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Abstract

Explaining for the Best Intervention

by

YuanMeng

Doctor of Philosophy in Psychology

University of California, Berkeley

Professor Fei Xu, Chair

Humansdon’t growamindby sitting in an armchair and reading�ashcards containingworld facts. Much
of human knowledge comes from experimentation. For instance, do antidepressants a�ect both mood
and thoughts directly, or do they a�ect thoughts via mood? To test competing hypotheses, one can in-
tervene on a variable (e.g., changing mood using another method) to see how it a�ects other variables.
Good interventions generate information that discriminates between hypotheses. However, informative
interventions are hard to design. In many past studies, explaining why something occurs is used as a sim-
ple but powerful tool to help learners acquire generalizable abstractions useful for future scenarios. In
this dissertation, I investigate whether asking causal learners to explain why they plan to carry out cer-
tain interventions helps them select more informative interventions. Chapter � describes the task used
throughout the dissertation: Three light bulbs are connected one way or another; learners intervene on
one light bulb to �nd out their true structure. The optimal intervention maximizes the expected infor-
mation gain (EIG) by generating distinct outcomes under di�erent structures. The suboptimal positive
test strategy (PTS) tests one hypothesis at a time and favors the intervention that can potentially a�ect the
highest proportion of hypothesized connections. A Bayesian model captures how much a learner relies
on EIG vs. PTS to choose interventions. In Chapter � (Study �), I examine intervention strategies that
adults and �- to �-year-olds naturally use to select interventions in the Light Bulb Game described above.
Adults mainly relied on the optimal strategy, EIGmaximization, whereas childrenmostly used PTS. Fol-
lowing informative interventions, adults identi�ed the correct structures most of the time, but children
were at chance. In Chapter � (Study �), I prompt adults and �- to �-year-olds to explain their interven-
tion choices (“Why do you wanna turn on X light bulb?”) and examine if it changes their intervention
strategies. Explainers did not intervene di�erently. However, children who either explained or reported
their choices performed above chance at identifying true causal structures from intervention outcomes.
In Chapter � (Study �), I train �- to ��-year-olds on the di�erence-making principle which underlies EIG
maximization: That a light bulb is helpful if it makes di�erent things happen in di�erent structures, and
unhelpful if it leads to the same outcome either way. Training led children to rely more on EIG. The
e�ect wasmore pronounced in �- to ��-year-olds than it was in �- to �-year-olds. In Chapter �, I synthesize
�ndings in Studies �–� and propose directions for future research.
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You insist that there is something a machine cannot do.
If you will tell me precisely what it is that a machine
cannot do, then I can always make a machine which will
do just that!

John von Neumann (1948)

Chapter 1

Introduction

Learning is a miracle, with theoretical impossibility contrasted by our apparent competence and
efficiency. As a child, I used to worry how one lifetime was ever enough for us to understand a sin-
gle grain of sand and its infinite facets, let alone the vastness of the universe. Years later in college, I
learned that W. V. O. Quine even went so far to argue all human knowledge is epistemically equiv-
alent to Greek mythology, for any theory is underdetermined by empirical data45,93. Yet in reality,
learning is far from a hopeless endeavor: Before celebrating their first birthdays, human infants have
already uttered the first words in their native languages 128 and demonstrated intuitive understand-
ings of physics4, causation31,72, agents5,76, number33,41,139, probability35,36, etc..
How do we learn so much from so little so quickly? This is the holy grail of intelligence, and a

hard question to answer, for even the very concept of learning is ill-defined (see Schulte 110, for a
review of formal learning theories). For instance, can we say someone has learned Go after being
taught the rules of Go? Do we learn anything new from deduction given that the conclusion is deter-
mined by the premises? Do we know a technology (e.g., bikes or bitcoin) if we can use it but don’t
understand its inner workings 106? If understanding is not required for knowing, how often do we
differ from the machine in Searle’s Chinese room that translates Chinese to English based on an in-
struction manual61,114? To a great extent, modern cognitive science often bypasses epistemic debates
about learning and takes up a practical interest: How do humans grow from the seeming “bloom-
ing, buzzing confusion”62 in infancy to competently seeing, thinking, and acting in adulthood?
The most studied form of learning is learning from observation: Human infants are endowed

with certain amount of core knowledge19 as well as powerful inductive biases and inferential mecha-
nisms they can use to quickly extract generalizable knowledge from limited observations46,52,66,125,138.
As the one of the “Godfathers of AI” Geoffrey Hinton put it, we can learn much by looking alone:

“When we’re learning to see, nobody’s telling us what the right answers are — we just
look. [...] And there’s only one place you can get that much information— from the
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input itself.” (cited in Murphy87, p. 10)

However, human learners do more than just observing. Real-world observations are almost al-
ways insufficient or ambiguous— people can run experiments collect more data. Even in the ab-
sence of new empirical data, we can gain new insights by thinking — such as the jury deliberating on
evidence presented during the trial to reach a verdict that they believe is closer to the truth than not.
Thinking can also take the form of thought experiments, mental simulation, and self-explaining. Ex-
perimentation and thinking allow us to generate more data or do more with less. In the next three
sections, I first review the state of the art in the three forms of learning as mentioned: Learning by
observation, learning by experimentation, and learning by thinking. After reviewing the literature,
I propose the leading question in my dissertation: If thinking facilitates learning from existing data,
can it also help learners design more informative experiments to collect useful data in the first place?
To end Chapter 1, I delineate the experimental and formal approaches to addressing this question.

1.1 Learning by Observation

Among various forms of learning, learning by observation has received the most attention. Word
learning is a prominent example often used to showcase our remarkable ability to learn from sparse
observations8,18,79. In Quine’s famous “gavagai” problem101,102, a rabbit runs by as a speaker of an
unknown language utters, “Gavagai!” You and I might immediately guess that “gavagai” refers to
a rabbit, yet this strong intuition is unjustified. Why can’t “gavagai” refer to any animal, running, a
rabbit minus a leg, a rabbit plus the grass beneath, or countless other possibilities? In the movieAr-
rival, linguist Dr. Louise Banks was faced with this exact challenge when she was hired to translate
an alien language she initially knew nothing of. Her once-in-a-generation feat is what human chil-
dren achieve on a daily basis. For instance, upon observing a novel word “blicket” being paired with
several examples of dalmatians, 3- to 4-year-olds selectively generalize “blicket” to other dalmatians,
but not other breeds of dogs or animals in general 140,141. Such efficiency and constraint may be in
part due to children’s inductive biases for word meaning (e.g., that nouns typically refer to whole ob-
jects, not parts80) and in part a natural consequence of Bayesian inference (e.g., if “blicket” refers to
animals, it would be a “suspicious coincidence” that the speaker uses three dalmatians as examples).
Causal learning is another powerful demonstration of obtaining abstract knowledge from obser-

vation66,97. Hume was skeptical as to whether causation can be inferred from observation at all60,

“When we look about us towards external objects, and consider the operation of
causes, we are never able, in a single instance, to discover any power or necessary con-
nexion; any quality, which binds the effect to the cause, and renders the one an infalli-
ble consequence of the other. We only find, that the one does actually, in fact, follow
the other.” (An Enquiry Concerning Human Understanding, p. 46)

2



With metaphysical skepticism set aside, claiming a variable causes another is a daunting statistical
challenge, since a myriad factors could be at play. Guido Imbens, Joshua Angrist, and David Card
won the 2021 Nobel Prize in Economic Sciences for inventing techniques that lend more confidence
to such inferences 1. Yet, human toddlers can infer an object’s causal efficacy after observing it co-
vary with the effect a few times50,51,119. In Sobel et al.’s study119, 2- to 3-year-olds saw objects A and B
activate a machine together and then A activate the machine alone. Most inferred A as causally effi-
cacious but not B, even though there was no negative evidence against B. This “backward blocking”
behavior demonstrated by toddlers aligns with predictions of formal models of causal inference95,120.
As with word learning, causal learning is also aided by our prior knowledge (e.g., it’s more likely
that a single cause leads to the effect, rather than multiple causes combined130; an effect usually oc-
cur shortly after the cause 13) along with powerful mechanisms to extract abstract knowledge from
concrete data (e.g., SARS-CoV-2 causes COVID-19→ viruses cause diseases 56,48).
In a variety of other domains such relational reasoning (e.g., whether multiple objects are the

same or different on certain dimension37,133), social learning (e.g., the “essence” or defining features
of social groups 105, group affiliations and social structure47,127), and intuitive theories of science (e.g.,
when magnets repel and attract one another 10), young children have also demonstrated extraordi-
nary abilities to learn and generalize from just a handful of observations. Owing to rapid advances
in AI, now is perhaps the golden age of learning by observation. Even without inductive biases or
prior knowledge that constrain and speed up human learning, large neural networks with hundreds
of billions of parameters trained on huge amounts of observations, or so-called “foundation mod-
els”9, begin to show human-level competence in domains such as language17,24, vision38,103, social
cognition7, etc.. An astounding example representing the state of the art is DeepMind’s Gato, a
“generalist agent” that not only can play games, caption images, hold conversations, but can even
control a robot arm, all relying on a single transformer model trained on text and image sequences.

1.2 Learning by Experimentation

Where observation ends is where inquiry starts. From Piaget99 to contemporary cognitive scien-
tists49,109, children have long been likened to scientists: Both organize their knowledge of the world
in the form of formal or intuitive theories, and both gather data to test theories and revise theories
in light of data. Children don’t sit and watch parents play with toys to learn how toys works, much
like scientists who don’t just listen to talks to advance science— both inquire into mysteries, ask
questions, explore around, and run controlled experiments to gain trustworthy causal knowledge.
Granted, children are not literal scientists. In a loose sense of the child-as-scientist metaphor,

children know when to seek more data and can learn from self-generated data25,49,111. For instance,
children don’t just explore to gain novel experience, but more so to gain new information. In Schulz
et al.’s seminal work112, one group of preschoolers were given confounded evidence that two levers
together activated a machine, whereas other groups observed each lever individually. Choosing be-
tween the old or a new toy, children who received confounded evidence explored the old one more,
but not those who received clear evidence. Apart from statistical cues, children also use social cues
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to guide exploration. One example is that if a teacher was found to omit some functions when
demonstrating what a toy could do, children explored a new toy shown by this teacher more than
if the teacher didn’t omit information57. From data gathered via exploration, children can learn ab-
stract rules (e.g., two blocks of the same shape/color make the machine go117) and find what they are
searching for (e.g., where a target is hidden among several locations 107), to name a few domains.
To be like scientists in a stronger sense, children not only need to seek evidence and learn form it,

but the evidence they seek should be maximally useful — that is, child scientists should follow the
optimal experiment design (OED28,40,74,89,118) intuitively. This is a much taller bar to meet. To begin,
let’s formalize what scientists should do so we can measure children’s performance against it.
A classic view in science is that we should isolate variables and manipulate one at a time, so we

can attribute the potential effect to the manipulated variable alone20,65,100. For instance, if we don’t
know what determines how far a ball rolls down from a ramp, we can build two ramps that only
differ in one aspect, such as height, slope, friction, etc., but not multiple aspects at once. While this
Control-of-Variables (CV) strategy works slowly but surely, more efficient strategies are available
in many cases, such as simultaneously testing multiple variables when causes are sparse (known as
the rarity assumption3,88,92). For example, if only one in 20 switches can turn on the light, why not
turn on half of the switches at once, do the same to whichever half that turned on the light, and
repeat the bisecting process until you find the switch that works? At worst, you finish in five rounds
(ruling out 10, 5, 2, 1, and 1 each time). If you try one switch at a time, then it may take as many as 19
rounds (if none of the first 19 turned on the light). In several recent studies, increasingly more 7- to
13-year-old children14 and adults 30 chose to test multiple variables at once as the causes became rarer.
Economic factors aside, modern OED largely hinges on maximizing the information you get from

an experiment. To grasp this idea, consider a common problem guitarists face: Pedals creating sound
effects can be linked together on a pedal board in any arbitrary order. While on tour, you forgot
how the four pedals on your pedal board are connected and the cables are hidden by the sound
engineer. There are 3(

4
2) = 729 possible ways. Fortunately, your notes say they can only be con-

nected in one of three ways, as shown in Figure 1.1. These are called acyclic directed graphs (DAGs)
or Bayesian networks95,120, where nodes represent causal variables and edges show their connections.
To figure out which graph is true, you can turn on a pedal and listen to the effects — fixing the

value of a variable to see how it impacts other variables is called intervention95, which is an effective
way to learn causal structures. All interventions are not equally useful; to evaluate their usefulness,
the concept of information comes into play. Among all graphs G = {g1, g2, . . . , gn}, some (e.g.,
connected in a chain) are more likely than others (e.g., one pedal linked to all the other). The inverse
probability of a graph 1/P(gi) quantifies our surprise of seeing it. Assuming graphs are all indepen-
dent, their total surprise is

∏n
i=1 1/P(gi). To avoid computing the product, we can use logarithms.

I(gi) = − logP(gi) is called surprisal. The expected surprisal of the set is its information entropy 115,

H(G) =
n∑

i=1
P(gi)I(gi) = −

n∑

i=1
P(gi) logP(gi), (1.1)

which encodes our uncertainty about which graph is true before any intervention.
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Figure 1.1: A pedal board with delay, reverb, overdrive, and wah pedals connected in an unknown way.

Now, you connect your guitar to the wah pedal and hear no other effects than just “wah”. Given
this intervention a and its outcome y, the conditional entropy becomes

H(G|y, a) = −
n∑

i=1
P(gi|y, a) logP(gi|y, a). (1.2)

H(G|y, a) is smaller than H(G) since you can rule out the first graph; otherwise you’ll also hear the
overdrive. The reduction in entropy, H(G) − H(G|y, a), is called mutual information, or more
intuitively, information gain (IG). Before carrying out any intervention, however, we cannot foresee
what the outcome would be, so IG cannot guide our choice. The best we can do is to maximize the
expected information gain (EIG) over all potential outcomes Y = {y1, y2, . . . , ym},

EIG(a) = H(G)−
m∑

j=1
P(yj|a)H(G|yj, a). (1.3)

In this case, the reverb pedal is the intervention that maximizes EIG: If you also hear “wah” and
overdrive, it’s the first structure; if only “wah” and reverb, the second; if just the reverb, it’s the last.
When causal structures are simple (e.g., two nodes), even preschoolers can perform informative

interventions to distinguish between possible structures32,69. In Lapidow et al.’s recent study, 4- to
6-year-olds were told, for instance, that gears A and B were both broken or A was broken but B was
not. Children could spin one gear to figure out which was the case. Spinning A does nothing either
way, whereas spinning B creates an effect (i.e., B spinning) only in the latter but not in the former
case. Most children successfully chose B and identified the correct structure afterward. The authors
claimed that their study was the first to demonstrate young children could select and learn from in-
formative interventions. However, learners in this gear task were testing the causal efficacy of nodes
(e.g., does each node work?), not the structure formed by edges (e.g., how are nodes connected?). A
large part of science is concerned with the latter: Scientists often wish to find out how variables are
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related, not just examining each individual variable. Moreover, to find the optimal solution (e.g.,
intervening on the reverb pedal) to the pedal board problem I just described, learners must consider
what each node does in each graph as a whole. Testing one edge at a time also solves this problem
eventually, but may take 12 interventions (2 interventions per edge× 6 possible edges) in the worst-
case scenario. Since the gear task only had two variables and one edge, it was not possible for us to
know whether learners were using the less efficient pairwise test strategy or truly maximizing EIG.
When causal structures get more complex (e.g., three or more nodes) and edges are the hypothe-

ses under examination, even school-aged children and adults don’t always maximize EIG. Some
learners forget 15 or fail to integrate 122 evidence gathered from past interventions. Some use the pair-
wise test strategy mentioned above42 or update their current causal hypothesis one edge at a time in
light of data, rather than considering all possible structures at once 12.
Moreover, children and adults83,85,86,90 often exhit a root preference (or “source preference”): In

the pedal board example, this preference would manifest as turning on the delay pedal, which creates
all sound effects in all graphs but leaves learners uncertain as to which one is true. McCormack et
al. 83 used a similar task to test 5- to 8-year-olds, showing them three ways in which a three-node
causal system might work: That one node served as a common cause of the other two (B ← A →
B) or three nodes worked in a causal chain (A → B → C orA → C → B). Children were
allowed to intervene at least 12 times. The chance performance was simulated by randomly selecting
interventions. Only 7- to 8-year-olds’ intervention quality was above chance for both the common
cause and the causal chain structures. By contrast, 5- to 6-year-olds’ intervention quality was below
chance for both types; 6- to 7-year-olds’ was above chance for causal chains but not for the common
cause. The researchers noted that most common mistake was to intervene on the root node A.
Why do learners sometimes intervene on root nodes that may not be informative? Inspired by

the rule learning literature3,63,88,92,134, Coenen et al. hypothesized that these “suboptimal” learners
may be using the positive test strategy (PTS) and their goal is to test one hypothesis at a time effi-
ciently. In the pedal example, if you are testing the first graph, you can use the delay pedal to simul-
taneously test all three links: If not all effects are produced, you can rule out this graph. The reverb
and the wah pedals are less useful, since they can only test a subset of links in the first graph. The
overdrive pedal is unhelpful, as it cannot test any links at all. An intervention’s PTS score is thus
defined as the proportion of links it can test in a given graph. If an intervention a has different PTS
scores in different graphsG, the maximum score across all graphs is assigned as its final score,

PTS(a) = max
g
[
DescendantLinksa,g

TotalLinksg
]. (1.4)

The delay pedal that always tests all links has the highest PTS score of 1. However, as mentioned,
since the effect is the same across graphs, you need additional tests to identify the correct one. As
a result, PTS is less optimal than EIG, which requires exactly one intervention here. From early
childhood (5-year-olds85,86) to adolescence90 and adulthood29, causal learners partly rely on EIG
maximization and and partly PTS, with the reliance on EIG gradually increasing with age90.
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1.3 Learning by Thinking

Another major form of learning distinct from learning by observation is learning by thinking (LbT).
The hallmark of LbT is that learners can again new insights without new empirical observations78,
by means of thought experiments26, mental simulation59,126, or explaining to oneself 22,23,43,77. Among
them, thought experiments have received the most attention from philosophy and science, but are
the least studied in cognitive science78. This asymmetry may result from the abundance of thought
experiments in scientific discoveries (e.g., Schrödinger’s cat, Einstein’s train, Hawking’s turtles,
Galileo’s balls, Maxwell’s demon, to name a few) and the scarcity of them in everyday thinking*.
By contrast, explaining to oneself is far more accessible and commonplace — we all ask ourselves

“why?” all the time and constantly answer our own questions — yet this seemingly simple act has
profound influences on both scientific and common sense reasoning. A fascinating example in sci-
ence is Olbers’ paradox58. Looking at the night sky, we see darkness in between stars. If light has
traveled infinitely long, it would have reached everywhere in the universe. So why isn’t the night sky
full of starlight already? There’s an elegant explanation: Light has only traveled for a finite amount
of a time, which suggests the universe may have a beginning after all. Explaining two ordinary ob-
servations has led to an extraordinary discovery in cosmology. Like scientists, laypeople also benefit
from explaining how and why things happen77,135. For instance, explaining why a toy plays music
led preschoolers to generalize based on internal features (e.g., what’s inside the toy, such as batteries)
rather than perceptual similarity (e.g., the color of the toy) 132. Explaining why an exemplar belongs
to a category helped adults discover subtle rules that explained all cases, rather than salient rules that
only explained most 136. Explaining why something happened in a story enabled children to grasp
the moral the story— when asked to choose a similar story, they identified one that shared the same
moral, even though concrete plots and characters differed131. Explaining a difficult passage on hu-
man biology helped students understood it better (measured in a test) than reading it twice23.
Why does explaining why facilitate learning? Multiple mechanisms may be at play. Michelene

Chi and colleagues argued that explaining helps learners identify gaps in their knowledge, catch
incorrect assumptions, repair inconsistent mental models, and integrate new information with ex-
isting knowledge21,22,23,43. Theoretically, other processes that serve these purposes can similarly fa-
cilitate learning. Tania Lombrozo and colleagues proposed a mechanism unique to explaining: All
else being equal, we view simple and broad explanations as better than explanations which invoke
unnecessary assumptions or fail to capture some observations; when we engage in explaining, the
process recruits the aforementioned “explanatory virtues” (i.e., simplicity and breadth, among oth-
ers), which constrain our downstream learning and inference. Empirical results corroborated these
predictions. Both children11 and adults94 favor simple explanations to begin with: If two effects
(weight and sleep losses) can be explained by one common cause (e.g., depression), they prefer it to

*When was the last time you thought of a thought experiment? Take myself for example, I can only think
of one that I came up with on my own. In a conversation with a friend, I asked if they’d rather live a happy
life but die remembering a life full of misery, or live a miserable life but die with happy memories of a life
fulfilled. The point of my thought experiment was to get at our intuitions about where the meaning of life
stems from, whether it be the factual experience or what we believe the experience to be.
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two separate causes (e.g., eating and sleeping disorders). Asking children to explain why the effects
occurred further exaggerates their simplicity preference 129. Interestingly, explaining doesn’t always
lead to the right inference. As mentioned, explaining can help learners find broad patterns that cover
all observations 136, but when no such pattern exists, explainers sometimes ignore anomalies and
oversimplify the rule, a finding dubbed as the “hazards of explanation”137. Explaining also has other
effects on learning, such as encouraging comparison39 and invoking prior knowledge133,137.
Learners don’t need to find the “Inference to the Best Explanation” (IBE) to reap the benefits of

self-explaining— the act of engaging in explaining suffices, a phenomenonWilkenfeld and Lom-
brozo call “Explaining for the Best Inference” (EBI). The bottom line is, regardless of the mecha-
nism, explaining often helps learners discover generalizable abstractions useful for future scenarios.

1.4 Explaining for the Best Intervention

At the core of this dissertation is the mystery I laid out in the beginning: How do people learn so
much from so little, when the most powerful machines struggle to have human-like common sense?
To summarize the answers from the literature: Apart from inductive biases and efficient learning
algorithms44,66, human learners can go beyond data fed by others — even children know when to
gather more data and can learn from self-generated data and explaining helps people draw more
robust inferences from existing data. However, compared to learning by observation, the limits and
mechanisms of learning by experimentation and learning by thinking are less well understood.
Designing good experiments is challenging, even for scientists. Optimal experiment design

(OED) requires learners to intervene on variables that maximize the expected information gain
(EIG) over potential outcomes. Children can only do so when testing simple causal hypotheses that
only involve a pair of variables (i.e., whether two nodes can both activate or only one of them69).
When it’s necessarily to consider the global structure of three or more variables, Nussembaum et al.
found that children didn’t primarily rely on EIG until after middle school (12 years or older). All
empirical evidence to my knowledge83,90, including what I’m going to report in this dissertation85,86,
suggests that children across a wide age range (5 to 11 years old) primarily rely on the suboptimal
positive test strategy (PTS) to select interventions, which adults occasionally do as well 27,29.
To advance the field of learning by experimentation, a key question is, what can we do to help

causal learners select better interventions? A potential answer is asking them to explain why they
intervene on certain variables. Explaining promotes generalizable abstractions77,133 and EIG max-
imization is supported by a simple abstraction— the “difference-making” principle: Regardless
of the specific causal systems you are testing, you should always aim to intervene on variables that
lead to distinct outcomes under different structures. Explaining promotes comparisons39 and EIG
maximization requires comparisons at various stages — for each intervention choice, one needs to
compare how the outcome differs in each hypothesized structures; when choosing the final interven-
tion, one compares the value of all choices. Apart from a recent study16, all work on self-explaining
that I know of has only focused on how explaining facilitates learning from existing data.
To facilitate learning from experimentation and explore the boundary of learning by thinking, I
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propose the leading question in this dissertation: If thinking, in the form of explaining, facilitates
learning from existing data, can it help learners design better experiments to collect useful data?
Several studies have hinted at the connection between explaining and intervention, or more gen-

erally, data generation. For instance, when a toy’s behavior changed during a study, children’s spon-
taneous explanations of why it happened correlated with how they explored the toy71. If children
suspected a categorical change, they sorted the toys; if they thought the toy was handled differently,
they tried different actions on it. In a recent reinforcement learning (RL) study67, RL agents trained
to generate verbal explanations for why a choice was correct or incorrect learned to intervene on
object features to change the outcomes, whereas RL agents not trained to explain didn’t learn to in-
tervene. Outside of causal learning, explaining was found to improve children’s question asking108
and encourage adults to observe more before making risky decisions75. The evidence was indirect
because Legare didn’t manipulate whether or how children explained to see how it impacted their
subsequent exploration. It could be that different children had different beliefs about the toy’s be-
havior, which manifested in both their explanations and exploration. Lampinen et al. did manipu-
late whether or not learners explained but looked at machine rather than human learners. Studies by
Ruggeri et al. as well as Liquin and Lombrozo were not in the causal learning domain.
In this dissertation, I investigate whether and how explaining impacts causal intervention. To

answer this question, I take an experimental and computational approach, which I will delineate in
the next two sections. The rest of the dissertation is organized as follows: In Chapter 2 (Study 1), I
characterize intervention strategies 5- to 7-year-old children and adults naturally use to select inter-
ventions. In a causal learning task similar to the pedal example, learners intervene on one of three
nodes and use the intervention outcome to identify the correct causal structure among two. I use a
Bayesian model adapted from Coenen et al. 29 to capture howmuch each learner relies on the opti-
mal EIG maximization strategy vs. the suboptimal positive test strategy (PTS). In Chapter 3 (Study
2), I prompt 5- to 7-year-olds and adults to explain their intervention choices and examine whether
they rely more on EIG. In Chapter 4 (Study 3), I train 7- to 11-year-olds to generate explanations that
hinge on the difference-making principle behind EIG maximization to see if they intervene better.
In Chapter 5, I synthesize findings in Studies 1–3 and propose directions for future research.

1.5 Computational Modeling

As with past studies27,29,90, I assume causal learners sometimes use EIG and sometimes PTS. By
“using” a strategy, I don’t mean that learners literally carry out the required computations. Rather,
I focus on what Marr81 calls the computational level and aim to capture the problem learners solve
when they select interventions: Is the problem EIGmaximization, PTS, or a bit of both? When
solving the problem, learners can use approximate algorithms to avoid expensive computations 12,55.
Suppose that a hybrid learner i’s weight of EIG is θi and weight of PTS (1 − θi), then an interven-

tion’s value is the weighted sum of its EIG and PTS scores:

V(a) = θi · EIG(a) + (1− θi) · PTS(a). (1.5)
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Figure 1.2: Graphical representation of the Bayesian data analysis model: In each puzzle j, the probabilities
of participant i choosing each of the three possible interventions are a 3-vector pij, which are influenced by
the three interventions’ EIGj and PTSj scores as well as participant i’s EIG weight θi and decision noise τi.
Participant i’s intervention in puzzle j is chosen from a categorical distribution, Yij ∼ Categorical(pij).

More valuable interventions are more likely to be selected. The value of the intervention a, V(a), is
linked to the probability of the learner choosing a via a softmax function123:

P(a) = exp (V(a)/τi)∑
a∈A exp (V(a)/τi)

, (1.6)

where the temperature parameter captures this learner’s decision noise: When τi = 0, the learner
always choose the intervention with the highest value; when τi = +∞, they intervene randomly.
Figure 1.2 depicts the Bayesian model used to infer each learner’s θi and τi from their intervention

choices. Coenen et al. 29 used a hierarchical Bayesian model (HBM), which sampled τi and θi from
group-level hyperparameters. Since participants in my work (adults and children of different ages)
are much more heterogeneous than theirs (adults on AmazonMechanical Turk), I will fit parame-
ters individually for each learner rather than assuming one group sharing the same hyperparameters.
In computational cognitive science, Bayesian models are used in two distinctive ways 124 — as

cognitive models to capture how people learn from data and as data analysis models to learn about
people from data. The Bayesian model described above is more of a tool for analyzing behavior data.
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Figure 1.3: The Light Bulb Game consists of three phases: A demonstration phase where the experimenter
teaches participants how to control three light bulbs, a practice phase where participants learn to read 4 causal
structures, and a test phase where each participant solves 6 puzzles in a randomized order.

1.6 The Light Bulb Game

Each learner’s intervention strategy is characterized by their EIG weight θ and PTS weight (1 − θ).
To measure intervention strategies across a wide age range, I adapted the task from Coenen et al. 29
(see also Nussenbaum90) to create the Light Bulb Game, where learners can use one intervention to
identify an unknown three-variable causal system’s true structure (the right panel in Figure 1.3).
Each causal system consists of three light bulbs connected in one of two possible ways. If a light

bulb has an arrow pointing to another light bulb, it can turn on the latter. Unlike previous studies
where causal relationships were probabilistic27,29,90,122, I use deterministic relationships to make the
game more straightforward: If any cause is present, an effect will 100% occur; if no cause is present,
there won’t be any effect. To solve a puzzle, learners can only intervene on one light bulb to identify
the correct structure. In each puzzle, only one light bulb creates distinct effects in different struc-
tures — it has an EIG score of 1; the other two lead to the same outcome in both and therefore have
an EIG score of 0. The PTS score of each light bulb can be 0, .5, or 1, depending on the maximum
proportion of links it can test between the two structures. Each learner solves six puzzles in a ran-
domized order. Across 18 possible interventions in six puzzles, the mean EIG score is .33 and the
mean PTS score is .57. If learners intervene randomly, these are the mean scores we expect to see.
The Light Bulb Game is used in all studies. In Studies 1–2, participants were tested in person on a

physical device. In Study 3, participants were tested over Zoom, playing the game on a web browser.
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Twenty skillful hypotheses will ascertain what two
hundred thousand stupid ones might fail to do.

Charles S. Pierces (1901)

Chapter 2

Natural Intervention Strategies

To begin, what strategies do people naturally use to select interventions? To capture learners’ base-
line strategies in Study 1, I will test children and adults in the Light Bulb Game (described in Chap-
ter 1) without offering them any help or feedback. For child learners, I chose the age range 5 to 7
years (60 to 95.9 months) based on several past studies in which children selected their own interven-
tions (e.g., 4- to 6-year-olds in Lapidow andWalker69, 5- to 8-year-olds in McCormack et al. 83,84).

2.1 Method

Participants

In Study 1, 39 5- to 7-year-old children (M = 79.78 months, SD = 9.70 , range: 62–95 months)
were tested at local schools and a children’s museum and 29 adults (M = 20.86 years) at a public
university. Before each child participated, the experimenter obtained informed consent from their
legal guardian. Adults gave consent on their own behalf before participating for 0.5 course credit.

Procedure

In the very beginning, the experimenter demonstrated how to turn each light bulb on and off. In
Study 1, the three light bulbs were controlled by three physical buttons of corresponding colors.
In the practice phase, the experimenter taught participants how to read graphs depicting four

basic causal structures: 1) a one-link structure ( → ), 2) a causal chain ( → → ), 3) a
common-cause structure ( ← → ), and 4) a common-effect structure ( → ← ). When
introducing the first example, the experimenter told children a cover story, “Some light bulbs are
special — they can light up other light bulbs! See the arrow going from the yellow to the red one? It
tells us when the yellow turns on, it turns on the red at the same time!” In subsequent examples, par-
ticipants were told that the arrows had moved to different locations and asked to describe the new
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(a)Mean EIG scores across participants and puzzles. (b)Mean PTS scores across participants and puzzles.

Figure 2.1: The mean EIG (left) and PTS (right) scores of the interventions chosen by participants in Study
1, averaged across all participants in each age group (adults vs. children) and all six puzzles they solved. Each
dotted red line indicates the chance level of the respective score (EIG: 1/3; PTS: 0.55).

structure. After finishing describing each structure, participants were ask to predict what would hap-
pen when they turned on each light bulb. After making a prediction, participants turned on the said
light bulb to see the effect for themselves. If participants made a wrong prediction, the experimenter
would describe the effect, “Um... See, the [color(s)] light bulb(s) turned on!”
In the test phase, each participant solved six puzzles in a randomized order. In each puzzle, two

possible structures were shown side by side. Participants were asked to describe each structure and
then told that only one of them was correct about how the light bulbs actually work. The experi-
menter said, “To find out which one is the answer, you can turn on one light bulb and see what hap-
pens. If the light bulb you turn on is useful, it can tell you the answer. However, not all light bulbs
can help you — so choose carefully!” After intervening on a light bulb and observing the outcome,
participants were asked to choose the correct structure. No feedback was given during the study.

2.2 Results

Select interventions

Were participants able to select informative interventions? To answer this question, I first computed
the mean EIG scores of children’s and adults’ chosen interventions across all six puzzles. If a learner
chose interventions randomly, their expected EIG score would be 1/3 — in each puzzle, only one of
the three light bulbs was informative. Adults’ mean EIG score was .86 (95% CI [.76, .96]), which
was far above chance, t(28) = 10.95, p < .001, Cohen’s d = 2.03. Children’s mean EIG score was .39
(95% CI [.30, .48]), which was at chance, t(38) = 1.23, p = .23, Cohen’s d = 0.20.
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(a) Probability density distributions of the weight of EIG θ in children and adults.

(b) Probability density distributions of the decision noise τ in children and adults.

(c)The weight of EIG θ as a function of decision noise τ .

Figure 2.2: Modeling results in Study 1: The weight of EIG τ (upper) and the decision noise τ (lower).
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What did children do instead of maximizing EIG? Did they intervene randomly or use PTS? To
shed light on alternative strategies, I computed each participant’s mean PTS score across all puzzles.
The chance level of PTS was .55, which was the mean PTS score across 18 interventions in all six puz-
zles. Children’s mean PTS score was .74 (95% CI [.67, .81]), which was above chance, t(38) = 5.37,
p < .001, Cohen’s d = 0.86. Figure 2.1b shows each child’s PTS score: As with the aggregated trend,
most children’s mean PTS scores were above the .55 chance level as well. These findings suggested
that when children deviated from EIG, they were not intervening at random but following PTS in-
stead. Adults’ mean PTS score (M = .67, 95% CI [.61, .73]) was above chance as well, t(28) = 3.95,
p < .001, Cohen’s d = 0.73. This was a byproduct of the fact that the mean of PTS score of infor-
mative interventions (EIG = 1) was 2/3 and most adults chose informative interventions.
How can we formally characterize each participant’s intervention strategy? To answer this ques-

tion, I looked at each participant’s weight of EIG θ (I provided a point estimate for each person
using the mean of MCMC samples from their posterior distribution of θ). Across all adults, the
mean of θ was .77 (95% CI [.65, .80]), suggesting that they used EIG more than half of the time,
t(28) = 4.74, p < .001, Cohen’s d = 0.80. Children’s mean θ was .23 (95% CI [.20, .36]), suggest-
ing that they used PTS more than half of the time, t(38) = −5.75, p < .001, Cohen’s d = 0.92.
A learner who exclusively uses EIG or PTS has a decision noise τ close to 0; a learner who rarely

chooses interventions with the highest EIG or PTS scores has a high decision noise. As we can see
in Figure 2.2c, a roughly equal number of children were exclusive EIG and PTS users whereas when
adults relied on one strategy, it was always EIG. In adults, τ decreased with θ, suggesting that those
using EIG more were better able to maximize the values of chosen interventions. For children, the
relationship between τ and θ was less clear. This may be because when adults strayed from EIG, it
was mostly due to their inability to maximize intervention values; when children did so, it was either
because they were unable to maximize intervention values or they purposefully used PTS.

Learn from interventions

Did participants learn from the outcomes of their own interventions? Adults did, but not children.
Following informative interventions whose EIG = 1, adults’ average accuracy was .92 (95% CI [.83,
1]), which was significantly higher than chance, t(28) = 9.80, p < .001, Cohen’s d = 1.85. Even
after choosing informative interventions, however, children’s average accuracy was at chance (M =
.45, 95% CI [.31, .59]), t(28) = −0.74, p = .46, Cohen’s d = 0.12. Individual data points in
Figure 2.3 suggest that only a handful of children were actually choosing answers at random. Many
children who chose incorrect structures did so consistently, indicating systematic misunderstandings
of the link between intervention outcomes and the underlying structures that generated them.

2.3 Discussion

On the group level, adults mainly used EIG to select interventions whereas 5- to 7-year-olds mostly
relied on PTS. On the individual level, most adults used EIG exclusively whereas most children
mixed the two strategies. Among 39 children, about five solely relied on PTS and EIG, respectively.
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Figure 2.3: The average accuracy of identifying the correct structures among two after informative interven-
tions in children (left) and adults (right) in Study 1. The dotted red line indicates the 1/2 chance level.

Even after informative interventions, fewer than half of the children performed above chance when
identifying the correct structures. Together, results in Study 1 suggest that 5- to 7-year-olds were nei-
ther able to select informative interventions nor learn from the outcomes of their own interventions.
Taken at face value, findings in Study 1 seem at odds with a myriad of studies showing children’s

competence in causal learning (see Gopnik53 for a review). Looking closer, the current study is dif-
ferent in several regards. To begin, children chose their own interventions in Study 1, as opposed
to observing outcomes of interventions chosen by others. Moreover, the learning task was more
challenging— instead of inferring the causal efficacy of one variable or the pairwise relationship
between two variables, children in the Light Bulb Game needed to infer the structure of causal sys-
tems that had three nodes (representing variables) and three edges (representing causal relations).
To our knowledge, only a handful of studies (McCormack et al. 83, Nussenbaum et al. 90) had these
components, including this dissertation. In such studies, children did not reliably outperform a ran-
dom selection model until 8 years of age83 or use EIG as their main strategy until around 12 years
of age90. Maximizing EIG is genuinely difficult for young learners, especially in complex causal sys-
tems. Causality in the real world is rarely simple. An example still fresh in the public memory is that
the chain of events leading up to the 2007 subprime mortgage crisis were so complex that they de-
ceived the best of the economists. Facilitating children’s intervention selection in complex causal
systems is crucial to helping them skillfully navigate and make sense of the real world as adults.
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Theories are good because they explain things, but ex-
plaining things turns out to be an awful lot like having
theories of them.

Alison Gopnik (1998)

Chapter 3

Prompting to Explain

In the all-time classic courtroom drama 12 Angry Men, a boy was heard yelling “I’m going to kill
you!” at his father right before the latter dropped dead. Among the 12 jurors, 11 initially had no
doubt that the boy was the culprit. “Why would a murderer shout out a thing like that so the whole
neighborhood could hear him?”, Juror # 8 asked, raising a reasonable doubt in fellow jurors. In this
case, explaining why someone did something helped the jury gauge the plausibility of the action.
Does explaining one’s own action help them realize potential inefficiency and act more optimally

in the future? In Study 1, 5- to 7-year-olds relied heavily on the suboptimal positive test strategy
(PTS) to select interventions. Furthermore, they were at chance when identifying causal structures
that led to the outcomes. Will asking learners to explain their intervention choices help them select
better interventions and infer more accurately from the outcomes? To address this question in Study
2, I will prompt adults and children to explain why they plan to carry out a particular intervention
and examine whether it impacts their intervention strategy and subsequent inferences.
The timing of the prompt is critical. When the explanandum is an observation (e.g., the ground

is wet), we can ask learners to explain what they see (“Why is the ground wet?” ), which may influ-
ence how they interpret the observation. The case of intervention selection is interesting: Asking for
explanations after a choice has been made (“Why did you turn on the green one?” ) cannot change
the intervention choice retrospectively, yet before an intervention, there is no explanandum (turn-
ing on the green light bulb). To solve this problem, I will inform learners ahead of time that they
will be asked to explain their intervention choices (“After deciding on which light bulb to use, don’t
turn it on yet — point to it and I’ll ask why you choose that one.” ). After they point to a choice, I will
prompt them again for an actual explanation, “Why do you want to turn on that one?”
If explaining does make a difference to learning, it may be attributed to act of explaining, or sim-

ply that the learners’ attention was directed to the chosen interventions. In the self-explaining liter-
ature, a common control task is asking learners to report something instead of explaining it 132,133. In
Study 2, we can ask the control group to report their intended interventions, once before they make
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a choice (“After deciding on which light bulb to use, don’t turn it on yet — point to it and I’ll ask
which one you want to turn on.” ) and again afterward (“Which light bulb do you want to turn on?” ).

3.1 Method

Participants

In Study 2, 59 5- to 7-year-old children (M = 81.86 months, SD = 9.31 , range: 61–101 months) and
30 adults (M = 20.30 years) participated in the Explanation condition. Another 58 5- to 7-year-olds
(M = 80.59 months, SD = 11.40 , range: 50–101 months) and 27 adults (M = 20.44 years) partici-
pated in the Report condition. Children were tested at local schools or a children’s museum and we
obtained informed consent form their legal guardians before the study. Adults were recruited and
tested at a public university, each giving consent before participating for 0.5 course credit.

Procedure

The procedure in Study 2 was similar to that in Study 1, except that participants were prompted
to explain or report their intervention choice in each puzzle. In both conditions, the experimenter
alerted the participants, “After deciding on which light to use, don’t turn it on yet. Point to it first!”
In the Explanation condition, the experimenter told participants, “I’ll ask you why you use that

one to help.”, whereas in the Report condition, they said, “I’ll ask you which you wanna use to help.”
After participants pointed to a light bulb, the experimenter asked them to either explain (“Why do
you choose that light bulb to find the answer?” ) or report (“Which light bulb do you choose to find
the answer?” ) their choice, depending on the condition. If participants changed their mind while
explaining or reporting, their final choice was used in subsequent modeling and data analysis. No
feedback on explanations or interventions was given during the study.

3.2 Results

Study 1 can be seen as the baseline of Study 2: The three conditions (Study 1: Baseline; Study 2: Ex-
planation and Report) in the two studies shared similar procedures and the same age groups, except
that participants in Study 1 solved puzzles on their own without being prompted to explain or re-
port their intervention choices. For clearer comparisons, I pooled results from both studies together.

Select interventions

Perhaps surprisingly, explaining had no impact on learners’ intervention strategies. Across all three
conditions (Baseline in Study 1; Explanation and Report in Study 2), adults consistently chose infor-
mative interventions but not children. Adults’ mean EIG scores were .95 (95% CI [.92, .98]) in the
Explanation condition and .94 (95% CI [.90, .98]) in the Report conditions, both far above chance,
t(29) = 37.88, p < .001, Cohen’s d = 6.92, and t(26) = 29.39, p < .001, Cohen’s d = 5.46.
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(a)Mean EIG scores across participants and puzzles.

(b)Mean PTS scores across participants and puzzles.

Figure 3.1: The mean EIG (upper) and PTS (lower) scores of interventions chosen by participants in Studies
1-2, averaged across all puzzles solved by all participants in each age group (children vs. adults) and condition
(Study 1: the Baseline condition; Study 2: the Explanation and the Report conditions). Each dotted red line
indicates the chance level of the respective score (EIG: 1/3; PTS: 0.55).
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Children’s mean EIG scores were .43 (95% CI [.35, .52]) and .38 (95% CI [.32, .45]) in the Explanation
and the Report conditions, respectively. The former score was above chance, t(58) = 2.52, p = .014,
Cohen’s d = 0.33, but not the latter, t(57) = 1.63, p = .11, Cohen’s d = 0.21. Within each age group
(children vs. adults), there were no differences in mean EIG scores between any conditions.
Modeling results suggested that adults mostly relied on EIG whereas children mainly used PTS.

Adults’ mean EIG weight θ was .86 (95% CI [.79, .93]) in the Explanation condition and .84 (95% CI
[.75, .93]) in the Report condition, both above .50 (equal reliance on EIG and PTS), t(29) = 10.97,
p < .001, Cohen’s d = 2.00, and t(28) = 7.41, p < .001, Cohen’s d = 1.38, respectively. Children’s
mean EIG weight θ was .28 (95% CI [.20, .36]) in the Explanation condition and .21 (95% CI [.16,
.27]) in the Report condition, both less than .50, t(58) = −5.42, p < .001, Cohen’s d = 0.71, and
t(57) = −9.79, p < .001, Cohen’s d = 1.29, respectively. Figure 3.2c shows that most children
combined EIG and PTS to select interventions but several used PTS (τ and θ both close to 0) or
EIG (τ close to 0 and θ close to 1) exclusively. When adults used a single strategy, it was always EIG.

Learn from interventions

In both the Explanation and the Report conditions in Study 2, adults and children identified the
correct structures after informative interventions most of the time. In Study 1, only adults were able
to do so. Adults’ mean accuracy was .97 (95% CI [.93, 1]) in the Explanation condition and .94 (95%
CI [.90, .99]) in the Report condition, both above the 1/2 chance, t(29) = 25.18, p < .001, Cohen’s
d = 4.60, and t(28) = 19.87, p < .001, Cohen’s d = 3.69, respectively. Children’s mean accuracy
was .80 (95% CI [.72, .89]) in the Explanation condition and .65 (95% CI [.55, .76]) in the Report
condition, also both above chance, t(58) = 2.86, p < .001, Cohen’s d = 0.99, and t(57) = 7.41,
p < .001, Cohen’s d = 0.40, respectively. Between the two conditions in Study 2, children’s mean
accuracy in the Explanation condition was significantly higher than that in the Report condition,
t(102) = 2.15, p = .034, Cohen’s d = 0.42. Compared to those in the Baseline condition (mean
accuracy: 44%), children in both the Explanation and the Report conditions were better able to
learn from intervention outcomes, t(96) = 3.23, p = .0016, Cohen’s d = 1.01, and t(95) = 2.52,
p = .013, Cohen’s d = 0.52, respectively.

3.3 Discussion

The biggest surprise in Study 2 is that prompting adults and 5- to 7-year-old children to explain their
intervention choices did not change their intervention strategies: Across all conditions (Baseline
in Study 1; Explanation and Report in Study 2), adults mainly used EIG and children PTS. The
only notable difference between the two studies was that children in both the Explanation and the
Report conditions in Study 2 chose the correct structures more than half of the time, which was an
improvement from the chance-level accuracy in Study 1. Explainers improved more than those in
the control group who only reported their choices. A possible reason behind the improvement in
accuracy is that directing children’s attention to their intervention choices made themmore aware of
how the intervention outcomes related to the underlying causal structures that generated them.
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(a) Probability density distribution of the weight of EIG θ in children and adults.

(b) Probability density distribution of decision noise τ in children and adults.

(c)The weight of EIG θ as a function of decision noise τ .

Figure 3.2: Modeling results in Studies 1-2: The weight of EIG τ (a) and decision noise τ (b).
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Figure 3.3: The average accuracy of identifying the correct structures among two after informative interven-
tions in children (left) and adults (right) in Studies 1-2. The dotted red line indicates the 1/2 chance level.

The lack of self-explaining effects on intervention selection was somewhat surprising. Typically
in self-explaining studies, engaging in the act of explaining can already facilitate learning, even when
learners don’t obtain the correct explanations22,77,135. How does the current study differ from the
past? I argue that a major difference lies in the nature of the explanandum. In almost all past studies,
the explanandum is an observation, such as the category membership of an exemplar or the causal
efficacy of an object. Take the now classic work byWilliams and Lombrozo for instance 136: Even
when someone fails to explain that an alien is a Glorp because it has pointy feet, they are still attend-
ing to other visual features of the exemplar, such as its color or body shape. Incorrect explanations
still pertain to the categorization task and may therefore impact the categorization results. In the
Light Bulb Game, however, the explanandum is an intervention, which is harder to explain.
How should you explain why you plan to turn on a certain light bulb? First of all, you must rec-

ognize your own uncertainty, as opposed to assuming you already know the true structure before
you intervene (like some children did). Then, you must enumerate all possible interventions, sim-
ulate all possible outcomes following each intervention, and re-assess to what degree each outcome
can reduce your uncertainty. Most 5- to 7-year-olds’ explanations (e.g., I chose the red one because
red is my favorite color.) did not pertain to any of the steps involved in intervention selection.
I hypothesize that, in order for explaining to facilitate intervention, learners need to generate

explanations that target the intervention selection process in some way. For instance:

• Awareness of uncertainty: “Because X can help me be sure which picture is correct.”

• Outcome simulation: “If I turn on X, A happens in the left picture and B in the other.”

• Outcome comparison: “A and B are different outcomes.”
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• Uncertainty reassessment: “If A happens, I’m sure the left picture is correct; if B happens, on
the other hand, I’m sure the right one is correct.”

To test the above hypothesis, we can study older children who are presumably better explainers
to see if they also intervene better. It’s also more practical to test older children remotely* and get
intelligible explanations. However, age-related variables such as intelligence and formal education
may affect both how learners select interventions and how they explain intervention choices, mak-
ing it hard to claim a causal connection between the two. To make Study 3 more practical without
introducing the confounders, I will test 7- to 11-year-olds and manipulate their explanation quality
by training them on EIGmaximization and examine whether they rely more on EIG as a result.

*As I was designing Study 3, the COVID pandemic broke out and in-person testing was moved to Zoom.
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It is the usual fate of mankind to get things done in some
boggling way first, and find out afterward how they
could have been done much more easily and perfectly.

Charles S. Pierces (1882)

Chapter 4

Training to Explain

In Study 2, asking children to explain their intervention choices didn’t impact their intervention
strategies: They still mostly relied on PTS rather than the optimal strategy, EIG maximization. As
discussed at the end of Chapter 3, it could be that interventions are so hard to explain that merely en-
gaging in explaining does not impact intervention selection. To provide children with more effective
scaffolding, in Study 3, I will train them to explain interventions using the difference-making prin-
ciple (e.g., “I choose the [color] light bulb because it turns on different light bulbs in each picture.” ),
which is at the core of EIG maximization, and examine whether they choose more informative inter-
ventions later on. During training, children are asked to explain whether or not each intervention
choice is useful, “Can the [color] light bulb help you find the answer? Why (not)?”. If a child’s ex-
planation doesn’t follow the difference-making principle, the experimenter will directly teach this
principle to them (see Procedure for more details). To measure potential training effects, I will test
another group of children in the Explanation condition (identical to that in Study 2), where they are
prompted to explain their intervention choices without being trained to do so.
If EIG training does make a difference, it could be because children were asked to explicitly ex-

plain whether each intervention was usefulness, or that training forced them to pay attention to all
the possible interventions, not just the ones they selected. It’s an interesting empirical question as to
whether explicit explanations of usefulness are necessary to influence explanations and interventions,
or if attending to all intervention choices suffices. To answer this question, I will ask another group
of learners to describe what each intervention does in each picture, “Can you tell me what the [color]
light bulb does in the left/right picture?”, without explaining whether it makes the said intervention
helpful. When designing Study 3, preliminary results showed that only 9- to 11-year-olds benefited
significantly from EIG training. As a result, I only tested this age group in the Control condition*.

*After analyzing Study 3 data, however, I found that 7- to 8-year-olds also benefited from training, albeit
to a lesser degree than the older children. In a follow-up study, I will test the younger children in the Control
condition. The new condition was not proposed as part of the dissertation and will be published afterward.
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4.1 Method

Participants

In Study 3, 61 7- to 11-year-olds (M = 106.60 months, SD = 13.39 , range: 85–131 months) par-
ticipated in the Explanation condition and another 57 (M = 106.58 months, SD = 15.53, range:
84–140 months) in the Training condition. I used the median age of the 118 children (108 months)
to split each condition into two age groups, resulting in 31 7- to 8-year-olds (M = 95.28 months,
SD = 6.96, range: 85–107 months) and 30 9- to 11-year-olds (M = 118.30 months, SD = 6.49,
range: 108–131 months) in the Explanation condition and 27 7- to 8-year-olds (M = 93.18 months,
SD = 8.07, range: 84–107 months) and 30 9- to 11-year-olds (M = 118.63 months, SD = 9.51, range:
108–140 months) in the Training condition. Another 24 9- to 11-year-olds (M = 120.62 months,
SD = 7.48, range: 109–140 months) were tested in the Control condition. Before each child partici-
pated over Zoom, we obtained informed consent from their legal guardians via Qualtrics.

Procedure

The Explanation condition in Study 3 was identical to that in Study 2. All but the first trial in the
Training and the Control conditions in Study 3 were the same as that in the Explanation condition.
In the Training condition, whichever puzzle that appeared first (e.g., Figure 4.1) was used to train

participants on EIG maximization. The experimenter randomly picked a light bulb and asked, “If
we turn on the [color] light bulb, can it help our friend Alex find out the answer?” If participants
answered correctly, the experimenter moved on to the next light bulb and asked the same question.
If participants gave incorrect responses, the experimenter asked them to describe what the said light
bulb does in each structure, “Let’s think again. If the left picture was the answer, what would the
[color] light bulb do? If the right picture was the answer, what would it do?” After participants an-
swered, the experimenter asked again, “So, can this light bulb help Alex find out which of the two
pictures is the answer?” If participants answered correctly, the experimenter moved on to the next
light bulb. If not, the experimenter taught participants the difference-making principle,

• If the choice was in fact uninformative: “Um, I think the [color] one doesn’t help, because it
turns on the same light bulbs in both pictures. When you see [outcome], both small pictures
might be correct, so you cannot tell which one matches the big picture.”

• Or if it was actually informative, “Um, I think it helps — if A happens, you know the first
picture is correct; if B happens instead, you know the second picture is correct.”

After participants correctly analyzed the usefulness of each intervention choice, the experimenter
told them to choose one intervention to solve the puzzle. If the chosen light bulb was uninfor-
mative, participants were asked to re-describe what it does in each picture, “Um, let’s think again.
What does the [color] light bulb do in the left picture? What does it do in the right picture?”, and
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Figure 4.1: In the Training condition, the first puzzle was used for EIG training: Participants were asked to
explain whether or not each light bulb could solve the puzzle. In the Control condition, participants were
asked to report what each light bulb does in the two structures, without explaining its informativeness.

re-think its usefulness, “So if [outcome] happens, can you tell if the left or the right picture is the an-
swer?” If participants didn’t answer correctly, the experimenter provided them with EIG-based rea-
soning again, “I don’t think it helps because both pictures could be correct when [outcome] happens!”,
or, “I think it’s useful, because if A happens, we know it’s the left picture, but if B happens, we know
it’s the right one!” After choosing and turning on an informative light bulb, participants were asked
to identify the correct structure, for which they received feedback, “That’s (not) the right answer!”.
The Control condition was similar to the Training condition. Instead of explaining whether

each light bulb could help solve the puzzle, participants were asked to describe its effects in both
structures, “If we turn on the [color] light bulb, what does it do in the two pictures?” If participants
described correctly, the experimenter moved on to the next light bulb. If participants were incorrect,
the experimenter asked them to describe again, “Let’s think again. In the left picture, what does the
[color] light bulb do? In the right picture, what does it do?” The remaining procedure was again
similar to that in the Training condition, except when participants chose an uninformative light
bulb, the experimenter simply asked them to pick a different one until correct, “Let me check my
notes. Actually, the [color] light bulb cannot help. Which other light bulb do you wanna use?”

26



explanation type example

EIG “green only turns on red in one of two pictures”
PTS “yellow turns on all three no matter what”
describe one re-describe one of the pictures
describe both re-describe both pictures
goal only “because it helps me find the answer”
prior belief “because the picture on the right is the answer”
guess “I don’t know; just feel like it”
other “because I like the color red”
no explanation child didn’t explain or experimenter didn’t ask

Table 4.1: Nine types of explanations generated by children in Study 3 and a typical example of each type.

4.2 Results

Explanations types

I coded the explanations generated by children into 9 types (Table 4.1). Explanations were coded
as EIG if they mentioned an intervention was useful because it could lead to different outcomes in
different structures or that it was unhelpful because it would make the same thing happen in both
structures. Explanations were coded as PTS when they either mentioned an intervention could po-
tentially activate all light bulbs, or that it would activate the same light bulbs in both structures. If a
child described what all three light bulbs would do in one or both pictures, such explanations were
coded as “describe one” or “describe both”. Sometimes children only said they chose an intervention
because it would help them solve the puzzle, without explaining how it could do that. Such expla-
nations were coded as “goal only”. If a child said they didn’t know why they chose an intervention,
their explanation was coded as “guess”. In some cases, children provided irrelevant explanations or
didn’t explain— the former was coded as “other” and the latter “no explanation”.
In the Explanation condition (Figure 4.2a), untrained 9- to 11-year-olds already showed a greater

tendency to explain interventions in terms of EIG than 7- to 8-year-olds. Among 7- to 8-year-olds,
PTS was the most popular type of explanation, occurring 34.78% of the time, and EIG was the sec-
ond most popular type, occurring 21.20% of the time. Among 9- to 11-year-olds, EIG was the most
popular type, occurring 54.54% of the time, followed by PTS, which occurred 21.20% of the time.
Did EIG training lead children to generate more EIG-based explanations? It did. In the Training

condition, on the first trial which was used for EIG training (Figure 4.2b), 7- to 8-year-olds gener-
ated EIG-based explanations 51.85% of the time, which was about 30%more frequently than those
in the Explanation condition; 9- to 11-year-olds generated EIG-based explanations 70% of the time,
which was an 15% increase from the Explanation condition. For 9- to 11-year-olds, those in the Con-
trol condition generated EIG-base explanations just as frequently (54.54%) as those in the Explana-
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(a)The percentage of each explanation type in the Explanation condition.

(b)The percentage of each explanation type in the Training and the Control conditions (only the first trials).

(c)The percentage of each type of explanation in the Training and the Control conditions (remaining 5 trials).

Figure 4.2: The percentage of each type of explanation by 7- to 8-year-olds (left) and 9- to 11-year-olds (right).
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tion condition. In the Training condition, the training effect on the explanation type lasted longer
in older children than the younger ones. During the remaining 5 trials, 7- to 8-year-olds generated
EIG-based explanations 33.07% of the time, whereas 9- to 11-year-olds did so 82.42% of the time (Fig-
ure 4.2c). In the Control condition, 9- to 11-year-olds provided EIG-based explanations 68.59% of
the time in remaining trials, which was in between the Training and the Explanation conditions.

Select interventions

(a)The mean EIG score of each explanation type in the Explanation condition.

(b)The mean EIG score of each explanation type in the Training and the Control conditions.

Figure 4.3: The mean EIG score of each explanation type in Study 3.

A learner may know that, in principle, they should intervene on a light bulb that leads to distinct
outcomes in different structures, yet in reality, cannot find which one it is. To see if interventions
participants chose matched explanations that they gave earlier, I plotted the mean EIG scores for the
five most common types of explanations. In both age groups and all conditions (Figure 4.3), chil-
dren who provided EIG-based explanations almost always chose informative interventions; those
who gave PTS-based explanations rarely did. Patterns of other types were less clear. Notably, 7- to
8-year-olds who provided “goal only” explanations chose informative interventions most of the time,
suggesting they might think of EIG as the reason why the chosen intervention could help.
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Overall, did training improve intervention selection? It did, especially for 9- to 11-year-olds in
the Training condition. Seven- to 8-year-olds’ mean EIG score in the Training condition was .52
(95% CI [.39, .66]), which was significantly higher than their mean EIG score in the Explanation
condition (M = .42, 95% CI [.29, .55]), t(54.99) = 2.13, p = .038, Cohen’s d = 0.56. Nine- to
11-year-olds’ mean EIG score in the Training condition was .84 (95% CI [.73, .95]), which was also
significantly higher than their mean EIG score in the Explanation condition (M = .64, 95% CI [.50,
.77]), t(54.99) = 2.90, p = .005, Cohen’s d = 0.75. However, older children’s mean EIG score
in the Control condition (M = .75, 95% CI [.59, .91]) was not significantly higher than that in the
Explanation condition, t(50.93) = 1.50, p = .14, Cohen’s d = 0.41. The mean EIG weight θ of
7- to 8-year-olds was .26 (95% CI [.13, .39]) in the Explanation condition and .35 (95% CI [.20, .50])
in the Training condition; the increase in the Training condition was not statistically significant,
t(46.66) = 0.93, p = .36, Cohen’s d = 0.26. Nine- to 11-year-olds’ mean EIG weight θ was .72 (95%
CI [.59, .85]) in the Training condition, which was significantly higher than that in the Explanation
condition (M = .45, 95% CI [.30, .60]), t(56.14) = 2.76, p = .008, Cohen’s d = 0.72. Notably,
the performance of 9- to 11-year-olds in the Training condition was on a par with adults in Study
1’s Baseline condition (mean EIG score = .86; mean EIG weight θ = .77). Again, in the Control
condition, 9- to 11-year-olds mean EIG weight θ (M = .63, 95% CI [.46, .80]) did not statistically
differ from that in the Explanation condition, t(49.17) = 1.63, p = .11, Cohen’s d = 0.45.

θ increased with age in the Explanation and the Training conditions (Figure 4.6). Across all ages,
children in the Training condition tended to have higher θ than those in the Explanation condition†.

Learn from interventions

Across conditions and age groups, children were able to identify correct structures after informative
interventions most of the time. Seven to 9-year-olds’ mean accuracy was .90 (95% CI [.78, 1]) in the
Explanation condition and .87 (95% CI [.74, .99]) in the Training condition, both above the 1/2
chance, t(25) = 7.15, p < .001, Cohen’s d = 1.40, and t(21) = 6.00, p < .001, Cohen’s d =
1.28, respectively. Nine- to 11-year-olds’ mean accuracy was .94 (95% CI [.88, 1]) in the Explanation
condition, .96 (95% CI [.91, 1]) in the Training condition, and . 98 (95% CI [.93, 1]) in the Control
condition, all above chance as well, t(27) = 13.94, p < .001, Cohen’s d = 2.63, t(28) = 17.46,
p < .001, Cohen’s d = 3.24, and t(21) = 21.00, p < .001, Cohen’s d = 4.47, respectively.

4.3 Discussion

In Study 3, briefly training 7- to 11-year-olds on EIGmaximization for a single trial led them to gen-
erate a higher percentage of EIG-based explanations for their intervention choices as well as relying
more on EIG to select interventions. The training effect was more pronounced in 9- to 11-year-olds
than it was in 7- to 8-year-olds. Regardless of the age group and the condition, children were able to
identify the correct structures from the outcomes of their own interventions.

†In the Control condition, θ decrease with age, which may well change with data from 7- to 8-year-olds.
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(a)Mean EIG scores across participants and puzzles.

(b)Mean PTS scores across participants and puzzles.

Figure 4.4: The mean EIG (a) and PTS (b) scores of interventions chosen by participants in Study 3, averaged
across all non-training puzzles solved by participants in each age group (7- to 8-year-olds vs. 9- to 11-year-olds)
and condition. Each dotted red line indicates the chance level of the respective score (EIG: 1/3; PTS: 0.55).
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(a)The probability density distribution of the weight of EIG θ in 7- to 8-year-olds and 9- to 11-year-olds.

(b)The probability density distribution of decision noise τ in 7- to 8-year-olds and 9- to 11-year-olds.

(c)The weight of EIG θ as a function of decision noise τ .

Figure 4.5: Modeling results in Study 3: The weight of EIG τ (upper) and decision noise τ (lower).
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Figure 4.6: Weight of EIG θ as a function of children’s age and the condition (Explaining vs. Training).

How did EIG training impact children’s intervention selection? One possibility is that, the train-
ing effect comes from children explaining the usefulness of each intervention choice. Another is that
training forced children to pay attention to all intervention choices before settling on one, whereas
in the Explanation condition, they were not required to think it through (e.g., a child may say “I
want to turn on the yellow one” without considering other light bulbs). The former seemed more
likely given the results in Study 3: In the Control condition where children were only asked to de-
scribe what each light bulb does in each picture, their intervention strategies did not differ signifi-
cantly from that in the Explanation condition— it was only in the Training condition where chil-
dren explicitly explained the usefulness of each choice that we found significant improvements.
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Figure 4.7: The average accuracy of identifying the correct structures after informative interventions in 7- to
8-year-olds (left) and 9- to 11-year-olds (right) in Study 3. The dotted red line indicates the 1/2 chance level.
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Instead of trying to produce a programme to simulate the
adult mind, why not rather try to produce one which
simulates the child’s? If this were then subjected to an
appropriate course of education, one would obtain the
adult brain.

Alan Turing (1950)

Chapter 5

Conclusion

Inmerely 10 years, machines went from barely able to recognize objects 34,64 to competently play-
ing video games, holding conversations, captioning images, and controlling robot arms using a
unified model trained on a wide range of data 104. Are large neural nets the end-all and be-all of in-
telligence? Anyone who has observed a child would say no: Parents don’t raise a child by following
them around and feeding them billions of examples; rather, the child actively inquires about the
world through experimentation, questioning, and exploration (learning by experimentation) and
thinks about existing data to draw generalizable conclusions (learning by thinking). In this disser-
tation, I explored the boundaries of learning by thinking and discovered a new way to facilitate ex-
perimentation: Briefly training 7- to 11-year-olds to understand good experiments lead to different
outcomes under different hypotheses helped them design informative experiments on their own.
To illustrate key ideas and findings from this dissertation, I invite you to an ordinary evening.

5.1 Summary— Fiat Lux
I was writing this dissertation when the lights in my room went out. I stood up to check my neigh-
bors’ windows. Their lights were on. I went to open my fuse box, saw the bedroom trip switch was
in the “off” position, and pushed it “on”. The lights turned on and I went back to writing.
In a split second, I observed a sudden change in my room, generated multiple hypotheses (Was

there a PG&E outage? Did the circuit breaker trip? Did all light bulbs burn out?), and assessed their
prior probabilities (the first two seemed likely but it would be wicked if all light bulbs burned out
at once). After that, I performed an informative intervention (checking my neighbors’ lights) and
learned from the outcome (had there been an outage, my neighbors would be in the dark, too—
instead, something likely happened to me alone). The newly gained causal knowledge served my
immediate and long-term goals: Getting the lights back on and getting my dissertation done.
This “superpower” is anything but unique to me— using interventions to shed light on causal
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structures is a hallmark of human intelligence66,96. Finding good interventions isn’t always easy. As
a child, my knee jerk reaction was often to turn the light switches off and back on. Since this action
results in the same effect (or lack thereof) under hypotheses listed above, it leaves me “in the dark”.
If I traveled back in time and asked my 7-year-old self, “Hey, why do you wanna fiddle with the

light switches?”, would they realize the original plan was silly and do what I’d do now? Unfortu-
nately, the little me just shrugged, “No idea. Just felt like it.”, and repeated the same mistake. Want-
ing to help more, I invited the 7-year-old to think through plausible causes (outage, tripped breaker,
burnout), enumerate potential interventions (checking on neighbors, looking into the fuse box,
or changing bulbs), and imagine howmuch each intervention could narrow down the hypothesis
space. The child now realized, whatever they do, it should make a difference in different cases.
In three studies reported in this dissertation, I have investigated the questions illustrated above:

Without any help, can causal learners choose informative interventions and learn from intervention
outcomes (Study 1 in Chapter 2)? Does prompting learners to explain their intervention choices
help them choose better interventions (Study 2 in Chapter 3)? Does training learners to discriminate
between hypotheses help them both better explain and select interventions (Study 3 in Chapter 4)?
In Study 1, I tested adults and 5- to 7-year-olds in the Light Bulb Game, where they intervened on

one light bulb to identify the true structure of three light bulbs from two hypotheses. Each partic-
ipant solved 6 puzzles. Based on their choices, I used a Bayesian model to capture how much each
person relied on the optimal strategy, which is maximizing the chosen intervention’s expected in-
formation gain (EIG), and the suboptimal positive test strategy (PTS). Adults mainly used EIG to
select interventions and learned from outcomes of their own interventions. By contrast, children
mainly used PTS and couldn’t identify the correct structure even after an informative intervention.
In Study 2, I took a common approach in the self-explaining literature (a subdomain of learning

by thinking), asking adults and 5- to 7-year-olds to explainwhy they chose certain interventions (the
Explanation condition: “Before you turn on a light bulb, point to it and I’ll ask you why you wanna
use it to help.” “Can you tell you why you use the yellow light bulb to help?” ) to see if they might in-
tervene differently. In the Report condition, additional groups of adults and children were asked to
report their choices (“Before you turn on a light bulb, point to it and I’ll ask you which one wanna
use to help.” “Can you tell you which light bulb you wanna use to help?” ). Explaining didn’t change
learners’ intervention strategies: In both the Explanation and the Report conditions, adults mainly
used EIG and children PTS. However, children in Study 2 chose the correct structures after infor-
mative interventions most of the time, suggesting that attending to (explaining or reporting) one’s
intervention choices might help them connect intervention outcomes to underlying hypotheses.
In Study 3, I trained 7- to 11-year-olds on EIGmaximization: In the first puzzle used as a training

example, children were asked to explain whether or not each of the three light bulbs was useful. If
they didn’t provide EIG-based explanations themselves, the experimenter taught children the cor-
rect explanation (“I think [color] light bulb was useful: If A happens, we know it’s the left picture;
if B happens, we know it’s the right picture” “I think [color] light bulb was not useful: In both pic-
tures, C would happen, so we can’t tell which picture is correct!” ). Besides the Training condition, I
tested another two groups of children. One group participated in the Explanation identical to that
in Study. The other group participated in the Control condition: Instead of explaining whether
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each intervention was useful, they simply reported what it would do under the first and the second
hypotheses, respectively. I used a median split to divide children into two age groups: 7- to 8-year-
olds and 9- to 11-year-olds. Compared to their counterparts in the Explanation, both the younger
and the older children generated a higher percentage of EIG-based explanations in puzzles they later
solved on their own and relied more heavily on EIG to chose interventions; the effects were stronger
in the older children compared to the younger children. Children in the Control condition saw
some improvements but were not significantly different from those in the Explanation condition.
In summary, explaining alone doesn’t lead to better interventions, but training one to explain

might, especially older children who already use the optimal strategy more than the younger ones.

5.2 Contributions

This dissertation advances the field of learning by thinking by discovering the limit of merely ex-
plaining and learning by experimentation by finding a new way to facilitate intervention selection.

5.2.1 Boundary condition of self-explaining

In scientific education21,22,23,43, human learning77,135, and more recently, machine learning67, self-
explaining is wielded as a simple yet power tool to support learning and generalization, in a variety
of ways across a variety of domains. For instance, compared to those not asked to explain, explain-
ers prefer simple causal hypotheses that have the same scope as more complex ones 129, discover
broad rules that categorize all exemplars rather than obvious yet inconclusive rules 136, and privilege
abstract, generalizable knowledge over the concrete or the superficial 131,132, etc.. Even more conve-
niently, explanations don’t have to be correct for explainers to benefit from explaining21,22,23,43,77,135.
However, self-explaining is not a panacea for all learning obstacles. In Study 2, I found that 5- to

7-year-olds who were merely asked to explain their intervention choices (“Why do you wanna use the
yellow light bulb to help?” ) used similar strategies as those who tackled the same problems without
explaining. I hypothesized that in order for explaining to facilitate learning, it needs to tap into the
learning process. When learning category memberships of exemplars, incorrect explanations may
refer to incorrect features (e.g., color but not shape, if shape is the correct rule), but attending to in-
correct features nevertheless invokes the categorization process. When learning the causal efficacy of
an object (e.g., whether it makes a machine play music), incorrect explanations may interpret con-
tingencies between events incorrectly (e.g., forgetting the object never made the machine go in the
absence of another one), but thinking about contingencies between events is still relevant to causal
inference. By contrast, when explaining intervention choices, most 5- to 7-year-olds didn’t shed light
on the intervention selection process (i.e., being aware of own uncertainty, enumerating hypotheses
and interventions, reassessing uncertainty after an intervention and all potential outcomes, etc.) at
all, citing irrelevant reasons instead (e.g., “I like the red light bulb”, “I just wanna try this” ).
When task-relevant explanations are difficult to obtain, self-explaining may have limited impact

on learning— training learners to explain in the right way may help them benefit more from ex-
plaining. In Study 3, I tested children aged between 7 and 11 and trained them to explain whether
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each intervention was useful based on the difference-making principle. The brief single-trial training
led them to generate more EIG-based explanations and rely more on EIG in later interventions. If
explaining is already a powerful tool in simple cases, sharpening it gives it more might in hard ones.

5.2.2 New way to facilitate intervention

At 4 years of age, children can already learn causal structures by observing someone else’s interven-
tions 113,119. However, even much older children have limited capacities to choose and learn from
self-generated interventions. In a minimal causal system with only two nodes (one or both broken),
Lapidow andWalker69 demonstrated that 4- to 6-year-olds selected informative interventions (i.e.,
testing the node that may not be broken) and identified the correct hypothesis. However, this mini-
mal system grossly simplified real-world causal learning problems. To begin, the connection between
the two nodes was a given, only that a broken node cannot influence its neighbor through this con-
nection. As a result, structural learning wasn’t required. Moreover, since two nodes only form one
edge, this problem doesn’t shed light on whether child learners laboriously test one edge a time or
consider the global structure of the causal system as a whole when testing hypotheses.
When the causal system is slightly more complex (three or more nodes), children often fail to

choose informative interventions. McCormack et al. 83 found that 5- to 7-year-olds didn’t consis-
tently outperformmodels that selected interventions at random. Granted, 7- to 8-year-olds per-
formed better than chance, but the chance model didn’t capture howmuch each child used EIG
and PTS. In Nussenbaum et al.’s study that employed the EIG and PTS hybrid model90, it wasn’t
until 12 years of age that children started to use EIG as their primary strategy. My findings are con-
sistent with the previous study: Five- to 11-year-olds heavily relied on PTS without being trained to
maximize EIG (5-year-olds in Studies 1–2; 7- to 11-year-olds in the Explanation condition in Study 3).
Given children’s difficulty choosing interventions, it’s worth noting that after brief EIG training,

9- to 11-year-olds relied on EIG nearly as much as adults did (children’s EIG weight θ was .77 in the
Training condition in Study 3; adults’ was .77 in the Baseline condition in Study 1). Another key
lesson from this dissertation is this: To facilitate intervention selection, we can teach children the ab-
stract principle of good interventions, i.e., they lead to different outcomes under different hypothe-
ses. This process may only take 2 minutes but can profoundly shape children’s intervention strategy
(9- to 11-year-olds’ θ went from .45 in the Explanation condition to .72 in the Training condition).

5.3 Limitations

Several limitations in this dissertation can be immediately addressed in future studies. To begin,
after intervening on uninformative light bulbs, some children said “I don’t know which picture is
correct. Maybe both?”. Those who didn’t say so explicitly might have also felt uncertain. In future
studies, we can ask learners to rate their confidence of the chosen structure based on the intervention
outcome. A growing body of studies 32,68,116,121 showed that children’s confidence or uncertainty
judgments were tightly related to their exploratory behavior. In the case of causal intervention, those
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Figure 5.1: A pedal board with delay, reverb, overdrive, and wah pedals connected in an unknown way.

who judge their confidence appropriately may improve more with practice than those who have low
confidence after informative interventions or high confidence after uninformative ones.
Another important limitation in this work is the lack of a baseline in Study 3. EIG training in-

creased children’s EIG reliance, but it’s possible that being prompted to explain can already help 7-
to 11-year-olds choose better interventions. Granted, adults didn’t intervene differently as a result
of self-explaining, but their dominant strategy was already EIG in the Baseline condition, leaving
little room for improvement. To examine this question more rigorously, we can test 7- to 11-year-
olds in the Baseline condition where they choose interventions spontaneously as well as in the Re-
port condition where they report their choice before intervening on it. If those in the Explanation
condition rely more on EIG compared to the Baseline and the Report conditions, it suggests that
self-explaining alone can already help older children choose better interventions to some degree.

5.4 Future Directions

This work opens up exiting new directions in learning by experimentation and learning by thinking.

5.4.1 Why did learners use PTS when it’s a suboptimal strategy?

The foremost is, why did learners sometimes use PTS that’s less optimal than EIG?Why would one
turn on a light bulb that activates everything in both pictures? There are many potential reasons.
First of all, PTS users may be “resource-rational”55,73 learners who strike a balance between the

quality of intervention (e.g., measured by EIG) and the computational cost (e.g., measured by the
number of “expensive” computations that take all structures into account). PTS is less computa-
tionally expensive than EIG, especially as the number of nodes grow. In the four-node causal system
introduced in Chapter 1 (Figure 5.1), there are 3(

4
2) = 729 different ways the nodes could be con-

nected. To identify the correct structure among the 729 possibilities, an EIG user has to consider
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what each of the four pedals does in each of the 729 structures. A PTS user only has to carry out this
expensive computation once, i.e., when finding the node that affects the maximum proportion of
links across 729 structures. PTS only takes one more intervention than EIG: The delay pedal that
has the highest PTS score doesn’t reduce any uncertainty, but the reverb pedal that has the second
highest PTS score is informative. In future work, we can manipulate each strategy’s computational
cost relative to the intervention quality to see whether learners can adapt their strategies.
Another possible reason for using PTS is that learners mistakenly think of uninformative inter-

ventions as informative. For instance, if a learner thinks the delay pedal only turns on all four in
the rightmost structure, they may believe turning it on might rule out the first two. Coenen and
Gureckis27 found indirect evidence supporting this idea. In their study, if learners chose an unin-
formative intervention, they shouldn’t be able to tell which of two hypotheses equally was correct,
yet some showed a strong bias for one over the other. The stronger the bias, the less learners relied
on EIG. To test it directly, we can present learners with uninformative interventions and ask them
to identify the correct structures. An unbiased learner should be uncertain as to which structure is
correct whereas a biased one may endorse one structure despite inconclusive evidence. We can then
test them in an intervention selection task (akin to the Light Bulb Game) and examine whether a
learner’s bias correlates with their mean EIG score and weight of EIG θ later on.
Recently, Lapidow andWalker70 argued that discriminating between structures isn’t the only

goal learners have— if their goal is to test causal stability, then PTS is the appropriate strategy. For
instance, after getting a new key, we often try it on the door a few times, just to make sure it works
reliably. On the surface, this behavior seems redundant since we don’t gain new information about
how the key and the door are causally linked (i.e., it’s the key that opens the door, not the other way
around), but we still wish to ensure this important connection is stable, so we don’t lock ourselves
out. In the Light Bulb Game, this reason doesn’t apply because causal relationships are determinis-
tic: If light bulb A has an arrow pointing to B, then A can definitely turn on B. In future studies, we
can use probabilistic causal relationships and examine whether learners lean more towards PTS.

5.4.2 What does PTS truly entail?

Taking a step back, what goes on in a learner’s mind when they use PTS? Formal definitions and
learners’ explanations can both vary. In most puzzles, different PTS definitions point to the same
intervention. In Figure 5.2, different definitions may favor different intervention choices.
In all studies27,29,85,86,90 that explicitly modeled PTS, a given intervention’s PTS score is defined

as the maximum proportion (maxProp) of links it can affect across all structures. This choice is
somewhat arbitrary: An intervention’s PTS score can also be defined as the the maximum number
(maxNum) of links it can affect, the mean proportion of links (meanProp), or the mean number of
links (meanNum). As shown in Table 5.1, definitions based on the maximum favor the yellow light
bulb that could potentially turn on all light bulbs. By contrast, definitions based on the mean assign
the highest PTS score to the green light bulb, which always turn on another light bulb. Interestingly,
PTS explanations children generated seemed to fall under the two types of PTS. Some said they
wanted to turn on the yellow light bulb because “it may turn on all three of them” while some chose
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Figure 5.2: An example puzzle where different definitions of PTS may favor different interventions.

light bulb EIG PTS (maxProp) PTS (maxNum) PTS (meanProp) PTS (meanNum)

yellow 1 1 2 0.5 1
green 0 1 1 0.75 1
red 0 0 0 0 0

Table 5.1: In the example puzzle, four definitions of PTS score interventions slightly differently.

the green one because “it always turns on the red”. In future studies, we can create more puzzles
where PTS scores differ by definition and use a Bayesian latent mixture model to capture what type
of PTS a learner may be using as well as how much they rely on EIG vs. the particular type of PTS.

5.4.3 How else can we facilitate intervention selection?

While effective, training children on EIGmaximization is likely not the only way to help them
choose better interventions. I propose three ideas below for future researchers to pursue.
First of all, causal intervention involves extensive counterfactual reasoning (“What if I turn on

light A?” “What happens if structure X is true?” ) — engaging learners in counterfactual reasoning
may facilitate their intervention selection. In a recent study, Nyhout et al. 91 asked to children to fig-
ure out how far a ball would roll down from a ramp with adjustable height and angle. An optimal
learner should use the control-of-variables (CV) strategy here, i.e., fixing one variable (e.g., height)
while varying the other (angle) to see how it impacts a ball’s rolling distance. Seven- to 10-year-olds
who received counterfactual scaffolding (i.e., watching a ball rolling down from a ramp and imag-
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ing what would happen if the ramp was set higher/lower) were more likely to use the CV strategy
than those in the control condition (watching it again). To introduce counterfactual training to in-
tervention selection, we can modify the Training condition in Study 3: Rather than letting children
turn on the chosen light bulb in the training trial, we can ask them to imagine the outcome under
each hypothesis, “Shoot, these light bulbs ran out of batteries today! It’s alright — let’s just imagine
that you turned on the [color] light bulb. What would happen if the left picture is the answer? What
would happen if the right one is the answer?”. After the child answers correctly, we can tell them
an imaginary outcome and ask them to choose the correct structure accordingly (“Okay, let’s say
[outcome] happened. What picture is the answer?” ). It’s possible that children benefit more from
counterfactual training than if they actually carry out the intervention and observe its outcome.
Another potential way to facilitate intervention selection is asking children to evaluate another

person’s intervention choice before they choose and learn from their own interventions. Generating
informative interventions is computationally expensive whereas judging interventions already cho-
sen is much easier but still invokes the difference-making principle. Seeing someone else activate a
light bulb that leads to the same outcome no matter what, do children think it can help identify the
correct structure? Forced to choose between an informative and an uninformative intervention, will
children go for the former?... After learners have evaluated interventions from a third-person per-
spective, we can test them in the Light Bulb Game and examine whether engaging in intervention
evaluation shapes intervention selection and whether evaluation and selection are correlated.
Last but not least, we can capitalize on learners’ mistakes to facilitate learning. After turning on

wrong light bulbs, some children expressed regret (“Oh no, I should’ve turned on another one!” ) or
confusion (“Huh, how can I know which one is correct?” ). In the infant literature, when an observed
outcome violates the baby’s expectation, they look longer2,6, explore accordingly 121, and seek expla-
nations for the unexpected phenomenon98. In adult studies, prediction errors between actual and
expected outcomes also predict learning54,82. In the future, we can seize the moment and ask causal
learners to explain an intervention they realize to be incorrect, “Why don’t you think this light bulb
can help you find the answer?”. After that, we can give them an opportunity to correct the mistake,
“If I allow you to turn on another light bulb, which one would you choose? Why?” We can check to
see whether learners who are asked to reflect on an uninformative intervention intervene better in
later trials, compared to those who are aware of their mistake but never questioned about it.

5.5 Concluding Remarks

- Judge: “Am I never to hear to hear the truth?”
- Barrister: “No, my lord, merely the evidence.”
—Peter Murphy (1980)

To summarize findings in this dissertation, even in three-node causal systems with only two pos-
sible structures, choosing interventions that maximize the expected information gain (EIG) still
poses genuine challenges to a wide age range of children, from 5 to 11 years olds. Most children use
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the suboptimal positive test strategy (PTS) instead of EIG (all conditions in Studies 1-3 except for the
Training condition in Study 3) to select interventions. Simply asking children to explain why they
choose certain interventions is insufficient to change the strategies they use, even though it improves
5- to 7-year-olds’ accuracy at inferring the correct causal structures from the intervention outcomes
(Study 2). As a more effective way to facilitate intervention selection, briefly training children on the
difference-making principle behind informative interventions (that they lead to distinct outcomes
under different structures) helps them select better interventions later on their own. The training
effect is stronger in 9- to 11-year-olds than it was in 7- to 8-year-olds. The bottom line is that thinking
alone doesn’t lead to better experimentation, but training the prepared mind to think might.
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