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Abstract

Towards Interpretable Models of Health

by

Haraldur Tómas Hallgrímsson

We have witnessed massive advances in predictive modeling within the past decade,

with machine learning models achieving superhuman performance in a variety of tasks.

However, the notion that such models are a ‘black-box’ with little to no explanatory

power has limited their impact on fields where erroneous data-driven decisions can have

severe consequences, such as to do with our health. Health data in particular has the

potential for transformational impact to our lives with the improved efficiency machine

learning models have brought to other domains. There is a need for new computational

approaches that can derive insight from health data while addressing these concerns.

In this dissertation, we describe novel computational methods on health data that do

not just achieve high performance on singular performance metrics but chiefly to char-

acterise the data. The methods combine insights from statistical and machine learning,

network science, and Bayesian uncertainty quantification to improve our understanding

of human health data through the lens of two main sources of data: the human brain

as imaged by diffusion MRI, and human physiology as measured by wearable sensors.

(1) We show how to find brain regions that are more cohesive within a population of

interest, discovering that nearly 4% of white matter is associated with genetic similarity.

(2) We quantify how informative an individual’s attributes are for generative regions of

white matter, and (3) also the dual problem of measuring how predictive a region of

white matter is of an attribute. (4) Lastly, we demonstrate how to measure a cardiovas-

cular transfer function from digital activity traces by learning from ‘natural experiments’
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during daily living conditions, and show that these transfer functions are predictive of

variables associated with cardiovascular health.
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Chapter 1

Introduction

Tölva: Icelandic word for computer.

Portmanteau of tala (number) and

völva (prophetess): she who

predicts numbers

Data is transforming science. The release of large, high-quality, and publicly available

datasets have galvanized many fields of study, enabling insights that otherwise would not

have been discovered which ultimately benefit our daily lives. Health data is no exception,

with advances in our understanding there having the promise of transformational impact

on human health and well-being.

Due to such data, massive advances have been made in predictive modeling. Super-

human performance has been achieved for many machine learning tasks, ranging from

winning versus the best human players at the game of Go to diagnosing from medical

imaging data with performance greater than that of teams of trained professionals. How-

ever, especially in fields such as health where erroneous decisions can have vast negative

consequences, there has been trepidation in adopting these latest advances in machine

1



Introduction Chapter 1

learning. Commonly, such models are rightfully criticised for not offering any insight

into why they make one particular decision over another. This becomes problematic if,

for instance, they are applied to new data which may not match the distribution they

were trained on, and for which they may provide overly confidant predictions with no

indication of trouble. These are exciting challenges, and call for clever methodologies in

adapting to them.

In this dissertation, we present new computational methods to characterize health

datasets. The aim is not to improve on singular prediction metrics but to gain actionable

insight from the data, enabling better understanding of human health. To that end, we

examine health data from the two extremes along the axis of acquisition cost: brain MRI

scans and physical activity traces. Massive improvements in measurement fidelity within

recent decades have led to much improved studies of the human brain in vivo, allowing

researchers to further probe at our seat of consciousness. However, such data come with

a great challenge: sample points are acquired in much smaller quantity relative to other

data, and are of exceptionally high dimension due to the aforementioned improvements

in sensory equipment and acquisition methods. At the other extreme are physical activ-

ity traces, acquired by ubiquitous digital devices including mobile phones and wearable

devices. These can be collected continuously at massive scale, but with the associated

challenge of dealing with vast heterogeneity between subjects and settings.

To effectively leverage these data, we have developed novel statistical and machine

learning methods which deliver new insight as part of their design. Each of the following

chapters present new methodology to understand either the physical connectivity within

the human brain or digital traces of physical activity. In particular, this dissertation is

organized as follows.

• In Chapter 2, we seek to discover regions of structural connectivity within the brain

2



Introduction Chapter 1

that are preserved in a population of interest, as compared to some control popula-

tion. We propose a novel measure of coherence between voxels within a brain scan,

and develop a statistical framework which considers dyads of neighboring voxels

across subjects to discover large connected components of the brain in which the

oriented microstructure of the brain is more similar for the population of interest.

We apply this methodology to discover nearly 4% of white matter is associated

with genetic similarity based on a study of 109 twins, and show that these regions

are preferentially located within deep white matter.

• In Chapter 3, we measure how individual traits of the subject affect local regions

of white matter. We develop a generative framework based on Generative Adver-

sarial Networks (GANs) which directly measures the uncertainty associated with

generating regions of the brain given contextual information.

• In Chapter 4, we consider the dual problem of Chapter 3, namely discovering how

predictive regions of white matter are of individual characteristics. We develop a

method which decomposes a Convolutional Neural Network (CNN) classifier of a

brain scan into two components: a classifier which predicts the characteristic under

consideration on the basis of small patches of the brain scan, and a saliency map

which denotes how informative each brain region is for the prediction. We learn

this saliency map across a population, which offers an interpretable atlas of which

brain regions are most correlated with which characteristics.

• In Chapter 5, we turn our attention to physical activity traces. Using fine-grained

continuous measurements from a cohort of eighty thousand individuals over a span

of a month, we develop methodology to infer a person’s cardiovascular health. We

leverage the long time-window of data to preferentially learn from spontaneously

occurring ‘natural experiments’ where their cardiovascular response to activity can
3



Introduction Chapter 1

be learned, and show that a descriptor of that response is predictive of variables

associated with cardiovascular function, such as age and body mass index (BMI).

In each of these chapters we build upon advances in statistical learning, data and net-

work science, and machine learning to characterize aspects of the datasets. The methods

we propose are data-driven, and particularly adapted to meeting the variety of challenges

and limitations inherent to the sensor data we apply them to. The constraints imposed

by the data we consider lead to interesting design decisions for how best to model each

problem, especially with the goal of deriving explanatory power from the models and

frameworks we propose.
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Chapter 2

Discovering Regions of White Matter

Associated with a Population

If a machine is expected to be

infallible, it cannot also be

intelligent.

Alan Turing

2.1 Introduction

Structural connectomics of the human brain is increasingly recognized as an essential

complement to functional imaging. Imaging the physical connectivity in the brain is

primarily based on diffusion-weighted MRI (dMRI). While this imaging continues to

improve in angular resolution of diffusion signals, there remain significant challenges in

image reconstruction, representation of diffusion features, and statistical analysis of white

matter structures across populations of subjects.

There is an abundance of methods for analyzing dMRI, many of which show promise in

5



Discovering Regions of White Matter Associated with a Population Chapter 2

diagnosing brain abnormalities such as strokes (7) and discovering correlates of many cog-

nitive processes including metacognition (8). Current approaches generally fall into one

of two categories: Brain Graph methods (9) use dMRI to estimate “connection strength”

between pairs of cortical regions while Scalar-based methods calculate a single value at

each voxel that is interpreted as reflecting “white matter integrity” (10).

Brain Graphs succinctly represent long-range connectivity between non-overlapping

parcels of gray matter. The analyst chooses a gray matter parcellation, then uses a

tractography algorithm to trace paths across white matter voxels. There are many ap-

proaches to tractography, but they all utilize diffusion orientation information to grow

streamlines through space. Tractography results therefore depend on the accuracy of the

voxel-wise estimates of white matter orientation, which can be complicated in structures

such as crossing fibers (11) with (12) suggesting these tractography methods are readily

dominated by false positive streamlines. Brain Graphs represent cortical regions as nodes

and use a property of streamlines (such as their count) to weight edges, resulting in a con-

nectivity matrix. These connectivity matrices are the basis for numerous network-based

approaches (13) that have shown promise in understanding the development of large-scale

brain connectivity (14) and processes such as aging, disease, and cognition (15; 16).

Scalar-based methods typically reduce the 6-dimensional dMRI data, a 3D oriented

diffusion field measured in a 3D space, into a 3D volume. These scalar-valued volumes

can easily be spatially normalized and statistically compared across individuals. The

most common example of this is the analysis of Fractional Anisotropy (FA) derived from

diffusion tensor imaging (DTI). FA is a function of the eigenvalues of a fitted diffusion

tensor, with higher values reflecting a large degree of diffusion along a single orientation

while lower values can reflect white matter damage (17; 18; 19; 20; 21; 22) or the presence

of fiber populations projecting in multiple orientations (10; 23). The inability of tensors

to represent multiple directions has been addressed by methods that use higher angular-
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resolution dMRI to calculate an orientation distribution function (ODF) in each voxel

where multiple fiber populations appear as “lobes” (24), as seen in Fig. 2.2a. Although

ODFs can represent multiple fiber orientations, popular ODF-based scalars such as gen-

eralized fractional anisotropy (GFA) (25) and multidimensional anisotropy (MDA) (26)

are still heavily reduced in voxels with fiber crossings (23). A major benefit to scalar-

based techniques is that 3D interpolation can be performed accurately during spatial

normalization, whereas interpolating 6D ODFs has been shown to systemically affect

tractography (27); this normalization is important to be able to compare the same spa-

tial regions of the brain between subjects that, in general, have different brain shapes

and sizes.

Although the resampling of entire ODFs after applying a spatially-normalizing dis-

placement field can produce undesirable results (28), 3D vector fields are generally well-

behaved when spatially warped. We can take advantage of this by extracting directional

maxima from each ODF and treating them as vectors. One vector is produced from each

lobe of each ODF and warped to a group template where they can be compared across

subjects. We calculate a similarity measure between each voxel and its neighbors instead

of performing tractography on this spatially-normalized vector field. Where tractogra-

phy seeks to determine whether axons project into a neighboring voxel, similarity scores

reflect whether two voxels are part of the same white matter structure; this can be consid-

ered a generalization of tractography, capturing both the projections and cross-sections

of a single white matter structure.

Fig. 2.1 shows how this approach compares to other current methods. Consider

two fascicles in the brain that have been spatially normalized to overlap in space (top

row). Two groups have different projections even though scalar based measures and

tractography (middle row) would look identical. The bottom row shows the fascicles

from both groups superimposed on one another. Distance measures between neighboring

7
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voxels would reveal four areas that are coherent both between and across groups. In

contrast, the vectors in the center crossing region are coherent within each group but

differ across groups. The output of this pipeline is a set of regions like the red outlined

area of crossings in Fig. 2.1, where directed ODF maxima are similar within groups but

differ across groups.

Directional ODF maxima tend to vary smoothly in space albeit with large disconti-

nuities around anatomical features, as seen in Fig. 2.2. We can measure the similarity

of neighboring voxels by defining a distance between two ODFs that takes into account

both magnitude and direction of each peak. Fig. 2.3 shows an example of incoherence, or

dissimilarity, between ODFs from all dyads of neighboring white matter voxels within a

single subject. Most dyads exhibit very low dissimilarity, with a long tail of voxel dyads

with large dissimilarities. Dyadic distances form the basis for the method proposed here.

These distances are used to build a lattice network, which expands the comparison from

neighboring voxels to large white matter regions. Region-based distances are then used to

compare between groups.

To demonstrate the validity and usefulness of the dyad approach, we consider the

problem of finding spatially contiguous regions of white matter that are associated with a

population of interest as compared to some control population. This problem mirrors the

approach taken to subdivide the gray matter of the brain into functional regions (29; 30).

We develop a non-parametric method for discovering arbitrarily shaped white matter

regions that are significantly more similar with the population of interest, not on the basis

of their connectivity to gray matter regions but instead on a group-wise local consistency

in oriented white matter microstructure. This is accomplished by discovering spatially

contiguous white matter voxels that are significantly more coherent within the population

than would be expected from a matched control group. (Alternatively, especially in the

context of neurological disorders and/or injuries, one could additionally search for regions

8
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Figure 2.1: Two fascicles from two hypothetical groups of individuals (top row). These
fascicles would generate very similar anisotropy images and tractograms (middle row).
Coherent regions can be identified that agree across groups (bottom left, gray outlined)
and that are dissimilar across groups (red outline in center). A sample of the MDA
vectors of each population from the dissimilar region is shown on the bottom right.
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Figure 2.2: Measuring coherence across voxels within a single subject. (a) A two-
dimensional slice of the measured Orientation Distribution Function (ODF) from a single
subject measuring the Brownian motion of water that is constrained by oriented white
matter microstructure. (b) The multidirectional anisotrophy (MDA) values extracted
from the local peaks of the ODFs (from pink box in a). (c) Measuring the coherence of
neighboring voxels with respect to their ODFs by overlaying the extracted MDA vectors
from the center voxel (highlighted in red in b) onto all spatially adjacent white matter
voxels in this 2D slice.
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Figure 2.3: Distribution of dissimilarity, or incoherence, between all adjacent white mat-
ter voxels within a single subject. Incoherence is mostly small but a long tail of dissimilar
neighboring voxels exists.

that are less coherent in the population of interest.) In contrast to previous studies (31),

we measure coherence simultaneously across both subjects and neighboring voxels.

We apply this method to diffusion scans from the Human Connectome Project on

a population of monozygotic (MZ) and dizygotic (DZ) twins to discover white matter

regions that are associated with genetic similarity and/or a common upbringing. We

hypothesize that in this situation, there should be significantly more coherence in the MZ

twins than DZ twins, and DZ twins than unrelated individuals. The discovered regions

are more similar within MZ and DZ twins than as compared to a control population of

strangers. We also test the robustness of the discovered areas by generalizing them to a

previously unseen population of non-twin siblings that display as much similarity in the

white matter regions as the DZ twins.

Previous work has identified genetic influences of various quantitative measures of

the brain, including total brain volume (32), the volume of gray and white matter re-

gions (33; 34), peaks of fiber orientation functions and tracts derived therefrom (35),
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brain asymmetries (36; 37), as well as other aspects of white matter (38; 39; 40). A

simpler representation of the ODFs, FA, which measures how anisotropic a ODF is, has

previously been shown to measure putative heritable influences (41). Our work extends

that work by considering a richer representation of the ODFs. It is important to note

that in our work we are interested in similarity associated with oriented white matter

microstructure and not gross anatomical morphology, which we control for by exclud-

ing those white matter voxels whose log Jacobian determinant obtained during spatial

normalization are more similar in MZ and DZ twins as opposed to strangers, see B.

If the population of interest does not correspond to any significant or strong signal of

similarity within the oriented white matter microstructure, our method would identify

only sparse and spatially distributed portions of white matter with an associated high

false discovery rate. We apply our method on a population of MZ and DZ twins as we

expect, and demonstrate, this population of interest as having a very strong signal to

validate our method. That the results we present cluster spatially to a very high extent,

are associated with a low false discovery rate and large effect sizes, and generalize to a

previously unseen portion of the population serves as a strong validation of the method.

2.2 Methods

2.2.1 Imaging data and preprocessing

The preprocessing pipeline used for this study was identical to that used in (23),

but is reported here as well for completeness. These data were collected as part of the

Washington University-Minnesota Consortium Human Connectome Project (42; 43; 44).

Participants were recruited fromWashington University (St. Louis, MO) and surrounding

area. All participants gave informed consent. The data is derived from 630 participants
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(358 female, 272 male).

The structural and diffusion data were collected on 3T Connectome Skyra system

(Siemens, Erlangen, Germany). The diffusion volumes were collected with a spatial

resolution of 1.25x1.25x1.25 mm3, using three shells at b = 1000, 2000, and 3000 s/mm2

with 90 diffusion directions per shell and 10 additional b0s per shell. Spatial distortion

and eddy currents were corrected using information from acquisitions in opposite phase-

encoding directions, as well as head motion (45). The high-resolution structural T1

weighted and T2 weighted volumes were acquired on the same scanner at 0.7mm isotropic

resolution. Minimally preprocessed images were reconstructed in DSI Studio (http://dsi-

studio.labsolver.org) using Generalized Q-Sampling Imaging (46).

Skull stripped, aligned, and distortion corrected T1w and T2w volumes (45) were

rigidly registered to the subject’s GFA volume. The symmetric group wise normalization

(SyGN) method implemented in Advanced Normalization Tools (ANTs, http://stnava.

github.io/ANTs/) was used to construct a custom multimodal brain template using the

data of 38 HCP subjects (47) that included proportions of racial, gender, and handedness

that chosen through stratified random sampling according to these features. Of those

38, seven are monozygotic twins and nine are dizygotic twins that are a part of the

population of interest for this study, and a further four are part of the non-twin siblings

set. Each subject’s GFA, T1w, and T2w volumes were used during template creation

with weighting factors of 0.5 (GFA) × 1 (T1w) × 1 (T2w). Templates were created

after 5 iterations. Templates from the 4th and 5th iterations of multi-modal template

construction were inspected to check that the templates had stabilized. All individual

datasets were ultimately normalized to this template using all 3 modalities and symmetric

diffeomorphic normalization (SyN) as implemented in ANTs (48).
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2.2.2 Extracting MDA Vectors

Each ODF Ψ(θ) was calculated with GQI on a set of 642 approximately-evenly spaced

directions θ ∈ Θ on a tesselated icosahedron. ODF magnitudes were rescaled so that the

sum of each ODF is
∑

θ∈Θ Ψ(θ) = 1. We then calculated the multi-directional anisotropy

(MDA) value for each direction θ as

MDA(θ) =
1− µ√
1 + 2µ2

(2.1)

where

µ =

(
Ψ(θ)

Ψ(θmin)

)2/3

(2.2)

and θmin is the direction with the smallest ODF magnitude.

MDA values were calculated for the four largest local maxima in every ODF, resulting

in values denoted MDA0, MDA1, MDA2, and MDA3 which are ordered by decreasing

size. The four corresponding directions θ0, θ1, θ2, θ3 were also extracted and saved as 3D

vector fields for each of θ0, . . . θ3. In a separate study of the same data we found that ODF

peaks become very noisy after the 4th direction (23). Vector fields corresponding to the

local maxima were warped into the group template using ANTs. 3D volumes containing

MDA0-3 were also warped to the group template and used to scale the normalized vectors.

White matter voxels were determined by segmenting the weighted average template of

T1w, T2w, and GFA volumes in FreeSurfer (49).

2.2.3 Estimating voxel expansion due to normalization

The 3D warps generated by ANTs were used to calculate the Jacobian matrix at each

voxel. The log of the determinant of this matrix is an indication of whether the tissue

in that voxel expanded or contracted in size in order to match the template images (50).
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These values are commonly used to test for morphological differences between groups. We

use these log-Jacobian values to dismiss any systematic morphological or misregistration

effects that might affect this study (see B).

2.2.4 Subjects

The Human Connectome Project includes 109 pairs of twins, of which 57 are monozy-

gotic (MZ) and 52 are dizygotic (DZ), and a further 47 pairs of non-twin siblings which

are disjoint from the population of twins. The analysis in the rest of this paper is focused

on the subjects in these three populations. Table 2.1 details the demographic information

of these subjects.

The control groups for the twin and sibling populations are obtained by sampling with

replacement an equal number of pairs of non-related subjects from the same population.

We control for gender- and age-related confounders by matching gender and age-ranges

such that the control populations have the same demographic distribution as detailed

in Table 2.1. We refer to these control groups of non-related pairs of individuals as

strangers.

2.2.5 Defining voxel-wise similarity

We seek to identify regions of white matter that contain significantly more similarly

oriented white matter structures within a population of interest when compared to a

control population. We first present a similarity metric between subjects defined with

respect to a single voxel. We then extend that metric to measure similarity, or coherence,

across dyads of neighboring voxels between pairs of subjects. Connected components of

dyads that are significantly similar within the population of interest form the arbitrarily

shaped regions of white matter associated with that population.
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Table 2.1: Age and gender demographics of each pair of twins and siblings in the study
population.

Monozygotic
twins

22-25
22-25

22-25
26-30

22-25
31-35

26-30
26-30

26-30
31-35

31-35
31-35

Both female 24 19
Both male 3 7 4

Dizygotic
twins

Both female 1 17 13
Both male 5 9 7

Siblings

Both female 1 3 1 2 2
Mixed gender 6 7 3 7 2
Both male 1 4 1 2 3 2

We define a similarity metric between a pair of subjects on the basis of their 6D

ODFs within a voxel. We reduce the distributions down to the most probable underlying

oriented white matter microstructure, which we describe as an ordered series of vectors,

by extracting local peaks of the ODFs as MDA vectors. We order MDA vectors from the

same voxel by their magnitude normalized by the isotrophic component of the distribu-

tion. We extract the four largest peaks in any given MDA distribution, as detailed in

Section 2.2.2.

We measure how similar a pair of individuals are with respect to their oriented white

matter microstructure within a voxel by comparing their extracted MDA vectors. The

similarity should take into account similarity in both direction and magnitude. Common

methods to compare vector similarity that incorporate both magnitude and direction

include the dot product as well as various p-norms of the vector differences. We use the

L2 norm, or Euclidean distance, to compare individual vectors. This choice of metric

corresponds well to the geometric space the measured microstructure exists in, as well as
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is robust to noisy MDA vectors which manifest as having small magnitudes.

Let X i
v be the i-th three-dimensional vector in voxel v for subject X. This is a di-

rected vector representation of an ODF, which fundamentally is not directed (as seen in

Fig. 2.2b). As such, when computing a dissimilarity between ODFs we consider the min-

imum distance between the vector representation of an ODF or its reflection around the

origin to another such vector representation or that vector’s reflection around the origin,

where the origin is the center of a given ODF. We compute subject X’s dissimilarity to

subject Y in voxel v as

d(X, Y, v) =
k∑
i=1

min
(∥∥X i

v − Y i
v

∥∥ , ∥∥X i
v + Y i

v

∥∥) , (2.3)

where we have k MDA vectors and use the L2 norm in d = 3 dimensions,

‖x‖ =

√√√√ d∑
k=1

|xk|2. (2.4)

2.2.6 Defining voxel dyad similarity

As we report in A, Eq. 2.3 is a suitable method to discover white matter voxels that

are significantly more similar in a population of interest when compared to a control

population, and that these voxels spatially cluster into white matter regions. However,

we derive a related method that directly encodes the notion of spatially adjacent voxels

and serves as a more natural way to discover white matter regions.

Individually significant voxel dyads can be aggregated to form large arbitrarly shaped

white matter regions. To this end, we define a lattice network over the white matter voxels

and search for subnetworks, or white matter regions, that exhibit significant similarity.

Each white matter voxel serves as a node in this network, and we consider dyads of

neighboring voxels (those that share a common face, edge, or corner, i.e. each voxel may
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have up to 26 spatially adjacent white matter voxels that form a cube surrounding the

center voxel). This forms a lattice network of the white matter voxels connecting the

nearly one million white matter voxels together as 12.2 million voxel dyads. We again

exclude those voxels which we have evidence for being more similarly registered in the

population of interest, as reported in B.

Using this network approach, the random variable of interest no longer corresponds

to a single voxel but instead to dyads of neighboring voxels. We modify Eq. 2.3 such that

subjects X and Y ’s dissimilarity with respect to the undirected voxel dyad (u, v) is

d(X, Y, u, v) =
1

2

k∑
i=1

(
min

(∥∥X i
u−Y i

v

∥∥ ,∥∥X i
u+Y

i
v

∥∥)
+ min

(∥∥X i
v−Y i

u

∥∥ ,∥∥X i
v+Y

i
u

∥∥) ), (2.5)

where we take the arithmetic mean between the directed pairs (u, v) and (v, u) such

that the dissimilarity is symmetric between subjects (and reordering of the dyad) as is

Eq. 2.3.

This dissimilarity can be considered as the incoherence between neighboring voxels

in a pair of subjects. A low dissimilarity implies that the fiber populations in the two

voxels across subjects contain similarly oriented white matter structures, though not

necessarily that there exists a fiber population that travels between the two voxels. A

high dissimilarity could correspond to perpendicular fiber populations, or large deviations

in the measured magnitude of the MDA peaks. An example of this dissimilarity, or

incoherence, can be seen in Fig. 2.2(c).
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(a) Voxel dyad in which twins are signifi-
cantly more similar than strangers. Kernel
density estimates overlaid as solid lines.
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(b) Voxel dyad in which twins are not signif-
icantly more similar than strangers. Kernel
density estimates overlaid as solid lines.

Figure 2.4: Example distributions of similarities as computed from Eq. 2.5 between
all twins and all strangers from two dyads, (2.4a) from a dyad that is significantly more
similar within twins than strangers and (2.4b) from a dyad where no significant differences
exist. For clarity, a non-parametric kernel density estimation has been overlaid.

2.2.7 Population differences and significance

For each dyad e = (u, v) of spatially adjacent voxels u and v in the white matter lattice

network we obtain a sample of the distribution of dissimilarities in the population under

consideration, eT1 , eT2 , . . . , eTn , and for the control population, eS1 , eS2 , . . . , eSn, empirically:

eTi = d(Ti,1, Ti,2, u, v), (2.6)

eSi = d(Si,1, Si,2, u, v). (2.7)

Where Ti and Si, 1 ≤ i ≤ n, are the i-th pair of subjects from the population under

consideration and control population, respectively.

We seek to identify those dyads in which the pairs of subjects from the population

of interest are significantly more similar than that in the control population. As the
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distributions of dissimilarities eT and eS are non-normal, instead of a t-test we employ

a Mann-Whitney U test (51) to test for differences in the two distributions. Having

visually verified that the same shape assumption holds, the Mann-Whitney U test is a

non-parametric rank test of the null hypothesis that the two samples of dissimilarities

from edge e are equally likely to be as large,

P (vT < vS) = P (vT > vS), (2.8)

against the one-sided alternative hypothesis that the population of interest tends to

have lower dissimilarities,

P (vT < vS) > P (vT > vS); (2.9)

that is that the population of interest tends to be more similar. For the dyads in

which we reject the null hypothesis, we have evidence that the population of interest

is more coherent, or similar. Fig. 2.4 shows an example distribution of coherence from

dyads that are and are not significantly similar among a population of interest (twins)

as compared to a control group (strangers).

Alternatively, for populations of interest for which the analyst hypothesizes should

have common less coherent regions—such as populations of subjects with neurological

disorders or injuries—the analyst might instead test against a one-sided alternative hy-

pothesis that the population of interest tends to have higher dissimilarities. In either

case, care must be taken to not aggregate together dyads using a two-sided hypothesis,

or dyads from different one-sided hypotheses, as a region formed by such aggregated

dyads does not form a single unified region of interest.

To account for multiple hypothesis across all neighboring voxels in white matter, we

estimate the false-discovery rate given a particular p-value threshold (52; 53). Fig. 2.5
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shows a flat baseline of p-values for this null hypothesis with a sharp peak as p approaches

zero indicating high statistical power of the test being employed.

2.2.8 Defining regions and region-wise similarity

Of the set of neighboring white matter voxels for which we reject the null hypothesis

and that have been corrected for multiple hypothesis, we further prune unlikely spatially

isolated dyads. This is accomplished by aggregating together dyads that form connected

components in the white matter lattice network and keeping only the largest such com-

ponents. These form arbitrarily shaped disjoint regions of white matter that can each be

considered as single units of interest for further analysis.

For a pair of subjects X and Y and a white matter region R (a set of white matter

voxel dyads) we defined a dissimilarity between the subjects with respect to R as the

median dissimilarity of all dyads in R using Eq. 2.5,

dR(X, Y ) = median ({d(X, Y, u, v),∀(u, v) ∈ R}) . (2.10)

2.2.9 Defining between-subject similarity

We define a single dissimilarity measure between a pair of subjects X and Y on the

basis of multiple white matter regions as the mean region similarity across each of the

white matter regions R0,R1, . . . ,RR−1,

d(X, Y ) =
1

R

R−1∑
i=0

dRi
(X, Y ). (2.11)

21



Discovering Regions of White Matter Associated with a Population Chapter 2

2.3 Results

For each dyad of neighboring white matter voxels, we computed the incoherence using

Eq. 2.5 with k = 1 MDA peak across each pair of subjects in the monozygotic (MZ) twin,

dizygotic (DZ) twin, and matched stranger populations. We found those white matter

dyads for which we have enough evidence to rule out the null hypothesis described by

Eq. 2.8 in favor of the alternative hypothesis given by Eq. 2.9, where we consider the

population of interest all pairs of MZ and DZ twins (and not the non-twin sibling pairs).

We then examined the largest connected subnetworks and their properties.

We control for similarity due to the morphology of the brain that would otherwise

confound this analysis by excluding voxels which can be shown to have been similarly

morphed into the normal space in twins but not in strangers (see B).

2.3.1 Twin-similar white-matter regions

Of the 12.2 million dyads of spatially adjacent white matter voxels, we identified

71,857 as significantly more similar within MZ and DZ twins as compared to a matched

control group of strangers (p < 10−4, false discovery rate 1.5%), see Fig. 2.5. These

dyads contained 35,119 unique white matter voxels, as seen in Fig. 2.6. The dyads form

3,145 connected components in the white matter lattice network, of which 1,791—more

than half—were trivial subnetworks of a single dyad of two voxels. More interestingly,

twenty-nine subnetworks connected more than one hundred voxels, or a volume of white

matter that is approximately 200mm3 in normalized template space. We selected the

twenty-two largest subnetworks as units for further analysis as these comprise 75% of all

significant voxel dyads. See table 2.2 for relevant statistics of these twenty-two largest

white matter regions, and Fig. 2.7 for a visualization of these twenty-two white matter

regions.
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Increasing the number of peaks from k = 1 in Eq. 2.5 steadily decreases the size and

significance of the results. With k = 2 peaks, we observe less than half the significant

voxel dyads or 35,268 dyads containing 19,253 unique voxels (p < 10−4, FDR 3.2%) and

which can be seen to be nearly fully encompassed by the results with k = 1 in Fig. 2.6.

The largest cluster of voxels identified using two peaks and not one is in the centrum

semiovale, which has previously been identified as an area containing multiple crossing

fibers (23). Further increasing to k = 3 peaks reduces the significant dyads to 30,134

containing 15,623 unique voxels (p < 10−4, FDR 4.0%). This decrease in the size and

significance of the results can be attributed to the noise associated with the higher MDA

peaks; 32.9% of voxels are known to be singly connected such that in these the local

MDA peaks past the first contain no true signal (23). Unless otherwise stated, all further

results are presented with k = 1 MDA peaks.

Furthermore, significant voxel dyads are biased towards non-diagonal connections

between voxels. Forming a lattice network only between voxels which share either a face

or edge, allowing up to eighteen neighbors per voxel, and retesting the null hypothesis we

discover 58,159 voxel dyads containing 32,986 unique voxels to be significant (p < 10−4,

FDR 1.2%). As this reduced lattice network has only 69% (roughly 18/26) of the dyads

present as compared to the original, if no bias towards non-diagonal connections existed

we would expect 69% of the original dyads, or 49.6k, to remain significant. This is much

less than what we observe. To some degree, this is not surprising as the diagonal dyads

should be expected to be less spatially coherent due to the greater distance between their

centers and the smaller effect of spatial smoothing inherent to the imaging process. The

aggregate white matter regions remain fairly invariant to the choice of lattice network,

with the total number of regions decreasing from 5,699 of which 29 contain at least 100

voxels to 5,310 of which at least 27 contain at least 100 voxels when going from a 26- to

18-connected lattice.
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Figure 2.5: Distribution of p-values for each dyad of neighboring white matter voxels
assuming the null hypothesis in Eq. 2.8, that monozygotic and dizygotic twins are not
more similar than strangers.

2.3.2 Effect size of white matter regions

Having aggregated together individually significant voxel dyads to form large arbitrar-

ily shaped white matter regions, we measure similarity between pairs of subjects on the

basis of a single region using Eq. 2.10. We show that this region-wise similarity measure

corresponds to a large effect size when comparing pairs of MZ and DZ twins to a control

group of strangers, and that this measure generalizes to a previously unseen group of

siblings. The sibling data was not considered previous to this point with one exception:

four siblings were among the 38 subjects sampled from all HCP scans to define a normal

template.

In each of the twenty-two largest discovered regions, the distribution of such region

dissimilarity in the twin population and the stranger population (as seen in Fig. 2.8) is,

although overlapping, reasonably well separable. Table 2.2 shows the aggregate statistics

of the regions. Larger regions correlate with larger effect sizes (as measured by the

Cohen’s d statistic), which is to be expected as they are composed of a greater amount of
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q

Figure 2.6: Axial slices of all 35.1k voxels (blue) and 19.3k (red) that were part of a
neighboring voxel dyad found to be significantly more similar (p < 10−4, FDR = 1.5%)
(p < 10−4, FDR = 3.2%) among monozygotic and dizygotic twins as compared to a
control population of strangers using Eq. 2.5 with 1 and 2 peaks, respectively. Purple
voxels are those that feature in the intersection of both, and form the vast majority of
the extent of otherwise red voxels. Generalized Fractional Anisotrophy (GFA) template
as background. Image created using ITK-SNAP (4).
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(a) Anterior view of the six largest regions. (b) Left view of the six largest regions.

(c) Posterior view of the seventh to 14th
largest regions.

(d) Right view of the seventh to 14th largest
regions.

(e) Anterior view of the 15th to 22nd largest
regions.

(f) Right view of the 15th to 22nd largest re-
gions.

Figure 2.7: The twenty-two largest white matter regions in which monozygotic and dizy-
gotic twins are more similar than a control population of strangers, as visualized on a
transparent background of a T1w volume. Image captured using Slicer 4 (5).
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Figure 2.8: Distributions of region dissimilarities dR(X, Y ) per discovered white matter
region of the monozygotic and dizygotic twin (left halves) and stranger populations (right
halves). Quartiles of each distribution are shown as dashed lines.

significant voxel dyads, though all regions are associated with very large effect sizes in the

range of 0.6 to 2.1 pooled standard deviations. We note that the effect sizes generalize to

a population of siblings, which were not used in identifying the regions, showing that this

measure of similarity between MZ and DZ twins generalizes to similarity among siblings

though with medium effect sizes.

Though these white matter regions all exhibit a large difference in the distributions

of MZ and DZ twins and strangers, and to a lesser extent also between siblings and

strangers, they do so somewhat independently. We compute the Pearson correlation

coefficient between each pair of regions with respect to the measured region similarity for

each pair of monozygotic and dizygotic twins as well as strangers, as seen in Fig. 2.9. We

see that larger regions tend to correlate more, which is unsurprising as they discriminate

between the groups better. Similarly, regions 14 and 15—which have the lowest effect

sizes—correlate with each other to a greater extent than with all other regions. There is
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Table 2.2: White matter regions discovered that are significantly more similar in monozy-
gotic and dizygotic twins than in strangers. Effect size is Cohen’s d as compared to the
control population of strangers, or difference in means standardized by pooled standard
deviations.

Region
number

Number
of dyads

Number
of voxels

Twin effect
size [STD]

Sibling effect
size [STD]

0 17,336 5,699 1.94 0.84
1 14,382 5,369 2.06 0.92
2 5,458 1,311 1.15 0.33
3 3,793 1,146 1.20 0.34
4 1,689 745 1.74 0.82
5 1,374 599 1.46 0.77
6 1,322 594 1.09 0.35
7 1,218 431 1.13 0.66
8 896 306 1.24 0.55
9 874 308 1.11 0.55
10 750 408 1.78 0.78
11 579 222 0.77 0.25
12 576 142 0.86 0.32
13 516 255 1.16 0.57
14 476 156 0.58 0.39
15 420 220 0.60 -0.13
16 368 173 1.02 0.29
17 340 121 1.11 0.56
18 334 198 0.85 0.02
19 310 184 0.63 0.29
20 308 110 0.88 0.45
21 302 146 1.27 0.43
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Figure 2.9: Pearson correlation coefficients r of region dissimilarities dR(X, Y ) of each
pair of monozygotic twins, dizygotic twins, siblings, and strangers, for each pair of regions.
The percentage correlation is reported as a whole number (i.e., 100r), with proportional
shading added for clarity.

weak evidence for other such clusters of white matter regions that predict similarly for

each pair of subjects. In particular, region pairs that appear mirrored across hemispheres

correlate with each other more than they do other regions, such as 4 and 5 or 14 and 15.

2.3.3 Subject similarity

Using Eq. 2.11 we measure a single dissimilarity between each pair of MZ twins,

DZ twins, non-twin siblings, and strangers on the basis of the R = 22 discovered white

matter regions. The distribution of dissimilarities for each of these groups can be seen in

Fig. 2.10. The modes of the distributions define a clear order from least to most genetic

similarity with strangers having high dissimilarities and MZ twins very low, with DZ

twins situated in-between. We see this measure generalizes to the population of non-twin

siblings, whose data were not used in obtaining the regions, and which have comparable

dissimilarities to DZ twins though with a longer tail of high dissimilarities. The majority
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Figure 2.10: The distribution of subject pair dissimilarities d(X, Y ) as computed by
Eq. 2.11. Black lines indicate each individual pair of subjects.

of this long tail corresponds to mixed-gender sibling pairs, of which none exist in the

DZ twin population. Aside from several of the mixed-gender sibling pairs in the long-

tail, the majority of mixed-gender sibling pairs are also well separable from the stranger

population.

2.4 Discussion

We have identified a large fraction of deep white matter as being associated with

genetic similarity. Areas of white matter with genetic similarity include the superior

longitudinal fasciculus, the optic radiations, the middle cerebellar peduncle (particularly

near the cerebellar nuclei), the corticospinal tract (through the posterior limb of the

internal capsule and cerebral peduncle), and within the anterior temporal lobe adjacent

to the amygdalae. These regions encapsulate nearly all of deep white matter. The large

spatial extent of similarity among twins may reflect how fascicles are spatially arranged

during neonatal development. Indeed, similarity of deep white matter organization may
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be partially responsible for similarity in gray matter thickness and curvature if Van

Essen’s tension hypothesis is true (54).

Previous voxel-based studies of white matter associated with genetic similarity have

identified overlap with our results. For example, (37) report that voxels in the temporal

and frontal lobe subregions as showing the highest genetic influence, and additionally they

identify significant subregions underlying posterior cortex. (41) report large portions of

white matter as being affected by genetic control and the interaction of that with age,

sex, socioeconomic status, and intelligence quotient. Both of these studies focused on

per-voxel fractional anisotrophy scalars. In contrast, (41) consider orientation in a limited

manner and report heritable effects in deep white matter based on the amplitudes of the

first and second peaks of the per-voxel fiber orientation distribution.

We see a greater effect of white matter similarity with increasing genetic similarity.

Monozygotic (MZ) twins are consistently more similar as compared to dizygotic (DZ)

twins, which also display greater variance in their similarity. Non-twin siblings likewise

are shown to be as similar in terms of these twenty-two white matter regions as DZ twins,

though a longer tail of less similar pairs exists that is on par with strangers. This long tail

is nearly entirely composed of mixed-gender siblings, however. No mixed-gender sibling

exists in either of the MZ or DZ twin groups.

That these results generalize to non-twin siblings serves as an important validation of

our method and results. These non-twin siblings were not used in the derivation of the

twenty-two white matter regions except for being including as a larger group of Human

Connectome Subjects to obtain a normalized template space from which the diffusion

voxels were compared in.

The voxel dyads which we discover to be associated with genetic similarity are ones in

which there exists sufficient individual variability for there to exist a group-wise difference,

and which display a strong enough similarity across most twins as compared to the non-
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related strangers. There is a strong assumption made that all pairs of interest are similar

in the same way, i.e. that a single model of genetic similarity in white matter is sufficient

to describe differences between all related siblings and non-related strangers. A promising

future direction for this work is to consider multiple effects of similarity to exist in the

population under consideration, such as looking for (potentially non-disjoint) partitions

of the population such that the each has a strong similarity within only a single or small

number of regions.

A potential limitation of the spatial coherence approach is in areas of high curvature.

Such areas exhibit rapid changes in orientation between adjacent voxels and as such

naturally have a lower baseline of spatial coherence. Though it is still possible to expect

a population of interest to have a greater coherence in such areas, it might be harder to

pick out the effect statistically which in turns biases results away from such regions.

In our results, we see that the effect of increasing the number of MDA peaks k above

one decreases the extent and significance of the voxels identified. It is reasonable to

assume this is because the additional orientations are largely associated with noise as

they are in white matter regions where it is unlikely there are crossing fibers (per (23),

a study on the same dataset, about 32.9% of white matter voxels are singly connected).

Indeed, in Fig. 2.6, we see all major areas identified as significantly similar among twins

with k = 2 peaks as being encompassed by the result with k = 1 peak with an exception of

the centrum semiovale which has previously been identified as an area containing multiple

crossing fibers. As we do not observe new large areas outside of the intersection of these

two results, we conclude that either the similarity in the first peak is sufficient to detect

regions associated with this population or that we are not adequately able to incorporate

multiple orientations in our method in a manner that is robust enough against noise.

These twenty-two white matter regions, due to being associated with genetic back-

ground and/or upbringing common to the twins and siblings, could serve as a first ap-
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proximation for a basis of defining white matter fingerprints that could be used to identify

an individual over the course of their lifetime (55). However, this analysis might over-

look regions that would be better suited to fingerprint individuals that are not preserved

between pairs of twins or siblings, i.e. are not associated with genetic similarity but in-

stead some broader concept of individual variance. A promising future direction for this

method is in the application to a population of pairs of scans obtained from the same

individual for a set of subjects, especially over a period of years, so as to understand

what white matter regions contribute to such individual variance and how that changes

over the course of our lifetimes.

A crucial component to the presented method is that it considers pairs of subjects

as the fundamental unit of analysis, and not a single subject. This has two immediate

consequences. The first is that it narrows down the scope of the analysis to those regions

of white matter which display high similarity, or a small distance for some measure of

distance, which is amenable to statistical analysis. The second is that this expands the

size of the population under consideration from N individual scans to the order of N2,

given that sufficient care is taken during the analysis in sampling pairs and interpreting

results, and given that every subject can be expected to have a high pair-wise similarity

to the rest of the population of interest (which is not the case for the twin and sibling

populations considered in the results). This aspect of considering pairs of input data is

akin to Siamese Neural Networks (56), which have achieved state-of-the-art performance

for learning models with very limited data and which has previously been applied to

clinical diagnosis from functional MRI data (57).
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2.5 Conclusion

In this Chapter we presented a method for identifying spatially contiguous but oth-

erwise arbitrarily shaped white matter regions that are associated with a population of

interest. This is a bottom-up approach which builds on the simplest possible building

block, or neighboring white matter voxel dyads. We defined a similarity metric on such

dyads and find a subset which are significantly more similar within the population of

interest as compared to a control population, and control for multiple hypothesis testing.

The largest such regions, composed of maximally sized overlapping dyads, are used for

further analysis: a region-wise similarity is defined and is shown to have a large effect

size between the two populations and generalizes to a previously unseen portion of the

population of interest. Finally, a single similarity between a pair of subjects is defined

on the basis of a set of such regions and is shown to separate the populations well.

This method is demonstrated on a population of monozygotic (MZ) and dizygotic

(DZ) twins, with a control group composed of the same individuals with their pairings

scrambled such as to keep the same demographic profiles but otherwise form unrelated

strangers. The method discovers 3.7% of all white matter voxels to be associated with

genetic similarity (35.1k voxels, p < 10−4, false discovery rate 1.5%), 75% of which form

twenty-two contiguous white matter regions. These white matter regions generalize to a

population of non-twin siblings and are shown to be a good indicator of genetic similarity

there as well, as compared to a population of strangers. The regions encapsulate nearly

all of deep white matter.
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Chapter 3

Characterizing White Matter with

Generative Models

...when the brain is released from

the constraints of reality, it can

generate any sound, image, or smell

in its repertoire, sometimes in

complex and “impossible”

combinations.

Oliver Sacks, Hallucinations

3.1 Introduction

Recent advances in our understanding of the human brain have been enabled by

improvements in magnetic imaging and the release of large, high quality, and publicly

available data (45; 43; 58). In particular, diffusion-weighted magnetic resonance imaging

(dMRI) reveals the organization of the brain’s structural connectivity by mapping white
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matter fiber tracts connecting disparate brain regions (59; 60). In seeking to understand

the complex patterns present within the white matter microstructure—and what factors

influence those patterns—a particularly powerful approach is to use a family of tools

collectively known as generative modeling (61; 62). These approaches seek to understand

the data using a predictive model, and in particular to understand what information is

relevant for synthesizing such data.

In this chapter, we introduce a generative model for individual regions of white matter

by predicting plausible and realistic directed white matter microstructure. In particular,

our central concern is in understanding, and quantifying, to what degree contextual

information is relevant to these predictions. We define contextual information as subject-

specific characteristics that can be hypothesized to affect the local structure of the brain.

For instance, how important is knowing an individual’s handedness in predicting a given

region, and how does that differ between regions? Contextual information can also include

nearby brain structure, as the degree that a subject’s latent characteristics, such as

handedness, affects neighboring brain matter is relevant for the prediction of the region

under consideration.

Towards the goal of quantifying the informativeness of such contextual information,

we build upon recent advances in deep learning using Generative Adversarial Networks

(GAN) (63; 64) and Bayesian uncertainty quantification (65). The GAN framework

enables learning and sampling from a distribution given only samples from it, for example

generating realistic but artificial photos of faces given only a data set of faces (66). This is

accomplished by optimizing in tandem two models, namely a generator and critic model.

The generator generates candidate samples of the distribution, while the critic evaluates

if a given sample is from that of the true data distribution or from the generator. During

alternative training steps, the generator seeks an optimal solution that leads the critic

model to misclassify its outputs as real, while the critic learns to distinguish between

36



Characterizing White Matter with Generative Models Chapter 3

the distribution of generated versus real samples. These adversarial goals converge to a

stable equilibrium when the distribution of generated data is indistinguishable from that

of real.

Deep learning models including GANs have achieved significant success in mapping

from high dimensional data to typically much simpler outputs. However, especially when

the decisions made by such models are highly consequential—such as for health decisions,

approval of bank loans, or navigating self-driving cars—it is difficult to place blind trust

in their mappings (67). Uncertainty quantification of deep learning models seeks to

measure when their decisions are likely to be erroneous and thus to signal when less

confidence should be placed in their output (65). This is especially important in light

of the potential propensity of neural network models to overfit on training data (68), a

problem exacerbated in domains where training data is scarce or expensive to acquire.

Generally, it is desirable to disentangle this predictive variance by attributing it to one

of two major types of uncertainty: epistemic uncertainty, due to insufficient training

samples, or aleatoric, due to noise inherent to the data or measurement thereof. In

the following, we leverage these distinctions between different sources of uncertainty to

develop two complementary metrics of white matter complexity.

The problem we consider is reconstructing the structural connectivity of an MR-

imaged region of white matter given contextual information of the subject. In this initial

work towards that goal, we consider a setting where the contextual information given is

maximized: in predicting a region of brain matter, we provide as input a larger region

which contains a masked version of the desired region, and aim to measure how difficult

it is to inpaint. In this setting, we consider that the contextual information of adjacent

voxels’ diffusion data implicitly contains all the subject’s latent characteristics relevant

for the prediction: if a subject’s handedness is informative for predicting the region than

that information is present in the adjacent white matter. This provides a useful baseline
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measurement of the relative inherent difficulty in generating different regions of white

matter. An example of such generated regions can be seen in Fig. 3.1. The general task

of predicting a masked region of an image is known an image inpainting. The GAN

framework in particular has achieved success in inpainting, and has been successfully

applied to MR images including to ameliorate the effects of localized perturbations (69)

and to synthesize lesions of the liver for data augmentation (70).

A similar line of inquiry to ours was proposed by Tanno et al. (71), in which they

showed the usefulness of uncertainty estimation to enhance the resolution of acquired

MRI images. In their results, they mapped how uncertainty varied across the brain,

particularly around tumours in individual scans. Their result however did not correct for

higher uncertainty in regions of greater white matter intensity. Kwon et al. (72) showed

how uncertainty quantification enhanced stroke segmentation in individual brain scans.

More generally, generative approaches have been used with diffusion imaging to model

the network that is the human connectome, including to probe at the mechanisms behind

its growth and controllability (73; 61; 62) and the influence of the spatial embedding of

the brain itself to the connectome (74). We build upon our previous work (2) which first

proposed the in-painting methods, and introduce more refined methods and analysis of

results that include the use of both spatial and non-spatial features.

3.2 Imaging data and preprocessing

The data was processed identically to Volz et al. (6), but is reported here as well for

completeness. We build upon the work of of the Washington University-Minnesota Con-

sortium Human Connectome Project (44; 43) which recruited participants from Wash-

ington University (St. Louis, MO, USA) and surrounding area. All participants gave

informed consent. The data is derived from 630 participants (358 female, 272 male). For
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Figure 3.1: Three examples of synthesized brain structure. Two dimensional slices of
white matter regions from real diffusion data (left column) and corresponding generated
white matter microstructure (right), where the region being generated is delimited by
the red square. The surrounding white matter outside the box is the contextual infor-
mation provided in synthesizing the brain region. The red overlay displays the average
aleatoric uncertainty within each generated voxel, where darker red corresponds to more
uncertainty. The magnitude of the third dimension of each vector is shown as their
blue-to-yellow color.
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this study, the participants were randomly assigned to one of three sets: the models were

fit on a training set (n = 442), the model hyerparameters were tuned based on their

performance on a validation set (n = 94), and all results presented are from a test set

(n = 94).

The structural and diffusion data were collected on 3T Connectome Skyra system

(Siemens, Erlangen, Germany). The diffusion volumes were collected with a spatial

resolution of 1.25x1.25x1.25 mm3, using three shells at b = 1000, 2000, and 3000 s/mm2

with 90 diffusion directions per shell and 10 additional b0s per shell. Spatial distortion

and eddy currents were corrected using information from acquisitions in opposite phase-

encoding directions, as well as head motion (45). The high-resolution structural T1

weighted and T2 weighted volumes were acquired on the same scanner at 0.7mm isotropic

resolution. Minimally preprocessed images were reconstructed in DSI Studio (http://dsi-

studio.labsolver.org) using Generalized Q-Sampling Imaging (GQI) (46).

Skull stripped, aligned, and distortion corrected T1w and T2w volumes (45) were

rigidly registered to the subject’s GFA volume. The symmetric group wise normalization

(SyGN) method implemented in Advanced Normalization Tools (ANTs, http://stnava.

github.io/ANTs/) was used to construct a custom multimodal brain template using the

data of 38 HCP subjects (47) that included proportions of racial, gender, and handedness

that chosen through stratified random sampling according to these features. Each sub-

ject’s GFA, T1w, and T2w volumes were used during template creation with weighting

factors of 0.5 (GFA) × 1 (T1w) × 1 (T2w). Templates were created after 5 iterations.

Templates from the 4th and 5th iterations of multi-modal template construction were

inspected to check that the templates had stabilized. All individual datasets were ulti-

mately normalized to this template using all 3 modalities and symmetric diffeomorphic

normalization (SyN) as implemented in ANTs (48).
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3.2.1 Anisotrophy indices

Anisotrophy indices were estimated using the following formulae (26) based on orien-

tation distribution functions (ODFs) obtained by GQI reconstruction, and by fitting the

standard tensor model used in diffusion tensor imaging (DTI) (60), as implemented in

DSI studio. FA was calculated based on tensor fits

FA =

√
3

2

√∑3
i=1(Di − D̃)2∑3

i=1D
2
i

(3.1)

with Di denoting the directional diffusivity corresponding to the ith eigenvector of

the diffusion tensor. ODFs reconstructed using GQI were used to calculate GFA and

MDA. GFA was computed as

GFA =

√
n
∑n

i=1(Ψui − Ψ̃)2)

(n− 1)
∑n

i=1 Ψ2
ui

(3.2)

with Ψ representing the ODF and ui denoting the ui-th direction of the ODF. In

contrast to the FA, GFA incorporates diffusion coefficients from the whole set of discrete

directions included in the reconstructed ODF instead of only the directions corresponding

to eigenvectors of a diffusion tensor fit (25). This is also true for MDA which was

estimated as

MDA =
1− µ√
1 + 2µ2

, where µ =

(
Ψmin

Ψmax

)2/3

(3.3)

with Ψmin and Ψmax representing the smallest and largest directions sampled in the

ODF.
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3.2.2 Extracting MDA vectors

Each ODF Ψ(θ) was calculated with GQI on a set of 642 approximately-evenly spaced

directions θ ∈ Θ on a tesselated icosahedron. ODF magnitudes were rescaled so that the

sum of each ODF is
∑

θ∈Θ Ψ(θ) = 1. We then calculated the multi-directional anisotropy

(MDA) value for each direction θ using Eq. 3.3, but with

µ(θ) =

(
Ψ(θ)

Ψ(θmin)

)2/3

(3.4)

MDA values and their corresponding directions were calculated for the four largest

local maxima in every ODF, which are ordered by decreasing size. A separate study of

the same data found that ODF peaks become very noisy after the 4th direction (6). The

vector fields corresponding to the local maxima were warped into the group template

using ANTs. 3D volumes containing the MDA magnitudes were also warped to the

group template and used to scale the normalized vectors. White matter voxels were

determined by segmenting the weighted average template of T1w, T2w, and GFA volumes

in FreeSurfer (49). In this chapter we consider generative models for the largest two MDA

vectors within each voxel.

3.3 Learning localized wiring patterns

3.3.1 Problem formulation

We consider the problem of generating the structural connectivity of a white matter

region R given contextual information relevant to that prediction. In particular, we desire

that the predictions form realistic wiring patterns and we aim to quantify how relevant

the contextual information is to the prediction.

In this chapter, we consider the region R to be a 3D cube with k voxels along each
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side. The contextual information needed to predict the voxels within R should be at

minimum enough to locate R, such as a description of which region it corresponds to or

its spatial coordinates. It may be also desirable to provide subject-specific information,

for instance their handedness, biological sex, and/or presence of neurological disorders.

In this initial work towards that goal we seek to understand the difficulty associated

with generating a region in the limit of maximal contextual information: In predicting

the white matter microstructure of a region, we provide as context C the adjacent white

matter microstructure of R consisting of a cube with 2k voxels to a side, with the center

voxels corresponding to R masked. We denote this as maximal contextual information as

any latent characteristics of the subject that affects the brain structure within the region

would affect neighboring brain matter.

We ensure that the predicted R̂ forms a realistic MR imaged brain region with a

GAN approach, in which alongside the generator a critic model is trained to tell apart

synthetic examples from real. Both the generator and critic are alternatively updated

to adversarially outperform the other, converging to an equilibrium in which synthetic

and real examples appear indistinguishable to the critic. In particular, we adopt the

Wasserstein-GAN formulation (64) which leads to improved stability in the convergence

of the models by providing a smother loss surface for the critic.

Our objective is not solely to learn a generative model of structural connectivity but

to quantify how informative the contextual information provided is. To that end we build

upon work by Kendall and Gal which incorporated the two major types of uncertainty

with a deep learning framework (65): epistemic uncertainty, which is due to insufficient

data to accurately infer model parameters, and aleatoric uncertainty, due to noise inherent

to the data for instance because of sensory limitations. Following Kendall and Gal,

epistemic uncertainty is implemented as dropout variational inference, where dropout is

applied to layers of the model during both training and inference to allow for stochastic
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draws of model parameters. Aleatoric variance is obtained by the model predicting both

a typical maximum likelihood point estimate as well as the variance of that estimate.

This is accomplished by having the predicted variance serve as a loss attenuation during

optimization, that is point estimates with large variance are penalized less than those

with greater associated confidence, while high variance is separately penalized.

We seek to minimize the following objective function for the generative model of brain

structure,

LG = −D(R̂|C) +
1

|R|
∑
v∈R

(
1

2σ̂2
v

d(Rv, R̂v) +
1

2
log σ̂2

v

)
(3.5)

,

where v indexes individual vector components of the predicted region R. D(R̂|C)

corresponds to the critic model (64) trained to discriminate between generated R̂ and

ground-truth samples given contextual information C. It outputs an unconstrained scalar

value whose sign indicates the critic’s decision of real versus fake. The model weights

are sampled by activating the dropout layers during both training and inference, with

both the predicted mean R̂ and variance σ̂2 being average across multiple draws from

the model weights. The aleatoric variance σ̂2 is estimated by the generative model itself,

and in practice can be interpreted as a learned loss attenuation. We define the d(·, ·) as

the minimum L2 distance between the MDA vectors and their reflections (1),

d(x, y) = ||min(x− y, x+ y,−x− y,−x+ y)||2 (3.6)

as the ODFs they are derived from are fundamentally undirected whereas the vector

representations are necessarily directed.

The first term of Eq. 3.5 is the adversarial loss of the Wasserstein GAN formula-

tion (64), and encourages that the generated samples of white matter be anatomically
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correct. The critic outputs an unconstrained scalar whose sign indicates if an input R is

real or synthetic, and its magnitude to how confident the critic model is in that decision.

Any difference in the distributions of real versus generated data would be exploted by the

critic model. As such, with a sufficiently capable critic when both generator and critic

have converged to the game theoretic equilibrium of the generated distribution matching

that of the real data, with the critic unable to perform better than a coin toss (63).

The second term of Eq. 3.5 is the reconstruction error of the generated sample com-

pared to the ground-truth, where predicted components with large aleatoric variance

contribute less loss. However, the third term penalizes large aleatoric variance σ̂2, pro-

viding an opposing force to the second term to encourage high σ̂2 only where there is

insufficient contextual information to accurately generate a sample, and prevents trivial

solutions of high variance throughout every prediction.

We implement both the generator and discriminator as convolutional neural networks

with the size of the brain region to be predicted set at k = 4, balancing a more holistic

notion of brain structure with the ability to localize our results sharply within the neu-

roanatomy of the brain. This corresponds to a brain region of size 5× 5× 5 mm3 due to

the 1.25mm spatial resolution of the diffusion volumes. For further details of the models

including their architecture and optimization, we refer the reader to 3.4.

3.3.2 Quantifying informativeness of contextual information

Our central interest is in quantifying how challenging it is to predict a region of

white matter if given contextual information. We define the aleatoric variance of brain

region as the average coefficient of variation of the aleatoric variance across all predicted
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components of that region,

var(R) =
1

M |R|
∑
v∈R

∑
m∈v σvm
||v||2

(3.7)

where vm is the mth component of voxel v’s MDA vectors, with 1 ≤ m ≤ M .

This normalizes the aleatoric standard deviation by the vector’s magnitude, allowing

for meaningful comparison across brain regions with differing amount of white matter

intensity in the diffusion scan. In the limit of maximal contextual information, we term

this measure of a region’s uncertainty as its complexity.

3.4 Model architecture

As described in Section 3.3, we implemented the generative model as a conditional

GAN using a convolutional neural network architecture. The exact implementation of

the model are presented as follows.

Generator The generator followed the coarse-to-fine architecture proposed by Yu et

al. (75), in which the network outputs a ‘coarse’ prediction with an auxiliary loss of only

reconstruction error, which is then refined to a final output which optimizes Eq. 3.5. In

our implementation, these two stages of the generator have identical network architecture

but with separate weights that are optimized end to end. Each receives as input a (2k)3-

sized cube of voxels, where the center k3 voxels correspond to the regionR being generated

which is initially masked with zeros. The output of the first stage of the generator is

overlaid over this center which serves as the input to the second stage. As described in

Section 3.3, in this chapter we selected K = 4.

Each stage of the generator consisted of four 3D convolutional layers, the first two

with filter size of 33 while the last two have a filter size of 13, with the number of
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filters set at 128, 128, 64, and finally 6—corresponding to the two 3D MDA vectors

being generated at every voxel. Each convolution was applied with no padding. Each

had a leaky ReLU (76) activation with 0.3 slope for negative values, except the output

layer which has a tanh activation. Following the activation we applied a 3D spatial

dropout (77) with probability 0.3, which allowed for stochastic sampling to compute

epistemic uncertainty of the generated samples by applying these dropout layers during

inference. For the second stage of the generator a parallel last layer predicted the aleatoric

variance log σ̂2 = (see Eq. 3.5, where the logarithm provides a more stable training regime

avoding division by zero, as noted by Kendal and Gal (65)), and this layer was otherwise

identical aside from having no activation function applied.

Critic The critic is a Wasserstein GAN (64), predicting an unconstrained value for each

(2k)3 input received. It is composed of four 3D convolutional layers followed by three

dense layers. The first three convolutional layers have 128 filter sizes of (2k)3, with the

last having 64 13 filters. The dense layers receive their flattened output, and have filter

sizes 128, 32, and 1. Excepting the final layer which has no nonlinearity, leaky ReLUs

with negative slope 0.3 followed each layer with the convolutional layers additionally

applying batch normalization (78). To ensure the Lipschitz continuity of the critic, its

weights were constrained to the range [−0.02, 0.02] by clipping. It should be noted that

there exist better methods to ensure the Lipschitz constraint (79), but they did make a

significant difference to the converged models and so the simpler procedure was kept.

Optimization procedure The weights of each layer for both models were initialized

from a He normal distributions (77). During each epoch of training, the critic was first

advanced through n_critic = 5 batches before the generator iterates once. Each batch

consisted of 32 samples, each uniformly at random selected from white matter voxels,
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with each epoch consisting of one sample from each of the scans within the training

set. Training proceeded for 20 thousand epochs, elapsing approximately 12 hours on

an NVIDIA GeForce RTX 2080 GPU. Both models were updated with the RMSprop

optimizer, with learning rates set to 10−4 for both models. Hyperparameters were tuned

based on their performance on the validation set, and all results are presented from the

test set.

3.5 Results

We evaluated the trained model on every white matter voxel across the 94 subjects in

the test set. We consider only the largest two MDA vectors in each voxel. The aleatoric

variance of the model reflecting the noise inherent to the data was well calibrated, on

average across all subjects and all regions the standard deviation of the aleatoric uncer-

tainty correlates highly with the actual error between the ground-truth and generated

regions (Pearson’s R = 0.872, p < 10−10). Examples of such generated regions are shown

in Fig. 3.1.

We next compute the complexity atlas of white matter structure as the mean var(R)

across subjects using Eq. 3.7 for every region R in white matter. Each R̂ was computed

as the mean across T = 30 sampled outputs using variational dropout inference to cap-

ture epistemic uncertainty, i.e. due to variance in the posterior distribution of model

parameters. This uncertainty was minimal in comparison to the aleatoric, or only pro-

portionally 37.0% on average (variance 15.8%). We observe that this complexity map

correlates highly with measures of voxel anisotrophy, explaining half of the variance of

GFA (mean 50.1%, ranging 47.1 - 52.6%), MDA0 (mean 50.5%, ranging 46.5 - 53.0%),

and FA (mean 46.4%, ranging 43.1 - 49.4%) within white matter of individual scans

(these results can be downloaded behind the following link, TODO).
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Figure 3.2: The complexity atlas of white matter structure aligns well with measures
of anisotrophic signals within white matter. For dMRI scans, this measures the base-
line difficulty of generating the white matter microstructure across the brain given near
maximal contextual information.
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As can be expected by the amount of variance explained in anisotrophic measures,

the complexity map aligns well with those measures. Major fiber bundles are easily dis-

cernable in Fig 3.2 as regions of low relative complexity, with high values being observed

closer to the cortical boundary where white matter connections disperse into gray matter.

The largest departure from group isotrophic maps are in the splenium and genu of the

corpus callosum, where large neural bundles both cross between hemisphere as well as

cross the trunk of the corpus callosum. We observe that this is partly due to a limitation

of representing a voxel’s anisotrophy as a directed vectors sampled from a half plane, as

there is a discontinuity in the vector representation near the boundary of the half plane

from which the vectors range. Although accounting for this using Eq. 3.6, we observe

high aleatoric uncertainty associated with vectors on either side of that boundary.

We further analyse the heterogeneity between subjects in deriving this complexity

atlas. We define heterogeneity as the relative standard deviation of Eq. 3.7 across the

population. As seen in Fig. 3.3, we observe greater variance between subjects along large

white matter bundles fan out towards the cortical boundary. The greatest variance occurs

in regions where the generative model is limited by the provided contextual information,

namely the adjacent voxels’ white matter microstructure. This also occurs at the base

of the brain stem, where the context is abruptly cut off, and at the splenium of the

corpus callosum where the MDA vectors are near a discontinuity in their representation

as described above. Interestingly, we also observe relatively high heterogeneity between

subjects in the same ‘crossing pocket’ region that Volz et al. observe (6), lending further

evidence to this region being problematic for anisotrophy-based fiber tracking algorithms.
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Figure 3.3: Between subject variance of generative uncertainty is highest near junctions
of large white matter bundles (as seen in left most figure) and near where white matter
fans out towards cortical boundary.
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3.5.1 Quantifying confounders for voxel-based analysis

Commonly, the statistical analysis of diffusion data between and within individuals is

on the basis of voxel-based measurements of anisotrophy, the degree to which the diffusion

signal within a voxel is directed rather than isotropic. Clinically relevant differences in

such anisotropic measures, which are interpreted as proxies for the integrity of white

matter (10), have been discovered for multiple subject groups including patients with

Alzheimer’s disease (80), schizophrenia (81), or COVID-19 (82). However, care must be

taken in interpreting these results as deficiencies of white matter integrity as the diffusion

signal itself is confounded by partial volume effects (83; 84) and voxels containing multiple

fiber bundles projecting in multiple directions.

Towards ameliorating the confounding effects of multiple directions of fiber tracts

within voxels, Volz et al. proposed an probabilistic atlas of fiber counts (6). This atlas

has a majority of voxels containing two differentially directed fiber bundles (44.7%), and

they further showed that compartmentalizing voxels according to their number of fiber

directions significantly reduces the variance in analysis of anisotropic measures. To a first

approximation, regions of white matter containing such crossing or kissing fibers should

be expected to be more difficult to generate synthetic examples of; indeed, our results

of regional complexity of white matter is in significant agreement with this fiber atlas

crossing atlas (Spearman’s ρ = 0.616, p < 10−10), as seen in Fig 3.4. However, as seen in

Fig. 3.5, we see significant heterogeneity of regional complexity within the voxel groups

they define. We believe our results provide an orthogonal measurement of confounding

factors to diffusion analysis that they consider.
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Figure 3.4: The inherent complexity we measure of white matter voxels is positively cor-
related with the number of differentially trackable fiber bundles within them (Spearman’s
ρ = 0.616, p < 10−10. The boxplot shows the quartiles of each distribution, with the box
itself bounding the 25 and 75 percentiles and the midline at the median. The whiskers
extend to three standard deviations around the mean.
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Figure 3.5: Comparison with results from Volz et al. (6), segmenting our result by the
number of trackable directions they define. Though overall there is significant agreement
in results, we see considerable variance within voxels containing the same number of
differentially directed fiber bundles.
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3.6 Discussion

These results measure the minimum difficulty in generating the white matter mi-

crostructure of a brain region given maximal contextual information from the subejct in

doing so. We believe such generative models, and uncertainty quantification thereof, are

a promising framework for better understanding the relationship between brain regions

and various characteristics of the individual.

3.6.1 Local versus global generative models

The formulation we choose for this chapter was that of a general purpose generative

model of brain structure, capable of synthesizing any brain region equally well. An

alternative formulation worth considering is to learn a specialized ‘local’ generative model

for a single brain region, that is trained on a subset of the data specific to only that

region. Conceptually, the benefit of this alternative approach is that it more directly

measures the information content of a region under consideration in isolation from other

regions. In addition, the relative performance of such a local model versus the global

model could disentangle some of the complexity due to the region itself versus that due

the heterogeneity between subjects: an otherwise complicated wiring pattern that would

be difficult for a global model to generate may be identical between all subjects and thus

easily learned by local model. The practical downside of such local models is that the

size of the training data becomes smaller—but we believe a feasible future path towards

realizing such models is with transfer learning from a global model to a local one (85).

3.6.2 Possible extensions

This chapter studied the inherent difficulty in generating the directed microstructure

of white matter regions under the limit of maximizing the contextual information given.
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Other variations of this framework are also interesting to study, for instance a simplified

setting of predicting directly anisotropic measurements of the voxels, or with more limited

contextual information such as predicting the white matter region given their coordinates

and limited information of the individual. This general framework of generative models

has been considered for network models of structural connectivity derived from diffusion

images (61; 73), or for other modalities including T1- and T1-weighted images (86)

or computed tomography (87). However, incorporating a notion of how informative

contextual information is to these generative models enables further characterization of

the structure of the human brain.

3.6.3 Limitations

A limitation to our method of measuring the total uncertainty associated with a

brain region with Eq. 3.7 is that this measure does not account for covariance between

voxel components. For example, if the brain region contained a uniform vector field with

one degree of freedom in the the generative uncertainty, Eq. 3.7 would overestimate the

total variance by a factor equal to the number of voxels present. To more appropriately

measure the total variance one should discount the covariance present between voxels.

A possible step towards that direction is, if the variance is assumed to be normal, then

the total differential entropy is porportional to the log determinant of the covariance

matrix (88),

H(R) =
k

2
ln(2πe) +

1

2
ln(|Σ|), (3.8)

where k is the dimensionality of the region R and |Σ| the determinant of the covariance

matrix.

There are two challenges in correcting for this limitation, namely estimating the
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covariance matrix and numerical difficulties associated with measuring the volume of

a high dimensional ellipse (89). The approach adopted in this chapter to measure the

aleatoric variance of the prediction (65) only measures the diagonal of the covariance

matrix. However, if the epistemic variance is assumed to be Guassian, then an empirical

epistemic covariance matrix ΣE can be computed from repeated samples from the model

given the same input. If furthermore the covariational structure of the aleatoric and

epistemic variance is assumed to be similar up to scaling factors, then the aleatoric

covariance matrix can be estimated as

Σa ≈ diag(Σa)
1
2diag(Σe)

− 1
2 Σediag(Σe)

− 1
2diag(Σa)

1
2 (3.9)

,

that is by scaling the epistemic covariance matrix such that its diagonal equals that

of the aleatoric covariance. However, in practice, we observe that the second challenge of

measuring the volume of the high-dimensional Guassian corresponding to this estimated

aleatoric covariance matrix is not easily surmountable; there is significant covariance

between neighboring voxels causing the total differential entropy to be computed as

nearly zero.

3.7 Conclusion

We proposed a framework for measuring the correlation between brain regions with

contextual information of an individual. Here, contextual information is defined as char-

acteristics and/or attributes of the individual that may affect brain matter. To measure

that relationship, we build upon Baysian uncertainty quantification to estimate the pre-

dictive confidence of a well-trained model in generating brain regions given such contex-
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tual information.

We developed a generative model based on Generative Adversarial Networks (GANs),

which have in recent years achieved superlative performance in sampling from high-

dimensional and complex distributions, such as that of portraits of human faces. Our

model is able to synthesize plausible and realistic regions oriented white matter mi-

crostructure as imaged by diffusion MRI.

We demonstrated this framework in the limit of maximum contextual information,

in which we assume that any factors affecting a given brain region are also present in

neighboring voxels. This allows for measuring a baseline of wiring complexity throughout

white matter, which allow for quantifying the degree to which voxels contain ambiguous

connectivity at current sensor resolutions. We observe significant agreement with our

results and that of previous work in measuring the number of distinct fiber bundles per

voxel (6).
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Chapter 4

Characterizing White Matter with

Predictive Models

It’s a useful habit never to believe

more than half of what people tell

you, and not to concern yourself

with the rest. Rather keep your

mind free and your path your own.

Halldór Laxness,

Independent People

4.1 Introduction

Convolutional neural networks (CNNs) have achieved breakthrough performance on

most machine learning tasks, for instance achieving super-human performance in clas-

sifying natural images (90) and playing the game of Go (91). There has been much

interest in applying such models on magnetic resonance imaging (MRI) brain data, with
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success in predicting biological age (92; 93), classification of Alzheimer’s disease (94)

and autism (95), and detecting lacunes within brain scans (96). However, training such

models on brain scan data is challenging as compared to that of natural images: brain

scan data is gathered in much smaller quantities resulting in smaller datasets, and each

individual scan is typically of much higher dimension than commonly studied computer

vision datasets.

These challenges call for efficient use of the collected data by developing methods

that are well adapted to the spatial structure of the brain. Standard lessons from com-

puter vision do not always transfer well to this domain, for instance despite pioneering

work in applying CNNs to brain image analysis in considering two-dimensional slices

or patches (97; 98; 99), a recent review suggests that, despite the increased computa-

tional costs and memory requirements, three-dimensional approaches should ultimately

outperform (100).

A defining feature of brain scans as compared to natural images is that brain data

is spatially homogeneous: commonly, as part of the preprocessing, MRI brain data is

spatially normalized to a shared template to allow for voxel-wise comparison of the same

spatial region across a population. Indeed, incorporating within-brain spatial location has

been shown to improve the performance of models (101). Recent work has incorporated

this translation variance property of processed MRI data by learning a different set of

convolutional filters at different locations of the brain (102; 92).

A critical concern, and common complaint, is that deep neural network models are

considered to be opaque black-box models which may achieve high performance on sin-

gular metrics but yield little understanding of the dataset itself (67; 103). As such,

developing interpretable models is critical for evidence-based decision making and a nec-

essary step towards widespread use of deep learning models for patient care. Piercing the

veil of machine learning models to realize this does not necessarily have to come at the
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cost of performance, but often goes hand-in-hand with efficient domain-guided architec-

tures. For instance, a recently proposed framework for Alzheimer’s disease classification

achieved diagnostic performance surpassing that of a team of 11 practicing neurologists

with a CNN model that provided disease probability maps throughout the brain scan

with every individual diagnosis (94).

We propose a CNN classifier for brain scans that incorporates within-brain spatial

information to learn which regions of the brain are most informative for a prediction,

across the population of interest. We hypothesize that for many common classification

tasks, a sparse subset of the brain image is sufficient to learn a good classifier, enabling

learning a model on otherwise relatively few high-dimensional data points while offering

an interpretable explanation of the relative informativeness of brain regions. To that end,

we propose decomposing a whole brain CNN into a patch-based classifier and a patch-

saliency model that only considers the spatial location. During optimization, these two

models are trained jointly by sampling patches and simultaneously learning the relative

informativeness of the patches as well as a classification model of them, as seen in Fig. 4.1.

By optimizing on only a sparse subset of an image at time, we ameliorate the memory

and computational costs of three-dimensional convolutions and see a regularizing effect

which prevents overfitting on training data.

We apply our method to learn salient regions of white matter, as imaged by dif-

fusion weight MRI, for predicting the biological sex of individuals. Sex differences are

known to be associated with white matter microstructure, likely mediated through sex

hormones (104). Furthermore, understanding sex differences within the neural wiring of

the brain is of societal interest due to their prominence in the behavior of humans (105).
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Figure 4.1: Simultaneously learning a patch-based classifier as well as the relative spatial
saliency of each patch. During optimization, random patches of the MRI scan are sampled
(left, within white boxes) and provided to the single patch-based classifier (middle). As
not all possible patches are informative for the classification task, the relative performance
of classifying different patches varies depending on a patch’s spatial location. We propose
learning a separate saliency function s(i, j, k) which learns the relative informativeness
of spatial locations (right), emphasising informative regions for both inference as well
as backpropagation of gradients, while enabling an informative saliency map for the
predictive task.

4.2 Imaging data and preprocessing

The data was processed identically to Volz et al. (6), but is reported here as well for

completeness. We build upon the work of of the Washington University-Minnesota Con-

sortium Human Connectome Project (44; 43) which recruited participants from Wash-

ington University (St. Louis, MO, USA) and surrounding area. All participants gave

informed consent. The data is derived from 630 participants (358 female, 272 male). For

this study, the participants were randomly assigned to one of three sets: the models were

fit on a training set (n = 442), the model hyerparameters were tuned based on their

performance on a validation set (n = 94), and all results presented are from a test set

(n = 94).

The structural and diffusion data were collected on 3T Connectome Skyra system

(Siemens, Erlangen, Germany). The diffusion volumes were collected with a spatial
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resolution of 1.25x1.25x1.25 mm3, using three shells at b = 1000, 2000, and 3000 s/mm2

with 90 diffusion directions per shell and 10 additional b0s per shell. Spatial distortion

and eddy currents were corrected using information from acquisitions in opposite phase-

encoding directions, as well as head motion (45). The high-resolution structural T1

weighted and T2 weighted volumes were acquired on the same scanner at 0.7mm isotropic

resolution. Minimally preprocessed images were reconstructed in DSI Studio (http://dsi-

studio.labsolver.org) using Generalized Q-Sampling Imaging (GQI) (46).

Skull stripped, aligned, and distortion corrected T1w and T2w volumes (45) were

rigidly registered to the subject’s GFA volume. The symmetric group wise normalization

(SyGN) method implemented in Advanced Normalization Tools (ANTs, http://stnava.

github.io/ANTs/) was used to construct a custom multimodal brain template using the

data of 38 HCP subjects (47) that included proportions of racial, gender, and handedness

that chosen through stratified random sampling according to these features. Each sub-

ject’s GFA, T1w, and T2w volumes were used during template creation with weighting

factors of 0.5 (GFA) × 1 (T1w) × 1 (T2w). Templates were created after 5 iterations.

Templates from the 4th and 5th iterations of multi-modal template construction were

inspected to check that the templates had stabilized. All individual datasets were ulti-

mately normalized to this template using all 3 modalities and symmetric diffeomorphic

normalization (SyN) as implemented in ANTs (48).

4.2.1 Anisotrophy indices

with Ψ representing the ODF and ui denoting the ui-th direction of the ODF. In

contrast to the FA, GFA incorporates diffusion coefficients from the whole set of discrete

directions included in the reconstructed ODF instead of only the directions corresponding

to eigenvectors of a diffusion tensor fit (25). This is also true for MDA which was
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estimated as

MDA =
1− µ√
1 + 2µ2

, where µ =

(
Ψmin

Ψmax

)2/3

(4.1)

with Ψmin and Ψmax representing the smallest and largest directions sampled in the

ODF.

4.2.2 Extracting MDA vectors

Each ODF Ψ(θ) was calculated with GQI on a set of 642 approximately-evenly spaced

directions θ ∈ Θ on a tesselated icosahedron. ODF magnitudes were rescaled so that the

sum of each ODF is
∑

θ∈Θ Ψ(θ) = 1. We then calculated the multi-directional anisotropy

(MDA) value for each direction θ using Eq. 4.1, but with

µ(θ) =

(
Ψ(θ)

Ψ(θmin)

)2/3

(4.2)

MDA values and their corresponding directions were calculated for the four largest

local maxima in every ODF, which are ordered by decreasing size. A separate study of

the same data found that ODF peaks become very noisy after the 4th direction (6). The

vector fields corresponding to the local maxima were warped into the group template

using ANTs. 3D volumes containing the MDA magnitudes were also warped to the

group template and used to scale the normalized vectors. White matter voxels were

determined by segmenting the weighted average template of T1w, T2w, and GFA volumes

in FreeSurfer (49). In this work we consider generative models for the largest two MDA

vectors within each voxel.
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4.3 Discovering population-wide salient regions

We propose jointly learning two functions, a patch-based classifier f : RP×P×P×C → R

and a saliency map s : R3 → R which scores how informative each spatial region of the

brain is relative to others. During training, we uniformly sample a set P of |P| = N

patches from the brain scan and minimize the cross-entropy between the s-weighted

average of the classification of P ,

L = H

(
y,
∑
p∈P

spf(p)

)
− λ

∑
p∈P

sp log sp (4.3)

where H(y, ŷ) = −(y log ŷ+(1−y) log(1− ŷ)) is the cross-entropy of the ground-truth

label y and predicted ŷ, and

sp =
exp s(coord(p)∑
p∈P exp s(coord(p))

(4.4)

the saliency function evaluated at the coordinates of a patch p, with a softmax ac-

tivation over the sampled patches P which normalizes the saliency per iteration while

emphasising the largest value. The second term of Eq. 4.3 regularizes the entropy of the

learned saliency map with a positive weighting constant λ to be selective between brain

regions, which has been shown to effectively sharpen attention mechanisms in neural

networks (106).

This formulation simultaneously learns an interpretable saliency map common to the

population under consideration, while directing the gradient updates to only relatively

informative regions of the brain. Additionally, assuming that the expected volume of the

brain being considered at every iteration (that is, the total expected volume of N patches

of volume P 3 each is smaller than the total volume of the scan when discounting their

overlap), this sampling based strategy has a regularizing effect which prevents overfit-
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ting on the relatively few training samples present in MRI datasets similar to applying

dropout (107).

During inference on a trained model, there is less consideration to being conservative

with the number of sampled patches. With no backpropagation step the model occupies

less memory footprint on a GPU, and sub-second inference times can still be achieved

with large number of patches. As such, we sample P ′ � P patches proportional to

their s-score with replacement and compute the final classification as the unweighted

arithmetic mean of the classifier applied to each patch.

4.3.1 Predicting biological sex

We apply this framework to predict the biological sex of individuals from their diffu-

sion MRI scan. This serves as a convenient task as this splits the population in half, and

is known to be associated with differences in white matter microstructure as imaged by

diffusion MRI (105; 104).

For this task, we implemented the patch-classifier f as a CNN with receptive field

equal to a selected patch size of 323, corresponding to a cube of size of 40mm to a side

due to the 1.25mm spatial resolution of the diffusion volumes.. The CNN consisted of

four convolutional layers (see Table 4.1) for tabulated information of the model’s layers),

consisting of 3D convolution with a leaky ReLU activation followed by 3D max pooling,

batch normalization (78), and spatial dropout (77), followed by a single fully connected

layer with sigmoid activation.

The saliency function s was implemented as a fully connected network consisting of

three hidden layers with 16 neurons each with leaky ReLU activation, with the final

layer outputting a single unconstrained scalar. See Table 4.2 for further specifications

of the model. It receives as input only the spatial coordinates of a patch, normalized to
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Layer Specifications Output size
3D convolution 16 filters, kernel size 4 29× 29× 29× 16
Leaky ReLU 0.1 negative slope
3D max pooling kernel size 2 14× 14× 14× 16
Batch normalization
Spatial dropout P = 0.1
3D convolution 24 filters, kernel size 3 12× 12× 12× 24
Leaky ReLU 0.1 negative slope
3D max pooling kernel size 2 6× 6× 6× 24
Batch normalization
Spatial dropout P = 0.1
3D convolution 32 filters, kernel size 3 4× 4× 4× 32
Leaky ReLU 0.1 negative slope
3D max pooling kernel size 2 2× 2× 2× 32
Batch normalization
Spatial dropout P = 0.1
3D convolution 32 filters, kernel size 2 1× 1× 1× 32
Leaky ReLU 0.1 negative slope
Batch normalization
Spatial dropout P = 0.1
Fully connected 1 filter, sigmoid activation 1

Table 4.1: Specification of patch classifier model.

Layer Specifications
Fully connected 16 filters
Leaky ReLU P = 0.1
Fully connected 16 filters
Leaky ReLU P = 0.1
Fully connected 16 filters
Leaky ReLU P = 0.1
Fully connected 1 filter, no bias

Table 4.2: Specification of saliency model.

67



Characterizing White Matter with Predictive Models Chapter 4

the range [−1, 1], as well as each of those coordinates squared to further help localize.

The weighting factor λ of the saliency regularization in Eq. 4.3 was set to 0.2. A very

important consideration is how this saliency s is initialized, as it represents our prior

belief for which regions are most predictive. In this work, we prefer an uninformative

prior which we achieve by initializing each of the dense layers with small values drawn

from a normal distribution with standard deviation of 0.2. This results in an initial

saliency that is fairly uniform, with the ratio of largest to smallest values around 1.2.

The data was normalized to zero mean and unit standard deviation, based on the

distribution of training data. During training, the data was augmented with Gaussian

noise with standard deviation 5% that of the data. This provided a crucial regularization

to prevent the saliency from overfitting on locations with little signal. To further prevent

overfitting, label smoothing of 0.05 was applied during training (108).

The model was trained end-to-end with an Adam optimzer with learning rate set at

10−5, and parameters β1 = 0.7 and β2 = 0.9. We selected |P| = 8 patches at every

iteration with a batch size of 32. Models were trained for 5000 epochs each, at which

time both validation and training loss had plateaued. Training was performed on a single

NVIDA GeForce 2080 GPU.

4.4 Results

We present the saliency of two independently trained models to demonstrate the

variability of results that can be obtained. The learned saliency maps from two models

is visualized in Fig. 4.2, which preferentially identify the superior portion of the brain

stem. These saliency maps are sharply defined and have discovered sparse portions of

the brain scan which are sufficient for the classification task. Care must be taken in

interpreting these results, as the saliency maps highlight the only center points of the
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Figure 4.2: The learned saliency maps obtained from two independently trained models.
A classification model considering only 403mm patches centered on these portions of the
brain scan achieved 85.1% (top) and 78.7% (bottom) accuracy in predicting the biological
sex of the 94 subjects in the held-out test set.

most informative patches as discovered by our framework. The receptive field of the CNN

classifier f considers a volume 40mm to a side, so portions of the nearby brain structure

is considered for the prediction.

To assess the performance of the overall model, we sampled |P ′| = 1010 patches with

replacement proportional to their saliency score. The classifier f was applied to each of

these patches for every subject in the held-out test set, and the final prediction was the

simple arithmetic mean across all those predictions per subject. This was repeated for

five independently trained models to assess the variance in performance. These models

ranged between 78.7% to 85.1% accuracy, with an average of 81.7%. The learned saliency

was similar for each, with typical examples presented in Fig. 4.2.
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4.5 Discussion

Our results demonstrate that voxels nearby to the superior portion of the brainstem

as being preferentially discovered when classifying biological sex with a patch based

classifier. This is consistent with prior literature, including that the thalamus, corpus

callosum, and cingulum exhibit sex differences in their microstructure (109; 110; 111).

Our performance metrics are comparable to prior work in classifying sex from brain

MRI scans, which typically achieves accuracy in sex prediction of 80-87% using functional

MRI data solely (112; 113; 114), 83% when considering solely diffusion MRI (115), over

90% using structural T1- or T2-weighted images (116), and 96% considering morpholog-

ical features derived from T2-weighted images (117).

In obtaining these results we initially had only an uninformative uniform prior of

which brain regions to select, and the saliency was then learned jointly with the patch-

based classifier. However, an interesting aspect of the proposed framework is that the

saliency map s is independent of actual data, considering only the coordinates thereof.

As such, it is trivial to select a more informative prior distribution by pre-training the

saliency map s to preferentially guide the classifier towards those regions during opti-

mization. For instance, this can be used to ignore certain portions of the brain to discover

the ‘second-most’ informative regions of the brain by incorporating a prior that ignores

where previous results have highlighted. This could also be used to ignore areas known

to contain less signal or that are otherwise outside the brain, so as to prevent overfitting.

There is a limitation to the optimization function in Eq. 4.3, namely that singular

regions will be defined as informative or not solely based on the predictive performance of

that region in isolation. This precludes distant portions of the brain that are uncorrelated

in the information they contain as pertains to the prediction that, when considered

jointly, may outperform any given single region. This can be ameliorated by having the
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patch-based classifier not output a prediction but instead a latent embedding vector for

each region, allowing uncorrelated information from disparate regions of the brain to be

modeled jointly. This would require a third component to the model which would output

the final classification on the basis of the s-weighted average of embeddings. However,

such an approach loses some of the explainability of the learned saliency maps, as it no

longer assigns each region a pure score of its informativeness.

An underlying assumption to our framework is that there exists a spatially homo-

geneous region throughout the population that is sufficient for classification. This may

not always hold, but the comparative success of a trained model and the salient regions

it identifies can be used as to test the hypothesis of how well this assumption holds for

given data.

4.6 Conclusion

In this chapter, we proposed a classification model for whole-brain scans which decom-

poses a CNN model into a patch-based classifier and an saliency map of which patches

are most informative. This takes advantage of the spatial homogeneity present in MRI

data, which is not present in natural images; with MRI data the same voxel will corre-

spond to the same region of the brain for an entire population, given an accurate enough

spatial normalization in particular. This allows for directly learning an explainable atlas

of how informative brain regions are for classifying a given attribute of the subjects under

consideration.

We apply our framework to the task of predicting the biological sex of diffusion

MRI scans collected by the Human Connectome Project. Our results demonstrate that

voxels nearby to the superior portion of the brain stem are preferentially selected as

most informative. A patch-based classifier that was jointly trained with the saliency
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map achieves 85.1% and 78.7% accuracy by two independent models when considering

only those regions.
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Chapter 5

Learning Cardiovascular Health

Signatures

Bematists or bematistae were

specialists in ancient Greece who

were trained to measure distances

by counting their steps.

Wikipedia

5.1 Introduction

When engaging in any physical task, the human body responds through a series

of integrated changes in function that involves its physiologic systems, including the

musculoskeletal, the cardiovascular, and the respiratory systems (118). Such responses

may vary significantly due to environmental factors, yet when elicited in a controlled

environment such as a 6-minute walk test carried out in lab settings, they allow inferring

individual-specific physiological markers such as Resting Heart Rate (RHR), Maximal
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Heart Rate, and Maximal Stroke Value. These markers are important in characterizing

an individual’s health and fitness status. For example, it is well known that cardio-

respiratory fitness is inversely associated with all-cause mortality (119).

Recently, the advent and widespread adoption of wearable devices and fitness track-

ing apps (120) has enabled continuous, unobtrusive tracking of an individual behavior

and physiological signals such as heart rate, physical activity, and sleep over time, with

time resolution down to the minute-level and below. This has enabled population-scale

physiological sensing (121).

In this chapter, we move beyond population-level aggregated sensing and set out to

learn individual characteristics of cardiovascular responses by observing the relationship

between behaviors such as sleep and physical activity and their associated changes in

heart rate during the individuals everyday life. In absence of the controlled lab set-

tings usually described in the physiology literature (118), we hypothesize that prolonged

observation periods increase the likelihood of a behavior mimicking an in-lab test to

spontaneously occur. For example, a brisk walk to the train station may be a good

approximation of a 6-minute walk test. For this reason, we make use of attentioned mod-

els to pick up on such “natural experiments” that collectively contribute to shaping the

envelope of an individual’s cardiovascular response. In an analogy with control theory,

we set out to learn the cardiovascular transfer function of an individual to capture the

cardiac output for each possible (behavioral) input.

Though previous studies have leveraged representation learning to extract health-

related features from wearable sensor data (122; 123), our work is unique in terms of

dataset size (2.6× 109 minutes of sensor measurements considered from 80k users over a

span of one year), outputs (parsimonious individualized cardiovascular signatures output

by attentioned convolutional autoencoders), and validation methods. We believe that

accurately capturing cardiovascular response enables screening for abnormalities and de-
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Figure 5.1: Example physical activity and sleep (upper row) and heart rate (bottom row)
sensor data from three individuals, demonstrating how heart rate responds to onset of
exercise (left column) and sleep (middle column). Changes in heart rate do not always
occur due to physical activity (right column), with onset of anxiety or stress being poten-
tial unmeasured confounders. As expected, applying a signature from a different person
(demonstrated in orange) results in increased reconstruction error.

tecting physiological changes over time unobtrusively in free living conditions.

5.2 Data

We select a cohort of 80,137 members of Achievement, a commercial reward platform.

To be included in this study, users must have authorized sharing with Achievement of

dense minute-level steps/sleep/heart rate activity logs from commercial activity trackers,

such as Fitbit or Apple Watch. Following (124), to be included in the cohort a member

must have at least 10 days worth of physical activity logs, with no more than 4 hours

of unreported data per day, for one or both of the collection windows of January 2017

or 2018. Half of the members reported between 26,488 to 40,537 minutes per month,

averaging 32,750 minutes. 82.8% of this cohort is female, with a median age and BMI

of 31 and 28.3, respectively. All members with reported data in both of the two months
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were assigned to the validation set (N=25,406). The remaining individuals were randomly

assigned to either the training (N=43,784) or tuning sets (N=10,947).

The data from the activity trackers are minute-level measurements of a person’s total

step count and average heart rate, and if the wearer is asleep or restless asleep; see

Figure 5.1 for sample data from three individuals. We scaled these measurements to the

range (0, 1) to speed up model training (125): the heart rate per-person is whitened to

zero mean and unit standard deviation, and the step count values are log-transformed

to handle the large spread of values as: steps′ = log (steps + 1) /5. The two sleep stages

are encoded as separate binary channels. Missing data is imputed as mean heart rate of

activity at awake, and no other data cleaning is performed.

5.3 Cardiovascular Signature Network

To learn a personalized cardiovascular response function, we consider a heart rate

autoencoder (126) that is conditioned on the physical activity and sleep stages. The

signature-encoder learns a signature of a person based on how their heart rate responds

to physical activity, while the signature-decoder uses a learned signature to predict a

person’s heart rate based on their physical activity.

Encoder: The encoder model, as seen in Figure 5.2, learns a fixed-size signature from

an arbitrarily length time-series. It consists of two WaveNet (127) convolutional neural

network (CNN) blocks,W1 andW2, composed of seven dilated causal convolutional layers

with residual connections and allow for modeling long-range temporal dependencies of

up to 128 minutes, with 32 and 16 filters per layer, respectively. As opposed to recurrent

layers, convolutions are typically faster to train especially when applied to very large

sequences such as considered here. The encoder considers the physical activity channels

and the heart rate signal separately in W1 and W2, which allows the encoder to jointly
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Figure 5.2: Diagram of proposed model architecture. The signature encoder predicts a
cardiovascular signature from measured sensor data (top dashed box), and the signature
decoder uses that same signature as well as physical activity data to predict the heart
rate (bottom dotted box).

learn a latent physical activity representation with the decoder by sharing the weights

of W2. The outputs of W1 and W2 are concatenated together and a scaled dot-product

attention mechanism (128) is applied to predict the cardiovascular signature with queries

and keys of dimension dk = dv = 8 while the dimensionality of the values, dv, is equal

that of the signature size. Three separate convolutional layers of filter width 1 are applied

to re-size the tensors appropriately.

Decoder: The decoder model consists of a single WaveNet block W2, whose weights

are tied to that of the encoder’s, followed by two temporal convolutional layers. The

output ofW2 at every time step is concatenated with a signature vector, and two temporal

convolutional layers are then trained to predict the corresponding heart rate signal. The

number of parameters unique to the decoder are kept to a minimum to force the signature

to be as informative as possible.

Training: The two models are learned end to end by minimizing the average L2

norm of the error in predicting heart rate, using the Adam optimizer (129) with default

parameters (α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−7). Missing data is imputed as

mean heart rate of no activity at awake, though no loss is propagated corresponding
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Table 5.1: Experimental results. The trained proposed model was validated on the 2017
data, and also using 2017 signatures applied to 2018 data. While varying signature sizes
(results shown in left column) the full training set was used, and when varying training
set size (results shown in right column) a size-32 signature was used.

Varying signature size Varying training set size

Size Validation error
2017 / 2018 # people Validation error

2017 / 2018

4 0.295 0.385 500 0.319 0.400
8 0.291 0.385 2,000 0.306 0.391
16 0.283 0.394 5,000 0.298 0.383
32 0.279 0.393 20,000 0.285 0.387
64 0.288 0.384 43,784 0.279 0.393
128 0.278 0.395

to these periods. The models are implemented in Keras (130) with a TensorFlow (131)

backend. All hidden layers include ReLU activation functions (132), with the exception

of the WaveNet blocks, which use gated activation units (127), and the output, which

has no non-linearity. Training was done on mini-batches of size 16, for up to 30 epochs

with an early stopping criteria if validation error was not observed to improve for five

epochs.

5.4 Experimental results

Baseline models: We consider three baselines to compare our model to. The sim-

plest predicts a persons mean heart rate at awake or asleep. The second uses XG-

Boost (133) with default parameters, trained on a single person to predict their heart

rate based on the previous 120 minutes of physical activity. The third uses XGBoost

again, but this time trained on a population of people rather than at the individual level.

The performance of the baseline models can be seen in Table 5.2. Both XGBoost models

are trained on the January 2017 activity window and validated on January 2018.
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Table 5.2: The performance of the baseline models trained on 2017 data and validated
on 2018 data.

Baseline model Validation
error

Awake/Sleep Mean 0.755
Individual XGBoost 0.445
Population XGBoost 0.539

Sensitivity analysis on signature size: We trained the proposed model with

signature sizes of {4, 8, 16, 32, 64, 128}. As seen in Table 5.1, we observe that our model

is robust to varying sizes of the cardiovascular signatures, with a decrease in validation

error that levels off after a size of 16.

Effect of training set size: Our model leverages a population to learn a single

persons cardiovascular transfer function. To understand the effect of the population on

the model, we vary the training set size as fractions of the total (1%, 5%, 10%, 50%,

100%) and observe how well our model performs. As seen in Table 5.1, we observe a

steady decrease in validation error as the training data is increased, culminating in a

14% better performance with a full dataset as opposed to only 1% of it.

Signature consistency: To assess test-retest reliability, a measure of internal va-

lidity, we consider how well a cardiovascular signature can be used to predict a persons

heart rate from their physical activity a year later. For each individual in the validation

set, we learn a signature from their signal measurements during January 2017 and apply

that signature to predict their heart rate during January 2018. As compared to using a

different persons signature, a person’s own signature is significantly better at predicting

their heart rate (Wilcoxon signed-rank test, V = 2.6× 107, p < 10−16), with a median of

60% greater mean-square error when using another person’s, randomly selected.

Predicting health conditions using signatures: To assess the external valid-

ity of the signatures, we tested whether they are associated with factors affecting car-

79



Learning Cardiovascular Health Signatures Chapter 5

diovascular response, such as age and body mass index (BMI). We used an XGBoost

model (133) trained on the learned size-32 validation signatures to predict if an individ-

ual is above/below median age of the cohort (31 years) with an AUC of 70.1% when

trained on a random 70/30 split of the validation set. Predicting if a person is obese

(BMI ≥ 30) from solely their signature achieves an AUC of 69.7%. Predicting the same

outcomes using only an individual’s resting heart rate results in significantly worse accu-

racy, with AUCs of 60.6% and 54.1%, respectively, demonstrating that signatures carry

richer information about the relationship between physical activity and heart rate than

the single RHR marker.

5.5 Discussion

It is informative to consider when a cardiovascular signature would not well predict a

person’s heart rate. Assuming the measuring conditions of the wearable device stay the

same, this may happen when a person’s cardiovascular response is hard to learn (e.g.,

short observation period, high missingness, or erratic behavior), when it changes (e.g.,

improvement/degradation of fitness), or when there are factors affecting HR that go

beyond sleep and physical activity (e.g., stress endured during an interview, after taking

medication, or having a meal). An example of where our model fails can be seen in the

right-most column of Figure 5.1.

In future work we plan to explore the motifs surfaced by the attention component

of the network, and study how they are related to health outcomes. From a methods

perspective, future extensions will consider variational autoencoders to better condition

the latent space of cardiovascular signatures as well as further hyper-parameter and

architecture optimization.
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Conclusion

Between stimulus and response

there is a space. In that space is our

power to choose our response. In

our response lies our growth and

our freedom.

Viktor Frankl

This dissertation demonstrated several novel computational techniques to further

characterize health data. Statistical and machine learning models were proposed that

exploited key properties of the datasets to derive further insights from them. We consid-

ered two sources of data, namely diffusion MR images of the human brain and large-scale

physical activity data from wearable sensors, where each had its own set of challenges.

Each of these data sources holds enormous potential for bettering our health outcomes.

Diffusion MRI has enabled in vivo study of the structural connectivity of the human

brain and has been a catalyst for rapid advancements in our understanding of our neu-

roanatomy. Wearable activity trackers allow for massive scale study of our physical and

mental health through long long periods of time. Deriving value and delivering impact

81



Conclusion Chapter 6

from these sets of data is challenging. Testing domain hypothesis on them at scale re-

quires new computational approaches, and delivering these insights and models from a

laboratory setting requires addressing rightful concerns about explanatory power.

In Chapter 2, we demonstrated how a novel distance metric for dyads of neighboring

voxels between different scans can be built upon with a statistical framework to discover

large regions conserved with a population under study. This methodology was applied

on a population of 109 twins, and comparing them to a matched set of pairs of strangers

(namely, the same individuals assigned to different pairs) we discovered nearly 4% of

white matter as being associated with genetic similarity, and that this was primarily

within deep white matter.

In Chapters 3 and 4, we considered two dual problems for characterising white mat-

ter, namely how informative attributes of a subject are for generating regions of diffusion

imaged white matter (Chapter 3), and how informative regions of white matter are

for predicting attributes of a person (Chapter 4). These last two problems were ap-

proached using newly developed methods building on recent literature from computer

vision, generative modeling, and Bayesian uncertainty quantification as applied to deep

neural networks. These methods allow for associating regions of white matter with traits

and characteristics of interest across a population.

Lastly, in Chapter 5 we considered the promise of digital health devices for large-

scale monitoring of cardiovascular health, developing a model that can learn from the

few interesting and salient events that may occur in daily living conditions to predict

a person’s cardiovascular response from their physical activity. We demonstrated how

such response functions can be meaningfully used to predict variables associated with

cardiovascular health, which holds the promise of longitudinal tracking of cardiovascular

health across large populations and enabling predictive interventions.

Throughout this dissertation, data-driven methodologies have been developed to meet
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the constraints imposed by the sensor data to best develop an understanding of aspects

relating to human health. A key focus has been on developing methods that do not solely

improve on singular performance metrics, but also further characterize the data. These

are steps towards bringing the superlative performance we have seen in the past decade

of predictive modeling towards domains where erroneous data-driven decisions can not

be accepted. There is an enormous potential for bettering our health and daily living,

and we are called upon to address that.
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Voxel-wise Population Differences

The results presented in Section 2.3 follow from the application of Eq. 2.5, which is

an extension of Eq. 2.3 to two neighboring voxels. However, Eq. 2.3 is of independent

interest and can be used to show similar results as Eq. 2.5.

Of the nearly one million white matter voxels we identify 33,003 voxels as significantly

more similar within monozygotic (MZ) and dizygotic (DZ) twins than a matched control

group of strangers (p < 10−3, false discovery rate 1.3%) using Eq. 2.3 with k = 1 MDA

peaks. These voxels are visualized in figure A.1. Most of these voxels, 23,566, overlap

with the previous results in Section 2.3.

The voxels identified were further used to study similarities within MZ twins as

compared to DZ twins and also in siblings as compared to a matched control group of

strangers. Of the 33.0k voxels discovered to be more similar within twins than strangers

we found 8,746 voxels that were significantly more similar within MZ than in DZ twins

(p < .05, FDR 8.7%), and 5,244 voxels that were significantly more similar in siblings

than in strangers (p < .05, FDR 19.2%). These two results overlapped to a small extent,

or a total of 1,637 voxels.

We limit the null hypothesis space to only those 33.0k voxels discovered to be sig-
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nificant previously as a whole-brain study did not identify any reasonable result with

sufficiently low false discovery rate. We note that due to the reduced hypothesis space

these results still assume a single model of similarity associated with genetically related

pairs. We further note that these results are associated with much less statistical signif-

icance, indicating that this model does not generalize as well as that of Eq. 2.5 as seen

in Fig. 2.10. In addition, the small intersection of the results is evidence for a need to

model heterogeneity within the population, as mentioned in Section 2.4.

The microstructural orientation of the MDA distributions is important to distinguish

between twins and the control population of strangers; the magnitude by itself only

accounts for a small portion of these results. Repeating the experiment with a modifica-

tion to Eq. 2.3 such that it only considers magnitude and not direction discovers 11,948

voxels as significantly more similar within MZ and DZ twins than in the control group

(p < 10−3, FDR 4.3%), of which only 6,235 were also identified as significantly similar

in the previous test which included orientation data. These magnitude-only results are

clustered in the corpus callosum and near the amygdalae.

Comparing the voxels identified as significant when applying Eq. 2.3 to Eq. 2.5 is

complicated by the different number of hypothesis when considering voxels and voxel

dyads in the two equations, respectively. An alternative middle ground between the two

that considers within-voxel differences between subjects, as Eq. 2.3 does, but for voxel

dyads, as Eq. 2.5 considers:

d(X, Y, u, v)=
1

2

k∑
i=1

(
min

(∥∥X i
u−Y i

u

∥∥ ,∥∥X i
u+Y

i
u

∥∥)
+ min

(∥∥X i
v−Y i

v

∥∥ ,∥∥X i
v+Y

i
v

∥∥)) (A.1)

This differs from Eq. 2.5 by only comparing subjects X and Y within voxels u and v,
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instead of across voxels. This relaxes the spatial coherence constraint while including up

to 26 null hypothesis per voxel. Indeed, repeating the experiments of Section 2.3 with

k = 1 peaks identifies 330,882 voxels dyads containing 84,147 unique voxels as significant

(p < 10−4, FDR 0.3%). These voxels are visualized in Fig. A.2, and nearly entirely

encompass the previous results in Section 2.3 occurring in the same regions but taking

larger extent.
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Figure A.1: Axial slices of voxels identified as significantly more similar within twins
than strangers (yellow), and the subset of those voxels found to be significantly more
similar within monozygotic compared to dizygotic twins (teal) and in siblings compared
to strangers (orange), as computed using Eq. 2.3. Background image is of a population
averaged Generalized Fractional Anisotrophy (GFA), where lighter regions indicate higher
GFA values. Image created partly using ITK-SNAP (4).

87



Voxel-wise Population Differences Chapter A

Figure A.2: Axial slices of voxels identified as significantly more similar within monozy-
gotic and dizygotic twins than strangers as computed using Eq. A.1 (blue) and Eq. 2.5
(red). Background image is of a population averaged Generalized Fractional Anisotro-
phy (GFA), where lighter regions indicate higher GFA values. Image created partly using
ITK-SNAP (4).
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Controlling for Morphological

Similarity

In Chapter 2, we seek to identify regions whose similarity between MZ and DZ twins

is attributable to oriented white matter microstructure and not simply due to the mor-

phology of the brain or systemic registration misalignment (50). Brain morphology is

known to be heritable (134; 135). To that end we identify voxels in which twins have

significantly more similar log-jacobian values than strangers do and exclude them from

the analysis in this paper. The log-jacobian value of a voxel measures how much this

voxel was expanded or contorted from a subject’s native space to the normalized space

in which the population analysis is performed in.

We define dissimilarity between a pair of subjects with respect to their log-jacobian

values as their absolute difference. We compute a distribution of dissimilarities per voxel

for twins and strangers and perform a Mann-Whitney U test (51) to test if MZ and

DZ twins are significantly more similar than strangers in a given voxel. We identified

3.0k voxels that fit this criteria (p < 10−3, FDR 28.9%) using a conservative threshold.

Figure B.1 shows an overview of these voxels. Some of the regions identified as such have
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previously been reported to have heritable anatomical structure (134).
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Figure B.1: Axial slices of voxels in red whose log-jacobian values from the registration
process are found to be significantly more similar within monozygotic and dizygotic
twins than strangers, suggesting possible morphological similarity. Background image
is a population averaged T1 weighted MRI image. Image created partly using ITK-
SNAP (4).
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