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Abstract

Previous research suggests that categories learned
through classification focus on exemplar information,
while categories learned by making predictive inferences
focus on summary (i.e., prototype) information.  To test
this idea further, we demonstrated that it is more difficult
to learn nonlinearly separable categories by making
inferences than by classifying.  This research also
supports previous studies by indicating that different
processes are likely to mediate inference and
classification

In this paper, we examine the type of categorical information
people assess in the process of obtaining inductive
knowledge.  Specifically, we investigate the extent to which
abstract summary information about a category and specific
information about individual exemplars of a category are
used to make feature inferences.

Categories license inference in at least two ways.  First,
categories provide a summary representation of their
members (e.g., a prototype). Given an unknown feature of a
bird, for example, people may predict the value of that feature
by referring to the bird prototype (Rips, 1975; Tversky &
Kahneman, 1974; Yamauchi & Markman, 2000, in press).
Another source of category-based induction comes from
individual exemplars of a category.  Many studies have
shown that people classify items by retrieving information
about specific exemplars from memory (Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1986).  A similar process
may be used to make feature inferences.  In predicting an
unknown feature of an item, people may predict
characteristics of the new item based on exemplars stored in
memory.

Studies investigating classification have shown that
exemplar information plays a crucial role in making
classification judgments.  Research on inductive inference,
however, reveals that category-level abstract feature
information (e.g., prototypes) is crucial for inference.  For
example, Anderson and Fincham (1996) demonstrated that
people are capable of predicting the value for one feature
given the value of another, based on the overall correlation
between the features in the study phase of the experiment,
rather than on the basis of seeing those specific values
during the study phase. Yamauchi and Markman (2000)
further showed that varying the appearance of exemplars
during learning disrupts classification, but not inference.   

These findings suggest that, while classification and
inference may be formally equivalent, they make use of

different kinds of information in practice (Yamauchi &
Markman, 1998).  In this paper, we extend this hypothesis
and examine the idea that category-level summary
information provides a basis for inference (e.g., prototypes),
while exemplar information plays a major role in
classification.  In the following sections, we describe the
inference and classification tasks that were employed in our
experiments.  Then, we examine the role of exemplar and
prototype information in two experiments.

Classification and Inference
In our experiments, classification is defined as a practice in

which an item is placed into one of two groups based on its
attributes.  Inference is defined as a practice in which an
attribute of an item is predicted given the category label of
the item as well as information about its other attributes.  For
example, classification as we define it is akin to the
prediction of a category to which a person belongs (e.g.,
Democrat) having observed his attributes (e.g., supports
affirmative action and favors reduced defense spending).
Inference is akin to predicting an attribute of a person (e.g.,
supports affirmative action) given a category to which he
belongs, and other known attributes (e.g., is a Democrat and
favors reducing defense spending).  We further define the
term category label as a symbol that represents category
membership by denoting a particular group of exemplars, and
the term category feature as a symbol that denotes a
characteristic of an exemplar.  Classification requires the
prediction of the category label based on the features of the
item; inference requires the prediction of a category feature
based on the information about other features and the
category label.

In our experiments, subjects learn two categories (Table
1a) through a classification task or an inference task.  On a
classification trial, subjects are presented with a stimulus
depicting the values of the form, size, color and position of
the geometric figure, and they predict the category label of
that stimulus (see Figure 1a).  On an inference trial, subjects
are presented with the values of the size, shape and position
of the geometric figure along with the category label to
which the stimulus belongs (e.g., Set A), and they predict
the value of the missing feature (e.g., the color) (Figure 1b).
On different trials, subjects predict different features.  In this
manner, classification and inference are formally equivalent if
a category label is regarded as simply another feature
(Anderson, 1990; but see Yamauchi & Markman, 1998, in
press, for further discussion).
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In our previous studies (Yamauchi & Markman, 1998,
2000), we used linearly separable categories (see Table 1b)
and found that these categories are easier to learn given an
inference learning task than given a classification learning
task.  We reasoned that this result was obtained because
inference relies on summary information about category
members.  The linearly separable categories have prototypes
that summarize the feature values of the individual
exemplars, although the prototype differs from all of the
exemplars by a feature (e.g., A0&B0 in Table 1b). In this
structure, additive combinations of feature values divide the
two categories nicely; therefore, extracting prototypes from
the two categories facilitates learning these categories.

Categories that are not linearly separable have a very
different structure, and hence we expect a different pattern of
performance on inference and classification tasks.  A sample
set of nonlinearly separable categories is shown in Table 1a.
For these stimuli,  subjects may find prototypes in the two
categories (Category A=(1, 1, 1, 1) and Category B=(0, 0, 0,
0)).  Nonetheless, this information is not useful for
integrating category members in each category as no
additive combination of feature values can predict category

coherence (Medin & Schaffer, 1978; Wattenmaker, Dewey,
Murphy, & Medin, 1986).  For example, the stimulus B2
differs minimally from the prototype in Category A but is
included in Category B.  In order to learn these categories,
subjects need to remember the specific exemplars (see Medin
& Schaffer, 1978).  Because there are only 6 exemplars in the
two categories, it is not difficult for subjects to store these
exemplars in memory.  It is difficult to learn to make feature
inferences, however, because there is no abstract summary
information that provides a good description of the
categories.  Thus, for nonlinearly separable categories, we
expect a reversal in the ease of inference and classification
relative to linearly separable categories, with the categories
being difficult to learn and process through inference than
through classification.  We test this idea in Experiment 1.

Experiment 1
We used geometric figures as stimuli.  All the stimuli

varied along four binary feature dimensions: size (large,
small), form (circle, triangle), position (left, right) and color
(red, green).  This structure is shown in Table 1a. These
stimuli and the categories are equivalent to those employed
by Medin and Schaffer (1978).

In Experiment 1, the subjects learn these two categories in
one of two conditions: (1) Classification or (2) Inference.1  In
the Classification Learning condition, the subjects respond
to classification questions.  In the Inference Learning
condition, the subjects respond to inference questions.
Initially, no information about the categories is given to
subjects in our studies ,  so that they have to learn the two
categories incrementally by trial and error, based on the
feedback that they receive after their response.  The learning
phase continues until subjects reach a criterion of 90%
accuracy in three consecutive blocks (18 trials) or until they
complete 30 blocks (180 trials).

Following the learning phase, we test the nature of this
category representation using transfer trials, which consist
of classifications and inferences of old stimuli that appeared
during learning and new stimuli that did not appear during
learning.  In the transfer phase, all the subjects receive the
same trials. Transfer stimuli were designed to explore the
distinction between inference and classification.  For
example, the transfer stimuli, A4-A6 and B4-B6, deviate
equally from the prototype of each category.  Thus, subjects
in Inference Learning should be able to classify these stimuli
equally well after learning.   These stimuli differ in the extent
to which they share features with individual exemplars.  The
stimuli B4-B6 are highly similar to one exemplar in Category
A and one exemplar in Category B.  In contrast, the stimuli

                                       
1 In our original experiment, we also included a Mixed
condition, in which half trials consisted of classification
questions and the remaining half were inference questions.
Most scores obtained from the Mixed condition fell
approximately midway between the Classification condition
and the Inference condition.  In order to focus on the
distinction between inference and classification, we will not
report the results from the Mixed condition in this paper.

Table 1a: The category structure of Experiment 1

Learning Category A Category B
F S C P F S C P

A 1 1 1 1 1 B 1 0 0 0 0
A 2 1 0 1 0 B 2 1 0 1 1
A 3 0 1 0 1 B 3 0 1 0 0
Transfer
A 4 0 1 1 1 B 4 1 0 0 0
A 5 1 1 0 1 B 5 0 0 1 0
A 6 1 1 1 0 B 6 0 0 0 1

B 7 0 0 1 1
B 8 1 1 0 0

Table 1b: Linearly Separable Categories

A 1 1 1 1 0 B 1 0 0 0 1
A 2 1 1 0 1 B 2 0 0 1 0
A 3 1 0 1 1 B 3 0 1 0 0
A 4 0 1 1 1 B 4 1 0 0 0
A 0 1 1 1 1 B 0 0 0 0 0
F: form, S :size, C : color, P: position
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A4-A6 are highly similar to two exemplars in Category A, but
are not similar to any of the exemplars in Category B (Medin
& Schaffer, 1978, p. 218).   Thus, subjects in Classification
Learning (in contrast to those in Inference Learning) should
classify the stimuli A4-A6 more accurately than the stimuli
B4-B6.  A similar prediction holds for the stimuli B7 (0, 0, 1, 1)
and B8 (1, 1, 0, 0).  These two stimuli are neutral with respect
to the two prototypes.  Both stimuli have two feature values
consistent with Category A and two feature values
consistent with Category B.  However, they are highly
similar to at least one of three exemplars of Category B (B7 is
similar to B2, and B8 is similar to B3), but they are not similar
to any of the exemplars of Category A.  As a consequence,
the stimuli B7 and B8 should be accurately classified into
Category B as a function of exemplar storage during
learning.  Finally, because categories that are not linearly
separable do not provide an accurate summary of category
members, subjects in the two conditions should have
difficulty making transfer inferences to new stimuli.

Participants and Materials.  49 subjects participated in this
study. The data from 1 subject were lost due to an error in
recording.  In total, the data from 48 subjects (24 in each
condition) were analyzed.  Each category consisted of three
exemplars that were shown during learning and transfer
trials.  In addition, there were eight new stimuli that were
given only in the transfer phase.  Two versions of the
feature assignment were introduced in this experiment.  In
one version, the value of 0 was triangle and the value of 1
was circle.  For color, the value of 0 was green and the value
of 1 was red.  For size, the value of 0 was small and the value
of 1 was large.  For position, the value of 0 was right and the
value of 1 was left.  In the other version, the values of form
and size were reversed.  Each stimulus was bounded by a
20.3 x 17.4 cm rectangular frame drawn with a solid black line
on the computer screen.
Procedure. The experiment involved three phases — a
learning phase, a filler phase and a transfer phase. In the
learning phase, subjects were randomly assigned to one of
two conditions — Classification and Inference.  In the two
conditions, subjects continued in the learning phase until
they performed three consecutive blocks with a combined
accuracy of 90% or until they completed 30 blocks (180
trials). A classification block consisted of presentations of
six exemplars. One inference block consisted of one
inference (along one of the four dimensions) for each of the
six stimuli.  In the two conditions, every exemplar appeared
once in the feedback of each block.  The order of stimulus
presentation was determined randomly.

In Classification Learning, subjects saw one of the six
stimuli and indicated the category to which it belonged by
clicking a button with the mouse (Figure 1a).  In Inference
Learning, subjects inferred a value for one of the four feature
dimensions while its category label and the remaining three
feature values were depicted in the stimulus frame (Figure
1b). Different dimensions were predicted on different trials.
Subjects responded by clicking one of two labeled buttons

with the mouse.  For each stimulus, the location of the
correct choice was randomly determined.  Following each
response, feedback and the correct stimulus were presented
on the screen for three seconds. The stimuli presented
during feedback were identical in both the classification and
inference tasks.2

After the learning trials, there was a brief filler task, and
then all subjects carried out the same transfer tasks.  In the
transfer phase, subjects were first given classification
transfer followed by inference transfer. The transfer stimuli
consisted of 6 old stimuli and 8 new stimuli (Table 1a).  All of
which were shown both in the classification transfer task
and in the inference transfer task.  The order of stimulus
presentation for each task was determined randomly.  All the
feature inferences were given in Inference learning. No
feedback was given during transfer.

Results and Discussion
Overall, the basic results of Experiment 1 are consistent

with our hypothesis (Table 2).  With nonlinearly separable
categories, inference was much more difficult than
classification.  This finding contrasts with previous research
with linearly separable categories, where inference was
easier than classification (Yamauchi & Markman, 1998).

In all, 17 subjects reached the learning criterion in the
Inference Learning condition, and 22 subjects reached the
criterion in the Classification Learning condition.
Considering only those who reached the learning criterion,
subjects in the Inference Learning condition (m=15.8)
required significantly more blocks during the learning phase
than did subjects in the Classification Learning condition
(m=10.5), t(37)=3.32, p<0.01, (Table 2).

For the classification transfer of old stimuli, subjects given
Classification Learning (m=0.92) were significantly more
accurate than subjects given Inference Learning (m=0.69);
t(37)=5.28, p<0.01.  As predicted classification, but not
inference, involves comparisons to exemplars. Subjects
given Classification Learning classified the stimuli A4-A6
(m=0.76) more accurately than the stimuli B4-B6 (m=0.45),
although the two sets of stimuli deviate equally from the
prototype of each category; t(42)=3.73, p<0.01.  In contrast,
there was no statistical difference in classification accuracy
for the stimuli A4-A6 (m=0.63) and the stimuli B4-B6 (m=0.55)
in subjects given Inference Learning; t(32)=0.77, p>0.1.  Also
as predicted, for the neutral stimuli B7 and B8, subjects in
Classification Learning were more likely to classify these
stimuli into Category B (m=0.61) than were subjects in

                                       
2 The inference for the size of the stimuli B1 and B3 has two
right answers.  Given the inference question (0, ?, 0, 0), the
response of the feature value 1 corresponds to the stimulus
B3 and the response of the feature value 0 corresponds to
the stimulus B1.  We gave subjects a correct feedback
irrespective of their responses for this question.  This
treatment should make inference learning faster, and thus
functions against our hypothesis that inference learning
requires more trials than classification learning for this
category structure.
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Inference Learning (m=0.50), but this difference was not
statistically significant; t(40)=1.04, p>0.10.

For the inference transfer, subjects in the two conditions
were about equally accurate in making feature inferences for
old stimuli; Inference Learning, m=0.79, and Classification
Learning, m=0.75.  Their performance declined sharply given
the inference transfer of new stimuli; Inference Learning,
m=0.46, Classification Learning, m=0.50.  The performance
exhibited by subjects in Classification Learning was no
better than a chance level; t(21)=0.11, p>0.1 (one-tail).  The
performance exhibited by subjects in Inference Learning was
actually significantly below chance; t(16)=-2.36, p<0.05 (one-
tail).  This  poor performance contrasts with what we
observed in classification transfer, where performance on
new items was significantly above chance in both learning
conditions. These results are consistent with the view that
categories that are not linearly separable provide little
support for predictive inference.

The results of Experiment 1 support  our view that it is
difficult to make inferences for nonlinearly separable
categories.  Furthermore, the results indicate that inference
and classification, two of the main functions of categories,
differ significantly in the category information they utilize.
In Experiment 2, we investigate this hypothesis further by
examining a factor that distinguishes inference and
classification.

Experiment 2
We have proposed that inference focuses on summary

information about the category.  In contrast, there is
evidence that people who are trying to classify a set of items
tend to focus on diagnostic information that reliably
distinguishes between categories (Nosofsky, Palmeri, &
Mckinley, 1994).  For example, in sorting tasks people tend to
divide the stimuli into groups on the basis of a single
dimension, even when there is a clear family resemblance
structure among the exemplars (Ahn & Medin, 1992; Medin,
Wattenmaker, & Hampson, 1987).  The hypothesis  that
classification tends to focus on diagnostic features and

inference tends to focus on summary information received
indirect support in our previous studies (Yamauchi &
Markman, 1998, 2000, in press).  In Experiment 2, we will test
this idea more directly and scrutinize the distinction between
inference and classification.   

Table 4 shows the structure of the two categories used in
Experiment 2.  The categories consist of 3 exemplars each.
The stimulus configuration A0(1, 1, 1, 1) summarizes
Category A, and the stimulus configuration B0(1, 1, 0, 0)
summarizes Category B because these feature values are
dominant in each feature dimension of the two categories.  In
this category structure, the first two dimensions (form and
size in Table 4) of the two prototypes are the same, so that
they are not useful for distinguishing between the two
categories.  In contrast, the last two dimensions (color and
position in Table 4) are more informative for distinguishing
between the categories.  Thus, if classification promotes
attention to the features that differentiate the two categories,
subjects in Classification Learning should attend more to
feature information about color and position than to
information about form and size.  In contrast, because
inference is assumed to focus on relations among features
within a category, subjects given inference learning should
be equally sensitive to the four feature dimensions.

This category structure is also useful for distinguishing
the extent to which subjects assess a summary of the
category as opposed to individual exemplars.  In particular,
subjects  in Inference Learning should have difficulty
acquiring these two categories because the stimulus A2 is
the prototype of Category B, but is actually a member of
Category A.  Subjects in Inference Learning should also
have trouble inferring features that do not correspond to the
prototype stimuli of the two categories (which we call
category-discordant features).  For example, subjects in
Inference Learning should exhibit less accurate performance
for feature values that do not correspond to the prototype
(the value 0 of Category A, and the value 0 of form and size
in Category B and the value 1 of color and position of
Category B).  These factors, however, should not influence
subjects in Classification Learning, because this task should
focus people selectively on diagnostic features and
individual exemplars.

Participants and Materials. Subjects were 48 members of the
Columbia University community.  The materials used for this
experiment were the same kind of four-dimensional stimuli
used for Experiment 1, but they were organized into a
different category structure (Table 4).  Each exemplar of a
given category had two feature values in common and one
feature value different from the rest of the members of that
category.  The prototype of Set A was (1, 1, 1, 1), which was
also a member of the category (exemplar A1 in Table 4).  The
prototype of Set B was (1, 1, 0, 0), which was actually a
member of category A (exemplar A2 in Table 4). The six
exemplars from Table 4 were used for Classification Learning
and classification transfer.  Inference Learning and inference

Table 2: The main results from Experiment 1

Classification Transfer

Old New Neutral
Average A4-A6 B4-B6 B7&B8

IL 0.69 0.59 0.63 0.55 0.44
CL 0.92 0.61 0.76 0.45 0.61
Inference Transfer

Old New Neutral
Average A4-A6 B4-B6 B7&B8

IL 0.79 0.46 0.40 0.51 0.36
CL 0.75 0.50 0.50 0.50 0.50
IL: Inference Learning, CL: Classification Learning
For the neutral stimuli B7&B8, we measured the proportion 
that subjects classified the two stimuli into Category B.
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transfer consisted of inferences of all the feature dimensions
of the six exemplars (in total 24 different questions).

Procedure. The basic procedure of this experiment was
identical to that described in Experiment 1.

Results and Discussion
As predicted, learning these categories was particularly

difficult for subjects given Inference Learning.  All subjects
(24) in Classification Learning, but only 8 subjects in
Inference Learning reached the learning criterion.  On
average, subjects in Classification Learning spent 10.4
blocks, and subjects in Inference Learning spent 27.4 blocks
in learning; t(46)>10.0, p<0.01.  Because the number of
subjects who reached the criterion differed considerably
between Classification Learning and Inference Learning, we
analyzed the transfer data from each learning condition
separately.

In Classification Learning, subjects exhibited accurate
performance for classification transfer (m=0.94).  Subjects'
classification performance was generally high for all six
stimuli.  For the six transfer stimuli, the accuracy ranged from
88% to 96%.  Subjects were also accurate in the
classification of the stimulus A1 (m=0.88), which is the
prototype of category A (and a member of category A) as
well as stimulus A2 (m=0.92), which is the prototype of
category B, but is actually a member of category A.  During
the transfer phase, subjects classified the stimulus A1 and
the stimulus A2 equally well; Z=-0.02, p>0.1 (Table 4).

Subjects in Classification Learning were also accurate in
inference transfer (m=0.83).  Consistent with our prediction,
Classification Learning clearly led subjects to focus on the
features that were useful for distinguishing between
categories.  Subjects in Classification Learning performed
significantly better for the feature inferences of color and
position (m=0.86) than for form and size (m=0.80); t(23)=1.83,
p<0.05 (one-tailed).

In Inference Learning, we analyzed the data from all
subjects, because only 8/24 subjects reached the learning
criterion.  First, the average performance for classification
transfer by subjects in Inference Learning was m=0.70.
Unlike in Classification Learning, in Inference Learning there
is a wide disparity between accuracy in classifying the
stimulus A1 and the accuracy in classifying the stimulus A2.
Subjects in Inference Learning accurately classified the
prototype stimulus of Category A — A1(1, 1, 1, 1), m=0.83 —

but not the prototype stimulus of Category B — A2(1, 1, 0,
0), m=0.46; Z=2.41, p<0.01.  This result suggests that
subjects  were focusing on information that summarized the
categories rather than on information about specific
exemplars.

Consistent with our prediction, subjects in Inference
Learning did not differ in the feature inferences of form and
size, as compared to the feature inferences of color and
position (form & size, m=0.70, color & position, m=0.70).
This result, combined with the results from Classification
Learning, clearly indicates that inference and classification
make use of different types of feature information.

Subjects in Inference Learning were not different in the
inference transfer of Category-accordant features (m=0.71)
(i.e., prediction of feature values that are the same as the
value for the prototype of that category) and Category-
discordant features (m=0.69) (i.e., prediction of features that
have a different value than the prototype of the category);
t(22)=0.62, p>0.10.  A similar tendency appeared for subjects
in Classification Learning; Category-accordance features
(m=0.84) and Category-discordant features (m=0.82);
t(22)=0.69, p>0.1.  We applied the same analysis to the
learning performance of subjects in Inference Learning.  The
results revealed that subjects’ learning performance was
significantly more accurate for Category-accordant features
(m=0.63) than for Category-discordant features (m=0.56);
t(22)=3.46, p<0.01.  This analysis indicates that people find it
difficult to make correct inferences for features that do not
correspond to the category prototype during learning.

Taken together, The results of these studies support the
hypothesis that nonlinearly separable categories are difficult
to learn through inference.  Our results also suggest that
inference and classification promote a focus on different
types of category information: The Classification Learning
task guides subjects to focus on features that distinguish
between categories; the Inference Learning task directs
subjects to attend to the features that integrate the members
within a category.

General Discussion
These studies demonstrate that it is easier to learn

categories through classification than through inference
when the categories are not linearly separable.  This finding

Table 4: The main results of Experiment 2

Classification Transfer
A1 A2 All exemplars

IL 0.83 0.46 0.70
CL 0.88 0.92 0.94

Inference Transfer
F S C P

IL 0.72 0.68 0.73 0.68
CL 0.81 0.80 0.88 0.85
F:form, S:size, C:color, P:position

Table 3: The category s tructure used in Experiment 2

F S C P F S C P
A 1 1 1 1 1 B 1 1 1 0 1
A 2 1 1 0 0 B 2 0 1 1 0
A 3 0 0 1 1 B 3 1 0 0 0
A 0 1 1 1 1 B 0 1 1 0 0
Category-inaccordance features are show n in italics.
A 0 is the prototype of Category A  and B0 is the prototype
of Category B.  F:form, S :size, C :color, P:position
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contrasts with earlier research with linearly separable
categories, which found that inference learning was easier
than classification learning.  This finding reflects that
summary category information is more important for
inference than for classification. Our experiments, combined
with the results from previous studies (Yamauchi &
Markman, 1998, 2000, in press), suggest that the structure of
a category is one of the major constraints on inductive
inference.  Unlike classification, inference requires feature
information that relates the members of a category.
Although some researchers argue that inference and
classification are the same thing (e.g., Anderson, 1990), our
results reveal that people exercise different strategies for the
two tasks.

Why do people look for abstract summary information for
inference, while they seek information about specific
exemplars or diagnostic features for classification, even
when they are given the same categories?  This difference
may follow from an intricate link between category
representation and category functions.  Classification is
related to object identification and recognition (Nosofsky,
1986).  Thus, it requires finding relationships between an
individual exemplar and its category label.  Once an object is
identified, its overall feature information may become
irrelevant except some features that are useful to distinguish
between categories.  In contrast, inference involves the
prediction of missing feature values, and thus requires
finding relationships between the category label and the
features of the category (Gelman, 1986).  In this case, the
category identity of the object is known, and so information
about the category features is needed to predict the value of
missing features.  Thus, differences in what is  demanded in
each task lead people to look for distinctions between
groups given a classification task, and to seek commonalities
within a group given an inference task.
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