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Exploitation of Metadata for Molecular Genomics Studies 
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Jamison M McCorrison 

Doctor of Philosophy in Bioinformatics and Systems Biology 
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Professor Nicholas J Schork, Chair 

Professor Vikas Bansal, Co-Chair 

 

There is a great deal of interest in analyzing very large data sets in the biomedical 

sciences. This is due to the availability of high-throughput assays, such as DNA sequencing 

technologies and high-resolution imaging devices, advances in data storage and high-
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performance computing, and analytic techniques rooted in artificial intelligence and machine 

learning. However, many modern data sets are constructed from individual component data sets 

which create issues for data harmonization and scientific integration. ‘Metadata,’ i.e., data about 

the data within component data sets, can be used to facilitate integration and drawing inferences 

from the combined data sets, but requires care and is sensitive to how those data can be used. 

Metadata also arises in many situations in which the combination of data sets has more subtle 

and nuanced aspects to it, such as in analyzing species differences in evolutionary studies, where 

the species data are often collected independently with different techniques, making it important 

to know what specific protocols and techniques were used in order to organize and enable 

relevant comparisons and avoid batch effects, false positives, and other phenomena associated 

with heterogeneous data sets. I describe the application of statistical methods in four different 

contexts in which metadata are available. First, I describe an analysis involving the classification 

of emotions recorded as part of a digital therapeutic implemented in smart phone app designed to 

reduce stress. Meta data arise when considering the sources and settings of individual data 

collections. Second, I consider an analysis relating fibroblast transcriptomes to longevity across 

49 avian species, where each species has a unique genome, but only a subset of species actually 

have available reference genomes. Third, I describe studies exploring variation in single cell 

gene expression patterns from studies of the human brain using expression profiles generated 

with different protocols and which have different quality control profiles. Fourth, I consider the 

analysis of genetically-mediated drug targets for longevity in which information from different 

sources is used to make more compelling and comprehensive statements of the candidacy of any 

one gene for drug development. I also consider general themes about the use of metadata in 

contemporary biomedical sciences and discuss areas for future research. 
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INTRODUCTION 

 

Any attempt to reliably and systematically characterize and interpret signals from large 

biomedical data sets critically depends on an ability to control and accommodate different 

sources of variation that could potentially impede the detection of those signals. Identifying the 

sources of variation themselves may be non-trivial, since they may be associated with the 

technical aspects of the collection of the data, and not necessarily of focus in the more 

downstream analyses of those data. For example, the various steps in a protocol for preparing 

samples for a gene expression assay which, if done incorrectly, or in different ways across a 

broader set of studies, could lead to erroneous gene expression values or simply create noise that 

could mask any signals in the data.   

Since the collection of large data sets is often done in batches, typically involves any 

number of data collection devices or groups of individuals, and possibly pursued with different 

quality control standards, there is often information about the data collection process itself, or 

some other aspects of the data collection process and units of observation other than the 

observations themselves, that could impact the interpretation of relevant data analyses. Thus, 

information about the data that are collected, i.e., ‘data about the data’, or ‘metadata’, should be 

considered in relevant analyses to ensure valid and appropriate interpretation of the results. This 

is particularly relevant for studies making use of high-throughput, data intensive assays like 

DNA or RNA sequencing, where the information about, e.g., the flow cells used in the 

sequencing reactions, the compartments in the flow cell that contain relevant sequencing reads 

for each unit of observation, the technician performing the DNA preparation, etc. may all impact 

the reliability of the sequencing runs. Issues arising from problems associated with phenomena 

like this may be compounded further if they apply to multiple units of observation collected at 
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different times. For example, if many sequencing runs are pursued and, e.g., multiplexing is used 

(i.e., sequence data for a unit of observation is generated using different flow cells 

simultaneously or in series), then the ‘demultiplexing’ task of recovering all the relevant 

sequence data from those flow cells can exploit batch-specific meta-data that, if ignored, could 

lead to unreliable results for all the relevant units of observation. In this thesis I will describe a 

multi-focus review of sample-specific metadata, and the means by which disparate samples may 

be compared through multivariate statistical methods. 

The focus of my doctoral thesis project is to showcase specific analytical methods and 

general approaches for exploiting metadata in studies involving large biomedical data sets. I 

consider four different settings that involve meta-data in different contexts. My analyses suggest 

that the use of meta-data can accommodate shortcomings in the experimental design of a study, 

problems caused by inconsistent biological sampling, or data harmonization issues that arise in 

the analysis of aggregated data sets. The first analysis setting I consider involves data collected 

on individuals’ moods through a digital app designed to reduce stress by offering a choice of 

meditations based on user emotional selection. Mood data is collected both prior to and after the 

individual user pursues the meditation. I use analytical methods in this project to reduce the total 

number of moods an individual could record, which are highly variable and numerous, and 

match them to metadata about moods which were developed based on predefined, expert-opinion 

groupings of moods.  These methods have their roots in microbiome studies, assays of bacterial 

species apparent within a targeted sample, in which the presence or lack of presence of a species 

identified in microbiome studies may be evaluated as a reduced variable based on previous 

characterizations of microbial species’ genes and the different phyla and clades they are 

associated with. I use the mood classifications from this analysis to explore how the meditations 



3 
 

offered by the app impact or anticipate changes in individual user moods after repeated use of the 

app.  

The second analysis setting I consider involves testing the relationship between 

individual transcripts measured in 49 bird species using an RNA-sequencing protocol and the 

lifespan of those bird species. There are a number of thorny issues in such an analysis that 

involve metadata. For example, the lifespans of the bird species come from different sources and 

are based on different analyses, some involving different numbers of individual birds samples to 

represent a species to determine them. In addition, not all bird species studied have reference 

genomes, making the choice of which references to use for read mapping and transcript 

abundance calculations complicated. We must rely on phylogenetic information about the 

relationships of each query species to each bird species with a reference genome. Finally, in 

classifying the transcripts into orthologous groups for direct comparisons of transcript 

abundances across the species, specifications involving how to identify orthologous groups of 

transcripts need to be determined.  

The third analysis setting I consider involves the identification of cell types within human 

neurons using a unique single cell RNA-sequencing protocol. The single cell data were generated 

over a period of time in different experiments that all exhibited different quality control profiles. 

Very detailed information about how each experiment was conducted, as well as metrics 

capturing the quality of the data generated, were recorded and used to identify and control for 

potential batch effects when the data were aggregated and analyzed collectively. As a byproduct 

of my analyses, a general methodology for reducing the likelihood that single cell RNA 

sequencing experiments will suffer from artifacts was developed. 
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The fourth and last analysis setting I consider involves evaluating the evidence that 

genetic variants associated with human longevity are good drug targets as well as evidence that 

current drugs hypothesized to impact longevity have genetic support – that is, that the gene 

targets of those drugs harbor variations that are associated with longevity. The different data 

sources associated with the information I used to address these questions are all ‘metadata’-

based’ since they merely reflect the results of different studies (e.g., genetic association studies, 

pharmacologic studies exploring drug targets, etc.). I find that most of the variants associated 

with longevity are not necessarily good drug targets given a lack of consensus on the 

‘druggability’ in the pharmacology community and that most drugs hypothesized to influence 

longevity – or shown to influence longevity in a non-human species – are not supported by 

genetic information.  

The individual manuscripts resulting from my research illustrate that the incorporation of 

metadata into large-scale biomedical studies exposes underlying complexities in the 

interpretation of the data analyses introduced by experimental protocols, ancillary data of 

relevance to the primary data, and varying quality of the data that is aggregated for an analysis. 

However, the use of appropriate analytical methods can overcome these complexities to a high 

degree and help improves the interpretation of the results of the studies. The methods I 

developed and applied are broad, and at least some aspect of them may be applied to a wide 

variety of focused experimental and meta-analysis settings. As more and more data are generated 

by different laboratories, under different experimental conditions, or in different yet 

complementary contexts, the need to be sensitive to how metadata can be exploited will become 

commonplace. 
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CHAPTER 1: DIGITAL THERAPEUTIC REDUCES BASELINE DEPRESSION IN TEST 
POPULATION 

 

1.1: INTRODUCTION 

 

Low cost clinical intervention is now becoming fiscally viable through the use of digital 

therapeutics, particularly as the shifting tides of FDA approval mean that these tools can be 

considered as funded alternatives to research with traditional medications. [1] In this analyses, 

we leverage a smart phone application, ‘Stop.Breath.Think’, and the collection of user self-

assessed qualitative status before and after a digital intervention. In this case, the app itself 

introduces complexities in our collection of qualitative status because our comparable terms, 

words describing human emotions, were selected via a set of guided methods (e.g. first selecting 

an emoji showing 5 general emotions, then providing a non-randomized list of emotion terms 

within the 5 general emotion classes). In addition, the application captures emotions in only 1-5 

of 115 emotions before and after selection.   

Prior emotional classification techniques have been shown previously. The Yale Mood 

Meter provides an example of a 2-dimensional self-evaluation, representing correlated emotions 

in a matrix format with correlated terms presented in an adjacent fashion. [2] I note prior 2-

dimensional composition rendering using the Theyer 2-d emotion model, which leverages human 

response to musical input to gauge interaction with clinical emotional terms. [3] Recent 

advancements in emotional classification include a 3-dimensional representation of the 

emotional space that can be captured in terms of human neurochemistry. [4] Seeking to gather a 

credible understanding of our user’s emotional classification before, and after, a digital 

therapeutic interaction, while only comparing very small numbers of shared terms is a 

complicating factor. Simple Euclidean distance would fail to accurately render the effects of rare 
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emotion selection as representing particular states. Some of these rare selections could be due to 

a term being nondescriptive, or the word simply being at the end of a list.  

To compare rarely occurring selections, and predict whether a user, or group of users was 

canonically reacting to our digital interactions in significantly correlated ways, I looked to 

common methods in microbiome studies. My concurrent work in this field included the assay of 

bacteria present, or not present, within the human oral- and nasalpharyngal microbiome during 

the initial 24 months of life, focusing on the canonical response of infants to the Streptococcus 

vaccines. Clinical insights from measurements of swings in bacterial abundance in the infant 

microbiome over the first 12 months of the oralpharyngal microbiome assay were discussed in 

my co-authored manuscript: 

Wright MS, McCorrison J, Gomez AM, Beck E, Harkins D, Shankar J, Mounaud S, Segubre-Mercado E, 
Mojica AMR, Bacay B, Nzenze SA, Kimaro SZM, Adrian P, Klugman KP, Lucero MG, Nelson KE, 
Madhi S, Sutton GG, Nierman WC, Losada L. Strain Level Streptococcus Colonization Patterns 
during the First Year of Life. Front Microbiol. 2017 Sep 6;8:1661. doi: 10.3389/fmicb.2017.01661. 
 

Comparison of microbial abundances leverages sparse abundance matrices by nature of 

the strongly differing compositions of bacteria identified in the healthy human gut. [5] In fact, a 

common observation within populations of gut bacteria from various world-wide locations have 

identified massive swings in the composition of species apparent at the genus level which can 

predict human diet, geography, and health. [6,7,8] These populations have even been found to 

form “enterotypes”, or groupings of canonical sets of bacterial flora which define some set of 

stable co-occurring bacterial abundance ‘types’ in major populations. [9] 

My experimental longitudinal nasalpharyngal analyses of infants in 2 distinct 

geographical locations (Phillippines and South Africa) during the first 2 years of life (analysis 

not shown) automated common methods for gut microbiome processing utilizing Bray-Curtis 
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distance for sample-sample distance comparison. [10] This is a method looking only at the 

distance of co-occurrence, or within the small co-selections between terms within the large 

sparse graph. After a series of normalization stages, I found that this method was directly 

applicable to co-occurrence of emotional selections from the digital therapeutic. We further 

validated with nonsupervised clustering with Principal Coordinates Analysis (PCoA) and 

Permutation around Medoids (PAM) in the Ape gut microbiome used to commonly identify 

these types of naturally co-occurring emotional selections. [11, PAM] In much the way that 

metadata (e.g. time since pneumococcal vaccination (PCV)) can be applied to predict the 

disappearance of bacteria (e.g. lack of Streptococcus pneumoniae), we hypothesized that we 

could apply our metadata (e.g. all users; emotional state co-selection) to determine how well we 

could predict a different clinical outcome (e.g. progression away from a baseline anxious or 

depressed state.) 
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1.2: ASSOCIATION BETWEEN IMPROVEMENT IN BASELINE MOOD AND LONG-
TERM USE OF A MINDFULNESS AND MEDITATION APP: OBSERVATIONAL STUDY 

 

See published work, co-lead-authored* with Argus Athanas, Ph.D.c., reproduced in this chapter: 
 
Athanas AJ*, McCorrison JM*, Smalley S, Price J, Grady J, Campistron J, Schork NJ. Association 
Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and Meditation 
App: Observational Study. JMIR Ment Health. 2019 May 8;6(5):e12617. doi: 10.2196/12617. 
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Chapter 1.2, in full, is a reprint of the material as it appears in JMIR Ment Health. 2019. 

Association Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and 

Meditation App: Observational Study. Athanas AJ, McCorrison JM, Smalley S, Price J, Grady J, 

Campistron J, Schork NJ. 2019. The dissertation author was a primary investigator and co-lead 

author of this paper.  
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1.3: FUTURE WORK 

 

 Interpreting our data using the Bray-Curtis distance matrix and using our principal 

components to represent variance in our analysis space is complicated. Understanding users in 

the context of the recurrent pre- and post-intervention ‘location’ in the ‘emotional vacuum’ 

defined by previous observations, we next seek to predict user outcome trajectories given their 

pre-mediation selection. Correlating emotions with other clinical outcomes or longitudinal events 

is the subject of my co-authored paper (analysis not shown): 

Athanas, AJ, McCorrison J, Campistron J, Bender N, Price J, Smalley S, Schork NJ. Driving 
Factors in Emotional State Transitions with Use of Mindfulness and Mediation App: 
Observational Study. (Current title, analysis not shown.) 
 

This work is applicable to many fields and the methods discussed can take on many 

alternate delivery mechanisms and applications. Some social media applications are commonly 

utilized to track these types of co-selection terms, and associated metadata with interventions 

(e.g. ads) to produce an intended outcome (e.g. a user clicking on those ads).  The same tools are 

widely applicable as larger data sets become available in microbiome assays, studies of 

emotional classification, studies of digital therapeutic response, and other analyses requiring 

comparison of many samples with a sparse, but widely co-occurring, sample co-selection 

distance matrix. 
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CHAPTER 2: ISOLATING AND CHARACTERIZING NOVEL NEURONAL CELL TYPES 
IN THE HUMAN FRONTAL CORTEX 

2.1. INTRODUCTION 

 

The ability to sequence individual cells is contributing to a revolution in the 

understanding of bacterial cell types that cannot be cultured and therefore previously could not 

be amplified to sufficient protein abundances for sequencing. [1] Prior advances in single cell 

research have primarily focused on the advancement of the understanding of the human 

microbiome by, for example, allowing individual isolation of non-culture-amplifying species 

composing greater than 75% of the gut composition. [2] Because single cell amplification is 

commonly used when low biomass environmental samples are collected, exponential variation in 

coverage is inherent to single cell amplification protocols. [3] The severity and contribution of 

this bias to resulting informatics analysis is understood but normalization methodologies have 

been limited to the context of reference-free bacterial assembly. [4,5,6] 

Previous research that worked from the roadmap of classically studied single cell 

bacterial models was often slow paced and time-consuming because of its dependence on low-

throughput lab methodologies and multiple rounds of validation with existing bacterial models. 

In recent years, reductions of MDA reaction volume improved the specificity of template 

amplification and reduced bias [7,8]. More recent methods have been refined for high throughput 

handling of individual cells including “sensitive, highly-multiplexed single cell RNA-seq” with 

SmartSeq2 [9]. The resulting landscape allows for the rapid amplification and sequencing of an 

incredible number of poorly studied bacteria as well as individual cells isolated from eukaryotes. 

However, there is not currently a well-documented understanding of the bias contributions to 

transcriptomic analysis in either space. This project approaches the ability to use single cell 
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amplification methods to both detect expression of transcripts within tissue types in the human 

brain and quantify the bias contributions inherent to individual sample preparations, lab 

methodologies, and informatics protocols. 

I collaborated with a team of researchers to collect individual cells across specific 

geographic regions of the human brain. We used these cells to better understand of variation 

across known cell types, predict or define new cell types, and define their canonical expression 

patterns. This work is a collaborative effort with the Allen Institute of Brain Science (AIBS) and 

is an extension of their work transcriptomic profiling of cell specificity within pools of whole 

cells isolated from each roughly-defined geographic region of the human brain (Figure 8D). [10] 

The AIBS group had already placed a large effort in understanding diversity between tissue types 

in mice as part of the Mouse Genome Atlas which was leveraged to validate candidate cell types 

using pre-defined mouse neural marker genes. [11]  

Neurons are highly interconnected, and considerable damage must be done to their 

extensions to separate them by physical means such as laser-capture micro dissection. Likewise, 

dispersion of cells by proteolytic degradation of surface proteins places the cells under stress and 

substantially alters gene expression. The isolation of small quantities of RNA from within the 

nucleus frequently results in low yield or biases within amplification and interpretation of 

downstream sequencing. It has previously been shown in mice that single cell RNA-seq (scRNA-

seq) analysis is a successful tool for elucidation of sub-types within cells in the mouse cortex 

[12,13] despite these complexities.  

From two post-mortem human donors, collaborators have collected samples from 

different layers of the cerebral cortex. One such layer-specific extraction was performed on 

tissue related to development in dementia in apes and humans [14] and another within the 
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temporal cortex, associated with visual and audible comprehension (Tamas, Univ. Szegad, 

Hungary). [15,16] This latter layer was selected in the hopes of collecting rare GABA-ergic 

neurons present in the tissue. Analysis was separated into 1) three batches of validation studies, 

totaling 720 samples, during which lab protocols were refined for publication and 2) the 

preparation of approximately 2,000 single nuclei single neuron samples using the idealized 

production pipeline. Preliminary quality control evaluation during the “validation studies” 

revealed a lack of correlation between standard RNA quality metrics for whole cell projects. The 

RNA Identity Number (RIN), an evaluation of the ratio of 28s and 18s peaks showed an 

unexpected lack of correlation to the successful extraction of non-fragmented (full length) cDNA 

after amplification. Likewise, correlations between quantitative PCR (qPCR) for the expression 

of common housekeeping genes (ActB, GAPDH) and Picogreen values (denoting successful 

generation of dsDNA) appeared to be batch-specific. 

The use of both wet lab and dry lab metrics for the production of a QC classification 

model using random forest machine learning appears to be an effective objective strategy for the 

quality control of low input, highly-amplified samples, providing further insights into the data 

features that are most useful for identifying quality outliers.  

 

Aevermann B, McCorrison J, Venepally P, Hodge R, Bakken T, Miller J, Novotny M, Tran DN, 
Diezfuertes F, Christiansen L, Zhang F, Steemers F, Lasken RS, Lein ED, Schork N, 
Scheuermann RH. Production of a preliminary quality control pipeline for single nuclei 
RNA-Seq and its application in the analysis of cell type diversity in the post-mortem 
human brain neocortex. Pac Symp Biocomput. 2017;22:564-575. doi: 
10.1142/9789813207813_0052. 

 

We found that there appear to be at least two classes of failed samples, and that the 

metrics useful in identifying each are different. Failed samples with a second peak in the 
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percentage of GC content plot apparently due to reads derived from the ERCC spike-in control 

are identified by metrics like the percentage of exact duplicates and percentage of unique reads, 

presumably due to the fact that a relatively small number of transcripts derived from the ERCC 

control are responsible for a significant proportion of the total reads obtained from those 

samples. 

The successful amplification of unsheared ssRNA, as represented by bioAnalyzer traces, 

was best represented by the 3’ bias within alignments to all highly detected transcripts (Figure 6). 

Partially degraded RNA (from freezing, RNAse degradation, etc.) resulted in deeper sequencing 

coverage for the 3’ end of transcripts only when degraded products contain the polyA tail 

required for amplification. (Figure 6) 3’ bias has now been adopted as a simple pass/fail metric 

as an easy informatics control to quantify lab-based amplification failures. Validation of the 

protocol and initial summaries of visual interpretations of the results were published in Nature. 

[17,18] Our standard laboratory workflow for single nuclei RNA-seq, constructed in tandem with 

a laboratory team to present optimized performance in our quality analyses, is summarized in the 

following chapter.  
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2.2. . USING SINGLE NUCLEI FOR RNA-SEQ TO CAPTURE THE TRANSCRIPTOME OF 
POSTMORTEM NEURONS 

 
See published work, reproduced in this chapter: 
 
Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, 
Erwin JA, Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison J, Aevermann BD, Fuertes FD, 
Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, Gage FH, Lasken RS. Using single nuclei 
for RNA-seq to capture the transcriptome of postmortem neurons. Nature Protocols. 2016 
Mar;11(3):499-524. doi: 10.1038/nprot.2016.015.  
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Chapter 2.2, in full, is a reprint of the material as it appears in Using single nuclei for 

RNA-seq to capture the transcriptome of postmortem neurons. 2016. Krishnaswami SR, 

Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, 

Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison J, Aevermann BD, Fuertes FD, 

Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, Gage FH, Lasken RS. 2016. The 

dissertation author was a primary investigator and author of this paper. 

  



53 
 

2.3. WHAT IS A NEURAL CELL TYPE? 

 

The methods described in the previous chapter have yielded a vast array of biological 

insight, providing methods to target samples in many tissues. [1] The development of methods to 

account for metadata and remove bias-associated with noise has provided a novel tool to 

examine variability between individual neurons, the first requirement to interpreting inter-neuron 

signaling and cell lineage determination. By focusing on the frontal cortex of the human brain, 

we focus on tissue with known geographic association with memory formation and other traits 

that are fundamentally characteristic of humans as opposed to rodents and other small host 

species. These methods characterize single cell samples through transcriptomic assay (e.g. as 

selected by marker genes separating clustered transcriptomic abundances from > 1700 

individually sequenced single nuclei from individual human neurons) and find groups of cells 

with unique marker protein expression that may be identified within the specific tissues they 

were isolated in, and may also unique features in their morphology (shape.) The methods by 

which high throughput sequencing and high throughput, high-content cytometry may be 

leveraged to rapidly identify cell types is defined as a statistical and ontological strategy in the 

following manuscript (analysis not shown). 

 
Bakken T, Cowell L, Aevermann BD, Novotny M, Hodge R, Miller JA, Lee A, Chang I, 
McCorrison J, Pulendran B, Qian Y, Schork NJ, Lasken TS, Lein ES, and Scheuermann RH. 
Cell type discovery and representation in the era of high-content single cell phenotyping. 
Dec 21, 2017. BMC Bioinformatics. 2017; 18(Suppl 17): 559.s. doi: 10.1186/s12859-017-1977-
1. 
 
 

Perhaps the most exciting novel finding of this study is the identification of a rare cell 

types within tissue that had previously been poorly characterized in a whole cell context.  Within 

one of these regions we targeted a cell type of unique morphology which appeared to match with 
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a strongly correlated transcriptomic cluster in our analysis set.  The resulting biomarkers 

matched cell staining assays in the tissue of interest and the resulting cells were further isolated 

for synaptic potentiation, or the evaluation of their correlated expression of current across axonic 

bounds.  The resulting analysis describes this novel cell type, the ‘rosehip’ cell named for its 

rosehip-like axonal boutons, noting its unique characteristics, its potential role in complex 

functions in the brain associated with social and memory function in the Homo sapiens, and the 

way these methods can be applied for other cell typing assays subject to high scrutiny. 

 

Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, Bordé S, Close JL, 
Diez-Fuertes F, Ding SL, Faragó N, Kocsis AK, Kovács B, Maltzer Z, McCorrison JM, Miller 
JA, Molnár G, Oláh G, Ozsvár A, Rózsa M, Shehata SI, Smith K, Sunkin SM, Tran DN, 
Venepally P, Wall A, Puskás LG, Barzó P, Steemers FJ, Schork NJ, Scheuermann RH, Lasken 
RS, Lein ES & Tamás G. Transcriptomic and morphophysiological evidence for a 
specialized human cortical GABAergic cell type. Aug 27, 2018. Nature Neuroscience. 
21, pages1185–1195 (2018). doi: 10.1038/s41593-018-0205-2. 
 
 

We have used the same methods, though with less canonical evidence, to identify other 

neural ‘cell types’, or hypothetical cell type targets of interest. Another notable example has been 

published, detailing the identification of subcerebreal excitatory neurons from our human 

samples which are shared in mice, the ‘von Economo’ neurons found in layer 5 of the fronto-

insular cortex.  

 
Hodge RD, Miller JA, Novotny M, Kalmbach BE, Ting JT, Bakken TE, Aevermann BD, Barkan 
ER, Berkowitz-Cerasano ML, Cobbs C, Diez-Fuertes F, Ding SL, McCorrison J, Schork NJ, 
Shehata SI, Smith KA, Sunkin SM, Tran DN , Venepally P, Yanny AM, Steemers FJ, Phillips 
JW, Bernard A,  Koch C, Lasken RS, Scheuermann RH, Lein ES. Transcriptomic evidence 
that von Economo neurons are regionally specialized extratelencephalic-projecting 
excitatory neurons. Nature Communications 11, 1172 (2020). https://doi.org/10.1038/s41467-
020-14952-3 
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While these analyses have become influential due to the advancements they have made 

possible in the immediate evaluation of previously-hidden signal, there is much room left to 

improve upon the high throughput nature of isolating and sequencing samples, interpreting their 

inter-sample distance and co-clustering of those samples, and making the best use of metadata 

captured throughout the data collection process. 

 There are two ways to approach recursive clustering once we are able to identify 

particular patterns of transcripts that are highly correlated with quality profiles. One is to 

normalize based on their separation in quality-profile-specific matrix component space (via 

UMAP/tSNE/PCA on their quality matrices.) The second is to normalize based on a quality 

profile label applied to their supervised or unsupervised cluster ID. In this study we describe 

‘bias modes’, groups of quality control-predictive metadata components for each sample, which 

describing correlated trends in those metadta components’ prediction of variance in sample 

transcript abundance. The goal of this study can be redefined as the development of a systematic 

approach for cataloging protocol-specific biases. In Chapter 3.2 I identified the most critical 

portions of an experimental protocol where the collection of unbiased data can be improved, 

much like when critical evolutionary breakpoints for lifespan are identified in a phylogenetic tree 

in the avian study (Chapter 2.2). Here I provide a recipe which can be used on any single cell 

data set with sample specific metadata to make informed decisions about the level of their 

unsupervised or supervised confidence of sample clustering based on sample transcriptomic 

variance. 
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2.4. Leveraging Biclustering Elucidates Variation in Sample Clustering Descriptive of 
Laboratory, Sequencing, and Informatics Biases 

See un-published work, a draft currently being prepared for submission, reproduced in this 
chapter: 
 
 
McCorrison J, Rangan A, Schork NJ. Multifactorial Quality Control Analysis for Single Cell 
Transcriptomic Profiling.  
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ABSTRACT 

Single cell analyses are beginning to reveal how individual cell types contribute to the 

state of a tissue, any functional consequences it may exhibit, and transcription networks shared 

between host species. Complications in this type of single cell RNA-sequencing (scRNA-seq) 

assay can be complex since they are designed to interrogate the transcriptomes of thousands of 

individual cells at once, and can be overly sensitive to a wide range of laboratory conditions and 

settings in which the assays themselves are performed. We describe a comprehensive approach 

to imputing, normalizing, and comparing the clustering of single cell transcriptomic sequencing 

populations using biclustering, leveraging metadata from the quality control (QC) assessments of 

the laboratory, sequencing, and informatics processing. We also describe four methods for the 

cunsupervised or supervised evaluation of QC terms significantly correlated with sample- or 

cluster-specific transcriptomic variance.  We illustrate the utility of sample-specific, transcript-

level abundance normalization by optimizing our data formatting to replicate expectations of 

variation across the data set.. We use these methods to identify potential marker genes during 

cell typing and to delineate rare expression patterns at the exonic level in a set of human frontal 

cortex samples. 

 

INTRODUCTION 

As a result of isolating individual cells, gene expression profiles of individual cell types 

are revealed as opposed to the averaging of all transcriptomes obtained from localized bulk 

tissue. However, the identification of novel transcript abundances within individual human 

nuclei is complicated by the difficulty of localized isolation of targets. Identifying rare targets in 

tissue often breaks the cell cytoplasm during physical isolation individual cells with many 
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intertangled axonic structures, the very physical components that allow for cell signaling 

between cells of various types. Error is also introduced from the measurement limitations when 

using the small quantities of proteins within just a single isolated cell.  

Recent advances in automated high throughput handling of individual cells has included 

“sensitive, highly-multiplexed single cell RNA-seq” with SmartSeq2 [1]. By leveraging the 

isolation of the individual nuclei of human neuron samples, single nuclei single cell RNA-seq 

(sc-sn-RNA-seq) allows researchers to investigate the transcriptomic abundances observed 

specifically from individual cells isolated in eukaryotes. However, coverage biases and 

unexpected predictive correlations to non-exonic coverage events have been observed. For 

example, partially degraded RNA (e.g. from freezing, RNAse degradation) results in deeper 

sequencing coverage for the 3’ end of transcripts only when degraded products contain the polyA 

tail required for amplification.  

Through the use of a random forest classifier trained on a human-driven qualitative 

assessment, the evaluation of a large collection of human neurons and their associated laboratory 

covariates was able to provide a predictive assessment of the binary pass/fail status of individual 

sample-preparation quality [2]. These methods have allowed for the elucidation of high-quality 

cell type classifications derived through transcriptomics and through downstream laboratory 

analysis, including the semi-supervised clustering methods described by Bakken et. al, which is 

the subject of the supervised analysis example in this manuscript [3]. 

The evaluation of a single cell preparation bias by leveraging quality control metadata 

and abundance values using silhouette conditions across TSNE-clustered nearest neighbors has 

been approached previously [4]. Visual interpretation of clusters of single cells grouped by 

transcriptomic abundance similarity is commonly performed, allowing analysts to pursue 
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variations in biological data, and sample data, of further interest for research or omission. [5] 

Methods for rapid visualization of these silhouette scores in pre-clustered TSNE results have 

been previously published. [6] Statistical tools exist for the comparison of samples for 

preprocessing and gene selections, as well as unsupervised clustering and integrated analysis 

amongst resulting subsets of samples. [7] Newer tools are already available which leverage 

covariate-derived linear modeling to evaluate continuous or discrete trends between population-

wide sample variation to enhance the predictability of single cell RNA seq analyses. [8].  

Previous literature using this dataset described unexpected non-coding sequence coverage events 

which appeared within both intragenic and intronic regions of our single nuclei samples. [9] 

Under further investigation, these predictive contiguous non-random coverage events appeared 

to represent either: 1) true novel expression of a new transcript or transcript isoform, 2) non-

coding sequences which will not survive replication but which remains predictive of cell type, 3) 

simple overlapping annotation error, 4) transcripts dropped or differing from the gene model, 5) 

simple mis-mapping and multi-mapping error, or 6) as tested below, problematic RNA capture 

resulting from an aberration in or consequence of an experimental lab and informatics protocol. 

We test the correlation between variation in our quality control metrics in both exonic 

and intronic coverage events in the context of the GRch38 Human Reference Sequence model by 

RefSeq, providing a methodology by which large scale investigation of observed abundance and 

metadata in tandem may reveal systematic biases in the preparation of cell lines and the 

laboratory configurations of the preceding sample preparation pipelines themselves. Whereas 

many existing strategies are 'fully global' (ignoring cluster-information), they do not pinpoint 

variance between neighboring pairs of supervised or unsupervised clusters (e.g. potential cell 

types of known type, or undefined cell types of interest). [10] The degree to which the variation 
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between the samples in any one cluster, and their transcript abundance vectors, is predicted by 

the transcript abundance or by covariate terms, or “bias modes” (correlated groups of covariate 

terms), is also not known.  

We recommend a set of reproducible strategies which show the effects of biclustering 

transcript and quality metadata in a way that is not ‘fully’ local, since our determination of QC-

clusters themselves involves transcript-data and QC-data, but which can shed light on certain 

local structure, without being lead astray by more ‘global’ population-wide trends.. (Figure 1) 

While such a method is underpowered when cluster-sizes are small, we show that leveraging 

localized information to identify covariates that are systematic drivers of cluster separation 

provides insight into the identification of novel clusters and potential marker genes. We suggest 

the latter as an ideal output for this type of analysis in the single cell context where laboratory 

methods for cell type validation (e.g. immunostaining) may help identify rare types in 

experimental target tissues. We focus on significant transcriptomic correlations lost in the noisy 

signal we observe in our experimental data and, conversely, the identification of false positives 

(e.g. to prioritize targets during costly laboratory tissue and layer specific targeting and 

confirmation trials.) 

Our recipe stands upon 3 foundations which we show are critical to the evaluation of any 

single cell transcriptomic cell typing assay. We start with sample preparation; the imputation, 

normalization, and comparison of clusters must be performed in a way which attempts to 

maximize the recovery of lost signal while minimizing any imposed structure on our abundance 

matrices. Next, we identify statistically significant bias modes using both unsupervised 

techniques (e.g. only the sample transcript metadata and quality control metadata) and supervised 

techniques when possible (e.g. with base knowledge from prior study, cell staining, marker gene 
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expression, etc.). Last, we leverage covariate-corrected unsupervised clustering of snRNA-seq 

data (single nucleus RNA-sequencing data) by using the covariates (metadata) to ‘correct’ the 

genetic data (transcript abundances) using linear modeling techniques and groups of correlated 

quality control metrics (‘bias modes’) predicting bias-associated variance (e.g. measured by co-

clustering after correction.) We apply the proposed method to a large scRNA-seq (single cell 

RNA-sequencing) study of nuclear RNA harvested from neurons in different layers of the human 

brain and investigate the novel inferences that can be made by analyzing the expression inside 

and outside of the annotated coding regions of the human reference genome. 

 

RESULTS 
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Figure 2.4.1. Analysis Flowgram (Unsupervised Clustering). Sub-experimental arms: A) 
Unsupervised (Sample x QC), e.g. you have clusters and you want to identify population-wide 
QC terms of relevance (within a relative monoculture.) B) Unsupervised ([Sample x QC] + 
[Sample x Transcript]), e.g. people need a recipe for unsupervised clustering with transcript-level 
interpretation of laboratory and sequencing bias. C) Supervised ([Sample x QC] + [Sample x 
Transcript] + Sample Cluster Assignments), e.g. you want to target hard-to find drug targets. D) 
Supervised (Sample x QC+ Sample Cluster Assignments): e.g. you have clusters and you want to 
identify QC terms of relevance to sampling/clustering quality to improve future studies. 
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A.  

B.   

C.   

D. E. 

 
Figure 2.4.2. Spectral ordination and clustering of samples in transcriptomic space. A-B) A 
cartoon showing interpretations of transcriptomic and quality driven interactions. C) TSNE 
Clustering of Cell Abundances (Colors Shown, Top, Intron+Exon Abundance) and our 
Biological Insight on Outliers varying from Cell Typing Expectations. D) The denoted ‘outlier’ 
clusters highlighted due to unexpected transcriptomic marker performance vs. laboratory 
validation. E) A decision tree highlighting theoretical outcomes associated with biclustering 
correlation events of varied use for downstream biological inference. ‘Quality profile similarity’, 
2H = both clusters are ‘high quality’, with small amount of variation predicted by quality terms 
associated with low quality outcomes. 2L = both clusters are ‘low quality’. L = one cluster is 
‘low’ quality. H = one cluster is ‘low’ quality’. 

Quality 
profile 

similarity 

Expression 
profile 

similarity 
Hypothesis 

 2H  Collapse clusters, or identify 
small expression outlier. 

 2L  Highly correlated bias cases. 

 2H  Supported cluster separation. 
* Novel exp. pattern at high 

quality suggest possible novel 
cell type, transitory type, or 

uncaptured bias. 

 L  Cluster separation explained by 
metrics (1) lab (2) seq (3) ifx 

(4) assigned type (5) 
intron/intergenic-specific 

coverage event 

 L  High/low quality cluster pair 
identified. 

  Model outlier 
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A.  

B.  

Figure 2.4.3. A) The 6 QC-clusters from Table 1 found after accounting for the exon-data. To 
start with, we project each of the 127 QCs (considered as a 1781-dimensional vector) onto the 
dominant 2 left-principal-components of the 1781-by-127 matrix [S^(-1)*U*C], as described in 
the text above. We then color and label the clusters using some of the terms that commonly 
appear amongst their QC-labels (note, however, that the clusters themselves were determined 
using only the QC-values along with the transcript-data). Note that, while these clusters do not 
necessarily look distinct when projected onto these 2 principal components, they exhibit distinct 
correlations (with a statistical significance < 0.0015) in the full space. B.) The pvalue tree for the 
QC-clusters found after accounting for the exon transcript data. The integer values shown are -
log(p-value) for each split. The null-hypothesis involves 'right-spinning' the QC-matrix (as 
described in the text). 
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A. B.  

C.  

Figure 2.4.4. Linear modelling for investigative analysis of specific terms. A) Cluster Pair x 
Covariate Z-score matrix. B) Pvclust hierarchical clustering with selection of significant 
covariates subgroups (“bias modes”) for which cluster pairs exhibit significantly correlated (au 
p-value > 0.99) response to those terms en masse. C) The euclidean distance matrix representing 
distance between covariates’ cluster-pair Z-score matrix terms, illustrating covariates with 
correlated response predicting sub-classification of population-wide cluster pair relationships 
with 3 significant bias modes highlighted in yellow. Top: Cluster 6 with bootstrap AU p-value = 
1 (< 10e-10) and Std Err = 0 representing “the overall sequencing abundance of comparable 
human gene sequence.” Middle: PVClust Cluster 23 with bootstrap AU p-value = 0.998 and Std 
Err = 0.005 representing “Sequencer error (PHRED Score Variability).” Bottom: PVClust 
Cluster 10 with bootstrap AU p-value = 1 (< 10e-10) and Std Err = 0 representing “the number 
of comparable genes observed (e.g. the ability to detect less-expressed genes?)”
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Table 2.4.1. Significantly Correlated “Bias Mode” Events. P(E)=Exon-derived p-value for the 
Experimental Arm. P(I)=Intron-derive p-value for the Experimental Arm. As in Figure 1: A) 
Unsupervised (Sample x QC), e.g. you have clusters and you want to identify population-wide 
QC terms of relevance (within a relative monoculture.) B) Unsupervised ([Sample x QC] + 
[Sample x Transcript]), e.g. people need a recipe for unsupervised clustering with transcript-level 
interpretation of laboratory and sequencing bias. C) Supervised ([Sample x QC] + [Sample x 
Transcript] + Sample Cluster Assignments), e.g. you want to target hard-to-find drug targets. D) 
Supervised (Sample x QC+ Sample Cluster Assignments): e.g. you have clusters and you want to 
identify QC terms of relevance to sampling/clustering quality to improve future studies. A full 
list of QC terms and their assignments is provided in Supplemental Table 1. 

Cluster #1: “Cluster GC Percentage” p=10e-25 
 GC Percentage: All sequences. 
 GC Percentage: Trimmed sequence (Only reads aligned to ERCCs, Only reads aligned to human reference, 

and Unmapped reads.) 
Cluster #2: “Batch, Depth of Sample Capture” p=10e-27 
 Batch 
 Iterative sample ID 
 Percent of reads trimmed 
 Mean fragment length (Value, Std. Deviation in Value) 
 Percent of all reads mapped to Human Reference 
 % of Unique Duplicate Sequences: All reads 
 % of Unique Duplicate Sequences: Trimmed reads (Only reads aligned to human reference, and unmapped 

reads.) 
 % of Mitochondrial Core Genes at greater than zero expression abundance. 
 Median Insert Size of Paired End sequences  
 Unique  
Cluster #3: “Population-wide Predictors of Sample Quality” p=10e-27 
 Cell class, based on marker genes (Excitatory, inhibitory, glia) 
 Outlier status, based on laboratory and transcriptomic validation [3] 
 Cell type, based on marker genes (GABAergic, Glutamergic, Non-neuronal) 
 Neun-positive sorting percentage (likelihood of gathering only nucleic content) 
 Brain region (Frontal insular cortex, Middle temporal gyrus) 
 Brain layer (1,5) 
 RandomForest Pass/Fail Confidence Score 
 cDNA PicoGreen Concentration (Quantity of double stranded DNA during protocol assay) [1] 
 Marker gene abundance (ACTB, Custom Set 1 [3], Custom set 2 [3], 13 neural mitochondrial marker genes) 
 ERCC Count of Ladder Sequence 
 Percentage of non-duplicate input reads (All Reads, Trimmed Reads, Trimmed Paired Ends) 
 Percentage of reads maintaining paired end relationships after trimming. 
 Number of, and percentage of, genes present (Greater than {0,1} FPKM) 
 Pecentage of isoforms present (Greater than {0,1} FPKM) 
 Pecentage of ERCC barcodes present (Greater than {0,1} FPKM) 
 Percentage of trimmed reads mapped to human reference 
 Percentage of trimmed reads mapped to human reference in each region type (Exons, Introns, Intergenic) 
 Percentage of reads in coverage bins (High, Medium) 
 Mapping rate (All genes, End 1, End 2, 3’ end, 5’ end) 
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Table 2.4.1 Significantly Correlated “Bias Mode” Events (Continued.) 

Cluster 4: “Sequencing Quality (Across the length of the read)” p=10e-72 
 Standard Deviation in Phred score (All reads, reads aligned to ERCC sequence, reads aligned to human 

reference, unmapped reads) 
Cluster 5: “Sequencing Quality (Across the full span of the read)” p=10e-51 
 Mean Phred score (All reads, reads aligned to ERCC sequence, reads aligned to human reference, unmapped 

reads) 
Cluster 6: “Depth of Sequencing (including ERCC ladder sequence)” p=10e-25 
 Total input reads  (All, trimmed) 
 Number reads mapped to human reference 
 Total input bases (All, trimmed) 
 Number of duplicate reads before trimming 
 Mean coverage of expression bin (high, medium, low) 
 % of Samples above 15x in Low coverage bins 
 Count of non-zero abundance mitochondrial core genes 
 Number of reads and basepairs mapped to group (genes, ERCC ladder sequence, human reference sequence) 
 % of unmapped exact duplicate sequences. 
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Table 2.4.2. Cluster Confidence Matrix. Change in Signif. Diff. Exp. Clusters before and after 
correction using Z rank 1. The probability of observing our sample-cluster overlaps vs. Ho of 
baseline assumption of these overlaps in a random shuffling of sample labels (e.g. the 
‘repackaged probability’ of seeing collective overlaps with AIBS clusters that are as rare or rarer 
than our observations. Compare to Suppolemental Table 3 usiing Z rank 2. Low = Poorly 
conserved clustering (e.g., the cluster fell apart.) High = Clustering converged toward centroid.  

QC   None All SRRR RF UE1 UE2 UE3 UE4 UE5 UE6 
# of Clusters   23  62  60 7 1  37  58  34  62  35 

 -logP: Population   616  447 1614  330  0  443 1473  947 1153  606 

 -logP: Per-cluster 

1   41  63 333 188 0 116 332 157 252  75 

2  14 25 34  0  0  0 24 13  0 28 

3  62  0 16  1  0  1 45 37 22  4 

4  14 35 52  6  0  0 21 17  3  1 

5   0 25 71  5  0  2 48  4 14 18 

6   1 11 49  6  0  2 20  4  6 10 

7  57  3  6  1  0  1 55 42  4  1 

8  14  0 42  5  0  0 39 22  0  4 

9   0 22 40  1  0  1  5  4  2  4 

10  55  0 30  1  0  1 36 17  4  0 

11   0 95 52  5  0 33 63 59 43 57 

12   4  0 64  5  0 67 80 42  103 58 

13  58 59 67 15  0  3 64 37 63 26 

14   0  1  6  1  0 12 33 32 52 20 

15   0  0  3  1  0 12 31 11 37 36 

16  11 57 62  7  0 15 62 45 48 35 

17  10  0 12  0  0  0  6 12  2  0 

18  43  0  2  0  0  0 17 17  3  2 

19  45 38 47 52  0  2 41 44 56  5 

20   0  0 18  1  0  1  1  0  0  1 

21   0  0  0  0  0 27 13  2 28 15 

22   0  1 16  0  0  4  1  0  1 12 

23   6  1  137  7  0 60  153 56  104 28 

24   0  0  4  1  0  6 13  2 19  5 

25  26  0  1  0  0  1  6 14  2  0 

26  30  0 12  0  0  0 15 14  2  0 

27  14  0  3  0  0  1  5 11  2  2 

28   0 14 24  0  0  3  1  1  2  4 

29   0  0  1  0  0  4  3  3 14  3 

30  17  0  4  0  0  0  3 10  1  0 

31   0  0  0  0  0  5  1  1 12  2 

32  10  0  1  0  0  1  3  3  1  0 
33   5  0  0  1  0  3  1  2  3  3 
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Table 2.4.2. Cluster Confidence Matrix (Continued.) 

QC  None All SRRR RF UE1 UE2 UE3 UE4 UE5 UE6 

-logP: Per-cluster 

34   4 80  134 12  0  3 51 30 31 27 

35   0  2  3  0  0  1  0  3  0  0 

36   0  0  0  0  0  4  2  0  9  1 

37  11  1 16 10  0  0  4 13  0  1 

38   2  0  0  0  0  0  3  2  0  0 

39   0  0  3  0  0  4  2  0  1  5 

40   0  2  2  9  0  0  3  3  3  0 

41   1  0  0  0  0  0  2  0  0  0 

42   117 79  170 14  0 61  188  139  203 67 

43   5  1 90  9  0  6 24  6  6  8 

44   1  0 48  1  0 25 46 19 70 30 

45  12 52  101  2  0  0 23 24  6  9 

46   3 20 53  0  0  1 12 12 14 10 
47   0  0  0  0  0  1  0  0  0  0 

 

Table 2.4.3. Variation in Cluster-specific Markers.  
 
(Not included in this draft.) 

 

DISCUSSION 

Correlation amongst Representations of Potential Transcriptomic Cell Types. The 

ability to sequence individual cells is contributing to a revolution in the understanding of 

bacterial cell types that cannot be cultured and therefore previously could not be amplified to 

sufficient protein abundances for sequencing. [11] Single cell amplification is commonly used 

when low biomass environmental samples are collected, exponential variation in coverage is 

inherent to single cell amplification protocols. [12] The severity and contribution of this bias to 

resulting informatics analysis is partially understood but normalization methodologies have been 

limited to the context of reference-free bacterial assembly. [13,14,15]  
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Human frontal cortex sampling and cell type diversity. For this study, cells of the 

central nervous system were gathered specifically because they were under-studied, partly 

because of the difficulty of isolating intact whole cells and successfully interpreting the minute 

signals within. This defines some the expectations for variation within our cohort. Excitatory 

cells are known to be higher in overall transcription, and thus their transcriptomic reads will be 

more easily sampled. [3] This increases the likelihood of capturing lesser expressed abundance 

trends associated with rare and difficult to study cell types, compared to Inhibitory and Glial cell 

types. Using the normalized abundances for the intron- and exon-specific abundances for each 

sample versus the human reference, we were able to recluster the original AIBS clusters in 

‘nearest neighbor’ space using TSNE, approximating the clusters identified in that study using 

the intron and exon abundances together (Figure 2c, Table 2, Supplemental Figure 1). By 

exploring intronic coverage significance in cell typing before and after quality control correction, 

we admit that there are flaws in the upstream laboratory processing pipeline which can cause 

false positives or false negatives during cell typing, and attempt to make sense of novel (e.g. 

previously undefined in RefSeq) human expression events in the rare isolated single cells of the 

human brain. 

Sample Prep: Imputation. When considering data from differing cell types, we must 

consider that we inherently lose signal from lesser expressing cell types (e.g. inhibitory and glial 

cell types) in comparison to their higher expressing, more-easily studied counterparts. To 

identify the rare variations representing potential novel signal patterns in the noise, we use 

imputation to account for lost signal from drop out due to biological or laboratory signature loss. 

Since we are preforming a subsequent analysis which is influenced by correlations between 

imputed terms, we also ensure that our imputation does not introduce significant spurious 
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structure into the dataset. We approach this task by noting that the principal-components of the 

original data (i.e., without imputation) capture a certain amount of variance; following 

imputation, the variance captured by the same number of principal-components should be 

similar. 

Sample Prep: Normalization and comparison. We use mean-centering after log-

normalization when searching for clusters which are strongly related to the euclidean distance 

because that process hinges on correlations. However, when later measuring the amount of 

variance predicted (Z-scores) for each transcript across each AIBS-cluster-pair (in the context of 

determining candidate marker-genes for each AIBS-cluster-pair) we use the rank-normalized 

transcript data (since we calculate our Z-scores based on comparing the AUC for each transcript 

across each AIBS-cluster-pair with the distribution of analogous AUCs obtained under a 

permutation-test.   

Population-wide quality control metric correlation. For each quality metric, the 

direction of association with transcript abundance was provided based on insights from the 

preliminary studies, and the feedback of the team that developed the single cell protocol. 12 of 

the 127 quality metric used in the study were highlighted by a human-trained Random Forest 

implementation predicting of pass/fail status [2]. Sparse reduced rank regression highlighted a 

different subset of 12 quality metrics as being significantly predictive. (Supplemental Table 1) 

Previous observations noted 3’ bias as an easily measured indicator of biases caused by a failure 

to capture high quantities of full length RNA during sequencing, making an apparent fail case 

identifier in prior RandomForest modelling [2,3]. Biases associated with the length of mRNA 

can be captured as a function of other quality terms (e.g. dealing with BP counts aligned, 3’ bias 

scores, and, most clearly, bioAnalyzer trace results). The length-associated observations were 
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compared to expectations in random re-sampling and no strong correlation was identified 

between the lengths of our genes and the covariates at the population level. (Supplemental Figure 

2)  

As a comparison to common population-wide methods by Finak et. al, we also conducted 

a test of bimodality across samples using MAST, as described, and noting only a minority of 

genes display a strong bimodality across samples. [8] The vast majority of transcripts displayed 

either a unimodal or monotonic distribution across samples. Only in rare cases (less that 5%) 

does the distribution look like a gaussian plus a spike, or like a sum of 2 gaussians.  

We hypothesize that bimodal relationships to quality control metrics, or groups of quality 

control metrics, exist not only across the population, for metrics which define variation that 

effects all samples (e.g. sequencing quality score), but also among subsets of the graph defined 

by cluster-cluster interactions. We decided to take our novel approach focusing both on an 

unsupervised interpretation of the data, and a comparison to an analysis using pre-defined or 

unsupervised sample clustering. We hypothesize that we should expect more than bimodality in 

the data clustered by transcriptomic abundance clustering, or through biological validation, 

because we evaluate interactions between many highly differing (e.g. performing different 

functions across tissues and layer depths of sampling), and highly similar (e.,g, performing 

similar functions within tissues and layers, or across them) cell types.  We believe that studying 

the degree of cluster separation defined by clear relationships to our covariates can provide cost 

effective methods for detecting rare signals in lowly expressed genes and avoid false positives 

resulting in mischaracterization during transcriptomic cell typing. (Supplemental  Figure 3)  

Accounting for cell type variability in a meta-cell typing transcriptomic assay. As 

described above, high and low expression, and drop out of any expressed signal for a gene, are 
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expected to exist not only as a result of cell class (e.g. exhibitory versus inhibitory) but also due 

to implicit biases of sampling (e.g. ability to capture unsheared RNA from a frozen cell). Here 

we describe application of our methods to a single nuclei single neuron data set utilizing the 

previous AIBS clustering methods, 47 ground-truth sample-clusters, and prior knowledge from 

the study describing those clusters. (Figure 2c) This prior knowledge included specific clusters of 

interest, labelled as ‘outliers’, due to their proximity to well defined clusters with known cell 

markers in TSNE nearest neighbor space, while lacking the same (or sufficient) characteristic 

markers suitable for staining or other forms of cell type validation. (Figure 2d) The goal of 

neural studies attempts to describe inter-tissue signaling and variation, and quiescence. Hand-

curated evaluation of some clusters of interest revealed relationships that separated outlier 

clusters with their most significant metadata correlations matching either RandomForest-defined 

pass/fail terms, or, by contrast, tissue-specific markers (Supplemental Figure 7a-b). We 

experimented with several different unsupervised clustering algorithms, including schemes based 

on simple spectral clustering, t-sne and umap, as well as a scheme based on ‘loop-counting’ [16] 

which is similar to message-passing [17], spectral clustering [18] and the ‘large-average-

submatrix’ method of [19]. We compared the performance of these methods on the ‘planted 

bicluster problem’, and found that some methods are more sensitive than others. (Supplemental 

Figure 5)  

Subsets of Metadata Terms with Correlated Cluster-Pair-specific or Sample-Pair 

specific Response. Within this paradigm we employ two ‘unsupervised’ methodologies to look 

for QC-clusters. First (a) we directly look for QC-clusters within the sample-by-QC-matrix. 

Second (b) we project and rescale the sample-by-QC-matrix onto the left-principal components 

of the sample-by-transcript matrix before searching for clusters. Note that method-(a) attempts to 
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find clusters of redundant QCs that are ‘universal’, in the sense that they would apply to any and 

all analyses (regardless of the transcripts). By contrast, method-(b) attempts to find clusters of 

QCs that are redundant within the context of the transcripts – these QC-clusters will apply only 

when considering that particular set of transcripts (e.g., Exons), and would not generalize to 

other sets of transcripts (e.g., Introns) (Supplemental Figure 9). To summarize our analysis, we 

found no statistically significant ‘universal’ QC-clusters using method-(a), but we did find 6 

strongly significant QC-clusters with respect to the Exon-transcripts using method-(b). We noted 

that the 1000 sampled transcripts are strongly correlated with one another across the samples, 

while the QCs are not so strongly clustered in the sample-space.  

Unsupervised Bias Modes. We made use of 2 unsupervised methodologies, discussed 

in the methods as methods A-D. Our first unsupervised method, described in the methods as 

“A”, is completely unsupervised: A QC-cluster found in this context would represent a subset of 

QCs that are correlated across all (or a significant subset) of samples. We don't find any statically 

significant QC-clusters in this context. In our second unsupervised method, described in the 

methods as “B”, a QC-cluster represents a subset of QCs that are correlated in a subset of 

samples, relative to the distribution of transcripts across those same samples. We do find 

statistically significant QC-clusters in this context (when we use the Exon transcript data). 

(Figure 4a-b) The significant QC clusters found in this case, clusters where the p-value was 

lower than 0.0015, are described in Table 1, where items in parentheses refer to multiple filters 

on the same QC term from various stages of the pre-processing stages. The orientation of these 

qc terms within the projection of each of the 127 QCs (considered as a 1781-dimensional vector) 

onto the dominant 2 left-principal-components of the 1781-by-127 matrix [S^(-1)*U’*C] is 

provided in Figure 3. 
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Supervised Bias Modes. We also considered two ‘supervised’ methodologies for 

clustering the QCs which make use of the ground-truth sample-clusters mentioned above. In 

methodology-(c): we generalize our unsupervised methodology-(b) as follows: Once again we 

project the QC-data onto the principal components of the transcript-matrix, except this time 

instead of using the standard principal-components of the transcript-matrix, we use ‘sample-

cluster-supervised’ principal-components instead. To do this, we determine ‘supervised’ 

principal components of the transcript-data by finding directions in sample-space which optimize 

a cost-function which rewards (i) high inter-cluster distances and (ii) low intra-cluster distances. 

As this cost-function requires a single parameter defining the ratio between terms (i) and (ii), we 

scan over this ratio, searching for the ‘best’ supervised principal-components (i.e., those which 

produce the most statistically significant QC-clusters). Despite this exhaustive search, we were 

unable to locate any statistically significant QC-clusters using this method (for the Exon data), 

though relationships were found using simple linear relationships (Figure 5d-h). In methodology-

(d), we search for QC-clusters using only the ground-truth AIBS sample-clusters, without 

considering the transcript-data. This amounts to searching for QC-clusters within the Z-score 

matrix which records the level of differential expression of each QC-term across each sample-

cluster-pair. (Supplemental Figure 6) We were also unable to find statistically significant clusters 

using this method.  

Practical investigation using linear modelling in subsets of cluster-pair interactions. 

Results from the linear model comparison of unsupervised terms identified comparable bias 

mode clusters, but the analyses were not significant. (Figure 3b-c) The results before and after 

correction were compared to present the effects of bias terms in providing false correlation 

across samples. (Supplemental Figure 12) 
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Correcting abundance vectors derived from all QC terms, and subsets of QC terms. 

Given the imputed, clustered abundance matrix, and bias modes from supervised and 

unsupervised contexts, we proceeded with the hypothesis that “correcting” our sample-specific 

abundance matrix for transcript-level correlations with quality metrics would identify alternative 

composition of our samples in some component space, and unsupervised clusters derived from 

their adjacency. Such a method differs from population wide searches for bimodal separations in 

factored or continuous metadata variables by leveraging the expected transcriptomic correlations 

due to the meta-analysis of many diverse cell types. [3,8] We show that when we correct for 

covariate-derived noise, we may observe an uneven distribution of effects across cluster-pair 

relationships, providing insight into which correlated transcriptomic abundance events have a 

higher probability of being a true signal (potential novel type) as opposed to a marker of a cell 

type whose representation has been bifurcated (or separated moreso) by, e.g. batch or preparation 

biases (Figure 2a-b, Supplemental  Figure 3). While we utilized a dynamic selection of columns 

to incorporate from our Ʒ cluster-pair-covariate rank matrix, all observed analyses reduced to a 

single column component. We believe this satisfies our requirement that our normalization 

corrects our abundance matrix, given the influence of our covariates, while maintaining the 

variance described by samples’ cluster centroids and their outcomes. In other worse, we ensure 

that inter-cluster variance is transcriptomic noise is minimized so metadata terms with shared 

effects on clustered samples should be a non-true signal captured by 1 rank. 

Variation in the experimental cohort before and after correction exceeds statistical 

random sampling. Summaries of clustering confusion matrix results using linear models 

provided insights into variability related to individual QC terms, and set of QC terms which were 

not necessarily clustered together in a significant way, suggesting that such methods could be 
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used to identify correlations with any group of metadata – even if the results will be handled 

noting their lesser significance.  The resulting cluster terms widely matched expectations from 

our biclustering unsupervised methods, but with greater granularity in the separation of our 

terms. (Tables 2-3). Our experimental methods for linear model-based analysis of QC term 

subsets revealed wide differences when evaluating an experimental ‘bias mode’ list revealed vast 

difference in the ability to cluster samples before and after accounting for variance specifically 

associated with those terms, revealing greater granularity in separation across the component 

space defined in nearest neighbor space. (Figure 5d-h) 

Conclusion. In summary, we present a novel recipe for the biclustering of single cell 

transcriptomic data profiling a variety of cell types, and exhibit the function and utility for future 

research on an example data set sampled from the individual nuclei isolated from individual 

neurons in the human frontal cortex. Our recipe stands upon 3 foundations critical to 

unsupervised biclustering for a single cell transcriptomic cell typing assay with informed insight 

on laboratory and sequencing bias: abundance table imputation, unsupervised clustering, and 

covariate-correction. We further summarize the effects of data normalization on variation in the 

matrix. We believe that future work related to biclustering in this field holds great potential as 

the ability to sequence individual cells is rapidly contributing to clinical advancements and our 

understanding of neural cell types at an individual level. This research may help accelerate the 

understanding of neural development, network regeneration, and memory formation within the 

human brain while also providing insight into the laboratory methods themselves. It is our hope 

that, as shown in prior study, critical evaluation of metadata from precursor stages of a protocol 

will be leveraged more in the future, providing insight into canonical biases. Furthermore, 
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through critical evaluation of these biases, and the specific genes targeted, it is our hope that 

methods will be refined to help identify even more difficult to target individual cell types. 

 

METHODS 

Sample Information. All samples were prepared following the protocol described by 

Lasken et. al in Nature Methods. [3] Samples, captured from 2 post-mortem human frontal 

cortexes following cardiac arrest, were cut into slabs for study and stored frozen for 

approximately 2 years. In short, samples were selected based on the layer and region of the brain, 

near regions highlighted for containing unusually shaped cell types. After thawing samples, cells 

were selected based on RIN count and subjected to FACS sorting for nucleus isolation and a 

SmartSeq2-based amplification protocol to generate a Nextera library for sequencing. 

Quantification and Normalization. Illumina 2500 paired end sequencing reads were 

trimmed to remove low quality sequence and primer contamination using Trimmomatic [20]. 

The resulting reads were sent to FastQC for read based quality control metric calculation. [21] 

Reads were aligned to 3 versions of the GrCH38 reference: the version derived from the genes’ 

exon coordinates, another from the intronic coordinates, and a third using the entire gene bounds. 

Resulting counts were normalized using RSEM to Transcripts per Million (TPM). The resulting 

alignments were submitted to RNAseqQC and resulting metrics stored for downstream analysis. 

[22] Additional metrics were curated based on laboratory and biological insights. We utilized 

prior knowledge about our samples in the form of multiple insights. Cluster associations and 

outlier associations were derived from in depth recursive cell typing and associated marker gene 

identification and [3] Random Forest confidence of pass fail was incorporated from the analysis 

described using the same data set. [2] 
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Sample Prep: Imputation and normalization. Abundance tables were curated in intron 

and exon specific contexts. Genes with > 90% missing data are removed. Non-zero reads were 

log-normalized, producing a data-matrix ‘D’ with missing values. To fill in the missing values of 

D we apply an svd-based imputation-scheme. For the purposes of notation, let the index-set “S” 

correspond to the missing entries of D. Thus, D(S) is currently undefined.  

The first step is to choose a dimension ‘d’ which refers to the number of principal 

components we will use to impose structure on the missing data in D. By comparing the 

spectrum of D with that of a random-matrix (i.e., the marchenko-pastur distribution) we see that 

the top 16 principal components of D are large. Thus, we set d=16 for the following process.  

The first phase of our algorithm is to use the first d-principal-components of D to recover 

the structure of D(S). We begin by creating a (temporary) matrix E by first copying D, and then 

filling in each missing entry with randomly drawn values from the same column (i.e., each entry 

of E(S) is filled in by using from the non-missing samples associated with the same transcript). 

We calculate the dominant d principal-components of E, and then use these principal-

components to construct a d-rank approximation to E, denoted by F. We then look at the entries 

of F which correspond to the missing entries of D (i.e., the entries of F(S)) and update E by 

replacing E(S) with F(S). We then return to the calculation of the dominant d principal-

components of E, iterating until E converges. 

Once E has converged, we have finished the first phase of our imputation. The missing 

entries in E(S) have been filled in a manner consistent with the dominant d-dimensional structure 

of E itself. However, at this stage the entries in E(S) are usually ‘too correlated’. That is, they 

exhibit an artificially high level of correlation which is not exhibited by the non-missing entries 

of E. 



81 
 

To correct for this artificially high correlation, we first calculate the singular-value-

decomposition U*S*V’ of E. The matrix V will be N-by-M (where N is the number of 

transcripts, and M is the number of samples). We then ‘spin’ the principal vectors of V 

corresponding to dimensions d+1, d+2, etc. This is done simply by replacing the final (M-d) 

columns of V with a random orthonormal set of vectors drawn from the same span (i.e., ensuring 

that they are perpendicular to the first d columns of V). We then construct the d-rank ‘leading’ 

approximation to E by using the first d-principal components of E. We’ll denote this leading 

approximation by F1. We also construct the (M-d)-rank ‘trailing’ approximation to the residual 

of F1 by using the final (M-d) principal components of E, replacing the usual matrix V with the 

randomly oriented ‘spun’ version of V produced above. We’ll denote this trailing approximation 

by F2. We then produce a surrogate matrix G by adding together alpha*F1 + beta*F2/p, where p 

is the square-root of the fraction of D that is filled – i.e,. p=sqrt(M*N-|S|). We then randomly 

permute the rows of G (corresponding to shuffling the samples) producing a matrix H. We then 

pretend as though H(S) is missing, and impute the values of H(S) in the same way that we first 

imputed the values of E(S). Finally, we measure the principal-values of H, and compare them to 

the principal-components of E that we observed during our first pass. We optimize alpha and 

beta so that the l2-norm of the difference in principal-values observed in the principle-values of 

H and E is as small as possible. Once we have found the optimal alpha and beta, we define J = 

alpha*F1 + beta*F2/p to be our imputed version of D. 

We have designed this algorithm so that it functions well when presented with a large 

random matrix with a single ‘spike’ [23] that has been ‘perforated’ at random. In this case the 

optimal alpha and beta are both equal to 1. The more strongly the data deviates from the spike-

model, the farther away from 1 we expect alpha and beta to be. For both our Exon and Intron 
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data-sets the optimal alpha and beta were quite close to 1 (i.e. between 0.9 and 1.1). In addition, 

the principal-components of our surrogate H are very close to those of E. Together, these metrics 

indicate that our imputation algorithm has successfully captured the d-dimensional structure of 

the missing data without introducing spurious correlations. 

The resulting imputed abundance matrix was converted to relative abundances (by 

dividing by the total), and using the centered log normalized. We considered log-centering after 

normalization, to ensure that each column has 0-mean, but we decided this this was not 

necessary since we automatically mean-center when clustering, and mean-centering doesn’t 

affect the results when we rank-normalize for downstream marker-gene analysis. 

Sample Prep: Comparison. We compared the AIBS clusters to the unsupervised 

clustering of the Exon data (both pre- and post-covariate-correction) by evaluating their linear 

residual and gathered the negative of the log of the p-value, rounded to the nearest integer, in 

Table 2. Roughly speaking, anything above 500 or so is very good, and anything above 1000 or 

so means that the AIBS cluster was mostly recapitulated by the unsupervised clustering. (Table 

2, Supplemental Figure 11) After applying our unsupervised approach, we observed sample-

clusters that – overall – coincided rather strongly with those of the AIBS-sample-clusters. This 

consistency reinforces the validity of both the ground-truth labels, as well as our unsupervised 

methodology. In terms of unsupervised clustering algorithms, we have included results 

comparing six methodologies. 

First, we evaluate the ‘half-loop’ method described in our prior research by Rangan et al. 

[16]. This is an iterative method similar to message-passing [17], spectral clustering [18], and the 

‘large-average-submatrix’ method of [19]. While this method allows for several internal 

approximations, such as binarization, to ‘cut corners’ and speed up the computation, we ran this 
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algorithm in its ‘exact’ mode, with no approximations used. Consequently, this method has no 

free parameters. 

Second, we leverage principal-component projection followed by ‘isosplit5’. [24] This 

method involves first projecting the samples onto the first ‘n_rank’ left-principal-components 

(note that ‘n_rank’ is a parameter we must specify), and then applying isosplit5 () with the 

default parameters (i.e., ‘K_init=200’ and ‘isocut_threshold=1.0’). We applied this method for 

n_rank ranging from 1 to 6. 

Third, ‘exact’ t-sne, followed by isosplit5: This method involves first using the ‘exact’ 

mode of ‘fast_tsne’ [25] with either ‘n_rank=1’ or ‘n_rank=2’, and then using isosplit5 (as in #2 

above) to cluster the resulting arrangement of points. We applied this method for n_rank=1,2. 

Fourth, we use ‘fast’ t-sne followed by isosplit5: This is equivalent to method three with the 

exception that we use the option ‘theta=0.5’ in fast-tsne, corresponding to the default ‘fast’ 

approximation. Fifth, we leverage umap, followed by isosplit5: This method involves first using 

umap (with default parameters), followed by isosplit5 (as in #2 above). [26] Last we leverage 

umap, followed by hdbscan: This method involves first using umap (with default parameters), 

followed by hdbscan (with ‘minpts=10’, and the remaining parameters set to default values). [27] 

Subsets of Metadata Terms with Correlated Cluster-Pair-specific or Sample-Pair 

specific Response. For the purpose of this manuscript we define the term “bias mode” to mean 

any grouping of metadata (qc terms) for which there is a significantly correlated response across 

a subset of the population, as represented by sample-sample interactions (completely supervised 

[what does this mean?]). The QC’s themselves are quite correlated – for example most of the 

variance of the 1781-by-127 sample-by-QC matrix (which doesn’t include transcripts) is 

captured by the first 14-15 principal-components (specifically, 62% of the variance is captured 
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by the first 15 components). By this measurement, in comparison to a random matrix, the QC-

matrix is astoundingly correlated. To identify our ‘bias modes’, or QC-clusters, we are 

specifically looking for subsets of the 127 QCs that are more correlated than one would expect 

within this 14-15 dimensional representation of variation across the population. In other words, 

we are looking for clusters of ‘redundant’ QCs that are more correlated than ‘chance’, given the 

observed correlations across all the QCs. The null hypothesis we use is modeled by drawing a 

random set of 127 vectors with the same principal-components as the original QC-matrix. We 

can easily draw a trial from this null-hypothesis by ‘right spinning’ the sample-by-QC-matrix: 

i.e., by right-multiplying the 1781-by-127 sample-by-QC-matrix by a random 127-by-127 

orthonormal matrix. Then, we check to see how strongly clustered those 127 random vectors are. 

What we are specifically looking for are QC-clusters within the original sample-by-QC-matrix 

that are more strongly correlated than the typical QC-clusters found within the randomly spun 

data. 

We decorrelated the transcripts by first calculate the singular-value-decomposition 

U*S*V’ of the 2-by-1000 transcript-matrix. Then we left-multiply both the 2-by-1000 transcript-

matrix as well as the 2-by-127 QC-matrix by S^(-1)*U’. This is equivalent to the commonly 

used ‘mahalanobis’ rescaling. [28] With this rescaling the transcript-data is uncorrelated (bottom 

left subplot), while the QC-data is now strongly clustered (bottom-right subplot). Note that the 

QC-clusters are more evident after rescaling the sample-space to ‘correct’ for the correlations 

across the transcripts. Our methodology-(a) corresponds to trying to find QC-clusters in the top-

right subplot of Supplemental Figure 9, whereas methodology-(b) corresponds to clustering the 

bottom-right subplot. 
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Population-wide quality control metric correlation. To assess the influence of various 

covariates on a specified set of sample-clusters, we calculate the Z-score matrix ‘Z’, which is of 

size [number of covariates] -by- [number of sample-cluster-pairs]. Given a particular covariate 

‘j’ and a particular sample-cluster-pair ‘(k1,k2)’, the value of Z(j,k1,k2) is obtained as follows. 

First we measure the AUC associated with covariate j between sample-cluster-pairs k1 and 

k2.Then we assess the statistical significance of this AUC by calculating the AUC for a large 

number of label-permuted trials, and then estimating the Z-score of the original AUC from step 

one with respect to the mean and standard-deviation of the distribution of AUCs under the null-

hypothesis in the AUC label-permuted trials. Note that, when z>0, the one-sided p-value 

associated with the z-score from step can be simply calculated as: log(p) = log(0.5) + 

erfcln(z/sqrt(2)). 

Unsupervised Bias Modes. Our evaluation of clusters of quality terms with correlated 

effects across subsets of our abundance matrix took on two unsupervised methods.  First, “A”, 

the completely unsupervised look at the QC-matrix alone, which is of size #-samples by #-QCs. 

We try and cluster this matrix which does *not* consider either the transcript data or any sample-

clustering. A cluster found in this context would represent a subset of QCs that are correlated 

across all (or a significant subset) of samples. Second, “B”, the unsupervised use of transcript-

data, looking at the QC-matrix which is of size #-samples by #-QCs as well as the transcript 

matrix, which is of size #-samples by #-Genes/Reads. We then project the QCs onto the principal 

components defined by the transcripts, and then try and cluster the resulting QC-projections. Due 

to rank disparity, a naive linear model was not ideal for this implementation since we fit the QCs 

perfectly, and found no residual. 



86 
 

Supervised Bias Modes. Our evaluation of clusters of quality terms with correlated 

effects across subsets of our abundance matrix also considered two supervised methods C: semi-

supervised: use transcript-data as well as ground-truth sample-clusters (i.e., the AIBS-clusters). 

First define (supervised) principal components of the transcripts which best separate the ground-

truth sample-clusters. And then project the QCs onto those principal components, and then 

(finally) try and cluster the resulting QC-projections. Supervised Bias Modes. D: fully-

supervised: use only the ground-truth sample-clusters (but not the transcript-data) to define a 

sample-cluster-by-QC matrix. Then search for QC-clusters in that matrix. 

Practical investigation using linear modelling in subsets of cluster-pair interactions. 

Visual interpretation of quality metric associations and cluster pair interactions is provided as a 

means of understanding simple linear relationships identified between cluster pairs and quality-

associated bias metrics. The matrix of Z values for each cluster pair’s relationships with each 

quality metric (e.g. piece of metadata) was alternatively evaluated by looking at the Euclidean 

distance measured across all terms.  The resulting metric-metric distance values, defining the 

level of correlation in linear prediction of variance across all cluster pairs, were clustered 

hierarchically with pvclust to identify the most significant groupings of variables associated with 

these linear interactions. [29] (Figure 3b-c) The recursive bootstrapping analyses uses in this 

simple linear method are not memory efficient, and becomes computationally intractable when 

evaluating non-supervised ‘effect groups’ of correlated cluster pairs with similar response to all, 

or some, of our metadata terms. (Supplemental Figure 12a-b) These ‘effect groups’ were also 

calculated, again using pvclust but over a subset of example metadata components, to illustrate 

how to identify clusters with the greatest level of their inter-cluster relationships defined by a 

particular ‘bias mode’. Clusters within ‘effect groups’ had counts added to their ‘effect 
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histogram’ and the total scores were attributed to individual samples, and their clusters, to note 

the clusters which canonically perform in a similar fashion with regards to these metadata terms. 

(Supplemental Figure 12c-d).  

Correcting abundance vectors derived from all QC terms, and subsets of QC terms. 

For clarity, we’ll use our Exon data as an example to illustrate our method for correcting for 

covariates. In this case the data-set involves M=1781 samples, N=15137 exonic transcripts, and 

L=127 covariates. The data-matrices involved are the M-by-N (imputed) transcript matrix ‘A’, as 

well as the M-by-L rank-normalized covariate matrix ‘C’. For notational purposes, we will also 

use ‘1’ to refer to the constant M-by-1 vector of all ones.  

We first use a version of linear regression to solve for the (1+M)-by-N coefficient matrix 

zJ, such that A is approximately equal to [1 C]*zJ. The regression we use is referred to as 

‘reduced rank regression’ and produces a sequence of (1+M)-by-1 vectors ‘uj’ and N-by-1 

vectors ‘vj’ for j=1,2,…,(1+L). [30] At each step J in this sequence, the vectors uj and vj are 

chosen to minimize the frobenius-norm of the difference (A – [1 C](Sj=1:J uj *v’j)). Given the 

sequence of vectors from step #1a, the full z matrix is formed by summing over j: zJ = Sj=1:J uj * 

v’j.  Note that if [1+C] is full rank (i.e., rank 1+L) then the vectors uj will be chosen such that [1 

C]*(Sj=1:J uj) is equal to U(:,1:J)*S(1:J,1:J), where U*S*V’ is a singular-value-decomposition of 

A. Furthermore, as long as [1 C] is full rank then the vectors vj will coincide with the columns of 

V. If [1 C] is rank-deficient then these equalities will not hold. Now, for any rank J, we can 

calculate the M-by-N residual matrix RJ = A – [1 C]*zJ. We use the residual RJ as a covariate-

corrected version of the transcript-matrix A. By varying J, we can increase the level to which we 

correct for the covariates (note that R0 = A). For our summary table we choose the rank J to be 

‘full’ – i.e., determined by the rank of the covariate-matrix [1 C]. For the example given here 
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(i.e., where C consists of all L=127 covariates) we choose J=12. For different populations of 

covariates we vary J accordingly. For example, for the 12 ‘RRR’ covariates we use J=12. In the 

case of the QC-clusters described above, we use J=1 (as the covariates within each of these QC-

clusters are presumed to act in a similar way across the sample-population). 

Now, for each pair of pre-defined or unsupervised clusters (‘cluster pairs’), we can 

measure the differential-expression of any of these 'covariate-corrected' genes from any of these 

data-arrays (e.g., the differential-expression of any particular column of raw, imputed, 

normalized, and/or covariate-corrected data). We provide corrected data that is actually the 

residual of the fit of our covariates onto the abundance set (i.e., the residual between the original 

data and the model).] (C_corrected = A_original – C_model). Moreover, we can apply clustering 

techniques (e.g., t-SNE, Biclustering) to the rows of these 'covariate-corrected' data-arrays (e.g., 

use t-SNE to cluster the rows of the abundance matrix.)  

Comparing the results of covariate correction. In order to search for marker-genes 

associated with a specified set of sample-clusters {Sk}k=1..K, we first calculate the Z-score matrix 

‘Z’, which is of size [number of transcripts] -by- [number of sample-cluster-pairs]. Given a 

particular transcript ‘j’ and a particular sample-cluster-pair ‘(k1,k2)’, the value of Z(j,k1,k2) is 

obtained as follows. First, we measure the AUC associated with transcript j between sample-

cluster-pairs k1 and k2. Then we assess the statistical significance of this AUC by calculating the 

AUC for a large number of label-permuted trials, and then estimating the Z-score of the original 

AUC from step #1a with respect to the mean and standard-deviation of the distribution of AUCs 

under the null-hypothesis in step #1b1. Note that, when z>0, the one-sided p-value associated 

with the z-score from #1b can be simply calculated as: log(p) = log(0.5) + erfcln(z/sqrt(2)).  
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Note that this Z-score matrix will depend on the transcripts used. If we use the original 

transcripts ‘A’, we will calculate Z(A). On the other hand, if we use the covariate-corrected 

transcripts RJ, we will calculate Z(RJ).Once we have calculated both Z(A) and Z(RJ), we can 

simply calculate the correlation between the two. Moreover, we can step through each of the 

sample-clusters Sk. For each sample-cluster k we can calculate the correlation ‘ck’ between 

submatrices of Z(A) and Z(RJ) corresponding to those sample-cluster-pairs that include sample-

cluster k. (Table 2) Note that this latter process produces a single number (i.e., the correlation ck) 

for each sample-cluster k. The sample-clusters for which ck is low can be considered as strongly 

affected by the covariate-correction associated with RJ. Conversely, those sample-clusters for 

which ck is high can be thought of as ‘robust’ with respect to the covariates associated with RJ. 

As noted in the variables above (Figure 2), we compared the performance across all 

combinations of 1) intron- or exon-abundances, 2) 1 of our 4 data preparation methods, 3) using 

all (127), or some 12 RF-derived [2], 12 SRRR-derived [30], and MIN to MAX bias mode-

specific) covariates.  

We also conducted a preliminary analysis using 1 through R zeta components in the 

correction of the abundance matrix.  An example comparison of the results correcting using 

different counts of terms from Z is provided in Table 2 and Supplemental Table 3. The results 

were compared in multiple ways, and the results compared to identify the most informative 

methodology for comparison versus comparison in simulated data. As in previous examples 

comparing normalized and imputed data, we compare our example results in terms of both 

adjusted mutual information (AMI), calculated by evaluating the ‘repackaged probability’ of 

seeing collective overlaps with the pre-defined AIBS clusters that are as rare or rarer than our 

observations. In other words, these are the probabilities of observing our sample-cluster overlaps 
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vs. our baseline assumption of these overlaps occurring in a random shuffling of sample labels. 

We also calculate the differentially expressed genes, genes surpassing log(FoldChange) > 

(variable undefined in draft) and p-value > (variable undefined in draft) using (variable 

undefined in draft), across cluster pair associations before and after to delineate potential marker 

genes of interest. (Table 3). We provide an example of this implementation on the human frontal 

cortex samples, highlighting variation in cluster pairs which vary from defined cell types in 

correlated ways, but which the cause of their independent clustering is not understood. 

Chapter 2.4, in part, is currently being prepared for submission for publication of the 

material. Multifactorial Quality Control Analysis for Single Cell Transcriptomic Profiling. 2020. 

McCorrison J, Rangan A, Schork NJ. The dissertation author was the primary investigator and 

lead author of this paper.  
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2.5: FUTURE WORK 

 

The improvement of laboratory methods in single cell sequencing is rapid, and novel 

methods are naturally taken as a way of getting around biological barriers associated with 

targeting different cell types, in different tissues. As shown above, quality error may be 

introduced not only through sequencing, but simply through sample storage (e.g. by freezing and 

unfreezing.)  Advanced cell typing assays inherently target the most difficult to study cells, the 

ones which will be the most interesting to understand due to their unknown function and possible 

correlated effects in signaling with better-understood neuronal cell types.  

To begin to studying more complicated trends like time series neural development and 

memory formation within hosts, and comparing hosts, we must begin by getting a strong 

functional foundation of the variety apparent in these regions of the brain, and to what degree our 

analysis of lesser expressing cell types (e.g. inhibitory cells) is subject to data loss. 

As we once saw in the metagenomic context, single cell sequencing is moving cell typing 

research from the population wide evaluation of rare targets in unstudied tissues to the isolation 

of the rarest signals. This is performed through extreme preparation methods that stretch the 

limits of the ability to capture RNA from the host cell and to amplify it and interpret the degree 

to which any signal was confounded. Leveraging longitudinal assays with this type of 

information will be absolutely essential when cell type delineation in organs. Furthermore, as we 

approach the development of organ-like tissues which could be used for high throughput assay 

and clinical interventions, organoids, huge opportunities remain to leverage metadata-aware 

biclustering to improve the cost and throughput of experimental protocols. These methods have 
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further applications in the development of synthetic materials, biomasses for fuel/food, and other 

industrial applications. 
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CHAPTER 3: ELUCIDATING LONGEVITY-ASSOCIATED OUTCOMES FROM 
FIBROBLAST-DERIVED TRANSCRIPTOMIC SEQUENCING IN A REFERENCE FREE 

CONTEXT 
 

3.1. INTRODUCTION 

 

As we once saw in the metagenomic context, where individually bacteria were slowly 

isolated and sequenced one by one as high throughput sequencing improved, single cell 

sequencing is already being used for the population wide evaluation of rare targets in unstudied 

tissues. The goal of many research studies is the isolation of the rarest signals, those previously 

unstudied due to their difficulty of isolation, via extreme preparation methods that stretch the 

limits of the ability to capture signal from small quantities of RNA. Standard methods of 

transcriptomics analysis have been complicated by the lack of available reference information on 

novel cell types. Further difficulties are imposed when interpreting true signal from false noise 

during expression events which are not captured by the defined reference coding region 

sequence. Complications arise in the following chapter when comparing abundances because of 

these reference accuracies but also because of, in some cases, a complete lack of defined 

references for query species. To compare abundances amongst species without defined 

references, we must create interpretation terms (e.g. defined groups of proteins with similar 

function) translating our query-specific transcript-specific abundance to a representation that can 

be compared across all of our query species. We linked our query-specific transcripts together 

using a mapping to the best defined references for each query species in literature (e.g. using 

ortholog groups associated with reference-specific genes, assigned to each transcript). While we 

admit that leveraging orthologs as indicators of gene- or isoform-specific expression can lead to 

spurious abundances, we found in preliminary study that such a method is far more sensitive than 

the comparable use of a single best-defined reference (e.g. the domesticated chicken.) 
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In the following chapter, we compare the performance of our abundance when we use 

alignment to our best defined references, and also via de novo recapitulation of the sequences 

and re-alignment to determine abundances. Leveraging our metadata against the abundances is 

subject to a series of additional complications which we address at length. Most critically, we 

compare common modelling methods to evaluate trends in transcriptomic abundance which 

account for expected variance in transcriptomic expression associated with evolutionary 

divergence events (e.g. nodes of the phylogenetic tree) and phylogenetic relationships between 

species (e.g. branch lengths of the tree) defined from literature differently. We also discuss our 

metadata itself, critically evaluating its influence on our results when gathered from various 

sources, or normalized for transformation in our models which account for phylogeny contrast in 

different ways. 

This study follows analysis by collaborators from the Longevity Consortium evaluating 

the relationships between longevity events, events dictating extreme high or low deviations from 

our expectation of lifespan given mass, using linear modelling versus metadata to predict 

outcomes in rodents and in canines. Additional studies provide comparable targets in additional 

host species, and which account for longevity using different measurement types (e.g. variants) 

and host species. We show that the complications of eukaryotic, reference-free analysis in a 

diverse cohort can be accounted for, with caveats requiring individual investigation of 

highlighted results associated with a given phenotype, and identify potential longevity associated 

targets shared across host species. 
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3.2. MULTI-REFERENCE GENOME-WIDE RNA-SEQUEQNE ANALYSIS OF 49 BIRD 
SPECIES IDENTIFIES TRANSCRIPTS ASSOCIATED WITH AVIAN LONGEVITY 

 

See un-published work, a draft currently being prepared for submission, reproduced in this 

chapter: 

 
McCorrison J, Chan AP, Choi Y, Ding K, Pickering A, Pawlikowska L,Norden-Krichmar T, 
Evans D, Schork NJ, Miller RA. Multi-reference Genome-wide RNA-sequence Analysis of 49 
Bird Species identifies Transcripts Associated with Avian Longevity. 
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ABSTRACT 

Bird species exhibit great variation in lifespan, raising the question as to whether or not 

this variation can be attributed to inherent DNA sequence and/or gene expression differences 

among them. In order to identify genes whose expression levels correlate with lifespan across 

bird species, we characterized the transcript abundance profiles of fibroblasts obtained from 49 

species exhibiting great variation in their maximum lifespans using RNA-sequencing protocols. 

Due to the fact that reference genomes were available for only 20 of the species, we used 

reference genomes for each species from the 20 species with references based on their 

phylogenetic or transcriptomic distances. We also contrasted reference-guided transcript 

abundance calculations with abundances determined from de novo assembly of each species 

transcriptome. We correlated transcript abundance levels with the maximum lifespans of the 49 

bird species, controlling for both phylogenetic relationships as well as differences in body size. 

We also identified the human orthologs of the most strongly associated transcripts and ultimately 

found evidence for 63 human gene equivalents whose abundance levels correlated with bird 

lifespan at FDR-adjust p-value < 0.05. These associated transcripts are known to mediate 

important biological processes, including organ morphology relating to intestinal and gonad 

development, and carcinogen markers in the stomach, liver, and intestine.  

 

KEYWORDS 

Longevity Transcriptomics Avian Bird Orthology Aging Lifespan Ontology RNAseq 
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BACKGROUND 

The identification of genes contributing to lifespan has received a great deal of recent 

attention, in part because of the belief that their identification could lead to insights into, e.g., 

nutritional or pharmacological intervention targets for enhancing longevity, possibly by slowing 

the aging process and age-related disease onset.[1,2,3,4,5] Unfortunately, the identification of 

genes that influence lifespan in a way that could lead to longevity-enhancing interventions has 

been elusive, due, most likely, to the number and complexity of such genes. One strategy for 

potentially overcoming this complexity involves exploring within-species variation in lifespan 

and the genes and genetic variations that might contribute to it using well-controlled study 

designs. For example, large-scale genome-wide association studies (GWAS) have been pursued 

in humans that have common ancestral origins to identify genetic variants associated with human 

lifespan, as have studies of specific strains of mice that exhibit intra (and inter) strain variation in 

lifespan.[6] In addition, highly controlled gene manipulation studies, such as those involving 

knock-out and transgene protocols, have been pursued in studies involving yeast, worms, and 

flies, to determine if the manipulation of specific genes affects the longevity of those 

species.[7,8,9]  

Complementary and more recent approaches to the identification of genes contributing to 

lifespan involve exploring genetic similarities and differences across multiple species that exhibit 

variation in lifespan – the intuition being that if, for example, a gene’s increased expression level 

is necessary or sufficient for extending lifespan in one species, then that gene and its orthologs in 

other species should be expressed at relatively high levels in long-lived, as opposed to short-

lived, species. In this context, a recent study by Ma et al.[10] considered characterizing the 

transcriptomes of 16 mammalian species exhibiting a wide range in lifespans using RNA 
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sequencing (‘RNA-seq’) technologies and protocols. By exploiting special bioinformatics and 

statistical methods to normalize the expression levels across the species, as well as control for the 

phylogenetic relationships between the species, the authors identified genes whose expression 

levels were associated with lifespan across the 16 species. Many of these genes were known to 

be involved processes relevant to aging, such as DNA repair and metabolism. In addition, by 

focusing on multiple species, and by characterizing the gene orthologs across those species, and 

the methods for identifying those gene orthologs, the authors provide a useful resource for 

researchers investigating genes in other species to enable comparison of results with theirs. [11] 

We conducted a study exploring the relationship between lifespan and transcript 

abundance levels quantified from RNA-seq protocols using fibroblasts obtained from 49 

different bird species known to exhibit wide variation in their lifespans. Unfortunately, unlike 

other species, there are not, to date, universally accepted avian reference genomes for the 

majority of the species we considered in our analyses. We therefore adopted two strategies to 

leverage as many reliable and available avian reference genomes as we could. First, we used the 

reference genome from the species closest in the phylogenetic distance to each of the 49 species 

we studied to assign and quantify transcripts. Second, we compared the performance of the 

analysis using reference-guided transcript abundances to transcript abundances obtained from the 

de novo reconstruction of transcripts for each species coupled with the identification of 

orthologous gene groups derived from these de novo transcripts. [Chan, Choi, McCorrison, 

Pickering, Pawlikowska, Norden-Krichmar, Ding, Evans, Miller and Schork; (manuscript in 

preparation)] 

We tested the association of each set of orthologous gene (i.e., transcript) group to 

maximum life span (MLS) and body size-corrected MLS while correcting for the phylogenetic 



100 
 

relationships of the species using the method of phylogenetic contrasts [12] and multivariate 

distance matrix regression (MDMR; [13, 14, 15]. Note that for these analyses we considered 

maximum lifespan and body size data from different sources [16.] We did this since there is not 

consensus on the MLS and body size information for all species w studied. We also identified 

the human orthologs of the associated genes using OrthoDB [17]. Finally, we conducted pathway 

enrichment analysis to identify common processes and genetic networks that are influenced by 

the associated genes. Ultimately, our strategies and workflows for identifying transcripts whose 

abundances are associated with MLS in birds provides a recipe for conducting similar analyses 

across additional sets of diverse species. In addition, our list of associated genes and pathways 

can be compared with the results of different types studies seeking to identify genes associated 

with MLS. We believe that our study is largest to date to explore the avian transcriptome and 

should motivate additional studies investigating evolutionarily conserved processes and 

pathways contributing to lifespan. 

 

RESULTS 

A graphical representation of the phylogenetic relationships between the 49 species we 

studied, as well as their MLS and body size values are depicted in Figure 1. Color coding of the 

species indicates which reference genome was used for each of these 49 species to assess 

transcript abundances from the RNA-sequencing reads. Note that some of the 49 species were 

assigned use of the same reference genome whereas other reference genomes were used with 

only one or two species. Note also that the long-lived species, even corrected for body size, 

occur in different sub branches of the phylogeny.  
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The relationship between MLS and body size across the 49 species is provided in Figure 

2. Note that some of the species appear to be more outlying relative to others (e.g., Turkey, 

Ruffed Grouse and Rock Dove) given what is otherwise a fairly linear relationship between log 

body mass and MLS. The residuals from the regression of log body mass on MLS were 

considered in our association analyses with transcripts. 

After transcripts abundances were quantified by either mapping reads to chosen reference 

genomes or counting them from the de novo transcript assembly for each species, we determined 

orthologous groups of transcripts using OrthoDB [17]. We then tested the association of each 

orthologous group (OG) to MLS and MLS-corrected for body size using a simple linear model, 

the phylogenetic contrast method of Felsenstein, as implemented in the R module CAPER 

[12,18], and MDMR [13,14,15]. Note that the MLS and body size values were obtained from 

different sources so we considered these different values in our analyses. Table 1 provides the 

results of these association analyses and suggests that the transcript quantification methods, the 

different analytical methods, and the choice of MLS/body size values can make a difference in 

the number of associated OGs. 

In order to reduce the number of associations, we considered only those OGs obtained 

with the reference genome alignments that had known human orthologs based on the OrthoDB 

[17]. Table 2 provides the results for the most significantly associated OGs exhibiting either a 

positive or negative abundance association with MLS. It can be seen from Table 2 that there is 

consistency in the associations of these OGs with the OG abundances derived from the de novo 

assemblies. Figure 3 provides volcano plots summarizing all the associations involving the 

reference-guided and de novo assembled OGs and again suggests reasonable agreement between 

the two strategies. These analysis results give us confidence that our results were robust to the 
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nuances surrounding transcript assembly or OG determination. Figures 4-6 provide examples of 

individual OGs and their associations with MLS using the different analytical methods. These 

figures also provide information about the human gene orthologs of the associated OGs as well 

as information about the pathway involvement of the human orthologous genes. 

We next took the most significantly associated OGs from the reference-guided and de 

novo assembled approaches and performed pathway enrichment analyses on each set of 

associated OGs using the Ingenuity Software Suite [19]. Table 3 summarizes the results. Tables 

4a-4c break down the results of these pathway enrichment analyses and provide information on 

the most significantly enriched processes, cellular components, molecular functions, 

respectively. Table 5 lists the most significant diseases and/or functional associations of the 

enriched pathways. Finally, we identified the 63 OGs that were most significantly associated 

with the residual of natural log of mass on MLS (FDR-adjusted p-value cutoff 0.05) and 

subjected them to pathway analyses. Figures 7 and 8 depict the results. Many of these OGs had 

identifiable human orthologs and 10 of them were also found to be associated with the residual 

of natural log of mass on lifespan across mammalian species, including EVI5L, MRPL37, 

PWWP2A, THOC5, and WHAMM, based on the findings by Ma et al [10].   
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Figure 3.2.1. Phylogenetic relationships among the 49 species.  Leaves = query species, colored 
by best reference assigned. Nodes = evolutionary breakpoints, colored by caper-derived 
phylogenetic contrast. Bar plots = metadata for each row, as defined in Supplemental Table 1, 
using metadata context “BMG (A)”. 
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Figure 3.2.2: Relationship of MLS to log (base e)-normalized body mass in grams across all 49 
species. Dotted and dashed lines indicate 1 and 2 standard deviation distances from the 
regression line based on residual values from the regression of MLS on log body mass. Metadata 
provided in Supplemental Table 5a (Columns = “Dependent Variable: BMG (A)”, “Independent 
Variable: MLS (A)”). This plot is recreated in alternative metadata contexts in Supplemental 
Figure 2.  
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Residual Abundance Relative Abundance Rank Order of Abundance 

MLSLW 

Alignment 

  

De Novo 

  

MLSW 

Alignment 

  

De Novo 

  

MLS 

Alignment 

  

De Novo 

  
Figure 3.2.3. Volcano plots constrasting MLS associations with the reference-guided and de 
novo assembled OGs. Number of unique ortholog groups (Y, negative natural log of raw p-
value) and their associated phylogenetically contrast-adjusted slope (X, calculated using the 
caper model package),  A) CAPER, MLSLW, log(Rel Abs), (BMG (A)), B) CAPER, MLSW 
log(Rel Abs) , (BMG (A)), C) CAPER, MLS log(Rel Abs) , (BMG (A)), D) CAPER, MLSLW, 
Rank(Abs), (BMG (A)) , E) CAPER, MLSW Rank (Abs) , (BMG (A)) , F) CAPER, MLS Rank 
(Abs) , (BMG (A).  Compare to metadata context (AW (A) in Supplementary Figure. 
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A.      B.  

D. F.  
 
Figure 3.2.7. TopGO Gene Ontology Results. Metadata = BMG (A). GO terms significantly 
associated with significant OGs from both Alignment and De Novo abundance contexts. (A,C,E) 
Positive association with residual on lifespan.  (B) Negative association with residual on 
lifespan. A-B) Biological processes, cutoff = KS 0.05.  D.) Cellular components, cutoff = KS 
0.05, negative-only.  E-F.) Molecular functions, cutoff = KS 0.05, negative-only.  
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A.  

B.  
 

Figure 3.2.8. Ingenuity Pathway Figure (hand-curated). Metadata = BMG (A). Significant 
OGs shared in Alignment and De Novo abundance contexts with Ingenuity Pathway equivalents 
(Human, Mouse, Rat). Data used for Figure examples: Model = CAPER, Dependent = MLSLW, 
Independent = LG, Metadata = BMG (A), FDR p-value cutoff = 0.5.  IP pathway selection cutoff 
= 5e-8. Direction of association = A) Positive (Dark Green=Positive Association with Residual 
on Lifespan, Light Green = IP Linked Associated Target).  B) Negative (Dark Orange=Positive 
Association with Residual on Lifespan, Light Orange = IP Linked Associated Target). Some of 
the most significant Disease and Function terms, those with greater than 100 connections to 
genes were omitted for visualization (see Supplemental Table).  Associations between Human 
reference genes co-defined for significant OGs (dark green, dark orange) and diseases (light 
blue) and functions (white) are indicated with a dashed line.  Connections between these genes 
and their linked targets from the IP database are provided with a solid line (Table 1, Table 2) 
Compare to Table 5. 
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Table 3.2.1. Number significant OG for each model at Cutoff = FDR-adjusted P-value = 
0.005. The number of OGs significant at threshold for each model (e.g. “CAPER”).  Abundance 
type : DN = De Novo, Al = Align. Directionality of association: Slope of association after 
phylogeny correction is positive (+) or negative (-). Me = Metadata: BMG (A) = Body Mass 
(Grams), updated with AnAge, A = Adult Weight (Grams), source from AnAge. D = Dependent 
variable: A = MLS = Maximum lifespan, B = MLSW = residual of BMG (Body mass in grams) 
on MLS, C = MLSLW = residual of the natural log of the BMG on MLS.. In = Independent 
variable: G = relative gene abundance, RG = rank-ordered abundance, LG = natural log of 
abundance. (Table on next page.) 
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Table 3.2.3. BMG (A): Number significant GO terms for each CAPER model at each 
cutoff.  Independent variable = LG, natural log of relative gene abundance. MLS = Maximum 
lifespan, MLSW = residual of BMG (Body mass in grams) on MLS, MLSLW = residual of the 
natural log of the BMG on MLS. 

Tool: Database 
Independent 

variable 
De Novo Alignment Shared 

Pos Neg All Pos Neg All Pos Neg All 

Ingenuity Pathways: 
Diseases and Functions 

MLSLW 6 200 206 6 200 206 6 200 206 

TopGO:  
Biological Processes 

MLS 22 32 42 21 46 42 21 32 40 

MLSW 0 95 108 0 95 108 0 95 108 

MLSLW 5 1 8 5 1 8 5 1 8 

TopGO: Cellular 
Components 

MLS 10 4 12 2 8 12 2 4 4 

MLSW 0 5 5 0 5 5 0 5 5 

MLSLW 0 11 11 0 11 11 0 11 11 

TopGO: Molecular 
Processes 

MLS 5 1 8 5 1 8 5 1 8 

MLSW 0 11 11 0 11 11 0 11 11 

MLSLW 0 21 30 0 25 30 0 21 25 
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DISCUSSION 

We have pursued what we believe is the largest study to date investigating the 

relationship between gene expression levels (via transcript abundances obtained from RNA-seq 

assays) and lifespan in different bird species. We focused on fibroblast gene expression patterns 

in 49 bird species that are known to exhibit a wide range in lifespans and developed a workflow 

and analysis strategy processing and analyzing the RNA-seq data using reference genomes 

chosen for each species based on their proximity to a species with a well-established reference 

genome. We also developed strategies for determining orthologous sets of genes across the bird 

species as well as humans. To ensure that our findings are robust given that not all species we 

studied had a reference genome, we also assessed transcript abundances using a de novo 

assembly workflow. Similar strategies have been used in other studies of new or poorly 

characterized species. [10] We also used multiple association analysis strategies as well as 

different sources for MLS and body size information for each species, noting that our study 

differs from previous analyses by leveraging the residual of species longevity on body mass in 

grams (e.g. where ‘negative’ associations with the residual be interpreted by their inverse 

correlation to extended lifespan, so ‘positive’ with regards to the relationship of their 

abundance, and its effects in transmission networks resulting in extreme longevity.) 

(Supplemental Figure 9) 

 Because of the branch lengths in the phylogenetic relationships among the species we 

studied (Figure 1), it was possible that some genes have been lost or have undergone substantial 

changes (e.g., at DNA sequence level or via duplications resulting in paralogies and multiple 

orthologies) as the species evolved. We therefore needed to be sensitive about making claims 

about orthologous transcripts across the 49 species, and account for expected transcriptomic 
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variation using insights into the evolutionary divergence amongst them. In addition, because of 

uncertainties in the actual MLS and average body size of each species, the use of multiple 

sources for them made sense. Finally, since the exact phylogenetic relationships between the 

species is uncertain, we choose to assess the association of each OG to MLS using different 

methodologies. 

In terms of assessing orthology among transcripts identified from the reference-guided 

and de novo assembly analyses, we tried to leverage different levels of stringency for making 

claims about orthologous proteins amongst using the OrthoMCL tool [12] Relaxing criteria for 

stringency with OrthoMCL, or even the number of species considered in the identified of 

common orthologous transcripts, led to larger sets of transcripts we could associate with 

longevity at the cost of sensitivity towards rare transcripts and isoform-specific analyses unique 

within queries and/or their best references. Even the “strictest” clustering rate resulted in a lower 

correlation across our OGs throughout the data set, when analyzed by linear concordance and 

CCC rho. [13] For this reason, we decided to use the predefined GigaDB resources as the most 

accurate for curating comparable summed abundance values. [20] This consistency was also 

apparent in downstream analyses where our GO ontology searches based on significant terms, 

highlighting targeted networks related to the source tissue and with consistent terms amongst 

abundance derivation methods.  

Preliminary observations of concordance between the OrthoDB clusters exhibited 

generally strong correlations across the natural log normalized relative abundance vectors, 

particularly in deeply covered transcripts. Examples of discordance, measured using linear model 

residual values and CCC rho q-value, provided a degree of confidence in OG specificity 

performance and the ability to recapitulate expected linear relationships between OG abundance 
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and the residual of body mass on lifespan across the diverse avian phylogeny (Supplemental 

Figure 1a-b,e-f). These trends in specificity were more dramatic when representing abundance in 

rank ordered format (Supplemental Figure 1b, 1d). 

Although we tabulated transcript counts across different subsets of the 49 species, we 

emphasize that we put our focus on the transcripts that we were confident were present across all 

species. A ‘0.0 abundance’ assignment for a transcript for a particular species could have 

resulted for one of four reasons. First, the transcript may not be expressed in fibroblasts in that 

species, though it could have been observed as non-zero expression level in another tissue. This 

would amount to the transcript having a true 0.0 abundance level assignment for that species. 

Second, the gene could have been lost due to evolutionary changes between one species and 

another, creating genomic separation between that species and other species. This would also 

result in the transcript having a true 0.0 abundance level assignment for that species. Third, the 

gene could be lost due to a lack of similarity between the observed expressed transcripts and the 

best available reference genome. Fourth, the RNA-seq assay could have been problematic (e.g., 

read count from the sequencing was too low to interrogate the transcript). These last two 0.0 

abundance assignments would not, necessarily, be biologically relevant. It is unknown which of 

these four reasons could explain that missing transcript abundance, especially without additional 

information (e.g., DNA sequencing and genome assembly results for the species). With the 

hypothesis that some drop-out of abundance signal may be expected due to limitations in the 

sample preparation pipeline, we limited our sample analysis to those OGs expressed across the 

cohort, and by pursuing concurrent analysis using the relative, absolute, and rank-ordered 

representation of expression. 
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To account for expected transcriptomic variation within sub-clades of our novel avian 

cohort, we first validated expectations from prior study of a linear correlation between our 

species’ body mass and longevity, accounting for variations in our metadata from various 

sources. (Figure 2, Supplemental Figure 2). We compared the performance of a simple linear 

model to the phylogenetic contrast method described by Felsenstein et. al in 1985 and 

implemented as ‘Caper’ [12,18]. We also considered a multivariate linear regression model 

leveraging principal components. We further explored the use of MDMR with a representation of 

our sample-sample distance matrix using the apparent transcriptome dissimilarity using the 

MASH tool and via the apparent phylogenetic distance in our source tree. Comparable results for 

top OGs in all other models are summarized in Table 2 and Supplemental Table 10 as well as in 

Figure 4-6 and Supplemental Figure 2. We see variable performance amongst the clade in 

response to each correction method. Results for all models are provided in Supplemental Data 

Zip.  

Many OGs were found to be significant at each of our cutoff tests. The transcripts that 

exhibited the strongest association with either MLS, MLSW or MLSLW were identified as both 

associated with positive and negative prediction of longevity vs. the expectations set by species 

mass, with more negatively predictive OGs identified at extreme significance across all models 

(Figure 3.) Many of the genes identified by the abundance-derived tests overlapped with 

significant OGs from our other models, and many of those had defined reference specific gene 

identifiers with human orthologs. A majority of the same OGs were identified as significant in 

the “BMG (A)” and “AW (A)” metadata contexts when utilizing the log of body mass, while the 

variations between metadata inputs dramatically altered the significant gene count shared in the 

other contexts, with and without using rank-ordered abundance. (Table 1) Several novel 
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significant markers were identified in only one of the two metadata context, including KLHL25 

and CHST14. (Table 2) Both metadata contexts performed similarly in the de novo abundance 

context, though several novel significant markers were identified in the latter context, including 

UGP2 and ARMC10. (Supplemental Figure 6a)  

The significant defined genes from the MLSLW abundance-derived models were 

involved in a number of TopGO Biological Processes, including “GO:0002684: positive 

regulation of immune system process” (Table 4a, Supplemental Table 12a). A number of 

immune regulatory genes were highlighted in our analysis including PAIP2 (Figure 4), the most 

significant positively correlated gene in our study, and a gene known to regulate viral synthesis 

and replication in humans. [21]. Significantly associated GO Cellular Components terms such as 

“GO:0043231: intracellular membrane-bounded organelle” and “GO:0060271 cilium assembly” 

were highlighted due to genes like the significantly negatively correlated TMEM87A (Figure 5), 

a Golgi-resident membrane protein which has been highlighted for its associated with 

intracellular signalling via retrograde transport [22]. The most significant GO terms also include 

a number of carcinogenic response terms, including “GO:004852 positive regulation of cellular 

process”, which includes a strongly negative correlated OG defined with symbol ARMC10 

(Supplemental Figure 6a), known to decrease activity of the p53 tumor suppressor [23]. 

Generally, we see wide number of immune response and cell signaling terms which significantly 

associated with our differentially expressed OG terms.  

Significantly associated Cellular Components included a wide array of general fibroblast-

specific transcription network activity, but specifically highlighted several complexes expected 

to vary with longevity association. (Table 4b, Supplemental Table 12b) For example the NuRD 

complex, a chromatin signaling pathway for cancer regulation in fibroblast cells, and the 
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SWI/SNF complex, another a chromatin remodeling complex marker controlling development in 

fibroblasts were both significantly associated with deviations from expectations of longevity 

[24,25]. The CHD chromatin remodeling regulation network was also significantly associated, 

which is consistent with significantly associated Molecular Functions like ATPase activity and 

other markers of transcription regulation. [26] (Table 4c, Supplemental Table 12c) 

Ingenuity Pathways’ Diseases and Functions highlighted a number of terms relating to 

tumor development and translation regulation. Significant terms in the “BMG (A)” set were 

more general, denoting primarily terms associated with tumors in soft tissue and also 

reproductive morphology (Table 5) while significant terms in the “AW (A)” metadata set 

included more tissue-specific terms relating to fibroblast cell morphology, especially in the 

positively associated group (Supplemental Table 13). The most significant grouping of terms 

seen, both in terms of p-value and their network connectivity, are terms negatively associated 

with stomach, renal, and lower intestinal cancers including “Cancer, Gastrointestinal Disease, 

Organismal Injury and Abnormalities” disease terms “Digestive organ” and “Digestive system”, 

and “Organismal Injury and Abnormalities, Renal and Urological Disease” disease term “Renal 

colic” (Figure 8b, Supplemental Figure 8b). This relationship is shown in example OG with 

human reference equivalent GCLC, a known liver cirrhosis marker negatively associated with 

longevity expectation in our study (Figure 6) [cite].  

Additional associated OGs can be found for the MLSLW studies in Table 5 and for all 

models and contexts in the Supplemental Data. This includes a number of other head and neck 

tumor networks, reproductive terms, and thyroid markers. Some of the most significantly 

associated OGs were not highlighted as part of a network, but highlight interesting targets like 
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KLHDC1, whose mutation has been known to lead to progressive blindness in humans. [27] 

(Supplemental Figure 6b)  

Our analyses are a first step in the incorporation of studies of avian longevity into broader 

studies of genes that contribute to longevity in general. Our studies could benefit from more 

complete reference genome and transcriptome assemblies and annotations, and from leveraging 

more complex methods of identifying orthologous relationships to remove false positives caused 

by a lack of specificity in calculating characterizing transcript abundances. However, we believe 

our study of birds and the genes that influence their lifespans is important for a number of 

reasons. First, they have a very long and complicated evolution, creating a great deal of diversity 

at the phenotype and genetic levels. Second, they are, for at least many bird species, accessible 

and amenable to study. Third, their lifespans are not incredibly long (like mice, worms and flies), 

making it possible to study them longitudinally in relatively short periods of time. Fourth, given 

their divergence from mammalian and other species, their study could provide novel insights into 

highly conserved mechanisms of aging. However, there are some other disadvantages to our 

study of birds as well. As noted, birds have not been well studied historically, especially at the 

genomic level, creating a need for more sophisticated cross-species orthology assessments both 

within the avian clade and between birds and other species. In addition, we focused on 

fibroblasts, which may not be the best tissue to study for aging. Despite this, given the very 

extensive evolutionary histories of bird species, the fact that we identified transcripts strongly 

associated with lifespan across 49 diverse bird species suggests the existence of shared or 

conserved factors contributing to avian lifespan. In addition, given that some of these transcripts 

were associated with genes found to be associated with longevity in mammalian species, and that 

many of them are known to contribute to immune processes that have been implicated in other 
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species [28,29], our results suggest the existence of elements of conserved processes contributing 

to longevity across many organisms in nature.  

 

METHODS 

Metadata validation and sample exclusion. 3 query species from the sequenced cohort 

were omitted due to metadata error and inconsistency. First, this included the ring-necked 

pheasant, for which the best data in the wild are short-term. Second, the Yellow-throated warbler 

was omitted due to the small number of source material, from only 4 band recoveries and not 

four known lifespans. Last, the Ostrich was omitted due to the absence of either wild or captive 

ostrich populations. 

RNA-Sequencing (RNA-seq). We pursued whole transcriptome sequencing (WTS) via 

RNA-seq using standard Illumina HiSeq 2000 sequencing technology and protocols on RNA 

harvested from fibroblasts obtained on 49 bird species with maximal lifespans ranging from 7.1 

to 40 years, as listed in Supplemental Table 1 (8 to 70 years in alternate metadata source, 

Supplemental Table 5a). Collaborators at X caught species of interest in the wild and fibroblasts 

isolated from each was expanded in cultures for 2-3 generations so that a 3 or 4th passage cell 

line could be used, wherein mutations are unlikely to occur. Fibroblast cell lines were derived 

from sun-protected skin samples of adult birds, as described in earlier papers, and cryopreserved 

at passages (details under review for current draft). [30] Samples were stored in low oxygen and 

thawed aliquots were expanded to produce approximately (details under review for current draft) 

x 10^6 cells, which were lysed and sent as frozen pellets to the University of California, San 
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Francisco UCSF for sequencing. RNA was extracted using Ribo-Zero and ScriptSeqv2 library 

prep followed by placement on 1 lane for each sample on the HiSeq 2000. [31] 

Species-Specific Best Comparable Reference Selection. A poor choice of reference 

genomes, or a lack of accepted and validated de novo transcript assembly and quantification 

strategies, can adversely affect RNA-seq studies seeking to compare transcript abundances 

across previously under studied species. [30,32] 42 of the 49 species we studied did not have 

available individual reference genomes that could be used for transcript assignment and 

abundance calculations for the RNA-seq analyses using alignment-derived abundance 

(Supplemental Table 1). When queries did not have finished reference genomes available, we 

assigned “best defined references”, and sample-sample distance, in two ways. The first method 

leveraged the pairwise distance analysis resulting in the phylogenetic tree discussed above 

(2012) to identify 10 high quality reference genomes (Supplemental Table 2a, Supplemental 

Table 2b, analysis not shown). A second method leveraged MASH, to calculate query samples’ 

kmer distribution similarity amongst the transcriptomes of the 49 query species and the 74 most 

recent references available in GigaDB public resources at the time of publication (Supplemental 

Figure 3a). [33, 20] A 49x49 sample-sample Euclidean distance matrix based on this 49x74 

MASH calculation is provided in Supplemental Table 9b (Supplemental Figure 3b,). Principal 

component analysis of each sample-sample distance matrix for the 49 query species was 

conducted to revealed which query species’ variance was most highly correlated with each 

component and the amount of variance associated with each ordinal component. (Supplemental 

Figure 4a, Supplemental Figure 4b, Supplemental Table 7) 

Phylogenetic variance estimation. The phylogenetic distances between our 49 available 

avian query species (Figure 1, Supplemental Table 9a) was derived from contrasts derived from 
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the multiple sequence alignment analysis described by Jetz et. al. and made available in birdtree 

[34]. As described above, this source was also used to define the best matching reference for 

each of the species (Supplemental Table 1). We leveraged the cophenetic.phylo function in the 

ape package in R to compute the pairwise distances and render using (Figure 1). [35] A sample-

sample distance matrix equivalent to the phylogenetic tree derived from this analysis was 

generated using R package ‘adephylo’ (Supplemental Table 9a, Supplemental Figure 3c). [36] 

Principal component analysis of the sample-sample phylogenetic distance matrix for the 49 

query was conducted for comparison to the MASH equivalent (Figure 5a, Figure 5b). 

Multivariate linear model analysis with ANOVA was used to derive the percentage of population 

variance described by each principle component, and the association of different subsets of the 

avian query clade with these components (Supplemental Table 8, Supplemental Table 7, 

Supplemental Figure 4b-c). 

Transcript Alignment to References Genomes and Computing RPKM Transcript 

Abundance Counts. The paired end sequences derived from RNA-seq runs (forward-reverse, 

100 base pairs (bp)) from each of the 50 species were submitted to quality trimming to remove 

chaff that could result in misalignment using AdapterRemoval and Trimmomatic for read 

preparation [37,38]. Alignment of the sequencing reads from each of the 50 species to the best 

matched reference was conducted using HISAT2.[39] Stringtie was used to summarize and 

transform the counts into abundances and their RPKM values. [40] The resulting output was 

summarized into a tabular format for comparison across the 49 species obtained with the best-

matched reference for each. 

De Novo Query Species Contigs and Computing Contig-derived Abundance Counts. 

A companion paper (Chan et al., in preparation) describes the results of a de novo assembly of 
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transcripts for the 50 species considered here. In brief, the transcriptomic sequencing reads from 

each of the 50 query avian species were also used to build scaffolded contigs independent of 

their best reference following the same pipeline of AdapterRemoval and Trimmomatic for read 

preparation followed by Trinity for assembly [41]. Following assembly, the sequencing reads 

were aligned to the transcriptomic scaffolds using bowtie2 and the resulting counts were 

normalized with RSEM [42,43].  

Omission of samples with human contaminant identified. Chan et. al. observed that 

American tree sparrow showed a different species distribution from other birds (i.e. much higher 

number of human protein matches using the SwissProt tool across the transcriptomic set, with 

~150% of the median human matches and ~50% of the median of chicken matches, the closest 

expected reference in this test. [44] This species was omitted, resulting in the 49 query species 

documented in the final study. (Supplemental Table 3) 

Identifying Orthologous Transcripts Across the 49 Species. In the absence of a single 

comparable reference which could be used to accurately summarize abundances of all 49 query 

species, we summed the transcript abundances assigned to orthologous protein groups amongst 

the references which have been made publicly available, as defined in the GigaDB avian clade. 

When utilizing our alignment-based approach, each query-specific best-reference-specific 

transcript abundance was assigned that references’ transcript identifier as well as its associated 

reference-specific protein identifier. These protein identifiers, representing all of the 20 best 

references derived from the MASH-based transcriptomic kmer similarity analysis, were 

comparable via their assignment to the defiend OrthoDB clusters in GigaDB. In the de novo-

derived abundance context, scaffolded contig-specific abundances were attributed to OrthoDB 

clusters by running a protein BLAST against the OrthODB. OrthoDB version ID conversions, 
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and the association with associated human reference-specific common symbols was conducted 

with OrthoDB resources (version omitted in current draft). The count of query species 

expressing each OG in our data set was calculated and only those OGs with greater than zero 

abundance for every one of our 49 species was retained for further study. (Supplemental Table 4) 

Alternative ortholog clustering (not shown) was pursued using the 2012 birdtree reference 

definitions, reference-to-reference protein BLAST to identify sequence similarity [45], and 

strictly clustered ortholog groups defined using cd-hit-est and OrthoMCL. [46,12]  

Correlation analysis. We tested the correlation between our alignment- and de novo-

derived abundance terms and species mass residual on longevity to evaluate the reproducibility 

of our abundances, their orthologous clustering, and relationships between metadata contexts. 

The linear association between the summed transcript abundances associated with each ortholog 

group was conducted using linear fit and additionally via Lin’s correlation coefficient (CCC) 

rho.q value, revealing disparity between high and low correlation ortholog groups. 

(Supplemental Figure 1, Table 2, Supplemental Table 10, Figure 4-6, Supplemental Figure 6) 

The associated correlation term has been provided alongside each OG to each table. Linear fit p-

values and R2 terms were also calculated for each OG and are provided in the full tabular format 

attached in the Supplemental Data.  

Testing the Association Between Maximum Lifespan and Weight. It is well known 

that there is a strong association between maximum lifespan (MLS) and body size across species. 

To verify this and to determine the degree to which we would have to control for body size in 

assessing correlations between transcript abundances and MLS, we explored the relationship 

between weight and MLS using linear regression. Linear residual values retained from these 

regressions (MLSW) were retained and used as dependent variables in exploring the association 
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between transcript abundance and MLS. (Supplemental Table 5, Supplemental Figure 2a, 

Supplemental Figure 2c) We also calculated the residuals between MLS and the logarithm (base 

e) of mass (MLSLW) across the 49 species while correcting for the expected variance in 

expression defined by the phylogenetic relationships in our literature-derived tree. (Figure 2, 

Supplemental Figure 2b, nodes) [12,18] Species of exceptional interest or exhibiting genetic 

longevity traits were highlighted for comparative analysis to the rest of the population based on 

their orientation outside of 1 or 2 standard deviations from a linear regression line. (Table 1, 

Figure 2) 

Metadata selection and imputation. The linear and phylogeny contrast model residuals 

of our query-specific avian mass and lifespan were compared in the context of metadata sourced 

in two ways. First, “O”: novel metadata collected by authors responsible for sample capture, 

designating wild longevity metadata and traits with sources cited in Supplemental Table 1. 

Second, “A”: metadata from the AnAge provided for 74 total avian species. [16] AnAge (“A”) 

provided 2 contexts for weight that could be tested. The first, “Body mass in grams” (BMG) 

matched the curated set described as “O” above but was populated for only 22 of our 49 query 

species. The second, “Adult weight in grams” (AW) was populated for all 49 query species in 

AnAge “A”. AnAge also had maximum lifespan data populated for those 47 species. We tested 

the use of metadata for each query species calculated the resulting residual of mass on lifespan in 

each of the regression contexts discussed above (MLS, MLSW, MLSLW) as shown in 

Supplemental Table 5a, iterating over 1) O: All curated metadata, 2) O+A: All curated metadata, 

updated with AnAge when populated, and 3) All AnAge metadata. The corresponding caper-

derived phylogeny contrast residuals were calculated in Supplemental Table 5b. 
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Metadata validation via alternative phylogeny adjustment comparison. Given the 

wide swing in residual performance in both model types, we attempted to validate our selection 

for publication review via validation of expectations from our known sample dissimilarity. We 

leveraged multi-dimensional multivariate regression (MDMR) to identify how well the residuals 

in our comparisons of body mass and lifespan, representative of the deviation of each query from 

expectations of longevity, were predicted by the phylogenetic tree-derived distance matrix and 

by the MASH-derived kmer dissimilarity matrix versus the GigaDB avian reference set. 

(Supplemental Table 6) Based on these results, we favored the use of the “BMG (A)” and “AW 

(A)” metadata contexts for in depth review, with all results provided in the Supplemental Data. 

  Testing Associations Between Common Transcripts and MLS. For each metadata and 

abundance context, we calculated the linear association of the relative abundance of each 

transcript present in the 49 species to MLS, weight-adjusted MLS (MLSW, the residual of a 

linear regression of query bird mass on lifespan) and log weight-adjusted MLS (MLSLW, the 

residual of a linear regression of the natural log of the query species mass on lifespan). 

Abundance vectors were normalized to relative abundance within each sample using the R 

library ‘vegan’. [47] Alternative abundance vectors tested the use of rank-ordered abundance, or 

relative abundance without log normalization (Supplemental Data). To control for phylogenetic 

relationships between the species, we favored the phylogenetic contrast methods developed by 

Felsenstein et al., which is commonly used in cross-species analyses as well intra-species 

comparisons involving subclades or species strains, and implemented as R library ‘caper’ 

[12,18]. We compared the phylogenetic contrast modelling approach to the alternate baseline 

expectations of variance defined by the birdtree-sourced phylogenetic distance matrix and the 

MASH-derived transcriptome kmer similarity distance matrix for each ortholog group. Given the 
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large number of transcripts tested for association with MLS, MLSW and MLSLW, we also used 

false discovery rate (FDR) techniques to minimize likely false positive results. [48] P-values for 

all models and OGs are provided in the Supplemental Zip File along with their slope of 

association, R2 values, and OG metadata. Significant OGs of interest were selected based on 

their significance of association, the correlation between the alignment and de novo-derived 

abundance vectors, and a confirmation in the significance of performance across the contrast and 

multidimensional multivariate regression modelling techniques. Example cases for visualization 

were selected based on their prediction of variance in the data set and plotted with trendlines 

representing each model in Figures 4-6 and Supplemental Figure 6 along with summaries of their 

abundance correlation terms (in alignment vs. de novo contexts) and the performance in our 

alternative models accounting for population wide variation based on phylogenetic or 

transcriptomic sample dissimilarity. 

Gene Ontology analyses. P-values and directionality from each ortholog group was 

assigned to each of that OG’s clustered reference-specific proteins using definitions from the 

reference genomes, and significant OG lists were selected based on a scale of FDR-adjusted 

cutoffs (Table 2, Supplemental Tables 10, Figure 3, Supplemental Figure 5). GO ontology terms 

associate with each significant OG were captured from the OrthoDB resources and provided in 

the Supplemental Data. We also tested for the enrichment of biological process (BP), molecular 

function (MF), and cellular component (CC) terms among the transcripts exhibiting associations 

with each model using the topGO package in R. [49] Transcripts were mapped to ENTREZ gene 

IDs using biomaRt. [50] Network interpretation was conducted across significant transcripts 

highlighted by cutoff at an FDR-adjusted p-value < 0.05 with ordered preference for genes with 

greater absolute influence (positive or negative) on lifespan. Fisher’s exact tests and the 
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Kolmogorov-Smirnov test were implemented using R package ‘ALL’ [51] The results were 

compared amongst the metadata contexts, the abundance formatting, and the model used (Tables 

4a-c, Supplemental Tables 12a-c). Significant pathway terms below ClassiKS cutoff 0.05, or the 

most significant term if not exist below the threshold, and their differentially expressed gene 

associations, were summarized as examples in Figure 7 using R library ‘Rgraphviz’ (Figure 5a-b, 

Supplemental Figures 7a-d). [52] The significant term lists for each GO enrichment type are 

provided in the Supplemental Zip File. 

Ingenuity Pathway analyses. Significant lists of gene symbols below FDR-adjusted 

cutoff 0.05, for each model, were also submitted for additional pathway analysis using the 

Ingenuity Pathway Analysis (IPA) services’ Functional Analysis to identify significantly 

correlated Diseases and Functions. [19] Specifically, each list of significant OG terms’ defined 

common symbols were searched against IPA Genes and Targets database, and all matching terms 

were used as the query list for functional search. The count of all terms surpassing p-value 

thresholds was calculated for Table 3 and Supplemental Table 11, as for the GO terms described 

in the previous section. The most significant Ingenuity Pathway terms were summarized at 

various thresholds to denote their most significant terms (Table 5, Supplemental Table 13). 

Those significant terms with less than 100 network connections were highlighted in Figure 8 and 

Supplemental Figure 8. 

Chapter 3.2, in part, is currently being prepared for submission for publication of the 

material. Multi-reference Genome-wide RNA-sequence Analysis of 49 Bird Species identifies 

Transcripts Associated with Avian Longevity. McCorrison J, Chan AP, Choi Y, Ding K, 

Pickering A, Pawlikowska L,Norden-Krichmar T, Evans D, Schork NJ, Miller RA. The 

dissertation author was the primary investigator and lead author of this paper.  
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3.3: FUTURE WORK: USING THE DE NOVO RECONSTRUCTION OF QUERY 
REFERENCE GENOMES AS REFERENCE 

 
 

There are many insights to be gained from this unique avian fibroblast sampling of 52 

total bird species, where 3 species were omitted from the previous study due to dubious metadata 

but remained applicable to de novo analyses. Additional insights into conserved genes apparent 

in separate sub-clades of our query species populations, variation in genes between clades, and 

other indicators of genetic diversity are discussed in our drafted manuscript. 

 
 
Chan AP, Choi Y McCorrison J, Schork NJ. De novo transcriptome assembly, annotation, 
and comparison of 52 avian species. (Current title, analysis not shown.) 

 

 I believe this research will only be improved upon over time as more references become 

available, or all species are able to be compared using isoform-specific abundances and 

comparison in terms of their known orthologous terms, rather than using their nearest phylogeny- 

or transcriptomics-derived adjacent neighbors. The ability to compare correlated genes, and 

networks of genes, expressed with correlation to phylogenetic outcomes of interest is of great 

value for the identification of potential drug targets and to the understanding of network utility 

across diverse evolutionary bounds.  By studying these divergent co-evolution events, or 

conserved events, in a de novo context, we may begin to remove some of the biases we 

encounter in our measurement assay.  Until that time, I believe that leveraging the use of 

multiple techniques, aligning reads to a best reference and summing over comparable 

orthologous terms versus a de novo technique and orthologous terms, and placing confidence 

upon the most consistent results, is the best method to pursue the evaluation of shared networks 

of interest across our diverse host species.  
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CHAPTER 4: LONGEVITY-ENHANCING DRUG TARGETS 

4.1. INTRODUCTION 

 

In the previous chapters, I identified trends in genes which were predictive of phenotypic 

outcomes and correlated them with other networks of genes known to perform functions in 

tandem (e.g. transcription networks.) This work has highlighted the ability to find targets in 

experimental species which can be correlated to host species of clinical interests, particularly, 

humans. However, additional insights are available if these types of significant lists of terms are 

compared to public databases for context. In the following chapter, we pursue an investigation of 

hypothetical gene targets, their overlapping functional variants, and the search for longevity-

enhancing drugs that may be correlated with these points of clinical intervention.   

The next chapter focuses on genetic variants associated with human longevity from many 

studies, with focus on longevity-associated phenotypic outcomes and sourced from various 

tissues and analysis types. We evaluate variants, genes, and variants which are located in those 

genes, which are considered high quality drug targets. Conversely, we evaluate current drugs 

hypothesized to impact longevity, and the genes associated with those drugs. The different data 

sources associated with the information I used to address these questions are all ‘metadata’-

based’ since they merely reflect the results of different studies (e.g., genetic association studies, 

pharmacologic studies exploring drug targets, etc.). I find that most of the variants associated 

with longevity are not necessarily good drug targets, given a lack of consensus on the 

‘druggability’ in the pharmacology community. Conversely, most drugs hypothesized to 

influence longevity – or shown to influence longevity in a non-human species – are not 

supported by genetic information. However, I believe this work lays a strong foundation for 
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methods to expand the automated detection of potential drug targets in common studies, 

including those leveraging advanced insight using the exploitation of metadata. 
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4.2. GENETIC SUPPORT FOR LONGEVITY-ENHANCING DRUG TARGETS: ISSUES, 
PRELIMINARY DATA, AND FUTURE DIRECTIONS 

 
See published work, reproduced in this chapter: 
 
McCorrison J, Girke T, Goetz LH, Miller R, Schork NJ. Genetic Support for Longevity-
Enhancing Drug Targets: Issues, Preliminary Data, and Future Directions. The Journals of 
Gerontology: Series A, Volume 74, Issue Supplement 1, December 2019, Pages S61–S71, doi: 
10.1093/gerona/glz206. 
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Chapter 4.2, in full, is a reprint of the material as it appears in Genetic Support for 

Longevity-Enhancing Drug Targets: Issues, Preliminary Data, and Future Directions. 2019. 

McCorrison J, Girke T, Goetz LH, Miller R, Schork NJ. The dissertation author was a primary 

investigator and lead author of this paper. 
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CHAPTER 5: CONCLUSION 

In any experiment or study of naturally-occurring phenomena, it is not unusual for a 

researcher to attempt to identify some core truths about a phenomenon of interest by gathering 

together different data or analysis results and determining if they are consistent or reveal 

something collectively that they cannot individually. Alternatively, one may generate, and then 

test, a specific hypothesis by using an initial ‘training’ set followed by an analysis of a ‘test’ set 

using insights obtained from the analysis of the training set. Finally, a researcher may simply 

aggregate massive amounts of individual data points thought to be complementary and seek to 

identify patterns in those data that may reveal some new biological insight. All these efforts 

assume that the different sources of data are not without so much error as to be useless and have 

been generated in ways that defy their harmonization.  Information about how the data were 

generated and in what context – i.e., metadata – can be used to guide analyses of those data as 

well as interpretations of the results of those analyses.  

In each experiment I considered, the results of many of the analyses were informed by the 

subject-specific metadata and helped shape the hypotheses that were generated and tested. The 

metadata shed light on why the data, in some contexts, would not have been ‘harmonizable’ or 

appropriate to analyze together if appropriate analytical methods were not used that made 

specific use of the metadata. Some of the analysis results may have been foreshadowed or 

obvious (e.g. RNA sequencing quality score across single neuron sequencing samples are clear 

indicators of the reliability of the results), but what was unknown was the degree to which the 

data needed to be analyzed with the metadata taken into account or the need for novel methods to 

accommodate an analysis that takes into account the metadata in a practical setting. Other 

analyses I pursued were less obvious, until placed under more sophisticated statistical scrutiny 
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(e.g. the available data about the mechanisms of actions of drugs and their gene targets thought 

to extend lifespan and data about the genes harboring variants that are associated with human 

lifespan do not overlap). By leveraging statistical methods developed in a wide variety of 

contexts with very different scientific orientations (e.g., traditional microbiome sequencing 

analysis methods used in evaluating the effect on mood of a digital therapeutic), I show that a 

greater focus on metadata-aware data science as a methodology can be used to expand the scope 

of research in many different fields.  

My analyses incorporating metadata in single cell RNA sequencing studies was 

particularly interesting because of the depth of complications that arise from the very negative 

consequences of having poor quality control measures in those studies. This has been well-

documented; for example, in 2012 the first methodologies were being developed to account for 

the ability to isolate and amplify RNA from an individual bacteria.[1] Now, only 8 years later, 

FACS laser sorting and automated high-throughput sequencing has enabled the rapid isolation 

and sequencing of much smaller, and much ‘cleaner’ representations of individual cell types, but 

come with a number of guidelines as to how to ensure that the data have been generated reliably 

so that data aggregation efforts can be pursued.[2,3]  

As I have shown, ignoring the manner in which data have been generated and yet 

combining data sets comes at the cost of biases introduced at many stages of an analysis of those 

data. Basically, the underlying complexities introduced by varying experimental protocols that 

are cobbled together complicate downstream analyses, but could also be the secret to motivating 

methods to improve aggregated analyses and improve interpretations of aggregated analyses. For 

example, through a feedback loop of early project planning for metadata capture, the recording 

of actual sequencing protocols used, designing appropriate information capture strategies 
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through each step in an assay and data generation process, and the use of rigorous statistical 

analysis techniques, I have shown the value of leveraging metadata to improve and develop one 

of the first high-throughput analysis pipelines for aggregated analysis of multiple data sets 

(Chapter 2.2), which many teams have now leveraged outside of our group to identify new target 

cell types in a variety of human tissue including the brain and lung [4,5]. 

Furthermore, I showed that the use of methods that leverage metadata can also be used to 

model and measure the degree to which a signal is lost due to a poor appreciation of meta-data. 

For example, without a well-informed choice of which reference genomes should be used in a 

cross-species transcriptomics study, it is unclear if the resulting transcript abundances and 

ortholog determinations reflect true transcript abundances. I suggested that the ability to leverage 

information which may already be a part of the broader knowledge-base, i.e., bird phylogeny, 

can be used to improve the confidence with which inferences about the relationships between 

transcripts identified across the species can be made. By using insights into the amount of 

variation in relevant phenotypes (e.g., transcript abundance) explained by metadata about the 

generation of the transcript profiles, my colleagues and I were able to make more advanced 

decisions about how samples inform an aggregated data set. 

All of the results of my studies must be considered in light of efforts within the 

community at large to generate data, store those data, and make those data available to the 

scientific community for aggregated and integrated analysis. The efforts to make data available 

must come with an understanding of how important it is to also make available as much metadata 

about how those data were generated as possible. Ultimately, there is no doubt that as the 

scientific community becomes more comfortable in the digital era in which large-scale data 
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collections become routine, the role of metadata in relevant data analyses will become more 

pronounced.   
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APPENDIX 

APPENDIX A (2.4) 

A. B.  

C.  
Supplemental Figure 1. Recomposition of example data in intron, exon, and intron-and-exon 
abundance space. 
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Supplemental Figure 2. Length-associated bias observations. A lack of correlation between 
gene-length and the average-squared-correlation between that gene and the covariates. 
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Supplemental Figure 3.  Population-wide Bimodal Distribution-derived Methods do not 
Identify QC groups defining variation between cell types (other than ones like ‘layer type’, etc. 
of biological relevance) Vertical axis is log(abundance); each vertical slice is a histogram (taken 
across samples). Horizontal axis lists genes. Top subplot shows Exons, bottom subplot shows 
Introns. 
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A.  

B.  

Supplemental Figure 4. Unsupervised Covariate vs. Sample Z-score matrix. A) Exons. B) 
Introns.  

  



 

165 
 

 

Supplemental Figure 5. The comparison of accuracy between spectral, nearest neighbor (tsne) 
and density (dexcluster) based interpretation of simulated data (e.g. the ‘planted bicluster 
problem’). Variations in the color of nodes indicate X and the type of node indicates X. 
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Supplemental Figure 6. AIBS clusters’ z-score matrix across all cluster pairs in the supervised 
context were checked to see if they were more or less strongly correlated than the z-score matrix 
we’d see if we scrambled the covariates at random. Heatmap for the Z-score matrix (sorted by 
simple spectral clustering). 
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A.  

B.  

Supplemental Figure 7. Exon abundance. Outlier clusters adjacent to “validated” cell types 
have variance strongly predicted by sets of quality metrics associated with outlier terms 
associated with A) tissue-specific sampling and relative gene abundance observed, and B) 
common quality control terms associated with fail cases in prior literature. [2]  
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A.  

B.  

Supplemental Figure 8. Exons. A) The absolute-value of the z-score associated with the (raw) 
differential-expression of that particular covariate-rank over that cluster pair. B) The absolute-
value of the z-score associated with the (raw) differential-expression of that particular gene-rank 
over that cluster pair. 
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Supplemental Figure 9. In this cartoon we imagine a simple data-set with only 2 samples 
(shown here as the horizontal- and vertical-coordinates, respectively. On the top-left we show 
1000 transcripts (black dots), each represented as a point in sample-space. On the top-right we 
show 127 QCs (colored to guide the eye), also represented as points in sample-space. On the 
bottom we show the data after decorrelating the transcripts. 
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Supplemental Figure 10. Compare to Table 2. The AIBS clusters to the unsupervised clustering 
of the Exon data (both pre- and post-covariate-correction) by X and gathered the negative of the 
log of the p-value. Higher means better (i.e., less likely to happen by chance). (Note: Some 
columns are missing in this draft.)  
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A. B.  

C.  

Supplemental Figure 11. Spectral ordination and clustering of samples in transcriptomic 
space. A-C) Exonic data, TSNE ordinated, and colored by original clusters defined by Bakken 
et. al. [cite]. A) Log normalized and imputed. B) The former method, then converted to relative 
abundance. C) The former method, followed by centering by log ratio. 

 

  



 

172 
 

A. B.    

C.  

D.  

Supplemental Figure 12. Experimentation with experimental QC terms using linear 
modelling.  A) Outlier (purple) vs. non-outlier labels for each row in “E”. B) The bias mode 
specific cluster pair distance matrix for cluster representing “Comparable BP After Trimming 
(Sequencer Bias)”, including the following terms: 1) Total Read Counts {Input before Trimming, 
Input after Trimming, Pre-trimmed and aligned to Human Reference, Pretrimmed and 
Unmapped, and 2) Total Base Pair count { Input before Trimming, Pre-trimmed and aligned to 
Huamn Reference, Pre-trimmed and unmapped.}.C-D) Compare to licl TSNE ordination. For 
each hierarchical cluster (5 shown, right), count all instances of a cluster in the grouping of 
cluster pair associations with the “bias mode”. C) Before correction D) After bias-mode-specific 
covariate correction (using only the covariates in the bias mode described above, under header 
“B”. 
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APPENDIX B (3.2) 

 

A. B.  

C. D.  

E. F.  

Supplemental Figure 1. OG Correlation Analysis. A-D) Correlation between relative natural 
log of abundance in alignment (x) vs. de novo (y) abundance context. A-B) High correlation 
example.  C-D) Low correlation example. E-F) Lin’s CCC value rho.q value for all OGs 
(expressed over 1-49 query species, where red is low (1), black is approx. the median (245), and 
green is is high (49) count of query species expressing the OG. E) All OGs. F) All OGs 
expressed over all 49 query species (those included in further study.) 
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A. B.  

C.  

Supplemental Figure 2: Standard deviation comparisons calculated using the residual of the linear fit of 
the raw (A,C) and log-base-e-normalized body mass (B) of each query species, in grams, against the 
maximum lifespan of each species. Metadata provided in Supplemental Table 5a. A) Columns = 
“Dependent Variable: BMG (A)”, “Independent Variable: MLS (A)”) B-C) Columns = “Dependent 
Variable: AW (A)”, “Independent Variable: MLS (A)”)   These plots are comparable to the in alternative 
metadata context in Figure 2. 
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A. B.  

C.  

Supplemental Figure 3. Query-query sample distance matrices.  A) All Avian GigaDB reference 
genome kmer similarity distance matrix. B) Subset to denote the distances amongst the 49 query species 
of interest. C) The comparable distance matrix from the phylogeny tree in Figure 1. 
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A.  

B. C.  

 
Supplemental Figure 4. A, Top) Principal component analysis showing the ordination of query-query 
sample distance In the context of the MASH distance matrix (Supplemental Figure 3B), over 2 principal 
components describing 37.55% of variance across the population.. A, Bottom) Repeated in the context of 
the distance matrix derived from the phylogenetic tree (Supplemental Figure 3C). B-C) Query sample 
ANOVA residuals for the linear fit of the multivariate model MLS ~ log(BMG) + PC1 + PC2 + PC3, 
where the PC’s 1, 2, and 3 represent 26.83%, 7..99%, and 2.74% of population variance, each. 
(Supplemental Table 7) B) Using the MASH distance matrix. C) Using the Phylogenetic Tree distance 
matrix. See  
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Residual Abundance Relative Abundance Rank Order of Abundance 

MLSLW 

Alignment 

  

De Novo 

  

MLSW 

Alignment 

  

De Novo 

  

MLS 

Alignment 

  

De Novo 

  

Supplementary Figure 5.  Number of unique ortholog groups (Y, negative natural log of raw p-value) 
and their associated phylogenetically contrast-adjusted slope (X, calculated using the caper model 
package),  A) CAPER, MLSLW, log(Rel Abs), (BMG (A)), B) CAPER, MLSW log(Rel Abs) , (BMG 
(A)), C) CAPER, MLS log(Rel Abs) , (BMG (A)), D) CAPER, MLSLW, Rank(Abs), (BMG (A)) , E) 
CAPER, MLSW Rank (Abs) , (BMG (A)) , F) CAPER, MLS Rank. 
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A. B.  

C. D  

 
Supplemental Figure 7. TopGO Gene Ontology Results. Metadata = BMG (A). GO terms associated with 
significant OGs from both Alignment and De Novo abundance contexts. A,C,D.) Positive association with residual 
on lifespan.  B) Negative association with residual on lifespan. A-B) Biological processes, cutoff = KS 0.05.  C-D.) 
Cellular components, cutoff = KS 0.05.  E-F.) Molecular functions, cutoff = KS 0.05.  
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A.  

B.  
Supplemental Figure 8. Ingenuity Pathway Figure (hand-curated). Metadata = A (AW) Significant OGs shared 
in Alignment and De Novo abundance contexts with Ingenuity Pathway equivalents (Human, Mouse, Rat) Data used 
for Figure examples: Model = CAPER, Dependent = MLSLW, Independent = LG, Metadata = BMG (O+A), FDR 
p-value cutoff = 0.5.  Direction of association = A) IP pathway selection cutoff = 5e-6 (none significant at 5e-8) 
Positive (Dark Green=Positive Association with Residual on Lifespan, Light Green = IP Linked Associated Target). 
B) IP pathway selection cutoff = 5e-8: Negative (Dark Orange=Positive Association with Residual on Lifespan, 
Light Orange = IP Linked Associated Target). Some of the most significant Disease and Function terms, those with 
greater than 100 connections to genes were omitted for visualization (see Supplemental Table).  Associations 
between Human reference genes co-defined for significant OGs (dark green, dark orange) and diseases (light blue) 
and functions (white) are indicated with a dashed line.  Connections between these genes and their linked targets 
from the IP database are provided with a solid line (Table 1, Table 2) Compare to Table 5. 
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A.  

B.  
Supplemental Figure 9. The relationship between LM residuals for each of the 49 query species 
involved in our study in the context of regressing X = log(Body Mass in Grams) on maximum lifespan 
and Y = maximum lifespan on log(Body Mass in Grams). A) Metadata = BMG (A). B) A) Metadata = 
AW (A). 
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Supplemental Table 2b. Best reference - shared defined common symbol counts. 
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Atlantic Canary 17261 11227 10873 11937 10711 8271 11903 11402 8885 10916 11099 11485 11020 11547 10679 11250 11316 10638 10737 11020
Bald Eagle 11227 15655 10789 11703 11341 8813 11683 11971 9523 10784 11813 12223 10566 11267 10511 11406 11472 11410 11606 10914
Burrowing Owl 10873 10789 15675 11089 10579 8352 11041 10717 8926 10537 10693 10789 10526 10988 10229 10687 10827 10320 10587 10775
Camarhynchus Parvulus 11937 11703 11089 16664 10875 8342 12281 11891 8962 10844 11453 12129 11002 11949 11010 11368 11464 10864 10936 11299

Chinese Goose 10711 11341 10579 10875 20704 8638 10967 11207 9259 10582 11163 11357 10268 10741 10046 10957 10970 10813 11077 10594
Common Cormorant 8271 8813 8352 8342 8638 14687 8368 8594 8136 8331 8537 8682 8114 8303 7789 8482 8473 8563 8800 8149
Common Pheasant 11903 11683 11041 12281 10967 8368 19182 11695 9024 10888 11470 11876 10990 11847 11220 11355 11610 10836 10949 11325
Common Starling 11402 11971 10717 11891 11207 8594 11695 16715 9234 10894 11774 12386 10711 11341 10498 11508 11416 11162 11238 10916

Grey Crowned Crane 8885 9523 8926 8962 9259 8136 9024 9234 15279 8871 9206 9354 8645 8892 8400 9093 9086 9172 9465 8728
Hooded Crow 10916 10784 10537 10844 10582 8331 10888 10894 8871 17118 10714 10948 10592 10665 9920 11171 11015 10412 10573 10409
Ruff 11099 11813 10693 11453 11163 8537 11470 11774 9206 10714 18471 11886 10467 11169 10408 11257 11336 11015 11207 10812
Tibetan Ground-Jay 11485 12223 10789 12129 11357 8682 11876 12386 9354 10948 11886 16415 10751 11420 10620 11601 11545 11305 11392 11004

White-Throated Sparrow 11020 10566 10526 11002 10268 8114 10990 10711 8645 10592 10467 10751 17249 10749 9949 10714 10745 10170 10287 10485
Anna's Hummingbird 11547 11267 10988 11949 10741 8303 11847 11341 8892 10665 11169 11420 10749 16080 10747 11008 11215 10675 10726 11186

Common Turkey 10679 10511 10229 11010 10046 7789 11220 10498 8400 9920 10408 10620 9949 10747 24107 10248 10486 9883 10013 10332
American Crow 11250 11406 10687 11368 10957 8482 11355 11508 9093 11171 11257 11601 10714 11008 10248 19188 11418 10832 10977 10662

Carrier Pigeon 11316 11472 10827 11464 10970 8473 11610 11416 9086 11015 11336 11545 10745 11215 10486 11418 26483 10842 10981 10890
Downy Woodpecker 10638 11410 10320 10864 10813 8563 10836 11162 9172 10412 11015 11305 10170 10675 9883 10832 10842 14283 11045 10311
Killdeer 10737 11606 10587 10936 11077 8800 10949 11238 9465 10573 11207 11392 10287 10726 10013 10977 10981 11045 14649 10507
Duck 11020 10914 10775 11299 10594 8149 11325 10916 8728 10409 10812 11004 10485 11186 10332 10662 10890 10311 10507 23951

Atlantic Canary 12394 11227 10873 11937 10711 8271 11903 11402 8885 10916 11099 11485 11020 11547 10679 11250 11316 10638 10737 11020
Bald Eagle 11227 12918 10789 11703 11341 8813 11683 11971 9523 10784 11813 12223 10566 11267 10511 11406 11472 11410 11606 10914

Burrowing Owl 10873 10789 11713 11089 10579 8352 11041 10717 8926 10537 10693 10789 10526 10988 10229 10687 10827 10320 10587 10775
Camarhynchus Parvulus 11937 11703 11089 13141 10875 8342 12281 11891 8962 10844 11453 12129 11002 11949 11010 11368 11464 10864 10936 11299

Chinese Goose 10711 11341 10579 10875 11828 8638 10967 11207 9259 10582 11163 11357 10268 10741 10046 10957 10970 10813 11077 10594
Common Cormorant 8271 8813 8352 8342 8638 9085 8368 8594 8136 8331 8537 8682 8114 8303 7789 8482 8473 8563 8800 8149

Common Pheasant 11903 11683 11041 12281 10967 8368 13082 11695 9024 10888 11470 11876 10990 11847 11220 11355 11610 10836 10949 11325
Common Starling 11402 11971 10717 11891 11207 8594 11695 12672 9234 10894 11774 12386 10711 11341 10498 11508 11416 11162 11238 10916
Grey Crowned Crane 8885 9523 8926 8962 9259 8136 9024 9234 9834 8871 9206 9354 8645 8892 8400 9093 9086 9172 9465 8728
Hooded Crow 10916 10784 10537 10844 10582 8331 10888 10894 8871 11552 10714 10948 10592 10665 9920 11171 11015 10412 10573 10409

Ruff 11099 11813 10693 11453 11163 8537 11470 11774 9206 10714 12397 11886 10467 11169 10408 11257 11336 11015 11207 10812
Tibetan Ground-Jay 11485 12223 10789 12129 11357 8682 11876 12386 9354 10948 11886 13051 10751 11420 10620 11601 11545 11305 11392 11004
White-Throated Sparrow 11020 10566 10526 11002 10268 8114 10990 10711 8645 10592 10467 10751 11491 10749 9949 10714 10745 10170 10287 10485
Anna's Hummingbird 11547 11267 10988 11949 10741 8303 11847 11341 8892 10665 11169 11420 10749 12454 10747 11008 11215 10675 10726 11186

Common Turkey 10679 10511 10229 11010 10046 7789 11220 10498 8400 9920 10408 10620 9949 10747 11708 10248 10486 9883 10013 10332

American Crow 11250 11406 10687 11368 10957 8482 11355 11508 9093 11171 11257 11601 10714 11008 10248 12180 11418 10832 10977 10662
Carrier Pigeon 11316 11472 10827 11464 10970 8473 11610 11416 9086 11015 11336 11545 10745 11215 10486 11418 12373 10842 10981 10890

Downy Woodpecker 10638 11410 10320 10864 10813 8563 10836 11162 9172 10412 11015 11305 10170 10675 9883 10832 10842 11755 11045 10311
Killdeer 10737 11606 10587 10936 11077 8800 10949 11238 9465 10573 11207 11392 10287 10726 10013 10977 10981 11045 11959 10507
Duck 11020 10914 10775 11299 10594 8149 11325 10916 8728 10409 10812 11004 10485 11186 10332 10662 10890 10311 10507 12063

Atlantic Canary 12202 11180 10827 11896 10665 8233 11737 11354 8849 10761 11051 11437 10857 11501 10641 11093 11153 10592 10694 10972
Bald Eagle 11180 12425 10672 11662 10952 8451 11645 11596 9141 10547 11447 11813 10447 11221 10475 11111 11250 10966 11155 10795
Burrowing Owl 10827 10672 11446 10948 10463 8258 11005 10600 8836 10421 10578 10670 10409 10845 10151 10570 10706 10209 10472 10579
Camarhynchus Parvulus 11896 11662 10948 12956 10836 8312 12241 11851 8930 10806 11413 12088 10964 11810 10940 11330 11423 10824 10899 11190

Chinese Goose 10665 10952 10463 10836 11423 8318 10931 10857 8928 10351 10818 10977 10153 10697 10012 10673 10757 10435 10689 10480
Common Cormorant 8233 8451 8258 8312 8318 8712 8339 8306 7801 8138 8253 8368 8016 8267 7761 8243 8297 8209 8437 8057
Common Pheasant 11737 11645 11005 12241 10931 8339 12885 11657 8995 10746 11432 11838 10838 11809 11179 11210 11450 10799 10915 11287
Common Starling 11354 11596 10600 11851 10857 8306 11657 12283 8935 10656 11409 11998 10591 11296 10462 11213 11196 10813 10885 10799

Grey Crowned Crane 8849 9141 8836 8930 8928 7801 8995 8935 9438 8676 8911 9029 8553 8857 8372 8851 8905 8800 9086 8639
Hooded Crow 10761 10547 10421 10806 10351 8138 10746 10656 8676 11131 10479 10706 10364 10622 9885 10768 10641 10184 10339 10296
Ruff 11051 11447 10578 11413 10818 8253 11432 11409 8911 10479 12018 11514 10351 11123 10372 10969 11114 10672 10857 10696

Tibetan Ground-Jay 11437 11813 10670 12088 10977 8368 11838 11998 9029 10706 11514 12620 10630 11374 10584 11300 11320 10925 11008 10885
White-Throated Sparrow 10857 10447 10409 10964 10153 8016 10838 10591 8553 10364 10351 10630 11235 10706 9913 10484 10509 10059 10171 10373
Anna's Hummingbird 11501 11221 10845 11810 10697 8267 11809 11296 8857 10622 11123 11374 10706 12268 10681 10965 11172 10631 10684 11076
Common Turkey 10641 10475 10151 10940 10012 7761 11179 10462 8372 9885 10372 10584 9913 10681 11512 10211 10447 9847 9980 10250

American Crow 11093 11111 10570 11330 10673 8243 11210 11213 8851 10768 10969 11300 10484 10965 10211 11682 11037 10549 10690 10551
Carrier Pigeon 11153 11250 10706 11423 10757 8297 11450 11196 8905 10641 11114 11320 10509 11172 10447 11037 11933 10631 10762 10772
Downy Woodpecker 10592 10966 10209 10824 10435 8209 10799 10813 8800 10184 10672 10925 10059 10631 9847 10549 10631 11298 10607 10199
Killdeer 10694 11155 10472 10899 10689 8437 10915 10885 9086 10339 10857 11008 10171 10684 9980 10690 10762 10607 11492 10392
Duck 10972 10795 10579 11190 10480 8057 11287 10799 8639 10296 10696 10885 10373 11076 10250 10551 10772 10199 10392 11769

Symbol Overlaps (Defined)

Symbol Overlaps (No LOC)

Symbol Overlaps (HuRef)
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Supplemental Table 3. SwitssProt results. The percentage of query proteins observed in the corresponding 
AvianDB reference genome for which an ID match of N% identity (rows) was identified in the Human reference 
genome. 
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15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Supplemental Table 4. Histogram of OG counts (alignment vs. de novo) with OG representation (0 -> 49) 
 
(Omitted in this draft.) 
 
Supplemental Table 5a. Metadata Contexts and Linear Model Residuals.  MLSW = Residual of independent 
variable on dependent variable using raw mass in grams.  MLSLW = Equivalent residual using the natural log of 
mass in grams.  
 

 

  

AW

O A A O A BMG (O) BMG (A) AW (A) Std. Dev. BMG (O) BMG (A) AW (A) Std. Dev.

American Crow 448 448 384.8 7.1 8 -128.36 -192.86 -246.02 48.1061 1.50659 1.40148 1.23811 0.11047
Ruby Throated Hummingbird 3.1 3.2 3.1 7.7 8.2 286.102 415.677 267.268 65.971 -2.1806 -2.2325 -2.2735 0.03801
House Finch 21.4 20.4 21.4 7.9 9 1.80803 191.287 80.2963 77.7329 -0.7015 -0.6801 -0.6419 0.02465
Red-tailed Hawk 1126 1126 1362 8.6 9.1 -1193.3 -548.86 -147.38 430.818 -0.1804 1.03946 1.21641 0.62096
Coopers Hawk 439 439 526.64 9 9.2 -621.51 -230.85 -128.81 212.339 0.76169 1.34519 1.51585 0.3229
Great Horned Owl 1309 1450 1191.2 9.2 9.8 -683.5 -60.579 -178.6 270.162 0.45933 1.49629 1.28669 0.44768
Common Grackle 114 114 111 9.8 10 -1285.4 -826.43 -774.36 229.63 -1.0938 -0.339 -0.3776 0.3471
Northern Cardinal 44.7 41 42.6 10 10.2 -471.15 -1421.3 -1286.1 419.682 -0.7077 -2.0095 -1.9841 0.60779
Yellow Warbler 9.5 9.5 9.8 10.6 10.9 74.6342 238.369 117.962 69.2692 -1.3868 -1.3723 -1.3508 0.01478
Brown Headed Cowbird 43.9 42.5 38.1 10.9 11 -605.09 -298.78 -338.18 136.061 -0.925 -0.5819 -0.7019 0.14215
Yellow Rumped Warbler 12.6 11.5 12 10.9 11 198.772 337.005 202.27 64.3548 -0.9232 -1.0613 -1.0281 0.05884
European House Sparrow 27.7 27.7 25.3 11 11.3 -972.3 -903.06 -851.84 49.3567 -1.9108 -1.7418 -1.8443 0.06952
Rock Dove 350 350 358.7 11.1 11.6 463.549 -1740.4 -1503.8 987.907 2.2923 -0.6449 -0.6345 1.38216
Mourning Dove 119 123 119 11.3 11.8 -457.36 -1609.8 -1439.6 507.943 0.18092 -1.2468 -1.2933 0.68424
Canada Goose 1952 1952 3200 11.3 11.9 -682 -814.85 762.788 714.453 -0.1012 0.23401 0.71284 0.33404
Mute Swan 10735 10735 8300 11.7 12 7290.05 5262.35 3563.74 1523.24 0.38975 -1.4204 -1.6984 0.92584
Double Crested Cormorant 1674 1330 1817 11.9 12.1 347.204 447.555 980.91 278.113 1.70162 2.1897 2.48993 0.32486
Ruffed Grouse 577 644 532 12 13 932.624 872.869 640.162 126.165 3.15451 2.84409 2.64344 0.21024

European Starling 82.3 75 74 12 13.3 -1292.9 -846.1 -794.93 223.666 -1.3834 -0.7337 -0.759 0.30049
Gray Catbird 36.9 36.9 34.5 12.1 15.9 -733.12 -401.02 -423.89 151.453 -1.2798 -0.8432 -0.9213 0.19012
American Robin 77.3 77.3 75.5 12.3 16 -208.57 -273.65 -308.99 41.5897 0.18426 0.00428 -0.03 0.09397
Turkey 5811 5811 6050 12.4 16.9 5391.98 5846.6 5993.94 256.198 4.3048 4.80396 4.83429 0.24277
Downy Woodpecker 27 21.7 25.6 13.9 17 -16.799 163.596 59.8636 73.9221 -0.5053 -0.6543 -0.4988 0.07182
Hairy Woodpecker 66.3 66.3 62 15 17.9 -461.65 -178.35 -232.17 122.844 -0.3316 -0.0173 -0.0948 0.13368
Red-bellied Woodpecker 61.7 61.7 72.5 15.8 20 -30.514 -646.8 -615.79 283.494 0.24869 -0.665 -0.5151 0.4001
Pintail Duck 1011 1011 721 15.9 20.3 -920.98 -344.96 -517.42 241.386 0.29159 1.32762 0.97686 0.43024
Mallard 1082 1020 1048.1 16.3 20.7 -874.19 -500.24 -329.91 227.326 0.32323 1.13254 1.14669 0.38489
Gadwall 920 920 791 16.3 20.9 -382.59 -493.94 -496.69 53.1519 1.13926 1.16132 0.99743 0.07262
Green Winged Teal 341 250 343.8 16.9 22.5 -864.76 -1077 -869.99 98.8275 0.29169 -0.0336 0.27233 0.149
Northern Shoveler 613 554 613 17.9 22.5 -738 -338.11 -231.3 218.091 0.66079 1.30193 1.39134 0.32537
Wood Duck 658 448 452.8 19.8 22.6 -668.8 -434.45 -383.29 124.298 0.76786 1.10156 1.10044 0.15705
Sandhill Crane 4513 4513 3890 20.3 22.9 1479.58 2267.99 1896.18 322.041 0.13912 1.71994 1.55694 0.70991
Red Eyed Vireo 16.7 16.7 17 21.5 23 -39.203 322.877 190.849 149.613 -1.0038 -0.7122 -0.7039 0.13948
Killdeer 97 97 88 22.3 23.1 174.238 335.532 204.372 70.0213 0.95473 0.9631 0.85615 0.04857
Ring Billed Gull 518.5 439 518.5 22.5 27.1 -1413.5 -1342.2 -1081.2 142.827 -0.3762 -0.0344 0.11847 0.20678
Herring Gull 1135 1000 1094 22.5 27.4 -1680.6 -2443.3 -1918 318.697 -0.9151 -1.2746 -1.2016 0.15514
Caspian Tern 656 656 644 22.7 28 -1578.6 -951.21 -807.91 334.673 -0.5938 0.58317 0.55151 0.54753
Spotted Sandpiper 42.5 42.5 34 22.9 28.5 -13.403 174.733 60.0527 77.4183 -0.0697 0.00593 -0.227 0.09702
American Woodcock 197.5 156.7 197.5 23.1 29 226.323 -571.13 -507.22 361.8 1.5933 0.24304 0.46298 0.59153
Tufted Titmouse 21.6 21.6 21 27.5 29.1 -82.718 28.2059 -59.689 47.7958 -0.819 -0.8268 -0.865 0.02011
White Breasted Nuthatch 21.1 21.1 20.5 27.5 30 231.479 365.932 227.192 64.4158 -0.3714 -0.4304 -0.4686 0.03996
Barn Swallow 16 18 18.3 27.7 30.7 69.0305 -236.31 -284.08 156.42 -0.8836 -1.3331 -1.3271 0.21048
Tree Swallow 20.1 20.1 19 28 31.3 -47.907 142.669 36.8419 77.9608 -0.8366 -0.7549 -0.8209 0.03544
Carolina Wren 18.7 18.7 17.5 30 31.8 483.258 421.513 273.457 88.0335 -0.1118 -0.4791 -0.5547 0.19347
House wren 10.9 10.9 9.7 30.7 35 318.109 433.041 282.079 64.3745 -0.887 -0.9949 -1.1208 0.09552
Horned Lark 31.3 26 33.5 33.3 36.6 471.65 544.777 387.988 64.0568 0.36709 -0.0056 0.23881 0.1546
Cedar waxwing 32 32 30 34.8 42 569.18 531.449 368.066 87.2827 0.53413 0.17803 0.10443 0.18764
Song Sparrow 20.8 19.1 22.7 36.6 49 49.623 218.978 106.229 70.3938 -0.6575 -0.7099 -0.5469 0.06795
Chipping Sparrow 12.3 11.9 12.2 40 70 89.538 163.46 54.6745 45.3556 -1.1104 -1.243 -1.2279 0.05929

MLSW MLSLW
Linear Residual

MLSBMG

Dependent VariableIndependent Variable
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Supplemental Table 5b. Metadata Contexts and Caper Phylogeny Contrasts. MLSW = Residual of independent 
variable on dependent variable using raw mass in grams.  MLSLW = Equivalent residual using the natural log of 
mass in grams.  

 

AW AW
Node O A A O A A

AY 0.696216 0.391707 0.449764 0.132008 0.143320 -0.261353 -0.073953 0.165357
AX -0.292371 -0.593349 -0.613852 0.146954 0.222999 -0.050793 0.068113 0.112096
AW 4.625498 2.959913 -1.596262 2.629812 0.597961 -1.211682 -0.487078 0.743652
AV 0.856952 1.428176 -0.208675 0.678326 -0.534295 -0.331060 -0.159369 0.153243
AT 0.414617 0.454868 -1.974793 1.135985 -0.074383 -0.057803 -0.054099 0.008820
AU -0.410716 -0.051436 0.011897 0.186099 -0.308548 -0.163431 -0.016015 0.119427
AS 1.837134 0.943825 0.716865 0.483565 0.851552 -0.006329 0.358180 0.351543
AR 0.617445 1.145357 -0.092638 0.507230 -0.198825 0.072637 0.091111 0.132537
AQ 0.095351 0.057975 -0.630648 0.333778 -0.258526 -0.391349 -0.371062 0.058422
AP -0.301419 -1.396420 -3.080070 1.142833 -0.667152 -0.462599 -0.454171 0.098474
AO 0.239351 0.307686 -0.114260 0.184917 -0.132048 -0.102551 -0.097612 0.015203
AN 0.064297 1.199443 1.439575 0.599779 -1.519437 -1.130998 -1.080636 0.196063
AM 0.359222 -0.279870 0.556637 0.357018 0.531729 -0.048689 0.124660 0.243274
AL 1.091643 0.640965 -0.172959 0.523323 0.534835 0.176512 0.319237 0.147290
AK -0.151461 0.480033 -0.053907 0.277567 0.391818 0.829108 1.040364 0.270075
AJ -1.006339 0.328000 1.100666 0.870309 -0.387877 -0.067378 -0.033968 0.159544
AI -0.820623 0.169217 -1.428719 0.658530 -2.554283 2.271657 1.116575 2.057482
AH -1.186759 -3.312595 0.255959 1.465727 5.858837 4.632178 3.012065 1.165884
AG -0.585751 -0.694011 -1.119650 0.230443 -0.149730 -0.303195 -0.184246 0.065737
AF -1.777695 -1.336231 -0.188739 0.669694 -0.763589 -0.587568 -0.569844 0.087455
AE -1.616557 -1.701540 3.360503 2.366494 -2.972969 -3.943577 -4.730551 0.718834
AD -1.256273 -1.068833 -0.015200 0.546254 -0.921427 -0.953403 -1.176473 0.113447
AC -0.801399 -0.952589 0.683074 0.738009 -0.997792 -1.305704 -1.633655 0.259633
AB 2.831414 3.388990 0.182290 1.398875 2.205325 2.744232 3.749619 0.639971
AA 0.312376 0.700064 0.338199 0.176986 -0.075181 0.157721 0.130901 0.104047
T 0.487343 0.628287 1.809114 0.592667 -0.173501 -0.189597 -0.133265 0.023691
S 0.188746 1.148671 -0.079174 0.527135 -0.491746 0.073302 0.118034 0.277511
R 0.016291 0.448969 1.321815 0.542982 0.629547 1.033167 1.140074 0.219843
Q -0.158606 -0.336982 0.138005 0.195905 -0.142100 -0.171059 -0.029926 0.060864
P -0.302714 0.517707 -0.191086 0.363308 -0.271081 0.188120 0.301942 0.247695
O 0.883563 1.298231 -0.778922 0.897550 0.342649 0.490308 0.391877 0.061387
M -0.155090 0.218078 -1.303691 0.647587 0.601311 0.876789 0.895752 0.134554
L -0.430073 0.681986 -0.102043 0.466545 0.952256 1.632358 1.792193 0.364170
Z 0.564285 0.498688 0.834360 0.145266 -0.307026 -0.505616 -0.428390 0.081738
Y -0.443200 -0.063572 1.361830 0.777033 -0.612013 -0.588380 -0.475839 0.059411
V -0.726665 -0.519487 0.671252 0.615986 -0.848391 -1.018202 -0.859521 0.077559
U -0.314009 -0.589462 0.058185 0.265382 -0.232173 -0.671757 -0.554671 0.185876
X -0.744876 0.416681 -0.732507 0.544671 -0.991241 -0.425237 -0.352542 0.285498
W -0.838217 0.208024 0.151180 0.480365 -0.096229 -0.350882 -0.298391 0.109784
J 0.010192 -0.063598 0.080924 0.059005 -0.025004 -0.014060 -0.013403 0.005320
H -0.280016 -0.217624 -0.808313 0.264975 -0.188260 -0.200372 -0.192280 0.005037
G -0.342287 -0.263976 0.564319 0.410168 -0.202921 -0.267922 -0.258105 0.028610
F 0.033182 -0.330124 0.450688 0.319021 -0.069972 -0.223066 -0.213526 0.070029
E -0.270945 -0.121100 0.153854 0.175912 -0.168563 -0.055916 -0.051223 0.054242
D 0.583679 0.514862 -0.850932 0.660660 -0.079299 -0.109901 -0.098961 0.012661
C -1.144205 -0.830109 -0.219315 0.384006 -0.327649 -0.312256 -0.309757 0.007911
B -2.091727 -1.628563 1.648800 1.664905 -0.663042 -0.443557 -0.425319 0.108022
A 0.535895 -0.631730 0.512193 0.544923 -0.045598 -0.059298 -0.062805 0.007424

MLSW
BMG

Std, Dev
BMG

Std, Dev

MLSLW
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Supplemental Table 6: Leveraging MDMR to validate Metadata Contexts for Highlight in Manuscript. Mass: 
“Original” metadata by Rich M. and Steve S, imputed with updates available from AnAge is vest fit in both distance 
contexts. Lifespan: “AnAge” MLS is best fit to distances oserved in both contexts, but less well-fit when used to 
calculate residuals. Residuals:  Performance is most consistent using the phylogenetic distance matrix.  The lowest 
residual uses the “original” metadata updated with AnAge information wherever defined.  It was more highly 
correlated to the phylogenetic distance matrix. Significant: * = < 0.01, ** = < 0.001, *** = < 0.0001. 
 

 
 
 
 
 
 
Supplemental Table 7. Variance explained by each principal component in each distance matrix context. 

 
 
 

Metric
Stat R2 P Stat R2 P

BMG (O) 0.0844 0.0778 0.002** 0.0926 0.0848 0.002**
log(BMG (O)) 0.267 0.211 <0.002*** 0.245 0.197 <0.002***
BMG (A) 0.0816 0.0754 0.002** 0.0896 0.0822 0.002**
log(BMG (A)) 0.262 0.208 <0.002*** 0.239 0.193 <0.002***
AW (A) 0.0998 0.0908 <0.002*** 0.107 0.0967 <0.002***
log(AW (A)) 0.265 0.21 <0.002*** 0.241 0.194 <0.002***

MLS (O) 0.135 0.119 <0.002*** 0.127 0.113 <0.002***
MLS (A) 0.0998 0.0908 <0.002*** 0.107 0.0967 <0.002***

res(BMG ~ MLS) (O) 0.0298 0.0289 0.194 0.0341 0.033 0.098
res(log(BMG) ~ MLS) (O) 0.142 0.124 <0.002*** 0.131 0.116 <0.002***
res(BMG ~ MLS) (A) 0.0293 0.0285 0.2 0.0333 0.0322 0.11
res(log(BMG) ~ MLS) (A) 0.139 0.122 <0.002*** 0.127 0.112 <0.002***
res(AW (A) ~ MLS) (A) 0.129 0.114 <0.002*** 0.129 0.114 <0.002***
res(log(AW (A)) ~ MLS) (A) 0.16 0.138 <0.002*** 0.129 0.114 <0.002***

MASH Phylogeny

Phylogenetic Correlations to Mass, in each Context

Phylogenetic Correlations to Lifespan

Phylogenetic Correlations to Residuals, in each Context

% Sum % Sum

PC1 26.83 26.83 25.13 25.13

PC2 7.99 34.82 8.09 33.22

PC3 2.74 37.55 5.11 38.33

PC4 1.86 39.41 2.32 40.65

PC5 1.51 40.92 1.27 41.92

PC6 1.4 42.32 0.92 42.84

PC7 1.07 43.39 0.87 43.71

PC8 0.89 44.28 0.72 44.43

PC9 0.81 45.09 0.56 44.99

Variance Explained 
(MASH)

Variance Explained 
(Phylo)

PC
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Supplemental Table 8: Principle Components provide additional insight for simple linear model comparisons: 
Sample Distance Correlation to Transcriptomic Distance. Use the principal components as additional independent 
variables/covariates in a regression model with MLS as the dependent variable and body size as an independent 
variable.  See if the regression coefficient is significant for body size along with the principal components.  

 
 
ST9a. Tabular version of phylogenetic tree distance matrix 

 

 

Variables tested: Metadata MLS PC1 PC2 PC3 MLS PC1 PC2 PC3
BMG (O) 0.000373813 NA 0.0001651 0.1641677 NA 4.49E-09 NA 1.38E-09 0.08437 NA
BMG (A) 0.00012516 NA 5.81E-05 0.1301 NA 7.71E-09 NA 2.39E-09 0.08756 NA
AW (A) 1.30E-08 NA 2.04E-09 0.8403 NA 6.00E-09 NA 2.01E-09 0.07025 NA

BMG (O) 4.59E-05 0.0001686 0.0061606 NA NA 2.59E-15 1.54E-14 1.74E-06 NA NA
BMG (A) 2.38E-05 0.0001762 0.0023029 NA NA 2.37E-13 3.10E-12 2.37E-06 NA NA
AW (A) 1.25E-13 6.47E-12 1.76E-07 NA NA 3.01E-12 4.89E-11 4.61E-06 NA NA

BMG (O) 2.80E-05 0.0001119 0.00479 0.0476216 NA 8.56E-15 1.32E-14 1.43E-06 0.1385 NA
BMG (A) 1.20E-05 0.0001093 0.0016265 0.0363013 NA 9.88E-13 3.24E-12 2.27E-06 0.2242 NA
AW (A) 4.66E-13 6.15E-12 1.59E-07 0.1867 NA 1.28E-12 1.20E-11 1.80E-06 0.01538 NA

BMG (O) 1.75E-07 1.48E-05 0.0013861 0.0237509 0.0002859 6.66E-14 2.54E-14 1.85E-06 0.1428 0.8164
BMG (A) 1.21E-06 3.91E-05 0.0007682 0.0246713 0.0061258 6.28E-12 5.32E-12 2.84E-06 0.2285 0.6713
AW (A) 8.21E-14 8.26E-13 3.44E-08 0.155847 0.006466 3.48E-12 1.09E-11 1.58E-06 0.0145 0.1709

MLS ~ PC1 + PC2

MLS ~ log(BMG)  + PC1

MLS ~ log(BMG) + PC1 + 
PC2

MLS ~ log(BMG) + PC1 + 
PC2 + PC3

MASH DISTANCE PHYLO DISTANCE
LM : Whole 

model p
LM > Anova : p LM : Whole 

model p
LM > Anova : p
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American_Crow 0 159.2 100.2 156.8 156.8 156.8 100.2 100.2 100.2 100.2 100.1 100.2 158 158 195.2 195.2 158 195.2 100.2 100.2 100.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 75.6 158.8 158.8 158.8 158.8 158.8 158.8 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2

Ruby_throated_Hummingbird 159.2 0 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.1 159.2 158.2 158.2 195.2 195.2 158.2 195.2 159.2 159.2 159.2 195.2 159.2 159.1 159.1 196.2 195.2 195.2 196.2 195.17 195.2 158.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2 159.2

House_Finch 100.2 159.2 0 156.8 156.8 156.8 52 52 52 52 51.9 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 52 52

Red_tailed_Hawk 156.8 159.2 156.8 0 48.4 155.4 156.8 156.8 156.8 156.8 156.7 156.8 158 158 195.2 195.2 158 195.2 156.8 156.8 156.8 195.2 151.8 151.7 151.7 196.2 195.2 195.2 196.2 195.17 195.2 158 156.8 158.8 158.8 158.8 158.8 158.8 158.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8

Coopers_Hawk 156.8 159.2 156.8 48.4 0 155.4 156.8 156.8 156.8 156.8 156.7 156.8 158 158 195.2 195.2 158 195.2 156.8 156.8 156.8 195.2 151.8 151.7 151.7 196.2 195.2 195.2 196.2 195.17 195.2 158 156.8 158.8 158.8 158.8 158.8 158.8 158.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8

Great_Horned_Owl 156.8 159.2 156.8 155.4 155.4 0 156.8 156.8 156.8 156.8 156.7 156.8 158 158 195.2 195.2 158 195.2 156.8 156.8 156.8 195.2 155.4 155.3 155.3 196.2 195.2 195.2 196.2 195.17 195.2 158 156.8 158.8 158.8 158.8 158.8 158.8 158.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8

Common_Grackle 100.2 159.2 52 156.8 156.8 156.8 0 45.8 45.8 45.8 45.7 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 24 24

Northern_Cardinal 100.2 159.2 52 156.8 156.8 156.8 45.8 0 43 43 42.9 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 45.8 45.8

Yellow_Warbler 100.2 159.2 52 156.8 156.8 156.8 45.8 43 0 21 10.4 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 45.8 45.8

Brown_headed_Cowbird 100.2 159.2 52 156.8 156.8 156.8 45.8 43 21 0 20.9 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 45.8 45.8

Yellow_rumped_Warbler 100.1 159.1 51.9 156.7 156.7 156.7 45.7 42.9 10.4 20.9 0 58.5 157.9 157.9 195.1 195.1 157.9 195.1 90.1 90.1 90.1 195.1 156.7 156.6 156.6 196.1 195.1 195.1 196.1 195.07 195.1 157.9 100.1 158.7 158.7 158.7 158.7 158.7 158.7 91.1 90.1 91.1 91.1 90.1 90.1 91.1 90.1 45.7 45.7

House_Sparrow 100.2 159.2 58.6 156.8 156.8 156.8 58.6 58.6 58.6 58.6 58.5 0 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 58.6 58.6

Rock_Dove 158 158.2 158 158 158 158 158 158 158 158 157.9 158 0 52.6 194.2 194.2 149 194.2 158 158 158 194.2 158 157.9 157.9 195.2 194.2 194.2 195.2 194.17 194.2 149 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158

Mourning_Dove 158 158.2 158 158 158 158 158 158 158 158 157.9 158 52.6 0 194.2 194.2 149 194.2 158 158 158 194.2 158 157.9 157.9 195.2 194.2 194.2 195.2 194.17 194.2 149 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158

Canada_Goose 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 0 27 194.2 144.8 195.2 195.2 195.2 144.8 195.2 195.1 195.1 49.2 48.2 48.2 49.2 48.17 48.2 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Mute_Swan 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 27 0 194.2 144.8 195.2 195.2 195.2 144.8 195.2 195.1 195.1 49.2 48.2 48.2 49.2 48.17 48.2 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Double_crested_Cormorant 158 158.2 158 158 158 158 158 158 158 158 157.9 158 149 149 194.2 194.2 0 194.2 158 158 158 194.2 158 157.9 157.9 195.2 194.2 194.2 195.2 194.17 194.2 143 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158

Ruffed_Grouse 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 144.8 144.8 194.2 0 195.2 195.2 195.2 26.6 195.2 195.1 195.1 145.8 144.8 144.8 145.8 144.77 144.8 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Starling 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 0 43.8 56.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 77.6 91.2 91.2 77.6 77.6 91.2 89.2 90.2 90.2

Gray_Catbird 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 43.8 0 56.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 77.6 91.2 91.2 77.6 77.6 91.2 89.2 90.2 90.2

American_Robin 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 56.2 56.2 0 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 77.6 91.2 91.2 77.6 77.6 91.2 89.2 90.2 90.2

Turkey 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 144.8 144.8 194.2 26.6 195.2 195.2 195.2 0 195.2 195.1 195.1 145.8 144.8 144.8 145.8 144.77 144.8 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Downy_Woodpecker 156.8 159.2 156.8 151.8 151.8 155.4 156.8 156.8 156.8 156.8 156.7 156.8 158 158 195.2 195.2 158 195.2 156.8 156.8 156.8 195.2 0 28.5 28.5 196.2 195.2 195.2 196.2 195.17 195.2 158 156.8 158.8 158.8 158.8 158.8 158.8 158.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8 156.8

Hairy_Woodpecker 156.7 159.1 156.7 151.7 151.7 155.3 156.7 156.7 156.7 156.7 156.6 156.7 157.9 157.9 195.1 195.1 157.9 195.1 156.7 156.7 156.7 195.1 28.5 0 14.1 196.1 195.1 195.1 196.1 195.07 195.1 157.9 156.7 158.7 158.7 158.7 158.7 158.7 158.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7

Red_bellied_Woodpecker 156.7 159.1 156.7 151.7 151.7 155.3 156.7 156.7 156.7 156.7 156.6 156.7 157.9 157.9 195.1 195.1 157.9 195.1 156.7 156.7 156.7 195.1 28.5 14.1 0 196.1 195.1 195.1 196.1 195.07 195.1 157.9 156.7 158.7 158.7 158.7 158.7 158.7 158.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7

Pintail_Duck 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.1 196.2 195.2 195.2 49.2 49.2 195.2 145.8 196.2 196.2 196.2 145.8 196.2 196.1 196.1 0 9.48 12.54 7.98 15.71 25.6 195.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2

Mallard 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 48.2 48.2 194.2 144.8 195.2 195.2 195.2 144.8 195.2 195.1 195.1 9.48 0 11.54 9.48 14.71 24.6 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Gadwall 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 48.2 48.2 194.2 144.8 195.2 195.2 195.2 144.8 195.2 195.1 195.1 12.54 11.54 0 12.54 14.71 24.6 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Green_winged_Teal 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.1 196.2 195.2 195.2 49.2 49.2 195.2 145.8 196.2 196.2 196.2 145.8 196.2 196.1 196.1 7.98 9.48 12.54 0 15.71 25.6 195.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2 196.2

Northern_Shoveler 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.07 195.17 194.17 194.17 48.17 48.17 194.17 144.77 195.17 195.17 195.17 144.77 195.17 195.07 195.07 15.71 14.71 14.71 15.71 0 24.57 194.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17 195.17

Wood_Duck 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.1 195.2 194.2 194.2 48.2 48.2 194.2 144.8 195.2 195.2 195.2 144.8 195.2 195.1 195.1 25.6 24.6 24.6 25.6 24.57 0 194.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2 195.2

Sandhill_Crane 158 158.2 158 158 158 158 158 158 158 158 157.9 158 149 149 194.2 194.2 143 194.2 158 158 158 194.2 158 157.9 157.9 195.2 194.2 194.2 195.2 194.17 194.2 0 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158

Red_eyed_Vireo 75.6 159.2 100.2 156.8 156.8 156.8 100.2 100.2 100.2 100.2 100.1 100.2 158 158 195.2 195.2 158 195.2 100.2 100.2 100.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 0 158.8 158.8 158.8 158.8 158.8 158.8 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2

Killdeer 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 0 135.8 135.8 135.8 135.8 135.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Ring_billed_Gull 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 135.8 0 3.16 45 126.8 126.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Herring_Gull 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 135.8 3.16 0 45 126.8 126.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Caspian_Tern 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 135.8 45 45 0 126.8 126.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Spotted_Sandpiper 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 135.8 126.8 126.8 126.8 0 15.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Woodcock 158.8 159.2 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.7 158.8 158 158 195.2 195.2 158 195.2 158.8 158.8 158.8 195.2 158.8 158.7 158.7 196.2 195.2 195.2 196.2 195.17 195.2 158 158.8 135.8 126.8 126.8 126.8 15.2 0 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8 158.8

Tufted_Titmouse 100.2 159.2 91.2 156.8 156.8 156.8 91.2 91.2 91.2 91.2 91.1 91.2 158 158 195.2 195.2 158 195.2 91.2 91.2 91.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 0 91.2 84.4 84.4 91.2 91.2 84.4 91.2 91.2 91.2

White_breasted_Nuthatch 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 77.6 77.6 77.6 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 0 91.2 91.2 64.4 64.4 91.2 89.2 90.2 90.2

Barn_Swallow 100.2 159.2 91.2 156.8 156.8 156.8 91.2 91.2 91.2 91.2 91.1 91.2 158 158 195.2 195.2 158 195.2 91.2 91.2 91.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 84.4 91.2 0 37.6 91.2 91.2 69.8 91.2 91.2 91.2

Tree_Swallow 100.2 159.2 91.2 156.8 156.8 156.8 91.2 91.2 91.2 91.2 91.1 91.2 158 158 195.2 195.2 158 195.2 91.2 91.2 91.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 84.4 91.2 37.6 0 91.2 91.2 69.8 91.2 91.2 91.2

Carolina_Wren 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 77.6 77.6 77.6 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 64.4 91.2 91.2 0 28.6 91.2 89.2 90.2 90.2

House_wren 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 77.6 77.6 77.6 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 64.4 91.2 91.2 28.6 0 91.2 89.2 90.2 90.2

Horned_Lark 100.2 159.2 91.2 156.8 156.8 156.8 91.2 91.2 91.2 91.2 91.1 91.2 158 158 195.2 195.2 158 195.2 91.2 91.2 91.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 84.4 91.2 69.8 69.8 91.2 91.2 0 91.2 91.2 91.2

Cedar_waxwing 100.2 159.2 90.2 156.8 156.8 156.8 90.2 90.2 90.2 90.2 90.1 90.2 158 158 195.2 195.2 158 195.2 89.2 89.2 89.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 89.2 91.2 91.2 89.2 89.2 91.2 0 90.2 90.2

Song_Sparrow 100.2 159.2 52 156.8 156.8 156.8 24 45.8 45.8 45.8 45.7 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 0 19.94

Chipping_Sparrow 100.2 159.2 52 156.8 156.8 156.8 24 45.8 45.8 45.8 45.7 58.6 158 158 195.2 195.2 158 195.2 90.2 90.2 90.2 195.2 156.8 156.7 156.7 196.2 195.2 195.2 196.2 195.17 195.2 158 100.2 158.8 158.8 158.8 158.8 158.8 158.8 91.2 90.2 91.2 91.2 90.2 90.2 91.2 90.2 19.94 0
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Supplemental Table 11. AW (A): Number significant GO terms for each CAPER model at each cutoff.  See 
Table 3. 

 
 

Pos Neg All Pos Neg All Pos Neg All
Ingenuity Pathways: 

Diseases and 
Functions

MLSLW LG 36 174 NA 44 162 NA 44 174 NA

MLS LG NA NA NA 50 155 192 57 162 240
MLSW LG 0 96 0 94 85 129 38 26 37
MLSLW LG 5 107 98 5 124 98 5 107 86

MLS LG NA NA NA 9 26 22 10 12 12
MLSW LG 6 1 5 7 2 5 7 2 3
MLSLW LG 1 25 20 0 23 20 0 25 19

MLS LG NA NA NA 12 50 40 13 26 38
MLSW LG 18 29 43 26 29 43 18 10 29
MLSLW LG 3 26 28 0 30 28 0 26 27

Shared

TopGO: Biological 
Processes

TopGO: Cellular 
Components

TopGO: Molecular 
Processes

Tool: Database Dependent 
variable

Independent 
variable

De Novo Alignment
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Supplemental Table 13. Significant Ingenuity Pathway Diseases or Functions. CAPER, Dependent = MLSLW, 
Independent = LG, Metadata = AW (A) 

 

 
 
  

Shared 
Order

Direction
P-value 
Cutoff

Rank Order 
(Align)

Rank Order 
(De Novo)

Categories Diseases or Functions Annotation
P-value 
(Shared)

P-value 
(Align)

P-value 
(De novo)

# 
Molecules 
(Shared)

# 
Molecules 

(Align)

# 
Molecules 
(De Novo)

1 Pos 5.00E-06 1 1
Cancer, Organismal Injury and Abnormalities, Reproductive System Disease, 
Tumor Morphology

Production of prostatic intraepithelial tumor 1.68E-07
1.68E-07 4.06E-07 2 2 2

2 2 3 Cell Cycle, Connective Tissue Development and Function Cell cycle progression of chondrocytes 5.05E-07 5.05E-07 1.22E-06 2 2 2

3 3 4
Cellular Growth and Proliferation, Hematological System Development and 
Function, Lymphoid Tissue Structure and Development, Organ Development, 
Organ Morphology, Tissue Development, Tissue Morphology

Expansion of thymic medullary epithelial cells 5.05E-07
5.05E-07 1.22E-06 2 2 2

4 4 5
Dermatological Diseases and Conditions, Hair and Skin Development and 
Function, Organ Morphology, Organismal Injury and Abnormalities

Abnormal morphology of guard hair 1.01E-06
1.01E-06 2.43E-06 2 2 2

5 5 6
Connective Tissue Development and Function, Organ Morphology, Organismal 
Development, Skeletal and Muscular System Development and Function, 
Tissue Development, Tissue Morphology

Diameter of humerus 1.01E-06
1.01E-06 2.43E-06 2 2 2

6 6 7 Developmental Disorder Hypoplasia of interparietal bone 1.01E-06 1.01E-06 2.43E-06 2 2 2

7 7 8
Cell-mediated Immune Response, Cellular Development, Cellular Function and 
Maintenance, Cellular Growth and Proliferation, Embryonic Development, 

Production of naive T lymphocytes 1.01E-06
1.01E-06 2.43E-06 2 2 2

8 8 16 Cell Cycle Arrest in G1 phase of bone cancer cell lines 1.13E-06 1.13E-06 4.36E-06 3 3 3
9 9 17 Cell Cycle Arrest in G1 phase of sarcoma cell lines 0.0000012 1.20E-06 4.64E-06 3 3 3

10 10 9
Dermatological Diseases and Conditions, Hair and Skin Development and 
Function, Organ Morphology, Organismal Injury and Abnormalities

Abnormal morphology of zigzag hair 1.68E-06
1.68E-06 4.05E-06 2 2 2

11 11 10 Cell Morphology Cell flattening of bone cancer cell lines 1.68E-06 1.68E-06 4.05E-06 2 2 2
12 12 11 Cell Morphology Cell flattening of sarcoma cell lines 1.68E-06 1.68E-06 4.05E-06 2 2 2

13 13 12

Connective Tissue Development and Function, Organ Morphology, Organismal 
Development, Skeletal and Muscular System Development and Function, 
Tissue Development, Tissue Morphology

Diameter of radius 1.68E-06
1.68E-06 4.05E-06 2 2 2

14 14 13

Connective Tissue Development and Function, Organ Morphology, Organismal 
Development, Skeletal and Muscular System Development and Function, 
Tissue Development, Tissue Morphology

Diameter of ulna 1.68E-06
1.68E-06 4.05E-06 2 2 2

15 15 14

Cell Morphology, Endocrine System Disorders, Organ Morphology, Organismal 
Injury and Abnormalities, Reproductive System Development and Function, 
Reproductive System Disease

Lack of mitochondrial sheath 1.68E-06
1.68E-06 4.05E-06 2 2 2

16 16 20 Gene Expression, Protein Synthesis Initiation of translation of mRNA 1.79E-06 1.79E-06 6.90E-06 3 3 3

17 17 18
Dermatological Diseases and Conditions, Hair and Skin Development and 
Function, Organ Morphology, Organismal Injury and Abnormalities

Abnormal morphology of awl hair 2.52E-06
2.52E-06 6.08E-06 2 2 2

18 18 19
Dermatological Diseases and Conditions, Organ Morphology, Organismal 
Injury and Abnormalities

Abnormal morphology of enlarged sebaceous 
glands

2.52E-06
2.52E-06 6.08E-06 2 2 2

19 19 29

Hematological System Development and Function, Lymphoid Tissue Structure 
and Development, Organ Morphology, Organismal Development, Tissue 
Morphology

Morphology of spleen 2.93E-06
2.93E-06 2.95E-05 5 5 5

20 20 25

Hematological System Development and Function, Lymphoid Tissue Structure 
and Development, Organ Morphology, Organismal Development, Tissue 
Morphology

Morphology of thymus gland 3.35E-06
3.35E-06 2.08E-05 4 4 4

21 21 22 Cell Cycle, Embryonic Development Senescence of embryonic cell lines 3.95E-06 3.95E-06 1.52E-05 3 3 3

22 22 21
Endocrine System Disorders, Organ Morphology, Organismal Injury and 
Abnormalities, Reproductive System Development and Function, Reproductive 

Abnormal morphology of cauda epididymis 4.71E-06
4.71E-06 1.13E-05 2 2 2

69 69 2 Cancer, Organismal Injury and Abnormalities Non-melanoma solid tumor 1.38E-04 1.38E-04 1.20E-06 15 15 23
87 87 15 Cancer, Organismal Injury and Abnormalities Malignant solid tumor 3.09E-04 3.09E-04 4.15E-06 15 15 23
1 Neg 5.00E-08 1 1 Cancer, Organismal Injury and Abnormalities Tumorigenesis of tissue 3.31E-16 2.56E-17 3.31E-16 131 134 131
2 2 2 Cancer, Organismal Injury and Abnormalities Head and neck tumor 2.08E-15 6.46E-16 2.08E-15 110 112 110
3 4 3 Cancer, Organismal Injury and Abnormalities Head and neck carcinoma 9.77E-15 3.02E-15 9.77E-15 107 109 107
4 5 4 Cancer, Organismal Injury and Abnormalities Cancer of secretory structure 1.34E-14 4.44E-15 1.34E-14 111 113 111
5 3 5 Cancer, Organismal Injury and Abnormalities Cancer 3.21E-14 2.88E-15 3.21E-14 138 141 138
6 6 6 Cancer, Organismal Injury and Abnormalities Neck neoplasm 7.3E-14 6.16E-15 7.30E-14 103 106 103
7 NA 7 Cancer, Endocrine System Disorders, Organismal Injury and Abnormalities Nonpituitary endocrine tumor 8.24E-14 NA 8.24E-14 103 NA 103
8 1 8 Cancer, Endocrine System Disorders, Organismal Injury and Abnormalities Thyroid gland tumor 9.52E-14 8.04E-15 9.52E-14 102 105 102
9 2 9 Cancer, Endocrine System Disorders, Organismal Injury and Abnormalities Thyroid carcinoma 2.18E-13 1.89E-14 2.18E-13 101 104 101
10 3 10 Cancer, Organismal Injury and Abnormalities Nonhematologic malignant neoplasm 6.45E-13 6.94E-14 6.45E-13 126 129 126
11 4 11 Cancer, Organismal Injury and Abnormalities Carcinoma 7.3E-13 7.89E-14 7.30E-13 124 127 124
12 12 12 Cancer, Organismal Injury and Abnormalities Adenocarcinoma 9.44E-13 1.17E-12 9.44E-13 112 113 112
13 11 13 Cancer, Organismal Injury and Abnormalities Extracranial solid tumor 4.11E-12 4.79E-13 4.11E-12 129 132 129
14 17 14 Cancer, Organismal Injury and Abnormalities Abdominal neoplasm 6.96E-12 1.03E-10 6.96E-12 119 118 119
15 3 15 Cancer, Organismal Injury and Abnormalities Abdominal adenocarcinoma 7E-12 7.66E-11 7.00E-12 108 107 108
16 7 16 Cancer, Organismal Injury and Abnormalities Abdominal carcinoma 1.05E-11 1.72E-10 1.05E-11 113 116 113
17 13 17 Cancer, Organismal Injury and Abnormalities Non-melanoma solid tumor 1.06E-11 1.29E-12 1.06E-11 125 128 125
18 4 18 Cancer, Organismal Injury and Abnormalities Abdominal cancer 1.28E-11 1.28E-10 1.28E-11 117 112 117
19 2 19 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Gastrointestinal tumor 2.02E-11 6.77E-11 2.02E-11 103 103 103
20 3 20 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Gastrointestinal tract cancer 3.3E-11 1.08E-10 3.30E-11 102 102 102
21 1 21 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Gastrointestinal carcinoma 3.46E-11 1.05E-10 3.46E-11 98 98 98
22 5 22 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Large intestine carcinoma 4.54E-11 1.29E-10 4.54E-11 94 94 94
23 6 23 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Gastrointestinal adenocarcinoma 5.5E-11 1.58E-10 5.50E-11 95 95 95
24 8 24 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Large intestine neoplasm 7.01E-11 2.10E-10 7.01E-11 98 98 98
25 2 25 Auditory Disease Tinnitus 9.84E-11 1.07E-10 9.84E-11 6 6 6
26 1 26 Cancer, Organismal Injury and Abnormalities Malignant solid tumor 1.09E-10 1.48E-11 1.09E-10 127 130 127
27 9 27 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Malignant neoplasm of large intestine 1.32E-10 3.86E-10 1.32E-10 97 97 97
28 10 28 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Large intestine adenocarcinoma 1.95E-10 5.24E-10 1.95E-10 92 92 92
29 11 29 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Digestive organ tumor 1.95E-10 6.99E-10 1.95E-10 109 109 109
30 12 30 Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities Digestive system cancer 2.73E-10 9.31E-10 2.73E-10 107 107 107
31 13 31 Organismal Injury and Abnormalities, Renal and Urological Disease Renal colic 6.74E-09 7.29E-09 6.74E-09 6 6 6

32
14

32
Gastrointestinal Disease, Hepatic System Disease, Organismal Injury and 
Abnormalities Drug-induced liver disease 1.36E-08 1.48E-08 1.36E-08 6 6 6

33
15

33
Connective Tissue Disorders, Organismal Injury and Abnormalities, Skeletal 
and Muscular Disorders Ankle sprain 1.48E-08 1.58E-08 1.48E-08 5 5 5

34 16 34 Organismal Injury and Abnormalities Myofascial pain 1.97E-08 2.10E-08 1.97E-08 5 5 5

35 18 35
Connective Tissue Disorders, Inflammatory Disease, Organismal Injury and 
Abnormalities, Skeletal and Muscular Disorders Lateral epicondylitis 3.32E-08 3.55E-08 3.32E-08 5 5 5

39 17 34 Malignant genitourinary solid tumor Malignant genitourinary solid tumor 9.38E-08 3.45E-08 3.45E-08 87 87 85
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APPENDIX C (4.2) 

SUPPLEMENTARY TABLES: REFERENCES 

See the main text for additional context and references for the supplementary tables 

Supplementary Table 1. The drugs being considered for human clinical trials focused on longevity were 

obtained from multiple sources (see Supplementary Internet References below) as well as published 

studies.[1-16] 

Supplementary Table 2. The top-ranked drugs based on protein-protein interaction networks are from 

Fuentealba et al.[17] 

Supplementary Table 3. The variants associated with lifespan are from the meta-analysis by Sebastiani et 

al.[18] 

Supplementary Table 4a. The variants associated with parental lifespan are from Timmers et al.[19] 

Supplementary Table 4b. The variants associated with parental lifespan after taking into account factors 

affecting mortality are from Timmers et al.[19] 

Supplementary Table 5. The healthspan variants considered are from Zenin et al.[20] and Hornstrup et 

al.[21] 

Supplementary Table 6. The genes considered are taken from the review by Harper et al. and associated 

references.[22-27] 

Supplementary Internet References: URLs and links to information about drugs listed in Supplementary 

Table 1. 
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NMN https://www.leafscience.org/dna-repair/ 

TA-65 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5178008/ 

Doxycycline 
https://www.salk.edu/news-release/turning-back-time-salk-scientists-reverse-signs-
aging/ 

CPHPC https://www.ncbi.nlm.nih.gov/pubmed/26225229 

Rosiglitazone https://www.ncbi.nlm.nih.gov/pubmed/?term=PMID%3A+16123266 
J147 
(circumin) 

https://www.salk.edu/news-release/alzheimers-drug-turns-back-clock-powerhouse-
cell/ 

NPT088 http://www.proclarabio.com/our-programs/ 

UBX0101 
http://ir.unitybiotechnology.com/news-releases/news-release-details/unity-
biotechnology-expands-ongoing-ubx0101-phase-1-study 

Quercetin 
https://www.scripps.edu/news-and-events/press-
room/2015/20150309agingcell.html 

Dasatinib 
https://www.scripps.edu/news-and-events/press-
room/2015/20150309agingcell.html 

Fisetin https://www.leafscience.org/fisetin-may-be-a-low-hanging-fruit-for-aging/ 

UBX1967 
http://ir.unitybiotechnology.com/news-releases/news-release-details/unity-
biotechnology-announces-completion-ubx1967-license-and 

Alk5i https://www.leafscience.org/conboy-interview/ 

RTB101 https://www.restorbio.com/about-torc1 

SRK-015 https://scholarrock.com/pipeline/srk-015-for-sma/intro/ 

SM04690 
https://www.globenewswire.com/news-
release/2019/01/29/1706787/0/en/Samumed-to-Present-Novel-Biological-Targets-
of-SM04690-for-Treatment-of-Knee-Osteoarthritis.html 

MSI-1436 https://www.eurekalert.org/pub_releases/2017-09/mdib-nbr090717.php 
 

  



 

207 
 

REFERENCES (APPENDIX C) 

1. Li, J., et al., A conserved NAD(+) binding pocket that regulates protein-protein 
interactions during aging. Science, 2017. 355(6331): p. 1312-1317. doi: 
10.1126/science.aad8242. 
2. Salvador, L., et al., A Natural Product Telomerase Activator Lengthens Telomeres in 
Humans: A Randomized, Double Blind, and Placebo Controlled Study. Rejuvenation Res, 2016. 
19(6): p. 478-484. doi: 10.1089/rej.2015.1793. 
3. Ocampo, A., et al., In Vivo Amelioration of Age-Associated Hallmarks by Partial 
Reprogramming. Cell, 2016. 167(7): p. 1719-1733 e12. doi: 10.1016/j.cell.2016.11.052 
4. Pepys, M.B., et al., Targeted pharmacological depletion of serum amyloid P component 
for treatment of human amyloidosis. Nature, 2002. 417(6886): p. 254-9. doi: 10.1038/417254a. 
5. Kurosu, H., et al., Suppression of aging in mice by the hormone Klotho. Science, 2005. 
309(5742): p. 1829-33. doi: 10.1126/science.1112766. 
6. Goldberg, J., et al., The mitochondrial ATP synthase is a shared drug target for aging 
and dementia. Aging Cell, 2018. 17(2). doi: 10.1111/acel.12715. 
7. Levenson, J.M., et al., NPT088 reduces both amyloid-beta and tau pathologies in 
transgenic mice. Alzheimers Dement (N Y), 2016. 2(3): p. 141-155. doi: 
10.1016/j.trci.2016.06.004. 
8. Baker, D.J., et al., Clearance of p16Ink4a-positive senescent cells delays ageing-
associated disorders. Nature, 2011. 479(7372): p. 232-6. doi: 10.1038/nature10600. 
9. Zhu, Y., et al., The Achilles' heel of senescent cells: from transcriptome to senolytic 
drugs. Aging Cell, 2015. 14(4): p. 644-58. doi: 10.1111/acel.12344. 
10. Yousefzadeh, M.J., et al., Fisetin is a senotherapeutic that extends health and lifespan. 
EBioMedicine, 2018. 36: p. 18-28. doi: 10.1016/j.ebiom.2018.09.015. 
11. Wu, D. and C. Prives, Relevance of the p53-MDM2 axis to aging. Cell Death Differ, 
2018. 25(1): p. 169-179. doi: 10.1038/cdd.2017.187. 
12. Yousef, H., et al., Systemic attenuation of the TGF-beta pathway by a single drug 
simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. 
Oncotarget, 2015. 6(14): p. 11959-78. doi: 10.18632/oncotarget.3851. 
13. Mannick, J.B., et al., TORC1 inhibition enhances immune function and reduces infections 
in the elderly. Sci Transl Med, 2018. 10(449). doi: 10.1126/scitranslmed.aaq1564. 
14. Pirruccello-Straub, M., et al., Blocking extracellular activation of myostatin as a strategy 
for treating muscle wasting. Sci Rep, 2018. 8(1): p. 2292. doi: 10.1038/s41598-018-20524-9. 
15. Yazici, Y., et al., A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate 
to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. 
Osteoarthritis Cartilage, 2017. 25(10): p. 1598-1606. doi: 10.1016/j.joca.2017.07.006. 
16. Smith, A.M., et al., The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates 
regeneration of heart and multiple other tissues. NPJ Regen Med, 2017. 2: p. 4. doi: 
10.1038/s41536-017-0008-1. 
17. Fuentealba, M., et al., Using the drug-protein interactome to identify anti-ageing 
compounds for humans. PLoS Comput Biol, 2019. 15(1): p. e1006639. doi: 
10.1371/journal.pcbi.1006639. 
18. Sebastiani, P., et al., Four Genome-Wide Association Studies Identify New Extreme 
Longevity Variants. J Gerontol A Biol Sci Med Sci, 2017. 72(11): p. 1453-1464. doi: 
10.1093/gerona/glx027. 



 

208 
 

19. Timmers, P.R., et al., Genomics of 1 million parent lifespans implicates novel pathways 
and common diseases and distinguishes survival chances. Elife, 2019. 8. doi: 
10.7554/eLife.39856. 
20. Zenin, A., et al., Identification of 12 genetic loci associated with human healthspan. 
Commun Biol, 2019. 2: p. 41. doi: 10.1038/s42003-019-0290-0. 
21. Hornstrup, L.S., et al., Genetic stabilization of transthyretin, cerebrovascular disease, 
and life expectancy. Arterioscler Thromb Vasc Biol, 2013. 33(6): p. 1441-7. doi: 
10.1161/ATVBAHA.113.301273. 
22. Harper, A.R., S. Nayee, and E.J. Topol, Protective alleles and modifier variants in human 
health and disease. Nat Rev Genet, 2015. 16(12): p. 689-701. doi: 10.1038/nrg4017. 
23. Cohen, J.C., et al., Sequence variations in PCSK9, low LDL, and protection against 
coronary heart disease. N Engl J Med, 2006. 354(12): p. 1264-72. doi: 10.1056/NEJMoa054013. 
24. Lim, E.T., et al., Distribution and medical impact of loss-of-function variants in the 
Finnish founder population. PLoS Genet, 2014. 10(7): p. e1004494. doi: 
10.1371/journal.pgen.1004494. 
25. Tg, et al., Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N 
Engl J Med, 2014. 371(1): p. 22-31. doi: 10.1056/NEJMoa1307095. 
26. Myocardial Infarction Genetics Consortium, I., et al., Inactivating mutations in NPC1L1 
and protection from coronary heart disease. N Engl J Med, 2014. 371(22): p. 2072-82. doi: 
10.1056/NEJMoa1405386. 
27. Flannick, J., et al., Loss-of-function mutations in SLC30A8 protect against type 2 
diabetes. Nat Genet, 2014. 46(4): p. 357-63. doi: 10.1038/ng.2915. 
  



 

209 
 

REFERENCES 

1.1.1 Makin S. The emerging world of digital therapeutics. Nature. 2019 Sep; 573(7775): S106-
S109. DOI: 10.1038/d41586-019-02873-1. 
 
1.1.2. Nathanson, L, Rivers SE, Flynn LM, Brackett MA. Creating emotionally intelligent 
schools with RULER. Emotion Review. 2016; 8(4): 1-6. 
 
1.1.3. Thayer RE. Toward a psychological theory of multidimensional activation (arousal). 
Motivation and Emotion. 1978; 2(1): 1–34. DOI: 10.1007/BF00992729  
 
1.1.4. Lövheim, H. A new three-dimensional model for emotions and monoamine 
neurotransmitters. Medical hypotheses. 2012; 78(2): 341-8. DOI: 10.1016/j.mehy.2011.11.016. 
 
1.1.5 Schnorr S, Candela, M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, 
Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, 
Marlowe F, Henry AG, Crittenden AN. Gut microbiome of the Hadza hunter-gatherers. Nature 
Communications. 2014 Apr 15; 5: 3654. DOI: 10.1038/ncomms4654 
 
1.1.6 Gomez A, Sharma AK, Mallott EK, Petrzelkova KJ, Robinson CAJ, Yeoman CJ, 
Carbonero F, Pafco B, Rothman JM, Ulanov A, Vlckova K, Amato KR, Schnorr SL, Dominy 
NJ, Modry D, Todd A, Torralba M, Nelson KE, Burns MB, Blekhman R, Remis M, Stumpf RM, 
Wilson BA, Gaskins HR, Garber PA, White BA, Leigh SR. Plasticity in the Human gut 
microbiome defies evolutionary constraints. mSphere. 2019 Jul; 4(4) e00271-19; DOI: 
10.1128/mSphere.00271-19 
 
1.1.7. Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut 
microbiome composition. Nature Medicine. 2018; 24(10): 1495–1496. DOI: 10.1038/s41591-
018-0210-8 
 
1.1.8. Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal 
disease: Understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology. 
2013; 6(4): 295‐308. DOI: 10.1177/1756283X13482996 
 
1.1.9. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, 
Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, 
Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, 
Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte 
E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT 
Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux 
C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, 
Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, 
Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, 



 

210 
 

Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, 
Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. 
Enterotypes of the human gut microbiome. Nature. 2011 May 12; 473: 174–180. DOI: 
10.1038/nature099441.1.8  
 
1.1.10. Bray, JR, Curtis JT. An ordination of upland forest communities of southern Wisconsin. 
Ecological Monographs. 1957; 27(4): 325-349. 
 
1.1.11. Borg I, Groenen P. Modern Multidimensional Scaling: Theory and applications (2nd ed.). 
New York: Springer-Verlag; 2005: 207–212. ISBN 978-0-387-94845-4. 
 
1.1.12. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. Cluster: Cluster Analysis 
Basics and Extensions. R package version 2.1.0. 2019. 
 
2.1.1. Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nature 
Reviews Microbiology. 2012; 10(9): 631–640. 
 
2.1.2. Binga, EK, Lasken RS. and Neufeld LD. Something from (almost) nothing: The impact of 
multiple displacement amplification on microbial ecology. The ISME Journal. 2008; 2(3): 233-
241. 
 
2.1.3. Lasken RS. Genomic DNA amplification by the multiple displacement amplification 
(MDA) method. Biochemical Soc Trans. 2009 Apr 3; 37: 450-453. 
 
2.1.4. McCorrison JM, Venepally P, Singh I, Fouts DE, Lasken RS, Methé BA. NeatFreq: 
reference-free data reduction and coverage normalization for De Novosequence assembly. BMC 
Bioinformatics. 2014; 15(1): 357. DOI: 10.1186/s12859-014-0357-3. 
 
2.1.5. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, Novotny 
M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP, Evers DJ, Pevzner PA, 
Lasken RS. Efficient de novo assembly of single-cell bacterial genomes from short-read data 
sets. Nature Biotechnology. 2011; 29(10): 915–921 DOI: 10.1038/nbt.1966. 
 
2.1.6. Hutchison III CA, Smith HO, Pfannkoch C, Venter JC. Cell-free cloning using φ29 DNA 
polymerase. Proceedings of the National Academy of Sciences. 2005; 102(48), 17332–17336. 
 
2.1.7. Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL, Beeson KY, 
Goldberg SMD, Quake SR. Nanoliter reactors improve multiple displacement amplification of 
genomes from single cells. PLoS Genetics. 2007; 3(9), e155. 
 
2.1.8. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length 
RNA-seq from single cells using Smart-seq2. Nature Protocols. 2014; 9(1), 171-181 



 

211 
 

 
2.1.9. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 
for sensitive full-length transcriptome profiling in single cells. Nature Methods. 2013; 10(11), 
1096-1098. 
 
2.1.10. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, Jegga 
AG, Aronow BJ, Lee CK, Bernard A, Glasser MF, Dierker DL, Menche J, Szafer A, Collman F, 
Grange P, Berman KA, Mihalas S, Yao Z, Stewart L, Barabási AL, Schulkin J, Phillips J, Ng L, 
Dang C, Haynor DR, Jones A, Van Essen DC, Koch C, Lein E. Canonical genetic signatures of 
the adult human brain. Nature Neuroscience. 2015 Dec; 18(12): 1832-44. DOI: 10.1038/nn.4171. 
 
2.1.11. Kuan L, Yang L, Lau C, Feng D, Bernard A, Sunkin SM, Zeng H, Dang C, Hawrylycz 
M, Ng L. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods. 2015; 73: 4-
17. DOI: 10.1016/j.ymeth.2014.12.013. 
 
2.1.12. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen 
SA, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, 
Madisen L, Sunkin SM, Hawrylycz M, Koch C, Zeng H. Adult mouse cortical cell taxonomy 
revealed by single cell transcriptomics. Nature Neuroscience. 2016; 9: 335–346. 
 
2.1.13. Lacar B, Linker SB, Jaeger BN, Krishnaswami S, Barron JJ, Kelder MJE, Parylak S, 
Paquola ACM, Venepally P, Novotny M, O'Connor C, Fitzpatrick C, Erwin JA, Hsu JY, 
Husband D, McConnell MJ, Lasken R, Gage FH. Nuclear RNA-seq of single neurons reveals 
molecular signatures of activation. Nature Communications. 2016; 7(1): 1-13. DOI: 
10.1038/ncomms11022. 
 
2.1.14. Španić E, Langer Horvat L, Hof PR, Šimić G. Role of microglial cells in alzheimer's 
disease tau propagation. Frontiers in Aging Neuroscience. 2019 Oct 4; 11: 271. DOI: 
10.3389/fnagi.2019.00271 
 
2.1.15. Molnár Z, Kaas JH, De Carlos JA, Hevner RF, Lein E, Němec P. Evolution and 
development of the mammalian cerebral cortex. Brain, Behavior and Evolution. 2014; 83(2): 
126-139 
 
2.1.16. Guillozet-Bongaarts AL, Hyde TM, Dalley RA, Hawrylycz MJ, Henry A, Hof PR, 
Hohmann J, Jones AR, Kuan CL, Royall J, Shen E, Swanson B, Zeng H, Kleinman JE. Altered 
gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. 
Molecular Psychiatry. 2014 Apr; 19(4): 478–485. 
 
2.1.17. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker 
SB, Pham S, Erwin JA, Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison JM, 
Aevermann BD, Diez Fuertes F, Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, 
Gage FH, Lasken RS. Using single nuclei for RNA-seq to capture the transcriptome of 



 

212 
 

postmortem neurons. Nature Protocols. 2016 Mar; 11(3): 499-524. DOI: 
10.1038/nprot.2016.015 
 
2.3.1. Duran RCD, Wei H, Wu JQ. Single-cell RNA-sequencing of the brain. Clinical and 
Translational Medicine. 2017; 6(1): 20. DOI: 10.1186/s40169-017-0150-9 
 
2.3.2. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind 
D, Peet GW, Zhong G, Lu S, Zhu W, Mao Y, Xiao M, Bergmann M, Hu X, Kerkar SP, Vogt 
AB, Pflanz S, Liu K, Peng J, Ren X, Zhang Z. Landscape and Dynamics of Single Immune Cells 
in Hepatocellular Carcinoma. Cell. 2019 Oct 31; 179(4): 829-845. DOI: 
10.1016/j.cell.2019.10.003. 
 
2.4.1. Picelli S, Björklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 
for senstitive full-length transcriptome profiling in single cells. Nature Methods. 2013; 10(11): 
1096–1098. 
 
2.4.2. Aevermann B, McCorrison JM, Venepally P, Hodge R, Bakken, T, Miller J, Novotny M, 
Tran DN, Diezfuertes F, Christiansen L, Zhang F, Steemers F, Lasken RS, Lein ED, Schork N, 
Scheuermann RH. Production of a preliminary quality control pipeline for single nuclei Rna-Seq 
and its application in the analysis of cell type diversity of post-mortem human brain neocortex. 
In Pacific Symposium on Biocomputing. 2017; 564-575. 
 
2.4.3. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker 
SB, Pham S, Erwin JA, Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison JM, 
Aevermann BD, Diez Fuertes F, Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, 
Gage FH, Lasken RS. Using single nuclei for RNA-seq to capture the transcriptome of 
postmortem neurons. Nature Protocols. 2016 Mar; 11(3): 499-524. DOI: 
10.1038/nprot.2016.015 
 
2.4.4. Haghverdi L, Lun AT, Morgan MD, Marioni JC. Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nature 
biotechnology, 2018; 36(5): 421-427. 
 
2.4.5. Choi J, Pacheco CM, Mosbergen R, Korn O, Chen T, Nagpal I, Englart S, Angel PW, 
Wells CA. Stemformatics: visualize and download curated stem cell data. Nucleic Acids 
Research. 2019 Jan 8; 47(D1): D841-D846. DOI: 10.1093/nar/gky1064. PMID: 30407577] 
 
2.4.6. Tian L, Su S, Dong X, Amann-Zalcenstein D, Biben C, Seidi A, Hilton DJ, Naik SH, 
Ritchie ME. scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-
sequencing data. PLoS Computational Biology. 2018 Aug 10; 14(8): e1006361. DOI: 
10.1371/journal.pcbi.1006361. 
 
2.4.7. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell 



 

213 
 

transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 
2018; 36(5): 411-420.  
 
2.4.8. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, 
McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: A flexible statistical framework for 
assessing transcriptional changes and characterizing heterogeneity in single-cell RNA 
sequencing data. Genome Biology. 2015; 16(1): 278. 
 
2.4.9. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-
Pournatzis T, Frey B, Irimia M, Blencowe BJ. Widespread intron retention in mammals 
functionally tunes transcriptomes. Genome research, 2014 Nov; 24(11), 1774-1786. 
 
2.4.10. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck III WM, Hao Y, 
Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019; 
177(7): 1888-1902. DOI: 10.1016/j.cell.2019.05.031. 
 
2.4.11. Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nature 
Reviews Microbiology. 2012; 10(9): 631–640. 
 
2.4.12. Lasken RS. Genomic DNA amplification by the multiple displacement amplification 
(MDA) method. Biochem Soc Trans. 2009; 37: 450–453. 
 
2.4.13. McCorrison JM, Venepally P, Singh I, Fouts DE, Lasken RS, Methé BA. NeatFreq: 
reference-free data reduction and coverage normalization for De Novosequence assembly. BMC 
Bioinformatics. 2014; 15(1): 357. DOI: 10.1186/s12859-014-0357-3. 
 
2.4.14. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, 
Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP, Evers DJ, 
Pevzner PA, Lasken RS. Efficient de novo assembly of single-cell bacterial genomes from short-
read data sets. Nature Biotechnology. 2011; 29, 915–921. DOI: 10.1038/nbt.1966. 
 
2.4.15. Hutchison III CA, Smith HO, Pfannkoch C, Venter JC. Cell-free cloning using φ29 DNA 
polymerase. Proceedings of the National Academy of Sciences. 2005; 102(48), 17332–17336. 
 
2.4.16. Rangan AV, McGrouther CC, Kelsoe J, Schork N, Stahl E, et al. (2018) A loop-counting 
method for covariate-corrected low-rank biclustering of gene-expression and genome-wide 
association study data. PLOS Computational Biology. 2018; 14(5): e1006105. DOI: 
10.1371/journal.pcbi.1006105 
 
2.4.17. Deshpande Y, Montanari A. Finding Hidden Cliques of Size $$\sqrt{N/e} in Nearly 
Linear Time. Foundations of Computational Mathematics. 2013 Apr 26; 15(4): 1069-1128. 
 
2.4.18. Alon N, Krivelevich M, and Sudakov B. Finding a large hidden clique in a random graph. 



 

214 
 

Random Structures and Algorithms. 1998 Dec 07; 13(3-4): 457-466. 
 
2.4.19. Shabalin AA, Weigman VJ, Perou CM, Nobel AB. Finding large average submatrices in 
high dimensional data. The Annals of Applied Statistics. 2009 May 11; 3(3): 985-1012. 
 
2.4.20. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina 
Sequence Data. Bioinformatics. 2014; 30(15): 2114-2120. 
 
2.4.21. FastQC. [ http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ]. 
 
2.4.22. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, 
Winckler W, Getz G. RNA-SeQC: RNA-seq metrics for quality control and process 
optimization. Bioinformatics. 2012; 28(11): 1530-1532. 
 
2.4.23. Baik J, Arous GB, Péché S. Phase transition of the largest eigenvalue for nonnull 
complex sample covariance matrices. The Annals of Probability. 2005; 33(5): 1643-1697. 
 
2.4.24. Chung JE, Magland JF, Barnett AH, Tolosa VM, Tooker AC, Lee KY, Shah KG, Felix 
SH, Frank LM, Greengard LF. A fully automated approach to spike sorting. Neuron. 2017; 95(6) 
1381–1394. 
 
2.4.25. Linderman GC, Rachh M, Hoskins JG, Steinerberger S, Kluger Y. Efficient Algorithms 
for t-distributed Stochastic Neighborhood Embedding. arXiv preprint: 1712.09005. 25 Dec 2017. 
 
2.4.26. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell. 
Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology. 
2019; 37(1): 38–44. DOI: 10.1038/nbt.4314. 
 
2.4.27. McInnes L, Healy J, Astels, S. hdbscan: Hierarchical density based clustering. The 
Journal of Open Source Software. 2017; 2(11): 205. DOI: 10.21105/joss.00205 
 
2.4.28. Mahalanobis PC. On the generalized distance in statistics. Proceedings of the National 
Institute of Sciences of India. 1936; 2(1): 49–55. 
 
2.4.29. Suzuki R, Shimodaira H. Pvclust: An R package for assessing the uncertainty in 
hierarchical clustering. Bioinformatics. 2006 Jun 15; 22(12): 1540–1542. DOI: 
10.1093/bioinformatics/btl117 
 
2.4.30. Mishra A, Dey DK, Chen K. Sequential co-sparse factor regression. Journal of 
Computational Graphical Statistics. 2017; 26(4): 814–825. 
 
3.2.1. Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular 
senescence. Drug Discovery Today. 2017; 22.5: 786-795. 



 

215 
 

 
3.2.2. Sebastiani P, Perls TT. The genetics of extreme longevity: Lessons from the new England 
centenarian study. Frontiers in Genetics. 2012; 3: 277.  
 
3.2.3. Kitani K, Minami C, Yamamoto T, Kanai S, Ivy GO, Carrillo MC. Pharmacological 
interventions in aging and age-associated disorders: potentials of propargylamines for human 
use. Annals of the New York Academy of Sciences. 2002 Apr; 959(1): 295-307.  
 
3.2.4. Sebastiani P, Gurinovich A, Nygaard M, Sasaki T, Sweigart B, Bae H, Andersen SL, Villa 
F, Atzmon G, Kaare C, Yasumichi A, Barzilai N, Puca A, Christiansen L, Hirose N, Perls TT. 
APOE alleles and extreme human longevity. The Journals of Gerontology: Series A. 2019 Jan; 
74(1): 44-51. DOI: 10.1093/gerona/gly174 
 
3.2.5. Sebastiani P, Solovieff N, Puca A, Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk 
JB, Myers RH, Steinberg, MH, Montano, M, Baldwin CT, Perls TT. Genetic signatures of 
exceptional longevity in humans. Science. 2010 Jul 01. DOI:10.1126/science.1190532.  
 
3.2.6. Partridge L., Deelen J, Slagboom, PE. Facing up to the global challenges of ageing. 
Nature. 2018; 561(7721): 45-56. DOI: 10.1038/s41586-018-0457-8.  
 
3.2.7. Kaya A, Ma S, Wasko B, Lee M, Kaeberlein M, Gladyshev VN. Defining molecular basis 
for longevity traits in natural yeast isolates. NPJ Aging and Mechanisms of Disease. 2015; 1(1): 
1-9.  
 
3.2.8. Uno M, Nishida E. Lifespan-regulating genes in C. elegans. NPJ aging and mechanisms of 
disease. 2016; 2(1): 1-8.  
 
3.2.9. Spencer CC, Howell CE, Wright AR, Promislow DE. Testing an ‘aging gene’ in long-
lived drosophila strains: increased longevity depends on sex and genetic background. Aging Cell. 
2003; 2(2): 123-130. 
 
3.2.10. Sahm A, Bens M, Szafranski K, Holtze S, Groth M, Görlach M, Calkhoven C, Muller C, 
Schwab M, Kraus J, Kestler HA, Cellerino A, Burda H, Hildebrandt T, Dammann P, Platzer M. 
Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS 
Genetics. 2018; 14(3): e1007272. 
 
3.2.11. Wirthlin M, Lima NCB, Guedes RLM, Soares AER, Almeida LGP, Cavaleiro NP, 
Morais GLD, Chaves AV, Howard JT, Teixeira MDM, Schneider PN, Santos FR, Schatz MC, 
Felipe MS, Miyaki CY, Alexio A, Schneider MPC, Jarvis ED, Mello CV. Parrot genomes and 
the evolution of heightened longevity and cognition. Cell. 2017 Dec 17; 28(24): 4001-4008. 
DOI: 10.1016/j.cub.2018.10.050 
 
3.2.12. Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for 



 

216 
 

eukaryotic genomes. Genome Res. 2003; 13(9): 2178‐2189. doi:10.1101/gr.1224503 
 
3.2.13. al. ASem (2020). DescTools: Tools for Descriptive Statistics. R package version 0.99.35, 
https://cran.r-project.org/package=DescTools. 
 
3.2.12. Felsenstein J. Phylogenies and the Comparative Method. The American Naturalist. 1985; 
125(1): 1-15. 
 
3.2.13. Zapala MA, Schork NJ. Statistical properties of multivariate distance matrix regression 
for high-dimensional data analysis. Frontiers in Genetics. 2012; 3:190. DOI: 
10.3389/fgene.2012.00190. 
 
3.2.14. Zapala MA, Schork NJ. Multivariate regression analysis of distance matrices for testing 
associations between gene expression patterns and related variables. Proceedings of the National 
Academy of Sciences of the United States of America. 2006 Dec; 103(51): 19430-19435. DOI: 
10.1073/pnas.0609333103. 
 
3.2.15. Nievergelt CM, Libiger O, Schork NJ. Generalized analysis of molecular variance. PLoS 
Genet. 2007; 3(4): e51. DOI: 10.1371/journal.pgen.0030051 
 
3.2.16. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann 
G, Toren D, Wang J, Fraifeld VE, de Magalhaes JP. Human ageing genomic resources: New and 
updated databases. Nucleic Acids Research. 2018; 46(D1): D1083-D1090. 
 
3.2.17. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. 
OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral 
genomes for evolutionary and functional annotations of orthologs. Nucleic acids research. 2019 
Jan 08; 47(D1): D807-D811. DOI: 10.1093/nar/gky1053 
 
3.2.18. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. Caper: 
comparative analyses of phylogenetics and evolution in R. R package version 0.5. 2012. 
 
3.2.19. Krämer A, Green J, Pollard Jr J, Tugendreich S. Causal analysis approaches in Ingenuity 
Pathway Analysis. Bioinformatics. 2014; 30(4): 523‐530. DOI:10.1093/bioinformatics/btt703 
 
3.2.20. Sneddon TP, Li P, Edmunds, SC. GigaDB: announcing the GigaScience database. 
GigaScience. 2012; 1(1): 2047-217X. DOI: 10.1186/2047-217X-1-11. 
 
3.2.21. McKinney C, Yu D, Mohr I. A new role for the cellular PABP repressor Paip2 as an 
innate restriction factor capable of limiting productive cytomegalovirus replication. Genes & 
Development. 2013; 27(16): 1809‐1820. DOI:10.1101/gad.221341.113. 
 
3.2.22. Hirata T, Fujita M, Nakamura S, Gotoh K, Motooka D, Murakami Y, Maeda Y, 



 

217 
 

Kinoshita T. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN 
retrograde transport. Molecular Biology of the Cell. 2015; 26(17): 3071-3084. 
 
3.2.23. Serrat R, Mirra, S, Figueiro-Silva J, Navas-Perez E, Quevedo M, Lopez-Domenech G, 
Podlesniy P, Ulloa F, Garcia-Fernandez J, Trullas R, Soriana E. The Armc10/SVH gene: genome 
context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial 
fragmentation. Cell Death & Disease. 2014; 5(4): e1163. DOI: 10.1038/cddis.2014.121 
 
3.2.24. Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodeling 
complex. Nature Reviews Cancer. 2011 Jul 7; 11(8): 588‐596. DOI:10.1038/nrc3091 
 
3.2.25. Alver BH, Kim KH, Lu P, Wang X, Manchester HE, Wang W, Haswell JR, Park PJ. The 
SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific 
enhancers. Nature Communications. 2017 Mar 06; 8(1): 1-10. DOI: 10.1038/ncomms14648 
 
3.2.26. Längst G, Manelyte L. Chromatin remodelers: From function to dysfunction. Genes. 
2015 Jun 12; 6(2): 299‐324. DOI:10.3390/genes6020299 
 
3.2.27. Hakim O, Resch W, Yamane A, Klein I, Kieffer-Kwon KR, Jankovic M, Oliveira T, 
Bothmer A, Voss TC, Ansarah-Sobrinho C, Mathe E, Liang G, Cobell J, Nakahashi H, Robbiani 
DF, Nussenzweig A, Hager GL, Nussenzweig MC, Casellas R. DNA damage defines sites of 
recurrent chromosomal translocations in B lymphocytes. Nature. 2012 Feb 07; 484(7392): 69-74. 
DOI: 10.1038/nature10909. 
 
3.2.28. Garschall K, Flatt T. The interplay between immunity and aging in Drosophila. 
F1000Research. 2018 Feb 07; 7:160. DOI:10.12688/f1000research.13117.1 
 
3.2.29. Bharath LP, Ip BC, Nikolajczyk BS. Adaptive immunity and metabolic health: Harmony 
becomes dissonant in obesity and aging. Comprehensive Physiology. 2017 Sep 12; 7(4): 1307-
1337. DOI: 10.1002/cphy.c160042. 
 
3.2.30. Harper JM, Min Wang, Galecki AT, Ro J, Williams JB, Miller RA. Fibroblasts from 
long-lived bird species are resistant to multiple forms of stress. Journal of Experimental Biology. 
2011; 214(11): 1902-1910; DOI: 10.1242/jeb.054643. 
 
3.2.31. Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, Roma, G. A 
comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC 
Genomics. 2017 Jun 05; 18(1): 442. DOI:10.1186/s12864-017-3827-y  
 
3.2.32. Pease J, Sooknanan R. A rapid, directional RNA-seq library preparation workflow for 
Illumina® sequencing. Nature Methods. 2012; 9(3): i–ii DOI: 10.1038/nmeth.f.355 
 
3.2.33. Ondov, BD, Treangen TJ, Melsted P, Mallonee, AB, Bergman NH, Koren S, Phillippy 



 

218 
 

AM. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology. 
2016; 17(1): 132. DOI: 10.1186/s13059-016-0997-x. 
 
3.2.34. Rubolini D, Liker A, Garamszegi LZ, Møller AP, Saino N. Using the BirdTree.org 
website to obtain robust phylogenies for avian comparative studies: A primer. Current Zoology. 
2015 Dec 01; 61(6): 959–965, DOI: 10.1093/czoolo/61.6.959 
 
3.2.35. cophenetic.phylo [ 
https://www.rdocumentation.org/packages/ape/versions/5.3/topics/cophenetic.phylo ] 
 
3.2.36. Jombart T, Dray S. Adephylo: Exploratory analyses for the phylogenetic comparative 
method. Bioinformatics. 2010; 26(15): 1-21. 
 
3.2.37. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: Rapid adapter trimming, 
identification, and read merging. BMC Research Notes. 2016 Feb 12; 9(1): 88. DOI: 
10.1186/s13104-016-1900-2. 
 
3.2.38. Bolger, AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina 
Sequence Data. Bioinformatics. 2014; 30(15): 2114-2120. 
 
3.2.39. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and 
genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology. 2019; 37(8): 907–915. 
 
3.2.40. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome 
assembly from long-read RNA-seq alignments with StringTie2. Genome Biology. 2019; 20(1): 1-
13. DOI: 10.1186/s13059-019-1910-1. 
 
3.2.41. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan 
L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, 
Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev, A. Full-length transcriptome 
assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011 May 15; 
29(7): 644‐652. DOI:10.1038/nbt.1883. 
 
3.2.42. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 
2012; 9(4): 357-359. 
 
3.2.43. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics. 2011; 12(2): 323. DOI: 10.1186/1471-2105-
12-323. 
 
3.2.44. Bairoch A, Boeckmann B, Ferro S, Gasteiger E. Swiss-Prot: Juggling between evolution 
and stability. Briefings in Bioinformatics. 2004; 5(1): 39-55. 



 

219 
 

3.2.45. Altschul, SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search 
tool. Journal of Molecular Biology. 1990; 215(3): 403-410. 
 
3.2.46. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next generation 
sequencing data. Bioinformatics. 2012; 28(23): 3150-3152. DOI: 10.1093/bioinformatics/bts565. 
 
3.2.47. Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, 
Dan McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. 
Stevens, Eduard Szoecs and Helene Wagner (2019). vegan: Community Ecology Package. R 
package version 2.5-6. https://CRAN.R-project.org/package=vegan 
 
3.2.48. Benjamini, Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 
1995; 57(1): 289-300. 
 
3.2.49. Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. R package 
version 2. 32.0. 2016 
 
3.2.50. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, 
Staines D, Derwent P, Kerhornou A, Kersey P, Flicek P. Ensembl BioMarts: A hub for data 
retrieval across taxonomic space. Database. 2011 Jul 23. DOI: 10.1093/database/bar030 
 
3.2.51. Li X. ALL: A data package. R package version 1.29.0. 2019 
 
3.2.52. Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2020). 
Rgraphviz: Provides plotting capabilities for R graph objects. R package version 2.32.0. 
 
5.1. Lasken RS. Genomic DNA amplification by the multiple displacement amplification (MDA) 
method. Biochem Soc Trans 1 April 2009; 37 (2): 450–453. DOI: 10.1042/BST0370450. 
 
5.2. Okada S, Saiwai H, Kumamaru H, Kubota K, Harada A, Yamaguchi M, Iwamoto Y, 
Ohkawa Y. Flow cytometric sorting of neuronal and glial nuclei from central nervous system 
tissue. J Cell Physiol. 2011 Feb;226(2):552-8. DOI: 10.1002/jcp.22365. 
 
5.3. Picelli S, Björklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for 
senstitive full-length transcriptome profiling in single cells. Nature Methods. 2013; 10(11): 
1096–1098. 
 
5.4. van der Poel M, Ulas T, Mizee MR, Hsiao C, Miedema SSM, Adelia, Schuurman KG, 
Helder B, Tas SW, Schultze JL, Hamann J, Huitinga I. Transcriptional profiling of human 
microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat 
Commun 10, 1139 (2019). DOI: 10.1038/s41467-019-08976-7. 
 



 

220 
 

5.5. Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, 
Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis 
FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. The Human 
Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. 
Am J Respir Cell Mol Biol. 2019 Jul;61(1):31-41. DOI: 10.1165/rcmb.2018-0416TR. 

 

 




