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Abstract

A regulator anticipates learning about the relation between environmental stocks and

economic damages. For a model with linear-quadratic abatement costs and environmental
damages, and a general learning process, we show analytically that anticipated learning
decreases the optimal level of abatement at a given information set. If learning causes the

regulator to eventually decide that damages are higher than previously thought, learning
eventually increases abatement. Learning also favors the use of taxes rather than quotas.
Using a model that is calibrated to describe the problem of global warming, we show

numerically that anticipated learning causes a significant reduction in first period abatement
and a small increase in the preference for taxes rather than quotas. Even if the regulator’s
initial priors about environmental damages are much too optimistic, he is able to learn

quickly enough to keep the expected stock trajectory near the optimal trajectory.
JEL classification numbers D83, L50
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1 Introduction

The belief that we will eventually obtain better information about the effects of greenhouse
gases is central to the current debate over efforts to reduce carbon emissions. If we were
convinced that current uncertainty would persist indefinitely, we could model it like any other
form of randomness. The anticipation that we will learn about the relation between greenhouse
gases and global warming – together with disagreement about how this anticipated learning
should affect current policies – complicates the debate. If we incur large abatement costs now
and later learn that global warming is not a serious problem, we will have wasted resources. If
we delay cutting emissions and later learn that global warming is a serious problem, we will
suffer avoidable damages. Both sides of the debate claim that the prospect of learning supports
their recommendations. This paper contributes to understanding the role of anticipated learning
on optimal greenhouse gas policy.

We construct a dynamic model of a stock externality in which a regulator anticipates learn-
ing about the stochastic relation between the pollution stock and economic damages. This
model nests as special cases the situations where the regulator expects to obtain information
zero times, a finite number of times, or infinitely often in the future. Our primary result is
that anticipated learning increases the optimal level of emissions, i.e. it reduces abatement, at a
given information set. Under learning, the information about damages changes. If the regula-
tor learns that damages are higher than previously thought, abatement is eventually higher with
learning than without learning. (The converse also holds.)

An additional feature of this model is that the regulator and firms have asymmetric infor-
mation about abatement costs, and the regulator might use either taxes or quotas to control the
externality. Our secondary result is that anticipated learning about environmental damages
favors the use of taxes.

The paper’s third contribution is it’s generalization of the linear-quadratic control problem.
This model is a work-horse in applied economic dynamics, and the discovery that there is still
something to be learned about it is noteworthy – and potentially useful for other applications.

We calibrate the model in order to assess the likely magnitude of the effects of learning
on the level of abatement and the choice between taxes and quotas. We find that anticipated
learning causes a significant reduction in the optimal level of abatement, and causes a small
increase in the preference for taxes rather than quotas. Even if the regulator begins with priors
that are much too optimistic, learning occurs quickly enough that the expected stock trajectory
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remains close to the full-information optimal trajectory.
Arrow and Fisher (1974) and Henry (1974) analyze the effect of learning on optimal deci-

sions with irreversibilities. Epstein (1980) provides a more general treatment of this problem;
his results have recently been extended by Gollier, Jullien, and Treich (2000). Ulph and Ulph
(1997) use Epstein’s results to show that in a two-period model of global warming the effect
of learning on first-period emissions is ambiguous in general. Chichilnisky and Heal (1993)
explain why anticipated learning may lead to greater initial abatement when irreversibilities are
important. Heal and Kristrom (2002) review the role of uncertainty in climate change.

Much of the existing literature concerning climate change uncertainty assumes that infor-
mation decreases and eventually resolves uncertainty. Nordhaus and Popp (1997) and Peck and
Teisberg (1993) consider the difference between “act and learn” and “learn and act”. Learning
can occur all at once as in Kennedy (1999) and Kolstad (1996a), or more gradually as a function
of time as in Kolstad (1996b). Fisher and Narain (2003) study the effect of irreversibilities in
the stock of gasses and of abatement capital, holding fixed the amount of learning. Kelly and
Kolstad (1999) consider active learning about the relation between greenhouse gas levels and
global mean temperature changes; Leach (2004) studies a generalization of their model.

Most of these papers rely on two-period analytic models or complex models that require
numerical solutions. The numerical models permit a rich description of the environment, but
their complexity sometimes makes it difficult to understand the relation between outcomes
and specific features of the model. Two-period models take as exogenous the second-period
maximand. When learning can occur over many periods and where the stock is persistent,
as with global warming, the value of being in a particular state in the next period – the value
function – depends on future decisions and on future learning.

We compromise between the two previous approaches by using a model that is linear-
quadratic in emissions and stocks, but which has a very general learning component. Since the
effect of learning is ambiguous even in two-period models, it will also be ambiguous in a more
general dynamic model. The fact that we obtain unambiguous results for the linear-quadratic
model does not, of course, mean that learning has the same effect under other functional forms.
Nevertheless, the linear-quadratic model is helpful in understanding the general problem. The
model is simple enough to produce analytic results in a genuinely dynamic context, i.e. one in
which a regulator controls a stock externality and has many opportunities to learn about envi-
ronmental damages. The generality of the learning component is important, because it allows
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for the possibility that the regulator discovers that environmental damages are extremely high
or negligible. The model is also simple to calibrate and easy to interpret, making it possible to
understand the effect of assumptions about parameters.

Several papers, (Hoel and Karp 2001), (Hoel and Karp 2002), and (Newell and Pizer 2003),
compare taxes and quotas for the control of stock externalities when firms and the regulator
have asymmetric information about abatement costs. The main result from Weitzman (1974)’s
static model (where damages are associated with a flow rather than a stock) continues to hold: a
flatter marginal environmental damage curve, or a steeper marginal abatement cost curve favors
the use of taxes. These models assume that the regulator knows the parameters of the damage
function. We extend these models by including anticipated learning about an uncertain damage
parameter.

The intuition for our two analytic results – anticipated learning decreases abatement and
favors taxes – is simple, and is likely to apply in more general settings. If the regulator never
learns about the unknown damage parameter, it is appropriate to solve the problem by maximiz-
ing the expectation of the present discounted stream of utility, using the subjective distribution
of the unknown parameter. In the absence of learning, this distribution is constant. With learn-
ing (and a feedback control rule) the regulator knows that future decisions will be based on the
most recent information. If, for example, the regulator begins to believe that damages are more
serious than previously thought, he can reduce future emissions. The ability to adapt makes the
bad news about the damage parameter less bad. Similarly, good news is more valuable when
the regulator can change his future decisions. Thus, anticipated learning has an effect that is
similar to that of a more optimistic subjective distribution about the damage parameter. Con-
sequently, at a given information state the optimal emissions are higher in the current period,
relative to the case without learning.

The same kind of logic explains the effect of learning on the comparison between taxes
and quotas: anticipated learning is similar to a more optimistic prior on the slope of marginal
damages. In this context, greater optimism is equivalent to the belief that marginal damages
are flatter. Flatter marginal damages favor the use of taxes rather than quotas, just as in the
static and dynamic linear-quadratic models mentioned above.

Section 2 presents the linear-quadratic model of abatement costs and environmental dam-
ages with the general model of learning. Section 3 establishes the results described above.
Section 4 presents a specific model of learning. Section 5 calibrates the resulting model and
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assess the magnitude of the effect of learning. Section 6 discusses how our qualitative results
might change under different assumptions, and relates our results to the previous literature.
Section 7 concludes.

2 The model

We first specify the abatement cost and then environmental damages. Our two analytic results –
the effect of anticipated learning on abatement and on the ranking of taxes and quotas – require
a model with two different types of uncertainty: about damages and about abatement costs.
Anticipated learning distinguishes our model from the models in previous papers that compare
taxes and quotas for a stock pollutant.

2.1 Abatement costs

Abatement equals the difference between the actual level of emissions and the Business as
Usual (BAU) level. We assume that the abatement costs are quadratic in abatement, so the
benefit of emissions is a quadratic function of emissions. We also assume that the intercept
of the marginal benefit function equals a constant a plus a mean-zero random variable θt with
a constant and known variance σ2θ. The slope of marginal benefits is a known constant b. In
period t the firm, but not the regulator, knows the value of θt. The benefit function in period t

is
f̃ + (a+ θt)xt −

b

2
x2t . (1)

When the regulator sets a tax pt per unit of emissions, the firm maximizes the benefit of
emissions minus the cost of tax. It’s problem is

max
x

f̃ + (a+ θt)xt −
b

2
x2t − ptxt.

The first order condition to this problem implies that the level of emissions is

x∗t =
a− pt
b

+
θt
b
≡ z

t
+

θt
b
. (2)

Hereafter we assume that the tax-setting regulator chooses zt, the expected level of emis-
sions under a tax. Substituting x∗t into the firm’s benefit function (1) and taking expectations,
gives the expected benefit of emissions under the tax policy zt:

f̃ + azt +
σ2θ
2b
− b

2
z2t . (3)
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The quota-setting regulator chooses xt, which by assumption is binding with probability 1.
Thus, the expected benefit of emissions under the quota policy xt is simply

f̃ + axt −
b

2
x2t . (4)

The tax-setting regulator determines only the expected level of emissions, whereas the quota-
setting regulator chooses emissions.

2.2 Environmental damages and learning

Let St be the stock of pollutants, and xt be the flow of emissions in period t. All time dependent
variables are constant within a period. The fraction 0 ≤ ∆ ≤ 1 of the pollutant stock lasts into
the next period, so the growth equation for St is:

St+1 = ∆St + xt. (5)

With taxes, the flow of emissions and thus the next period pollutant stock, St+1, is stochastic
since it depends on the cost shock. With quotas, the regulator is able to exactly determine the
change in pollution stock.

The environmental damage in period t is

D(St, ωt;G
∗) =

G∗

2

¡
St − S̄

¢2
ωt (6)

where ωt is an i.i.d. non-negative random variable with mean 1, and G∗ is the true but unknown
non-negative value of the damage parameter. S is a known non-negative constant at which
environmental damages are minimized. The presence of the damage shock (ωt) means that the
regulator might not learn the true value G∗ in finite time.

The functional form of damages implies that the regulator is not able to influence the amount
of learning by manipulating the level of stocks. That is, learning is passive rather than active
in this model. To see this, use equation (6) to write the “data” (or signal) at time t as

datat ≡
2Dt¡

St − S̄
¢2 = G∗ωt. (7)

By Bayes’s theorem, the posterior on G∗, Pr(G∗ |datat), is proportional to the product of the
likelihood function, Pr (datat | G∗), and the prior, Pr (G∗). The numerical value of the data at t
depends on G∗ and ωt, but not on St. (A change in St causes an offsetting change inDt, leaving
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unchanged the middle expression in equation (7).) Therefore, Pr (datat | G∗) is independent
of St; consequently, the posterior Pr(G∗ |datat) is independent of St. In other words, changing
St does not change the information (about G∗) that the regulator obtains from observing G∗ωt.1

The regulator is not able to affect the amount of learning by manipulating the pollutant stock.
The value of G∗ might be much higher than the regulator’s expectation of this variable, so

damages could be much higher than currently believed. To this extent, the model captures the
uncertainty about global warming. However, the model makes a number of assumptions that
may not hold for global warming, as we discuss in Section 6.

At time t the regulator’s subjective expectation of the value of G∗ is Gt = EtG
∗; the

operator Et denotes the expectation conditional on information available at time t. In any
period, the expectation of the single-period payoff is linear in Gt. This linearity implies that if
Gt were a constant Ḡ (i.e. there is parameter uncertainty but no learning), we could solve the
control problem by replacing G∗ with Ḡ and simply ignore the uncertainty regarding G∗. Ḡ is
the certainty equivalent value of G∗ in the model where Gt is constant. However, parameter
uncertainty together with anticipated learning leads to a non-trivial change in the optimization
problem.2

In order to be able to use standard dynamic programming methods, we need to be able to
describe the subjective distribution of G∗ using a finite number of parameters. Those param-
eters are elements of the state vector. In our model the subjective distribution of G∗ at time
t is defined by two moments, the mean and variance, χt ≡

¡
Gt, σ

2
G,t

¢
. However, our proofs

do not depend on whether σ2G,t is a vector of higher moments or a scalar (the variance). The
regulator cannot predict his future subjective expectation, so his current subjective expectation
is an unbiased estimator of its future value, i.e. EtGt+τ = Gt for τ ≥ 0.

For the purpose of nesting special cases in a more general model, we use the non-negative

1Consider the alternative damage function G∗

2

¡
St − S̄

¢2
+ ωt, where ω appears additively rather than multi-

plicatively. In that case, the data at time t is (Dt, St); a larger value of
¡
St − S̄

¢2 causes G∗ to explain a greater
proportion of the variation in damages. For this additive model, there exists the possibility of active learning.

2Although the single period payoff is linear in the subjective expectation of G∗, the value function is non-
linear in this parameter. This fact means that anticipated learning about G∗ affects the optimal program; in
contrast, parameter uncertainty in the absence of learning does not change the optimization problem. Even
with a more general specification of the payoff, parameter uncertainty in the absence of learning is not of any
particular interest. For example, if the single period payoff is h (G∗, St, zt, θt) and there is no learning, we
can solve the control problem as if there were no parameter uncertainty, replacing the single period payoff with
H (St, zt, θt) ≡ EG∗h (G

∗, St, zt, θt).
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integer n to denote the number of periods during which the regulator expects to obtain infor-
mation about the damage parameter. In order to avoid uninteresting special cases, we assume
that if n ≥ 1, learning begins in the current period and continues for n consecutive periods.

The variance of the subjective distribution (or more generally, the higher moments) changes
stochastically. On average, we expect that learning decreases the subjective variance. How-
ever, if the regulator receives a surprising piece of information, he may decide that he is less
certain about the unknown parameter than he previously thought. In that case, σ2G increases.
We assume that if the variance ever falls to 0, i.e., if the regulator ever becomes certain of the
value of G∗, it does not subsequently increase. In addition, we assume that the variance ap-
proaches 0 only asymptotically, if at all. The last assumption (adopted only to simplify the
notation) means that the control problem for very large but finite n and for n = ∞ are not
exactly the same; they can, of course, be very similar.

If n = 0 the regulator expects never to obtain information about G∗; in that case the reg-
ulator solves a standard control problem without anticipated learning. For given G, the two
control problems with n = 0 and arbitrary σ2G, or with σ2G = 0 and arbitrary n, are equivalent.
In these two cases the regulator never changes his subjective mean of the damage parameter,
either because he never acquires new information (n = 0) or because he is convinced that he
already knows the truth (σ2G = 0).

This model of learning is quite general. It allows for the possibility that the regulator learns
about G∗ quickly or slowly. The regulator may discover that it is likely that damages are
extremely high, and very sensitive to changes in the stock, and his subjective variance might
either increase or decrease.

2.3 The optimization problem

The model has three types of state variables, the stock S, the moments of the subjective distri-
bution χt ≡ (G,σ2G), and the number of periods of future learning, n. The state χ (and under
taxes, the state S) changes stochastically and the state n is deterministic.

The expected payoff in a period is equal to the expected benefits of emissions minus the
expected damages. The expectation is taken with respect to the cost shock, θ, the damage
shock ω and the unknown parameter G∗. Under taxes, where emissions are given by equation
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(2), the expected single period payoff is

ft + azt −
bz2t
2
+

σ2θ
2b
− ctSt −

Gt

2
S2t (8)

with ft ≡ f̃ − Gt

2
S̄2, ct ≡ −GtS.

We discuss the control problem in which the regulator uses taxes. We can obtain the solution
under quotas immediately from the solution under taxes, simply by replacing z with x and
setting σ2θ = 0. (Compare the expressions (3) and (4).)

The parameter ft affects the value of the payoff but it does not interact with either the stock
or the control, so it has no effect on the optimal policy or on any of our results. Therefore, to
simplify notation we replace ft with a constant, f . Our formulation of damages, equation (6),
implies that the intercept of marginal damages is the unknown constant−G∗S, so the subjective
expectation of the intercept is ct = −GtS. The critical feature in our model is that the slope
of marginal damages is uncertain. The uncertainty about the intercept is an incidental feature.
In order to establish this point, we also consider an alternative model of damages, in which the
intercept is a known constant, c. With this alternative, we need a restriction on the magnitude
of the constant; that restriction is automatically satisfied when the slope is ct = −GtS. We
state our results for both the cases where the intercept of marginal damages is a constant and
where it equals−GtS. To simplify notation we drop the time subscript on ct unless it is needed
for emphasis.

With a discount factor β, the tax-setting regulator’s maximized expected payoff at time t is

J
¡
St, Gt, σ

2
G,t, nt

¢
= maxEt

∞X
τ=0

βτ
½
f + azt+τ −

bz2t+τ
2

+
σ2θ
2b
− cSt+τ −

G∗

2
S2t+τ

¾
. (9)

The dynamic programming equation is:

J (St, χt, nt) = maxz f + az − bz2

2
+

σ2θ
2b
− cSt − Gt

2
S2t+

βEχt+1

¡
EθtJ

¡
St+1, χt+1, nt+1

¢¢
subject to St+1 = ∆St + z + θt

b
.

nt+1 = max (nt − 1, 0)

(10)

To evaluate the continuation payoff we take expectations with respect to St+1 and χt+1, the
stochastic states. The maximization in problem (10) is subject to the equations of motion for
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χ, the moments of the subjective distribution. Since the analytic results do not depend on these
equations, we do not specify them at this time.

There are at least three ways that we can think about increasing learning in this model: (i)
An increase in n, the number of times that new information will arrive; (ii) An increase in σ2G,
the measure of uncertainty about the unknown parameter – if σ2G is close to zero, there is little
scope for learning, and if σ2G is large, potential learning is also large; and (iii) An increase in
the precision of future information. (Section 4 formalizes the meaning of this third possibility.)
The first two changes alter an argument in the value function, and the third change alters the
equation of motion for σ2G, thereby altering the value function itself.

3 The effect of learning on emissions and policy ranking

We begin by examining the case where n = 1 in order to show the relation between our model
and previous models in which learning occurs only once. The next subsection states our two
major results: anticipated learning increases emissions in the current period, and it favors the
use of taxes rather than quotas. Most proofs are in the Appendix.

3.1 One-time learning (n = 1)

For any n, the first order condition to problem (10),

a− bz = −βEχt+1

¡
EθtJS

¡
St+1, χt+1, nt+1

¢¢
, (11)

states that the expected marginal benefit of emissions in the current period should equal the
discounted expectation of pollution’s shadow cost (defined as the negative shadow value, i.e.
−JS).

Denote the value of Gt when there is no anticipated learning (n = 0) as G0. In the ab-
sence of learning, this value does not change, so we do not use a time subscript. Because G∗

enters each period’s payoff linearly, the value function depends on G0 but not on the higher
moment(s) σ2G,t when n = 0. Consequently, when n = 0 the value function can be written as
J
¡
St, Gt, σ

2
G,, 0

¢
≡ J̃ (St;G

0).
We can apply the logic used in previous models where learning occurs only once, e.g. Ulph

and Ulph (1997), to compare emissions when n = 1 and n = 0. In both of these cases, n = 0
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in the next period. Denote the value of Gt in the current period as G, so for n = 0, G0 = G;

for n = 1, EtGt+1 ≡ EtG
0 = G.

In the two cases where n = 0 or n = 1 equation (11) specializes to

n = 0 : a− bz = −β
³
EθtJ̃S (St+1;G

0)
´

n = 1 : a− bz = −βEG0|G

³
EθtJ̃S (St+1;G

0)
´
.

The optimal z is larger under learning (n = 1) relative to no-learning (n = 0) if and only if the
function EθtJ̃S (St+1, G

0) is convex in G0.3 If this function is convex, then

EG0

³
EθtJ̃S

¡
St+1, G

0
¢´

>
³
EθtJ̃S

¡
St+1, EtG

0
¢´

by Jensen’s inequality. When moving from no-learning to learning, z must increase in order to
maintain the equality in the first order condition (11).

For the linear-quadratic specification we have an explicit expression for J̃S (St;G0). It is
easy to confirm that this function is convex in G0, so the optimal level of emissions is higher
when n = 1 compared to n = 0. This fact provides the starting point for an inductive proof
that establishes that an increase in n increases the level of emissions.

3.2 Statement of results

We begin with the following simple but useful result.

Lemma 1 For both taxes and quotas, and for any integer n ≥ 0, the value function is quadratic
in S; that is, the value function has the form J(S,G, σ2G, n) = λn + μnS +

ρn
2
S2, where λn, μn

and ρn are functions of (G,σ2G, n).

This lemma is important for our analytic results, and it is also useful for numerical work. It
enables us to express the solution to the optimization problem as an explicit functional of λn, μn
and ρn. We can obtain those three functions by solving a recursive system of functional equa-
tions. This system does not involve optimization, a fact that greatly simplifies the numerical
solution to the system. The proof of Lemma 1 presents this system.

As a consequence of this lemma we have
3The validity of this assertion depends on the fact that the single period payoff is linear in G∗. If the single

period payoff were non-linear in G∗ the comparison between learning and no learning would depend on the
convexity EθtJS with respect to the distribution of G∗, as in Epstein (1980).
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Proposition 1 The Principal of Certainty Equivalence with respect to the cost shock θ holds
for any integer n ≥ 0. Consequently, the expected level of emissions under the optimal tax
equals the optimal quota.

Proof. Both statements follow from inspection of the control rules, given in the proof of
Lemma 1. These control rules are independent of the variance of the cost shock, and they are
identical for taxes and quotas.

This fact has been previously noted in a model that does not involve learning about damages
(Hoel and Karp 2002).

The following lemma identifies a restriction on parameter values needed to insure that when
the stock is sufficiently close to 0, the optimal level of emissions is positive. This restriction
makes the problem economically meaningful. The benefit of emitting in the current period must
be great enough to induce the regulator to allow positive emissions, at least when the stock is
low. Here we explicitly consider both the case where the intercept of marginal damages is a
constant c, and where the intercept equals ct = −GtS̄.

Lemma 2 When c is a known constant, in the absence of learning the optimal level of expected
emissions is positive for S = 0 iff

c <
a (1− β∆)

β
. (12)

When ct = −GtS̄ with G∗ ≥ 0 (so that Gt ≥ 0) and S̄ ≥ 0 the optimal level of expected
emissions is positive for S = 0.

The following lemma provides the basis for understanding the effect of learning on the
optimal level of emissions, and on the comparison of taxes and quotas. The lemma uses the
functions ρn (χ) and μn (χ) introduced in Lemma 1.

Lemma 3 When the initial variance is σ2G > 0: (a) The function ρn (χ) is increasing in n. (b)
The function μn (χ) is increasing in n if ct = −GtS̄ < 0 or if c is a constant and inequality
(12) holds.

The geometric intuition for this lemma is straightforward. Additional opportunities to learn
must increase the payoff (provided that σ2G > 0). Thus, for n ≥ 1

J(S, χ, n)− J(S, χ, n− 1) =
(λn − λn−1) +

¡
μn − μn−1

¢
S + 1

2

¡
ρn − ρn−1

¢
S2 > 0.

(13)
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This inequality must hold for all S, so it must be the case that ρn − ρn−1 > 0. (It must also
be true that λn − λn−1 > 0, but this inequality does not influence our two major results, which
depend only on the shadow cost of pollution, equal to −μn − ρnS.) There is no reason to
suppose – in a general linear-quadratic control problem – that μn − μn−1 > 0. However, that
inequality does hold for parameter values that lead to a positive level of emissions at small stock
levels.

Our primary result is

Proposition 2 Suppose that the initial σ2G > 0. (i) An increase in the opportunities for learning
(an increase in n) always increases current emissions provided that S is sufficiently large. (ii)
An increase in the opportunities for learning increases current emissions for all S ≥ 0 if c is a
constant and inequality (12) holds or if ct = −GtS̄ < 0.

Proof. By Lemma 1, we can write the first order condition given by equation (11) as

a− bz = −βEχ

£
μn−1 (χ) + ρn−1 (χ)S

¤
. (14)

By Lemma 3a, the right side is a decreasing function of n for large S. By Lemma 3a and 3b
it is a decreasing function of n for all S ≥ 0 if c is a constant and inequality (12) holds, or
if ct = −GtS̄ < 0. Under these conditions, an increase in n requires an increase in current
emissions in order to retain equality between the marginal utility of current emissions and the
shadow cost of the stock of pollution.

Proposition 2 shows (under the stated conditions) that anticipated learning increases emis-
sions in our linear-quadratic setting. We know from earlier work (especially Ulph and Ulph
(1997) and Gollier, Jullien, and Treich (2000)) that in some settings increased learning has an
ambiguous effect on emissions; therefore, anticipated learning might have an ambiguous effect
in a more general dynamic model.

Despite this lack of generality, our result describes a plausible effect of learning. As is
evident from the first order condition, anticipated learning increases emissions if and only if it
decreases the expectation of discounted shadow costs. A sufficient condition for that decrease
is for learning (higher n) to decrease the shadow cost of pollution at any state (i.e., any (χ, S)).
The shadow cost (−μn − ρnS) equals the amount that the regulator would pay for a marginal
decrease in the stock of pollution. It is "reasonable" for anticipated learning to reduce this
shadow cost, because policies can be adjusted to accommodate new information. Here, the
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anticipation of learning reduces not only the cost of the stock (i.e., it increases the value of the
program, as inequality (13) states), but it also reduces the marginal cost of the stock.

Proposition 2 describes the effect of anticipated learning at a given information set, i.e.
for initial beliefs. Of course, an important effect of learning is that it changes those beliefs.
If learning eventually eliminates uncertainty, i.e. if σ2G,t → 0 and Gt → G∗ as t → ∞,
the subjective distribution collapses to the true parameter value. In this case, the regulatory
program approaches the abatement rule under full information (with respect toG∗). The control
rule under full information and under no-learning (equation (24) in the Appendix) implies that
an increase in G∗ or G0 decreases emissions. This observation implies the following

Remark 1 If σ2G,t → 0 and Gt → G∗ as t → ∞, anticipated learning eventually increases
abatement and reduces the stock trajectory (relative to no-learning) if and only if G1 < G∗.

If the regulator initially underestimates damages (G1 < G∗) but is able to learn the true relation
between stocks and damages, learning eventually increases abatement.

Using superscripts T and Q to denote the value functions under taxes and quotas, we state
our second major result. (This result holds regardless of whether the intercept of the marginal
damage function equals−G∗S̄ or a known constant; in the latter case, it does not matter whether
inequality (12) is satisfied.)

Proposition 3 For σ2G > 0, JT (S, χ, n)−JQ(S, χ, n) is an increasing function of n: Increased
opportunities for learning favor the use of taxes rather than quotas.

In the static linear-quadratic problem (where damages are associated with the flow rather
than the stock of pollution), taxes are preferred to quotas if and only if the slope of marginal
abatement cost exceeds the expected slope of marginal damages (Weitzman 1974). In the
dynamic version of this problem (i.e., where damages are caused by the stock) without learning,
taxes are preferred to quotas if and only if the slope of marginal abatement costs exceeds the
discounted slope of the shadow cost of the stock, −βρ0 (Hoel and Karp 2002). The function
−βρ0 is increasing in the expected value of G∗. The intuition for policy ranking in the static
and dynamic problems (without learning about the damage parameter) is essentially the same.4

4With quotas the regulator chooses emissions exactly, and with taxes the regulator chooses the expected value
of emissions. Since the damage function is convex, expected damages are higher when emissions (in the static
problem) or the stock (in the dynamic problem) are random variables – as they are under taxes. A larger value of
G increases the convexity of damages and therefore favors quotas.
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Since ρ0 is convex in G = EG∗ (as the proof of Lemma 3 shows), one-time learning (n = 1)
decreases E (−βρ0). Learning thus has an effect on the policy ranking that is comparable to
a decrease in G, so learning favors the use of taxes. Increased opportunities to learn (a higher
value of ρn corresponding to a larger value of n) reinforce this effect, further favoring the use
of taxes.

4 The log-normal learning model

In order to calibrate a model for greenhouse gasses, we need an explicit learning rule. We
assume that the distribution of the damage shock in equation (6) is lognormal:

ωt ∼ i.i.d. lognormal
µ
−σ

2
ω

2
, σ2ω

¶
. (15)

We express the subjective moments in terms of g ≡ lnG. The regulator begins in period t with
normal priors on g∗ = lnG∗, with mean gt and variance σ2g,t:

g∗ ∼ N
¡
gt, σ

2
g,t

¢
. (16)

Given distribution (16), the subjective distribution of G∗ is log-normal with

EtG
∗ ≡ Gt = exp

µ
gt +

1

2
σ2g,t

¶
, σ2G,t ≡ vart (G

∗) = exp(2gt+σ
2
g,t)
¡
exp(σ2g,t)− 1

¢
. (17)

Since damages are a product of independent log-normally distributed variables, the regula-
tor has log-normal priors on damages. After observing damages and the current stock, the
Bayesian regulator updates his belief about g∗. The moment estimator of g∗, denoted ĝt, is

ĝt = ln
2Dt¡

St − S̄
¢2+σ2ω

2
(18)

with variance σ2ĝ = σ2ω. The posterior for g∗ is normally distributed with the posterior mean
gt+1 and posterior variance σ2g,t+1:

gt+1 =
σ2ω

σ2ω + σ2g,t
gt +

σ2g,t
σ2ω + σ2g,t

ĝt, (19)

σ2g,t+1 =
σ2g,tσ

2
ω

σ2ω + σ2g,t
⇒ σ2g,t =

σ2g,0σ
2
ω

σ2ω + tσ2g,0
, (20)
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where σ2g,0 is the prior at the beginning of the initial period, t = 0 ((Greene 2000), pages
407-410).

A smaller value of σ2ω is equivalent to greater precision of future information. Using equa-
tion (19), greater precision of information implies that this period’s posterior mean, gt+1, is
more responsive to information obtained in the current period. Using equation (20), greater
precision of information means that the posterior variance decreases over time more rapidly.
Thus, greater precision of information increases the amount of learning, as stated in Section
2.3.

The subjective distribution for the unknown damage parameterG∗ collapses to the true value
of this parameter as the number of observations approaches infinity. Appendix B1, available
through JEEM’s online archive for supplementary material at http://www.aere.org/journal/index/html,
proves this result.

If the regulator begins with too optimistic a prior (g0 < g∗) gt increases over time, on av-
erage. This increase can be enough to offset the decrease in σ2g,t, leading to an increase in
vart (Gt) (using equation (17)). In this case, during a phase of the learning process the regula-
tor becomes less certain about the value of G∗, although he eventually learns the correct value
with probability 1. It is also straightforward to show that the regulator’s current expectation of
G∗ is an unbiased estimate of the future expectation: EtGt+τ = Gt, ∀τ ≥ 0.

In the absence of anticipated learning, the regulator solves the control problem treating Gt

as a constant. In this case the constant Ḡ ≡ Gt = exp
³
gt +

σ2g,t
2

´
is the certainty equivalent

value of G∗.

5 Quantitative results

We calibrate the model to describe the problem of controlling CO2 emissions in order to limit
the possible damages caused by global warming. Most global warming models contain a more
complex relation between greenhouse gas stocks and environmental damages. In some respects
these models reflect more accurately the current state of art of the physical sciences.

This model is much simpler. It is easy to discover how assumptions about the likely conse-
quences of increased carbon stocks and about abatement costs determine the optimal level and
method of abatement, and to explore the role of learning. Our model is consistent with the
more complex models, because our calibration uses much of the same data and opinions. The
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Parameter Note Value
σ2ω variance of ln(damage shock) 0.6349
S̄ zero damage stock, billion tons of carbon 590

a
intercept of the marginal benefit,
$/(ton of carbon)

224.26

x̄
BAU decade emissions
billion tons of carbon

116.73

b slope of the marginal benefit, 1.9212
billion $/(billion tons of carbon)2

σθ standard deviation of cost shock, 5.5945
$/(ton of carbon)

∆ an annual decay rate of 0.0083 0.9204
β a continuous yearly discount rate of 3% 0.7408

Table 1: Base-line parameters

numerical results provide an indication of the quantitative effect of learning on both the optimal
level of abatement and on the choice between taxes and quotas

5.1 Calibration of a global warming model

Most readers would find it difficult to decide whether a particular value of g (or G) should be
considered large or small. Therefore, we describe our calibration in terms of the parameter
φ, defined as the expected percentage reduction of Gross World Product (GWP) due to a dou-
bling of stocks from their pre-industrial level. The parameters φ and G are linearly related, as
described in the online Appendix B2. The values φ = 0.3, φ = 1.33 and φ = 3.6 represent
low, moderate, and high estimates of damages. Table 1 contains the baseline parameter values.
The online Appendix B2 explains how we obtain these values, and the relation between our
calibration and previous models.

5.2 Numerical results

We present four sets of simulations in order to assess the magnitude of the effect of learning
on abatement and on the comparison between taxes and quotas. We assume that learning
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Figure 1: Abatement with learning as a function of initial uncertainty

continues indefinitely (n =∞). We obtain the control rule in this case by numerically solving
the recursive fixed point equations (27) and (28) in the Appendix.

Figure 1 shows the optimal abatement in the first period, when S = 781 billions tons of
carbon, equivalent to the current atmospheric CO2 concentration. This abatement is expressed
as a percentage of the BAU level of emissions, using three different values of φ (defined as
the regulator’s initial point estimate of the annual percentage loss in GWP due to a doubling
of carbon stocks). As noted above, the values φ = 0.3, φ = 1.33 and φ = 3.6 represent low,
moderate, and high estimates of damages. In performing this simulation we change σ2g,1 and
make offsetting changes in g1 so that G1 = E1G

∗ = exp
¡
g1 +

1
2
σ2g,1

¢
remains constant. As

we hold G1 fixed and increase σ2g,1, the initial expectation of damages remains constant but the
amount of uncertainty increases. Consequently, the potential for learning increases. We show
the results as σ2g,1 varies from the minimum level, 0, to the level in our calibration, 0.63. As
σ2g,1 varies over this range, the coefficient of variation of damages varies from 0.94 to 1.6.

As we previously noted, in the absence of anticipated learning, the optimal decision depends
on the certainty equivalent parameter G1, but it does not depend on the amount of uncertainty
about the parameter G∗. Therefore, the dotted lines labelled “without learning” are constant
with respect to σ2g,1. In the absence of learning, optimal abatement is sensitive to the estimate
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Figure 2: Abatement with learning as a function of the variance of the signal (φ = 1.33,
σ2g = 0.63)

of damages; a 170% increase in the estimate of damages, from φ = 1.33 to φ = 3.6, results in
a 138% increase in abatement.

The potential for learning increases with the amount of parameter uncertainty. Not sur-
prisingly, the difference between the optimal level of abatement with and without learning also
increases with this uncertainty. When φ takes the values 0.3, 1.33 and 3.6, (fixing σ2g = 0.63)
the potential for learning decreases the level of abatement by 16%, 19% and 20%, respectively.

The second experiment studies the effect of learning as a function of the variance of the
damage shock. As this variance increases, the signal becomes less informative. Consequently,
learning occurs more slowly, so the anticipation of learning has a smaller effect on the optimal
decision. Our base-line calibration assumes that the damage shock and the parameter uncer-
tainty contribute equally to the overall level of uncertainty about damages: σ2g,0 = σ2ω = 0.63.

Figure 2 shows how the variance of the damage shock affects the optimal level of abatement.
For very large variances (e.g. σ2ω > 400), learning occurs so slowly that it is virtually worthless,
and there is a negligible difference between the optimal first period policy with and without
learning. However, even if the variance of the damage shock is substantially larger than in our
calibration, the effect of anticipated learning remains significant.
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Figure 3: The effect of learning on the comparison of taxes and quotas

The third experiment investigates the importance of anticipated learning in the ranking of
taxes and quotas. For our calibration, the expected payoff under taxes is approximately 30
billion dollars larger than the expected payoff under quotas, for 1.3 ≤ φ ≤ 3.6 (Figure3).
The difference decreases with φ, in line with previous analytic results (Hoel and Karp 2002).5

For φ = 3.6 and σ2g,0 = 0.63, anticipated learning increases the difference in payoffs under
taxes and quotas from $29.6 to $30 billion, an increase of about 1.3%. For this calibration,
anticipated learning has a very small effect on the policy ranking.

The final experiment illustrates the effect of learning about the damage parameter on the
expected stock trajectory. Figure 4 shows the expected stock trajectories under four scenarios:
Business as Usual; the case where the regulator believes that φ = 1.33 and does not learn; the
case where he knows that φ = 3.6; and the case where the the true value is φ = 3.6, the regulator
begins with the belief that φ = 1.33 and he anticipates learning. The other parameters equal
the baseline values in Table 1, and we use σ2g,1 = 0.63. The right panel shows the trajectories

5The difference in payoffs under taxes and quotas is proportional to the variance of the cost shock, a parameter
about which we have little information. Nevertheless, $30 billion is a fairly small amount, since it is the difference
in value functions. With our decade discount factor of β = .74, $30 billion is equivalent to a flow of approximately
$7.8 billion per decade.
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Figure 4: The effect of learning on the stock trajectory

over a horizon of 50 periods (500 years) and the left panel shows the trajectories during the first
three periods.

All of the stock trajectories begin at the same initial level. Abatement is positive with or
without learning, so the stock trajectories under regulation always lie below the BAU trajectory.
Initial abatement with learning is lower (emissions are higher) under anticipated learning, com-
pared to no-learning, for given initial beliefs that φ = 1.33. Therefore, the expected trajectory
under anticipated learning lies above the expected trajectory without learning, for early periods
(the left panel). Both of those trajectories lie above the expected trajectory when the regula-
tor is certain that φ = 3.6. With learning, the regulator increases his subjective expectation
of G∗. The level of abatement in the scenario with learning is eventually greater than under
no-learning, and the expected stock is lower in the former case. Within 5 periods (fifty years)
the expected stock is very close to the level under perfect information about G∗.

For our parameterization, learning occurs quickly enough that the stock remains close to its
optimal level, even though the regulator’s initial belief about damages is much too optimistic.
The stock decays slowly and emissions during a decade are a small fraction of the stock; the
stock changes slowly relative to the speed of learning. This example illustrates Remark 1.
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6 Model sensitivity

The functional forms for abatement costs and environmental damages (but not for learning
in the theoretical model) are restrictive, and the model ignores a number of features of the
global warming problem. In assessing the applicability of the model, it is worth distinguishing
between these two types of limitations. This section discusses the effect of allowing inequality
constraints, catastrophic changes, or different types of abatement activities.

Our results hold even if∆ = 1, i.e. if the stock does not decay. However, the model does not
include inequality constraints, such as xt ≥ 0. Thus, even when ∆ = 1 the stock is reversible.
The possibility (in a more general model) that an irreversibility constraint might bind is one
reason that anticipated learning could increase abatement (Chichilnisky and Heal 1993). This
possibility does not arise in our model.

Kolstad (1996a) finds that a non-negativity constraint on emissions does not bind for rea-
sonable parameterizations of the DICE model, provided that the stock of abatement capital is
reversible. In this situation, in his simulations anticipated learning has negligible effect on
abatement . Ulph and Ulph (1997) find that a non-negativity constraint on emissions binds
only for extreme parameter values, using Maddison (1995)’s model. When the constraint does
bind, the effect of anticipated learning is ambiguous. When it does not bind, learning decreases
abatement, typically by a small amount.

We conducted numerical experiments (reported in the online Appendix B3) which show that
the probability that it is optimal to set emissions less than 0 is not measurably different from 0.
In our model and for our calibration, the constraint x ≥ 0 is (essentially) never binding. Thus,
imposing the constraint x ≥ 0 would not alter our qualitative results.

The model excludes the possibility of catastrophic changes. There are a variety of ways to
model such a change, but the two obvious alternatives are to assume that the probability that
the catastrophe occurs is a function of the stock (Clarke and Reed 1994) or that the catastrophe
occurs when the state crosses an unknown threshold (Tsur and Zemel 1996). Tsur and Zemel
(1998) show that under plausible circumstances, either type of risk reduces the steady state
stock (conditional on the catastrophe not having yet occurred). In this case, the risk increases
abatement, at least asymptotically.

We are not aware of any analysis of the effect of anticipated learning about such a risk.
This anticipation increases the value of being in a pre-catastrophe state in the next period.
If, as seems likely, anticipated learning also increases the shadow cost of the stock in a pre-
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catastrophe state, it encourages abatement in the current period. Again, we would have to use
numerical methods to test whether this conjectured effect exists, and if so, whether it would
outweigh the effect described in Proposition 2.

In our model, abatement in the current period and in future periods both decrease future
stocks, relative to BAU levels. In that sense, the current and future actions are substitutes.
In some situations, actions in different periods might be complements. For example, in the
current period it may be possible to undertake research (or some other type of investment) that
can only be used in subsequent periods.

Karp and Zhang (2002) study the case where investment increases a stock of abatement
capital that reduces future marginal abatement costs. Current investment and future abatement
are complements, but the relation between the two is independent of the information about
environmental damages. In this setting, anticipated learning about environmental damages
is likely to have the same effect as in the model without capital. Anticipated learning about
damages decreases the shadow cost of the stock of pollution, and therefore decreases the level
of investment and the level of abatement at a given information state.

However, the fruits of current research (or investment) might be more useful the more we
know about global warming. For example, research might enable us to respond more flexibly
to future information about global warming. The value of this flexibility might depend on the
quality of our information. In this case, anticipated learning increases the shadow value of
current research, increasing current R&D. Examples that go in the opposite direction are also
easy to construct. For example, anticipated learning might increase the benefit of waiting to
invest, until we learn what type of technology is appropriate.

7 Conclusion

There is tremendous scientific uncertainty regarding the relation between greenhouse gasses
and global warming; the science is likely to improve. There are many reasons why people
disagree about the appropriate response to the danger of greenhouse gasses. One reason is that
they hold different views about how the anticipation of learning should affect the regulatory
decision. There is good reason for these differing views: even in two-period models the effect
of learning is ambiguous. In a more realistic multi-period problem the comparison will also be
ambiguous.
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Despite the impossibility of a general answer to the question “How does anticipated learning
affect optimal regulation of greenhouse gasses?”, economic models can shed light on the issue.
We adapted a linear-quadratic model to include anticipated learning about a damage parame-
ter. In this model, anticipated learning always reduces abatement, for a given set of beliefs.
(Learning eventually increases or decreases abatement, relative to no-learning, depending on
how the beliefs change.) The intuition for this result is simple: the ability to respond to new
information reduces the threat of future damages, and therefore has an effect that is similar to a
more optimistic view of future damages. The simplicity of this intuition is important because it
suggests that the result is robust to functional forms. We also showed that anticipated learning
favors the use of taxes rather than quotas.

We confirmed numerically that the absence of an explicit irreversibility constraint on the
level of emissions is not important in our model. However, the possibility of irreversible
catastrophic changes resulting from the accumulation of greenhouse gasses, would be likely to
weaken, and might overturn the conclusion that anticipated learning reduces abatement efforts.
The assessment of that possibility requires a more complicated model, which could probably
be analyzed only by using numerical methods.

An important advantage of the linear-quadratic formulation is that it permits a simple cali-
bration. We know little about the relation between greenhouse gas stocks and global warming,
and little about the relation between global warming and economic costs. Rather than attempt-
ing to model both of these relations, we posit a direct relation between stocks and damages
which we calibrate using estimates that have appeared in the literature.

We find that the effect of anticipated learning causes a 15-20% reduction in the optimal
level of abatement. Even if learning occurs much more slowly than our baseline assumes, it
still causes a significant reduction in abatement. Learning has a small effect on the ranking
of taxes and quotas. Even if the regulator begins with priors that are much too optimistic, the
expected stock trajectory remains close to the full information optimal level. The numerical
results suggest that a substantial level of abatement is optimal even with anticipated learning.
The results therefore do not support a policy of ignoring the dangers of global warming while
learning takes place.
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A Appendix: Proofs

The Appendix proves the results stated in Section 3.2. In the proofs, the operator E takes
expectations of the moments in the next period, χ0 = (G0, σ20G). Note that the proofs do not
require that σ2G be a scalar. In the text we refer to σ2G as the variance, but we pointed out that it
could also be viewed as a vector of higher moments.

Proof of Lemma 1.
We use a proof by induction. We begin the induction with n = 0, where we have the well-

known linear-quadratic model without anticipated learning. The value function when n = 0

is quadratic in S, i.e. J(S, χ, 0) = λ0 + μ0S +
1
2
ρ0S

2. Here we merely present the formulae
for the coefficients of the value function and the control rule when the regulator uses taxes. By
comparing the expected payoff functions under taxes and quotas, we can obtain the coefficients
of the value function and of the control under quotas simply by replacing z with x and by setting
σ2θ = 0.

We use the definition:

Ψ ≡
q¡

G2β2 + 2βGb+ 2Gβ2b∆2 + b2 − 2b2β∆2 + b2β2∆4
¢
> 0.

The formulae for the coefficients of the value function are

ρ0 =
1

2β

¡
−Gβ + b− bβ∆2 −Ψ

¢
< 0 (21)

μ0 =
−cβρ0 + bc− aβρ0∆

−b+ βρ0 + bβ∆
(22)

λ0 =
1

2

βρ0 + b

(1− β) b2
σ2θ +

−a2 − β2μ20 − 2aβμ0 − 2fb+ 2fβρ0
2 (−b+ βρ0) (1− β)

. (23)

The optimal control is
z0 =

a+ βμ0 + βρ0∆S

b− βρ0
. (24)

For ∞ > n ≥ 1 we use an inductive argument to show that the value function is quadratic
in S and to obtain the formulae for the coefficients of the value function and the control rule.
Suppose that the value function is quadratic at n − 1 (as we know is true when n = 1):
J(S,G, σ2G, n − 1) = λn−1 + μn−1S +

ρn−1
2
S2. The dynamic programming equation when

there are n future learning periods is

J(S,G, σ2G, n) =

maxz f + az − bz2

2
+

σ2θ
2b
− cS − G

2
S2+

βE
³
λn−1 + μn−1 (∆S + z) +

ρn−1
2
(∆S + z)2 +

ρn−1
2

σ2θ
b2

´
.

(25)
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The functions λn−1, μn−1, and ρn−1 depend on the index n and also on the values of the state in
the next period, G0, σ20G; we suppress those arguments.

The operator E takes the expectation of the next period value (G0, σ20G), conditional on the
subjective moments in the current period, (G, σ2G). In writing the DPE (25) we took expecta-
tions with respect to the current cost shock, θ. This operation accounts for the presence of the
terms involving the variance of the cost shock, σ2θ. We also took expectations with respect to
the damage shock, ω, using Eω = 1.

The optimal control rule, obtained by performing the maximization, is

zn =
a+ βEμn−1 + βEρn−1∆S

b− βEρn−1
. (26)

Substituting this control rule into the DPE, using the trial solution J(S,G, σ2G, n) = λn +

μnS +
ρn
2
S2 and then equating coefficients in orders of S, we obtain the coefficients in the

current period:

ρn =
(Gβ + bβ∆2)Eρn−1 − bG

b− βEρn−1
< 0 (27)

μn =
−bc+ β (a∆+ c)Eρn−1 + bβ∆Eμn−1

b− βEρn−1
(28)

λn =
1
2

b+βEρn−1
b2

σ2θ+

(−2fβ−2β2Eλn−1)Eρn−1+2aβEμn−1+2bβEλn−1+2bf+β2(Eμn−1)
2
+a2

2(b−βEρn−1)

(29)

In order to establish the inequality in equation (27) we use the definitions of ρn and induction.
We start the inductive chain using the inequality in equation (21).

If we set c = SG∗, an unknown parameter, we repeat the steps above. The parameter c is
replaced by SG, its current estimate, in the above equations.¥

Proof of Lemma 2
Using the formula for μ0 and z0, equations (22) and (24), the value of z0 when S = 0 is

a+ βμ0
b− βρ0

=
a (β∆− 1) + βc

βρ0 + b (β∆− 1) .

Since ρ0 < 0, this expression is positive if and only if equation (12) holds.¥

Proof of Lemma 3
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Part (a). We use an inductive proof. In Step 1 we start the induction by showing that
ρ0 (G) is a convex function of G, which implies that ρ1 (G,σ2G) > ρ0 (G). (This inequality is
part of the condition that insures that a single learning period reduces emissions, as described
in Section 3.1.) In Step 2 we complete the induction.

Step 1 Recall our comment in the text that J (S,G, σ2G, 0) is independent of σ2G. Con-
sequently, ρ0 is independent of σ2G. If the regulator does not expect to learn in the future, the
optimal decision depends on the expectation ofG∗, but not the higher moments of the subjective
distribution. The formula for ρ0, equation (21), implies

d2ρ0
dG2

=
2β2b2∆2

(Ψ)3
> 0,

so ρ0 is a convex function of G. Jensen’s inequality implies

E
£
ρ0(G

0) |
¡
G,σ2G

¢¤
> ρ0

¡
E
£
G0 |

¡
G,σ2G

¢¤¢
= ρ0 (G) (30)

whenever σ2G > 0. The equality in (30) is a consequence of the fact that J (S,G, σ2G, 0) is
independent of σ2G.

In order to ease the notation, define the right side of equation (27) as the function

h(r;G) ≡ Gβr + bβ∆2r − bG

b− βr
.

In this function, r is the proxy for Eρn−1; h (·) is strictly increasing in r: hr > 0. Using this
definition we rewrite ρ0 and ρ1 as

ρ0 (G) = h(ρ0;G)

ρ1 (G,σ
2
G) = h (E [ρ0(G

0) | (G, σ2G)] ;G))
.

In view of the fact that h is increasing in its first argument, and using inequality (30), we have

ρ1
¡
G, σ2G

¢
> h(ρ0

¡
E
£
G0 |

¡
G, σ2G

¢¤¢
;G) = h(ρ0 (G) ;G) = ρ0(G)

for all G and for all σ2G > 0.
Step 2 We now compare the functions ρn (G,σ2G) and ρn−1 (G, σ

2
G) for n ≥ 2. Note that

we are comparing these two functions evaluated at the same argument, (G,σ2G). We want to
show how the number of opportunities for learning, n, affects the functions for given beliefs
(i.e., given subjective moments).
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Suppose that for some n ≥ 2 the following relation holds: ρn−1(G, σ
2
G) > ρn−2(G,σ

2
G) for

all G and for all σ2G > 0. (We know from Step 1 that this relation is true for n = 2.) This
inequality implies that

rn−1 ≡ E
£
ρn−1(G

0, σ02G) | G,σ2G
¤
> E

£
ρn−2(G

0, σ02G) | G,σ2G
¤
≡ rn−2

for all G and for all σ2G > 0. Consequently,

ρn = h (rn−1;G) > h (rn−2;G) = ρn−1.

Part (b) We concentrate on the case where c is a known constant and then briefly consider
the case where ct = −S̄Gt. We first obtain an intermediate result, we then start the inductive
chain by considering the case where n = 0 and we then complete the inductive argument.

Step1 We first note some characteristics of the mapping in equation (28), which we repeat
for convenience.

μn =
−bc+ aβ∆Eρn−1 + cβEρn−1 + bβ∆Eμn−1

b− βEρn−1
.

Using the right side of this equation, we define the function

s ≡ −bc+ aβ∆r + cβr + bβ∆q

b− βr
.

In this function, r is the proxy for Eρn−1 and q is the proxy for Eμn−1. We note that

ds

dq
=

bβ∆

b− βr
> 0 for b− βr > 0 (31)

ds

dr
= β∆b

a+ βq

(b− βr)2
> 0 for a+ βq > 0 (32)

d2s

dqdr
=

bβ2∆

(b− βr)2
> 0 (33)

An increase in q and r when b− βr > 0 and a+ βq > 0 increases the value of the function s.
The inequalities (31) − (33) imply that the following is a set of sufficient conditions to

conclude that μn > μn−1.

Condition 1 (a) b − βEρn−1 > 0. (b) Eρn−1 > Eρn−2. (c) Eμn−1 > Eμn−2. (d)
a+ βEμn−1 > 0.
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The inequality in equation (27) establishes that Condition 1a holds for all n ≥ 1 and the
proof of Lemma 3a shows that condition (1b) holds for all n ≥ 2.

Step 2 We now establish that μ1 > μ0. To verify this inequality we begin by showing that
μ0 is convex in G. We use the chain rule to obtain

dμ0
dG

=
∂μ0
∂ρ0

∂ρ0
∂G

and
d2μ0
dG2

=
∂2μ0
∂ρ20

µ
∂ρ0
∂G

¶2
+

∂μ0
∂ρ0

µ
∂2ρ0
∂G2

¶
.

Equation (22), the formula for μ0, implies

∂μ0
∂ρ0

= −βb∆ cβ − a+ aβ∆

(−b+ βρ0 + bβ∆)2

∂2μ0
∂ρ20

= 2β2b∆
cβ − a+ aβ∆

(−b+ βρ0 + bβ∆)3
.

The last three equalities imply

d2μ0
dG2

= 2β2b∆ cβ−a+aβ∆
(−b+βρ+bβ∆)3

³
dρ0
dG

´2
− βb∆ cβ−a+aβ∆

(−b+βρ+bβ∆)2

³
d2ρ0
dG2

´
=

(cβ−a+aβ∆)
(−b+βρ0+bβ∆)2

∙
2β2b∆

(−b+βρ0+bβ∆)

³
dρ0
dG

´2
− βb∆

³
d2ρ0
dG2

´¸ (34)

The term in square brackets is negative, so μ0 is a convex function of G iff cβ − a+ aβ∆ < 0,
i.e. iff equation (12) holds. For all G, σ2G Jensen’s inequality implies

Eμ0
¡
G, σ2G

¢
> μ0(EG, σ

2
G) (35)

(iff c < a(1−β∆)
β

). (Recall that μ0, like ρ0, depends on G but not on σ2G. The expectation of μ0
with respect to G obviously does depend on σ2G.)

Equations (31) − (33), (35), and the facts that Eρ0 > ρ0 and b − βEρ0 > 0 establish that
μ1 > μ0. Consequently Eμ1 > Eμ0 and a+ βEμ1 > a+ βEμ0 > 0 (by Lemma 2, given that
equation (12) holds). Therefore Conditions 1a- 1d hold for n = 2.

Step 3 We now consider the case for n ≥ 2. Suppose that Condition 1 holds for some
n ≥ 2. (The previous paragraph confirms this hypothesis for n = 2.) For this value of n we
have μn > μn−1 (by part b, Step 1) so Eμn > Eμn−1; thus, Condition 1c holds for n + 1. In
addition, a+Eμn > a+Eμn−1 > 0, so Condition 1d holds for n+ 1. Condition 1b holds by
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virtue of part a of this proof. Condition 1a holds in view of equation (27). Thus Condition 1
holds for n+ 1. This completes the proof when c is a known constant.

Step 4 In the case where ct = −SGt, the outline of the argument is unchanged, but the
formula for d2μ0

∂G2
is more complicated because μ0 now depends directly on G = EG∗. There is

still the indirect effect of G on μ0 via the parameter ρ0. Taking into account this direct effect,
equation (34) is replaced by

d2μ0
dG2

= (cβ−a+aβ∆)
(−b+βρ0+bβ∆)2

×∙
2β2b∆

(−b+βρ0+bβ∆)

³
∂ρ0
∂G

´2
− βb∆∂2ρ0

∂G2
− βb∆bβ2∆

(−b+βρ0+bβ∆)2

¸
.

The only difference is that an additional negative term appears in the square brackets. The rest
of the argument remains the same as in the case where c is a known constant.¥

Remark 2 The proof of Lemma 3 shows that the functions μn and ρn are increasing in n,
and the proof of Lemma 1 show that ρn is bounded above by 0. The value function λn +

μnS +
1
2
ρnS

2 is bounded above by 1
1−β

³
f +

a2+σ2θ
2b

´
, so both λn and μn are bounded above.

Consequently, the two sequences of functions μn (G,σ2G) and ρn (G,σ
2
G) converge to functions

μ∞ (G, σ
2
G) , ρ∞ (G,σ

2
G) as n → ∞. These limits are the solution to the fixed point mapping

obtained by removing the subscript n in equations (27) and (28). We solve this fixed point
mapping to obtain the control rule for n =∞.

Proof of Proposition 3
We rearrange equation (29) and use a superscript T to denote taxes. Under taxes, the

constant (with respect to S) in the value function obeys the difference equation

λTn =
1
2

b+βEρn−1
b2

σ2θ + βEλTn−1+

1
2

−2fβEρn−1+2bf+2aβEμn−1+a2+β2(Eμn−1)
2

b−βEρn−1

.

The expression for the constant (with respect to S) in the value function under quotas, denoted
λQn , obeys the same difference equation, except that the term that multiplies σ2θ is absent. (As we
noted in the proof of Proposition 1, ρn and μn are the same under taxes and quotas.) Defining
Dn ≡ λTn − λQn , we have

Dn =
1

2

b+ βEρn−1
b2

σ2θ + βEDn−1. (36)
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We want to show that Dn > Dn−1. We use an inductive proof, and first show that this
inequality holds for n = 1. Using equation (23) to compute D0 gives

D0 =
σ2θ

2 (1− β) b2
(b+ βρ0) .

Taking expectations at n = 1 and substituting this function into equation (36) gives

D1 =
σ2θ

2 (1− β) b2
(b+Eβρ0) .

Using the convexity of ρ0 in G we confirm that D1 > D0.
Now suppose that Dn−1 > Dn−2 for some n ≥ 2. (We have already confirmed that this

hypothesis is true, using n = 2.) This hypothesis implies EDn−1 −EDn−2 > 0. We have

Dn −Dn−1 =
β
¡
Eρn−1 −Eρn−2

¢
2b2

σ2θ + β (EDn−1 −EDn−2) .

The first term on the right side is positive by Lemma 3a and the second is positive by the
hypothesis, thus confirming Dn −Dn−1 > 0.

This proof does not involve the parameter c, so it does not matter whether we view it as a
known constant or as SG.·.
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B Online Appendix for "Regulation with anticipated learn-

ing..."

This Supplementary Appendix, referred to as "Appendix B" in "Regulation with anticipated
learning about environmental damages", consists of three sections. The first section shows
that the subjective distribution for the unknown damage parameter G∗ collapses to the true
parameter value as t → ∞. The second part describes the calibration outlined in section 5.1
and lists the computer packages that we used to solve the numerical problem. The third section
shows that including an explicit inequality constraint on emissions would have no effect on our
quantitative results.

B.1 Convergence of the distribution

The difference at the beginning of period t between the subjective expectation of g∗ and its
true value, gt − g∗, depends on the realization of the sequence of random variables, Ωt ≡
{ω0, ω1, ...ωt−1}. Some straightforward but tedious calculations confirm that the expectation
and variance at time 0 (with respect to the random sequence Ωt) of this difference is

EΩt (gt − g∗) =
(g0 − g∗)σ2ω
σ2ω + tσ2g,0

→ 0 as t→∞

V arΩt (gt − g∗) =
σ4g,0¡

σ2ω + tσ2g,0
¢2 tσ2ω → 0 as t→∞.

The mean and the variance of the random variable gt − g∗ asymptotically approach 0. The
mean decreases monotonically. The variance might initially increase (if σ2g,0 < σ2ω) but has a
single turning point and thereafter monotonically decreases. From equation (20), σ2g,t → 0 as
t→∞. These facts and equation (17) imply that the subjective distribution of G converges to
the true parameter value G∗.

B.2 Model calibration and numerical methods

We set the length of a period equal to 10 years, using a ten-year discount factor of β = 0.7408.
This discount factor implies an annual discount rate of 3%, a value used in previous studies
(Kelly and Kolstad 1999) (Kolstad 1996b) (Nordhaus 1994b). Both costs and damages are
measured in billions of 1998 US dollars.
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CO2 emissions and stock. The CO2 atmospheric stock St is measured in billions of tons of
carbon equivalent (GtC). The pre-industrial atmospheric stock is about 590GtC as estimated by
Neftel, Friedli, Moor, and Lötscher and H. Oeschger and U. Siegenthaler and B. Stauffer (1999)
and used in Kelly and Kolstad (1999) and Pizer (1999). We take this level to be the steady state
stock given a low level of economic activity. Let et be total anthropogenic CO2 emissions in
period t. Approximately 64% of these emissions contribute directly to the atmospheric stock
(Kolstad 1996b), (Nordhaus 1994b). Remaining emissions are absorbed by oceanic uptake,
other terrestrial sinks, and the carbon cycle (Intergovernmental Panel on Climate Change 1996).
The linear approximation of the evolution of atmospheric stocks is

St+1 − 590 = ∆ (St − 590) + 0.64et.

We take xt ≡ 0.64et, the anthropogenic fluxes of CO2 into the atmosphere, as the control
variable and rewrite the above equation as

St+1 = ∆St + (1−∆) 590 + xt. (37)

The estimate of the stock persistence is ∆ = 0.9204 (an annual decay rate of 0.0083 and a
half-life of 83 years) (Kelly and Kolstad 1999) (Kolstad 1996b) (Nordhaus 1994b).

Equation (37), unlike equation (5), includes the constant, α ≡ (1−∆) 590. In order to
apply the formulae in Lemma 1 we define st ≡ St − α

1−∆ and replace equation (37) with
st = ∆st−1 + xt. We then need to write damages as a function of s rather than S. Expected
damages equal G

2
(s− s̄)2, with s̄ ≡ S̄ − α

1−∆ = 0.
Environmental damage. Perhaps the most controversial issue concerns the relation between

carbon stocks and environmental damages. Calibration of the damage function requires three
parameters, S (the stock at which damages are 0), g∗, and σ2ω. In addition, we need two state
variables, the initial mean and variance g1 and σ2g,1. We set S equal to the pre-industrial level
of stocks. The choice of the other four variables is less obvious.

As noted in the text, we describe our calibration in terms of the parameter φ, defined as
the expected percentage reduction of Gross World Product (GWP) due to a doubling of stocks
from their pre-industrial level. Nordhaus (1994a) surveys opinions of damages associated with
an estimated 3◦C warming, a temperature change associated with a doubling of CO2 stocks.
The opinions about φ range from 0 to 21 percent of GWP with mean 3.6 and coefficient of
variation 1.6 (Table 2 in Roughgarden and Schneider (1999)). Thus, for a point estimate of
φ = 3.6, a 95% confidence interval includes damages of approximately 0% to 15% of GWP –
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a substantial variation. In order to make our model consistent with this survey, we assume that
the coefficient of variation of damages is 1.6.

We use the following formulae for expected damages and the coefficient of variation of
damages, which are calculated using the formulae provided in Section 4:

E [D(St, ωt; g)|Ωt] =
1

2
exp(gt +

1

2
σ2g,t)

¡
St − S̄

¢2
=

Gt

2

¡
St − S̄

¢2
, (38)

CV [D(St, ωt; g)|Ωt] =
£
exp(σ2g,t + σ2ω)− 1

¤ 1
2 . (39)

There is a simple relation between φ and the parameters of our model. The 1998 estimate
of GWP is 29,185 billion dollars (International Monetary Fund 1999), for a 10 year estimate of
GWP of 291,850. The estimated damages due to doubling of CO2 stocks during this period is
291,850 φ

100
. Equating this value to the expected damages given by equation (38) gives us one

calibration equation:

291, 850φ 1
100
= 1

2
exp(g1 +

1
2
σ2g,1) (590)

2 =⇒
1. 676 8× 10−2φ = exp(g1 + 1

2
σ2g,1) = G1.

(40)

(We have set the time index t = 1.) For example, if the regulator’s expectation of φ is 1.33, we
have 1. 676 8× 10−2 (1.33) = 2.230 1× 10−2 = G1

We obtain our second calibration equation using the coefficient of variation of damages in
Nordhaus’ survey and equation (39)

CV (Damages) = 1.6 =
£
exp(σ21,t + σ2ω)− 1

¤ 1
2 ⇒ 3.56 = exp(σ2g,1 + σ2ω). (41)

We need one more assumption to identify the model parameters. We assume that the regulator
begins with diffuse priors

¡
σ2g,0 =∞

¢
and has made one observation, so his posterior variance

(using equation (20) is σ2g,1 = σ2ω. Using this equation, we can solve equation (41) to obtain
σ2g,1 = σ2ω = . 634 88.

Using this value we can rewrite equation (40) as g1 = −. 317 44 + ln (1. 676 8× 10−2φ).
Thus, the value of g1 corresponding to the belief that φ = 1.33 and the level of uncertainty
σ2g,1 = . 634 88 is

g1 = −. 317 44 + ln
¡
1. 676 8× 10−2(1.33)

¢
= −4. 120 5.

Abatement cost. In order to use a stationary model, we assume that the expected BAU level
of emissions is equal to the constant x . We choose the constant x̄ so that our model predicts
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a BAU level of CO2 stocks of 1500 GtC in 2100, consistent with the IPCC IS92a scenario
((Intergovernmental Panel on Climate Change 1996), page 23). Given the current atmospheric
CO2 concentration S0 = 781GtC ( (Keeling and Whorf 1999)), using equation (37) the expected
future BAU atmospheric CO2 concentration is

St = ∆tS0 +
1−∆t

1−∆
[(1−∆) 590 + x] .

We choose x = 116.73 GtC so that the model predicts CO2 stocks of 1500 GtC in 2100.
We want to choose the slope of abatement costs, b, so that abatement costs in our model

are similar to those in Nordhaus (1994a). Nordhaus (1994a) sets abatement costs equal to
A = 0.0686u2.887 × 291, 850, where u is the fractional reduction in CO2 emissions, relative
to the BAU level. We draw 1000 realizations of u from a uniform distribution with support
[0, 0.75] (the same support that Nordhaus (1991) used) and calculate A using this formula; we
treat the pairs (u,A) as psuedo-observations for a regression. Each value of u implies a level
of abatement, x− x = ux, with x = 116.73.

When θ = 0, our quadratic benefit-of-emissions function is equivalent to a quadratic abate-
ment cost function

A =
b

2
(x̄− xt)

2 =
b

2
(ux)2 .

We treat this equation as a regression and we use our psuedo-observations to estimate the pa-
rameter b, the slope of marginal benefits The estimated value is b = 1.9212 (billion $/GtC2).
The corresponding estimate of the intercept is a = bx̄ = 224.26 (billion $/GtC). The R2 for
this regression is 0.9762, implying that the quadratic function and the function in Nordhaus’
formula are very similar, for reductions between 0 and 75% of emissions.

Cost uncertainty. We model cost uncertainty by allowing the actual BAU level of emissions
to equal the constant x plus a mean-zero random variable θ̃t = θt

b
. The actual marginal abate-

ment costs are then b(x+ θ̃t − xt). That is, the intercept but not the slope of marginal costs
are random. We use 13 observations of historical emissions, at ten-year intervals, to estimate
a detrended model of emissions, leading to an estimate of σ2θ. This parameter is needed to
evaluate the magnitude (but not the sign) of the difference in value functions under taxes and
quotas. (The difference in value functions is proportional to σ2θ). This parameter does not
effect the relation between anticipated learning and abatement.

In our model, the cost uncertainty is linearly related to the BAU level of emissions. We
used data on actual emissions, et, to estimate the variance and autocorrelation of the cost shock.
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Using maximum likelihood and data from Marland, Boden, Andres, Brenkert, and Johnston
(1999) (total global carbon emissions over every 10 years during the period 1867-1996) we
estimated the following model:

et = e0 + κt+ εt, εt = ρεt−1 + νt, νt ∼ iid N
¡
0, σ2ν

¢
.

(Since we have only 13 observations, we view this procedure as merely a means of calibration.)
The estimates are ρ = 0.96 and σν = 4.55 GtC. We convert the emission uncertainty σν into
cost uncertainty σθ by multiplying it by 0.64 (because xt ≡ 0.64et), and then by the slope of
marginal abatement cost b = 1.9212 (because θt ≡ bθ̃t). The result is σθ = 4.55 × 0.64 ×
1.9212 = 5.5945$/(ton of carbon).

Numerical methods. We approximate ρ∞ and μ∞ as functions of
¡
g, σ2g

¢
by solving the

fixed point problems in equations (27) and (28) recursively using the collocation method, de-
scribed in Miranda and Fackler (2002). We apply a third-order (cubic) piecewise polynomial
spline to grids on the

¡
g, σ2g

¢
plane with 10x10 collocation nodes. The approximation is twice

continuously differentiable. We obtain the approximation using the following procedures from
the toolbox that accompanies Miranda and Fackler (2002): FUNDEFN, FUNNODE, FUN-
FITXY, and FUNEVAL. Applying the collocation method using equation (36), we approximate
the value function of payoff differences under taxes and quotas

B.3 The inequality constraint

Here we show that the probability that it would ever be optimal to set x ≤ 0 is negligible, for
all reasonable values of the damage parameter. Thus, there is essentially no loss in generality
in ignoring the constraint x ≥ 0, even if we believe that this constraint is reasonable. (For
example, we may think that the possibility of sequestration of carbon could never be great
enough to offset carbon emissions.)

We use figure 5 to explain how we obtain an upper bound on the probability that it is optimal
to set x ≤ 0. The solid curve labelled C(0) shows the boundary in S, g space at which it is
optimal to set x = 0 when there is certainty about the parameter g∗ (i.e., when σ2g = 0). As
noted in the text, the optimal level of emissions (x or z) is a decreasing function of both the
stock, St, and the current point expectation, Gt (equivalently, gt). Consequently, the boundary
C(0) has a negative slope. Under certainty about g∗, it is optimal to set xt > 0 if and only if
(St, gt) lies below the boundary C(0). Our analystic results in Section 3 and the simulations
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reported in Section 5 show that uncertainty about g∗ increases the optimal level of emissions.
The dashed curve, labelled C(t) shows the boundary in (S, g) space on which it is optimal to
set xt = 0 for a given level of uncertainty. The precise location of this boundary depends on
the level of uncertainty. However, for our purposes, all that matters is that the boundary C(t)

lies above the boundary C(0).
Suppose that we begin at a point (S0, g0) shown in figure 5, where it is optimal to have

positive emissions if there is no uncertainty about g∗. (The point (S0, g0) lies below C(0).)
Assume that S0 < SBAU

∞ , the BAU steady state. Assume also that the point
¡
SBAU
∞ , g0

¢
(not

shown) lies below the boundary C(0). This assumption is true in our model even for values of
g well outside the range of current opinions; we return to this point below.

Pick an arbitrary future time t ≤ ∞; hold this time fixed for the following experiment. In
our model, it is never optimal to set emissions above the BAU level. Denote S̄t as the level of
the stock at time t if emissions are set at the BAU level from the current time to time t. Because
of the structure of the model, we know that S̄t ≤ SBAU

∞ , with strict inequality for t <∞. Given
the assumptions in the previous paragraph, the point

¡
S̄t, g0

¢
lies below the boundary C(0), as

shown.
When there is uncertainty about g∗, the value of gt changes over time. In view of the

previous comments, a sufficient condition for the optimal level of emissions to be positive at
time t is that gt ≤ ḡ, defined as the value of g on the curve C(0), associated with S = S̄t. (See
figure 5.) Of course, ḡ depends on the initial stock level and the time t (since S̄t depends on
those variables) but it does not depend on the uncertainty parameters. We do not need to use
Monte Carlo methods to calculate ḡ. In order to obtain an upper bound on the probability that
it would be optimal to set x < 0 we merely need to calculate (using Monte Carlo methods) the
probability that gt > ḡ.

We now describe the results of our Monte Carlo simulations, expressed in terms of the
parameter φ rather than g. Recall that φ is defined as the percentage reduction in GWP due to a
doubling of GHG, and φt is the subjective belief about this parameter. φt and Gt are positively
linearly related, and thus φt is a monotonic function of gt.

For the following experiment, we hold fixed the initial value of the stock at the baseline
level, and we vary t. Different values of t imply different levels of S̄t, and thus different values
of ḡ. For each of these values we calculate the corresponding value of φ, which we denote as
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Figure 5: Critical region where emissions are positive
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Figure 6: The graph of critical boundary for baseline parameters.
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Figure 7: Simulation results

φ̄t. (These are the values at which it is optimal to set emissions equal to 0.) Figure 6 shows
the trajectory of φ̄t under our parameterization.

Since the BAU stock asymptotes to a finite level, the graph in Figure 6 is also asymptotic to
a finite level. The important point is that this level is in excess of 61. This value is nearly three
times the most pessimistic guesstimate of φ (equal to 21 in Nordhaus’s 1994a survey).

Of course, it is still possible that φt could exceed φ̄t. To test this possibility, we ran 1000
simulations, each consisting of 50 periods (500 years). In each of these the initial belief is
φ0 = 1.33. For each set of simulations we chose a different value of the true parameter φ∗.
For each set of simulations we stored the largest value of φt in each of the 50 periods. Figure
7 plots these largest values for the three cases φ∗ = 3.6, φ∗ = 21, φ∗ = 42. Even for the
extremely unlikely case where φ∗ = 42, we have no cases where φt ≥ φ̄t.

We are able to find cases where φt ≥ φ̄t and thus the constraint x ≥ 0 might be violated, but
these cases are wildly outside the range of plausibility, given current evidence. For example,
if the true value is φ∗ = 42 and the initial belief is also φ0 = 42 (double the most pessimistic
opinion), there is only a 7% chance that φt ≥ φ̄t
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