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EPIGRAPH

“One of the symptoms of an approaching nervous breakdown
is the belief that one's work is terribly important.”
-Bertrand Russell
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ABSTRACT OF THE DISSERTATION

Exploitation of Metadata for Molecular Genomics Studies

Jamison M McCorrison

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2020

Professor Nicholas J Schork, Chair

Professor Vikas Bansal, Co-Chair

There is a great deal of interest in analyzing very large data sets in the biomedical
sciences. This is due to the availability of high-throughput assays, such as DNA sequencing

technologies and high-resolution imaging devices, advances in data storage and high-
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performance computing, and analytic techniques rooted in artificial intelligence and machine
learning. However, many modern data sets are constructed from individual component data sets
which create issues for data harmonization and scientific integration. ‘Metadata,’ i.e., data about
the data within component data sets, can be used to facilitate integration and drawing inferences
from the combined data sets, but requires care and is sensitive to how those data can be used.
Metadata also arises in many situations in which the combination of data sets has more subtle
and nuanced aspects to it, such as in analyzing species differences in evolutionary studies, where
the species data are often collected independently with different techniques, making it important
to know what specific protocols and techniques were used in order to organize and enable
relevant comparisons and avoid batch effects, false positives, and other phenomena associated
with heterogeneous data sets. I describe the application of statistical methods in four different
contexts in which metadata are available. First, I describe an analysis involving the classification
of emotions recorded as part of a digital therapeutic implemented in smart phone app designed to
reduce stress. Meta data arise when considering the sources and settings of individual data
collections. Second, I consider an analysis relating fibroblast transcriptomes to longevity across
49 avian species, where each species has a unique genome, but only a subset of species actually
have available reference genomes. Third, I describe studies exploring variation in single cell
gene expression patterns from studies of the human brain using expression profiles generated
with different protocols and which have different quality control profiles. Fourth, I consider the
analysis of genetically-mediated drug targets for longevity in which information from different
sources is used to make more compelling and comprehensive statements of the candidacy of any
one gene for drug development. I also consider general themes about the use of metadata in

contemporary biomedical sciences and discuss areas for future research.
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INTRODUCTION

Any attempt to reliably and systematically characterize and interpret signals from large
biomedical data sets critically depends on an ability to control and accommodate different
sources of variation that could potentially impede the detection of those signals. Identifying the
sources of variation themselves may be non-trivial, since they may be associated with the
technical aspects of the collection of the data, and not necessarily of focus in the more
downstream analyses of those data. For example, the various steps in a protocol for preparing
samples for a gene expression assay which, if done incorrectly, or in different ways across a
broader set of studies, could lead to erroneous gene expression values or simply create noise that

could mask any signals in the data.

Since the collection of large data sets is often done in batches, typically involves any
number of data collection devices or groups of individuals, and possibly pursued with different
quality control standards, there is often information about the data collection process itself, or
some other aspects of the data collection process and units of observation other than the
observations themselves, that could impact the interpretation of relevant data analyses. Thus,
information about the data that are collected, i.e., ‘data about the data’, or ‘metadata’, should be
considered in relevant analyses to ensure valid and appropriate interpretation of the results. This
is particularly relevant for studies making use of high-throughput, data intensive assays like
DNA or RNA sequencing, where the information about, e.g., the flow cells used in the
sequencing reactions, the compartments in the flow cell that contain relevant sequencing reads
for each unit of observation, the technician performing the DNA preparation, etc. may all impact
the reliability of the sequencing runs. Issues arising from problems associated with phenomena

like this may be compounded further if they apply to multiple units of observation collected at
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different times. For example, if many sequencing runs are pursued and, e.g., multiplexing is used
(i.e., sequence data for a unit of observation is generated using different flow cells
simultaneously or in series), then the ‘demultiplexing’ task of recovering all the relevant
sequence data from those flow cells can exploit batch-specific meta-data that, if ignored, could
lead to unreliable results for all the relevant units of observation. In this thesis I will describe a
multi-focus review of sample-specific metadata, and the means by which disparate samples may

be compared through multivariate statistical methods.

The focus of my doctoral thesis project is to showcase specific analytical methods and
general approaches for exploiting metadata in studies involving large biomedical data sets. |
consider four different settings that involve meta-data in different contexts. My analyses suggest
that the use of meta-data can accommodate shortcomings in the experimental design of a study,
problems caused by inconsistent biological sampling, or data harmonization issues that arise in
the analysis of aggregated data sets. The first analysis setting I consider involves data collected
on individuals’ moods through a digital app designed to reduce stress by offering a choice of
meditations based on user emotional selection. Mood data is collected both prior to and after the
individual user pursues the meditation. I use analytical methods in this project to reduce the total
number of moods an individual could record, which are highly variable and numerous, and
match them to metadata about moods which were developed based on predefined, expert-opinion
groupings of moods. These methods have their roots in microbiome studies, assays of bacterial
species apparent within a targeted sample, in which the presence or lack of presence of a species
identified in microbiome studies may be evaluated as a reduced variable based on previous
characterizations of microbial species’ genes and the different phyla and clades they are

associated with. I use the mood classifications from this analysis to explore how the meditations



offered by the app impact or anticipate changes in individual user moods after repeated use of the

app.

The second analysis setting I consider involves testing the relationship between
individual transcripts measured in 49 bird species using an RNA-sequencing protocol and the
lifespan of those bird species. There are a number of thorny issues in such an analysis that
involve metadata. For example, the lifespans of the bird species come from different sources and
are based on different analyses, some involving different numbers of individual birds samples to
represent a species to determine them. In addition, not all bird species studied have reference
genomes, making the choice of which references to use for read mapping and transcript
abundance calculations complicated. We must rely on phylogenetic information about the
relationships of each query species to each bird species with a reference genome. Finally, in
classifying the transcripts into orthologous groups for direct comparisons of transcript
abundances across the species, specifications involving how to identify orthologous groups of

transcripts need to be determined.

The third analysis setting I consider involves the identification of cell types within human
neurons using a unique single cell RNA-sequencing protocol. The single cell data were generated
over a period of time in different experiments that all exhibited different quality control profiles.
Very detailed information about how each experiment was conducted, as well as metrics
capturing the quality of the data generated, were recorded and used to identify and control for
potential batch effects when the data were aggregated and analyzed collectively. As a byproduct
of my analyses, a general methodology for reducing the likelihood that single cell RNA

sequencing experiments will suffer from artifacts was developed.



The fourth and last analysis setting I consider involves evaluating the evidence that
genetic variants associated with human longevity are good drug targets as well as evidence that
current drugs hypothesized to impact longevity have genetic support — that is, that the gene
targets of those drugs harbor variations that are associated with longevity. The different data
sources associated with the information I used to address these questions are all ‘metadata’-
based’ since they merely reflect the results of different studies (e.g., genetic association studies,
pharmacologic studies exploring drug targets, etc.). I find that most of the variants associated
with longevity are not necessarily good drug targets given a lack of consensus on the
‘druggability’ in the pharmacology community and that most drugs hypothesized to influence
longevity — or shown to influence longevity in a non-human species — are not supported by

genetic information.

The individual manuscripts resulting from my research illustrate that the incorporation of
metadata into large-scale biomedical studies exposes underlying complexities in the
interpretation of the data analyses introduced by experimental protocols, ancillary data of
relevance to the primary data, and varying quality of the data that is aggregated for an analysis.
However, the use of appropriate analytical methods can overcome these complexities to a high
degree and help improves the interpretation of the results of the studies. The methods I
developed and applied are broad, and at least some aspect of them may be applied to a wide
variety of focused experimental and meta-analysis settings. As more and more data are generated
by different laboratories, under different experimental conditions, or in different yet
complementary contexts, the need to be sensitive to how metadata can be exploited will become

commonplace.



CHAPTER 1: DIGITAL THERAPEUTIC REDUCES BASELINE DEPRESSION IN TEST
POPULATION

1.1: INTRODUCTION

Low cost clinical intervention is now becoming fiscally viable through the use of digital
therapeutics, particularly as the shifting tides of FDA approval mean that these tools can be
considered as funded alternatives to research with traditional medications. [1] In this analyses,
we leverage a smart phone application, ‘Stop.Breath.Think’, and the collection of user self-
assessed qualitative status before and after a digital intervention. In this case, the app itself
introduces complexities in our collection of qualitative status because our comparable terms,
words describing human emotions, were selected via a set of guided methods (e.g. first selecting
an emoji showing 5 general emotions, then providing a non-randomized list of emotion terms
within the 5 general emotion classes). In addition, the application captures emotions in only 1-5

of 115 emotions before and after selection.

Prior emotional classification techniques have been shown previously. The Yale Mood
Meter provides an example of a 2-dimensional self-evaluation, representing correlated emotions
in a matrix format with correlated terms presented in an adjacent fashion. [2] I note prior 2-
dimensional composition rendering using the Theyer 2-d emotion model, which leverages human
response to musical input to gauge interaction with clinical emotional terms. [3] Recent
advancements in emotional classification include a 3-dimensional representation of the
emotional space that can be captured in terms of human neurochemistry. [4] Seeking to gather a
credible understanding of our user’s emotional classification before, and after, a digital
therapeutic interaction, while only comparing very small numbers of shared terms is a

complicating factor. Simple Euclidean distance would fail to accurately render the effects of rare
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emotion selection as representing particular states. Some of these rare selections could be due to

a term being nondescriptive, or the word simply being at the end of a list.

To compare rarely occurring selections, and predict whether a user, or group of users was
canonically reacting to our digital interactions in significantly correlated ways, I looked to
common methods in microbiome studies. My concurrent work in this field included the assay of
bacteria present, or not present, within the human oral- and nasalpharyngal microbiome during
the initial 24 months of life, focusing on the canonical response of infants to the Streptococcus
vaccines. Clinical insights from measurements of swings in bacterial abundance in the infant
microbiome over the first 12 months of the oralpharyngal microbiome assay were discussed in

my co-authored manuscript:

Wright MS, McCorrison J, Gomez AM, Beck E, Harkins D, Shankar J, Mounaud S, Segubre-Mercado E,
Mojica AMR, Bacay B, Nzenze SA, Kimaro SZM, Adrian P, Klugman KP, Lucero MG, Nelson KE,
Madhi S, Sutton GG, Nierman WC, Losada L. Strain Level Streptococcus Colonization Patterns
during the First Year of Life. Front Microbiol. 2017 Sep 6;8:1661. doi: 10.3389/fmicb.2017.01661.

Comparison of microbial abundances leverages sparse abundance matrices by nature of
the strongly differing compositions of bacteria identified in the healthy human gut. [5] In fact, a
common observation within populations of gut bacteria from various world-wide locations have
identified massive swings in the composition of species apparent at the genus level which can
predict human diet, geography, and health. [6,7,8] These populations have even been found to
form “enterotypes”, or groupings of canonical sets of bacterial flora which define some set of

stable co-occurring bacterial abundance ‘types’ in major populations. [9]

My experimental longitudinal nasalpharyngal analyses of infants in 2 distinct
geographical locations (Phillippines and South Africa) during the first 2 years of life (analysis

not shown) automated common methods for gut microbiome processing utilizing Bray-Curtis



distance for sample-sample distance comparison. [10] This is a method looking only at the
distance of co-occurrence, or within the small co-selections between terms within the large
sparse graph. After a series of normalization stages, I found that this method was directly
applicable to co-occurrence of emotional selections from the digital therapeutic. We further
validated with nonsupervised clustering with Principal Coordinates Analysis (PCoA) and
Permutation around Medoids (PAM) in the Ape gut microbiome used to commonly identify
these types of naturally co-occurring emotional selections. [11, PAM] In much the way that
metadata (e.g. time since pneumococcal vaccination (PCV)) can be applied to predict the
disappearance of bacteria (e.g. lack of Streptococcus pneumoniae), we hypothesized that we
could apply our metadata (e.g. all users; emotional state co-selection) to determine how well we
could predict a different clinical outcome (e.g. progression away from a baseline anxious or

depressed state.)



1.2: ASSOCIATION BETWEEN IMPROVEMENT IN BASELINE MOOD AND LONG-
TERM USE OF A MINDFULNESS AND MEDITATION APP: OBSERVATIONAL STUDY

See published work, co-lead-authored* with Argus Athanas, Ph.D.c., reproduced in this chapter:

Athanas AJ*, McCorrison JM*, Smalley S, Price J, Grady J, Campistron J, Schork NJ. Association
Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and Meditation
App: Observational Study. JMIR Ment Health. 2019 May 8;6(5):¢12617. doi: 10.2196/12617.
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Abstract

Background: The use of smartphone apps to monitor and deliver health care guidance and interventions has received considerable
attention recently, particularly with regard to behavioral disorders, stress relicf, negative cmotional state, and poor mood in general,
Unfortunately, there is little research investigating the long-term and repeated effects of apps meant to impact mood and emotional
slate.

Objective: We aimed to investigate the cffects of both immediate point-of-intervention and long-term usc (ic, at lcast 10
engagements) of a guided meditation and mindfulness smartphone app on users’ emotional states. Data were collected from users
of a mobile phone app developed by the company Stop, Breathe & Think (SBT) for achieving emotional wellness. To explore
the long-term effects, we assessed changes in the users’ basal emotional state before they completed an activity (eg. a guided
meditation). We also assessed the immediate effects of the app on users’ emotional states from preactivity to postactivity.

Methods: The SBT app collects information on the emotional slate of the user belore and after engagement in one or several
mediation and mindfulness activities. These activities are recommended and provided by the app based on user input. We considered
data on over 120,000 users of the app who collectively engaged in over 5.5 million sessions with the app during an approximate
2-ycar period. We focused our analysis on users who had at Ieast 10 engagements with the app over an average of 6 months. We
explored the changes in the emotional well-being of individuals with different emotional states at the time of their initial engagement
with the app using mixed-eflects models. In the process, we compared 2 different methods of classifying emotional states: (1) an
expert-defined a priori mood classification and (2) an empirically driven cluster-based classification.

Results: We found that among long-term users of the app. there was an association between the length of use and a positive
change in basal emotional state (4% positive mood increase on a 2-point scale every 10 sessions). We also found that individuals
who were anxious or depressed tended to have a favorable long-term emotional transition (eg, from a sad emotional state to a
happier emotional state) after using the app for an extended period (the odds ratio for achieving a positive emotional state was
3.2 and 6.2 for anxious and depressed individuals, respectively, comparcd with uscrs with fewer scssions).
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Conclusions: Our analyses provide evidence for an association between both immediate and long-term usc of an app providing

guided meditations and improvements in the emotional state.

(JMIR Ment Health 2019;6(5):¢12617) doi:10.2196/12617

KEYWORDS
mental health; smartphone: emotional well-being; mindfulness

introduction

Background

Behavioral conditions. neuropsychiatric diseases, and poor
general mental health are seen as major contributors to
morbidity, mortality, and lost productivity on a global scale.
However, these factors are often overlooked in discussions about
the current state of health care, which tend to focus on physical
well-being [1]. Many studies suggest that mental health can
play a large role in physical health, recovery from disease, and
ultimately productivity and, therefore, should receive greater
attention |2-4]. Unfortunately, there are serious questions about
how mental health can be promoted and, in instances when it
is called for, how relevant interventions can be prescribed and
deployed efficiently in a cost-effective manner [5-7]. This is
especially true given the number of people who may actually
benefit from such interventions [8]. In light of this, there is
enthusiasm for the development of smartphone apps that can
not only monitor an individual’s health—both physical and
mental—but also deliver content designed to help coach them
through difficult times or provide a needed intervention. In fact.
many smariphone apps have been developed, or are under
development. to aid in health care via, for example, image-based
diagnostics, glucose monitoring for diabetes, and physical fitness
promotion [9,10]. For mcntal hcalth management and
intervention, there is growing enthusiasm for the development
of smartphone platforms that provide guidance on mindfulness
and meditation as a way of relieving stress and promoting mental
health and well-being. Many of the resulting platforms have
been or are undergoing testing in clinical studies [11-15].

The use of mobile phone apps in combating or mediating
behavioral conditions, stress. negative emotional states, and
elevating mood is also consistent with directions that public
health and regulatory officials are considering, In fact, evidence
is mounting from clinical trials showing that smartphonc apps
can be elTective in a variely of seltings. Agencies such as the
US Food and Drug Administration (FDA) have created, and in
instances passed, legislation allowing the filing and approval
of mobilc health apps as approved health tcchnologics on the
same level as in vitro diagnostics and drugs. Pear Therapeutics
was one of he [irst companies to have a smartphone app lor
addiction approved for use by the FDA in 2016 [16]. Many
other commercial and academic groups are developing
smartphone apps for a wide varicty of conditions that go beyond
the simple direct-lo-consumer markel by seeking regulatory
approval for their use in clinical contexts [17-19]. Unfortunately,
not enough time has elapsed since the introduction of
smartphone-based intervention apps to provide insight into their
long-term repeated effects as well as their cffects in real-world
seltings (ie, outside of clinical trials) [20-22].

Objectives

Stop, Breathe & Think (SBT) has developed a smartphone app
that provides guided meditations and mindfulness activities (o
promote self-awareness coaching to interested users. As noted,
mindfulness and meditation have been shown to improve affect
and mood and promote healthy thought pattcrns [23.24]. The
SBT app prompts users before and after they are guided through
meditation and mindfulness activities to provide an emotional.
mental, and physical check-in. thereby allowing an assessment
of an individual user’s emotional state and mood pre- versus
postactivity in rcal time. As rcpeated uscs of the app by SBT
users are archived, longitudinal information on its users with
regard Lo their long-lerm engagement with the app is retained.
This allows further analysis of the influence of repeated
engagements with the app on an individual user’s basal mood
over time in real-world scttings. We pursued such an analysis
using data from SBT users who had at least 10 engagements
with the app. The SBT app allows users o choose from more
than 100 unique emotions to reflect their emotional state at the
time they usc the app. These emotions cover a range of human
cmotions including anger, remorse, anxicty, calmness, and
enthusiasm. Users are guided through meditations that they can
choose from based on an algorithin developed by SBT. We
focused our analyses on the baseline (or basal) emotional state
of a uscr. before he or she cngaged in a guided meditation or
mindfulness activity and were primarily interested in the
long-term and repeated use effects of the SBT app on this
baseline emotional state. Essentially, we wanted to ask the
question if the continued use of the app lifted the spirits of the
uscr over time. We were particularly interested in uscrs who
tended to pick emotions associated with depression and anxiety
when engaging with the app before meditating.

Methods

The Basic Stop, Breathe & Think App

The SBT app is a multiplatform (ic, i0S, Android, and Alexa)
app designed to guide users through meditations and mindfulness
activilies o alleviate slress, anxiely, and depression and improve
the sense of well-being. Upon opening the app, a user can
participate in an optional 10-second reflection period. After this
optional reflection period, users describe their current mood,
emotional state. and physical health by choosing from a number
ol emotions: the SBT app then provides suggestions for specific
meditation and mindfulness activities. The user can choose from
among the suggested activities after being asked to endorse up
to 5 different characterizations of their mood and cmotional
slate. A user can choose nol to provide any input regarding their
mood, emotional slate. and physical health and simply engage
in an activity.

10
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Figure 1. Stop. Breathe & Think user interface and stages of interaction with the app. Users are provided several ways in which they can record their
current emolional state both pre- and postactivity. These emotional check-ins are optional, but the intuitive and simple selection process makes it easy

for most users to enter at least some emotional status information.

Step 0. Begin session with optional
10-second reflection.

=3

Step 4. Option 1o select another activity
and return 1o step 3 or continue

Step 3. Select an activity, and follow
prompts.

Figure 1 provides a schematic of an individual session and the
corresponding points where user information is collected.

It should be understood that all information collected with the
SBT app is volunteered by users as stated and defined in the
SBT user licensing agreement and privacy policy. In addition,
for purposes of our data analyscs, all the data we obtained from
SBT were anonymized and put into a Health Insurance
Portability and Accountability Act (HIPAA)-compliant format
such that users could not be reidentified. Functionality and
delivery of the SBT app and service varics from device and
platform implementation (eg, Alexa. Android, and Web
browser). Therelore, lo avoid batch ellects, we focused on users
who were exclusively on an iOS platform and started using the
app after SBT provided its last major version of the app
(05/01/2016). Users had to have completed at lcast 10 scssions
or engagements with the app, with a minimum of 6 of thosec
sessions including pre- and postactivily emotion selections. The
SBT app content is in English and to avoid translation errors
and alternative interpretations of the language used in the SBT
app. wc restricted our analyses to individuals from native
English-speaking countries: the United States, United Kingdom,
Canada, and Australia. An additional filter was used, restricting
users’ ages to between 12 and 100 years.

Emotional Check-ins Pre- and Postactivity Score

The SBT app allows the user to endorse between 1 and 35
cmotional statcs out of a possiblc 115, beforc and after
engagement in a guided meditation or mindfulness activity (or
series of activities il they choose 1o engage in more than 1
activity during a session). This emotional check-in involves
selecting an initial emoticon and then choosing from a list of
cmotions within subgroups of terms that closest characterize
the user’s current emotional state. These 115 emotions were
chosen for the app based on inlernal SBT research and user
requests. All emotions were classified as positive, neutral, or
negative and given coresponding scores of 1, 0, and —I,
respectively, All ecmotions and their corresponding scores arc
provided in Multimedia Appendix 1. As users can select up to
5 emotions, an average emotional score was calculated for both
pre- and postactivity and standardized to a range from —1 (all

)
Step 1. Select physical and then mental
state on 5-point scale. Option 10 skip.

K

—

Step 2. Select up 1o 5 emotions from five
categories. Option to skip

Step 5. Optional mental, physical, and
‘ emotional postsession check in

ncgative cmotions) to 1 (all positive cmotions). Our analysis
explored (1) trends in the preaclivily emotional score over
repeated uses of the app while accounting [or the covariates as
well as serial correlation between sessions and (2) trends in
changes of the emotional scores before and after an activity over
repeated uscs of the app.

Clustering of Emotions

In addition to treating the preactivity emotion scores and changes
in emotion scores pre- and postactivity as dependent variables
and time, sex, and age covariates as independent variables. we
also explored the patterns among the emotion endorsements to
scc if there was cvidence for obvious clusters of emotions that
could reflect the same general emotional state. We leveraged
principal coordinates analysis (PCoA) and the nonsupervised
clustering technique. Partitioning Around Medoids (PAM), for
these analyses [25]. We pursued these analyses as it is arguable
that some uscrs may sce a subsct of the cmotions as synonymous
and hence only choose one among many possible choices to
describe their emoltional state al the lime o avoid redundancy.
whereas other users might see those same subsets of emotions
as complementary and reflecting different aspects of their mood.
In addition, other users may preferentially sclect cmotions based
on their location in the selection list or choose a set of rare
emotions that are infrequently selected by other users (o
differentiate their emotions.

The distance between the emotions was calculated using the
Bray-Curtis distance measure [26]. To determine the optimal
number of nonsupervised emotion clusters in 2-dimensional
PCoA component space, we selected the number of clusters
with the largest silhouette score. Once we identified the optimal
number of clusters, emotions were then assigned to onc of the
identified clusters.

Anindividual’s emotional status was also summarized in terms
of the relative distances (using the Euclidean distance measure)
between pre- and postactivity states. The distances between an
individual’s emotional status and the medoid of the closest
associated emotion cluster were calculated as well. Emotions
were labeled with clinical categories, associating each of them
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with cither anxicty. depression, anger, or happiness (Multimedia
Appendix 1). Ultimately, using distances between emotional
states and emotional clusters allowed us to build models relating
the number of times users engaged with the app to gross changes
in emotional states defined by the emotion clusters.

Statistical Analyses to Identify Long-Term Changes
in Emotional State

To assess the effects of the continued use of the app on the
preactivity cmotional state, we used Linear Mixed-Effects
(LME) modecls and Generalized Lincar Models (GLMs) as
implemented in the Ime4 package in R [27]. These analysis
{echniques can accommodale serial correlations among emotions
over time and also account for both fixed (eg, sex) and random
cffects (cg, variation in preactivity emotional state or the degree
to which use of the app changed the preactivity ecmotional state
over lime). We pursued dillerent analyses (o evaluale changes
in the preactivity emotional state over time, including a model
that considered the effect of the emotional states possessed by
individuals at their first engagement with the app. These analyses
considered both the emotion scores as the dependent variables
as well as the use of the emotions as defined by (he cluster
analysis clinical labels as dependent variables. We also tested
the effect of repeated uses of the app on the change in the
cmotional statc pre- to postactivity by treating the ratio of pre-
1o postemotion score as a dependent variable.

We included several covariates in our analyses and tested them
for their effects on the emotional state: session index (ie, 1 as
the first use and 2 as the second use—which captures the
repeated use of the app), gender. age, country of origin,
subscription status, and whether the user remained anonymous
(ie. did not fill out information in his or her account—which
may indicate a fake or disengaged user). As there is large
variability in the number of complcted scssions and the
distribution of the number of uses of the app per individual has
an extreme right skew, we applied a log,, transformation to the
scssion index variable. This transformation markedly improved
the normality of the session index as a variable (data not shown),
LME models were fit, and the leatures associaled with the
preactivity emotional state as the dependent variable were

Athanas et al

sclected using a forward stepwise sclection procedure based on
the Akaike Information Criteria. Similar models were fit with
the pre- to postactivity emotional state ratio as the dependent
variable. GLMs were fit to the data when changes in emotion
categories (ic, based on clinical or cluster analysis labels) were
taken as the dependent variable.

Results

Defining the Dataset

After all the duration, quality, platform, and country filters were
applied, 13,393 users remained (10,082 females, 2187 males,
and 1124 undeclared sex). The average age of the users was
32,3 (SD 13.5) years, with 31.7 (SD 13.3) years for femalcs,
34.6 (SD 13.4) years for males, and 33.3 (SD 15.0) years for
undeclared participants. Collectively, the users completed
569.961 sessions with the app, with 302,514 of these sessions
having emotional check-in data, with an average of 42 6 sessions
and 22.6 cmotional check-ins per user. Multimedia Appendix
2 provides a histogram depicting the distribution of the length
of time users engaged with the app. Multimedia Appendix 3
shows average period between app uses given the total length
of engagement for users.

Cluster Analysis of the Emotions

The use of the silhouctte scores based on the PCoA and PAM
analyses suggested that there were likely 8 clusters of cmotions
[28]. As noted. the relative distances between pre- and
postactivity emotional states and the distances between each
user’s emotional state and the closest associated emotion cluster
were calculated. In addition, cach of the 115 emotions that could
be endorsed was assigned to one of the emotion clusters (see
Multimedia Appendix 1). Using these cluster labels, we
calculated the mean orientation of each cluster and the relative
distance of each individual’s emotional scores both pre- and
postactivity from thesc means. These distances were compared
with the other emotion scores we calculated and were highly
correlated with them (Figure 2). Figure 3 provides a graphical
depiction of the results of the clustering using the first 2
principal coordinates obtained from our analyses.
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Figure 2. Average emotional score versus cluster centroid distances correlation matrix represented as a heat map. As an example for interpreting the
numbers in the matrix, a —0.90 correlation between the preactivity emotion score (x-axis Average Pre Emo Score label) and positivity cluster (y-axis
Dist positivity label ) shows that users who score higher on the preactivity emotional score had a shorter distance of their selected emotions to the centroid
of the positive emotion cluster. Note that labels with Dist reflect distance measures derived from the cluster analyses (eg, Dist Anxiety reflects the
distance of a user’s emotional score from the anxiety cluster mean) and Emo reflects a specified emotional cluster.
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Figure 3. Emotion clustering using both pre- and postactivity emotion endorsements. The points in the plot reflect positions in the first 2 principal
components defined by the Bray-Curlis distance between each pre- and postactivity emotional selection. The 8 circular ¢luslers encompassing the
emotions were defined by a permutation around medoids analysis technique. in which 8§ clusters maximized the average cluster silhouette scores. Cluster
boundaries are drawn on the smallest region including all underlying emotions. Emotions are labeled by clinical association such that terms clinically

associated with anger are in red and pink, depression in blue. anxiety in purple, and happiness in green.
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Mixed-Effects Modeling: Long-Term Use Effect on
Preactivity Mood and Emotional State

Using the average preactivity emotional scores, as well as the
cluster-based distance measures. as dependent variables, we fit
lincar-mixed models with session. as well as the important
covariates, as independent variables. while accommodating
serial correlation emotions. The resulls using the average
preactivity emotional state scores suggest that a statistically
significant relationship exists between the number of uses of
the app (ic, session index) and the preactivity cmotional state,
with an elevation in mood (ie, increase in positive emotions)
occurring with repeated use of the app. Adjusting for scale,
users experience a 2% improvement in mood after their first
session, a 4% increase after their 10th session. and a 6% increase
after their 100th scssion. The clinical relevance of this
improvement in mood needs to be investigated further. We
found that males have an average 2.5% higher (improved)
preactivity mood than females and that older users have a more

positive mood than younger users. Additional analyses suggested
that repeated use of the app resulted in specific improvements
in levels of anxicty and depression. After the first 10 scssions
with the app—which on average corresponded to a 63.4-day
period—users were 82% more likely o report no anxious
emotions and 28% more likely to report no depressive emotions.
This effect was even more pronounced when we only examined
uscrs whosc first cmotion endorsement reflected anxicty (440%)
or depression (1050%). Figure 4 depicts the effect size and
slatistical significance of the estimated regression coefficients
for the analysis models with the average emotional score in the
left panels and cluster-based emotion similarity scores in the
right pancls. The statistical significancc (ic. P values) were
calculated using a Wald-Z statistic approximation. Models fit
using a subset of users who reported anxious or depressed
emotions in their first session with the app are labeled as primary
models. The session index is consistently associated with
improvements in mood, suggesting, again, that repeated usc of
the app positively impacts mood.
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Figure 4. Linear mixed-effects regression coefficient estimates, their SEs, and P values (<.001%%* < 01** and <.05*) for models with the preactivity
emotional state as the dependent variable. Analyses with the emotion scoring method as the dependent variable are on the left panels and analyses using
distances from clustering as the dependent variable are on the right panels. Generalized l.inear Model logit regression models were used with a binary
dependent variable indicating if the emotion terms endorsed at a session reflected anxiety (middle panels) or reflected depression (bottom panels).
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Mixed-Effects Modeling: Pre- Versus Postactivity
Mood or Emotional State

We also fit models that considered the ratio of preactivily (o
postactivity emotional scores as the dependent variable. Figure
5 plots the regression coefficients resulting from the fits of these
models with the ratio of average cmotional score pre- to

Fixed Effects for Depression Distance Model
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postactivity as the dependent variable (top panel) and the ratio
of the distances between the emotions based on the clustering
(bottom panel). The results suggest that repeated use of the app
leads lo increases in improvement of the mood/emotional state
achieved through a meditation or mindfulness activity—or rather
that the activitics seem to lead to larger improvements in mood
as the user has more engagements with the app.
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Figure 5. Linear mixed-effects regression coefficient estimates, their SEs and P values (<.001%%*_ <. 01**_ and <.05*) for models with pre- to postactivity
change in the emotional state as the dependent variable. An analysis with the standardized change in emotion score pre- to postactivity as the dependent
wvariable is reflected in the top panel. and proximity to the positive emotional clusters as the dependent variable is reflected in the bottom panel
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Discussion

Principal Findings

Qur analyses show that repeated engagements with the SBT
app are associaled with an improvement in users’ emotional
states over time. In the absence of a randomized control trial,
it is difficult to say with certainty that there is a direct causal
rclationship between the use of the SBT app and cmotional
slate; however. given (he large diverse sample size, we believe
that the impact of unmeasured covariates on our results (such
as external events in the users’ lives) is likely to be small,
although potential biases in the users of the app may cxist. The
cffect we observed is more pronounced for users who often
endorse anxiely or depression when capturing their emotional
state at their initial uses. We also found that age and sex
covariates are associated with the basal mood or emotional state.
Ultimately, our analyses suggest the possibility that guided
meditations and mindfulness activitics have the potential to be
elfective ways of reducing anxiety, depression, and stress and
ultimately elevating mood. although the ultimate clinical
significance of the improvements in the emotional state that we
obscrved needs to be explored, Our analyses did reveal other
interesting phenomena. For example, although a minority in
our study, males tended to have higher baseline emotional scores
and responded better to the SBT app than females. The age of
a user was also found to be a significant correlate of the basal
cmotional state, with older uscrs generally endorsing more
positive emotions.

Limitations of the Study

Qur analyses arc not without limitations, the first and foremost
being that there is no control group and comparator app. This
makes it difficult to definitively state that guided meditation
and mindfulness activities are causally related or responsible
for the increase in baseline mood or emotional state over time.
However, given the sample size and magnitude of the effect.
the significant change in cmotional state after immediate and
prolonged use of the app suggests that il has polential as an
intervention. Another limitation is that all the information we
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analyzed was sclf-reported without any oversight by a third
party. There could be users who did not follow instructions and
entered erroneous emotions to expedite engagement with the
meditations. Many of the individuals we did include in our
analyses did not record emotions for each and every one of their
sessions, resulting in many incompletc observations. Finally, a
potential limitation with our analyses is that there could have
beena heavy selection bias among the individuals using the app
in the sense that they were motivated enough to download it
and use it. Thus, this may be an indication that they could be
predisposcd to responding positively to the app.

Broad Emotional State Transitions

Our usc of the emotion clusters and similarity scoring of
emotions based on our cluster analyses of those emotions
allowed us to explore how often individual users transitioned
from one broad set of analogous and almost synonymous
cmotions to another. On the basis of thesc analyscs, we found
evidence that, in general, individual users’ emotional slales
move from negative to positive over repeated uses of the app.
We find that anxiety-prone and more depressed individuals
benefit from the app more than others. These findings, as with
the analyses, need to be verified in more controlled settings.,
such as randomized control trials, but again suggest that there
is promise for the app and related apps in clinical and public
health settings.

Future Directions

There are a number of questions thal deserve atlention beyond
those that we addressed with our data. For example, the number
of uses of the app may not reflect the total length of time the
app was uscd (cg, a uscr could cngage with the app intenscly
over a short period of time or stretch their use out over a longer
period of time). Assessing the impact of the number of uses
versus length of time on outcomes could provide a more detailed
insight into the benefits of the app. In addition. it would be good
to scc if a companion study designed cspecially for adolescent
populations also has a positive effect on their emotions [29]. In
addition. special clinical populations may benefit ftom the app
(eg. clinically depressed individuals and individuals with
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addictions). It would be of value to explore analyscs that focus
on the mmpact of large-scale social siressors (eg. school
shootings. national election results. and natural disasters) on
the use of the app as well as its effects on mood in the wake of
stress-inducing cvents. Geolocation data on uscrs could better

Athanas et al

statc as well as identifying subgroups of individuals that appear
Lo respond best lo particular aclivities.

As more and more attention is given to the delivery of health
care and health maintenance strategies through devices such as
smartphones, robots, and telemedicine communications, greater

define such exposures to social stressors should they be location
specific (eg, a natural disaster in a particular state). Finally, as
emphasized, it would be ideal to test the utility of the app in
bona fide clinical trials to determine which aspects of the app
arc causally rclated to improvements in mood and cmotional

sensitivity to the nuanced effects of these devices should
molivale studies of them that are pursued in a comprehensive
manner. Such sensitivity and more elaborate studies could also
lead to more efficient and sophisticated deployment of these
devices and help combat the need for expensive and logistically
challenging visits to health care providers.
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Multimedia Appendix 1
Assignment and scores for Stop, Breathe & Think selectable emotions.

|XLSX File (Microsoft Excel File). 11KB - mental_v6i5e12617_appl.xlsx |

Multimedia Appendix 2

Histogram of time from first to last recorded session for users with at least ten sessions and six emotional check-ins. On average
users parlicipated in sessions with the app over a period of 180 days. wilh a median use of 119 days, and maximum of 702 days.
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Multimedia Appendix 3

Average user period between sessions. On average a user will interact with the app at least once every 6.34 days. and the majority
of users complete at Icast two scssions per month.
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1.3: FUTURE WORK

Interpreting our data using the Bray-Curtis distance matrix and using our principal
components to represent variance in our analysis space is complicated. Understanding users in
the context of the recurrent pre- and post-intervention ‘location’ in the ‘emotional vacuum’
defined by previous observations, we next seek to predict user outcome trajectories given their
pre-mediation selection. Correlating emotions with other clinical outcomes or longitudinal events

is the subject of my co-authored paper (analysis not shown):

Athanas, AJ, McCorrison J, Campistron J, Bender N, Price J, Smalley S, Schork NJ. Driving
Factors in Emotional State Transitions with Use of Mindfulness and Mediation App:
Observational Study. (Current title, analysis not shown.)

This work is applicable to many fields and the methods discussed can take on many
alternate delivery mechanisms and applications. Some social media applications are commonly
utilized to track these types of co-selection terms, and associated metadata with interventions
(e.g. ads) to produce an intended outcome (e.g. a user clicking on those ads). The same tools are
widely applicable as larger data sets become available in microbiome assays, studies of
emotional classification, studies of digital therapeutic response, and other analyses requiring
comparison of many samples with a sparse, but widely co-occurring, sample co-selection

distance matrix.
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CHAPTER 2: ISOLATING AND CHARACTERIZING NOVEL NEURONAL CELL TYPES
IN THE HUMAN FRONTAL CORTEX

2.1. INTRODUCTION

The ability to sequence individual cells is contributing to a revolution in the
understanding of bacterial cell types that cannot be cultured and therefore previously could not
be amplified to sufficient protein abundances for sequencing. [1] Prior advances in single cell
research have primarily focused on the advancement of the understanding of the human
microbiome by, for example, allowing individual isolation of non-culture-amplifying species
composing greater than 75% of the gut composition. [2] Because single cell amplification is
commonly used when low biomass environmental samples are collected, exponential variation in
coverage is inherent to single cell amplification protocols. [3] The severity and contribution of
this bias to resulting informatics analysis is understood but normalization methodologies have

been limited to the context of reference-free bacterial assembly. [4,5,6]

Previous research that worked from the roadmap of classically studied single cell
bacterial models was often slow paced and time-consuming because of its dependence on low-
throughput lab methodologies and multiple rounds of validation with existing bacterial models.
In recent years, reductions of MDA reaction volume improved the specificity of template
amplification and reduced bias [7,8]. More recent methods have been refined for high throughput
handling of individual cells including “sensitive, highly-multiplexed single cell RNA-seq” with
SmartSeq?2 [9]. The resulting landscape allows for the rapid amplification and sequencing of an
incredible number of poorly studied bacteria as well as individual cells isolated from eukaryotes.
However, there is not currently a well-documented understanding of the bias contributions to

transcriptomic analysis in either space. This project approaches the ability to use single cell
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amplification methods to both detect expression of transcripts within tissue types in the human
brain and quantify the bias contributions inherent to individual sample preparations, lab

methodologies, and informatics protocols.

I collaborated with a team of researchers to collect individual cells across specific
geographic regions of the human brain. We used these cells to better understand of variation
across known cell types, predict or define new cell types, and define their canonical expression
patterns. This work is a collaborative effort with the Allen Institute of Brain Science (AIBS) and
is an extension of their work transcriptomic profiling of cell specificity within pools of whole
cells isolated from each roughly-defined geographic region of the human brain (Figure 8D). [10]
The AIBS group had already placed a large effort in understanding diversity between tissue types
in mice as part of the Mouse Genome Atlas which was leveraged to validate candidate cell types

using pre-defined mouse neural marker genes. [11]

Neurons are highly interconnected, and considerable damage must be done to their
extensions to separate them by physical means such as laser-capture micro dissection. Likewise,
dispersion of cells by proteolytic degradation of surface proteins places the cells under stress and
substantially alters gene expression. The isolation of small quantities of RNA from within the
nucleus frequently results in low yield or biases within amplification and interpretation of
downstream sequencing. It has previously been shown in mice that single cell RNA-seq (scRNA-
seq) analysis is a successful tool for elucidation of sub-types within cells in the mouse cortex

[12,13] despite these complexities.

From two post-mortem human donors, collaborators have collected samples from
different layers of the cerebral cortex. One such layer-specific extraction was performed on

tissue related to development in dementia in apes and humans [14] and another within the
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temporal cortex, associated with visual and audible comprehension (Tamas, Univ. Szegad,
Hungary). [15,16] This latter layer was selected in the hopes of collecting rare GABA-ergic
neurons present in the tissue. Analysis was separated into 1) three batches of validation studies,
totaling 720 samples, during which lab protocols were refined for publication and 2) the
preparation of approximately 2,000 single nuclei single neuron samples using the idealized
production pipeline. Preliminary quality control evaluation during the “validation studies”
revealed a lack of correlation between standard RNA quality metrics for whole cell projects. The
RNA Identity Number (RIN), an evaluation of the ratio of 28s and 18s peaks showed an
unexpected lack of correlation to the successful extraction of non-fragmented (full length) cDNA
after amplification. Likewise, correlations between quantitative PCR (qPCR) for the expression
of common housekeeping genes (ActB, GAPDH) and Picogreen values (denoting successful

generation of dsSDNA) appeared to be batch-specific.

The use of both wet lab and dry lab metrics for the production of a QC classification
model using random forest machine learning appears to be an effective objective strategy for the
quality control of low input, highly-amplified samples, providing further insights into the data

features that are most useful for identifying quality outliers.

Aevermann B, McCorrison J, Venepally P, Hodge R, Bakken T, Miller J, Novotny M, Tran DN,
Diezfuertes F, Christiansen L, Zhang F, Steemers F, Lasken RS, Lein ED, Schork N,
Scheuermann RH. Production of a preliminary quality control pipeline for single nuclei
RNA-Seq and its application in the analysis of cell type diversity in the post-mortem
human brain neocortex. Pac Symp Biocomput. 2017;22:564-575. doi:
10.1142/9789813207813 0052.

We found that there appear to be at least two classes of failed samples, and that the

metrics useful in identifying each are different. Failed samples with a second peak in the

24



percentage of GC content plot apparently due to reads derived from the ERCC spike-in control
are identified by metrics like the percentage of exact duplicates and percentage of unique reads,
presumably due to the fact that a relatively small number of transcripts derived from the ERCC
control are responsible for a significant proportion of the total reads obtained from those

samples.

The successful amplification of unsheared ssRNA, as represented by bioAnalyzer traces,
was best represented by the 3’ bias within alignments to all highly detected transcripts (Figure 6).
Partially degraded RNA (from freezing, RN Ase degradation, etc.) resulted in deeper sequencing
coverage for the 3° end of transcripts only when degraded products contain the polyA tail
required for amplification. (Figure 6) 3’ bias has now been adopted as a simple pass/fail metric
as an easy informatics control to quantify lab-based amplification failures. Validation of the
protocol and initial summaries of visual interpretations of the results were published in Nature.
[17,18] Our standard laboratory workflow for single nuclei RNA-seq, constructed in tandem with
a laboratory team to present optimized performance in our quality analyses, is summarized in the

following chapter.
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2.2. . USING SINGLE NUCLEI FOR RNA-SEQ TO CAPTURE THE TRANSCRIPTOME OF
POSTMORTEM NEURONS

See published work, reproduced in this chapter:

Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S,
Erwin JA, Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison J, Aevermann BD, Fuertes FD,
Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, Gage FH, Lasken RS. Using single nuclei
for RNA-seq to capture the transcriptome of postmortem neurons. Nature Protocols. 2016
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A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA
libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for
<DNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for
RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome, We isolate
nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem
human brain tissue stored at -80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows
investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs.
By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing.

INTRODUCTION

Methods for carrying out RNA-seq from single cellsl— are dra-
matically affecting many research fields, including the study of
cellular development, the identification of cell types and states,
the exploration of human disease and the development of stem
cell technologies. The gene expression repertoires of individual
cell types are revealed as opposed to the averaging of all transcrip-
tomes obtained from bulk tissue. However, cells of the central
nervous system (CNS) have been under-studied, partly because
of the difficulty of isolating intact whole cells. Neurons are highly
interconnected, and considerable damage must be done to their
extensions to separate them by physical means such as laser-
capture microdissection. An intracellular tagging method called
TIVA uses RNA extracted from single cells, but it is limited to
small numbers of cells. Extraction of cytoplasmic content by a
glass microcapillary”® or by laser-capture microdissection? is of
low throughput. An alternative, high-throughput approach is to
disperse the cells and to isolate them by FACS. This approach has
been recently reported for neurons isolated from brain tissue!®!1.
However, dispersion of cells by proteolytic degradation of surface
proteins places the cells under stress, which substantially alters
gene expression!Z,

We have developed an alternative approach that takes advantage
of the low levels of mRNA contained in the nucleus of the celll3,
and it avoids harsh treatment that would perturb gene expres-
sion. Through extensive comparisons of nuclear and cellular
transcriptomes, we demonstrated that nuclei can substitute for
whole cells in most RNA-seq applications'3, For the majority of
genes, nuclei yielded expression signatures that were very similar
to those obtained from whole-cell controls. Furthermore, some
transcripts that are known to be enriched in the nucleus on the
basis of earlier bulk RNA studies!4!7 were also confirmed to be
enriched in single nuclei, adding confidence to the accuracy of

data. Here we provide a detailed protocol based on our previously
published method!?® for RNA-seq using nuclei from brain tissue
or cells, which can be used to obtain global transcriptomes from
neurons, glia and other cell types. Although it is described here
for brain tissue, it should also be applicable to any tissue type in
which dissociation of whole cells would require harsh treatments
and the consequent alteration of the transcriptome.

Development of the protocol

Many methods are available for the isolation of nuclei; how-
ever, the literature spans decades, and it typically lacks detailed
information on the quality of RNA obtained, focusing instead
on accessing intact DNA for chromatin preparation or for assay-
ing the nuclear protein content!8. We therefore developed an
approach to meet the need for isolating individual nuclei for
use in RNA analysis, which we have successfully applied to cul-
tured neuroprogenitor cells and fresh mouse brain tissue!?, The
protocol detailed here includes two main modifications to the
published method. First, we now consider cleanup by sucrose-
iodixanol gradient centrifugation!® to be necessary only if cell
debris is likely to interfere with immunostaining; it is therefore
included in the PROCEDURE as an optional step with the default
approach to subject the filtered crude homogenate directly to
FACS!. Second, we now use Smart-seq2 for cDNA synthesis?
(instead of the method by Tang et al.?), which is reported to
improve synthesis of full-length cDNA via a template switching
mechanism for synthesis of the second-strand cDNA%.

Overview of the procedure

Our experimental workflow (Fig. 1) begins with tissue
homogenization in the presence of a detergent to lyse the cell
membrane, determination of the number of nuclei obtained
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Figure 1 | Single nuclei isolation experimental workflow. Dounce homogenization in lysis buffer is used to disrupt cellular membranes for fresh or frozen
tissue (a). Nuclei quality and yield is determined by hemocytometer count (b). (c-e) Nuclei and cellular debris are filtered for optional purification and
immunostaining steps (density gradient centrifugation (€) or staining for neuronal enrichment (d}), or for FACS sorting (e). (f,g) Subsequently, lysis of

the nuclei and cDNA synthesis is carried out using either published methods3 or commercial kits (SMARTer, Clontech) (f), and it is quality-controlled for

size distribution using a Bioanalyzer (Agilent) and the presence of several transcripts by gPCR (g). (h) Sequencing and data analysis confirm single nucleus
transcriptome capture. Step numbers indicate the corresponding step numbers in the PROCEDURE section. Graphs in g and h are for illustrative purposes only.

with a hemocytometer (Steps 1-5) and FACS (Steps 13-18). The
nuclei are lysed and ¢cDNA is synthesized, amplified (Step 19)
and tested in quantitative PCR (qPCR) quality control assays
to indicate successful capture of the transcriptome by assaying
several housekeeping and tissue-specific genes (Steps 20-23).
Samples that pass quality control assays are used in downstream
sequencing library preparation (Step 24) and RNA-seq (Step 25).
A series of bioinformatic analyses then follow to assess sequence
quality (Steps 26-28), mapping and expression (Steps 29-34),
variation (Steps 35-38), gene coverage (Steps 39—41), intron and
exon coverage (Steps 42—46), and the classification of cell types
(Step 47). The main stages of the protocol are discussed in more
detail below.

Tissue handling and homogenization to release nuclei. In gen-
eral, the initial quality and methods used to handle postmortem
brain specimens will affect the quality of the RNA-seq data. RIN
scores (RNA integrity number2Y ranging from 1 to 10) for speci-
mens are often provided by the brain banks; however, we also
determined RIN scores in our laboratory and sometimes found
differences, possibly because the specimens had been stored for
long periods of time and then taken through a thawing step in
our laboratory. The RIN scores that we determined were used to
evaluate the starting quality of the frozen specimens. We selected
specimens with a RIN value of =7.

We chose Dounce homogenization to handle the very small tis-
sue dissections often required to investigate various brain regions.
Dounce homogenization2! with a nonionicsurfactant, Triton X-100,
is used to lyse the cell membrane and release nuclei. The deter-
gent can also permeabilize and lyse the nuclear envelope, but
only under harsh conditions for an extended period of time22.
Sufficient Triton X-100 is included in the homogenization step
to facilitate the release of nuclei, allowing them to remain intact,
and to permit optimal antibody!® staining and isolation by FACS
without forming aggregates. Hoechst stain is added to the homog-
enization lysis buffer to identify nuclei during FACS.

Before proceeding with FACS, the overall quality of the nuclei
and number obtained should be determined using fluorescence
photomicrography (after Dounce homogenization and again after
the sucrose-iodixanol gradient centrifugation if that optional step
is performed). High-resolution electron microscopy has been
used for assessing the integrity of the nuclei and purity of the
preparation, but it will be impractical for most laboratories!®.
Light microscopy can be used to assess whether the outer cell
membranes are lysed, and whether the suspension contains
encumbering amounts of non-nuclear material. A phase-contrast
light microscope should be used at each stage of the nuclear
isolation procedure to evaluate the yield, purity and integrity of
nuclei, which can be visualized and scored with a hemocytometer
(Fig. 2a). Nuclei will stain with trypan blue, and the nucleolus
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Figure 2 | Quality control of nuclei isolation. (a,b) Nuclei were obtained
from the human prefrontal cortex and extracted via Dounce homogenization;
they were stained with 0.2% (vol/vol) trypan blue, counted on a
hemocytometer (a), placed on a slide and microscopically examined

for morphological quality and yield (b). (c,d) By using epifluorescence
microscopy, nuclei were stained with DNA intercalating dye Hoechst 33342
(10 ng pl-t) (c), with blue fluorescent nuclei images overlaid with the bright-
field image to identify intact nuclei (d). (e) After cell strainer filtration,
nuclei were stained with NeuN-Alexa Fluor 488-conjugated antibody

(0.01 mg ml™1) to identify intact neuronal nuclei. (f) The fluorescent image
was overlaid with the bright-field image to further distinguish nuclei derived
from neuronal versus non-neuronal cells. (g, h) By using FACS, cells were
sorted onto a microscope slide and imaged for NeuN fluorescence (g) and
overlaid in bright field (h) to confirm FACS sorting conditions.

can often be identified (Fig. 2b). Fluorescent labels, Hoechst for
DNA and a neuronal nuclei marker, NeuN, can be used together
for facile detection of nuclei derived from neurons (Fig. 2¢-h).

Staining and FACS. To enable sorting of nuclei derived from
neurons, nuclei can be immunostained with an antibody spe-
cific to NeuN, a nuclear membrane protein (Supplementary
Fig. 1), before filtering the homogenate to remove large aggregated
debris and subjecting it to FACS. Software gating on the FACS
(Fig. 3) uses a series of doublet discrimination gates (Fig. 3a—c)
to isolate single nuclei from any remaining aggregated nuclei,
followed by a nuclear staining gate using Hoescht and NeuN labe-
ling to isolate single neuronal nuclei (Fig. 3d,e). Alternatively,
nuclei from all cell types can be sorted by using nuclear staining
with either Hoechst or propidium iodide (PI) (Fig. 3d,f). Single
nuclei are sorted into lysis buffer containing ERCC (External RNA
Consortium Control) spike-in RNA standards (Ambion), which
allow the sensitivity of transcript detection to be determined.
Following FACS, single nuclei can be verified to be free of the
debris particles and aggregated nuclei by microscopic observation
(Figs. 2g,h and 3h,i).

Lysis of nuclei, cDNA preparation and quality control. We do
not provide detailed procedural information for nuclear lysis and
cDNA preparation. Instead, we refer users to the Smart-seq2 proto-
col?, which we now use because it generates a higher percentage of
full-length cDNAs*. We follow the protocol exactly for lysis of the
nuclei, but we have made two modifications for cDNA preparation:
first, the cDNA is amplified by PCR for 21 cycles instead of 18 to
compensate for the lower amount of RNA in a nucleus compared
with a whole cell; second, the template-switching oligonucleotide
(TSO) primer described in Picelli er al.? is modified by 5 biotinyla-
tion!!. We have recently confirmed (M.N. and R.S.L., unpublished
data) observations by others that this modification reduces non-
specific amplification caused by synthesis of TSO concatemers.
Before investing time and funds in RNA-seq, we carry out
quality control assays by qPCR for targeted gene products. We
use reporter housekeeping genes (ACTB and GAPDH), as well
as high-, medium- and low-copy ERCC spike-in control qPCR
assays (Thermo Fisher). In addition, assays targeting genes
specific for neuronal nuclei of interest are recommended.

Preparation of sequencing library and sequencing. For proce-
dural details for preparing sequencing libraries, we refer users to the
Fluidigm C1 manual (C1 System for mRNA-Seq, part no. 100-7168
available at https://www.fluidigm.com/documents; select
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50 pm

‘C1 System for mRNA Seq’ to download the PDF automatically).
We use the [llumina Nextera XT library preparation kit and per-
form multiplexed paired-end sequencing of barcoded libraries
using an Tllumina MiSeq system. Figure 4 shows an example of
the quality of the cDNA and sequencing library. Supplementary
Table 1 shows a summary of a typical sequencing experiment. The
cDNA insert size of the sequencing library is 250-500 bp, and the
read-length of paired-end sequences is 150 bases. A read-depth
of 1.5-2.0 X 10° has been previously shown to be adequate for the
detection of saturating levels of RNA expression in single cells?3.

Data analysis. The sequence reads are analyzed for quality and
pre-processed to remove artifacts that fail to map to the genome
(Box 1). A substantial number of reads contain Smart-seq2 primer
and adapter sequences and their concatemers. In addition, deep
sequencing yields many duplicate sequences of abundant tran-
scripts that will reduce the ability to detect low-copy transcripts.
Duplicate sequences cannot be removed, as removal would pre-
clude accurate quantification of RNA expression. However, it is
imperative that the levels of sequence duplication across samples
are evaluated to examine its potential impact on the detection of
low-copy transcripts.

After quality assessment and trimming, we perform analysis of
RNA expression using the RSEM package?4, as described in Box 2
and Steps 29-31. The trimmed sequencing reads are mapped to
the human and ERCC spike-in transcript reference sequences.
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Figure 3 | FACS of single nuclei. Nuclei triple-stained with NeuN-Alexa Fluor 488-conjugated antibody (0.01 mg ml=%; EMD Millipore), Hoechst 33342

(10 ng ml=1) and PI (1 pM) were filtered through a 35-pm cell strainer and loaded onto a custom FACS ARIA II flow sarter (Becton Dickinson) equipped with

a forward scatter photomultiplier tube. (a-d) Doublet discrimination gating was used to isolate single nuclei (a-c) and intact nuclei determined by subgating
on Hoechst 33342 (d). (a) Particles smaller than nuclei (black dots) are eliminated with an area plot of forward scatter (FSC-PMT-A) versus side scatter (SSC-A),
with gating for nuclei-sized particles inside the gate (box). (b,c) Plots of height versus width in the side scatter and forward scatter channels, respectively,
are used for doublet discrimination with gating to exclude aggregates of two or more nuclei. (e,f) Subsequent plots and gating discern NeuN-Alexa Fluor488-
conjugated antibody (e) and PI-stained nuclei (f). The resultant hierarchical color key ensures that only single nuclei that are positive or negative for
staining with the NeuN antibody (NeuN+and NeuN-) are passed through each gating condition. (g) Yellow fluorescent 10- to 14-pm polystyrene microspheres
(Spherotech) were used to determine the accuracy and precision of microplate targeting, and they were confirmed by microscopic imaging of single spheres

in a 384-well microplate. (h,i) Subsequent FACS gating of labeled nuclei (arrows) was confirmed via imaging on a microscope slide (h), as well as within

individual wells of a 384-well microplate (i).

The sequencing depth observed for a given transcript quantita-
tively reflects the number of mRNA template molecules obtained
from the lysed nucleus. The total number of genes detected for
cach nucleus and the percentage of reads mapped to the genome
and ERCC spike-in controls is determined (Fig. 5). The sensitivity
of the detection of RNA expression across different samples is
analyzed by evaluating the expression of both ERCC spike-in
control transcripts (Fig. 6) and the human mRNA at different
levels of abundance (Fig. 7). All sequencing data—even from
high-quality RNA—will show some level of 3" bias in the cover-
age, because the reverse transcriptase (RT) will fail to produce
full-length cDNA for some proportion of the transcripts, result-
ing in little or no coverage for the 5 end of these RNAs. Even
though the Smart-seq2 method disfavors incomplete cDNA
strand synthesis, some cDNA that is only partially extended is
still generated. In addition, 3" bias will be indicative of mRNA
damage due to RNase degradation, shearing or hydrolysis, which
might occur during tissue handling, storage or processing of the
nuclei. Partially degraded RNA will result in deeper sequence

coverage for the 3" end of transcripts, as only those degradation
products that contain the 3’ polyA tail will be converted to cDNA
(Fig, 8a). To confirm that any 3" bias observed in ¢cDNA from
nuclei is not due to RNA degradation, we compare the sequence
coverage with that of a high-quality control RNA from the same
tissue (Fig. 8b). Sequence coverage of introns and exons is used
to ensure that the sequences are derived from mRNA rather
than from genomic DNA (Fig. 9), which is not removed from
the nuclear extracts.

The primary goal of many single-cell or single-nuclei sequenc-
ing pipelines is the classification and characterization of known
and potentially novel cell types, and several strategies have been
prcsented ﬁ)r ':iLlCh analyscs l)r |‘Jund]’€‘d5 to n1any lh(".lsﬂﬂds Uf‘
cells!:25:26_ For the small number of nuclei analyzed here, we
developed an approach based on a straightforward application
of dimensionality reduction (principal coordinate analysis),
k-means clustering and manual inspection of canonical cell
type marker genes (Fig. 10), which can be reproduced using the
code provided as Supplementary Methods.
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600, 700, 1,000, 2,000, 3,000, 7,000 and 10,000, with lane marker peaks seen at 35 and 10,380 bp. Separately, Smart-seq2 synthesis of cDNA and PCR was
performed on single nuclei (n = 24), and on pools of 8 nuclei (n = 4), 24 nuclei (n = 4), 48 nuclei (n = 2), 96 nuclei (n = 2) and duplicates of 100 pg, 10 pg
and 1 pg total RNA from the prefrontal cortex, to serve as technical replicates to reveal artifactual noise level due to technical causes such as variation in
pipetting and temperature differences between PCR block wells. NTCs are used to detect nonspecific cDNA amplification derived from contaminants in the
reaction components or introduced during handling, (d) Quality control gPCR of cDNA was performed in 10-ul reactions using ABI TaqMan gene expression
assays for GAPDH, ACTB and ERCC-00077. gPCR cycle threshold (Ct) values were plotted for comparison with single nuclei Cts, typically ranging between 15
and 25. Note that Cts increase by about 3 cycles per tenfold increase in input RNA template, as expected from the doubling rate of DNA in PCR.

Advantages and limitations * The technical and biological variation is similar for whole cells

The key strengths of our protocol are as follows: and nuclei'?. For most transcripts, the nuclear and whole-cell

* The use of nuclei for RNA-seq avoids the difficulties involved in expression profiles were similar, and therefore nuclei can gener-
obtaining undamaged whole neurons. ally be substituted for whole cells to define cell lineage, state or

« Alteration of the transcriptome by treatment with proteases is type populations, for example, by principal component analysis.
avoided. The clinical samples and isolated nuclei are maintained  + Nuclear transcriptomes will provide insights into how they differ
at 4 °C until they are ready for use in cDNA synthesis. from cytoplasmic transcriptomes such as enrichment of certain

« We have demonstrated RNA-seq from nuclei isolated by micro- transcripts in nuclei’® and regulatory processes controlling the
manipulation!? and FACS. rate of transcription?”.

Box 1 | Sequence analysis: evaluation of sequence quality and preprocessing

(A) A t of seq e quality

Illumina sequences obtained from each sample (nucleus) are analyzed by fastQC tool (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) to evaluate sequence yield, base quality, GC profile, k-mer distribution and primer contamination. A computer grid
environment or a multiprocessor (CPU) Unix workstation is required for processing large numbers of samples simultaneously.

(B) Evaluation of sequence duplication

To assess the extent of unique transcript representation and any skewed PCR bias in the fragments represented in cDNA Libraries, the
degree of read duplication is analyzed. However, the duplicated RNA-seq reads are not removed, as it will preclude the accurate estimation
of transcript abundance (expression). The fastx_collapser tool (http://hannonlab.cshl.edu/fastx_toolkit/commandline.html) is used
with Phred 33 base quality score offset to calculate the absolute number of identical reads (duplicates) in the input sample .fastq
sequences. The program accepts only one sequence file as input. Multiple sequence files require iterative processing by a shell script.

(C) Trimming of adapters, primers and low-quality bases

The Trimmomatic tool (http://www.usadellab.org/cms/?page=trimmomatic) is used to trim the adapter and/or primer sequences
present in adapters_primers.txt (Supplementary Note) from the ends of PE input.sample.fastq sequences to facilitate their successful
mapping to the reference transcriptome. The program, executed using eight threads per job, performs the following: trims the end
bases below a Phred quality score of 3 or any bases in a 4-base-wide sliding window when the average quality per base drops below 15;
clips adapters/primers from the sequences by allowing two seed mismatches, requiring a minimum of 30 matches in palindromic mode
and a minimum of ten matches in nonpalindromic (simple) mode between the read sequence and the adapters/primers. Any sequences
trimmed from the original length of 150 bases to shorter than 60 bases are removed from the output.
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Box 2 | Sequence mapping and RNA expression analysis

(A) Preparation of the reference genome

The trimmed sequencing reads are mapped to the transcripts derived from the human reference genome (GRCh37). The reference .fasta
is prepared by the concatenation of GRCh37 human genome .fasta, the ERCC RNA spike-in .fasta and .fasta files for other marker (GFP)
genes (RSEM_GRCh37_ERCC_GFP_RNASpikes.fa). The reference index files required by Bowtie2 mapping program and the transcript-
specific reference sequences are generated from the GRCh37_ERCC_GFP_RNASpikes.fa and the corresponding annotation
(GRCh37_ERCC_GFP_RNASpikes.gtf) files by the ‘rsem-prepare-reference’ command available in RSEM expression analysis software
(http://deweylab.biostat.wisc.edu/rsem/).

(B) Mapping and the calculation of expression values

The ‘rsem-calculate-expression’ command from the RSEM expression analysis software is used to map paired-end reads to the reference
transcripts (RSEM_GRCh37_ERCC_GFP_RNASpikes.transcripts.fa). The RNA expression values at gene and isoform levels are calculated
using the expectation-maximization (EM) algorithm as implemented by the RSEM program. Multiple threads of eight or more are used
to generate alignments mapped to genomic coordinates (sample_name.genome.bam), while tagging reads with nonunique alignments
(--tag), calculating 95% credibility intervals (--calc-ci) and posterior mean estimates (--calc-pme), allowing insertions in the range of
1-500 bases (--fragment-length-min/max) and estimating the read start position distribution (--estimate-rspd). The text entries shown

in parentheses in the preceding lines indicate the command's options. The output files are prefixed with sample_name.

(C) Determination of the sensitivity of expression analysis

The ERCC spike-in transcripts available from Life Technologies (https://www.lifetechnologies.com/order/catalog/product/4456740)
are added to the reverse transcriptase mix along with sample RNA before the ¢cDNA amplification. The individual ERCC spike-in mRNAs
(http://tools.lifetechnologies.com /content/sfs /manuals /cms_095046.txt), which are present at a wide range of low to high molar
concentrations in the reaction mixture, facilitate the determination of the lower threshold of detection sensitivity of transeript

expression in terms of copy numbers.

The main limitations are as follows:

- Cytoplasmic mRNA concentrations are directly rate limiting for
protein synthesis, and thus whole cells may possibly give a more
direct indication of downstream biological functions dependent
on the proteome. Use of nuclei might result in loss of some
information contained in cytoplasmic mRNA; however, for fro-
zen brain tissue, whole cells have tended to generate poor-quality
c¢DNA, and they may not be an option.

= Nuclei are generally fragile compared with whole cells, and some
loss can be expected at each stage of an isolation procedure!S.

= The small amounts of mRNA present in nuclei may necessitate
optimization of the number of PCR cycles required to obtain
sufficient cDNA for use in sequencing depending on the exper-
imental needs. We amplified the nuclear cDNA with 21 cycles
because of low amounts of RNA in the nucleus, compared with
18 cycles for whole cells’. However, some low-copy transcripts
may still be more difficult to detect in nuclei. Furthermore,
increasing the cycle number could introduce some amplification
bias in the library by compressing expression values for high-
copy transcripts.

Figure 5 | Overall characteristics of mapping and expression.

The sequencing reads for ten individual nuclei were split into three

groups: ‘ERCC’, ‘Genome” and ‘Unmapped’ on the basis of their mapping
using the RSEM software. On average, 417,964, 183,278 and 941,644 reads
were mapped to the genome for each neuronal nucleus, non-neuronal
nucleus and total RNA sample, respectively. The numbers in the parenthesis
indicate the number of genes with a TPM value >0 for the sample. It is clear
that our sequencing did not reach saturation for some samples, as there

is a high correlation between the number of reads mapped to the genome
and the number of genes expressed. The high number of genes detected

for Total RNA also reflects the pooling of RNA from multiple cells, which
captures all genes expressed in the population.

*Cytoplasmic transcripts are not detectable, nor are small
noncoding RNAs (ncRNAs) and other short sequence mRNAs
lacking polyA tails. The low amounts of RNA contained in a
nucleus may also prevent the detection of some ncRNAs.

Applications

Nuclear and cytoplasmic transcriptomes are likely to differ
in many ways, and a more comprehensive analysis is needed
to determine the advantages and limitations of using nuclei for
transcriptomic studies. Some studies of specific nuclear functions
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Figure 6 | Behavior of ERCC spike-in controls, sensitivity and detection limit
estimation. The number of ERCC spike-in transcript molecules, diluted 1.1 x 107
fold from the original stock in the final RT-mix, are plotted against the
average TPM expression values across all 14 samples using log, scale for both
axes. The 1.1 x 107-fold dilution (PROCEDURE Step 13 and INTRODUCTION) is
greater than that recommended by the ERCC spike-in manufacturer, who had
optimized it for use with nanogram quantities of RNA in microarray studies.
The low levels of RNA in a single nucleus necessitate the greater dilution

in order to avoid high percentages of sequencing reads devoted to ERCC
spike-ins. However, some of the lower-copy transcript species present in

the ERCC spike-in stock are consequently diluted to <1 copy per Smart-seq2
reaction tube. ERCC spike-in transcripts with expression in at least one of
the 14 nuclei were considered (ERCC n = 67 of 92) with regression equation
y=0.9817x + 3.1913 and R2 = 0.916. The RNA released from the lysed nuclei
plus the added ERCC spike-in controls were amplified to 21 PCR cycles.

The detection threshold for a single ERCC spike-in transcript molecule is
shown to be approximately equivalent to 9 TPM RNA expression units

(1 molecule = 9 TPM, as indicated by the intersection of the dashed lines).

may be enhanced by directly accessing nuclei—for example,
studies of the regulation of transcriptional activation medi-
ated by transcription factors, promoters, enhancers, epigenetic
modifications and other mechanisms that control synthesis of
mRNA. Critical control of cellular development and function
occur at this level of regulation. Some processing of ncRNAs may
also require analysis via nuclei such as initial rates of primary
miRNA synthesis. The polyA tail of this ncRNA species allowed
measurement of cDNAs produced by polyT priming!3, whereas
the polyA tail is removed before transport of this RNA to the
cytoplasm. In general, we anticipate that the nuclear transcrip-
tome will have some advantages for investigating the regulatory
processes controlling transcription rates. In contrast, the concen-
tration of cytoplasmic mRNA reflects transport from the nucleus
and various rates of mRNA processing and degradation. The
cytoplasmic mRNAs serve as the template for ribosomes and the
formation of the proteome, and thus they may have advantages
in some studies.
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RNA-seq analysis of human neurons is particularly challenging.
For acute surgically derived tissues, the isolation of intact living
neurons has been proven to be difficult, although a recent report
demonstrated feasibility!?. Similarly, technical challenges includ-
ing cell isolation, RNA quality and glial transcript contamination
have hindered progress in profiling single neurons from frozen
postmortem tissues (R.H. and E.S.L., unpublished data). The
use of nuclei avoids these obstacles. Furthermore, protease treat-
ment to disperse whole cells, as done in recent studies of single
neurons!®!, is known to profoundly alter gene expression!2. We
have recently observed additional examples in which protease
treatment altered gene expression. Unexpected Fos activation was
found in almost all of the cells dissociated by protease from a
mouse brain region that is reported to have low Fos expression and
which lacked Fos protein based on antibody staining before pro-
tease treatment. No such activation was observed using the nuclei
isolation protocol, which is performed at 4 °C and without the
use of proteases. Importantly, we are able to detect Fos activation
using the nuclei isolation protocol when
mice have been exposed to environmental
stimuli, which are known to induce Fos?8,
These observations suggest that caution

| Low
is needed in interpreting transcriptomes

| Mid
H High
| Novel

Figure 7 | Biclogical variation and technical
noise stratified by relative expression of genes.
The genes that are expressed in bulk Total
RNA-100pg-2 (see Supplementary Table 1)
were stratified equally into low, mid and high
expressers based on their TPM values (4,292
genes per category). Low genes had TPM values
between 0.01 and 7.44, mid genes had TPM
values between 7.45 and 25.97 and high genes
had TPM values >25.98 (a). For the 4,292
genes of each category, the graph shows the
fraction found in each sample. By definition,
Total RNA-100pg-2 has 100%, 100% and 100%
representation for low, mid and high (b). Each
gene that is expressed in the sample is labeled
by its expression in the bulk RNA sample. The
fraction of low-, mid- and high-expressed genes,
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as well as novel genes that were not found in the
bulk control, was quantified.
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Figure 8 | The use of 3" bias as a quality control assay for cDNA. (a) Tatal (bulk)
RNA derived from tissue is confirmed to have a high RIN score before isolation
of nuclei. Partial degradation of the RNA might occur during the preparation

of nuclei by Dounce homogenization (nuclei prep) or FACS of the individual
nuclei. If the mRNA is degraded by hydrolysis, shearing or RNases, truncated
mRNA species could be created, and those containing the polyA sequence at
the 3’ end of the transcripts might produce cDNA. This would generate greater
RNA-seq coverage of the 3" end of transcripts (3’-bias) compared with the high-
quality bulk RNA. Gene body coverage across 4,292 highly expressed genes was
calculated by RseqC. The relative coverage is defined as coverage at a base /
maximum coverage across the gene, (b) The total RNA samples are indicated
(two replicates of 10 pg and 100 pg RNA each; Supplementary Table 1).

As these total RNA controls are all from a single RNA purification from bulk
tissue, they would have identical coverage profiles in the ideal case. The minor
differences indicate the level of technical variation accumulated from all of

the reaction steps. The single nuclei have very similar 3 bias to the total RNA
controls, demonstrating that little damage was done to the RNA during the
processing of nuclei. Neuronal nucleus 6 (Supplementary Table 1) is indicated,
and it diverges from normal behavior. It may be an example of partially
degraded mRNA being obtained from the nucleus and the resulting truncated
cDNA; however, we believe that it is actually attributable to its low number of
reads mapping to the genome, which must be taken into consideration for this
analysis. We have recently confirmed that partially degraded total mRNA, which
is formed experimentally by heating in the presence of sodium acetate, results
in a commensurate increase in 3" bias, demonstrating that this analysis can
quantitatively detect RNA damage (M.N. and R.S.L., unpublished data).

from protease-treated cells. As the majority of accessible human
brain specimens are obtained from frozen archives and col-
lections, the use of nuclei may provide the best option that is
currently available for RNA-seq from neurons.

The number of different cell types in the brain remains poorly
understood. Cell ‘type’ implies stable characteristics, such as the
synthesis of a particular neurotransmitter, and these cells have
generally arisen by differentiation through developmental path-
ways, although the steps in these processes and their reversibility
are not completely understood. It will be important to identify
the abundance and functions of all the cell types in the brain. It
also remains unclear how to define cell ‘states, which may simply
reflect a range of intermediate functional activities rather than
being discrete cell types. RNA-seq from individual brain cells will
be crucial in resolving these questions. Moreover, RNA-seq will
be a powerful new method for investigating the genomics and
biochemistry of individual brain cells in a way that is not possible
with bulk RNA. New computational methods are rapidly being
introduced that will enable discovery of metabolic and regulatory
pathways and investigation of brain function at the most basic
levels of cell and systems biology. The use of nuclei to obtain
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transcriptomes from large numbers of cells has the potential to
be a powertul new tool in neuroscience to investigate both normal
and disease processes.

Experimental design

Starting material. We have used cultured neuroprogenitor cells
and fresh mouse brain tissuel?, and we include an example using
frozen human brain (ANTTICIPATED RESULTS), as the source
for nuclei. When brain tissue can be used fresh without freezing
(as for laboratory animals or when fresh human biopsies are
available), we have elected to cool the sample to 4 °C and to use it
for isolation of single nuclei as soon as possible. However, frozen
brain tissue performed well, by producing full-length ¢cDNAs
and informative transcriptomes (ANTICIPATED RESULTS).
Methods that cross-link mRNA, such as paraformaldehyde
fixation of tissues, will severely limit the ability to produce full-
length ¢cDNA. When a sufficient quantity of tissue specimen is
available for extraction of bulk RNA, we suggest determining
the RNA quality before proceeding with single-nuclei isolation
(Box 3). We selected tissues with RIN values >7, as these can
be obtained from many brain archives. We have not carefully
evaluated RNA of poorer quality. However, if RNA with a RIN
score of <7 is all that is available, it should be tested and it may
still yield valuable data. In general, we selected samples with the
highest RIN available.

Figure 9 | Read depth across the GAPDH gene. University of California at
Santa Cruz (UCSC) genome browser snapshot of custom bedGraph tracks
detailing the coverage across the GAPDH gene for neuronal nucleus 2,
non-neuronal nucleus 4 and total RNA 100pg-2 samples (Supplementary
Table 1). The lack of coverage across introns indicates that most of the
GAPDH transcripts sequenced were spliced transcripts for all three types
of sample types. The position of exons is indicated by the black rectangles
in the genomic map at the bottom.
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Figure 10 | Nuclei captured from several a
neuronal and glial cell types. Nuclei cluster

into four discrete groups. (a) Multidimensional
scaling (MDS) plot of 10 nuclei (Supplementary
Table 1) based on the first two principal
coordinates (PC, x and y axes). Labels 1-6

are the NeuN* cells 1-6, and A-D correspond

to NeuN- cells 1-4, and they are color-coded
based on k-means clustering with n = 4.

(b) Venn diagram showing the number of genes
expressed in at least one cell in each group.
The number of cells expressed in all cells of 2
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are shown in parentheses, and they are 02 a1 0
color-coded as in a. Cell clusters correspond

to discrete cell types based on known marker
genes. (c) Average expression of marker

genes for glutamatergic neurons, GABAergic
neurons®®, astrocytes and oligodendrocyte
precursor cells37 is shown for each cell, and

it is color-coded as in a. Cells to the right

and left of the vertical bar are the NeuN* and
NeuN- cells collected by FACS, respectively.

(d) Canonical marker genes for glutamatergic
neurons (SLC17A7), GABAergic neurons (GADI),
astrocytes (AQP4) and oligodendrocyte precursar
cells (WKX2.2) are expressed as expected,

based on cell type. Axes and colors for d are

the same as those in c.
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Homogenization. Nuclei were obtained by Dounce homogeniza-
tion of ~2-3 mm? of human brain tissue for use in FACS sorting.
In general, the Dounce step does not give quantitative recovery
of nuclei because they are fragile and easily damaged. Some large
pieces of tissue remained after this step; however, additional
Dounce strokes appeared to destroy free nuclei even as more were
released from the tissue. About 60,000 intact nuclei were obtained
based on a hemocytometer count. If smaller amounts of tissue
must be used, micromanipulation can be considered as a means
to isolate a small number of nucleil3.

The Dounce homogenization of tissues should be optimized
for each specimen. Samples containing a mixture of cell types or
samples from connective tissues and intracellular fibrous mate-
rial may require more strokes. However, note that although more
thorough homogenization (by increasing the number of strokes)
will release more nuclei, it will also increase the number of dam-
aged nuclei. The Triton X-100 used in this protocol is compatible
with RNA-seq methods that use specific cell type enrichment via
surface protein labeling. When immunostaining is not required,
substitution of NP-40 for Triton X-100 has been suggested as a
means to reduce loss of nuclei?!, although we have not verified
this for use in single-nuclei RNA-seq.

Immunostaining, We immunostain nuclei with an antibody
specific to NeuN, a nuclear membrane protein that is specific
for neurons. In combination with Hoescht stain, which stains all
nuclei, this allowed separation of nuclei by FACS into neuronal
and non-neuronal populations. We have not found suitable alter-
native neuronal markers for FACS; staining for proteins within
the nucleus would require permeabilization and fixation steps,
which is incompatible with RNA-seq.

1352460ABC 1352486DABC 1352486DABC

Isolating individual nuclei. We isolated individual nuclei by
FACS; however, other methods can be used. We have also demon-
strated the use of micromanipulation to isolate individual nuclei
for use in RNA-seq!®. Micromanipulation has the advantage of
allowing inspection of nuclear morphology and fluorescent labe-
ling with a microscope, and of providing confirmation that a
single nucleus was added to the reaction well for cDNA synthe-
sis. Micromanipulation may be an advantage for confirming the
identity of nuclei from rare cell types that are not easily enriched
by FACS. Another option is a microfluidic approach such as the
C1 Single-Cell Autoprep System (Fluidigm), which can be used
to isolate single nuclei from bulk preparations of adult human
neurons (M.N., R.S.L. and M. Ray (of Fluidigm), unpublished
observations). Similar to intact cells, some optimization of the
nuclei loading conditions, including varying concentration, for
each tissue type may be needed to maximize the nuclei captured
per run. This instrument generally requires that at least 2,000
cells or nuclei be loaded onto the integrated fluidic circuit for
optimal performance.

RNA-seq cDNA synthesis and sequencing platform. Smart-seq2?
was used here to synthesize double-stranded ¢cDNA; however,
other methods can be used’42, Previouslyl?, we successfully used
the method by Tang et al.>. Any sequencing method is acceptable if
itis well suited for the short cDNA library inserts. We have tested
SOLID sequencing (Life Technologies)!3 and [llumina sequencing
(ANTICIPATED RESULTS) with comparable results.

Sample controls. It is important to include no-template controls
(NTCs) in each experiment. Very low amounts of contaminat-
ing DNA or RNA, which are present in the Smart-seq2 reagents,
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Box 3 | Sample quality assessment of tissue and cultured cells. ® TIMING 1 h

A CRITICAL Sample processing procedures vary widely depending on the sample type, and they can affect the quality of the RNA that
can be obtained. For human postmortem brain, fresh mouse brain or cultured cells, we recommend determining the RNA quality by
assessing the integrity of the bulk sample before proceeding with single nuclei isolation. If sufficient sample is not available, the

tissues can be used directly for nuclei isolation.

1. For tissue samples, place a sterile Petri dish and scalpel on dry ice to chill. Transfer the brain sample to the Petri dish using
sterile and RNase-free forceps. Remove a section of ~2-3 mm3 using the scalpel. For cultured cells, collect them by trypsinization and
centrifugation. Remove the supernatant and resuspend the cells in 1x cold PBS. Pellet the cells with centrifugation at 2,000g for

15 min. Repeat resuspension and centrifugation two more times. The pelleted cells can be kept at —80 °C for up to 3 months or

they can be processed immediately.

2. Follow the Qiagen RNeasy mini kit's recommended protocol to isolate total RNA from either tissue or pelleted cells.
3. Assess the integrity of the total RNA on an Agilent Bioanalyzer (or similar device) using an RNA 6,000 pico chip as per the

manufacturer’s recommendation.

A CRITICAL STEP Where possible, it is recommended to proceed with single nuclei isolation using samples that have a RIN value of 27.

for example, can be sufficient to compete with the small
amount of targeted material from a single cell or nucleus, NTCs,
which receive water instead of the sorted nucleus, should not
support cDNA synthesis. If some bacterial reads are obtained,
they are possibly derived from contaminants in the reagents.
If human sequence is obtained from the NTCs, contamination
introduced in the laboratory is likely. We also use an aliquot of
the FACS effluent (lacking a nucleus) as a negative control '3 to
demonstrate that the sort buffer cannot support cDNA synthe-
sis owing to free RNA or DNA released from the homogenized
tissue. Any robust cell line easily maintained in the laboratory
can be used as a positive control to demonstrate typical
performance and to detect a loss of efficiency due to poor
reagents, for example. The use of the same positive control in all
experiments is helpful, as typical RNA content and the number
of genes expressed may differ among cell types. Also consider
using cell lines that express specific marker genes of interest
as positive controls for comparison with the brain tissues.
Tt is helpful to include technical replicates in experiments in
which purified RNA is used as the template. Technical sources
of variation include degree of success in synthesizing cDNA
and constructing Nextera libraries. The technical variation
contributes noise that interferes with the desired detection of
biological differences.

Spike-in controls. An extrinsically added spike-in RNA is used
as a positive control for the reverse transcriptase (RT) reaction.
We used the ERCC spike-ins??, a set of 96 different microbial
mRNAs. These are present in a range of concentrations, allow-
ing the determination of the sensitivity and range for the detec-
tion of transcripts. The concentration of ERCC spike-ins added
is adjusted for various applications so that they will contribute a
smaller percentage of the reads compared with the experimental
specimen. We have adjusted the dilution of the ERCC spike-in
stock commensurate with the small amount of RNA in a human
cell nucleus. The dilution can be adjusted if it is found that too
many or too few reads are obtained. Changing the dilution will
alter which of the 96 mRNA species represent <10 molecules,
the lower limit for detection. The dilution of 1:1.1 X 107 in the
RT reaction results in ERCC-00077 being present at 2.2 copies
per reaction. Approximately 50 of the 92 species are detected by
sequencing at this dilution, and the remaining 42 are not detected,

as they are added at <1 copy per reaction. Failure to detect ERCC
spike-in controls in RNA-seq indicates a failed Smart-seq2 reac-
tion. Detection of ERCC spike-ins but failure to detect cellular
transcripts indicates failed recovery of RNA from the nuclei. An
unexpectedly high proportion of ERCC spike-in sequencing reads
relative to cellular transcripts also indicates poor recovery of RNA
from the nucleus or that the cell was relatively quiescent and had
low RNA content.

qPCR controls for cDNA quality. The quality of the gene expres-
sion information in the cDNA libraries can be assessed before
investing time and expense in DNA sequencing by using TagMan
qPCR for a limited number of transcripts. We have found that
cycle thresholds for housekeeping genes typically range between
15 and 30 cycles, depending on the amount of available mRNA
in the nucleus and the original sample RIN. Control samples
with 8, 24, 48 and 96 pooled nuclei should have correspondingly
lower cycle thresholds. Total RNA controls from the same tissue
sample ranging from 1 to 100 pg should also have progressively
lower cycle thresholds. We have generally discarded cDNAs that
lack all of the housekeeping genes tested for by qPCR. However,
the pass/fail criteria are not easily defined, and they must be
developed for each specific study. Caution should be exercised
in discarding samples simply because certain transcripts are
not detected, as transcription rates are highly variable through
time, even for constitutive genes. qPCR for transcripts that are
diagnostic for a cell type and other specialized characteristics
can also be very useful in prescreening before investing in RNA-
seq. However, where an unbiased sampling of a cell population
is desired, it is important to weigh the benefits of selecting for
specific transcripts against the risk of systematically biasing
the selection.

In addition to sorting single nuclei, pools of 8, 24, 48 and 96
nuclei, for example, can serve as positive controls for cDNA
synthesis. The pools also reveal the full range of transcripts in a
cell population (the pan-transcriptome), and they can serve to
validate detection of differentially expressed transcripts in the
individual nuclei. The sequencing depth for a given transcript
from a single nucleus can be compared with the sequencing depth
from a pool of nuclei. For example, a transcript found at high
copy number, but only in a small percentage of nuclei, should be
commensurately low in the pools.
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MATERIALS

REAGENTS

- Tissue sample. We have successfully used cultured neuroprogenitor cells
and fresh mouse brain tissue!? and frozen human prefrontal cortex brain
obtained from the US National Institutes of Health (NIH) NeuroBioBank
located at the University of Maryland as an example here (ANTICIPATED
RESULTS). The quality of the initial sample can be checked before isolating
nuclei, as described in Box 3. ! CAUTION An Institutional Review Board
approval may be required to obtain, process and place samples on a
flow-sorting instrument. Precautions to protect the user include standard
personal protective equipment, but potentially also a protective laminar
flow hood for the flow cytometer if biohazardous sample material is to
be used.

* RNaseZap RNase decontamination solution (Ambion, cat. no. AMY780)

« Nuclease-free water (Ambion, cat. no. AM9932)

- B-Mercaptoethanol, 14.3 M (Sigma, cat. no. M6230-100 ml)
¥ CAUTION This is a combustible liquid. It is toxic if swallowed or if inhaled.
It is very hazardous in case of skin contact (permeator) and ingestion.
Severe overexposure can result in death. It causes skin irritation, and it may
cause an allergic skin reaction. It also causes serious eye damage.

Avoid contact with skin and eyes. Avoid inhalation of vapor or mist, and
handle it while you are wearing appropriate personal protective equipment.

« Complete, EDTA-free (Roche, cat. no. 11873580001)

* Sucrose (Sigma, cat. no. S0389-500G)

= Potassium chloride, 2 M (Ambion buffer kit, cat. no. 9010)

= Tris buffer, pH 8.0, 1 M (Ambion buffer kit, cat. no. 9010)

+ Magnesium chloride, 1 M (Ambien buffer kit, cat. no. 9010)

+ EDTA, 0.5 M (Ambion buffer kit, cat. no, 9010)

* RNase inhibitor, cloned (40 U pl~!; Ambion, cat. no. AM2682)

= Hoechst 33342, trihydrochloride, trihydrate (10 mg ml-!; Molecular
Probes, cat. no. H3570) ¥ CAUTION This compound is harmful if
swallowed. It causes skin irritation, and it may cause respiratory irritation.
Tt is suspected of causing genetic defects; handle it while you are wearing
appropriate personal protective equipment.

* Propidium iodide (PI; 1.0 mg ml~% (Molecular Probes, cat, no, P3566)
¥ CAUTION This compound is harmful if swallowed. It causes skin irritation,
and it may cause respiratory irritation. It is suspected of causing genetic defects;
handle it while you are wearing appropriate personal protective equipment.

= DAPI (1.0mg ml~%; Molecular Probes, cat. no. 62248) ! CAUTION DAPI is
harmful if swallowed. It causes skin irritation, and it may cause respiratory
irritation. It is suspected of causing genetic defects; handle it while you are
wearing appropriate personal protective equipment.

» Triton X-100 (Sigma-Aldrich, cat. no. T8787-100ML) ! CAUTION Triton
X-100 is harmful if swallowed, and it causes serious eye damage; handle it
while you are wcaring appropriate pcrsnnal protective equipment.

« dNTP mix (10 mM each; Thermo Fisher, cat. no. 18427-088)

= Superscript II reverse transcriptase { Thermo Fisher, cat. no. 18064-014)

« Betaine (BioUltra 299.0%; Sigma-Aldrich, cat. no. 61962)

= KAPA HiFi HotStart ReadyMix (2x; KAPA Biosciences, cat. no. KK26010)

» Ethanol, molecular biology grade {Sigma-Aldrich, cat. ne. E7023-500 ml)

* Agencourt Ampure XP beads (Beckman Coulter, cat. no, A63881)

= Adapter oligos (See Synthesis of cDNA, Step 19). All oligos except the
INA-modified TSO were ordered from IDT (https:/fwww.idtdna.com), and
they were HPLC-purified. LNA-modified TSO was ordered from Exiqon
(http:/fwww.exiqon.com/), and it was HPLC-purified. TSO (5-biotin-
AAGCAGTGGTATCAACGCAGAGTACATIGrG+G-3"); oligo-dT30VN
(5’-biotin~AAGCAGTGGTATCAACGCAGAGTACT30VN-3"); ISPCR oligo
(5"-biotin-AAGCAGTGGTATCAACGCAGAGT-3')

= UltraPure BSA (50 mg ml~!; Ambion, cat. no. AM2616)

« Trypan blue (0.4%; Sigma-Aldrich, cat. no. T8154)

= ERCC spike-in mix 1 (Ambion, cat. no. 4456740)

+ RNase-free PBS, pH 7.4 (Ambion, cat. no. AM9625)

*(0.5% RNase-free BSA (Ambion, cat. no. AM2616)

- RNasin Plus RNase inhibitor (Promega, cat. no. N2615)

* Mouse IgG1k (BD Pharmingen, cat. no. 554121)

* Mouse monoclonal anti-NeuN antibody (Millipore, cat. no. MAB377)

= Goat anti-mouse Alexa Fluor 594—conjugated secondary antibody (Life
Technologies, cat. no. A11005)

« DAPI (Life Technologies, cat. no. D1306)

= Yellow fluorescent polystyrene microspheres, 10 tm (Spherotech,

cat. no. FP-10052-2)
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« Perfecta ROX FastMix (Quanta Bioscience, cat. no. 95077-05K)
- TagMan gene expression real-time PCR assay (Thermo Fisher)
* RNeasy Mini Kit (50) (Qiagen, cat. no. 74104)
* Quant-iT PicoGreen dsDNA assay kit (Molecular Probes, cat, no, P11496)
= Agilent RNA 6000 pico kit (Agilent Technologies, cat. no. 5067-1513)
= Agilent high-sensitivity DNA kit (Agilent Technologies, cat. no. 5067-4626)
= Nextera XT'DNA library preparation kit, 96 samples (Illumina,
cat. no, FC-131-1096)
= Nextera XT 96-index kit (Illumina, cat. no. FC-131-1002)
* MiSeq reagent kit v2, 300-cycles PE (Illumina, cat. no. MS-102-2002)
Software for seq e quality
= FASTX (http://hannonlab.cshl.edu/fastx_toolkit/download.html)
» fastQC (http:/fwww.bioinformatics.babraham.ac.uk/projects/fastqe/).
= RSeQC303! (http://rseqe.sourceforge.net/) can be used as an alternative
to FASTX and fastQC
Software for sequence trimming
* Trimmomatic (http://www.usadellab.org/cms/uploads/supplementary/

Trimmomatic/ Trimmomatic-0.33.zp)

= Alternatively, Cutadaptﬂ (https://cutadapt.readthedocs.orglen/stable/)
can be used

Software for sequence alignment

* Bowtie2 (http://sourceforge.net/projects/bowtie-bio/files/bowtic2/)

* SAM tools (http://sourceforge.net/projects/samtools/files/samtools/)

Software for RNA expression analysis

= RSEM (http://deweylab.biostat.wisc.edu/rsem/). Alternatives to RSEM
include Tophat2 (ref. 33) (https:/fccb.jhu.edu/software/tophat/index.shtml),
Cufflinks® (http://cole-trapnell-lab.github.io/cufflinks/) and Star3!
(https://code.google.com/p/rna-star/)

Software for data analysis

* R (https://cran.r-project.org/)

« Python and related packages (https://www.python.org/)

= [Python (http://ipython.org/)

= Pandas (http://pandas.pydata.org/)

« Matplotlib (http://matplotlib.org/)

= Seaborn (http://stanford.edu/~mwaskom/soltware/scaborn/)

* Bedtools (http://bedtools.readthedocs.org/en/latest/)

= IGV (http://www.broadinstitute.org/igv/)

EQUIPMENT

= Dounce homogenizer, 1 ml (Wheaton, cal. no. 357538)

= Sterile forceps (VWR, cat. no. 89259-946)

« Sterile Petri dish (VWR, cat. no. 25384-070)

= Sterile scalpel (Miltex, cat, no, 4-410)

« BD FACS-ARIA II Flow sorter with an automated cell deposit unit

= BD Falcon tube with a cell strainer cap (Becton Dickinson,
cat. no, 352235)

= Falcon polystyrene conical tube (50 ml, BD Biosciences, cat. no. 352095)

= Inverted fluorescence microscope Olympus IX70

= Hemocytometer (Hausser Scientific, cat. no. 1483)

« Teflon-coated multi-well glass slides (Electron Microscopy Sciences,
cat. no. 63430-04)

= 96-well black Fluortrac micro plate (VWR, cat. no. 82050728)

« 384-well plates (Phenix Research Products, cat. no. MPC-384HS4NH-C)

= 96-well plates (Eppendorf, twin.tec PCR plate 96, skirted, colorless,
cal. no. D156224K)

= 8-strip, nuclease-free, 0.2 ml, thin-walled PCR tubes with caps (Eppendorf,
cat. no. 951010022

= Microcentrifuge Safe-Lock tubes (Eppendorf, cat no. 022363344)

* Multichannel pipettes and filter tips (Rainin LTS pipette set, 1-10 pl;
2-20 pl; 20-200 pl)

« DynaMag-96 side skirted magnetic rack (Thermo Fisher, cat. no. 12027)

= MicroAmp clear adhesive film (Applied Biosystems, cat. no. 4306311)

= MicroAmp optical adhesive film (Applied Biosystems, cat. no. 4311971)

= Thermal cycler (Applied Biosystems 9700)

= Fluorometer (Molecular Dynamics Flexstation 3)

« Spectrophotometer ( Thermo Fisher, Model: NanoDrop ND-1000)

. Agilcnt 2100 Biuanalyzcr (Agilcnt Tc:hnolcgics)

» Refrigerated centrifuge (Eppendorf, Model: Centrifuge 5804 R)

» C1 system for RNA-seq manual: “‘Using C1 to Generate Single-Cell cDNA
Libraries for mRNA Sequencing Protocol’ (Fluidigm Part No. 100-7168,
https://www.fluidigm.com/documents)
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- DNA sequencing instrument A CRITICAL A compatible [llumina DNA
sequencing instrument (MiSeq, NextGen 500, HiSeq 2000, HiSeq 2500)
is necessary to complete sequencing of the Nextera XT libraries, as
the barcodes and sequencing adapters are designed for the lllumina
sequencing platform.
« 64-bit computer running Linux with 4 GB of RAM (16 GB preferred)
REAGENT SETUP
Nuclei isolation medium #1 (NIM1) Combine the following components.
A CRITICAL This buffer should be made in advance, and it can be stored
in a 50-ml conical tube at 4 °C for up to 6 months.

Component Volume (pl) Final concentration (mM)
1.5 M sucrose 2,500 250

1 MKCl 375 25

1M MgCl, 75 5

1 M Tris buffer, pH 8.0 150 10
Nuclease-free water 11,900 —

Total volume 15,000 —

Nuclei isolation medium #2 (NIM2) The following reagents should be
combined in a 15-ml conical tube and placed at 4 °C or on ice for immediate
use and then discarded.

Component Volume (pl) Final concentration
NIM1 4,895

1mM DTT o 1uM

50x protease inhibitor 100 1x

Total valume 5,000

Homogenization buffer Combine the following reagents.

A CRITICAL This buffer should be made in a 5-ml conical tube,
protected from light, and it should be placed at 4 °C or on ice for
immediate use and then discarded.

Component Volume (ul) Final concentration
NIM2 1,452/1,453.5 (w/woPl) 1%
RNaseln 40 U pl-! 15 0.4 U pl-!
Superasin 20 U pl ! 15 02U pl!
Triton X-100 10% (v/v) 15 0.1% (v/v)

PI (optional for FACS) 1.5/0 (whwo PI) 1M

DAPI (optional for FACS) 1.5/0 (w/wo PI) 1pM
Hoechst 33342 1.5/0 (w/wo PI) 10 ng ml-!

“Total volume 1,500

lodixanol medium (IDM) The following reagents should be combined
in a 50-ml conical tube, and the medium can be stored at 4 °C for
up to 6 months.

Component 1x volume (pl) Final concentration (mM)
1.5 M sucrose 2,500 250
1 MKCI 2,250 150
1M MgCl, 450 30
1 M Tris buffer, pH 8.0 900 60
Nuclease-free water 8,900 &g
Total volume 15,000 s

Iodixanol dilutions The following reagents should be combined, according
to final concentration, in 50-ml conical tubes, and they can be stored at 4 °C
for up to 6 months.

Component 1x volume (pl) Final concentration
Todixanol 60% (vol/vol) 12,500 50% vol/vol
1IDM 2,500 —

Total volume 15,000 —

Component 1% volume (pl) Final concentration
lodixanol 60% 7,250 29% vol/vol
IDM 7,750 —

Total volume 15,000 —

Nuclei storage buffer (NSB) The following reagents should be combined in a
50-ml conical tube, and the buffer can be stored at 4 °C for up to 6 months.

Component 1x volume (pl)  Final concentration (mM)
Sucrose 0.855 g 166.5

1 M MgCl, 50 5

1 M Tris buffer, pH 8.0 500 10
Nuclease-free water 14,450 —

Total volume 15,000 —

EQUIPMENT SETUP

FACS For high-throughput single-nuclei isolation by flow cytometry,

the operator should be familiar with standard doublet discrimination gating
and instrument settings for sorting single nuclei events. In preparation

for sorting single nuclei into 384-well microplates for cDNA synthesis,
accuracy and precision of sorting single events in a plate can be confirmed by
targcling the bottom of each n]icroplam well with 10-pm ycllow fluorescent
polystyrene microspheres and by inverting the plate for direct imaging on an
inverted fluorescence microscope. Typically, 16 wells on both ends of the plate
are targeted for spatial precision and >953% accuracy for a single bead. For
nuclei sorting, staining in 1 uM DAPI, Hoechst 33342 or Pl is suitable.

The choice of stain depends on the number and type of antibody fluoro-
phores used for the detection of the cell type of interest. Targeting and
confirming sorted nuclei on a microscope slide and in microplate wells is
also recommended. Figure 3 shows the FACS gating strategy.
Computational requirements The protocol requires experience in running
commands in UNIX (LINUX) shell environment. Experience with running
Python and Perl language scripts is also required. C++, Perl, Python, Java and
R programs are required to be installed. Prerequisite software is listed in the
Reagents section. Users who do not have programming experience can use
Galaxy analysis portal (https://usegalaxy.org/), which is an open, web-based
plalform‘ to execute most of the programs and commands described in this
protocol, including those mentioned under alternate analysis packages. It
allows the user to specify parameters and to run tools and workflows almost
exactly as described under the PROCEDURE section of this protocol or
modify some of the steps in the analysis in accordance with their preference.
For more specific details on how to use this software, the user can access the
site https://wiki.galaxyproject.org/. Data: requirements vary according to
experimental goals Sequence type: lllumina or other sequencing platforms
that generate short reads (50-250 bases). Sequence format: .fastq or .fasta.
Reference genome: .fasta, index and .gtf or .gff files.

Directory structure Choose or create a directory in which analysis is per-
formed (RUNDIR). Save sequence files and reference .[asta, index and anno-
tation (.gtf or .gff) files to SEQDIR and REFDIR, respectively. Trimmed reads
are also copied to SEQDIR (these can be symlinks to files located elsewhere).
The programs and individual commands described under the PROCEDURE
section below are assumed to be available in the RUNDIR either as symlinks
to the executables or copies of the installed binary files and scripts.
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PROCEDURE

Nuclei isolation ® TIMING 1-2 h

A CRITICAL Keep the workstation and tools free of RNases by thoroughly cleaning with RNaseZap solution before

the experiment.

1| Prepare nuclei isolation media 1 and 2 (NIM1 and NIM2) and homogenization buffer, and place them on ice.

A CRITICAL STEP NIM1 can be prepared and stored at 4 °C for up to 6 months. NIM2 and homogenization buffer should be
freshly prepared.

2| Precool the Dounce homogenizer and pestles on ice. Once it is cooled, fill the homogenizer with 1.0 ml of cold
homogenization buffer and keep it on ice.

3| If you are using tissue, transfer the sample to a Petri dish (on ice) and cut out a (2-3 mm3) section using a chilled
scalpel. Immediately transfer the tissue section into the precooled Dounce homogenizer. If you are using cultured cells,
place 250 pl of cells (collected and resuspended in 1 x 106 cells per ml of 1x cold PBS) into the Dounce homogenizer.

4| Homogenize the tissue or cells with five strokes of the loose pestle, followed by 10-15 strokes of the tight pestle.
A CRITICAL STEP To reduce heat caused by friction, the Dounce homogenization should be performed on ice with gentle
strokes, and care should be taken to avoid foaming. The mortar should be immersed in ice. The precooled homogenization
buffer is an important aid in heat reduction during homogenization.

5| Filter the homogenate through a BD Falcon tube with a cell strainer cap; this filters out debris larger than 35 pm.
Estimate the number of intact nuclei by staining a 10-ul aliquot of the filtered homogenate with trypan blue (10 pl), by
loading it onto a hemocytometer and viewing it under a light microscope. At this point, nuclei can either be immunostained
for neuronal markers (Optional Steps 6-12) to enrich for neuronal nuclei during FACS or they can be subjected directly to
FACS (Steps 13-18) based on double discrimination only.

A CRITICAL STEP We obtained ~6 x 10% nuclei per milliliter from 2-3 mm3 of frozen normal human cortical brain tissue.
Figure 2 shows a typical amount of debris present and varying sizes (7-10 pm) of nuclei from prefrontal cortical tissue.

A CRITICAL STEP For frozen human brain tissues, we recommend proceeding directly to FACS (Step 13), after filtering the
homogenate, without further purification, as the nuclei have been subjected to freezing, and additional purification steps
may cause further RNA damage. For fresh brain tissues, an additional iodixanol centrifugation-based purification may be
helpful depending on the experiment. In general, each purification step results in lower yields of nuclei, and adjusting the
starting material is desirable according to the downstream application.

7 TROUBLESHOOTING

(Optional) Neuronal nuclei immunostaining ® TIMING 1-1.5 h

A CRITICAL The anti-NeuN antibody can be used to enrich for nuclei originating from neurons. We chose a dual-antibody
staining strategy that first tags the nuclei with an unconjugated mouse anti-NeuN antibody, followed by a goat anti-mouse
Alexa Fluor 594-conjugated secondary antibody. Mouse IgG1k detected by goat anti-mouse Alexa Fluor 594 serves as an isotype
control for FACS to ensure specificity of the NeuN antibody (see Supplementary Fig. 1 for the expected level of staining).

6| After homogenization and filtering (Step 5), concentrate the nuclei by centrifugation (1,000g for 8 min at 4 °C),

and remove the supernatant. Resuspend in 500-1,000 pl of staining buffer (RNase-free PBS, pH 7.4, with 0.5% (wt/vol)
RNase-free BSA and 0.2 U pl-1 of RNasin Plus RNase inhibitor).

7| Incubate the sample for 15 min on ice to allow for blocking of nonspecific binding with 0.5% (wt/vol) BSA. Remove
100 pl of the sample to a new tube for isotype control staining, and keep the remainder of the sample for staining with
mouse anti-NeuN antibody.

8| For the isotype control sample, add purified mouse IgGlk to the tube at a final dilution of 1:5,000. For NeuN staining,
add mouse monoclonal anti-NeuN antibody to the tube at a final dilution of 1:5,000. Incubate the samples on a tube rotator

for 30 min at 4 °C.

9] Wash the samples by adding 500 il of staining buffer to each tube and inverting the tubes several times. Spin the
samples for 5 min at 400g in a refrigerated (4 °C) centrifuge to pellet nuclei.

10| Resuspend the pelleted nuclei in 500-1,000 ul of staining buffer, and add goat anti-mouse Alexa Fluor 594-conjugated
secondary antibody to each tube at a final dilution of 1:5,000. Incubate the samples for 30 min on a tube rotator at 4 °C.
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11| Wash the samples by adding 500 pl of staining buffer to each tube and by inverting the tubes several times. Spin the
samples for 5 min at 400g in a refrigerated (4 °C) centrifuge to pellet nuclei.

12| Resuspend nuclei in 500~1,000 pl of staining buffer, and add DAPI at a final concentration of 1 pg ul-! to each tube.
Proceed directly to FACS (Steps 13-18).

Nuclei FACS sorting ® TIMING 2-3 h
13| Prepare lysis buffer by adding the following reagents to a 1.5-ml Eppendorf tube, and then place it on ice.

Component 1x volume (pul) Final concentration
10% (vol/vol) Triton X-100 20 0.2% (vol/val)
RNase inhibitor 40 U pul-1 50 20t

ERCC spike-in mix 1, 1:2,000 1 1:2 x 106
Nuclease-free water 929 —

Total volume 1,000

A CRITICAL STEP The lysis buffer should be freshly made for each experiment.
14| Prepare 96- or 384-well thin-walled PCR plates by adding 2 pl of lysis buffer to each well.

15| Prepare the FACS instrument for daily FACS setup, testing and droplet delay optimization.

A CRITICAL STEP We recommend adhering to the FACS manufacturer’s instructions that the droplet stream be optimized for
timing delay, with any satellite droplets merged by the fifth drop after the droplet breakoff. Failure to optimize the droplet
breakoff may result in a charge placed on the satellite droplet instead of the droplet of interest.

16| Prepare FACS plots for doublet discrimination gating according to the manufacturer's recommendation to prevent
sorting of doublets, triplets and further groupings of attached nuclei. Adjust the instrument software parameters to enable
single-cell stringency. Load a small amount of sample into the instrument to confirm gating, and arrange gates on the FACS
plots as needed. For samples that have been immunostained, sort populations for both NeuN+ and NeuN- with the NeuN+
population clearly distinguished with Alexa Fluor 488 fluorescence. If an unbiased nuclei populaticn is desired, sorting may
be completed using the DAPI* population.

17| Confirm FACS parameter settings for single nuclei sorting before sorting the actual samples. Confirmation can be
achieved by targeting of the plate using 10-um yellow fluorescent polystyrene microspheres or similar (Equipment Setup).
A CRITICAL STEP We recommend that even experienced FACS users complete a series of practice sorts (with single-cell sort
instrument parameter settings) of microspheres before the actual sample sorting in order to confirm that the sorting is accurately
timed and that the plate is properly targeted. Day-to-day variability in both of these parameters necessitates these precautionary
steps to ensure efficient and accurate single nuclei sorting. Accuracy of microsphere sorting is determined by direct imaging of the
microspheres at the bottom of the inverted microplate well (Fig. 3g). An accuracy of no less than 95% single microsphere sort-
ing is recommended. For 384-well microplate sorting, the microscope objective often does not possess the dynamic focal range
required to image the bottom of the well. A simple loosening of the objective for a few turns will bring the bottom of the well and
the microsphere into focus. For 96-well plates, a custom objective with a long working distance for focal range may be required.

18| Proceed to FACS of sample nuclei. We recommend keeping the overall event rate for particles to 200-2,000 events per
second on the FACS instrument to prevent swamping of the detectors that may result in a poor sorting accuracy. Depending
on the concentration of nuclei, dilution of the sample may be required.

A CRITICAL STEP Before microplate sorting, a final confirmation of single nuclei sorting onto a slide for direct imaging of
sorted single nuclei is recommended. Sorting into ~1 pl of NSB on a microscope slide can be sufficient to locate, count and
image single nuclei. If the nuclei or a subpopulation of the nuclei are found to be difficult to distinguish from other particles,
consider performing iodixanol density gradient centrifugation (Box 4) before proceeding with sorting of the rest of the sample.
? TROUBLESHOOTING

B PAUSE POINT Plates with FACS-sorted nuclei can be sealed with a MicroAmp Thermo-Seal lid, frozen on dry ice and stored
at -80 °C. Otherwise, proceed with lysis and reverse transcription immediately (Step 19).
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Sequencing library preparation ® TIMING 2 h

24| Use cDNA preparations (from Step 19) that pass quality control (Step 23) to prepare a sequencing library; we use the
Illumina Nextera XT Library prep kit and follow the instructions in the Fluidigm C1 manual (see INTRODUCTION and MATERIALS).
We start at page 35 of the manual with dilution of the cDNA and proceed through tagmentation, PCR amplification and
AMPure XP bead cleanup, with the modifications for nuclei indicated in the table below. Determine the quality of the final
pooled Nextera XT libraries, for example, by using the high-sensitivity DNA kit for Agilent Bioanalyzer according to the
manufacturer’'s recommendations.

Modification no.  Page and Step in Fluidigm C1 manual Modification Reason
1 Page 41-43, Pool and Cleanup Purify each of the Nextera XT Individual purification, elution
reactions individually (not as a and quantification of Nextera XT

single pool) and Elute each individual libraries allows for the exclusion
reaction in 17 pl of Low TE (10:0.1) of failed sequencing library preps
and quantify each with PicoGreen in the final RNA-seq pool

2 Page 43, Repeat Cleanup Step Pool the samples; note the starting A pool is generated from 3 ng
volume of the pool. Perform cleanup  from each individual library.
using AMPure XP beads and elute with The library should not include
the same volume as used when pooled libraries that failed amplification

<DNA Sequencing: sequence type and yield ® TIMING 24 h

25| Subject the libraries to paired-end (preferable) or single-end sequencing on a suitable Illumina NGS platform (MiSeg,
HiSeq and NextSeq); aim to generate 2-5 million reads per sample with a read length of 100-150 bases. Data are generated
in .fastq format. Example sequencing statistics are provided in Supplementary Table 1.

RNA-seq analysis: sequence quality assessment and preprocessing ® TIMING variable

26| Sequence quality assessment. Evaluate sequence files from each nucleus (sample) from Step 25 using the fastQC tool for
sequence yield, base quality, GC profile, k-mer distribution, contamination and so on. A computer grid environment should
be used for processing a large number of samples simultaneously. The prototype command used is shown below. Note that
the fastqc version available to the user can differ from the one shown here.

$ java -Xmx1500m -cp RUNDIR/fastgc_v0.10.1/FastQC/sam-
1.32.Jar:fastge_v0.10.1/FastQC/jbzip2-0.9.jar:fastgc_v0.10.1/FastQC/
-Dfastgc.nogroup=true uk.ac.babraham.FastQC.FastQCApplication
SEQDIR/input.sample. fastqg.gz

27| Sequence duplication. Determine the degree of sequence duplication in the input data. Use the fastx_collapser tool to

calculate the absolute number of identical reads (duplicates) in the input sample fastq sequences (from Step 25). Use correct
base quality score offset (-Q). Process multiple sequence files iteratively (the program accepts only one sequence file as input).

$ RUNDIR/fastx_collapser -Q 33 -v -1 SEQDIR/input.sample.fastq
1>/dev/null 2>input.sample.fastg.duplicate_summary.txt
28| Sequence trimming. Use the trimmomatic program to perform trimming of input paired-end or single-end .fastq reads

(from Step 25) to remove adapter/primer sequences and low-quality end bases. The adapters and primers used in the
commands below are shown in the Supplementary Note.

If sequences are paired-end only:

S java -jar Trimmomatic-0.32/trimmomatic-0.32.jar PE -threads 8 -
phred33 -trimlog input.sample.fastqg.trim.log input.sample.Rl.fastqg.gz
input.sample.R2.fastg.gz input.sample_trimmed.R1l.fastqg
input.sample_trimmed.Sl.fastq input.sample_trimmed.R2.fastqg
input.sample_trimmed.S2.fastqgq
ILLUMINACLIP:adapters.primers.txt:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN: 60
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If sequences are single-end only:

$ java -jar Trimmomatic-0.32/trimmomatic-0.32.jar SE -threads 8
-phred33 -trimlog input.sample.fastq.trim.log
input.sample.single.fastq.gz input.sample_trimmed.single.fastqg
TLLUMINACLIP:adapters.primers.txt:2:30:10 LEADING:3 TRATILING:3
SLIDINGWINDOW:4:15 MINLEN:60

RNA-seq analysis: sequence mapping and expression analysis by RSEM @ TIMING variable

29| Preparation of the reference genome. Index the reference genome and transcript fasta files for mapping the trimmed
reads to the reference genome using bowtie2 program. Use reference genome annotation file (GTF) for the generation of
indexes for individual transcripts. Choose a prefix for naming the index files used in the mapping.

$ RUNDIR/rsem-prepare-reference --gtf

REFDIR/GRCh37_ERCC_GFP_RNASpikes.gtf —--bowtie2
REFDIR/GRCh37_ERCC_GFP_RNASpikes.fa RSEM_GRCh37_ERCC_GFP_RNASpikes

30| Calculating expression values. Map paired-end reads that survive trimming (Step 28) to the reference transcripts,

and calculate gene- and isoform-level expression values using expectation-maximization algorithm, as implemented by
the RSEM program.

$ RUNDIR/rsem-calculate-expression --bowtie2 -p 8 --tag MA:i:2
-fragment-length-min 1 --fragment-length-max 500 --output-genome-bam
--calc-pme --calc-ci --estimate-rspd --time --paired-end
SEQDIR/input.sample.R1.fastqg SEQDIR/input.sample.R2.fastqg
RSEM_GRCh37_ERCC_GFP_RNASpikes sample name

31| Sensitivity assay of transcript expression. To determine the lower threshold and the dynamic range of detection sensitivity
across high to low copy numbers of RNA expression using ERCC spike-in transcripts, first convert the ERCC RNA spike-in

molar concentrations (http://tools.lifetechnologies.com/content/sfs/manuals/cms_095046.txt) to number of molecules
after adjusting for 1:1.1 x 107 dilutions used in preparing the final reaction mixture. Then, calculate mean transcripts

per million (TPM) values from nuclei (samples) for each of the 92 ERCC spike-in transcripts expressed at >0 TPM in at least
one sample. Finally, generate a regression plot after transforming the number of ERCC spike-in molecules (x axis) and

the mean TPM values (y axis) on log2 scale (Fig. 6 and Supplementary Table 2).

32| Extract supplementary methods and load IPython Notebook. Download the SupplementaryMethods.zip file (Supplementary
Methods) and extract its content. It contains files for Steps 32-46 and Step 47 in the folders ‘steps 32-46" and ‘step47’,
respectively. For ease of use, Steps 32-46 are present in the accompanying IPython notebook (data_analysis.ipynb).

The notebook also makes calls to the supplementary file (helpers.py) to parse and process the data generated. In what
follows, all directions for the notebook appear as IN>. Note that it is not necessary unless directed to change the
commands in the notebook; one may execute a code block by pressing control+enter. The commands are duplicated

here for completeness and for alternate workflows. This pipeline is also available online at https://github.com/Schork-Lab/
np_single_nucleus_rnaseq/

Download and move to directory with the SupplementaryMethods.zip
S unzip SupplementaryMethods.zip
S cd steps32-46

$ ipython notebook

In the browser window that opens, click on data_analysis.ipynb

33| Load libraries and change paths. The script begins by loading the necessary libraries. If the libraries cannot be loaded,
please use the Python Package Index to download them, and restart the IPython notebook. Before beginning the analysis,

42



I@ © 2016 Nature America, Inc. All rights reserved.

| PROTOCOL

it is necessary to set several paths that follow from the Directory Structure. These include paths to the .bam files (bam_dir)
and RSEM-generated genes.results file (rsem_dir). These paths follow from the analysis until Step 30. In addition, if tools
samtools, bedtools and geneBody coverage.py are not in the system path, please include full paths to them.

IN> #Python libraries

import os

# Python packages
import pandas as pd

import seaborn as sns

# User modules

import helpers

# Figure styles
sns.set_context ('notebook')

sns.set_style ("white")

IN> data path = "/home/kunal/tscc projects/lasken/data/"
bam dir = data path

rsem_dir = data_path

out_dir = os.path.join(data_path, "out")

if not os.path.exists(out_dir): os.mkdir (out_dir)

path_to_samtools = 'samtools'
path to_genebody coverage = 'geneBody coverage.py'
path_to_bedtools = 'bedtools'

34| Calculate and plot overall mapping statistics. Calculate the number of reads mapped to the genome, mapped to the ERCC
spike-ins or that remain unmapped using the samtools idxstats tool. Python is used to generate the necessary Unix commands,
and they are executed within the IPython environment. Load the resulting files into Python and generate a stacked barplot.

IN> for fn in os.listdir (bam_dir):
if fn.endswith('.genome.sorted.bam'):
out_file = os.path.Jjoin(out_dir,
= 3 fn.replace('.bam', '.idxstats"'))
in_file = os.path.join(bam dir, fn)
samtools_cmd = "%s idxstats %s > %s" % \
(path_to_samtools, in_file, out_file)
print "Running samtools idxstats for file: %s" % fn

!$samtools_cmd

mapped_df = helpers.load mapped_data(out_dir) .sort()
ax = mapped_df.plot(kind= 'barh', stacked=True)
ax.set_xlabel ( 'Number of Reads')

? TROUBLESHOOTING
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RNA-seq analysis: biological and technical variation ® TIMING variable

35| Load and parse TPM values generated by RSEM. RSEM generates a genes.results file with several quantitative measures of
a gene's expression. For all samples, load and parse these files to extract only the TPM column, and then merge all the files
into a single matrix. For this matrix, the rows are gene ids, the columns are sample ids and the value of each cell is the TPM
value for that gene in that sample. Filter out all genes that are only expressed in one sample or zero samples. Also, filter out
ERCC spike-in contigs’ expression from the TPM matrix.

IN> tpm_df = helpers.filter_ df (helpers.load_ tpms(rsem dir),

genes_only=True,

expressed_in_multiple=False)
36| Calculate and plot counts of genes expressed in single nuclei relative to bulk RNA. Divide a chosen control sample’s set of
expressed genes into ‘low’, ‘mid" and ‘high” designations on the basis of their quantiles of expression. The default values used
for the low- expressed genes are those that are in the quantile up to 0.33, the values for mid-expressed genes are: 0.33 to

0.67, and the values for high-expressed genes are: 0.68 to 1. For each sample, count how many genes are designated as low,
mid, high, or novel through set intersections.

IN> control = 'Total RNA-100pg-2' # Set control sample name

low, mid, high = helpers.get_low mid high_ genes (tpm_df [control])

expressed_df = helpers.calculate_relative expression(tpm df, low, mid, high)

37| Plot relative expression in single nuclei compared with bulk RNA. Create two plots: one plot details which fraction of the

control sample’s genes is expressed in each sample (Fig. 7a). The other plot details the relative composition of the genes
expressed in each sample to the control sample (Fig. 7b).

IN> cols = ['Low', 'Mid', 'High']

control_values = expressed_df[cols].ix[control]

fraction_df = expressed_df[cols].astype (float)/control_values
ax = fraction_df.plot(kind= 'barh')

ax.set_title('Fraction of %s Genes Expressed' % control)

ax.set_xlabel ('Fraction of Genes Expressed')

IN> composition_df = expressed_df.apply(lambda x:
x.astype (float) /x.sum() ,
1. axis=1)
cols = ['Low', 'Mid', ‘High', 'Novel']
ax = composition df[cols].plot(kind= 'barh')
ax.set_title('Composition of Genes Expressed ‘\nRelative to Expression
in %s” % control,loc= 'left')
ax.set_xlabel ('Fraction of Genes Expressed')
38| Plot pairwise correlation of expression across all samples. Calculate pairwise Spearman’s correlation for all samples.

Stratify the correlation matrices by low, mid and high genes based on their expression in the previously defined control
sample. Plot the resulting matrices as heat maps.

IN> for genes, gene_type in zip([low, mid, high], ['Low', 'Mid’, 'High']):
fig = plt.figure (figsize=(8,8))
ax = fig.add_subplot (111)
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ax = sns.corrplot (tpm df.ix[genes.index].sort (axis=1),
method= 'spearman',K ax=ax, diag names=False,
cmap_range=(0, 1), cbar=True)

ax.set_title('Correlation Stratified by %s Expression in
%s' % (gene_type, control))

sns.despine ()

RNA-seq analysis: quality based on coverage across the gene body ® TIMING variable

39| Create bed file of highly expressed genes. To gain a better idea of the quality of the transcripts being sequenced, focus on
transcripts that are highly expressed. Create a .bed file to be used in other tools that only has the highly expressed tran-
scripts based on the control sample.

IN> gtf file = os.path.join(data_path,
'reference’,
'GRCh37_ERCC_GFP_RNASpikes.gtf')
high_gtf = gtf_file.replace('.gtf', '.high expressed.gtf')
print "Subsetting %s to only highly expressed genes as %s" %
(gtf_file, high_gtf)

helpers.subset_gtf by genes(high gtf, gtf_file, list(high.index))

high_bed = high gtf.replace('.gtf', '.bed')

print "Converting %s to %s" % (high_gtf, high bed)

perl gtf2bed.pl $high gtf > $high bed

40| Calculate coverage across the gene body. For the highly expressed transcripts, calculate their coverage across the

length of the gene body using RseqC's geneBodyCoverage.py tool. Use Python to generate the command that includes
all the sample .bam files, as well as the highly expressed genes .bed file. Run this command through the IPython shell.

IN> rnaseqc_prefix = os.path.join(out_dir,
"rnaseqgc_high_coverage_control")
sample_files = [os.path.join(bam dir, fn) for fn in

os.listdir (bam_dir)

if fn.endswith('.genome.sorted.bam')]
in _files = ", ".join(sample files)
rnaseq_c_cmd = " %s -1 %s --refgene %s --out-prefix %s" % \

(path to genebody coverage, in files, high bed,
rnaseqgc_prefix)
fns = ", ".join([os.path.basename(fn) for fn in sample_files])
print "Running gene body coverage for sample files: %s" % fns
!rnaseq_c_cmd
41| Plot relative coverage across the gene body. Load in the previously generated geneBodyCoverage files from Step 40 using

a helper function. The helper function defines the normalized coverage as the (coverage — minimum coverage)/(maximum
coverage - minimum coverage). Plot the data and set appropriate labels.

IN> rnasedqc_file = rnaseqc_prefix+ '.geneBodyCoverage.txt'
normalized df, coverage_df =

helpers. load_gene_body_coverage (rnaseqc_file)
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ax = normalized df.plot()

ax.set_xlabel ("Gene Body (5' -> 3')")

ax.set_ylabel ("Relative Coverage")

RNA-seq analysis: quality based on intron and exon coverage ® TIMING variable

42| Align reads using TopHat2. As the RSEM program maps sequences to only exons in the annotated reference transcripts,
use TopHat2 program for mapping reads to both exons and introns in the reference genomic sequence. Generate the

appropriate index files needed for bowtie2 mapper, which is executed by TopHat2. Run the following commands in sequence
to generate a .bam alignment file with sequences mapped to exons and introns.

$ RUNDIR/bowtie2-build REFDIR/GRCh37_ERCC_GFP_RNASpikes. fa
GRCh37_ ERCC GFP RNASpikes

$ RUNDIR/samtools faidx REFDIR/GRCh37_ERCC_GFP_RNASpikes.fa

$ RUNDIR/tophat2 -p 8 --library-type fr-unstranded -G
REFDIR/GRCh37_ERCC_GFP_RNASpikes.gtf GRCh37_ERCC_GFP_RNASpikes
SEQDIR/input.sample.R1l.fastg.gz SEQDIR/input.sample.R2.fastqg.gz

43| Inspect in IGV. Open IGV Viewer, and load in the .bam file. Manually zoom in and out of large housekeeping genes such
as GAPDH to inspect whether only spliced transcripts are being sequenced.

44| Create intron and exon .bed files. Set paths for the names and locations of the intron and exon .bed files. Use the accom-
panying create_intron_exon_beds.sh to create intron and exon .bed files based on the provided GTF file.
IN> intronic_bed = os.path.join(data_path,
'reference',
'GRCh37_ERCC_GFP_RNASpikes.gtf.introns.bed')
exonic_bed = os.path.Jjoin(data_path,
'reference',
'GRCh37_ERCC_GFP_RNASpikes.gtf.exons.bed')
!sh create_intron_exon_beds.sh $gtf_file $exonic_bed $intronic_bed
45| Calculate coverage overlaps with exons and introns. Set the path to the TopHat2-generated .bam file (from Step 42). Use

bedtools command bamtobed in conjunction with the bedtool coverage command to look at the coverage across introns and
exons of the sample .bam file.

sample_tophat_bam = '/path/to/tophat.aligned.bam'

intronic_out = sample_ tophat bam.replace('.bam', '.intronic_coverage')
intronic_cmd = "%s bamtobed -splitD -i %s [ awk

\ 'BEGIN{OFS=\"\\t\"}$1=\"chr\"$1\" | %s coverage -a - -b %s > %s" %

(path_to_bedtools, sample tophat_bam, path to_bedtools, intronic_bed,
intronic_out)
print "Creating intronic coverage file"

!$intronic_cmd

print
exonic_out = sample_tophat bam.replace('.bam', '.exonic coverage')
exonic_cmd = "%s bamtobed -splitD -i %s | awk
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NIBEGINIOES=\N UG EN T S1=NTehr " ST\ ] | %s coverage -a - -b %s > %s" %
(path_to bedtools, sample tophat bam, path_ to_bedtools, exonic_bed,
exonic_out)

print "Creating exonic coverage file"

! Sexonic_cmd

46| Load and plot exonic versus intronic coverage. Load the generated bedtools coverage files from Step 45 for the introns
and exons. Select regions that have at least 1 read mapping to them and that are at least 1 kb long. Plot the differences
between the intronic and exonic regions, as shown in Supplementary Figure 2.

IN> intronic_df = helpers.load bedtools_coverage(intronic_out,
min reads=1,
min_length=100)

exonic_df = helpers.load_bedtools_coverage (exonic_out, 1, 100)

fig = helpers.plot_bedtools_coverage (intronic_df, exonic_df)

Sample classification ® TIMING variable

47| Cell type classification for assessing how well nuclear and brain cell RNA matches: R code and additional files required to
reproduce this step are provided in the folder ‘step47’ (Supplementary Methods). Convert Ensembl Gene identifiers into cur-
rent gene symbols using BioMart (http://www.ensembl.org/biomart/martview; downloaded 1/26/15 (ref. 26)), and exclude
all transcripts without a current gene symbol. Convert TPM values to log scale (offsetting by 1). Cluster cells by identifying
the 1,000 genes with the highest variability, finding the Pearson’s correlation distance, performing multidimensional scal-
ing to identify the first four principal coordinates and running k-means clustering with K = 4 on these principal coordinates.
Calculate the number of genes expressed in each cluster for comparison. Determine the cell type of each cluster by collecting
lists of marker genes for known brain cell types24.35, by determining the expression levels of these sets of genes in each nu-
clei, assigning cell type based on high expression of markers and confirming cell type classification based on nearly exclusive
enrichment of individual canonical marker genes.

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 1.

TABLE 1 | Troubleshooting table.

© 2016 Nature America, Inc. All rights reserved.

Step  Problem Possible reason Solution
50
‘9 b Low nuclei yield Poor-quality tissue Obtain intact tissue with a low number of freeze-thaw cycles
Lack of nuclei in tissue Microscopically assess the density of nuclei in the tissue

Inadequate cell lysis to release  Use appropriate concentration of detergents, salt and sucrose
the nuclei in the cell lysis buffer

Optimize the number of Dounce strokes
Use a homogenizer with appropriate clearance level to release the nuclei

Use chilled buffers and homogenizers, and execute the entire
procedure at 4 °C

Improper centrifugation may Optimize the density gradient for nuclei isolation and the speed
cause the cellular debris to of centrifugation to your tissue type

sediment, which may alter the

yield of pure nuclei

18 Poor recovery of single  Targeting of FACS for single Optimize FACS conditions and determination of sorting gates
nuclei from FACS nuclei isolation is compromised

Sort nuclei onto a glass slide and visualize them under the microscope

(continued)
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TABLE 1 | Troubleshooting table (continued).

Step  Problem Possible reason Solution

23 Failure of qPCR assays No nuclei in the wells Optimize single-nucleus targeting into wells of the microtiter
(if using FACS) plate prior to FACS
Low-quality RNA obtained Use a sample with a high RIN value

from the lysed nuclei

mRNA degradation Keep the workstation and tools free of RNases by thoroughly
cleaning with RNaseZap. Do this daily or before each experiment

Inefficient cDNA synthesis Use fresh dNTPs

Keep all reagents on ice and minimize the freeze-thaw cycles of
sensitive items

Reverse transcription failure Check all cDNA synthesis steps using ERCC spike-in as a
positive control

34 Excessive DNA Concatemer formation from Be certain to use the 5’ biotin-modified TSO primer!! (as done in
sequencing reads the TSO primer of the step 19 and discussed in the INTRODUCTION) rather than
failing to map to the Smart-seq2 method the unmodified version used in Picelli ef al.3

reference genome

® TIMING

Steps 1-5, nuclei isolation: 1-2 h

Steps 6-12, (optional) neuronal nuclei immunostaining: 1-1.5 h
Steps 13-18, nuclei FACS sorting: 2-3 h

Step 19, cDNA synthesis by Smart-seq2: 1 d

Steps 20-23, qPCR and TagMan analysis: 3 h

Step 24, sequencing library preparation: 2 h

Step 25, cDNA sequencing: sequence type and yield: 24 h

Steps 26-46, RNA-seq analysis: sequence quality assessment and preprocessing: variable
Step 47, sample classification: variable

Box 3, sample quality assessment of tissue and cultured cells: 1 h
Box 4, density gradient centrifugation: 1 h (optional)

ANTICIPATED RESULTS

This protocol enables the FACS-based isolation of single nuclei suitable for RNA sequencing. The use of a neuron-specific
antibody for staining allows comparison of transcriptomes from neurons and other cell types. The RNA-seq data can be used
to determine cell types based on the profiles of the genes expressed.

Figures 3-10 are generated from an RNA-seq experiment on single nuclei isolated from frozen normal human cortical
brain samples obtained from the NIH NeuroBioBank located at the University of Maryland, where they were stored
at —80 °C. The brain specimens had been collected and deposited at NeuroBioBank up to several hours after death.

The nuclei were stained with NeuN-Alexa Fluor 488-conjugated antibody and sorted using FACS gating parameters
designed to distinguish neurons and non-neurons (Fig. 3a-f). The sorting accuracy and precision for single nuclei

was verified by sorting beads into 384-well plates and viewing them under the microscope (Fig. 3g). Figure 3h,i shows
PI-stained nuclei.

Bioanalyzer analysis of the quality of ¢cDNA library synthesis and amplification by Smart-seq2 gave typical results (Fig. 4).
After AMPure bead purification of the cDNA Llibrary, a size range of ~150 bp to 7 kbp is expected, with the majority of frag-
ments in the 1- to 3-kb range (Fig. 4b). Primer dimers in the size range of ~100 bp make up a small minority of the total
cDNA, and therefore no further purification after Ampure bead cleanup is necessary before library prep. The primer dimers are
further reduced in the purification of the library prep (Fig. 4c) and in a second purification of the pooled library for Illumina
sequencing. After Nextera XT purification, the typical size range of the library is 200-1,000 bp (Fig. 4c). If necessary, librar-
ies may be pooled and further purified before sequencing to get the optimal library insert size for maximum read depth, but
with the expectation of some loss of material.
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Detection of gene expression (Steps 29 and 30)

Of the ten nuclei sequenced in this example, six were identified as neuronal on the basis of FACS for the NeuN protein and
four were non-neuronal (Fig. 7). Note that the percentage of reads mapping to ERCC spike-in controls, the genome and
unmapped reads can vary widely depending on the starting amount of mRNA derived from the nucleus and the amount of
artifactual PCR products such as primer dimers that are created. The number of genes expressed also varies widely among
single nuclei, most likely owing to variation in the mRNA content of phenotypically different cell types, as well as technical
sources of variation caused by insufficient lysis of the nuclei and suboptimal cDNA synthesis (see ‘Sample controls” in the
INTRODUCTION for comments on use of technical replicates to evaluate experimental noise). The number of genes detected
ranged from 1,102 to 6,221 (Fig. 7). The range was higher for total RNA as expected, as a population of different cell types
is represented by this RNA template. Failure to detect many genes expressed from a single nucleus may indicate poor yields
of cDNA and lack of sensitivity for low-copy transcripts. However, caution must be used in this conclusion, as the cells may
simply have been relatively quiescent. More genes will be expressed in pools of multiple nuclei reflecting the full range of
genes expressed in the cell population. This can also serve as an important validation for genes detected in single nuclei. In
general, the genes expressed in the pools should represent the sum of all genes detected in the individual nuclei. The level
of expression should also agree hetween pools and individual nuclei. For example, a gene that is expressed at a high level
but in only a small percentage of nuclei should appear at a commensurately low level in the pools. Expression signatures are
nearly identical between nuclei and whole cells over a wide range of RPKM values; however, a subset of transcripts known to
be enriched in nuclei, on the basis of bulk-RNA extractions, was confirmed as enriched in the individual nucleil3.

Sensitivity of detection (Step 31)

The detection sensitivity of the RNA expression analysis is determined by adding ERCC spike-in control transcripts of various
concentrations to the lysis buffer (Step 13) used to release RNA from the nuclei. The ERCC spike-ins are processed along with
sample RNA through the RT reaction and subsequent cDNA amplification and sequencing (Box 2¢). The limit of detection

for ERCC spike-in transcripts should be <10 copies, as observed in the example provided here (Fig. 6 and Supplementary
Table 2). Expression of a single-copy ERCC spike-in transcript can be detected at an approximate threshold value of nine TPM
(intersection with the y axis, Fig. 6). A failure to generate cDNA for the ERCC spike-ins would indicate failure of the Smart-
seq2 reaction, for example, because of inactive RT. If the ERCC spike-ins generate the expected amount of cDNA but cellular
transcripts are not detected, then the transcripts were lost at some stage of the process, probably because of degradation of
RNA in the cell resulting from improper handling or storage, failure to successfully sort the nuclei into the wells or failure to
completely lyse the nucleus.

When compared with the transcripts expressed at high and medium levels, those with a low level of expression show a great-
er degree of variation relative to the pattern of expression seen in the control total RNA samples (Fig. 7b and Supplementary
Fig. 3). It is possible that the lack of expression for low-copy transcripts reflects real biological phenomena. For example, low-
copy transcripts may be more likely to be variably expressed if they tend to be involved in regulatory or other nonconstitutive
functions. However, we suspect that at least some of the effect results from variable sensitivity below 10 transcript copies.

Assessing 3’ bias (Steps 40 and 41)

3’ bias can be indicative of damaged RNA, as well as poor activity from the RT, and it is a source of noise in RNA-seq
experiments (Fig. 8a). The graph output details the relative coverage across the gene body from the 5" end to the 3" end
for the highly expressed genes in the example given (Fig. 8b). An almost square wave should be observed, showing

uniform relative coverage across the gene body with drop-offs near the 5° and 3’ end because of end effects in the Nextera
tagmentation reaction for library construction. If the plot is highly skewed to the 3" end relative to the plot for control RNA
of high RIN value, it is indicative of poor RNA quality. In this example, a nearly identical 3 bias was found in cDNA from
nuclei and the control-purified RNA (Fig. 8b), confirming that the ¢cDNAs from single nuclei were predominantly full

length. Recently, we have confirmed that damaged mRNA controls, generated by heating in the presence of sodium acetate,
quantitatively generate 3" bias in the sequence coverage (M.N. and R.S.L., unpublished data).

Analysis of exon and intron coverage (Steps 42-46)

Most or all of the detected transcripts will be fully spliced with relatively uniform coverage across exon/exon junctions but
not intron/exon junctions13, In the example shown here, exons are fully covered by at least one read, whereas only a few
intronic regions have their entire length covered fully by reads (Fig. 9 and Supplementary Fig. 2). Although many reads
map to intronic regions!3, the source of these reads is not clear. The length of an exon does not seem to show a correlation
with the extent to which the exon is covered. Only small introns (<10 kb) show full coverage across their entire length. The
absence of intronic reads and the relatively even sequence coverage across exon/exon junctions confirms an earlier finding®3
that most or all of the transcripts obtained from the nuclear lysates have been spliced. Intronic reads were detected, but
these were not present evenly across exon/intron junctions (Fig. 9 and Supplementary Fig. 2), as should be observed if
unspliced transcripts were detected.
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Cell type classification (Step 47)
The RNA-seq data can be used to verify that specific cell types have been enriched by FACS. In the example shown here,
the presence of the NeuN protein (Fig. 5, nuclei labeled neuronal), a neuron-specific nuclear marker, based on antibody
labeling during FACS of nuclei, was consistent with the RNA-seq detection of NeuN transcript in half of the nuclei labeled
with anti-NeuN antibody and none of the NeuN-negative nuclei (Supplementary Table 1). In cases in which the cell is
positive for a protein marker based on FACS, but the transcript is not detected, it is possible that the protein is longer
lived than the transcript. Transcription tends to occur in bursts, and it does not exactly reflect protein concentrations.
Alternatively, some nuclei may be spuriously identified as positive during FACS.

Gene expression values from nuclei can be used to identify cell types!3. In the example given here, gene expression
was analyzed from the ten postmortem human nuclei to evaluate the identities and characteristics of the cells. To do so in
an unbiased manner, we first identified the 1,000 annotated genes with the highest variahility across the 10 nuclei, and
we then clustered the nuclei into four groups using k-means clustering (Fig. 10a). All of the NeuN+ nuclei (labeled 1-6
in Fig. 10) and one of the NeuN- (D) nuclei were found in two clusters that contained a large number of overlapping
genes (Fig. 10b and Supplementary Table 3), whereas the remaining three NeuN- nuclei (A-C) clustered separately,
suggesting that our FACS strategy is highly accurate, but not perfect, at separating nuclei from different cell types.
To further characterize these nuclei, we measured the average expression levels of known marker genes for different
brain cell types, on the basis of two studies that transcriptionally profiled pure cell populations in mouse (Fig. 10c and
Supplementary Table 4). The remaining two clusters of predominantly NeuN+ nuclei both showed high expression for
neuronal markers, but they showed different levels of inhibitory and excitatory marker genes36. The remaining two clusters
of NeuN- nuclei showed lower expression of neuronal markers but high expression of markers for specific glial populations3:
astrocytes and oligodendrocyte precursor cells (Fig. 10c and Supplementary Table 4). Expression patterns of specific marker
genes for these cell types confirm these cell type classifications (Fig. 10d). Overall, we found that the ten nuclei profiled
by RNA-seq came from four distinct brain cell types.
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Chapter 2.2, in full, is a reprint of the material as it appears in Using single nuclei for
RNA-seq to capture the transcriptome of postmortem neurons. 2016. Krishnaswami SR,
Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA,
Miller JA, Hodge R, McCarthy JK, Kelder M, McCorrison J, Aevermann BD, Fuertes FD,
Scheuermann RH, Lee J, Lein ES, Schork N, McConnell MJ, Gage FH, Lasken RS. 2016. The

dissertation author was a primary investigator and author of this paper.
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2.3. WHAT IS A NEURAL CELL TYPE?

The methods described in the previous chapter have yielded a vast array of biological
insight, providing methods to target samples in many tissues. [1] The development of methods to
account for metadata and remove bias-associated with noise has provided a novel tool to
examine variability between individual neurons, the first requirement to interpreting inter-neuron
signaling and cell lineage determination. By focusing on the frontal cortex of the human brain,
we focus on tissue with known geographic association with memory formation and other traits
that are fundamentally characteristic of humans as opposed to rodents and other small host
species. These methods characterize single cell samples through transcriptomic assay (e.g. as
selected by marker genes separating clustered transcriptomic abundances from > 1700
individually sequenced single nuclei from individual human neurons) and find groups of cells
with unique marker protein expression that may be identified within the specific tissues they
were isolated in, and may also unique features in their morphology (shape.) The methods by
which high throughput sequencing and high throughput, high-content cytometry may be
leveraged to rapidly identify cell types is defined as a statistical and ontological strategy in the
following manuscript (analysis not shown).

Bakken T, Cowell L, Aevermann BD, Novotny M, Hodge R, Miller JA, Lee A, Chang I,
McCorrison J, Pulendran B, Qian Y, Schork NJ, Lasken TS, Lein ES, and Scheuermann RH.
Cell type discovery and representation in the era of high-content single cell phenotyping.
Dec 21, 2017. BMC Bioinformatics. 2017; 18(Suppl 17): 559.s. doi: 10.1186/s12859-017-1977-
1.

Perhaps the most exciting novel finding of this study is the identification of a rare cell
types within tissue that had previously been poorly characterized in a whole cell context. Within

one of these regions we targeted a cell type of unique morphology which appeared to match with
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a strongly correlated transcriptomic cluster in our analysis set. The resulting biomarkers
matched cell staining assays in the tissue of interest and the resulting cells were further isolated
for synaptic potentiation, or the evaluation of their correlated expression of current across axonic
bounds. The resulting analysis describes this novel cell type, the ‘rosehip’ cell named for its
rosehip-like axonal boutons, noting its unique characteristics, its potential role in complex
functions in the brain associated with social and memory function in the Homo sapiens, and the

way these methods can be applied for other cell typing assays subject to high scrutiny.

Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, Bordé S, Close JL,
Diez-Fuertes F, Ding SL, Faragd N, Kocsis AK, Kovacs B, Maltzer Z, McCorrison JM, Miller
JA, Molnar G, Olah G, Ozsvar A, Rézsa M, Shehata SI, Smith K, Sunkin SM, Tran DN,
Venepally P, Wall A, Puskas LG, Barzo P, Steemers FJ, Schork NJ, Scheuermann RH, Lasken
RS, Lein ES & Tamas G. Transcriptomic and morphophysiological evidence for a
specialized human cortical GABAergic cell type. Aug 27, 2018. Nature Neuroscience.

21, pages1185—-1195 (2018). doi: 10.1038/s41593-018-0205-2.

We have used the same methods, though with less canonical evidence, to identify other
neural ‘cell types’, or hypothetical cell type targets of interest. Another notable example has been
published, detailing the identification of subcerebreal excitatory neurons from our human
samples which are shared in mice, the ‘von Economo’ neurons found in layer 5 of the fronto-
insular cortex.

Hodge RD, Miller JA, Novotny M, Kalmbach BE, Ting JT, Bakken TE, Aevermann BD, Barkan
ER, Berkowitz-Cerasano ML, Cobbs C, Diez-Fuertes F, Ding SL, McCorrison J, Schork NJ,
Shehata SI, Smith KA, Sunkin SM, Tran DN, Venepally P, Yanny AM, Steemers FJ, Phillips
JW, Bernard A, Koch C, Lasken RS, Scheuermann RH, Lein ES. Transcriptomic evidence
that von Economo neurons are regionally specialized extratelencephalic-projecting

excitatory neurons. Nature Communications 11, 1172 (2020). https://doi.org/10.1038/s41467-
020-14952-3
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While these analyses have become influential due to the advancements they have made
possible in the immediate evaluation of previously-hidden signal, there is much room left to
improve upon the high throughput nature of isolating and sequencing samples, interpreting their
inter-sample distance and co-clustering of those samples, and making the best use of metadata
captured throughout the data collection process.

There are two ways to approach recursive clustering once we are able to identify
particular patterns of transcripts that are highly correlated with quality profiles. One is to
normalize based on their separation in quality-profile-specific matrix component space (via
UMAP/tSNE/PCA on their quality matrices.) The second is to normalize based on a quality
profile label applied to their supervised or unsupervised cluster ID. In this study we describe
‘bias modes’, groups of quality control-predictive metadata components for each sample, which
describing correlated trends in those metadta components’ prediction of variance in sample
transcript abundance. The goal of this study can be redefined as the development of a systematic
approach for cataloging protocol-specific biases. In Chapter 3.2 I identified the most critical
portions of an experimental protocol where the collection of unbiased data can be improved,
much like when critical evolutionary breakpoints for lifespan are identified in a phylogenetic tree
in the avian study (Chapter 2.2). Here I provide a recipe which can be used on any single cell
data set with sample specific metadata to make informed decisions about the level of their
unsupervised or supervised confidence of sample clustering based on sample transcriptomic

variance.
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2.4. Leveraging Biclustering Elucidates Variation in Sample Clustering Descriptive of
Laboratory, Sequencing, and Informatics Biases

See un-published work, a draft currently being prepared for submission, reproduced in this
chapter:

McCorrison J, Rangan A, Schork NJ. Multifactorial Quality Control Analysis for Single Cell
Transcriptomic Profiling.
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ABSTRACT

Single cell analyses are beginning to reveal how individual cell types contribute to the
state of a tissue, any functional consequences it may exhibit, and transcription networks shared
between host species. Complications in this type of single cell RNA-sequencing (scRNA-seq)
assay can be complex since they are designed to interrogate the transcriptomes of thousands of
individual cells at once, and can be overly sensitive to a wide range of laboratory conditions and
settings in which the assays themselves are performed. We describe a comprehensive approach
to imputing, normalizing, and comparing the clustering of single cell transcriptomic sequencing
populations using biclustering, leveraging metadata from the quality control (QC) assessments of
the laboratory, sequencing, and informatics processing. We also describe four methods for the
cunsupervised or supervised evaluation of QC terms significantly correlated with sample- or
cluster-specific transcriptomic variance. We illustrate the utility of sample-specific, transcript-
level abundance normalization by optimizing our data formatting to replicate expectations of
variation across the data set.. We use these methods to identify potential marker genes during
cell typing and to delineate rare expression patterns at the exonic level in a set of human frontal

cortex samples.

INTRODUCTION

As a result of isolating individual cells, gene expression profiles of individual cell types
are revealed as opposed to the averaging of all transcriptomes obtained from localized bulk
tissue. However, the identification of novel transcript abundances within individual human
nuclei is complicated by the difficulty of localized isolation of targets. Identifying rare targets in

tissue often breaks the cell cytoplasm during physical isolation individual cells with many
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intertangled axonic structures, the very physical components that allow for cell signaling
between cells of various types. Error is also introduced from the measurement limitations when

using the small quantities of proteins within just a single isolated cell.

Recent advances in automated high throughput handling of individual cells has included
“sensitive, highly-multiplexed single cell RNA-seq” with SmartSeq?2 [1]. By leveraging the
isolation of the individual nuclei of human neuron samples, single nuclei single cell RNA-seq
(sc-sn-RNA-seq) allows researchers to investigate the transcriptomic abundances observed
specifically from individual cells isolated in eukaryotes. However, coverage biases and
unexpected predictive correlations to non-exonic coverage events have been observed. For
example, partially degraded RNA (e.g. from freezing, RNAse degradation) results in deeper
sequencing coverage for the 3’ end of transcripts only when degraded products contain the polyA

tail required for amplification.

Through the use of a random forest classifier trained on a human-driven qualitative
assessment, the evaluation of a large collection of human neurons and their associated laboratory
covariates was able to provide a predictive assessment of the binary pass/fail status of individual
sample-preparation quality [2]. These methods have allowed for the elucidation of high-quality
cell type classifications derived through transcriptomics and through downstream laboratory
analysis, including the semi-supervised clustering methods described by Bakken et. al, which is

the subject of the supervised analysis example in this manuscript [3].

The evaluation of a single cell preparation bias by leveraging quality control metadata
and abundance values using silhouette conditions across TSNE-clustered nearest neighbors has
been approached previously [4]. Visual interpretation of clusters of single cells grouped by

transcriptomic abundance similarity is commonly performed, allowing analysts to pursue
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variations in biological data, and sample data, of further interest for research or omission. [5]
Methods for rapid visualization of these silhouette scores in pre-clustered TSNE results have
been previously published. [6] Statistical tools exist for the comparison of samples for
preprocessing and gene selections, as well as unsupervised clustering and integrated analysis
amongst resulting subsets of samples. [7] Newer tools are already available which leverage
covariate-derived linear modeling to evaluate continuous or discrete trends between population-
wide sample variation to enhance the predictability of single cell RNA seq analyses. [8].
Previous literature using this dataset described unexpected non-coding sequence coverage events
which appeared within both intragenic and intronic regions of our single nuclei samples. [9]
Under further investigation, these predictive contiguous non-random coverage events appeared
to represent either: 1) true novel expression of a new transcript or transcript isoform, 2) non-
coding sequences which will not survive replication but which remains predictive of cell type, 3)
simple overlapping annotation error, 4) transcripts dropped or differing from the gene model, 5)
simple mis-mapping and multi-mapping error, or 6) as tested below, problematic RNA capture

resulting from an aberration in or consequence of an experimental lab and informatics protocol.

We test the correlation between variation in our quality control metrics in both exonic
and intronic coverage events in the context of the GRch38 Human Reference Sequence model by
RefSeq, providing a methodology by which large scale investigation of observed abundance and
metadata in tandem may reveal systematic biases in the preparation of cell lines and the
laboratory configurations of the preceding sample preparation pipelines themselves. Whereas
many existing strategies are 'fully global' (ignoring cluster-information), they do not pinpoint
variance between neighboring pairs of supervised or unsupervised clusters (e.g. potential cell

types of known type, or undefined cell types of interest). [10] The degree to which the variation
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between the samples in any one cluster, and their transcript abundance vectors, is predicted by
the transcript abundance or by covariate terms, or “bias modes” (correlated groups of covariate

terms), is also not known.

We recommend a set of reproducible strategies which show the effects of biclustering
transcript and quality metadata in a way that is not ‘fully’ local, since our determination of QC-
clusters themselves involves transcript-data and QC-data, but which can shed light on certain
local structure, without being lead astray by more ‘global’ population-wide trends.. (Figure 1)
While such a method is underpowered when cluster-sizes are small, we show that leveraging
localized information to identify covariates that are systematic drivers of cluster separation
provides insight into the identification of novel clusters and potential marker genes. We suggest
the latter as an ideal output for this type of analysis in the single cell context where laboratory
methods for cell type validation (e.g. immunostaining) may help identify rare types in
experimental target tissues. We focus on significant transcriptomic correlations lost in the noisy
signal we observe in our experimental data and, conversely, the identification of false positives
(e.g. to prioritize targets during costly laboratory tissue and layer specific targeting and

confirmation trials.)

Our recipe stands upon 3 foundations which we show are critical to the evaluation of any
single cell transcriptomic cell typing assay. We start with sample preparation; the imputation,
normalization, and comparison of clusters must be performed in a way which attempts to
maximize the recovery of lost signal while minimizing any imposed structure on our abundance
matrices. Next, we identify statistically significant bias modes using both unsupervised
techniques (e.g. only the sample transcript metadata and quality control metadata) and supervised

techniques when possible (e.g. with base knowledge from prior study, cell staining, marker gene
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expression, etc.). Last, we leverage covariate-corrected unsupervised clustering of snRNA-seq
data (single nucleus RNA-sequencing data) by using the covariates (metadata) to ‘correct’ the
genetic data (transcript abundances) using linear modeling techniques and groups of correlated
quality control metrics (‘bias modes’) predicting bias-associated variance (e.g. measured by co-
clustering after correction.) We apply the proposed method to a large scRNA-seq (single cell
RNA-sequencing) study of nuclear RNA harvested from neurons in different layers of the human
brain and investigate the novel inferences that can be made by analyzing the expression inside

and outside of the annotated coding regions of the human reference genome.

RESULTS
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Compare Abundances
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2. TSNE (Nearest Neighbor Clustering)
3. Loop Counting (Biclustering)

Figure 2.4.1. Analysis Flowgram (Unsupervised Clustering). Sub-experimental arms: A)
Unsupervised (Sample x QC), e.g. you have clusters and you want to identify population-wide
QC terms of relevance (within a relative monoculture.) B) Unsupervised ([Sample x QC] +
[Sample x Transcript]), e.g. people need a recipe for unsupervised clustering with transcript-level
interpretation of laboratory and sequencing bias. C) Supervised ([Sample x QC] + [Sample x
Transcript] + Sample Cluster Assignments), e.g. you want to target hard-to find drug targets. D)
Supervised (Sample x QC+ Sample Cluster Assignments): e.g. you have clusters and you want to
identify QC terms of relevance to sampling/clustering quality to improve future studies.
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Method #1: Corrected Data

Original Data (remove linear effect)
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Figure 2.4.2. Spectral ordination and clustering of samples in transcriptomic space. A-B) A
cartoon showing interpretations of transcriptomic and quality driven interactions. C) TSNE
Clustering of Cell Abundances (Colors Shown, Top, Intron+Exon Abundance) and our
Biological Insight on Outliers varying from Cell Typing Expectations. D) The denoted ‘outlier’
clusters highlighted due to unexpected transcriptomic marker performance vs. laboratory
validation. E) A decision tree highlighting theoretical outcomes associated with biclustering
correlation events of varied use for downstream biological inference. ‘Quality profile similarity’,
2H = both clusters are ‘high quality’, with small amount of variation predicted by quality terms
associated with low quality outcomes. 2L = both clusters are ‘low quality’. L = one cluster is
‘low’ quality. H = one cluster is ‘low’ quality’.
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Figure 2.4.3. A) The 6 QC-clusters from Table 1 found after accounting for the exon-data. To
start with, we project each of the 127 QCs (considered as a 1781-dimensional vector) onto the
dominant 2 left-principal-components of the 1781-by-127 matrix [S*(-1)*U*C], as described in
the text above. We then color and label the clusters using some of the terms that commonly
appear amongst their QC-labels (note, however, that the clusters themselves were determined
using only the QC-values along with the transcript-data). Note that, while these clusters do not
necessarily look distinct when projected onto these 2 principal components, they exhibit distinct
correlations (with a statistical significance < 0.0015) in the full space. B.) The pvalue tree for the
QC-clusters found after accounting for the exon transcript data. The integer values shown are -
log(p-value) for each split. The null-hypothesis involves 'right-spinning' the QC-matrix (as
described in the text).
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Figure 2.4.4. Linear modelling for investigative analysis of specific terms. A) Cluster Pair x
Covariate Z-score matrix. B) Pvclust hierarchical clustering with selection of significant
covariates subgroups (“bias modes”) for which cluster pairs exhibit significantly correlated (au
p-value > 0.99) response to those terms en masse. C) The euclidean distance matrix representing
distance between covariates’ cluster-pair Z-score matrix terms, illustrating covariates with
correlated response predicting sub-classification of population-wide cluster pair relationships
with 3 significant bias modes highlighted in yellow. Top: Cluster 6 with bootstrap AU p-value =
1 (< 10e-10) and Std Err = 0 representing “the overall sequencing abundance of comparable
human gene sequence.” Middle: PVClust Cluster 23 with bootstrap AU p-value = 0.998 and Std
Err = 0.005 representing “Sequencer error (PHRED Score Variability).” Bottom: PVClust
Cluster 10 with bootstrap AU p-value = 1 (< 10e-10) and Std Err = 0 representing “the number
of comparable genes observed (e.g. the ability to detect less-expressed genes?)”

66



Table 2.4.1. Significantly Correlated “Bias Mode” Events. P(E)=Exon-derived p-value for the
Experimental Arm. P(I)=Intron-derive p-value for the Experimental Arm. As in Figure 1: A)
Unsupervised (Sample x QC), e.g. you have clusters and you want to identify population-wide
QC terms of relevance (within a relative monoculture.) B) Unsupervised ([Sample x QC] +
[Sample x Transcript]), e.g. people need a recipe for unsupervised clustering with transcript-level
interpretation of laboratory and sequencing bias. C) Supervised ([Sample x QC] + [Sample x
Transcript] + Sample Cluster Assignments), e.g. you want to target hard-to-find drug targets. D)
Supervised (Sample x QC+ Sample Cluster Assignments): e.g. you have clusters and you want to
identify QC terms of relevance to sampling/clustering quality to improve future studies. A full
list of QC terms and their assignments is provided in Supplemental Table 1.

Cluster #1: “Cluster GC Percentage” p=10e-25

e  GC Percentage: All sequences.

e  GC Percentage: Trimmed sequence (Only reads aligned to ERCCs, Only reads aligned to human reference,
and Unmapped reads.)

Cluster #2: “Batch, Depth of Sample Capture” p=10e-27

e Batch

e [terative sample ID

e Percent of reads trimmed

e Mean fragment length (Value, Std. Deviation in Value)

e Percent of all reads mapped to Human Reference

e % of Unique Duplicate Sequences: All reads

e % of Unique Duplicate Sequences: Trimmed reads (Only reads aligned to human reference, and unmapped
reads.)

e % of Mitochondrial Core Genes at greater than zero expression abundance.

e  Median Insert Size of Paired End sequences

e Unique

Cluster #3: “Population-wide Predictors of Sample Quality” p=10e-27

e Cell class, based on marker genes (Excitatory, inhibitory, glia)

e  Outlier status, based on laboratory and transcriptomic validation [3]

e  C(Cell type, based on marker genes (GABAergic, Glutamergic, Non-neuronal)

e Neun-positive sorting percentage (likelihood of gathering only nucleic content)

e  Brain region (Frontal insular cortex, Middle temporal gyrus)

e Brain layer (1,5)

e RandomForest Pass/Fail Confidence Score

e cDNA PicoGreen Concentration (Quantity of double stranded DNA during protocol assay) [1]

e  Marker gene abundance (ACTB, Custom Set 1 [3], Custom set 2 [3], 13 neural mitochondrial marker genes)
e ERCC Count of Ladder Sequence

e Percentage of non-duplicate input reads (All Reads, Trimmed Reads, Trimmed Paired Ends)

e Percentage of reads maintaining paired end relationships after trimming.

e Number of, and percentage of, genes present (Greater than {0,1} FPKM)

e Pecentage of isoforms present (Greater than {0,1} FPKM)

e Pecentage of ERCC barcodes present (Greater than {0,1} FPKM)

e Percentage of trimmed reads mapped to human reference

e Percentage of trimmed reads mapped to human reference in each region type (Exons, Introns, Intergenic)
e Percentage of reads in coverage bins (High, Medium)

e  Mapping rate (All genes, End 1, End 2, 3’ end, 5’ end)
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Table 2.4.1 Significantly Correlated “Bias Mode” Events (Continued.)

Cluster 4: “Sequencing Quality (Across the length of the read)” p=10e-72

e Standard Deviation in Phred score (All reads, reads aligned to ERCC sequence, reads aligned to human
reference, unmapped reads)

Cluster 5: “Sequencing Quality (Across the full span of the read)” p=10e-51

e  Mean Phred score (All reads, reads aligned to ERCC sequence, reads aligned to human reference, unmapped
reads)

Cluster 6: “Depth of Sequencing (including ERCC ladder sequence)” p=10e-25

e Total input reads (All, trimmed)

e Number reads mapped to human reference

e Total input bases (All, trimmed)

e  Number of duplicate reads before trimming

e  Mean coverage of expression bin (high, medium, low)

e % of Samples above 15x in Low coverage bins

e  Count of non-zero abundance mitochondrial core genes

e Number of reads and basepairs mapped to group (genes, ERCC ladder sequence, human reference sequence)
e % of unmapped exact duplicate sequences.
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Table 2.4.2. Cluster Confidence Matrix. Change in Signif. Diff. Exp. Clusters before and after
correction using Z rank 1. The probability of observing our sample-cluster overlaps vs. Ho of
baseline assumption of these overlaps in a random shuffling of sample labels (e.g. the
‘repackaged probability’ of seeing collective overlaps with AIBS clusters that are as rare or rarer
than our observations. Compare to Suppolemental Table 3 usiing Z rank 2. Low = Poorly
conserved clustering (e.g., the cluster fell apart.) High = Clustering converged toward centroid.

QC None | All | SRRR | RF | UE1 | UE2 | UE3 | UE4 | UE5 | UE6
# of Clusters 23 62 60 7 1 37 58 34 62 35
-logP: Population 616 | 447 1614 | 330 0| 443 | 1473 | 947 | 1153 | 606
-logP: Per-cluster
1 41 63 333 | 188 0| 116 | 332 | 157 | 252 75
2 14 25 34 0 0 0 24 13 0 28
3 62 0 16 1 0 1 45 37 22 4
4 14 35 52 6 0 0 21 17 3
5 0 25 71 5 0 2 48 4 14 18
6 11 49 6 0 2 20 4 6 10
7 57 3 6 1 0 1 55 42 4 1
8 14 0 42 5 0 0 39 22 0 4
9 0 22 40 1 0 1 5 4 2 4
10 55 0 30 1 0 1 36 17 4 0
11 0 95 52 5 0 33 63 59 43 57
12 4 0 64 5 0 67 80 42 103 58
13 58 59 67 15 0 3 64 37 63 26
14 0 1 1 0 12 33 32 52 20
15 0 0 3 1 0 12 31 11 37 36
16 11 57 62 7 0 15 62 45 48 35
17 10 0 12 0 0 0 6 12 2 0
18 43 0 2 0 0 0 17 17 3
19 45 38 47 52 0 2 41 44 56 5
20 0 0 18 1 0 1 1 0 0 1
21 0 0 0 0 0 27 13 2 28 15
22 0 1 16 0 0 4 1 0 1 12
23 6 1 137 7 0 60 | 153 56 | 104 28
24 0 0 4 1 0 6 13 2 19 5
25 26 0 1 0 0 1 6 14 2 0
26 30 0 12 0 0 0 15 14 2 0
27 14 0 0 0 1 5 11 2 2
28 0 14 24 0 0 3 1 1 2 4
29 0 0 1 0 0 4 3 3 14 3
30 17 0 4 0 0 0 3 10 1 0
31 0 0 0 0 0 5 1 1 12 2
32 10 0 1 0 0 1 3 3 1 0
33 5 0 0 1 0 3 1 2 3 3
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Table 2.4.2. Cluster Confidence Matrix (Continued.)

QC None | All | SRRR | RF | UE1 | UE2 | UE3 | UE4 | UE5 | UE6
-logP: Per-cluster
34 4 80 134 12 0 3 51 30 31 27
35 0 2 3 0 0 1 0 3 0 0
36 0 0 0 0 0 4 2 0 9 1
37 11 1 16 10 0 0 4 13 0 1
38 2 0 0 0 0 0 3 2 0 0
39 0 0 3 0 0 4 2 0 1 5
40 0 2 2 9 0 0 3 3 3 0
41 1 0 0 0 0 0 2 0 0 0
42 117 79 170 14 0 61 188 | 139 | 203 67
43 5 1 90 9 0 6 24 6 6 8
44 1 0 48 1 0 25 46 19 70 30
45 12 52 101 2 0 0 23 24 6 9
46 3 20 53 0 0 1 12 12 14 10
47 0 0 0 0 0 1 0 0 0 0

Table 2.4.3. Variation in Cluster-specific Markers.

(Not included in this draft.)

DISCUSSION

Correlation amongst Representations of Potential Transcriptomic Cell Types. The

ability to sequence individual cells is contributing to a revolution in the understanding of

bacterial cell types that cannot be cultured and therefore previously could not be amplified to
sufficient protein abundances for sequencing. [11] Single cell amplification is commonly used
when low biomass environmental samples are collected, exponential variation in coverage is
inherent to single cell amplification protocols. [12] The severity and contribution of this bias to

resulting informatics analysis is partially understood but normalization methodologies have been

limited to the context of reference-free bacterial assembly. [13,14,15]
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Human frontal cortex sampling and cell type diversity. For this study, cells of the
central nervous system were gathered specifically because they were under-studied, partly
because of the difficulty of isolating intact whole cells and successfully interpreting the minute
signals within. This defines some the expectations for variation within our cohort. Excitatory
cells are known to be higher in overall transcription, and thus their transcriptomic reads will be
more easily sampled. [3] This increases the likelihood of capturing lesser expressed abundance
trends associated with rare and difficult to study cell types, compared to Inhibitory and Glial cell
types. Using the normalized abundances for the intron- and exon-specific abundances for each
sample versus the human reference, we were able to recluster the original AIBS clusters in
‘nearest neighbor’ space using TSNE, approximating the clusters identified in that study using
the intron and exon abundances together (Figure 2¢c, Table 2, Supplemental Figure 1). By
exploring intronic coverage significance in cell typing before and after quality control correction,
we admit that there are flaws in the upstream laboratory processing pipeline which can cause
false positives or false negatives during cell typing, and attempt to make sense of novel (e.g.
previously undefined in RefSeq) human expression events in the rare isolated single cells of the

human brain.

Sample Prep: Imputation. When considering data from differing cell types, we must
consider that we inherently lose signal from lesser expressing cell types (e.g. inhibitory and glial
cell types) in comparison to their higher expressing, more-easily studied counterparts. To
identify the rare variations representing potential novel signal patterns in the noise, we use
imputation to account for lost signal from drop out due to biological or laboratory signature loss.
Since we are preforming a subsequent analysis which is influenced by correlations between

imputed terms, we also ensure that our imputation does not introduce significant spurious
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structure into the dataset. We approach this task by noting that the principal-components of the
original data (i.e., without imputation) capture a certain amount of variance; following
imputation, the variance captured by the same number of principal-components should be

similar.

Sample Prep: Normalization and comparison. We use mean-centering after log-
normalization when searching for clusters which are strongly related to the euclidean distance
because that process hinges on correlations. However, when later measuring the amount of
variance predicted (Z-scores) for each transcript across each AIBS-cluster-pair (in the context of
determining candidate marker-genes for each AIBS-cluster-pair) we use the rank-normalized
transcript data (since we calculate our Z-scores based on comparing the AUC for each transcript
across each AIBS-cluster-pair with the distribution of analogous AUCs obtained under a

permutation-test.

Population-wide quality control metric correlation. For each quality metric, the
direction of association with transcript abundance was provided based on insights from the
preliminary studies, and the feedback of the team that developed the single cell protocol. 12 of
the 127 quality metric used in the study were highlighted by a human-trained Random Forest
implementation predicting of pass/fail status [2]. Sparse reduced rank regression highlighted a
different subset of 12 quality metrics as being significantly predictive. (Supplemental Table 1)
Previous observations noted 3’ bias as an easily measured indicator of biases caused by a failure
to capture high quantities of full length RNA during sequencing, making an apparent fail case
identifier in prior RandomForest modelling [2,3]. Biases associated with the length of mRNA
can be captured as a function of other quality terms (e.g. dealing with BP counts aligned, 3’ bias

scores, and, most clearly, bioAnalyzer trace results). The length-associated observations were
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compared to expectations in random re-sampling and no strong correlation was identified
between the lengths of our genes and the covariates at the population level. (Supplemental Figure

2)

As a comparison to common population-wide methods by Finak et. al, we also conducted
a test of bimodality across samples using MAST, as described, and noting only a minority of
genes display a strong bimodality across samples. [8] The vast majority of transcripts displayed
either a unimodal or monotonic distribution across samples. Only in rare cases (less that 5%)

does the distribution look like a gaussian plus a spike, or like a sum of 2 gaussians.

We hypothesize that bimodal relationships to quality control metrics, or groups of quality
control metrics, exist not only across the population, for metrics which define variation that
effects all samples (e.g. sequencing quality score), but also among subsets of the graph defined
by cluster-cluster interactions. We decided to take our novel approach focusing both on an
unsupervised interpretation of the data, and a comparison to an analysis using pre-defined or
unsupervised sample clustering. We hypothesize that we should expect more than bimodality in
the data clustered by transcriptomic abundance clustering, or through biological validation,
because we evaluate interactions between many highly differing (e.g. performing different
functions across tissues and layer depths of sampling), and highly similar (e.,g, performing
similar functions within tissues and layers, or across them) cell types. We believe that studying
the degree of cluster separation defined by clear relationships to our covariates can provide cost
effective methods for detecting rare signals in lowly expressed genes and avoid false positives

resulting in mischaracterization during transcriptomic cell typing. (Supplemental Figure 3)

Accounting for cell type variability in a meta-cell typing transcriptomic assay. As

described above, high and low expression, and drop out of any expressed signal for a gene, are
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expected to exist not only as a result of cell class (e.g. exhibitory versus inhibitory) but also due
to implicit biases of sampling (e.g. ability to capture unsheared RNA from a frozen cell). Here
we describe application of our methods to a single nuclei single neuron data set utilizing the
previous AIBS clustering methods, 47 ground-truth sample-clusters, and prior knowledge from
the study describing those clusters. (Figure 2¢) This prior knowledge included specific clusters of
interest, labelled as ‘outliers’, due to their proximity to well defined clusters with known cell
markers in TSNE nearest neighbor space, while lacking the same (or sufficient) characteristic
markers suitable for staining or other forms of cell type validation. (Figure 2d) The goal of
neural studies attempts to describe inter-tissue signaling and variation, and quiescence. Hand-
curated evaluation of some clusters of interest revealed relationships that separated outlier
clusters with their most significant metadata correlations matching either RandomForest-defined
pass/fail terms, or, by contrast, tissue-specific markers (Supplemental Figure 7a-b). We
experimented with several different unsupervised clustering algorithms, including schemes based
on simple spectral clustering, t-sne and umap, as well as a scheme based on ‘loop-counting’ [16]
which is similar to message-passing [17], spectral clustering [18] and the ‘large-average-
submatrix’ method of [19]. We compared the performance of these methods on the ‘planted
bicluster problem’, and found that some methods are more sensitive than others. (Supplemental

Figure 5)

Subsets of Metadata Terms with Correlated Cluster-Pair-specific or Sample-Pair
specific Response. Within this paradigm we employ two ‘unsupervised” methodologies to look
for QC-clusters. First (a) we directly look for QC-clusters within the sample-by-QC-matrix.
Second (b) we project and rescale the sample-by-QC-matrix onto the left-principal components

of the sample-by-transcript matrix before searching for clusters. Note that method-(a) attempts to
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find clusters of redundant QCs that are ‘universal’, in the sense that they would apply to any and
all analyses (regardless of the transcripts). By contrast, method-(b) attempts to find clusters of
QCs that are redundant within the context of the transcripts — these QC-clusters will apply only
when considering that particular set of transcripts (e.g., Exons), and would not generalize to
other sets of transcripts (e.g., Introns) (Supplemental Figure 9). To summarize our analysis, we
found no statistically significant ‘universal’ QC-clusters using method-(a), but we did find 6
strongly significant QC-clusters with respect to the Exon-transcripts using method-(b). We noted
that the 1000 sampled transcripts are strongly correlated with one another across the samples,

while the QCs are not so strongly clustered in the sample-space.

Unsupervised Bias Modes. We made use of 2 unsupervised methodologies, discussed
in the methods as methods A-D. Our first unsupervised method, described in the methods as
“A”, is completely unsupervised: A QC-cluster found in this context would represent a subset of
QCs that are correlated across all (or a significant subset) of samples. We don't find any statically
significant QC-clusters in this context. In our second unsupervised method, described in the
methods as “B”, a QC-cluster represents a subset of QCs that are correlated in a subset of
samples, relative to the distribution of transcripts across those same samples. We do find
statistically significant QC-clusters in this context (when we use the Exon transcript data).
(Figure 4a-b) The significant QC clusters found in this case, clusters where the p-value was
lower than 0.0015, are described in Table 1, where items in parentheses refer to multiple filters
on the same QC term from various stages of the pre-processing stages. The orientation of these
qc terms within the projection of each of the 127 QCs (considered as a 1781-dimensional vector)
onto the dominant 2 left-principal-components of the 1781-by-127 matrix [S*(-1)*U’*C] is

provided in Figure 3.
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Supervised Bias Modes. We also considered two ‘supervised” methodologies for
clustering the QCs which make use of the ground-truth sample-clusters mentioned above. In
methodology-(¢): we generalize our unsupervised methodology-(b) as follows: Once again we
project the QC-data onto the principal components of the transcript-matrix, except this time
instead of using the standard principal-components of the transcript-matrix, we use ‘sample-
cluster-supervised’ principal-components instead. To do this, we determine ‘supervised’
principal components of the transcript-data by finding directions in sample-space which optimize
a cost-function which rewards (i) high inter-cluster distances and (ii) low intra-cluster distances.
As this cost-function requires a single parameter defining the ratio between terms (i) and (ii), we
scan over this ratio, searching for the ‘best’ supervised principal-components (i.e., those which
produce the most statistically significant QC-clusters). Despite this exhaustive search, we were
unable to locate any statistically significant QC-clusters using this method (for the Exon data),
though relationships were found using simple linear relationships (Figure 5d-h). In methodology-
(d), we search for QC-clusters using only the ground-truth AIBS sample-clusters, without
considering the transcript-data. This amounts to searching for QC-clusters within the Z-score
matrix which records the level of differential expression of each QC-term across each sample-
cluster-pair. (Supplemental Figure 6) We were also unable to find statistically significant clusters
using this method.

Practical investigation using linear modelling in subsets of cluster-pair interactions.
Results from the linear model comparison of unsupervised terms identified comparable bias
mode clusters, but the analyses were not significant. (Figure 3b-c) The results before and after
correction were compared to present the effects of bias terms in providing false correlation

across samples. (Supplemental Figure 12)

76



Correcting abundance vectors derived from all QC terms, and subsets of QC terms.
Given the imputed, clustered abundance matrix, and bias modes from supervised and
unsupervised contexts, we proceeded with the hypothesis that “correcting” our sample-specific
abundance matrix for transcript-level correlations with quality metrics would identify alternative
composition of our samples in some component space, and unsupervised clusters derived from
their adjacency. Such a method differs from population wide searches for bimodal separations in
factored or continuous metadata variables by leveraging the expected transcriptomic correlations
due to the meta-analysis of many diverse cell types. [3,8] We show that when we correct for
covariate-derived noise, we may observe an uneven distribution of effects across cluster-pair
relationships, providing insight into which correlated transcriptomic abundance events have a
higher probability of being a true signal (potential novel type) as opposed to a marker of a cell
type whose representation has been bifurcated (or separated moreso) by, e.g. batch or preparation
biases (Figure 2a-b, Supplemental Figure 3). While we utilized a dynamic selection of columns
to incorporate from our 3 cluster-pair-covariate rank matrix, all observed analyses reduced to a
single column component. We believe this satisfies our requirement that our normalization
corrects our abundance matrix, given the influence of our covariates, while maintaining the
variance described by samples’ cluster centroids and their outcomes. In other worse, we ensure
that inter-cluster variance is transcriptomic noise is minimized so metadata terms with shared

effects on clustered samples should be a non-true signal captured by 1 rank.

Variation in the experimental cohort before and after correction exceeds statistical
random sampling. Summaries of clustering confusion matrix results using linear models
provided insights into variability related to individual QC terms, and set of QC terms which were

not necessarily clustered together in a significant way, suggesting that such methods could be

71



used to identify correlations with any group of metadata — even if the results will be handled
noting their lesser significance. The resulting cluster terms widely matched expectations from
our biclustering unsupervised methods, but with greater granularity in the separation of our
terms. (Tables 2-3). Our experimental methods for linear model-based analysis of QC term
subsets revealed wide differences when evaluating an experimental ‘bias mode’ list revealed vast
difference in the ability to cluster samples before and after accounting for variance specifically
associated with those terms, revealing greater granularity in separation across the component
space defined in nearest neighbor space. (Figure 5d-h)

Conclusion. In summary, we present a novel recipe for the biclustering of single cell
transcriptomic data profiling a variety of cell types, and exhibit the function and utility for future
research on an example data set sampled from the individual nuclei isolated from individual
neurons in the human frontal cortex. Our recipe stands upon 3 foundations critical to
unsupervised biclustering for a single cell transcriptomic cell typing assay with informed insight
on laboratory and sequencing bias: abundance table imputation, unsupervised clustering, and
covariate-correction. We further summarize the effects of data normalization on variation in the
matrix. We believe that future work related to biclustering in this field holds great potential as
the ability to sequence individual cells is rapidly contributing to clinical advancements and our
understanding of neural cell types at an individual level. This research may help accelerate the
understanding of neural development, network regeneration, and memory formation within the
human brain while also providing insight into the laboratory methods themselves. It is our hope
that, as shown in prior study, critical evaluation of metadata from precursor stages of a protocol

will be leveraged more in the future, providing insight into canonical biases. Furthermore,
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through critical evaluation of these biases, and the specific genes targeted, it is our hope that

methods will be refined to help identify even more difficult to target individual cell types.

METHODS

Sample Information. All samples were prepared following the protocol described by
Lasken et. al in Nature Methods. [3] Samples, captured from 2 post-mortem human frontal
cortexes following cardiac arrest, were cut into slabs for study and stored frozen for
approximately 2 years. In short, samples were selected based on the layer and region of the brain,
near regions highlighted for containing unusually shaped cell types. After thawing samples, cells
were selected based on RIN count and subjected to FACS sorting for nucleus isolation and a
SmartSeq2-based amplification protocol to generate a Nextera library for sequencing.

Quantification and Normalization. [llumina 2500 paired end sequencing reads were
trimmed to remove low quality sequence and primer contamination using Trimmomatic [20].
The resulting reads were sent to FastQC for read based quality control metric calculation. [21]
Reads were aligned to 3 versions of the GrCH38 reference: the version derived from the genes’
exon coordinates, another from the intronic coordinates, and a third using the entire gene bounds.
Resulting counts were normalized using RSEM to Transcripts per Million (TPM). The resulting
alignments were submitted to RNAseqQC and resulting metrics stored for downstream analysis.
[22] Additional metrics were curated based on laboratory and biological insights. We utilized
prior knowledge about our samples in the form of multiple insights. Cluster associations and
outlier associations were derived from in depth recursive cell typing and associated marker gene
identification and [3] Random Forest confidence of pass fail was incorporated from the analysis

described using the same data set. [2]
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Sample Prep: Imputation and normalization. Abundance tables were curated in intron
and exon specific contexts. Genes with > 90% missing data are removed. Non-zero reads were
log-normalized, producing a data-matrix ‘D’ with missing values. To fill in the missing values of
D we apply an svd-based imputation-scheme. For the purposes of notation, let the index-set “S”
correspond to the missing entries of D. Thus, D(S) is currently undefined.

The first step is to choose a dimension ‘d’ which refers to the number of principal
components we will use to impose structure on the missing data in D. By comparing the
spectrum of D with that of a random-matrix (i.e., the marchenko-pastur distribution) we see that

the top 16 principal components of D are large. Thus, we set d=16 for the following process.

The first phase of our algorithm is to use the first d-principal-components of D to recover
the structure of D(S). We begin by creating a (temporary) matrix E by first copying D, and then
filling in each missing entry with randomly drawn values from the same column (i.e., each entry
of E(S) is filled in by using from the non-missing samples associated with the same transcript).
We calculate the dominant d principal-components of E, and then use these principal-
components to construct a d-rank approximation to E, denoted by F. We then look at the entries
of F which correspond to the missing entries of D (i.e., the entries of F(S)) and update E by
replacing E(S) with F(S). We then return to the calculation of the dominant d principal-

components of E, iterating until E converges.

Once E has converged, we have finished the first phase of our imputation. The missing
entries in E(S) have been filled in a manner consistent with the dominant d-dimensional structure
of E itself. However, at this stage the entries in E(S) are usually ‘too correlated’. That is, they
exhibit an artificially high level of correlation which is not exhibited by the non-missing entries

of E.
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To correct for this artificially high correlation, we first calculate the singular-value-
decomposition U*S*V’ of E. The matrix V will be N-by-M (where N is the number of
transcripts, and M is the number of samples). We then ‘spin’ the principal vectors of V
corresponding to dimensions d+1, d+2, etc. This is done simply by replacing the final (M-d)
columns of V with a random orthonormal set of vectors drawn from the same span (i.e., ensuring
that they are perpendicular to the first d columns of V). We then construct the d-rank ‘leading’
approximation to E by using the first d-principal components of E. We’ll denote this leading
approximation by F1. We also construct the (M-d)-rank ‘trailing’ approximation to the residual
of F1 by using the final (M-d) principal components of E, replacing the usual matrix V with the
randomly oriented ‘spun’ version of V produced above. We’ll denote this trailing approximation
by F2. We then produce a surrogate matrix G by adding together alpha*F1 + beta*F2/p, where p
is the square-root of the fraction of D that is filled — i.e,. p=sqrt(M*N-|S|). We then randomly
permute the rows of G (corresponding to shuffling the samples) producing a matrix H. We then
pretend as though H(S) is missing, and impute the values of H(S) in the same way that we first
imputed the values of E(S). Finally, we measure the principal-values of H, and compare them to
the principal-components of E that we observed during our first pass. We optimize alpha and
beta so that the 12-norm of the difference in principal-values observed in the principle-values of
H and E is as small as possible. Once we have found the optimal alpha and beta, we define J =

alpha*F1 + beta*F2/p to be our imputed version of D.

We have designed this algorithm so that it functions well when presented with a large
random matrix with a single ‘spike’ [23] that has been ‘perforated’ at random. In this case the
optimal alpha and beta are both equal to 1. The more strongly the data deviates from the spike-

model, the farther away from 1 we expect alpha and beta to be. For both our Exon and Intron
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data-sets the optimal alpha and beta were quite close to 1 (i.e. between 0.9 and 1.1). In addition,
the principal-components of our surrogate H are very close to those of E. Together, these metrics
indicate that our imputation algorithm has successfully captured the d-dimensional structure of

the missing data without introducing spurious correlations.

The resulting imputed abundance matrix was converted to relative abundances (by
dividing by the total), and using the centered log normalized. We considered log-centering after
normalization, to ensure that each column has 0-mean, but we decided this this was not
necessary since we automatically mean-center when clustering, and mean-centering doesn’t

affect the results when we rank-normalize for downstream marker-gene analysis.

Sample Prep: Comparison. We compared the AIBS clusters to the unsupervised
clustering of the Exon data (both pre- and post-covariate-correction) by evaluating their linear
residual and gathered the negative of the log of the p-value, rounded to the nearest integer, in
Table 2. Roughly speaking, anything above 500 or so is very good, and anything above 1000 or
so means that the AIBS cluster was mostly recapitulated by the unsupervised clustering. (Table
2, Supplemental Figure 11) After applying our unsupervised approach, we observed sample-
clusters that — overall — coincided rather strongly with those of the AIBS-sample-clusters. This
consistency reinforces the validity of both the ground-truth labels, as well as our unsupervised
methodology. In terms of unsupervised clustering algorithms, we have included results

comparing six methodologies.

First, we evaluate the ‘half-loop’ method described in our prior research by Rangan et al.
[16]. This is an iterative method similar to message-passing [17], spectral clustering [18], and the
‘large-average-submatrix’ method of [19]. While this method allows for several internal

approximations, such as binarization, to ‘cut corners’ and speed up the computation, we ran this
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algorithm in its ‘exact’ mode, with no approximations used. Consequently, this method has no

free parameters.

Second, we leverage principal-component projection followed by ‘isosplit5’. [24] This
method involves first projecting the samples onto the first ‘n_rank’ left-principal-components
(note that ‘n_rank’ is a parameter we must specify), and then applying isosplit5 () with the
default parameters (i.e., ‘K _init=200’ and ‘isocut threshold=1.0"). We applied this method for

n_rank ranging from 1 to 6.

Third, ‘exact’ t-sne, followed by isosplit5: This method involves first using the ‘exact’
mode of ‘fast tsne’ [25] with either ‘n_rank=1" or ‘n_rank=2’, and then using isosplit5 (as in #2
above) to cluster the resulting arrangement of points. We applied this method for n_rank=1,2.
Fourth, we use ‘fast’ t-sne followed by isosplit5: This is equivalent to method three with the
exception that we use the option ‘theta=0.5" in fast-tsne, corresponding to the default ‘fast’
approximation. Fifth, we leverage umap, followed by isosplit5: This method involves first using
umap (with default parameters), followed by isosplit5 (as in #2 above). [26] Last we leverage
umap, followed by hdbscan: This method involves first using umap (with default parameters),

followed by hdbscan (with ‘minpts=10’, and the remaining parameters set to default values). [27]

Subsets of Metadata Terms with Correlated Cluster-Pair-specific or Sample-Pair
specific Response. For the purpose of this manuscript we define the term “bias mode” to mean
any grouping of metadata (qc terms) for which there is a significantly correlated response across
a subset of the population, as represented by sample-sample interactions (completely supervised
[what does this mean?]). The QC’s themselves are quite correlated — for example most of the
variance of the 1781-by-127 sample-by-QC matrix (which doesn’t include transcripts) is

captured by the first 14-15 principal-components (specifically, 62% of the variance is captured
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by the first 15 components). By this measurement, in comparison to a random matrix, the QC-
matrix is astoundingly correlated. To identify our ‘bias modes’, or QC-clusters, we are
specifically looking for subsets of the 127 QCs that are more correlated than one would expect
within this 14-15 dimensional representation of variation across the population. In other words,
we are looking for clusters of ‘redundant’ QCs that are more correlated than ‘chance’, given the
observed correlations across all the QCs. The null hypothesis we use is modeled by drawing a
random set of 127 vectors with the same principal-components as the original QC-matrix. We
can easily draw a trial from this null-hypothesis by ‘right spinning’ the sample-by-QC-matrix:
i.e., by right-multiplying the 1781-by-127 sample-by-QC-matrix by a random 127-by-127
orthonormal matrix. Then, we check to see how strongly clustered those 127 random vectors are.
What we are specifically looking for are QC-clusters within the original sample-by-QC-matrix
that are more strongly correlated than the typical QC-clusters found within the randomly spun

data.

We decorrelated the transcripts by first calculate the singular-value-decomposition
U*S*V’ of the 2-by-1000 transcript-matrix. Then we left-multiply both the 2-by-1000 transcript-
matrix as well as the 2-by-127 QC-matrix by S~(-1)*U’. This is equivalent to the commonly
used ‘mahalanobis’ rescaling. [28] With this rescaling the transcript-data is uncorrelated (bottom
left subplot), while the QC-data is now strongly clustered (bottom-right subplot). Note that the
QC-clusters are more evident after rescaling the sample-space to ‘correct’ for the correlations
across the transcripts. Our methodology-(a) corresponds to trying to find QC-clusters in the top-
right subplot of Supplemental Figure 9, whereas methodology-(b) corresponds to clustering the

bottom-right subplot.
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Population-wide quality control metric correlation. To assess the influence of various
covariates on a specified set of sample-clusters, we calculate the Z-score matrix ‘Z’, which is of
size [number of covariates] -by- [number of sample-cluster-pairs]. Given a particular covariate
‘7> and a particular sample-cluster-pair ‘(k1,k2)’, the value of Z(j,k1,k2) is obtained as follows.
First we measure the AUC associated with covariate j between sample-cluster-pairs k1 and
k2.Then we assess the statistical significance of this AUC by calculating the AUC for a large
number of label-permuted trials, and then estimating the Z-score of the original AUC from step
one with respect to the mean and standard-deviation of the distribution of AUCs under the null-
hypothesis in the AUC label-permuted trials. Note that, when z>0, the one-sided p-value
associated with the z-score from step can be simply calculated as: log(p) = log(0.5) +
erfcln(z/sqrt(2)).

Unsupervised Bias Modes. Our evaluation of clusters of quality terms with correlated
effects across subsets of our abundance matrix took on two unsupervised methods. First, “A”,
the completely unsupervised look at the QC-matrix alone, which is of size #-samples by #-QCs.
We try and cluster this matrix which does *not* consider either the transcript data or any sample-
clustering. A cluster found in this context would represent a subset of QCs that are correlated
across all (or a significant subset) of samples. Second, “B”, the unsupervised use of transcript-
data, looking at the QC-matrix which is of size #-samples by #-QCs as well as the transcript
matrix, which is of size #-samples by #-Genes/Reads. We then project the QCs onto the principal
components defined by the transcripts, and then try and cluster the resulting QC-projections. Due
to rank disparity, a naive linear model was not ideal for this implementation since we fit the QCs

perfectly, and found no residual.
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Supervised Bias Modes. Our evaluation of clusters of quality terms with correlated
effects across subsets of our abundance matrix also considered two supervised methods C: semi-
supervised: use transcript-data as well as ground-truth sample-clusters (i.e., the AIBS-clusters).
First define (supervised) principal components of the transcripts which best separate the ground-
truth sample-clusters. And then project the QCs onto those principal components, and then
(finally) try and cluster the resulting QC-projections. Supervised Bias Modes. D: fully-
supervised: use only the ground-truth sample-clusters (but not the transcript-data) to define a
sample-cluster-by-QC matrix. Then search for QC-clusters in that matrix.

Practical investigation using linear modelling in subsets of cluster-pair interactions.
Visual interpretation of quality metric associations and cluster pair interactions is provided as a
means of understanding simple linear relationships identified between cluster pairs and quality-
associated bias metrics. The matrix of Z values for each cluster pair’s relationships with each
quality metric (e.g. piece of metadata) was alternatively evaluated by looking at the Euclidean
distance measured across all terms. The resulting metric-metric distance values, defining the
level of correlation in linear prediction of variance across all cluster pairs, were clustered
hierarchically with pvclust to identify the most significant groupings of variables associated with
these linear interactions. [29] (Figure 3b-c) The recursive bootstrapping analyses uses in this
simple linear method are not memory efficient, and becomes computationally intractable when
evaluating non-supervised ‘effect groups’ of correlated cluster pairs with similar response to all,
or some, of our metadata terms. (Supplemental Figure 12a-b) These ‘effect groups’ were also
calculated, again using pvclust but over a subset of example metadata components, to illustrate
how to identify clusters with the greatest level of their inter-cluster relationships defined by a

particular ‘bias mode’. Clusters within ‘effect groups’ had counts added to their ‘effect
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histogram’ and the total scores were attributed to individual samples, and their clusters, to note
the clusters which canonically perform in a similar fashion with regards to these metadata terms.
(Supplemental Figure 12c¢-d).

Correcting abundance vectors derived from all QC terms, and subsets of QC terms.
For clarity, we’ll use our Exon data as an example to illustrate our method for correcting for
covariates. In this case the data-set involves M=1781 samples, N=15137 exonic transcripts, and
L=127 covariates. The data-matrices involved are the M-by-N (imputed) transcript matrix ‘A’, as
well as the M-by-L rank-normalized covariate matrix ‘C’. For notational purposes, we will also
use ‘1’ to refer to the constant M-by-1 vector of all ones.

We first use a version of linear regression to solve for the (1+M)-by-N coefficient matrix
zj, such that A is approximately equal to [1 C]*z;. The regression we use is referred to as
‘reduced rank regression’ and produces a sequence of (1+M)-by-1 vectors ‘u;’ and N-by-1
vectors ‘vj’ for j=1,2,...,(1+L). [30] At each step J in this sequence, the vectors u;j and v; are
chosen to minimize the frobenius-norm of the difference (A — [1 C](Sj=1s y; *v’;)). Given the
sequence of vectors from step #1a, the full z matrix is formed by summing over j: zy= Sj=1. uj *
v’j. Note that if [1+C] is full rank (i.e., rank 1+L) then the vectors u; will be chosen such that [1
C1*(Sj=1uj) 1s equal to U(:,1:0)*S(1:J,1:J), where U*S*V” is a singular-value-decomposition of
A. Furthermore, as long as [1 C] is full rank then the vectors v; will coincide with the columns of
V. If[1 C] is rank-deficient then these equalities will not hold. Now, for any rank J, we can
calculate the M-by-N residual matrix Ry = A —[1 C]*z;. We use the residual R as a covariate-
corrected version of the transcript-matrix A. By varying J, we can increase the level to which we
correct for the covariates (note that Ro = A). For our summary table we choose the rank J to be

‘full’ —i.e., determined by the rank of the covariate-matrix [1 C]. For the example given here
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(i.e., where C consists of all L=127 covariates) we choose J=12. For different populations of
covariates we vary J accordingly. For example, for the 12 ‘RRR’ covariates we use J=12. In the
case of the QC-clusters described above, we use J=1 (as the covariates within each of these QC-
clusters are presumed to act in a similar way across the sample-population).

Now, for each pair of pre-defined or unsupervised clusters (‘cluster pairs’), we can
measure the differential-expression of any of these 'covariate-corrected' genes from any of these
data-arrays (e.g., the differential-expression of any particular column of raw, imputed,
normalized, and/or covariate-corrected data). We provide corrected data that is actually the
residual of the fit of our covariates onto the abundance set (i.e., the residual between the original
data and the model).] (C_corrected = A_original — C_model). Moreover, we can apply clustering
techniques (e.g., t-SNE, Biclustering) to the rows of these 'covariate-corrected' data-arrays (e.g.,
use t-SNE to cluster the rows of the abundance matrix.)

Comparing the results of covariate correction. In order to search for marker-genes
associated with a specified set of sample-clusters {Sk}k=1.k, we first calculate the Z-score matrix
Z’, which is of size [number of transcripts] -by- [number of sample-cluster-pairs]. Given a
particular transcript ‘j” and a particular sample-cluster-pair ‘(k1,k2)’, the value of Z(j,k1,k2) is
obtained as follows. First, we measure the AUC associated with transcript j between sample-
cluster-pairs k1 and k2. Then we assess the statistical significance of this AUC by calculating the
AUC for a large number of label-permuted trials, and then estimating the Z-score of the original
AUC from step #1a with respect to the mean and standard-deviation of the distribution of AUCs
under the null-hypothesis in step #1b1. Note that, when z>0, the one-sided p-value associated

with the z-score from #1b can be simply calculated as: log(p) = log(0.5) + erfcln(z/sqrt(2)).
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Note that this Z-score matrix will depend on the transcripts used. If we use the original
transcripts ‘A’, we will calculate Z(A). On the other hand, if we use the covariate-corrected
transcripts Ry, we will calculate Z(R;).Once we have calculated both Z(A) and Z(R;), we can
simply calculate the correlation between the two. Moreover, we can step through each of the
sample-clusters Sk. For each sample-cluster k we can calculate the correlation ‘ck’ between
submatrices of Z(A) and Z(R;) corresponding to those sample-cluster-pairs that include sample-
cluster k. (Table 2) Note that this latter process produces a single number (i.e., the correlation cy)
for each sample-cluster k. The sample-clusters for which ck is low can be considered as strongly
affected by the covariate-correction associated with R;. Conversely, those sample-clusters for
which cx is high can be thought of as ‘robust’ with respect to the covariates associated with R.

As noted in the variables above (Figure 2), we compared the performance across all
combinations of 1) intron- or exon-abundances, 2) 1 of our 4 data preparation methods, 3) using
all (127), or some 12 RF-derived [2], 12 SRRR-derived [30], and MIN to MAX bias mode-
specific) covariates.

We also conducted a preliminary analysis using 1 through R zeta components in the
correction of the abundance matrix. An example comparison of the results correcting using
different counts of terms from Z is provided in Table 2 and Supplemental Table 3. The results
were compared in multiple ways, and the results compared to identify the most informative
methodology for comparison versus comparison in simulated data. As in previous examples
comparing normalized and imputed data, we compare our example results in terms of both
adjusted mutual information (AMI), calculated by evaluating the ‘repackaged probability’ of
seeing collective overlaps with the pre-defined AIBS clusters that are as rare or rarer than our

observations. In other words, these are the probabilities of observing our sample-cluster overlaps
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vs. our baseline assumption of these overlaps occurring in a random shuffling of sample labels.
We also calculate the differentially expressed genes, genes surpassing log(FoldChange) >
(variable undefined in draft) and p-value > (variable undefined in draft) using (variable
undefined in draft), across cluster pair associations before and after to delineate potential marker
genes of interest. (Table 3). We provide an example of this implementation on the human frontal
cortex samples, highlighting variation in cluster pairs which vary from defined cell types in

correlated ways, but which the cause of their independent clustering is not understood.

Chapter 2.4, in part, is currently being prepared for submission for publication of the
material. Multifactorial Quality Control Analysis for Single Cell Transcriptomic Profiling. 2020.
McCorrison J, Rangan A, Schork NJ. The dissertation author was the primary investigator and

lead author of this paper.
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2.5: FUTURE WORK

The improvement of laboratory methods in single cell sequencing is rapid, and novel
methods are naturally taken as a way of getting around biological barriers associated with
targeting different cell types, in different tissues. As shown above, quality error may be
introduced not only through sequencing, but simply through sample storage (e.g. by freezing and
unfreezing.) Advanced cell typing assays inherently target the most difficult to study cells, the
ones which will be the most interesting to understand due to their unknown function and possible

correlated effects in signaling with better-understood neuronal cell types.

To begin to studying more complicated trends like time series neural development and
memory formation within hosts, and comparing hosts, we must begin by getting a strong
functional foundation of the variety apparent in these regions of the brain, and to what degree our

analysis of lesser expressing cell types (e.g. inhibitory cells) is subject to data loss.

As we once saw in the metagenomic context, single cell sequencing is moving cell typing
research from the population wide evaluation of rare targets in unstudied tissues to the isolation
of the rarest signals. This is performed through extreme preparation methods that stretch the
limits of the ability to capture RNA from the host cell and to amplify it and interpret the degree
to which any signal was confounded. Leveraging longitudinal assays with this type of
information will be absolutely essential when cell type delineation in organs. Furthermore, as we
approach the development of organ-like tissues which could be used for high throughput assay
and clinical interventions, organoids, huge opportunities remain to leverage metadata-aware

biclustering to improve the cost and throughput of experimental protocols. These methods have
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further applications in the development of synthetic materials, biomasses for fuel/food, and other

industrial applications.

92



CHAPTER 3: ELUCIDATING LONGEVITY-ASSOCIATED OUTCOMES FROM
FIBROBLAST-DERIVED TRANSCRIPTOMIC SEQUENCING IN A REFERENCE FREE
CONTEXT

3.1. INTRODUCTION

As we once saw in the metagenomic context, where individually bacteria were slowly
isolated and sequenced one by one as high throughput sequencing improved, single cell
sequencing is already being used for the population wide evaluation of rare targets in unstudied
tissues. The goal of many research studies is the isolation of the rarest signals, those previously
unstudied due to their difficulty of isolation, via extreme preparation methods that stretch the
limits of the ability to capture signal from small quantities of RNA. Standard methods of
transcriptomics analysis have been complicated by the lack of available reference information on
novel cell types. Further difficulties are imposed when interpreting true signal from false noise
during expression events which are not captured by the defined reference coding region
sequence. Complications arise in the following chapter when comparing abundances because of
these reference accuracies but also because of, in some cases, a complete lack of defined
references for query species. To compare abundances amongst species without defined
references, we must create interpretation terms (e.g. defined groups of proteins with similar
function) translating our query-specific transcript-specific abundance to a representation that can
be compared across all of our query species. We linked our query-specific transcripts together
using a mapping to the best defined references for each query species in literature (e.g. using
ortholog groups associated with reference-specific genes, assigned to each transcript). While we
admit that leveraging orthologs as indicators of gene- or isoform-specific expression can lead to
spurious abundances, we found in preliminary study that such a method is far more sensitive than

the comparable use of a single best-defined reference (e.g. the domesticated chicken.)
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In the following chapter, we compare the performance of our abundance when we use
alignment to our best defined references, and also via de novo recapitulation of the sequences
and re-alignment to determine abundances. Leveraging our metadata against the abundances is
subject to a series of additional complications which we address at length. Most critically, we
compare common modelling methods to evaluate trends in transcriptomic abundance which
account for expected variance in transcriptomic expression associated with evolutionary
divergence events (e.g. nodes of the phylogenetic tree) and phylogenetic relationships between
species (e.g. branch lengths of the tree) defined from literature differently. We also discuss our
metadata itself, critically evaluating its influence on our results when gathered from various
sources, or normalized for transformation in our models which account for phylogeny contrast in

different ways.

This study follows analysis by collaborators from the Longevity Consortium evaluating
the relationships between longevity events, events dictating extreme high or low deviations from
our expectation of lifespan given mass, using linear modelling versus metadata to predict
outcomes in rodents and in canines. Additional studies provide comparable targets in additional
host species, and which account for longevity using different measurement types (e.g. variants)
and host species. We show that the complications of eukaryotic, reference-free analysis in a
diverse cohort can be accounted for, with caveats requiring individual investigation of
highlighted results associated with a given phenotype, and identify potential longevity associated

targets shared across host species.
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3.2. MULTI-REFERENCE GENOME-WIDE RNA-SEQUEQNE ANALYSIS OF 49 BIRD
SPECIES IDENTIFIES TRANSCRIPTS ASSOCIATED WITH AVIAN LONGEVITY

See un-published work, a draft currently being prepared for submission, reproduced in this

chapter:

McCorrison J, Chan AP, Choi Y, Ding K, Pickering A, Pawlikowska L,Norden-Krichmar T,
Evans D, Schork NJ, Miller RA. Multi-reference Genome-wide RNA-sequence Analysis of 49
Bird Species identifies Transcripts Associated with Avian Longevity.
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ABSTRACT

Bird species exhibit great variation in lifespan, raising the question as to whether or not
this variation can be attributed to inherent DNA sequence and/or gene expression differences
among them. In order to identify genes whose expression levels correlate with lifespan across
bird species, we characterized the transcript abundance profiles of fibroblasts obtained from 49
species exhibiting great variation in their maximum lifespans using RNA-sequencing protocols.
Due to the fact that reference genomes were available for only 20 of the species, we used
reference genomes for each species from the 20 species with references based on their
phylogenetic or transcriptomic distances. We also contrasted reference-guided transcript
abundance calculations with abundances determined from de novo assembly of each species
transcriptome. We correlated transcript abundance levels with the maximum lifespans of the 49
bird species, controlling for both phylogenetic relationships as well as differences in body size.
We also identified the human orthologs of the most strongly associated transcripts and ultimately
found evidence for 63 human gene equivalents whose abundance levels correlated with bird
lifespan at FDR-adjust p-value < 0.05. These associated transcripts are known to mediate
important biological processes, including organ morphology relating to intestinal and gonad

development, and carcinogen markers in the stomach, liver, and intestine.

KEYWORDS

Longevity Transcriptomics Avian Bird Orthology Aging Lifespan Ontology RNAseq
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BACKGROUND

The identification of genes contributing to lifespan has received a great deal of recent
attention, in part because of the belief that their identification could lead to insights into, e.g.,
nutritional or pharmacological intervention targets for enhancing longevity, possibly by slowing
the aging process and age-related disease onset.[1,2,3,4,5] Unfortunately, the identification of
genes that influence lifespan in a way that could lead to longevity-enhancing interventions has
been elusive, due, most likely, to the number and complexity of such genes. One strategy for
potentially overcoming this complexity involves exploring within-species variation in lifespan
and the genes and genetic variations that might contribute to it using well-controlled study
designs. For example, large-scale genome-wide association studies (GWAS) have been pursued
in humans that have common ancestral origins to identify genetic variants associated with human
lifespan, as have studies of specific strains of mice that exhibit intra (and inter) strain variation in
lifespan.[6] In addition, highly controlled gene manipulation studies, such as those involving
knock-out and transgene protocols, have been pursued in studies involving yeast, worms, and
flies, to determine if the manipulation of specific genes affects the longevity of those

species.[7,8,9]

Complementary and more recent approaches to the identification of genes contributing to
lifespan involve exploring genetic similarities and differences across multiple species that exhibit
variation in lifespan — the intuition being that if, for example, a gene’s increased expression level
is necessary or sufficient for extending lifespan in one species, then that gene and its orthologs in
other species should be expressed at relatively high levels in long-lived, as opposed to short-
lived, species. In this context, a recent study by Ma et al.[10] considered characterizing the

transcriptomes of 16 mammalian species exhibiting a wide range in lifespans using RNA
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sequencing (‘RNA-seq’) technologies and protocols. By exploiting special bioinformatics and
statistical methods to normalize the expression levels across the species, as well as control for the
phylogenetic relationships between the species, the authors identified genes whose expression
levels were associated with lifespan across the 16 species. Many of these genes were known to
be involved processes relevant to aging, such as DNA repair and metabolism. In addition, by
focusing on multiple species, and by characterizing the gene orthologs across those species, and
the methods for identifying those gene orthologs, the authors provide a useful resource for

researchers investigating genes in other species to enable comparison of results with theirs. [11]

We conducted a study exploring the relationship between lifespan and transcript
abundance levels quantified from RNA-seq protocols using fibroblasts obtained from 49
different bird species known to exhibit wide variation in their lifespans. Unfortunately, unlike
other species, there are not, to date, universally accepted avian reference genomes for the
majority of the species we considered in our analyses. We therefore adopted two strategies to
leverage as many reliable and available avian reference genomes as we could. First, we used the
reference genome from the species closest in the phylogenetic distance to each of the 49 species
we studied to assign and quantify transcripts. Second, we compared the performance of the
analysis using reference-guided transcript abundances to transcript abundances obtained from the
de novo reconstruction of transcripts for each species coupled with the identification of
orthologous gene groups derived from these de novo transcripts. [Chan, Choi, McCorrison,
Pickering, Pawlikowska, Norden-Krichmar, Ding, Evans, Miller and Schork; (manuscript in

preparation)]

We tested the association of each set of orthologous gene (i.e., transcript) group to

maximum life span (MLS) and body size-corrected MLS while correcting for the phylogenetic
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relationships of the species using the method of phylogenetic contrasts [12] and multivariate
distance matrix regression (MDMR; [13, 14, 15]. Note that for these analyses we considered
maximum lifespan and body size data from different sources [16.] We did this since there is not
consensus on the MLS and body size information for all species w studied. We also identified
the human orthologs of the associated genes using OrthoDB [17]. Finally, we conducted pathway
enrichment analysis to identify common processes and genetic networks that are influenced by
the associated genes. Ultimately, our strategies and workflows for identifying transcripts whose
abundances are associated with MLS in birds provides a recipe for conducting similar analyses
across additional sets of diverse species. In addition, our list of associated genes and pathways
can be compared with the results of different types studies seeking to identify genes associated
with MLS. We believe that our study is largest to date to explore the avian transcriptome and
should motivate additional studies investigating evolutionarily conserved processes and

pathways contributing to lifespan.

RESULTS

A graphical representation of the phylogenetic relationships between the 49 species we
studied, as well as their MLS and body size values are depicted in Figure 1. Color coding of the
species indicates which reference genome was used for each of these 49 species to assess
transcript abundances from the RNA-sequencing reads. Note that some of the 49 species were
assigned use of the same reference genome whereas other reference genomes were used with
only one or two species. Note also that the long-lived species, even corrected for body size,

occur in different sub branches of the phylogeny.
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The relationship between MLS and body size across the 49 species is provided in Figure
2. Note that some of the species appear to be more outlying relative to others (e.g., Turkey,
Ruffed Grouse and Rock Dove) given what is otherwise a fairly linear relationship between log
body mass and MLS. The residuals from the regression of log body mass on MLS were

considered in our association analyses with transcripts.

After transcripts abundances were quantified by either mapping reads to chosen reference
genomes or counting them from the de novo transcript assembly for each species, we determined
orthologous groups of transcripts using OrthoDB [17]. We then tested the association of each
orthologous group (OG) to MLS and MLS-corrected for body size using a simple linear model,
the phylogenetic contrast method of Felsenstein, as implemented in the R module CAPER
[12,18], and MDMR [13,14,15]. Note that the MLS and body size values were obtained from
different sources so we considered these different values in our analyses. Table 1 provides the
results of these association analyses and suggests that the transcript quantification methods, the
different analytical methods, and the choice of MLS/body size values can make a difference in

the number of associated OGs.

In order to reduce the number of associations, we considered only those OGs obtained
with the reference genome alignments that had known human orthologs based on the OrthoDB
[17]. Table 2 provides the results for the most significantly associated OGs exhibiting either a
positive or negative abundance association with MLS. It can be seen from Table 2 that there is
consistency in the associations of these OGs with the OG abundances derived from the de novo
assemblies. Figure 3 provides volcano plots summarizing all the associations involving the
reference-guided and de novo assembled OGs and again suggests reasonable agreement between

the two strategies. These analysis results give us confidence that our results were robust to the
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nuances surrounding transcript assembly or OG determination. Figures 4-6 provide examples of
individual OGs and their associations with MLS using the different analytical methods. These
figures also provide information about the human gene orthologs of the associated OGs as well

as information about the pathway involvement of the human orthologous genes.

We next took the most significantly associated OGs from the reference-guided and de
novo assembled approaches and performed pathway enrichment analyses on each set of
associated OGs using the Ingenuity Software Suite [19]. Table 3 summarizes the results. Tables
4a-4c break down the results of these pathway enrichment analyses and provide information on
the most significantly enriched processes, cellular components, molecular functions,
respectively. Table 5 lists the most significant diseases and/or functional associations of the
enriched pathways. Finally, we identified the 63 OGs that were most significantly associated
with the residual of natural log of mass on MLS (FDR-adjusted p-value cutoff 0.05) and
subjected them to pathway analyses. Figures 7 and 8 depict the results. Many of these OGs had
identifiable human orthologs and 10 of them were also found to be associated with the residual
of natural log of mass on lifespan across mammalian species, including EVISL, MRPL37,

PWWP2A, THOCS, and WHAMM, based on the findings by Ma et al [10].
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Figure 3.2.1. Phylogenetic relationships among the 49 species. Leaves = query species, colored
by best reference assigned. Nodes = evolutionary breakpoints, colored by caper-derived
phylogenetic contrast. Bar plots = metadata for each row, as defined in Supplemental Table 1,
using metadata context “BMG (A)”.
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Figure 3.2.2: Relationship of MLS to log (base e)-normalized body mass in grams across all 49
species. Dotted and dashed lines indicate 1 and 2 standard deviation distances from the
regression line based on residual values from the regression of MLS on log body mass. Metadata
provided in Supplemental Table 5a (Columns = “Dependent Variable: BMG (A)”, “Independent
Variable: MLS (A)”). This plot is recreated in alternative metadata contexts in Supplemental

Figure 2.
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Figure 3.2.3. Volcano plots constrasting MLS associations with the reference-guided and de
novo assembled OGs. Number of unique ortholog groups (Y, negative natural log of raw p-
value) and their associated phylogenetically contrast-adjusted slope (X, calculated using the
caper model package), A) CAPER, MLSLW, log(Rel Abs), (BMG (A)), B) CAPER, MLSW
log(Rel Abs) , (BMG (A)), C) CAPER, MLS log(Rel Abs) , (BMG (A)), D) CAPER, MLSLW,
Rank(Abs), (BMG (A)) , E) CAPER, MLSW Rank (Abs) , (BMG (A)) , F) CAPER, MLS Rank
(Abs) , (BMG (A). Compare to metadata context (AW (A) in Supplementary Figure.
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Figure 3.2.7. TopGO Gene Ontology Results. Metadata = BMG (A). GO terms significantly
associated with significant OGs from both Alignment and De Novo abundance contexts. (A,C,E)
Positive association with residual on lifespan. (B) Negative association with residual on
lifespan. A-B) Biological processes, cutoff = KS 0.05. D.) Cellular components, cutoff = KS
0.05, negative-only. E-F.) Molecular functions, cutoff = KS 0.05, negative-only.
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Figure 3.2.8. Ingenuity Pathway Figure (hand-curated). Metadata = BMG (A). Significant
OGs shared in Alignment and De Novo abundance contexts with Ingenuity Pathway equivalents
(Human, Mouse, Rat). Data used for Figure examples: Model = CAPER, Dependent = MLSLW,
Independent = LG, Metadata = BMG (A), FDR p-value cutoff = 0.5. IP pathway selection cutoff
= 5e-8. Direction of association = A) Positive (Dark Green=Positive Association with Residual
on Lifespan, Light Green = IP Linked Associated Target). B) Negative (Dark Orange=Positive
Association with Residual on Lifespan, Light Orange = IP Linked Associated Target). Some of
the most significant Disease and Function terms, those with greater than 100 connections to
genes were omitted for visualization (see Supplemental Table). Associations between Human
reference genes co-defined for significant OGs (dark green, dark orange) and diseases (light
blue) and functions (white) are indicated with a dashed line. Connections between these genes
and their linked targets from the IP database are provided with a solid line (Table 1, Table 2)

Compare to Table 5.
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Table 3.2.1. Number significant OG for each model at Cutoff = FDR-adjusted P-value =
0.005. The number of OGs significant at threshold for each model (e.g. “CAPER”). Abundance
type : DN = De Novo, Al = Align. Directionality of association: Slope of association after
phylogeny correction is positive (+) or negative (-). Me = Metadata: BMG (A) = Body Mass
(Grams), updated with AnAge, A = Adult Weight (Grams), source from AnAge. D = Dependent
variable: A = MLS = Maximum lifespan, B = MLSW = residual of BMG (Body mass in grams)
on MLS, C = MLSLW = residual of the natural log of the BMG on MLS.. In = Independent
variable: G = relative gene abundance, RG = rank-ordered abundance, LG = natural log of
abundance. (Table on next page.)
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