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Abstract 
Human groups exhibit poor performance in many social 
situations because task constraints promote either individual 
maximization behavior or diffusion of responsibility.  We 
introduce a group task that tests human coordination when 
only a shared group goal exists.  Without communication, 
group members submit numbers in an attempt to collectively 
sum to a randomly selected number.  After receiving group 
feedback, members adjust their submitted numbers in the next 
round.  Small groups generally outperform large groups, and 
for all groups, performance improves with task experience, 
and reactivity to feedback decreases over rounds.  Our 
empirical results and computational modeling provide 
evidence for adaptive coordination in human groups despite 
minimal shared history and only indirect communication, and 
perhaps most interestingly, as the coordination costs increase 
with group size, large groups adapt through spontaneous role 
differentiation and self-consistency among members. 

Keywords: Collective behavior; agent-based models; 
adaptive behavior; group coordination 

Introduction 
Groups often suffer from behavioral limitations, including 
impaired brainstorming performance (Kerr & Park, 2001), 
difficulty in utilizing shared and unshared pieces of 
information (Stasser & Titus, 1985), and inability to gauge 
the relevant contributions of individual members 
(Littlepage, Schmidt, Whisler, & Frost, 1995).  Many group 
limitations worsen as group size increases, and because 
large groups confer anonymity, members increasingly fall 
prey to diffusion of responsibility (Darley & Latane, 1968; 
Freeman, Walker, Borden, & Latane, 1975).  Even when 
shared resource tasks encourage implicit coordination 
(Ostrom, Gardner, & Walker, 1994), conflicts arise when 
members choose individual gains over group gains.         

   However, many situations require coordinated 
contributions in order to achieve a shared group goal. For 
example, a potluck dinner ideally coordinates participants’ 
food contributions so there is enough to sate everyone, 
without excess left-overs that no one wants to take home.  
However, individuals often make unilateral decisions about 
how much food to bring to the potluck.  The question then 
arises of how the group as a whole can coordinate the 
correct amount of food to bring, with some individuals 
volunteering to bring extra food to make up for other 
individuals who forget to bring any food.  Research labs 
rely on the combined contributions of individuals to develop 

a research program and lab reputation that leads to grant 
funding, which may in turn benefit the individuals.  
Similarly, statistical analyses in baseball and basketball 
increasingly value players based on the team’s performance 
while the player is in the game, rather than individual 
statistics such as points scored (Berri, Schmidt, & Brook, 
2006).  In these examples, a group member can undermine a 
team’s performance by either taking on too little or too great 
a burden, and unlike intellective tasks in social psychology, 
where a correct solution can propagate from an individual to 
the rest of the group (Laughlin, 1980), these situations 
involve the coordination or summation of multiple 
individual contributions.  Although some studies show that 
group members can adequately share pieces of information 
under the right circumstances (Stasser & Stewart, 1992; 
Stewart & Stasser, 1995), and some group learning can 
occur via indirect feedback (Maciejovsky & Budescu, 
2007), there has been relatively little research on group 
coordination and adaptation to tasks with shared goals.  

   In order to isolate and test the coordination capacities of 
groups, we developed a simple round-based group game 
called “Group Binary Search” (GBS) that creates a test bed 
for pure coordination without competing individual goals.   
In the GBS game, a computer server randomly chooses a 
number between 51 and 100, and without communication, 
each group member submits a guess between 0 and 50.  The 
computer compares the sum of participants’ numbers to its 
selected number, and broadcasts the same directional (e.g. 
“Too High”) or numeric (e.g. “Too Low by 17”) feedback to 
all members. Given the range of individual guesses, group 
members must coordinate to achieve the shared goal.  
During the next round, members can adjust their guesses 
and receive the new feedback, and the game continues until 
the group correctly sums to the computer’s number. We 
coined the name Group Binary Search after the binary 
search algorithm in computer science (Knuth, 1997), which 
searches for a number in a sorted list by iteratively guessing 
the median number in the current range of possibilities.  For 
numeric GBS games, a normative solution suggests that all 
players should change their guesses by 

€ 

Distance from Goal
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, 

plus a further increment by 1 with probability 

€ 

Remainder
Number of Players

.  but no group consistently showed this 

behavior in our experiments.  Instead, even though each 
individual presumably knows what the group should do, 
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individuals display a large variance in guess adjustments 
due to their uncertainty regarding others’ actions.  Stock 
market investors face a similar dilemma when they know a 
company’s expected value but fear trading on that 
knowledge because of the unpredictable noise introduced by 
other traders (Camerer & Fehr, 2006). 

   Our GBS game shares qualities of several other tasks 
from game theory and behavioral economics, but GBS 
uniquely tests participants’ adaptive coordination strategies 
when only a shared group goal exists.  Many 2 x 2 
symmetric games such as Prisoner’s Dilemma display 
coordination in order to achieve higher individual payoffs, 
and in fact, simulations support the evolution of mutual 
reciprocity in Prisoner’s Dilemma (Browning & Colman, 
2004), and coordinated alternating reciprocity in games with 
related payoff structures such as Battle of the Sexes, Leader, 
and the route choice game (Helbing, Schonhof, Stark, & 
Holyst, 2005).  Each of these games emphasizes individual 
maximization with clear payoff structures, while the GBS 
game emphasizes group maximization without a clear trial-
based payoff structure.  Group members have a wide range 
of possible guesses, and they do not receive rewards unless 
the group goal is reached, so the task encourages group 
members to continually make complementary guess 
refinements until the goal is reached.  Even pure 
coordination games in game theory focus on clear payoff 
structures with pure – and sometimes mixed – strategies 
leading to Nash equilibria (Colman, 2003).  

   Some more naturalistic framings of coordination allow a 
wide range of responses, but still emphasize individual 
payoffs in tasks such as group foraging (Roberts & 
Goldstone, 2006), group path formation (Goldstone, Jones, 
& Roberts, 2006), spontaneous traffic lane formation 
(Helbing, Molnar, Farkas, & Bolay, 2001), and commons 
dilemmas (Ostrom et al., 1994).  In commons dilemmas, 
group resources are typically over-harvested unless the 
group communicates (Bouas & Komorita, 1996) or enacts 
rules (Ostrom, Walker, & Gardner, 1992).  However, given 
that our later empirical and modeling results show adaptive 
group behavior, it is intriguing that sequential sampling 
versions of commons dilemmas demonstrate position effects 
in which early samplers take large shares, and later samplers 
request diminishing shares without even knowing how 
many resources are left (Budescu & Au, 2002).         

    The GBS game also complements coordination tasks 
geared towards larger populations, such as minority, 
majority, and business entry games.  The minority game 
assumes that individuals want to avoid crowds, and it 
examines how effectively individuals differentiate and 
distribute themselves to two options, given that only 
members of the resulting minority are rewarded (Arthur, 
1994).  Experimental and simulated minority games often 
show oscillating group choice behavior, typically 
approaching a 50/50 split between options, but the group 
can deviate towards extreme proportions (e.g. 0% or 100% 
select option A) if the members fail to differentiate (Botazzi 
& Devetag, 2003).  In contrast to simulation results (Savit, 

Manuca, & Riolo, 1999), humans coordinate with minimal 
information in minority games, and increased information 
from longer reinforcement time windows does not improve 
group performance.  Majority games actually encourage 
conformity and attempt to model situations where 
individuals benefit from acting in crowds, such as 
momentum trading and aggregating to form cities 
(Kozlowski & Marsili, 2003).  Self-fulfilling prophecies 
naturally emerge in these situations, as momentum traders 
flock to the majority stock (Marsili, 2001).  Business entry 
games occupy a gray area between minority and majority 
games.  In these tasks, individuals (businesses) receive a 
small reward for staying out of a market and a large reward 
for entering a market, but no one in the market receives a 
reward if too many people join (Camerer & Fehr, 2006).  
Each of these games differs from the GBS game by 
encouraging conformity or differentiation in attempts to 
maximize individual payoffs.  The GBS game is agnostic to 
strategies, allowing both coordination and differentiation of 
strategies (substitutable or complementary strategies, as per 
Camerer and Fehr (2006)) in pursuit of global coordination. 

Methods 

Participants 
Participants were 106 undergraduate students at Indiana 
University who received course credit for approximately 1 
hour of participation.  Participants were run in 18 GBS 
experimental sessions with the following group sizes: 2, 2, 
2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 6, 7, 10, 16, 17, 17.  Each group 
participated in 10 games, alternating between directional 
feedback games and numeric feedback games.  Participants 
were instructed not to talk to each other, and they were 
informed that there were a total of 10 games and they would 
finish the experiment more quickly if their group quickly 
coordinated to the solutions.  We did not highlight the 
number of participants in a group, but that information was 
available, given that all group members were 
simultaneously present and visible in the computer 
laboratory. 

Material and Procedure 
Participants sat in a university computer lab at personal 
computers running the game via client Java applets 
connected to a computer server.  Before each game, the 
server randomly chose a number between 51 and 100.  
During each round, each participant entered a guess between 
0 and 50.  After a 15 second guessing period elapsed, the 
server compared the sum of participants’ guesses to its 
number, broadcast the same feedback to all participants’ 
screens, and began the next round.  Participants only knew 
the group sum’s relation to the server’s number (e.g. “Too 
high” for directional feedback games, or “Too high by 17” 
for numeric feedback games), without knowing the server’s 
actual number or the current group sum.  If the participants’ 
guesses correctly summed to the server’s number, or if 15  
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Figure 1: GBS games with 3 and 17 participants 
 
rounds passed unsuccessfully, then the game ended, and the 
next game began after a short delay. 

Results and Discussion 
Figure 1 shows directional feedback games from a 2- and 
17-participant group, and all graphs for the 18 groups are  
at: http://cognitrn.psych.indiana.edu/GBS_graphs.zip.  In 
general, groups coordinated very well, with 7.03 average 
rounds to solution for numeric feedback games, and 10.51 
for directional feedback games, a significant difference 
under a two-tailed t test, t(17) = 5.47, p < .001.  For many of 
the analyses, we defined “small groups” as groups with 2 or 
3 participants, and “large groups” as groups with 10 or more 
participants.  These group sizes showed strongly contrasting 
behavior that will be discussed later, while the medium-size 
groups displayed a mixture of behaviors from the two group 
types.  Small groups solved the games in an average of 6.80 
rounds (numeric=4.31, directional=9.34), compared to 11.95 
rounds for large groups (numeric=11.05, directional=12.85), 
t(11) = 6.46, p < .001.  These results suggest that 
participants successfully modulate their reactions based on 
the feedback magnitude, and small groups, with their fewer 
degrees of freedom and decreased uncertainty, coordinate 
more quickly.  One can imagine large groups allowing 
reactions to offset each other, thus averaging and 
coordinating to the solution more rapidly, but instead the 
larger groups exhibited larger oscillations.  All group sizes 
showed similar improvement across games, with a -.264 
correlation between game number and average rounds to 
solution, p < .001, and both large and small groups showed 
approximately the same learning correlations, -.270 and -
.273, respectively (the medium size groups slightly lower  
the average). Figure 2 shows similar learning in numeric 
and directional feedback games. 
   In order to examine consistent behaviors among 
participants, we calculated each participant’s “reactivity” 
according to the formula (Gr – Gr-1) if the group was too low 
on the previous round, and (Gr-1– Gr) if the group was too 
high, where Gr is the participant’s guess on round r.  Groups  
generally under-react, as shown in Figure 3, though only 
 

 
Figure 2: Average rounds to solution for numeric and 
directional feedback games 

 
small groups significantly under-react.  These results are 
particularly revealing for directional feedback games, 
because groups react surprisingly close to the best-fit line 
despite only receiving directional information.  In these 
cases, groups may follow a conservative strategy of 
gradually decreasing reactivities over rounds.  In numeric 
feedback games, large magnitude feedback tempts 
individuals in large groups to over-react and form outliers, 
but overall, the analyses support a nuanced strategy of 
decreasing reactivity over time in both feedback conditions. 
The average reactivity of group members per round 
significantly decreases over the last six rounds prior to 
solution (This method of aligning rounds maintains some 
equivalence between numeric and directional games, and 
small and large groups, given their different solution times), 
ß = -.326, p = .001.  However, a paired samples t test for all 
games of all groups reveals that participants significantly 
decrease their reactivities when the feedback direction (even 
for numeric feedback games) changes from one round to the 
next (mean decrease of 1.55), but maintain approximately 
the same reactivity (mean decrease of .11) when the 
feedback direction remains the same, t(148) = 4.75, p < 
.001.   

Models 
Using agent-based models, we tested several reactivity 
strategies.  For each model, we ran 18 groups in 10 
directional feedback games, and we matched group sizes to 
our empirical groups.  Each agent first sampled from an 
empirically derived initial guess distribution that took into 
account group size, such that there were three derived 
distributions, for large, small, and medium group sizes.  On 
the second round, agents chose a reactivity from a uniform  
random distribution with a range of 0 to (50–current guess) 
if the group was too low on the previous round, and from a 
range of (-1*current guess) to 0 if the group was too high on 
the previous round.  In order to maintain more realistic 
reactivities, we further constrained agents to sample until 
they chose a reactivity within the range -20 to +20.  Model 1 
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Figure 3: Average group reactivity for each distance from 
the correct solution 
 
and Model 2 agents continued sampling reactivities in this 
fashion for every round of a game, but Model 2 agents 
probabilistically decreased their sampled reactivities across 
rounds.  On each round, each possible reactivity number in 
the range -20 to +20 had a .5 probability of decreasing by an 
integer chosen from the uniform random range 0 to 5.  For 
example, a Model 2 agent that would have chosen a +18 
reactivity in round 6 may actually increase its guess by +12, 
because the chosen +18 reactivity was decreased across 
rounds.  These random decreases were computed separately 
for each group game.  Models 1 and 2 constitute groups that 
produce reaction in a feedback-consistent direction, and 
Model 2 adds the assumption that reactions decrease over 
time.  Models 3 and 4 replace these random reactivity 
decreases with the notion of agent consistency, Each agent 
sampled a reactivity on the second round, and on each 
subsequent round, a Model 3 agent had a .5 probability of 
decreasing its reactivity by an integer chosen from the 
uniform random range 0 to 5, while a Model 4 agent only 
decreased its reactivity when the group feedback changed 
(e.g. from “Too High” to “Too Low”), and otherwise 
maintained the same reactivity from round to round.  Thus, 
these models tested whether consistent agents should simply 
decrease their reactivities over time, or selectively decrease 
their reactivities when the feedback changed, as our 
empirical results support.   
   Model 4 coordinated significantly faster than the other 

models (means: Model 1=13.63, Model 2=12.84, Model 
3=12.00, Model 4=10.29, Empirical=10.51), p < .001 for all 
pairwise model comparisons with Model 4, and was 
indistinguishable from our empirical results for directional 
feedback games, p = .684.   The same model can solve 
numeric feedback games more quickly by modifying the 
range of initial agent reactivities according to the numeric 
feedback.  Models 1, 2, and 3 were not significantly 
different from each other in pairwise comparisons, which 
illustrates the importance of flexible group coordination.  
Intuitively, Model 4 agents take large steps towards the goal 
when they are far away, then decrease their step sizes after 
passing the goal.  In contrast, the approximate simulated 
annealing strategy (Kirkpatrick, Gelatt, & Vecchi, 1983) 
from Model 3 does not efficiently span large initial-to-goal 
distances unless it anneals slowly, but slow annealing 
results in inefficient oscillations around the goal.  We 
further tested this intuition by comparing Models 3 and 4 on 
extended games that could go up to 30 rounds, and the 
influence of unsolved games especially hurt the average 
solution time for Model 3 (means: Model 3=18.99, Model 
4=14.53, p < .001).  When we tried to improve Model 3’s 
performance with alternative values for the probability of 
reactivity decreases per round and the size of the uniform 
random range, Model 3 still converged on the target more 
slowly than Model 4 and our human participants because its 
agents failed to adjust their reactivities according to 
feedback.  It is also noteworthy – but expected – that 
randomly choosing reactivities as in Models 1 and 2 cannot 
explain the empirical results, even when reactivities are 
constrained to a range and decreased over time.     
   Groups in numeric feedback games clearly do not pursue 
the expedient normative strategy.  That strategy would 
quickly lead to a solution, and it should be an easy strategy 
for small groups to follow, but it requires everyone to 
simultaneously adjust their guesses by 
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.  Our analyses indicate that 26% of 

numeric feedback rounds were evenly divisible for small 
groups, compared with 3.2% for large groups, t(11) = 2.503, 
p < .05.  However, for these evenly divisible rounds, 
participants rarely employed the normative strategy, with an 
average of 14.9% of small group members and 0% of large 
group members employing the strategy on applicable 
rounds, t(11) = 1.59, p = .14.  Instead, in conjunction with 
our empirical results that participants’ reactivities decrease 
when the group feedback changes, our models suggest that 
human groups use a flexible, adaptive strategy for group 
coordination when members are uncertain about others’ 
actions.   

 Group Differentiation 
 The results so far have implied similar coordination 
mechanisms in small and large groups, but our final 
analyses show striking divergent behavior.  We calculated 
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the variance of reactivities within individuals (Did a 
participant exhibit consistent reactivities across rounds?) 
and between individuals (Did all group members have 
similar average reactivities?). For each of these analyses, we 
used groups – rather than individuals – as the unit of 
analysis by averaging over the individuals within a group.  
Individual variance significantly decreases over rounds (ß = 
-.519, p < .001) for large groups, but marginally increases 
for small groups (ß = .165, p = .083).  The variance of 
reactivities among large group members marginally 
increases over games (ß = .291, p = .068), and greater 
variance among large group members significantly predicts 
faster coordination (ß = -.395, p = .012).  In contrast, the 
variance among small group members significantly 
decreases over games (ß = -.370, p < .001), and does not 
predict solution time.  The average reactivity of large group 
members also decreases across games (ß = -.313, p = .049), 
but there is no such relationship for small groups (ß = -.04, p 
= .708).  
   Taken together, these results suggest that it is beneficial 
for members of large groups to differentiate themselves 
from each other, and then maintain those roles in order to 
foster a predictable environment for subsequent adjustment 
and coordination. Human participants appear to adapt 
flexibly to the contingencies of group coordination, even 
when group members have minimal shared history and only 
indirect communication.  The greater difficulty of the task 
for large groups may serve as a selective pressure that forces 
specialization.  All of the group members are pursuing the 
solution, but some manifest this pursuit by adjusting their 
guesses, while others adopt small or zero reactivities in 
order to decrease the group uncertainty.  Our analyses 
indicate that large groups coordinate more quickly when 
group members assume these complementary roles.  
Meanwhile, members of small groups can react in similar 
magnitudes, without even being self-consistent, and still 
coordinate rather quickly. 
   In post-task interviews, large groups invariably had many 
participants who stated that they stopped reacting once the 
group was close to the goal, because they assumed someone 
else would react, and having too many reactive people 
would risk overshooting the target solution.  In this respect, 
the GBS game is a paradigmatic task where orderly 
diffusion of responsibility is a good thing.  A simple 
strategy for dropping-out can lead to deadlock if too many 
people adopt it, so the group must coordinate its meta-
strategy in order to coordinate to the goal.  However, it is 
also possible to take meta-strategies too far.  In each large 
group, at least one person mentioned attempting to 
compensate for an anticipated group over-reaction by 
reacting in the opposite direction when the group neared the 
goal.  Analyses indicate that groups would have coordinated 
faster without this extra compensation.    
   Both large and small groups showed impressive learning 
trajectories, so it may prove worthwhile to examine groups 
that have played many more GBS games in order to test the 
limits of group differentiation and adaptation.  Previous 

research indicates that diversity (Page, 2007) and transactive 
memory systems with divisions of cognitive labor (Wegner, 
1987; Lewis, Lange, & Gillis, 2005) can improve group 
problem-solving.  However, diversity only helps when 
group members recognize other members’ roles (Polzer, 
Milton, & Swann, 2002), and group members sometimes 
fail to adapt their roles to changing group conditions (Lewis, 
Belliveau, Herndon, & Keller, 2007), which suggests that 
members of our large or small groups may require 
significant adjustment periods if we shift group sizes or 
memberships.   

 Conclusion 
Our current research indicates that the GBS game is a useful 
framework for testing self-organized division of labor, role 
development in groups, and relations between individuals’ 
strategies and group-level outcomes.  This approach is 
distinct from previous studies that emphasize either 
competition among individuals while maximizing individual 
returns, or the propagation of individual solutions or 
information through a group.  Many real world situations 
(scientific research teams, sports teams, multi-party business 
negotiations, committees, etc.) intrinsically involve actors 
adjusting their contributions in order to achieve a mutually 
satisfactory group goal, a win-win result.  These tasks 
cannot be solved by lone individuals, and the participation 
of other individuals inevitably brings uncertainty.  In these 
tasks, more activity is not necessarily better; rather, an 
individual’s role must complement others’ roles and actions 
to achieve the desired outcome.  Our results suggest that 
teams of individuals with minimal shared history and 
minimal communication automatically adjust their effective 
sizes and member roles so that they coordinate appropriately 
for a task’s complexity.     
   Although the GBS game is inherently a simple task, we 
view this as an advantage that allows us to control for 
nuisance variables and test groups with minimal shared 
histories and minimal communication.  The task offers a 
simple experimental platform for studying the general 
problem of group coordination while maximizing group 
returns, much like Prisoner’s Dilemma and the minority and 
majority games offer simple experimental platforms for 
studying the general problem of competition while 
maximizing individual returns.  
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