputs a voxel’s scalar value, gradient magnitude, the values of its
neighbors, and its x, y, z location. The scalar value is fundamental
information directly from that voxel, its neighboring values provide
information that can be incorporated for texture, while position can
be used to take into account a material’s structural properties. Two
materials might have similar scalar value, but they are much less
likely to also have similar gradient magnitude, texture and location.
Thus by using a high-dimensional classification function, it is pos-
sible to better differentiate the materials for visualization.

All stages of the method described in this paper are fully in-
teractive including the implementation of a hardware-accelerated,
neural-network-driven volume renderer. The user is able to paint on
the volume, immediately see the results of the network as it trains,
and continue to paint to provide additional training data to steer
the network toward achieving a classification function meeting the
user’s visualization objective.

Figure 2: Visualization of an MRI head data set. The left image
shows the result of a one-dimensional transfer function where the
brain and the region near the skull are both shown. Since the scalar
values of the two materials are very similar, the outer layer obscures
the brain. The right image shows the result of reducing the opacity
of the outer layer, reducing the opacity of brain at the same time.

2 Related Work

There has been a great deal of research devoted to the generation of
transfer functions for volume visualization [Pfister et al. 2001]. Fu-

jishiro et al. [Fujishiro et al. 1999] use topological information from
a hyper-Reed graph to derive transfer functions. Bajaj et al. [Bajaj
et al. 1997] present techniques for capturing isosurfaces of inter-
est. He et al. [He et al. 1996] use generic algorithms to breed trial
transfer functions. The user can either select functions from gen-
erated images or allow the system to be fully automated. Marks et
al. [Marks et al. 1997] address parameter selection problem in gen-
eral by rendering a multidimensional space of those parameters.
The user then navigates this space, in the context of volume visu-
alization, to choose appropriate transfer functions. Jankun-Kelly
and Ma [Jankun-Kelly and Ma 2001] present automated methods
for generating transfer functions to visualize time-varying volume
data.

Levoy [Levoy 1988] shows how to use gradient magnitude to
enhance material boundaries in volume data [Levoy 1988]. Konig
and Groller [Konig and Groller 2001] introduce a user-interface
paradigm with a set of specification tools assisted with realtime vol-
ume rendering to make it easier for the user to select transfer func-
tions. Kindlmann and Durkin [Kindlmann and Durkin 1998] sug-
gest that by looking at a two-dimensional scatterplot of data values
and gradient magnitudes, which is a 2D histogram, opacity trans-
fer functions can be easily defined to effectively capture features
composed of boundaries between materials of relatively constant
data value. Kniss et al. [Kniss et al. 2001] extend this work by in-
troducing a set of direct manipulation widgets as the interface for
defining multidimensional transfer functions for volume visualiza-
tion. The concept of dual-domain (i.e., the volume data space and
the transfer function space) interaction they described allows the
user to specify regions in volume space and immediately see the
resulting regions in transfer function space. This interaction helps
incorporate the user’s spatial understanding of the volume data into
the transfer function space. Huang and Ma [Huang and Ma 2003]
present a technique that can suggest a 2D transfer function by us-
ing the results of partial region growing from a point selected in
volume space. Our technique eliminates the transfer function space
entirely, replacing it with a volume space painting interface.

Artificial neural networks have received a lot of attention in the
field of biomedical imaging, especially to assist in image segmenta-
tion tasks [Cloete and Zurada 2000; Duch and Jankowski 1997; Ge-
lenbe et al. 1996a; Gelenbe et al. 1996b; Hall et al. 1992; Mitchell
1997; Perlovsky 2000]. Our work employs a neural network cou-
pled with an interactive user interface and a hardware-accelerated
volume renderer for classification and visualization of biomedical
volume data.

3 Our Method

Our work provides a painting user interface which allows the user
to easily specify the region of interest, and uses high-dimensional
classification functions to classify the volume. Figure 3 shows the
overall process of interactive classification and visualization. The
portion most visible to the user is the painting-based interface used
to collect sample points of the region he or she wants to see. The
user starts by painting sample points on a slice of the volume. These
painted sample points are fed to the neural network where training
begins to produce the network.

Training is an iterative process, with the user able to interac-
tively view the results from the current network on classified slices
and volume is in real-time. The user can use this feedback to fur-
ther revise the painting and add additional training data so that the
resulting network leads to their desired classification.

3.1 User Interface

In traditional volume rendering interfaces, a user requires a certain
level of understanding of the intensity distribution of a data set and



User

Interface

Training

ClassifierRenderer
Classified Volume

Samples

Weights

Neural Network

Figure 3: The visualization process. The painting user interface
gives the user direct access to the volume data and allows the user to
indicate the region of interest. “Samples” are the points in painted
regions and are also the input to the neural network. The neural
network trains using the samples to obtain a set of weights. By ap-
plying the trained network to a volume, the user can classify and
then render the volume. The resulting visualization is shown to the
user so that paint can be added or removed to refine the classifica-
tion until a satisfying result is obtained.

familiarity with the user interface to make an acceptable transfer
function. When a user tries to visualize a new data set, a great
deal of time might be spent experimenting with different mapping
functions for that data set.

The goal of our user interface is to provide a means for the user
to partition a data set into different material classes. The user spec-
ifies membership into a material class by painting on slicing planes
using two different colors. One color is applied to indicate exam-
ple regions that are part of the material class, while the other color
is used to indicate regions that are not part of the material class.
For example, the user might apply red paint to the brain region of
a slices of an MRI scan to indicate it is a material of interest, and
blue in other regions to indicate otherwise.

The painting user interface is intuitive to the user since it allows
the user to work directly with the volume data, rather than a derived
transfer function space. The user is also provided a set of familiar
painting user-interface tools which include brushes and erasers of
varying sizes. There are x, y and z axis-aligned slicers for the user
to view and paint on the volume.

The user does not need to paint on all slices of the volume, but
instead must paint in some areas of a couple of slices to classify
the entire volume. The required number of painted voxels varies
depending on the data set. When using position information, the
painted voxels need to be more spread out across different slices
in order to provide general samples for training. Thus, real-time
visual feedback must be provided such that the user can look at
the resulting slices or volume to find the regions that are not well-
classified, and quickly go to the corresponding slices to paint more
sample points to improve the classification.

When painting on a slice, the corresponding painted regions are
also shown in the other two slicers, with all painted sample points
recorded in a table that is used to train the neural network. For
scalar data, the sample point data includes the scalar value of the
voxel, gradient magnitude, the scalar values of its neighbors, and
the position of this voxel, and a value that indicates membership
into a material class. For color data, the sample point data includes
the R, G, B values of the voxel, values of its neighbors, and position.
Therefore, when a user chooses to visualize a color data consider-
ing 12 neighbors, the dimensionality of its classification function is
3+12×3+3 = 42.

3.2 Artificial Neural Network

An artificial neural network is an intelligent system that acquires
knowledge through a training process and applies the knowledge
to solve similar problems. It is powerful because it can learn both
linear and non-linear relationships between inputs. Figure 4 shows
the structure of an artificial neural network.

Each connection between neurons has a weight, with the weights
modulating the value across that connection. Training is the process
of modifying the weights until the network implements a desired
function. To train a network, a set of training inputs and desired
outputs are required. At the beginning, the weights are set at ran-
dom, and are iteratively modified to obtain a network which mini-
mizes the error at the output for the training data. Once training has
occurred, the network can be applied to data that was not part of the
training set.

The neural network topology we use is three-layer perceptron,
and it is trained with the Feed-Forward Back-Propagation Net-
work (BPN) algorithm. The back-propagation algorithm, which
is designed for supervised training, was introduced by Paul Wer-
bos [Werbos 1974], and has been widely used since the work of
Rumelhart and McClelland [Rumelhart and McClelland 1986].

A back-propagation neural network consists of at least three lay-
ers: an input layer, at least one hidden layer, and an output layer.
The structure of a neural network is shown in Figure 4. In this
example, there are m inputs in the input layer, n hidden nodes in
the hidden layer, and one output in the output layer. Neurons are
connected in a feed-forward fashion, and every neuron in the in-
put layer is connected to all neurons in the hidden layer, similarly,
hidden nodes are fully connected to the nodes in the output layer.

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Input 4

I1

I2

I3

Im

H1

H2

H3

Hn

Output

Hweight(1, 1)

Oweight(1, 0)

Oweight(2, 0)

Oweight(3, 0)

O
wei

gh
t(n

, 0
)

Hweight(2
, 1)

Figure 4: Structure of an artificial neural network with m inputs, n
hidden nodes and one output.

The input data to the neural network in our work is a set of
vectors where each vector contains information such as the voxel’s
value, gradient magnitude, values of its neighbors and position. The
output data is a number between zero and one which indicates if a
voxel is a member of a material class. The input vector is prop-
agated forward through the network, influenced by the weights of
each connection between neurons from different layers. The output
of the back-propagation network is compared with the desired out-
put and an error value is calculated. The error is backpropagated to
the inputs and used to adjust the weights to better match the desired
output.

The implementation of a backpropagation neural network re-
quires a non-linear transformation, and the sigmoid function f (x) =
1/

(

1+ e−x
)

is a typical one used in neural network for non-linear
mapping.



Figure 5: The user can immediately see the result of the iterative
refinement of the neural network. This image sequence shows the
progression of training results over a three second period.

In order to perform as much training as possible while main-
taining interactivity, the incremental training process occurs in the
system idle loop. After each training iteration, a classified slice is
shown so the user can determine whether the network performs sat-
isfactorily in that slice region or if more paint should be applied to
supply additional training data.

In our work, the training of the network is in real-time. For ex-
ample, Figure 5 shows the iterative refinement of neural network
weights over a period of three second in one second increments
when applied to the MRI Head data set. The image on the left shows
the result of the network without any training, while the figure on
the far right shows the solution after three seconds of training. If
additional paint samples were added, the training algorithm would
use this data to refine the previous network.

Classification of an entire volume can be performed in hardware
during rendering as described in the next section, or in software.
Applying the network in software consists of feeding each voxel
and its neighboring properties into the network to get an uncer-
tainty value between zero and one. This uncertainty value can then
be stored in a new classified volume that can be rendered using tra-
ditional volume rendering methods in either software or hardware.
The advantage of using software for classification is that it does not
require any graphics hardware, the size of the network can be ar-
bitrarily large, and classification is a preprocessing step that occurs
once, rather than for each frame during rendering. The disadvan-
tage of software is performance, where it can take up to 9 seconds to
apply the network with 11 input nodes, 8 hidden nodes for classify-
ing a 256×256×256 volume using a Pentium V 2.8 GHz computer,
making it unsuitable for applications where the user must see the
result of the trained network during training.

3.3 Hardware-Assisted Neural Network and Ren-

derer

It is very desirable that the user be able to quickly see the results
of the neural networks training on the entire volume during the ap-
plication of paint to steer the network to best classify the regions
of interest. The application of the network to a volume in software
limits this interactivity because of the sheer number of voxels typi-
cally involved. With this in mind, we have implemented the neural
network in hardware and calculated the weights dynamically during
rendering.

The neural-network volume renderer is implemented using a
pixel shader, which permits the execution of assembly language
instructions that are run on a per-pixel basis during the rasteri-
zation of a polygon. Rendering uses the standard technique of
drawing a stack of view-aligned polygons that sample a 3-D tex-
ture [Van Gelder and Hoffman 1996], with the enhancement that
a pixel shader is used that implements the neural network as these
polygons are rasterized. We tested our implementation on a ATI
Radeon 9700 Pro graphics card. Our pixel shader requires seven
texture lookups for retrieving the center voxel values and its neigh-
bors as inputs for the neural network. The position of pixel in 3-D
volume space is simply derived from the texture coordinates of the

pixel.
The same nearest neighbors used for neural network calculation

are also used for calculating central differences for lighting. Thus,
normal map textures are not required for lighting which permits the
storage of significantly larger volumes on the graphics card.

While the hardware-assisted neural network is much faster than
the software version, it is limited by the hardware capabilities. The
size of the network implemented in hardware is restricted by the
amount of data that can be passed to a pixel shader for the neural
network weights, and the number of assembly language instructions
that can be used in a pixel shader. Thus, our hardware implementa-
tion uses only up to eight hidden nodes, a limit that does not exist in
our software implementation. It is desirable to use a network with
a number of hidden nodes that is divisible by four since the highly-
vectorized nature of hardware allows for the efficient execution of
data in vectors of length four. The pixel shader itself can be imple-
mented fairly efficiently with a series of vectorized MAD (multiply
add) instructions, with additional instructions to compute the sig-
moid excitation function. In our work, both software and hardware
neural networks are implemented, and the users can choose one of
the networks depends on the required network size.

Rendering performance is limited by the time required to ras-
terize the textured polygons to the screen, which is hampered by
the necessary seven texture lookups and the length of the pixel
shader. The amount of I/O sent to the renderer for each frame
consists only of the newest neural network weights. The render-
ing of a 256×256×256 volume to a 512×512 window occurs at
approximately 1.5 frames per second using the graphics card men-
tioned previously. Since the amount of data that must be sent to the
renderer is low, rendering can be easily done asynchronously on a
separate computer, where for each frame the rendering PC queries
over a network the most recent set of weights (under one kilobyte
of data) from the PC where painting and neural network training
occur.

3.4 Classifying Multiple Materials

The method described so far can be used to classify a single material
in the volume. Often it is desirable to classify more than one object
in a volume. For example, a user might want to show more than
one material at a time, or a certain organ with high opacity value
and other regions with low opacity to provide context. Our work is
also able to handle multiple material classes as well.

To classify more than one material at a time, we use multiple
networks. First, we classify a material by the method described
in the previous sections. When adding another material class, a
new neural network is created and used. For the second material,
we also follow the same procedure as classifying the first material.
Two sets of weights are generated separately by two different neural
networks with two different groups of sample points. The results of
all networks are used to volume render the classified volume.

Training is only performed on the newest material class. There-
fore, when classifying a volume into multiple materials, the training
time is the same as for single material classification since only one
neural network is trained at a time. Rendering is accomplished us-
ing multiple passes, one for each of the material classes. The more
expensive hardware neural network renderer pixel shader is used
only when displaying the most recent material class, with the pre-
viously materials being rendered from precomputed volumes.

4 Results

The data sets we used to test our system are a 128×128×128 MRI
head data set, a 256×256×109 MRI head data set with the skull
partial removed, and a cryosection color brain data set resized to
256×256×256.



We first applied our technique to the first MRI head data set
which has brain material in the middle surrounded by materials of
similar intensity near the skull.

In Figure 6 through Figure 8, the progression of a session of a
user employing our technique is shown. The left image of Figure 6
shows a slice painted with pink representing the area the user wants
to see and blue represents the area the user does not want to see.
The middle image shows the result of the color-coded classification
by the neural network. As indicated by the color bar, if a color of
a pixel is closer to blue, the pixel is less likely to be part of the
material of interest. If the color is closer to pink, the pixel is more
likely to be part of the material of interest. When the user only
paints on the empty region and the brain, the image shows the brain
with pink, which indicates that the voxels in this region have very
similar characteristics to the regions the user painted. The other
regions of the head are shown in red to green since the user has
not given input to classify them. The right image is the result of
hardware-accelerated volume rendering for this classification.

When the user obtains a result containing unclassified areas,
more painting is required. Figure 7 shows a painted slice, the clas-
sified slice, and the classified volume rendering after more paint has
been applied. Most materials except the top of the head and brain
have been removed. By continuing to paint on the top of the head,
as shown in Figure 8, the brain is the only material remaining, with
all other regions removed.

The left image in Figure 9 shows the results of the classification
of multiple materials. The brain is rendered with high opacity value,
and the skull and skin are rendered with a very low opacity so as
not to obscure the brain. The right image shows the classification
of the brain and the rest of the head without the skull and materials
cover the brain.

Figure 10 shows another pair of examples of classifying multiple
materials in the second MRI head data. The left image is the classi-
fied parietal lobe and cerebellum. It is difficult to classify those two
materials using low-dimensional transfer functions because of the
similarity of their scalar values. But when texture and position are
taken into account, the two materials can be separated. The right
image contains the parietal lobe and cerebellum rendered with high
opacity, and the skull rendered with low opacity.

For color data sets, the classification function is only used to
assign opacity since each voxel has an RGB color associate with
it. Assigning opacity by specifying a three-dimensional transfer
function for this type of data is made difficult by the traditional 2D
interface and display. Our method, however, is able to handle color
data sets in the exact same manner as scalar value data sets, where
the user can paint on 2D slices that pass through the volume. The
information used in classification includes the R, G, B color values
of a voxel, the colors found in a voxel’s six or twelve neighbors, and
its position. That is, the dimensions of our classification function is
either 24 or 42.

An example of classifying the cryosection color data set is shown
in Figure 11. The left image is one of the photographic slices of
the original data set. Each slice consists of the brain in the mid-
dle with surrounding white ice and a table the brain was placed
on. Some regions in each slice show gaps in the brain which re-
veal deeper regions of the data set that are not part of the current
slice. Thus, to visualize the brain properly it is necessary to remove
the ice and surround regions, as well as those gaps in the brain,
which often have a very similar color as the brain itself. Takanashi
et al. [Takanashi et al. 2002] developed a method for specifying
three-dimensional transfer functions that consists of transforming
the RGB color values using independent component analysis into
a derived ICA space that allows a transfer function to be specified
as a series of 1D transfer functions aligned to each of the ICA axis.
Their method simplifies the task of specifying RGB color transfer
functions, but requires the user to work in a derived data space that

is further from the original data. With our method the brain can
be classified from its surrounding material but the user is able to
work directly with the data, avoiding the requirement of specifying
a three-dimensional transfer function.

The right image is the result of the classified brain generated by
using the values of a voxel, six neighbors and the position with 20
hidden nodes when two cutting planes are applied to the volume so
that the users can look at the inner structure.

5 Conclusions

An effective visualization is able to communicate information about
those specific spatial structures that are of interest to the viewer,
without the distraction of materials that are not of interest. Since the
types of structures of interest vary widely depending on the user of
system, user interfaces for classification must be powerful enough
to provide high quality classification, yet intuitive enough to be ac-
cessible to a wide range of scientists.

For future work we would like to investigate the use of less com-
putationally expensive excitation functions to compute the sigmoid
excitation function which is used in hardware neural network for
better performance during rasterization.

Other future work includes determining how our painting inter-
face could be combined with the traditional 1-D or 2-D transfer
function paradigm. One of the limitations of neural networks is
that there is no intuitive relation between the numerical values of
the weights used in a network and the resulting function the net-
work implements. This makes it extremely difficult to make any
direct changes to a network. The technique described in our paper
could be adapted to generate traditional 1-D or 2-D transfer func-
tions by using neural networks with one or two inputs, however
much of the power of our method that comes from higher dimen-
sional classification functions would be lost. Thus the challenge in
this type of integration of our method and traditional transfer func-
tion techniques would be trying to maintain the high quality classi-
fication that comes from high dimensional classification with some
of the interface characteristics of the traditional transfer function
interface.

In this paper we have described a new type of volume visual-
ization user interface that allows the users to specify which re-
gions in a volume they would like to visualize by simply paint-
ing on a few slices from that volume. Abstracted from the user
is a higher-dimensional classification function implemented using
artificial neural networks that makes effective use of a voxel value,
gradient magnitude, its individual nearest neighbors, as well as spa-
tial position. Thus the new user interface is not only more intuitive
than specifying a one-dimensional transfer function curve, it is also
more powerful in that it uses far more information for classification
to occur.

The rendering of the classified volume is implemented in graph-
ics hardware, providing maximum interactivity, which is critical for
giving users the ability to control which aspects of the volume they
visualize. We believe more intuitive interfaces, like the one we de-
scribe, will make volume visualization more accessible to a wider
range of scientists to meet their visualization needs.

Acknowledgments

This work has been sponsored in part by the U.S. National Sci-
ence Foundation under contracts ACI 9983641 (PECASE award)
and ACI 0222991; the U.S. Department of Energy under Memoran-
dum Agreements No. DE-FC02-01ER41202 (SciDAC program)
and No. B523578; the National Institute of Health through the Hu-
man Brain Project; and a United States Department of Education
Government Assistance in Areas of National Need (DOE-GAANN)



Figure 6: The left image shows a slice painted by a user where pink represents the material the user would like to see and blue represents the
other materials. The middle image shows the result of classification with a color bar to its right. The right image is the rendered result of the
classified volume.

Figure 7: These images show the result after more painting information has been added. From left-to-right: A painted slice, the classified
slice and the classified volume. Most materials except the top of the head and brain have been removed.

Figure 8: Additional paint is added to remove all regions except the brain. From left-to-right: A painted slice, the classified slice and the
classified volume.



Figure 9: The results of the classification of multiple materials. Both images have two different classified materials. The left image shows the
brain with a high opacity value and surrounded by the outer layers with a lower opacity. The right image is the brain and the bottom of the
head.

Figure 10: The left image is the classified parietal lobe and cerebellum of the MR head data set. The right image is the classified parietal
lobe, cerebellum, and the bottom of the head with lower opacity.

Figure 11: The left image is a slice of the original cryosection data set, and the right image is the classified result of the brain with a region
cut away to reveal the inner structures.



grant P200A980307. The larger MRI head data set was provided
by Siemens Medical Systems, Inc. through the University of North
Carolina at Chapel Hill. The cryosection data set was provided by
Dr. Arthur Toga of UCLA Brain Research Institute. The authors
would also like to thank members of the UCD visualization and
graphics group for the valuable discussion and providing some of
the test data sets.

References

BAJAJ, C. L., PASCUCCI, V., AND SHIKORE, D. R. 1997. The contour
spectrum. In Proceedings of IEEE Visualization ’97 Conference, 167–
173.

CLOETE, I., AND ZURADA, J. M. 2000. Knowledge-based neurocomput-
ing. The MIT Press.

DUCH, W., AND JANKOWSKI, N. 1997. New neural transfer functions.
Journal of Applied Mathematic and Computer Science.

FANG, S., BIDDLECOME, T., AND TUCERYAN, M. 1998. Image-based
transfer function design for data exploration in volume visualization. In
Proceedings of IEEE Visualization ’98 Conference, 319–326.

FRANKLIN, D. http://ieee.uow.edu.au/ daniel/software/libneural/.

FUJISHIRO, I., AZUMA, T., AND TAKESHIMA, Y. 1999. Automating
transfer function design for comprehensible volume rendering based on
3D field topology analysis. In Proceedings of IEEE Visualization ’99
Conference, 467–470.

GELENBE, E., FENG, Y., AND KRISHNAN, K. R. R. 1996. Neural network
methods for volumetric magnetic resonance imaging of the human brain.
In Proceedings of IEEE, vol. 84.

GELENBE, E., FENG, Y., AND KRISHNAN, K. R. R. 1996. Neural net-
works for volumetric MR imaging of the brain. International Work-
shop on Neural Networks for Identification, Control, Robotics, and Sig-
nal/Image Processing (August).

HALL, L. O., BENSAID, A. M., CLARKE, L. P., VELTHUIZEN, R. P.,
SILBIGER, M. S., AND BEZDEK, J. C. 1992. A comparison of neural
network and fuzzy clustering techniques in segmenting magnetic reso-
nance images of the brain. In IEEE Transactions on Neural Networks,
vol. 3.

HE, T., HONG, L., KAUFMAN, A., AND PFISTER, H. 1996. Generation
of transfer functions with stochastic search techniques. In Proceedings
of IEEE Visualization ’96 Conference, 227–234.

HUANG, R., AND MA, K.-L. 2003. RGVis: Region growing based tech-
niques for volume visualization. In Proceedings of Pacific Graphics 2003
Conference.

JANKUN-KELLY, T. J., AND MA, K.-L. 2001. A study of transfer func-
tion generation for time-varying volume data. In Proceedings of Volume
Graphics 2001 Workshop, 51–65.

KINDLMANN, G., AND DURKIN, J. W. 1998. Semi-automatic generation
of transfer functions for direct volume rendering. In IEEE Symposium
on Volume Visualization, 79–86.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive volume
rendering using multi-dimensional transfer functions and direct manip-
ulation widgets. In Proceedings of IEEE Visualization ’01 Conference,
255–262.

KONIG, A., AND GROLLER, E. 2001. Mastering transfer function spec-
ification by using VolumePro technology. In Tosiyasu L. Kunii, editor,
Spring Conference on Computer Graphics 2001 17 (April), 279–286.

LEVOY, M. 1988. Display of surfaces from volume data. In IEEE Computer
Graphics and Applications, vol. 8, 29–37.

MARKS, J., ANDALMAN, B., BEARDSLEY, P., FREEMAN, W., GIBSON,
S., HODGINS, J., KANG, T., MIRTICH, B., PFISTER, H., RUML, W.,
RYALL, K., SEIMS, J., AND SHIEBER, S. 1997. Design Galleries: A
general approach to setting parameters for computer graphics and ani-
mation. In Proceedings of SIGGRAPH ’97, 389–400.

MITCHELL, T. 1997. Machine Learning. McGrawHill.

PERLOVSKY, L. I. 2000. Neural Networks and Intellect: Using Model-
Based Concepts. Oxford University Press.

PFISTER, H., LORENSEN, B., BAJAJ, C., KINDLMANN, G.,
SCHROEDER, W., SOBIERAJSKI AVILA, L., MARTIN, K., MACHI-
RAJU, R., AND LEE, J. 2001. The transfer function bake-off. IEEE
Computer Graphics and Applications 21, 3 (May/June), 16–22.

RUMELHART, D., AND MCCLELLAND, J. 1986. Parallel and Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1. The
MIT Press.

SAMAD, T. 1988. Back-propagation is significantly faster if the expected
value of the source unit is used for update. In International Neural Net-
work Society Conference Abstracts.

TAKANASHI, I., LUM, E. B., MA, K.-L., AND MURAKI, S. 2002. ISpace:
Interactive volume data classification techniques using independent com-
ponent analysis. In Proceedings of Pacific Graphics 2002 Conference.

VAN GELDER, A., AND HOFFMAN, U. 1996. Direct volume rendering
with shading via three-dimension textures. In ACM Symposium on Vol-
ume Visualization ’96 Conference Proceedings.

WERBOS, P. 1974. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Department of Applied
Mathematics, Harvard University.




