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Abstract 

 

ADAPTATION GENOMICS OF SURFPERCH POPULATIONS IN THE 

CONTEXT OF RAPID ENVIRONMENTAL CHANGE 

 

by Jason A. Toy 

 

While the immediate impacts of global climate change are of serious concern, 

the outcomes of these environmental changes for populations will ultimately play out 

over multiple generations. Despite this, our understanding of the evolutionary impacts 

of climate-related environmental change is still in its early stages, particularly in the 

marine realm. Furthermore, evolutionary processes can act over short, ecological 

timescales, such that they may play a key role in both the short-term resistance and 

long-term resilience of natural populations. Therefore, the objective of this 

dissertation is to better incorporate evolutionary processes into the developing 

understanding of the ecological effects of global change. In particular, I focus my 

investigations on the relationships between genetic diversity, local adaptation, and 

environmental change to better understand the evolutionary factors that contribute to 

a population’s adaptive capacity and resilience. A population’s genetic diversity may 

translate to response (phenotypic) diversity, the level of which will determine the 

likelihood of evolutionary rescue via the portfolio effect. Adaptation of 
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subpopulations to their local conditions (local adaptation) has the potential to enhance 

broad-scale genetic diversity within a species, potentially increasing resilience in the 

face of environmental change, but can simultaneously reduce local diversity, 

increasing the risk of extinction for subpopulations if gene flow is low. In this 

dissertation, I use a pair of marine fish species with unique life-histories (Embiotoca 

jacksoni and Brachyistius frenatus; family Embiotocidae) to 1) test the molecular 

impact of environmental change on an important temperate fish group, 2) investigate 

the scale of genetic diversity and admixture along the Pacific coast of North America, 

3) provide evidence of local adaptation among subpopulations, and 4) associate 

genomic differences between subpopulations with regional environmental differences 

to better understand the physiological pressures imposed by climate variables and 

form hypotheses for the genetic mechanisms that may underlie ongoing adaptation to 

climate change. 
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Introduction 

 Over the past several decades, a dramatically improved understanding of the 

potential ecological impacts of climate change has emerged (Bellard et al., 2012; 

Root et al., 2003). Populations are largely considered to have three possible pathways 

to persistence in the face of large-scale climate change, none of which are mutually 

exclusive. Populations may tolerate local environmental changes through plastic 

(non-heritable) alterations in the behavior and physiology of individuals 

(acclimatization), shift their ranges through migration to match changing distributions 

of suitable habitat, or adapt genetically through the combined action of selection and 

heritable trait variation. If none of these response pathways are effective, populations 

may go extinct. This general framework is often referred to as “tolerate, move, adapt, 

or die”. 

 Present populations often have some ability to tolerate climate-induced 

changes in their physical and biological environments through plastic changes in their 

physiology or behavior (Sandblom et al., 2014; Seebacher et al., 2015; Snell-Rood et 

al., 2018). In the ocean, organisms may make physiological and behavioral changes in 

response to the metabolic and biochemical costs of increased temperature, 

acidification, and deoxygenation, with varied results. For example, some species may 

exhibit compensatory feeding in response to increased metabolic costs, while others 

seem to show no evidence of compensation (Kindinger et al., 2022). Behavioral 

plasticity is common (Beever et al., 2017; Nagelkerken & Munday, 2016), and many 

species will adjust their position in the water column or among habitat types to avoid 
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stressful conditions (e.g. low dissolved-oxygen; Breitburg et al., 1997). Additionally, 

individuals may be able to confer adaptive phenotypic changes on their offspring in 

response to changing environmental conditions through transgenerational plasticity 

(Eirin-Lopez & Putnam, 2018; Hofmann, 2017; Hoshijima & Hofmann, 2019). The 

organism-level effects of global climate change are clearly widespread and pervasive, 

with effects cascading through many direct and indirect pathways that have already 

led to significant and concerning alterations to natural ecosystems (e.g., McPherson et 

al., 2021). 

 At the same time, it is now well accepted that evolutionary processes, 

facilitated by genomic diversity, can act over short ecological timescales (Schoener, 

2011; Thompson, 1998). These evolutionary processes (i.e., migration, mutation, 

selection, and drift) may therefore play a critical role in both the short-term resistance 

and long-term resilience of natural populations to environmental change. Despite this 

understanding, investigations into the evolutionary impacts of global change on 

natural populations and the evolutionary processes that mediate population responses 

remain underrepresented in the literature (Sunday et al., 2014). To better understand 

and more capably predict the outcomes of rapid environmental change, evolutionary 

processes must be better incorporated into the existing ecological framework of 

global change impacts. 

Evolutionary responses to environmental change 

 The relative effectiveness of the “tolerate”, “move”, and “adapt” strategies for 

a given population will often depend on the life-history characteristics of the species 
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(Carlson et al., 2014). For example, rapid adaptive evolution will be less likely among 

large, long-lived organisms with long generation times (“k-selected” species), and 

migration – if possible – is likely to be a more effective response. On the other hand, 

adaptive evolutionary change in “r-selected” species with short generation times, high 

fecundity, and large population sizes is much more likely to keep pace with rapid 

rates of environmental change (Berg et al., 2010; Buoro & Carlson, 2014; Carlson et 

al., 2014; Travis et al., 2013). Phenotypic plasticity is likely to be beneficial in 

populations where plasticity has already evolved and where environmental variability 

is predictable (Bitter et al., 2021; Kroeker et al., 2020). 

 If environmental change is too widespread, rapid, or unpredictable, plastic and 

migratory responses may be ineffectual or insufficient for population persistence. In 

this case, an evolutionary response may be a population’s last line of defense against 

extirpation (Holt, 1990; Smith, 1989). The first aim of this dissertation is therefore to 

better understand the circumstances under which a population will either successfully 

adapt or die and to what extent populations may fit such criteria. In other words, I 

seek to answer the question: How likely are likely are populations to successfully 

undergo evolutionary rescue? – defined here as the persistence of a population 

through a disturbance due to the spread of new or pre-adapted genotypes. Factors that 

may determine the likelihood of evolutionary rescue may be grouped into three 

general categories: demographic factors, extrinsic factors, and genetic factors 

(Carlson et al., 2014). Although this dissertation will focus primarily on the dynamics 

between genetic factors, I briefly summarize all three categories below to describe the 
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context under which genetic factors may act to determine the likelihood of 

evolutionary rescue. 

 Perhaps the most important demographic factor affecting the adaptive 

capacity of a population is its effective size (Bell, 2013; Gomulkiewicz & Holt, 

1995). A large absolute population size (N) promotes demographic resilience, but the 

effective size (Ne) will determine the relative strengths of genetic drift and selection. 

As effective population size increases, selection becomes more effective, increasing 

the substitution rate of advantageous mutations and decreasing the rate for deleterious 

mutations (Lanfear et al., 2014). The effective size of a population therefore impacts 

its rate of adaptive evolution, which – all else being equal – then determines the 

maximum rate of environmental change it can withstand (Lynch & Lande, 1993). 

The most obvious extrinsic factor is the rate of environmental change. A rapid 

rate of change causes the level of population maladaptation to be large, giving the 

population less time to adapt before falling below the theoretical size threshold where 

stochastic extirpation becomes likely (Barrett & Schluter, 2008; Gomulkiewicz & 

Holt, 1995; Lande & Shannon, 1996; Lynch & Lande, 1993). This rate can also 

describe changes in biotic interactions, which can have significant impacts on the 

likelihood of evolutionary rescue. Intraspecific competition, for example, may limit 

population growth rate and therefore size and absolute mutation rate, diminishing the 

likelihood of evolutionary rescue, while interspecific competition may actually 

promote evolutionary rescue by strengthening selection on advantageous alleles 

(Osmond & de Mazancourt, 2013). Similarly, predation is predicted to increase the 
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strength of purifying selection on maladaptive alleles (Jones, 2008), further increasing 

the rate of adaptive evolution. 

 Finally, genetic factors include those that impact the genetic variation 

available for selection to act upon, as well as genetic interactions among this 

variation. Standing variation is critical to the evolutionary rescue of a population, as it 

is immediately available to selective processes (Barrett & Schluter, 2008; Bell, 2013; 

Gomulkiewicz & Holt, 1995), but new (de novo) variation produced by mutation can 

also play an important role in adaptive responses. For example, if genetic variation is 

limiting, a greater mutation rate may increase the likelihood of evolutionary rescue 

(Orr & Unckless, 2008). Additionally, the architecture of genetic variation present 

within a population may affect the rate of evolution. Linkage between alleles that act 

antagonistically (i.e., interlocus conflict) will slow the rate of adaptive evolution, as 

can antagonistic pleiotropy (Lanfear et al., 2014; Otto, 2004). Positive correlation 

between either deleterious or advantageous alleles, however, can speed the rate of 

adaptive evolution (Chevin, 2012). 

 Genetic variation provides the raw material necessary for adaptation and 

evolutionary rescue in the face of anthropogenic environmental change, but this 

variation exists within the context of demographic and extrinsic factors. How much 

genetic variation and time is required for evolutionary rescue to occur, the prominent 

sources of this variation, and how standing variation will be indirectly impacted by 

other population- and community-level climate change responses are all still unclear. 

This dissertation therefore seeks to provide empirical insight into the process of 
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climate adaptation using a combination of controlled laboratory experiments and a 

species-wide analysis of genomic diversity and local adaptation. 

Study system: Climate change and drivers of genetic diversity in the Northeast Pacific 

 The Pacific Coast of North America contains some of the most valuable and 

productive marine ecosystems in the world. Commercial fisheries fuel economies, 

coastal state parks and MPAs provide immense cultural value, and local ecosystems 

provide additional critical services unrelated to fisheries for coastal communities. As 

discussed above, the resilience of these important systems to environmental change 

may in part depend on the genomic diversity present within their constituent species. 

To better characterize and quantify this within-species genetic variation, the 

ecological processes involved in its preservation must be more closely considered. 

Within the coastal ecosystems of the NE Pacific, the extensive spatial heterogeneity 

in the physical and chemical environment represents an obvious candidate for 

spatially variable selection, a key factor behind the maintenance of within-species 

variation, (Hofmann et al., 2014). Driving this spatial heterogeneity are latitudinal 

gradients in seawater temperature, light availability, and wave exposure, as well as a 

mosaic of upwelling occurrence and intensity, which creates corresponding mosaics 

of pH, dissolved oxygen, and nutrient availability (Chan, Barth, Blanchette, Byrne, 

Chavez, Cheriton, Feely, Friederich, Gaylord, Gouhier, & others, 2017). Importantly, 

it is also some of these same environmental drivers (temperature, pH, and dissolved 

oxygen) that are expected to continue to change rapidly as a result of anthropogenic 

CO2 emissions, making the NE Pacific an ideal system in which current populations 
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may be used to investigate potential adaptive responses to future environmental 

change. 

The mosaic of environmental conditions across the NE Pacific allows for the 

possibility of local adaptation within subpopulations of a species by creating spatial 

differences in selective pressures (Hofmann et al., 2014). Local adaptation can be 

defined as the maintenance of different alleles, or different frequencies of alleles, in 

different geographic regions. Although this differential selection can reduce genetic 

diversity within a local subpopulation, it can promote a greater diversity at the species 

level (Slatkin, 1987), as different alleles are favored and therefore preserved in 

different regions. While differential selection is a key component of local adaptation, 

it is not the only requirement. If individuals move and mate freely between 

subpopulations, gene flow will occur and differential selection may have a limited 

effect on the genetic structuring of a species (panmixia). Local adaptation therefore 

also requires gene flow to be limited (e.g., through limited dispersal) to prevent 

outbreeding depression and genetic homogenization. 

 Given the extent of environmental heterogeneity along the NE Pacific and the 

potential of local adaptation to promote within species diversity, I seek to address the 

following question: How do environmental heterogeneity and local adaptation 

interact to mediate a species’ response to global environmental change? To answer 

this question, one must first determine the strength and prevalence of local adaptation 

in coastal ecosystems. The prevalence of local adaptation in marine populations was 

once poorly understood, as the openness and continuity of the marine realm was 
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historically believed to strongly promote gene flow across broad geographic scales. 

More recent work, however, has revealed that local adaptation in marine populations 

is much more prevalent than previously assumed (Conover et al., 2006; Sanford & 

Kelly, 2011), even in species with large dispersal distances. This indicates that the 

local adaptation may be even more pronounced in marine species with limited 

dispersal – for example, those that lack a pelagic larval stage (e.g., Bernardi, 2000). 

The surfperches (family: Embiotocidae), are an abundant group of viviparous 

(live bearing) nearshore fishes in the NE Pacific that all lack a pelagic larval phase. 

These unique life-history traits lead to a greatly reduced capacity for dispersal (and 

therefore gene flow) compared to ecologically similar species, greatly increasing the 

likelihood that local adaptation has occurred at some point in their evolutionary 

histories. Though there is a paucity of data on adult dispersal in these species, high 

site fidelity has been demonstrated in some species (Hixon, 1981; Bernardi, pers. 

comm.). Additionally, Bernardi (2000) demonstrated the presence of coast-wide 

genetic structure in black surfperch (Embiotoca jacksoni) using mitochondrial 

markers. 

 For the most part, these embiotocids are shallow-water species, living along 

sandy substrate, rocky reef, kelp forest, and even estuarine habitats. Among the 

productive rocky reef and kelp forest communities present from Alaska to Baja 

California, many species are abundant, including E. jacksoni, E. lateralis, E. caryi, B. 

frenatus, Phanaerodon vacca, P. furcatus, P. atripes, Rhacochilus toxotes, and 

Cymatogaster aggregata. All species are mesopredators, primarily consuming a 
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variety of crustaceans, especially amphipods (Laur & Ebeling, 1983; Love, 2011). 

Their abundance, combined with their tendency to feed on herbivorous invertebrates 

can also exert significant top-down control in these systems (Davenport & Anderson, 

2007). Because of their ecological importance, and because their life histories 

increase the likelihood of local adaptation, the research conducted in this dissertation 

focused on two species in this family: E. jacksoni and B. frenatus (kelp surfperch). 

Overview of research 

 Because local adaptation requires differential selection across geographic 

space, Chapter 1 of this dissertation focused on testing whether and how individuals 

of a single subpopulation respond physiologically (molecularly) to different 

environmental regimes. The goal was to test whether observed differences in coastal 

environmental regimes translate into differences in selective pressures, which would 

in turn have some effect on the fitness of individuals. As a proof of concept, and to 

simplify the experimental system to a manageable level, I took two of the factors 

listed above that exhibit strong spatial heterogeneity – the mean and temporal 

variability in seawater acidity – and tested their effects on brain gene expression in E. 

jacksoni. I combined the results of this study with a dataset from a previously 

conducted pilot study to disentangle the relative impacts of moderate, extreme, and 

variable pH/pCO2 on neurological function. 

 My results from Chapter 1 demonstrated the differential response of a single 

population to different pH regimes, which can be interpreted as evidence for spatial 

variation in selective pressures. I therefore proceeded to a population genomic 
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investigation of local adaptation in subpopulations with similarly divergent 

environments. To make use of current technical and statistical advances in genomic 

research, I used a whole genome resequencing approach to conduct a range-wide 

characterization of genomic diversity and population structure in the widespread 

embiotocid species, B. frenatus. To facilitate these analyses, I first needed to 

assemble a reference genome sequence for the species, which I describe in Chapter 

2. A combination of long-read nanopore sequencing and short-read shotgun 

sequencing resulted in a high quality and highly complete reference assembly. The 

assembly revealed a relatively small genome size for this species (596 Mb) compared 

to similar species, which provides further motivation for the use of this species for 

resequencing-based studies. The comparison of this genome to the reference sequence 

of E. jacksoni revealed high synteny between the two species with no indications of 

major inversions or rearrangements. This similarity of the genomes of these two 

species could facilitate future studies investigating the effects of ecological 

differences between the two species on genome structure, as well as species-wide 

patterns of genomic diversity. 

In Chapter 3, I resequenced 158 B. frenatus individuals from 13 locations 

along the west coast of North America and characterized the genetic structure and 

diversity present in the species across most of its current range. Using multiple allele 

frequency-based outlier methods, I conducted a genome-wide scan for loci under 

selection across the sampled populations. Furthermore, I coupled this genomic data 

with regional environmental data to test for correlations between allele frequency 
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differences and climate-related variables. A genomic study such as this is valuable in 

several ways. First, my analysis of population genetic structure across the species’ 

range has provided insight into the extent of gene flow between geographic regions. 

Second, this study identified many candidates for genes under selection that have 

provided hypotheses for the mechanisms through which B. frenatus may adaptively 

respond to environmental change. Third, analysis of the association of loci under 

selection with environmental variables provided valuable insight into the relative 

importance of several climate variables in shaping the adaptive variation in this 

species. Finally, this genomic approach inherently isolates genetic sources of trait 

variation from non-genetic sources (i.e., plasticity), allowing for more confident 

conclusions about genetic adaptation when compared to phenotype-based studies. 
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Chapter 1: Upwelling-level acidification and pH/pCO2 variability 
moderate effects of ocean acidification on brain gene expression in 
the temperate surfperch, Embiotoca jacksoni 

 
 

This chapter was originally published in a peer reviewed journal and is reproduced 

here for inclusion in this dissertation. The citation for the original publication is: 

Toy, J. A., Kroeker, K. J., Logan, C. A., Takeshita, Y., Longo, G. C., & Bernardi, G. 
(2022). Upwelling-level acidification and pH/pCO2 variability moderate 
effects of ocean acidification on brain gene expression in the temperate 
surfperch, Embiotoca jacksoni. Molecular Ecology, 31, 4707– 4725. 
https://doi.org/10.1111/mec.16611 
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ABSTRACT 

Acidification-induced changes in neurological function have been 

documented in several tropical marine fishes. Here, we investigate whether similar 

patterns of neurological impacts are observed in a temperate Pacific fish that naturally 

experiences regular and often large shifts in environmental pH/pCO2. In two 

laboratory experiments, we tested the effect of acidification, as well as pH/pCO2 

variability, on gene expression in the brain tissue of a common temperate kelp 

forest/estuarine fish, Embiotoca jacksoni. Experiment 1 employed static pH 

treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable 

treatments that oscillated around corresponding static treatments with the same mean 

(target pH = 7.85/7.70) in an eight-day cycle (amplitude ± 0.15). We found that 

patterns of global gene expression differed across pH level treatments. Additionally, 

we identified differential expression of specific genes and enrichment of specific gene 

sets (GSEA) in comparisons of static pH treatments and in comparisons of static and 

variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2 

variability decreased the number of differentially expressed genes detected between 

high and low pH treatments, and that inter-individual variability in gene expression 

was greater in variable treatments than static treatments. These results provide 

important confirmation of neurological impacts of acidification in a temperate fish 

species and, critically, that natural environmental variability may mediate the impacts 

of ocean acidification.  
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INTRODUCTION 

Ocean acidification (OA; here defined as both increased ocean pCO2 and 

decreased pH) has been identified as a major threat to marine species (Kroeker et al., 

2013). Several studies have documented changes in neurological functioning, 

including altered cognition, sensory function and behavior, in marine fish (e.g., 

Domenici et al., 2012; S. L. Hamilton et al., 2017; T. J. Hamilton et al., 2013; 

Munday et al., 2010; Pistevos et al., 2015), raising concerns about neurological 

impacts leading to changes in the strength of species interactions (e.g., predation). In 

contrast, more recent work has questioned the generality and replicability of such 

impacts across studies and species (Clark et al., 2020a). Additionally, much of the 

evidence of neurological impacts comes from studies of a few tropical reef species 

under static pH/pCO2 regimes (Nagelkerken & Munday, 2016). Physiological 

evidence indicates these neurological impacts may be the result of a hypercapnia-

driven reversal of electrochemical gradients in GABAergic neurons. This has been 

hypothesized to result from internal acid-base balance processes that lead to an 

accumulation of intracellular [HCO3-] and/or a decrease in extracellular [Cl-] (Heuer 

& Grosell, 2014; Nilsson et al., 2012). This shift in ion concentrations is thought to 

cause neuron depolarization upon GABAA receptor activation rather than the 

hyperpolarization expected under non-acidified conditions, reversing the functional 

nature of these neurons from inhibitory to excitatory and presumably causing the 

observed shifts in cognition and behavior (Heuer & Grosell, 2014; Nilsson et al., 

2012; Schunter et al., 2019). Given this body of evidence, altered neurological 
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function may be a major pathway through which changing seawater carbonate 

chemistry will impact fitness in marine fish. Continued work elucidating the 

molecular mechanisms underlying these changes is therefore critical for moving the 

field forward. 

         Many coastal ecosystems experience significant environmental variability 

over a range of temporal scales, including fluctuations in seawater pH/pCO2 (Chan, 

Barth, Blanchette, Byrne, Chavez, Cheriton, Feely, Friederich, Gaylord, Gouhier, 

Hacker, et al., 2017; Hofmann et al., 2011; Kang et al., 2022; Kroeker et al., 2020). In 

upwelling regions, where deeper, more acidic water is brought to the ocean surface, 

pH can vary by half a unit over a period of weeks (Hirsh et al., 2020; Hofmann et al., 

2011). In seagrass beds, pH can vary by a whole unit over a period of hours to weeks 

due to diurnal fluctuations in photosynthesis and respiration and tidal movement 

(Duarte et al., 2013; Hofmann et al., 2011). These fluctuations often reach or exceed 

predictions for the mean future ocean pH under OA (Gruber et al., 2012; Hauri et al., 

2013; Takeshita et al., 2015). In previous studies, exposure to low pH/high pCO2 

seawater has affected indicators of fish neurological function anywhere from 2-12 

days after exposure has ceased (T. J. Hamilton et al., 2013; Munday et al., 2010), but 

it is unclear what duration of exposure elicits these effects. How temporal 

environmental variability moderates fish responses to low pH/high pCO2 remains 

critically understudied, leaving many unanswered questions about how OA may 

realistically affect populations in nature (but see Jarrold et al., 2017; Jarrold & 

Munday, 2019; Schunter et al., 2021). Investigations into the effects of pH/pCO2 
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variability are important for accurate prediction of the severity of impacts 

acidification will have on natural populations and ecosystems (Kroeker et al., 2020). 

For example, if variability dampens the effects documented in studies using only 

static pH/pCO2 treatments (as seen in Jarrold et al., 2017 and Jarrold & Munday, 

2019, where diel pCO2 fluctuations ameliorated impairments in behavior and growth 

seen under static decreases in pCO2), we may be overestimating the effects of OA, 

and overlooking an important role that variability may play as a provider of temporal 

refuge. Conversely, if variability exacerbates negative impacts of acidification, acting 

as an additional stressor, we may be underestimating the potential impact of 

acidification on natural populations. 

We expect physiological responses to OA to be reflected in the gene 

expression of the affected organism (Griffiths et al., 2019; S. L. Hamilton et al., 

2017). In particular, we expect changes in brain gene expression to be associated with 

shifts in neurological and cognitive function (Schunter et al., 2016). Given the 

proposed mechanism of OA-induced cognitive impairment described above, we 

expect experimental acidification to impact expression in genes related to the 

maintenance of homeostasis and neuronal signaling, such as ion transporter and signal 

receptor genes, and those involved in the GABAergic signaling pathway. Changes in 

expression in these gene categories have been noted in spiny damselfish (Schunter et 

al., 2018) and three-spined stickleback (Lai et al., 2016), but this has not yet been 

investigated in a temperate reef species with an evolutionary history of exposure to 

fluctuating pCO2. 
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Here, we present two experimental studies of the effects of acidification on 

brain gene expression in a common temperate reef fish, the black surfperch 

(Embiotoca jacksoni). Surfperches make up a large proportion of fish biomass on 

California rocky reefs (Laur & Ebeling, 1983) and support an immensely popular 

recreational fishery. E. jacksoni is found in both upwelling reef systems and estuarine 

seagrass ecosystems, and therefore has an evolutionary history of exposure to variable 

pH conditions that are often more extreme than those experienced by tropical reef fish 

(Hofmann et al., 2011). A few studies have investigated the effects of acidification on 

temperate reef fishes (e.g. S. L. Hamilton et al., 2017; Kwan et al., 2017; Cline et al., 

2020), but surfperches are unique because they exhibit viviparity and no pelagic 

larval phase, with young born as developed juveniles. Additionally, E. jacksoni has 

limited adult dispersal (Bernardi, 2000, 2005; Hixon, 1981). These two life-history 

traits increase the likelihood of adaptation to local environmental conditions in E. 

jacksoni, which may lead to divergent effects of acidification in this species 

compared to other temperate fish (e.g., greater physiological adaptation to OA in 

populations that have historically experienced local acidification). 

Experiment 1 was designed to determine the presence and extent of any 

impacts of acidification on E. jacksoni brain gene expression and used a static and 

more extreme acidified treatment (pH ~7.30). In Experiment 2, we used a less 

extreme static treatment and incorporated two variable treatments with different mean 

pH levels to mimic upwelling-scale pH variability. This experiment was designed to 

test the potential role of temporal pH/pCO2 variability in mediating any neurological 
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effects of acidification. Together, the results of these experiments provide a more 

comprehensive understanding of the impacts of acidification on marine organisms, 

particularly in dynamic, temperate ecosystems. 

METHODS 

Collections and Acclimation 

We collected young-of-the-year E. jacksoni from Elkhorn Slough (Monterey 

County, CA) using a beach seine. Collected fish were placed in coolers and driven 

back to UCSC-CSC, where they were kept in outdoor flow-through containers until 

the start of each experiment. For exact dates of collections, acclimation periods, and 

experimental manipulations see Table S1.1. 

Experimental Design 

We conducted two separate experiments with similar methods in November 

2015 and September 2017 at University of California, Santa Cruz’s Coastal Science 

Campus (UCSC-CSC). Both experiments treated E. jacksoni juveniles in outdoor 

flow-through seawater systems. In Experiment 1 (2015), we set target treatments at 

pH 7.85, representing a common current upwelling condition along the coast of 

Central California, and pH 7.30, representing a current extreme estuarine event or 

future extreme upwelling event (Chan, Barth, Blanchette, Byrne, Chavez, Cheriton, 

Feely, Friederich, Gaylord, Gouhier, Hacker, et al., 2017; Hofmann et al., 2011; 

Lowe et al., 2019; Takeshita et al., 2015). Both treatments in this experiment held the 
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target pH constant (static) over the course of the experiment. Five randomly assigned 

juvenile E. jacksoni were distributed across two replicate tanks at pH 7.30 and four 

were distributed across two replicate tanks at pH 7.85 (opaque 200 L plastic drums). 

Seawater pH treatments were replicated only at the level of holding tanks. Replicates 

were then brought down to experimental pH levels over seven days. Tissue sampling 

was conducted after 23 days of treatment (Table S1.1). 

In Experiment 2 (2017), we incorporated upwelling-scale pH variability into 

two of the treatments, and target pH levels were set at more conservative levels. Two 

static pH treatments were set at target pH levels of 7.85 and 7.70, approximating 

conservative present and future reef conditions during the upwelling season (Chan, 

Barth, Blanchette, Byrne, Chavez, Cheriton, Feely, Friederich, Gaylord, Gouhier, 

Hacker, et al., 2017; Takeshita et al., 2015). For each static treatment, there was a 

corresponding variable treatment that oscillated around the same mean pH as the 

static treatment with an amplitude of ± 0.15 pH and a period of eight days (Figure 

1.1), approximating a typical upwelling pattern (Hofmann et al., 2011). An additional 

treatment, hereafter referred to as “ambient”, had a static target pH of 8.00. However, 

because our pH control system was not capable of increasing pH above that of the 

incoming seawater, periodic natural decreases in the pH of the input seawater below 

8.00 caused this treatment to exhibit an intermediate level of variability between that 

of the static and variable treatments (Figure S1.1). We used 10 header buckets (two 

per treatment) to create the five different pH treatments, with two replicate tanks per 

header. We randomly assigned six juvenile E. jacksoni to replicate tanks (translucent 
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61 L plastic containers; 6 individuals x 4 replicate tanks x 5 pH treatments) and 

allowed them to acclimate at ambient pH for 2-3 days. We then allowed the pH of 

each treatment to slowly approach its starting pH (target pH 8.00, 7.85, or 7.70) over 

a period of two days. After an additional 4-5 days, the variable treatments began their 

programmed oscillations (Figure S1.1). Due to logistical restrictions, the treatments 

were separated into two groups (pH 7.85 and ambient treatments, pH 7.70 treatments) 

that were staggered in their timing by one day (Figure S1.1). Using a custom-built 

LabView program, set points for the variable treatments were changed throughout the 

experiment at intervals of 0.003125 pH per hour to create 8-day cycles. During this 

experiment, fish were removed from their treatment tanks on two occasions to 

conduct behavioral assays, after which they were returned to their treatment tanks. 

Because we were met with logistical challenges that precluded the proper execution 

of these trials, these data were not analyzed. Eight days (1 full cycle of the variable 

treatments) were allowed to elapse between the last trial and tissue sampling, which 

was conducted after 22 days (Figure S1.1; Table S1.1). 

pH Control System & Sampling of Seawater Chemistry 

Seawater pH was manipulated using a custom-built feedback control system. 

Two large sumps received a continuous flow of ambient seawater. One of these 

sumps (“low pH”) was continuously bubbled with CO2 gas, while the other 

(“ambient”) was left untreated. Lines from both sumps fed seawater into header 

buckets at varying rates to create pH treatments. The pH of each bucket was 
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continuously measured by Honeywell Durafet II sensors connected to Honeywell 

Universal Dual Analyzers (UDAs; see Kapsenberg et al., 2017). Seawater pH in each 

header was controlled through a feedback system, where a solenoid valve determined 

the flow of low pH seawater to the header to either increase or decrease pH. The 

mixed treatment water from each header then flowed out into two replicate holding 

tanks. We oxygenated and mixed seawater in each header using air pumps/stones 

and/or water pumps (Experiment 2 only). 

 Prior to beginning each experiment, we calibrated the Durafet sensors from 

the header buckets using equimolar Tris buffer (DelValls & Dickson, 1998) obtained 

from the Dickson Lab (Scripps Institution of Oceanography). In Experiment 1, 

discrete water samples were taken from the replicate tanks at seven time points and 

used for characterization of carbonate chemistry via spectrophotometric pH analysis 

and open cell total alkalinity titration (Dickson et al., 2007). In Experiment 2, samples 

were taken from headers at five time points and used for post-hoc calibration of 

Durafet pH measurements. Using a handheld sensor (YSI), we also measured 

temperature, pH, dissolved oxygen, and salinity in each replicate tank daily and, in 

Experiment 2, in each header as well to allow for calibration of YSI pH 

measurements to calibrated Durafet measurements. See Tables 1.1 & 1.2 for 

measured and calculated seawater parameters. 
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Experimental Considerations 

A heat wave struck Santa Cruz during Experiment 2. This added stress may 

have contributed to the juvenile mortality observed during this experiment (48 out of 

120 fish died, unrelated to treatment; ANOVA, F = 2.088, p = 0.133). Additionally, 

some of the Durafet sensors (four of ten) used to control the pH in the headers 

experienced heavy fouling by microalgae toward the end of Experiment 2. This likely 

led to artificially high pH measurements for about two hours around midday due to 

photosynthesis, and thus a corresponding over-correction by the pH control system. 

Because of this issue, the pH of certain tanks was likely lower during midday than 

their respective set points. To better understand the scale of this over-correction, we 

conducted a test 11 days after tissue sampling, in which all Durafets were placed in 

the same header with no active pH control (Figure S1.2). Though the effect of fouling 

on recorded pH appeared to strengthen over the 11 days since tissue sampling, this 

post-hoc test revealed variability in the impact across headers, and a relatively even 

distribution of fouling across treatments (Figure S1.2). The greatest spike during this 

test occurred in one of the two ambient headers with a magnitude of ~0.5 pH units, 

but this treatment was not included in most of our analyses, and thus we believe it 

does not affect our conclusions. Examination of experiment Durafet readings from the 

ambient header (which, due to its high set point and limited pH control, displayed the 

true extent of the pH spikes) revealed that significant spikes (deviation of ~ 0.05 pH 

units or greater) in this most affected treatment only began occurring approximately 

three days before tissue dissection. Because our test indicated that the other headers 
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were affected to a much smaller degree (Figure S1.2), the other treatments likely did 

not experience midday spikes of greater than 0.05 pH units for any significant 

duration prior to the end of the experiment. To prevent the inclusion of spurious pH 

data points in the characterization of the experimental treatments, we used the 

continuous Durafet pH and temperature data for the dates September 1 – 17, after 

which we used pH and temperature data from daily YSI readings taken from each 

header. This shift in sampling frequency likely explains much of the apparent 

increased variability of the pH treatments after September 17 (Figure S1.1), as the 

YSI data represents only a daily snapshot of the pH of each header. The pH sensor 

within the YSI is also functionally different from those within Durafets (Martz et al., 

2010). Finally, outside of the daily spikes, the Durafet pH data collected September 

17-24 showed no obvious departure from the precision seen earlier in the experiment. 

We therefore contend that, apart from the midday overcorrections experienced at the 

end of the experiment, the true precision and variability of the pH treatments was 

unchanged after September 17, and any apparent changes reflect only a change in the 

pH-sensing instrument used. 

Fish Care and Handling 

This experiment was run under the approval of UCSC IACUC project 

proposals BERNG1312 and KROEK1503_A2. We performed system checks at least 

daily and fed fish frozen shrimp every day (Experiment 1) or a mix of frozen brine 

shrimp, Spirulina brine shrimp, and mysis shrimp every other day (Experiment 2). 
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Tanks were cleaned and excess food removed approximately 7 times per week 

(Experiment 1) and at least once per week (Experiment 2). To minimize stress, a 

shelter was placed in each replicate. To reduce heat and sun exposure, shade cloth 

was kept over the top of the replicate tanks whenever water monitoring, cleaning, or 

feeding was not occurring. 

Tissue Sampling 

At the end of each experiment, we dissected tissue from four individuals from 

each treatment. Individuals were dissected one at a time, with all dissections taking 

less than 10 min from the time of fish removal from its tank. Brain and lateral muscle 

tissue were dissected and sequenced in Experiment 1 for use in the transcriptome 

assembly, but only brain tissue was sequenced in Experiment 2. In Experiment 2, the 

whole brain was dissected at the approximate time when the variable pH treatments 

were crossing (in the ascending direction) their target mean pH levels (Figure S1.1). 

Only brain gene expression analysis will be further discussed here. Tissue was stored 

in screw-cap tubes and flash frozen in liquid nitrogen. We stored all tissue samples at 

-80°C until RNA extraction. 

RNA Extraction and Library Preparation 

Dissected whole brains were arbitrarily subsampled and homogenized using a 

Qiagen TissueLyser. A discussion of the potential effects of subsampling are included 

below in the ‘Inter-Individual Variability in Gene Expression’ section of the 
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Discussion. We extracted RNA using the Qiagen RNeasy® Mini extraction kit. RNA 

quality and quantity were assessed using a NanoDrop spectrophotometer and Qubit 

fluorometer. RNA was stored in DEPC-treated water at -80°C. cDNA libraries were 

prepared from 1 µg of total RNA using the New England Biolabs NEBNext® Ultra™ 

II RNA Library Prep kit. Prepared libraries were sequenced on an Illumina HiSeq 

4000 (150bp SE) at the QB3 Vincent J. Coates Genomics Sequencing Laboratory at 

the University of California, Berkeley. 

Read Processing & Transcriptome Assembly 

We removed adapters and trimmed/removed low quality reads using the 

Trimmomatic software (v0.36; Bolger et al., 2014; parameters = LEADING:2 

TRAILING:2 SLIDINGWINDOW:4:2 MINLEN:25) and quality checked the 

trimmed sequences using FastQC (v0.11.7; Andrews, 2010). We used the trimmed 

reads from all sequenced samples from both experiments to assemble a brain/muscle 

tissue combined transcriptome for E. jacksoni using the genome-guided 

TopHat/Cuffmerge/Cufflinks pipeline (default parameters; TopHat v2.1.1, Cufflinks 

v2.2.1; Trapnell et al., 2012). This pipeline creates separate assemblies for each 

sample, which are then merged. A draft, scaffold-level E. jacksoni genome assembly 

was used as the reference (see Supplementary Materials). We annotated the assembly 

by running a blastx query (e-value cutoff = 1e-3; NCBI, Altschul et al., 1990) against 

the SwissProt database (uniprot_sprot.dat.gz downloaded April 25, 2020; The 

UniProt Consortium, 2021). 
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Multivariate Analysis of Gene Expression 

In Experiment 1, we sequenced transcripts from both muscle and brain tissue, 

but only brain gene expression will be discussed here. To characterize global gene 

expression of individuals, trimmed reads were aligned and quantified into gene-level 

expression data using bowtie (v1.2.3; Langmead et al., 2009) and RSEM (v1.3.3; Li 

& Dewey, 2011) within the Trinity software package (v2.9.1; Haas et al., 2013). Raw 

read counts were then filtered to remove genes with low expression using the default 

parameters of the filterByExpr function (min.count = 10, min.total.count = 15, large.n 

= 10, min.prop = 0.7) in the R package, edgeR (v3.34.0; R Core Team, 2021; 

Robinson et al., 2010). We normalized the read counts using the TPM method, as 

implemented by the calcNormFactors function in the edgeR package, then log2-

transformed the data using the cpm function (prior.count = 2). The transformed data 

were dimensionally reduced through multidimensional scaling (metric MDS in 

Experiment 1, nMDS in Experiment 2) using Manhattan distances, as implemented 

through the wcmdscale and metaMDS functions in the vegan package for R (v2.5.7; 

Oksanen et al., 2020). 

To test whether global gene expression profiles differed among treatments, we 

ran a permutational multivariate analysis of variance (PERMANOVA; Anderson, 

2001, 2017) on the transformed expression data using the adonis function of the 

vegan package (method="manhattan", perm=1,000,000). In Experiment 1, the sole 

model factor was pH level (7.85, 7.30). In Experiment 2, the model was run with two 
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factors: pH level (7.85, 7.70) and pH variability (static, variable). For Experiment 2, 

pairwise comparisons between treatments were conducted using the pairwise.adonis 

function of the pairwiseAdonis package (sim.method = "manhattan", perm = 

1,000,000) (Martinez Arbizu, 2020). 

Differential Gene Expression Analysis 

Using the gene-level counts matrix created by RSEM, we identified 

differentially expressed genes (DEGs) between all pairwise treatment comparisons 

using the edgeR package, as implemented through Trinity. To buffer against false 

positives and noise due to the experimental conditions described above, we used a 

conservative FDR cutoff value of 0.001 (-P parameter) and a fold-change cutoff of 

1.5 (-C parameter) to create the final list of DEGs for each treatment comparison. We 

then repeated MDS procedures and PERMANOVA tests as described above, using 

only these DEGs. 

Functional Enrichment Analysis 

To identify gene sets (groups of functionally related genes) that were 

significantly enriched in a given treatment comparison (e.g., pH 7.85 vs. pH 7.30) we 

used the threshold-free analytical method, Gene Set Enrichment Analysis (GSEA; 

Subramanian & Tamayo et al., 2005) as implemented through the FGSEA package 

for R (Korotkevich et al., 2021). Given a ranked list of genes derived from 

differential expression analysis, this method yields a list of gene sets from user-
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supplied gene set databases - in this case GO (The Gene Ontology Consortium 2020), 

KEGG (Kanehisa & Goto, 2000), and the MSigDB Hallmark collection (Liberzon et 

al., 2015) - that are enriched among upregulated and downregulated genes. 

Enrichment analysis was completed for Experiment 1 and 2 separately, and the 

resulting enriched gene sets from analogous treatment comparisons were then 

contrasted across experiments to identify commonly enriched gene sets. 

RESULTS 

Seawater pH Manipulation 

Mean seawater pH levels were maintained near their target set points in each 

experiment. Seawater parameters and information on how they were calculated are 

given in Tables 1.1 and 1.2. Note that for consistency, we continue to use target pH 

levels to refer to each treatment. 

Sequencing & Transcriptome Assembly 

The TopHat/Cufflinks pipeline yielded a transcriptome made up of 71,933 

assembled transcripts grouped into 39,258 putative genes. Aligning the trimmed reads 

back to the assembled transcriptome resulted in an 82.98% alignment rate. A blastx 

search of the transcriptome against the SwissProt database revealed that 8,836 

transcripts represented nearly full-length transcripts (>80% alignment coverage), and 

that 16,574 proteins were represented in the transcriptome at some level of alignment 

coverage. We used BUSCO (v4.0.6; Simão et al., 2015) to quantify the completeness 
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of our transcriptome and found that of the 3,640 BUSCO orthologs in the 

Actinopterygii dataset, 76.9% were found complete (41.2% single-copy, 35.7% 

duplicated), 6.5% were found fragmented, and 16.6% were missing. For more 

statistics on the assembly, see Table S1.2. 

 Total sequenced reads per sample are listed in Tables S1.3 and S1.4. Of the 

39,258 putative genes in the assembled transcriptome, 22,961 (Experiment 1) and 

33,597 (Experiment 2) remained in each dataset after filtering for genes with low 

expression. 

Multivariate Analyses of Global Gene Expression 

Single-factor PERMANOVA analysis identified a strong and significant effect 

of pH level on global gene expression in both Experiment 1 (single-factor;  r2 = 

0.811, F = 25.766, p = 0.029) and Experiment 2 (two-factor, ambient excluded; r2 = 

0.159, F = 2.53, p = 0.021), with pH explaining 81% and 16% of the observed 

variation, respectively (Tables S1.5 & S1.6). In Experiment 2, we did not detect an 

effect of pH variability on global gene expression (r2 = 0.037, F = 0.59 p = 0.890) or 

an interaction of pH level and variability (r2 = 0.052, F = 0.84, p = 0.524). Pairwise 

comparisons of all treatments (including ambient) revealed two comparisons were 

nearly significantly different (Table S1.7): ambient vs. 7.70 static (r2 = 0.230, F = 

1.79, p = 0.086) and 7.85 static vs. 7.70 static (r2 = 0.292, F = 2.47, p = 0.057). We 

visualized the differences in global gene expression patterns between treatments using 

MDS (Figures S1.3 & S1.4). 
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Differential Gene Expression Analysis 

We found 10,656 DEGs between the treatments in Experiment 1 (Figure 1.2). 

In Experiment 2, we found a total of 200 DEGs across all treatment comparisons 

(Table 1.3; Figure S1.5). The 7.85 static vs. 7.70 static comparison produced the 

majority of DEGs (159). The 7.85 static vs 7.70 variable and 7.85 variable vs. 7.70 

static comparisons produced 11 DEGs each and six genes each were differentially 

expressed in the static vs. variable comparisons of both the 7.85 and 7.70 pH levels 

(one gene was consistently differentially expressed across the two comparisons).  

Since we did not expect transcriptome-wide shifts in gene expression across 

pH variability treatments in Experiment 2 (Figure S1.4), and were instead interested 

in how the expression of acidification response genes was affected by the introduction 

of environmental variability, we repeated our multivariate analyses of gene 

expression for only the DEG subset of Experiment 2. For consistency, analogous 

analyses were also performed for the Experiment 1 DEG subset (Table S1.8; Figure 

S1.6). 

DEG expression differed among pH levels in Experiment 2 (r2 = 0.388, F = 

10.77, p = 0.004), with pH explaining 39% of the observed variation (Figure 1.3).  

We did not detect an effect of pH variability (r2 = 0.041, F = 1.15 p = 0.291). The 

interaction of pH level and variability, however, was marginally significant (r2 = 

0.139, F = 3.85, p = 0.052) (Table S1.9). Pairwise comparisons of all treatments 

revealed a significant difference between the pH 7.85 and pH 7.70 static treatments (p 
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= 0.029) and nearly-significant differences between the ambient and 7.85 static 

treatments (p = 0.057) and between the ambient and 7.70 static treatments (p = 0.086; 

Table S1.10). The comparison of 7.85 static vs. 7.85 variable was also nearly 

significant (p = 0.057), but the comparison of 7.70 static vs. 7.70 variable was less so 

(p = 0.171).  

Analysis of Within-Treatment Variances 

To test the effect of pH variability on within-treatment variability in gene 

expression, we calculated the variance of normalized gene expression for each DEG 

within each treatment in Experiment 2 (excluding ambient) and averaged the variance 

across all DEGs (Figure 1.4). For each pH level (7.85, 7.70), we then calculated F-

ratios by dividing the mean variance of the variable treatment by that of the static 

treatment. We log-transformed these variances and compared the distributions to a t-

distribution centered at 0 using one-tailed t-tests (Table S1.11). We found that at both 

pH levels, the average variance in DEG expression was greater in the variable pH 

treatment than in the static pH treatment (pH 7.85: p = 0.0001; pH 7.70: p = 0.03487). 

Functional Enrichment Analysis 

In Experiment 1, gene set enrichment analysis using FGSEA revealed 240 enriched 

gene sets among the upregulated genes and 343 enriched gene sets among the 

downregulated genes in the pH 7.30 treatment compared to the 7.85 treatment (FDR 

< 0.05; Table S1.12). In Experiment 2, 61 gene sets were enriched among upregulated 
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genes and 71 among downregulated genes in the 7.70 static treatment compared to the 

7.85 static treatment (Table S1.13). At the 7.85 pH level, we found 44 enriched gene 

sets among upregulated genes and 202 among downregulated genes in the variable 

treatment compared to the static treatment (Table S1.14). At the 7.70 pH level, 115 

and 22 gene sets were enriched among the upregulated and downregulated genes, 

respectively, in the variable treatment compared to the static treatment (Table S1.15). 

To aid interpretation, the enriched gene sets for the 7.85/7.30 comparison in 

Experiment 1 and the 7.85 static/7.70 static comparison in Experiment 2 were further 

collapsed into clusters of gene sets (using a gene set similarity coefficient) using the 

AutoAnnotate and clusterMaker2 applications for the Cytoscape software platform. 

These clusters were manually summarized based on their constituent gene sets 

(Tables 1.4 and 1.5). 

To assess consistency of response to acidification across experiments, we 

determined the overlap in enriched gene sets between the pH 7.85/pH 7.30 

comparison of Experiment 1 and the pH 7.85 static/pH 7.70 static comparison of 

Experiment 2 (Figure 1.5, Table 1.6). To assess consistency in expression response 

across the two static vs. variable treatment comparisons of Experiment 2 (7.85 

static/7.85 variable, 7.70 static/7.70 variable), we determined the overlap in enriched 

gene sets between these comparisons (Figure 1.6, Table S1.16). 
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DISCUSSION 

Impacts of Static Acidification 

Numerous studies have demonstrated impaired behavior and sensory function 

in fish and other marine organisms when exposed to low pH/high pCO2, (Domenici et 

al., 2012; S. L. Hamilton et al., 2017; T. J. Hamilton et al., 2013; Munday et al., 2010; 

Pistevos et al., 2015)(but see Clark et al., 2020). Though the mechanisms behind 

these changes are still poorly understood, significant effects of low pH/increased 

pCO2 on brain gene expression have been documented in a few marine fish species 

that demonstrate associated impairments in behavior (Lai et al., 2016; Schunter et al., 

2016, 2018, 2021). In this study we tested whether brain gene expression is similarly 

impacted in a temperate reef fish that experiences prolonged periods of natural 

acidification. Across both experiments presented here, we found that global gene 

expression was significantly affected by acidification (high vs. low pH). Comparing 

results across experiments, the number of detected DEGs increased with more 

extreme acidification, as did the number of enriched gene sets. A similar increase in 

DEGs with increased intensity of acidification has also been reported in the olfactory 

bulb of coho salmon (Williams et al., 2019). This marked increase in effect size 

indicates that further acidification past the already-low pH of 7.70 can have a 

substantial additional impact on the physiology of marine fish. This pattern may have 

important implications for the management of marine ecosystems and the services 

they provide as our global society struggles to control CO2 emissions. 
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Although a greater number of gene sets were enriched in Experiment 1 than in 

the comparison of the static treatments of Experiment 2, similar enrichment themes 

emerged. In both experiments, static acidification led to the upregulation of gene sets 

related to turnover in the proteome and transcriptome that may reflect ongoing 

physiological adaptation to altered environmental conditions (Tables 1.4 & 1.5). 

Additionally, static acidification in both experiments led to the downregulation of 

gene sets related to the MAPK cascade, G protein-coupled receptor signaling 

pathways, plasma membrane components, secretory vesicles and granules, 

neuroactive ligand-receptor interaction, and calcium ion binding, indicating a general 

reduction in cell signaling, including neuroactive signaling, in response to high pCO2. 

In general, this is the opposite of the response seen in similar gene sets in spiny 

damselfish (Acanthochromis polyacanthus) (Schunter et al., 2018) and the olfactory 

bulb of coho salmon (Williams et al., 2019). Schunter et al. (2019) proposed that high 

pCO2-induced changes in electrochemical gradients across GABAergic neuron 

membranes may initiate a “vicious cycle” of feedbacks and ultimately an increase in 

excitatory activity in the brain that may explain behavioral changes seen in other 

species. If this is indeed the case, the downregulation of gene sets related to 

neuroactive signaling seen here may represent a species-specific adaptive response 

aimed at combating maladaptive runaway excitation in acidic waters (see discussion 

of GABAA receptor related genes below). Finally, downregulation of gene sets related 

to growth and morphogenesis, cell-cell adhesion, and the cytoskeleton indicate 

potential disruption of cell growth and development due to increased cellular stress. 
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Similar themes of upregulated transcription and cellular stress response have also 

been documented in the muscle tissue of Pacific rockfish (S. L. Hamilton et al., 

2017). 

We also identified divergent sets of genes enriched between the moderate 

(Experiment 2, target pH 7.70) and extreme (Experiment 1, target pH 7.30) 

acidification treatments, indicative of a potential threshold effect as static pH 

decreases. In comparison to the static acidification in Experiment 2, static 

acidification in Experiment 1 resulted in the up- and downregulation of additional 

gene sets related to metabolic processes (Table 1.4). These changes may again 

indicate further shifts to the synthesis of stress response proteins, or to isoforms that 

are better suited to an altered cellular environment. Because, at least in humans, there 

can be interaction/crosstalk between cellular stress response pathways and the innate 

immune system signaling pathways (Muralidharan & Mandrekar, 2013), the 

upregulation of an additional 6 gene sets related to the innate immune response may 

further indicate increased cellular stress. The acidification in Experiment 1 also 

resulted in the downregulation of broad categories of gene sets related to basic 

neurological functions, behavior, and cognition, which supports the hypothesis that 

acidification can lead to behavioral impairment in this species though, as mentioned 

above, the specific mechanisms through which OA induced alterations in 

neurobiology might impact fish behavior are still not well understood (Tresguerres & 

Hamilton, 2017). 
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In Experiment 2, additional gene sets related to the regulation of gene 

expression (including epigenetic regulation) were upregulated, again indicating a 

systemic shift in gene expression and response to cellular stress. We also found a 

unique downregulation of a large number of gene sets related to immune response, 

which may in part reflect the external conditions of this experiment, particularly the 

unusually warm ambient temperatures. The combination of physical and chemical 

stressors may have led to the suppression of the immune system in fish in the 

acidified treatment. Suppression or dysregulation of immune function is a well-

established response to stress (Dhabhar, 2014), and heat stress-induced 

immunosuppression, specifically, has been noted across various animal systems 

(Nardone et al., 2010).  

The biological themes of the enriched gene sets in both experiments are 

consistent with enriched categories identified in previous studies in tropical reef fish 

(e.g. Schunter et al., 2016, 2018) and salmon (Williams et al., 2019). Interestingly, 

however, the pattern of enrichment in E. jacksoni under acidified conditions is 

generally opposite to the enrichment pattern found by Schunter et al. (2018) when 

comparing acute or developmentally (together: cis-generationally) exposed spiny 

damselfish to control (untreated) individuals, but closely resembles the pattern of 

gene set enrichment that Schunter et al. found when comparing transgenerationally 

exposed A. polyacanthus to those that were developmentally exposed to acidified 

conditions (not the control treatment). The contrast of our results may reflect the 

transgenerational and evolutionary exposure history of E. jacksoni populations to 



37 
 

naturally acidic environments. While A. polyacanthus on coral reefs may experience 

diurnal pCO2 fluctuations on the scale of ± 50-150 μatm (Schunter et al., 2021 and 

references therein), E. jacksoni in upwelling regions are likely to regularly experience 

prolonged increases in pCO2 (days to weeks) from as low as ~300 μatm to >1000 

μatm (Chavez et al., 2018; Kroeker et al., unpublished data). Those living in estuaries 

can experience even greater shifts in carbonate chemistry over even shorter 

timescales (Duarte et al., 2013; Hofmann et al., 2011). It is therefore likely that the 

juvenile E. jacksoni in our experiments were transgenerationally exposed to acidified 

conditions in-situ. Additionally, while both species lack a pelagic larval stage, A. 

polyacanthus is a substrate spawner and E. jacksoni is a live-bearing species. This 

means that the E. jacksoni used for this experiment may also have developmentally 

experienced their mothers’ natural environmental exposures prior to their birth. 

Because of this potential in-situ transgenerational exposure, our experimental design 

may be more comparable to the transgenerational treatment used by Schunter et al 

(2018). 

As mentioned above, it has been suggested that the cause of previously 

documented acidification-induced behavioral changes in fish may not only be due to a 

reversal of electrochemical gradients that flip the nature of GABAergic neurons from 

inhibitory to excitatory (Nilsson et al., 2012), but also due to a positive feedback 

cycle that may develop as a response to this increase in excitatory activity in the brain 

(Schunter et al., 2018, 2019). This proposed response consists of an increase in 

GABA release and in the abundance of GABAA receptors, which under non-acidified 
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conditions would serve to reduce overactivity in the brain, but under acidified 

conditions likely act to exacerbate the overactivity. Some previous studies in fish 

have seen changes in expression consistent with this response, such as increased 

expression of GABAA receptor subunits and transporter genes (e.g., Schunter et al., 

2016; 2018; Lai et al., 2016). However, the fish in Experiment 1 showed the opposite 

response in GABA-related genes. In Experiment 1, GABAA receptor subunit isoforms 

α (1–6), β (1–3), γ (1–3), ρ (2), and π were all downregulated in the pH 7.30 

treatment, along with many other GABA signaling genes, including glutamate 

decarboxylases gad1 and gad2 (Lai et al., 2016) and gabarapl2. Interestingly, a 

similar general downregulation of GABAergic signaling pathways was recently noted 

in A. polyacanthus at CO2 seeps, but not in other reef fish species (Kang et al., 2022). 

A study on Pacific coho salmon (Williams et al., 2019) also found no changes in 

GABAA receptor subunit expression in the olfactory bulb under increased pCO2, but 

did find an increase in the expression of a GABAB receptor subunit (gabbr2), which 

was instead downregulated in E. jacksoni in our Experiment 1. Williams et al. (2019) 

also found significant changes in the expression of other genes associated with 

GABA signaling, including downregulation of the slc6a13 gene involved in GABA 

uptake, which we also saw downregulated in E. jacksoni in Experiment 1 (see Table 

S1.17 for all differentially expressed GABA-related genes). These divergent 

responses between E. jacksoni, Pacific salmon, and tropical fish species could 

represent species-specific adaptation to differing environmental conditions. In the 

case of E. jacksoni, which frequently experiences periods of high pCO2, the 
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downregulation of GABA-related genes under high pCO2 may be an adaptation that 

prevents or interrupts the excitatory positive feedback cycle proposed by Schunter et 

al. (2019). Previous studies have also noted opposite responses in gene expression 

across species of the same taxa (Kang et al., 2022; Strader et al., 2020), and even 

across populations of the same species (Goncalves et al., 2016), but the extent of the 

role that transgenerational effects play in creating divergent responses is still unclear 

(but see Goncalves et al., 2016; Schunter et al., 2018). Importantly, however, our 

seemingly species-specific results may indicate that E. jacksoni is preadapted to 

acidified conditions, whether through long-term local adaptation or transgenerational 

plasticity. Because of its limited adult dispersal and lack of a pelagic larval phase, E. 

jacksoni may be more likely to be genetically adapted to local conditions than other 

species (Warner, 1997), and its live-bearing reproduction may also facilitate 

adaptation through maternal effects. Kang et al. (2022) recently proposed a similar 

hypothesis to explain why A. polyacanthus (which also lacks a pelagic larval stage) 

differed from other co-occurring damselfish species in its molecular response to 

elevated pCO2. 

Interestingly, the response of GABA-related genes to acidification varied 

between Experiments 1 and 2 (which used different levels of acidification). In 

response to the more moderate static acidification in Experiment 2, E. jacksoni 

showed an upregulation of two subunits of the GABAA receptor (gabra6 and 

gabrb3), which were instead downregulated in Experiment 1. Interestingly, the 

gabra6 subunit is also upregulated in spiny damselfish transgenerationally exposed to 
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high pCO2 when compared to those that were only developmentally exposed, an 

effect opposite to that seen in the expression of other GABAA subunits in the same 

experiment (Schunter et al., 2018). No other GABA-related genes were significantly 

affected by this treatment. In Experiment 1, the greater magnitude change in pH 

resulted in an opposite and much broader response of GABA-related genes. These 

conflicting responses in the transcription of GABAA receptor subunits and other 

GABAA-related genes indicate that in addition to varying across species, the response 

of the GABA signaling pathway to acidification/high pCO2 may also depend on the 

magnitude of the environmental change. Further study is needed to determine how the 

divergent transcriptomic response of E. jacksoni seen in our experiments translates to 

behavior and overall fitness, how the magnitude of any emergent effects compare to 

those observed in other species, and the role transgenerational exposure plays in E. 

jacksoni response to acidification. 

In both Experiment 1 and Experiment 2, an additional group of gene sets 

related to muscle tissue were identified as enriched in the acidified treatment. In 

Experiment 1, this included the upregulation of gene sets related to muscle 

development, contraction, and adaptation and muscle cell components, as well as the 

downregulation of the vascular smooth muscle contraction GO gene set. In 

Experiment 2, the A band GO gene set was upregulated, while the smooth muscle 

contraction gene set was downregulated. While smooth muscle is present in blood 

vessels in the brain, it is possible that the identification of some of these pathways 

(such as those related to striated muscle tissue) as enriched is in part due to the 
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misannotation of genes in this non-model species to orthologous reference genes. 

Alternatively, because our transcriptome was assembled using both brain and muscle 

tissue, it is possible that some brain transcripts were misaligned to muscle-exclusive 

reference transcripts during differential expression analysis. 

Impacts of pH Variability 

Overall, we found that variability in pH moderated the differential gene 

expression seen under static acidification. pH variability decreased the number of 

DEGs detected by the edgeR analysis between the pH 7.85 and pH 7.70 treatments in 

Experiment 2 (from 159 genes when treatments were static to 9 genes when both 

treatments were variable). This aligns with two previous studies that found that 

effects of pH on fish gene expression and behavior were diminished by the 

incorporation of diel pH fluctuations (Jarrold et al., 2017; Schunter et al., 2021). 

Functional enrichment analysis revealed many up- and downregulated gene 

sets between static and variable treatments at each pH level, though there were more 

enriched gene sets in the more moderate pH 7.85 comparison (329 gene sets) than the 

pH 7.70 comparison (139 gene sets). This difference may represent an acidification 

threshold nearer to the 7.85 treatment, where the majority of transcriptional 

adaptation to acidification is activated. Such a threshold effect in gene expression 

patterns has also been observed in the gill tissue of spider crabs exposed to two levels 

of acidification (Harms et al., 2014), as well as in the muscle tissue of blue rockfish 

(Sebastes mystinus; S. L. Hamilton et al., 2017), and thresholds in OA response have 
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been noted across taxa (Bednaršek et al., 2021; Castillo et al., 2014; Wittmann & 

Pörtner, 2013). Interestingly, although 33 gene sets were commonly enriched across 

the pH 7.85 and pH 7.70 static-variable comparisons, the majority of them (30) were 

enriched in opposite directions depending on the pH level, with variability at pH 7.85 

eliciting a directional response mirroring that of static acidification, and variability at 

pH 7.70 eliciting the opposite response (Figure 1.6, Table S1.16). For example, at the 

7.85 pH level, variability led to a downregulation of gene sets related to 

morphogenesis, development, cell differentiation, exocytosis, cell-cell adhesion, 

molecular transducer activity, and leukocyte mediated immunity, while variability at 

pH 7.70 led to upregulation in these gene sets compared to the static treatment. These 

contrasting responses indicate that pH variability can have opposing effects on brain 

physiology depending on the underlying mean pH level. This interactive effect of 

acidification and variability may again reflect a threshold in the neural response of 

fish to acidification. It may be that at more moderate pH levels, variability 

exacerbates the negative effects of acidification by temporarily dropping the pH 

further below the average, but under more extreme acidification, perhaps past a 

biological tipping point, any negative effects of further acidification introduced by 

temporary oscillations may be outweighed by the temporary relief provided by the 

upswing of the oscillations above the mean pH. 

It is important to note that our interpretation of these results could be limited 

by the scope of our experimental design. In Experiment 2, we sampled tissue from 

individuals in each treatment when the variable treatments were increasing in pH and 
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intersecting their corresponding static treatments. While this design keeps the pH at 

the time of sampling consistent between the static and variable treatments, it assesses 

expression at only a single time point, and therefore does not account for likely 

divergent expression patterns at different positions in the pH cycles of the variable 

treatments. Additional experiments are necessary to determine if and how gene 

expression differs in E. jacksoni depending on the trajectory and value of the pH at 

the time of sampling. 

Inter-Individual Variability in Gene Expression 

A particularly striking finding from our experiments is the observation that 

gene expression variability across individuals was greater in the variable pH 

treatments of Experiment 2 than in the static treatments (Figure 1.4). This pattern 

indicates that the environmental variability introduced by the pH oscillations may be 

revealing significant “cryptic variation” (Rutherford, 2000, 2003; Rutherford & 

Lindquist, 1998) in the transcriptomic response of E. jacksoni to acidification. In the 

context of climate change, such phenotypic variation, if beneficial and heritable, 

could represent potential adaptive variation on which selection may act, allowing 

populations to adapt to ongoing changes in environmental conditions (Rutherford & 

Lindquist, 1998; Rutherford, 2000, 2003; Queitsch et al., 2002; reviewed in 

Ghalambor et al., 2007). 

Patterns of expression across individuals within static treatments, and across 

functionally related genes within individuals, were notably consistent. This 
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consistency provides evidence of a conserved stress response as described by Kültz 

(2005), and may again reflect a biochemical “switch” type response, activated at a 

certain environmental threshold. This idea is further supported in Experiment 2 by the 

similarity of expression profiles of some individuals in the pH 7.85 variable treatment 

to the expression profiles exhibited by those in the pH 7.85 static treatment, while 

others in the variable treatment exhibited expression profiles similar to those in the 

pH 7.70 static treatment (Figure S1.5, Figure 1.3). 

Because we did not use the whole brain, and instead arbitrarily subsampled 

brain tissue from each individual, some of the inter-individual variability in 

expression profiles may be the result of variability in the exact section(s) of the brain 

that was sampled for each individual. Conversely, it is possible that this sampling 

method could introduce treatment-level bias in the brain region sampled that could 

lead to misleading signals of differential expression between treatments. However, 

expression profiles within static treatments were remarkably consistent across 

individuals, especially in Experiment 1 (Figure 1.2), indicating a low probability of 

sampling bias, and all individuals were subsampled in an arbitrary manner by a single 

researcher for each experiment. We therefore maintain that alternative sampling 

methods would have been unlikely to change the major patterns and conclusions 

presented here. 
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Conclusions 

Overall, our results indicate that both acidification and pH/pCO2 variability 

can have significant impacts on the brain gene expression of a nearshore temperate 

fish species. Given recent debate regarding the generality of neurological impacts of 

OA on marine fish (Clark et al., 2020a, 2020b; Munday et al., 2020), our study 

provides evidence of neurological impacts, even in a species with a high likelihood 

for local adaptation to naturally low pH/pCO2. We found a significant effect of 

acidification on global gene expression in E. jacksoni brain tissue, and that the 

transcriptomic response was similar to a previous experiment that compared 

transgenerationally exposed tropical damselfish to individuals that were 

developmentally exposed (Schunter et al., 2018). These results suggest that the E. 

jacksoni in our experiments were exposed to ecologically relevant pH/pCO2 

variability in situ, which may have influenced their response to acidification in the 

lab. Additionally, our results demonstrate that the incorporation of upwelling-scale 

pH variability into acidification treatments has a substantial impact on the number of 

DE genes detected between moderate and low levels of acidification, indicating that 

temporal pH variability can moderate the impacts of acidification. Interestingly, we 

also found that the direction of the effect of variability on gene expression in certain 

genes depended on the degree of acidification. These opposing patterns of gene 

expression indicate that the impact of pH variability on fish brain physiology may be 

context-dependent, perhaps serving as an additional stressor at more moderate levels 

of acidification, but as an ameliorating factor when the mean pH is more extreme. 
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Finally, we observed significant variation in gene expression across individuals, and 

found that upwelling-scale pH variability revealed additional cryptic phenotypic 

variation. This finding indicates that studies employing only static treatments may 

underestimate standing genetic variation in traits related to the response of fish to 

acidification. This cryptic variation may provide additional genetic variation on 

which selection may act and therefore increase the likelihood of successful adaptation 

of fish populations to acidification. In summary, our results emphasize the importance 

of considering environmental variability in global change experiments and 

demonstrate that a species with an evolutionary history of exposure to acidified and 

variable conditions exhibits a distinctive transcriptomic response in gene sets similar 

to those affected in species that have shown behavioral impairment. 
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FIGURES 

 

 
Figure 1.1 - Experiment design and data analysis pipeline for Experiments 1 and 2. 
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Figure 1.2 - Heatmap of gene expression profiles for each individual in Experiment 
1. Each column represents an individual fish, and each row represents a differentially 
expressed gene. Each column represents an individual fish. Yellow colors represent 
upregulation in a given treatment and purple colors represent downregulation. 
Brighter hues represent larger differences in relative gene expression across the 
treatments. 
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Figure 1.3 - nMDS plot of DEG expression in Experiment 2. Points represent single 
individuals. Ellipses are 95% confidence ellipses. 
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Figure 1.4 - Box plot of within-treatment variances in Experiment 2 (DEGs only, 
outliers removed for clarity). Diamonds mark the mean for each treatment. Notches 
represent a roughly 95% confidence interval around the median. Removed points lie 
outside of 1.5 times the IQR of each hinge. 
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Figure 1.5 - Overlapping enriched gene sets across both experiments. “Up” and 
“Down” refer to gene sets that were upregulated or downregulated in the lower pH 
treatment relative to the higher pH treatment in each experiment (i.e., pH 7.85 
treatments are treated as baseline in both cases). Only static treatments are included 
for Experiment 2. 
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Figure 1.6 - Overlapping enriched gene sets across static vs. variable comparisons in 
Experiment 2. “Up” and “Down” refer to gene sets that were upregulated or 
downregulated in the “variable” treatment relative to the “static” treatment for a given 
pH level (7.85 or 7.70) (i.e., static treatments are treated as baseline). 
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TABLES 
 
Table 1.1 - Carbonate chemistry and environmental parameters for treatment 
containers in Experiment 1. Aragonite saturation state (Ω) and pCO2 were calculated 
with the R package seacarb (Gattuso et al. 2021) using the spectrophotometric pH and 
total alkalinity (TA) values from discrete bottle samples, and salinity and temperature 
values from YSI readings. All values are means ± SD. Mean pHT (spec) and TA were 
calculated from bottle samples taken at 7 time points across the experiment. Mean 
pHT (YSI) was calculated from daily readings that were calibrated using the discrete 
bottle samples. 
 

Treatment 
pHT 

(spec) 
pCO2 

(μatm) Ω 

TA 
(μmol/kg

) 
Temp 
(°C) 

Salinity 
(ppt) 

pHT  
(YSI) 

Target pH 7.85 7.88 ± 0.02 599 ± 36 1.50 ± 0.08 2193 ± 59 13.0 ± 0.5 33.8 ± 0.1 7.89 ± 0.04 

Target pH 7.30 7.35 ± 0.06 2204 ± 333 0.48 ± 0.07 2212 ± 20 12.2 ± 0.8 33.8 ± 0.1 7.36 ± 0.14 

 
 
Table 1.2 - Carbonate chemistry and environmental parameters for the headers of 
each treatment in Experiment 2. Aragonite saturation state (Ω) and pCO2 were 
calculated with the R package seacarb (Gattuso et al. 2021) using the Durafet pH and 
temperature values, average TA values from discrete bottle samples, and salinity 
values from YSI readings. All values are means ± SD. Mean pHT (Durafet) values 
were calculated using hourly averaged pH readings (from headers) that were 
calibrated using discrete (bottle) water samples and include only the time period of 
the first two pH cycles (September 1/2 - September 17/18). Mean pHT (YSI) values 
were calculated using daily readings (from replicate containers) that were calibrated 
using bottle-calibrated Durafet values (taken simultaneously) from the September 1/2 
- September 17/18 date range and include YSI readings from the entire length of the 
experiment (September 1/2 - September 23/24). 
 

Treatment 
pHT 

(Durafet) 
(hourly) 

pCO2 
(μatm) Ω 

TA 
(μmol/kg) 

(bottle 
samples) 

Temp 
(°C) 

(Durafet) 

Salinity 
(ppt) 
(YSI) 

pHT 
(YSI) 
(daily) 

Ambient 8.00 ± 0.04 452 ± 55 2.36 ± 0.23 2266 ± 3 17.5 ± 0.06 34.3 ± 0.1 8.01 ± 0.08 

Target pH 7.85 
- Static 7.90 ± 0.01 586 ± 14 1.94 ± 0.07 2268 ± 3 17.6 ± 0.06 34.3 ± 0.1 7.90 ± 0.05 

Target pH 7.85 
- Variable 7.89 ± 0.08 614 ± 136 1.93 ± 0.34 2268 ± 4 17.5 ± 0.06 34.3 ± 0.1 7.88 ± 0.11 

Target pH 7.70 
- Static 7.76 ± 0.04 848 ± 64 1.46 ± 0.17 2268 ± 5 17.6 ± 0.06 34.3 ± 0.1 7.75 ± 0.08 

Target pH 7.70 
- Variable 7.76 ± 0.09 870 ± 199 1.47 ± 0.30 2267 ± 4 17.6 ± 0.06 34.3 ± 0.1 7.74 ± 0.10 
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Table 1.3 - Number of DEGs detected across all treatment comparisons in 
Experiment 2. 
 

 Ambient pH 7.70 static pH 7.70 variable pH 7.85 static 
Ambient     
pH 7.70 static 5    
pH 7.70 variable 8 6   
pH 7.85 static 3 159 11  
pH 7.85 variable 6 11 9 6 
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Table 1.4 - Summary of Upregulated and Downregulated Gene Set Clusters in 
Experiment 1. Enriched gene sets (GO, KEGG, hallmark) were clustered by 
similarity using the AutoAnnotate and clusterMaker2 applications for the 
Cytoscape software platform. Clusters were then manually examined and named. 
See Table S1.12 for the full list of enriched gene sets in this experiment. 
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Upregulated in pH 7.30 Treatment Downregulated in pH 7.30 Treatment 
Categorical Cluster Number of Gene 

Sets in each 
Cluster 

Categorical Cluster Number of Gene 
Sets in each 
Cluster 

mitochondrion, aerobic respiration, 
mRNA export from nucleus 

44 transmembrane ion transport, 
regulation of synaptic 
signaling,  
ligand-gated ion channel 
activity, 
behavior, cognition & 
sensory perception 

90 

RNA metabolism, processing, splicing, 
modification, 
tRNA biosynthesis; ribosome biogenesis 

41 regulation of nervous system 
development & growth 

60 

translation & protein localization 39 synaptic vesicle membrane, 
regulation of clathrin-
dependent endocytosis 

22 

muscle development 22 axo-dendritic transport 20 
organic acid catabolism 15 synaptic membrane & 

synapse 
19 

muscle contraction & adaptation, 
myogenesis 

14 G protein-coupled receptor 
signaling 

15 

energy reserve & carbohydrate metabolic 
process 

10 exocytosis and secretion 14 

proteolysis, mRNA catabolism, negative 
regulation of cell cycle G2/M phase 
transition 

10 central nervous system 
development 

12 

peroxisomal organization & transport, 
protein localization to organelle 

8 regulation of pH & iron ion 
transport 

9 

innate immune response 6 aminoglycan & glycoprotein 
metabolic process 

8 

telomere maintenance via lengthening & 
organization 

6 calcium-dependent 
phospholipid binding & 
cell-cell adhesion 

8 

RNA polymerase II 5 dopamine secretion & 
transport 

7 

protein modification by small protein 
conjugation or removal 

3 axon, distal axon & terminal 
bouton 

6 

actin filament binding 2 dendritic tree & neuron spine 6 
alpha actinin binding 2 GTPase activator activity 6 
cytoplasmic stress granule 2 positive regulation of MAPK 

cascade 
6 

DNA polymerase activity 2 receptor localization to 
synapse 

6 

mitochondrial matrix & nucleoid 2 regulation of vesicle fusion 6 
ribosome binding 2 dendrite membrane 5 
RNA helicase activity 2 ephrin receptor signaling 

pathway 
5 

adipogenesis 1 extrinsic component of 
cytoplasmic side of plasma 
membrane 

5 

ADP binding 1 microtubule polymerization 5 
allograft rejection 1 regulation of protein 

localization to membrane 
5 

androgen response 1 synaptic vesicle transport & 
localization 

5 

cell substrate junction 1 glycosphingolipid 
biosynthetic process 

4 

cysteine-type endopeptidase activity 1 cortical actin cytoskeleton 3 
fatty acid metabolism 1 regulation of cell shape 3 
ficolin-1-rich granule lumen 1 vascular transport 3 
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general transcription initiation factor 
binding 

1 intrinsic component of Golgi 
membrane 

2 

interferon alpha response 1 long term depression & 
vascular smooth muscle 
contraction 

2 

lysine degradation 1 negative regulation of 
secretion & transport 

2 

MYC targets v1 (Hallmark) 1 neuron apoptotic process 2 
MYC targets v2 (Hallmark) 1 regulation of amyloid 

precursor protein catabolic 
process 

2 

platelet morphogenesis 1 regulation of neurotransmitter 
receptor activity 

2 

positive regulation mitotic cell cycle 1 regulation of small GTPase-
mediated signal transduction 

2 

receptor signaling pathway via STAT 1 response to catecholamine 2 
rRNA binding 1 synaptic vesicle recycling 2 
sarcolemma 1 vesicle docking 2 
sarcoplasm 1 amyotrophic lateral sclerosis 1 
starch & sucrose metabolism 1 anchored component of 

membrane 
1 

viral myocarditis 1 cyclic nucleotide-mediated 
signaling 

1 

    developmental maturation 1 
    endocytosis 1 
    gap junction 1 
    genes upregulated by KRAS 

activation 
1 

    kinesin binding 1 
    long-term potentiation 1 
    neuron migration 1 
    perinuclear region of 

cytoplasm 
1 

    phosphoprotein binding 1 
    phosphoric diester hydrolase 

activity 
1 

    protein serine threonine 
kinase inhibitor activity 

1 

    regulation of neuron 
differentiation 

1 

    renal system process 1 
    tau protein binding 1 
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Table 1.5 - Summary of Upregulated and Downregulated Gene Set Clusters in 
Experiment 2 (comparison of static treatments). Enriched gene sets (GO, KEGG, 
hallmark) were clustered by similarity using the AutoAnnotate and clusterMaker2 
applications for the Cytoscape software platform. Clusters were then manually 
examined and named. See Table S1.13 for the full list of enriched gene sets in this 
experiment. 
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Upregulated in pH 7.70 Treatment Downregulated in pH 7.70 Treatment 

Categorical Cluster # Gene Sets Categorical Cluster # Gene Sets 
RNA processing & 
splicing, 
histone 
methyltransferase 
complex 

26 immune response 34 

epigenetic regulation of 
gene expression & 
chromatin organization 

8 lymphocyte proliferation, differentiation & 
activation 

26 

DNA repair, 
recombination & 
replication 

7 secretory granule & 
myeloid leukocyte mediated immunity 

13 

mRNA export from 
nucleus 

6 endothelial cell migration & blood vessel 
morphogenesis 

10 

E-box binding 4 JAK-STAT signaling pathway 9 
ubiquitin-mediated 
proteolysis 

4 neuropeptide/G protein-coupled receptor signaling 
pathway 

7 

ubiquitin ligase complex 4 cellular ion homeostasis 6 
RNA phosphodiester 
bond hydrolysis 

3 positive regulation of MAPK cascade 6 

gene silencing 2 cell-cell junction assembly 5 
nuclear speck 2 developmental growth involved in morphogenesis 5 
A band 1 regulation of cytoskeleton & 

supramolecular fiber organization 
5 

cell cortex region 1 wound healing & regulation of body fluid levels 5 
inositol phosphate-
mediated signaling 

1 leukocyte migration & regulation of chemotaxis 4 

regulation of long-term 
synaptic potentiation 

1 external side of plasma membrane 3 

single-stranded RNA 
binding 

1 leading edge membrane 3 

structural constituent of 
cytoskeleton 

1 plasma membrane signaling receptor complex 3 

transcription coregulator 
activity 

1 positive regulation of phagocytosis 3 

    protein complex involved in cell adhesion & 
integrin-mediated signaling pathway 

3 

    regulation of cytokine production 3 
    cilium movement & cell motility 2 
    collagen-containing extracellular matrix 2 
    endocytic vesicle 2 
    positive regulation of cell-substrate adhesion 2 
    receptor-mediated endocytosis 2 
    regulation of peptidyl-tyrosine phosphorylation 2 
    guanyl nucleotide binding 1 
    calcium ion binding 1 
    allograft rejection 1 
    membrane microdomain 1 
    complement system 1 
    positive regulation of cell population proliferation 1 
    smooth muscle contraction 1 
    superoxide metabolic process 1 
    response to organophosphorus 1 
    Ras protein signal transduction 1 
    response to dopamine 1 
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    inflammatory response 1 
    odontogenesis 1 
    coagulation 1 
    leukocyte transendothelial migration 1 
    pigment granule 1 
    cell adhesion molecule binding 1 
    ciliary plasm 1 
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Table 1.6 - Overlapping enriched gene sets between high pH vs. low pH 
comparisons in Experiment 1 and Experiment 2 (upregulated vs. downregulated 
gene sets in both experiments). 
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Upregulated in Both 
Experiments 

Downregulated in Both Experiments 

GOBP ribonucleoprotein 
complex biogenesis 

GOBP MAPK cascade 

GOBP ncRNA processing GOCC side of membrane 
GOCC ribonucleoprotein 
complex 

GOBP receptor mediated endocytosis 

GOMF catalytic activity 
acting on RNA 

GOCC cell surface 

GOBP translational 
termination 

GOBP positive regulation of protein kinase activity 

GOBP RNA export from 
nucleus 

GOBP positive regulation of MAPK cascade 

GOBP RNA processing GOCC cell leading edge 
GOBP RNA 
phosphodiester bond 
hydrolysis 

GOBP cell-cell junction organization 

GOBP mRNA export from 
nucleus 

GOBP cell-cell adhesion 

GOBP nuclear export GOBP endocytosis 
GOBP mRNA metabolic 
process 

GOBP exocytosis 

GOCC U2 type 
spliceosomal complex 

GOBP cell-cell junction assembly 

GOBP RNA 3’-end 
processing 

GOBP cell growth 

GOBP nucleic acid 
phosphodiester bond 
hydrolysis 

GOBP taxis 

KEGG spliceosome GOCC secretory granule membrane 
GOCC transferase 
complex 

GOBP regulation of anatomical structure morphogenesis 

GOBP protein 
modification by small 
protein conjugation 

GOCC secretory vesicle 

GOBP RNA localization GOMF neuropeptide receptor activity 
GOCC spliceosomal 
complex 

GOBP cell junction assembly 

GOBP protein 
modification by small 
protein conjugation or 
removal 

KEGG cell adhesion molecules cams 

GOBP RNA splicing GOCC plasma membrane protein complex 
GOBP mRNA processing GOMF calcium ion binding 
GOCC nuclear protein-
containing complex 

GOCC cell projection membrane 

GOCC intracellular 
protein-containing 
complex 

GOCC plasma membrane signaling receptor complex 

  GOBP cell-cell adhesion via plasma membrane adhesion molecules 
  GOBP developmental growth involved in morphogenesis 
  GOBP developmental cell growth 
  GOBP neuropeptide signaling pathway 
  GOBP adenylate cyclase inhibiting G protein-coupled receptor signaling pathway 
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  GOCC leading edge membrane 
  GOCC vesicle membrane 
  GOMF G protein-coupled receptor activity 
  GOCC receptor complex 
  KEGG neuroactive ligand receptor interaction 
  GOBP G protein-coupled receptor signaling pathway 
  GOMF molecular transducer activity 
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Chapter 2: A high-quality reference genome of the kelp surfperch, 
Brachyistius frenatus (Embiotocidae), a wide-ranging Eastern Pacific 
reef fish with no pelagic larval stage. 

 

This chapter has been submitted for publication in a peer reviewed journal and is 

reproduced here for inclusion in this dissertation. The citation for the submitted 

manuscript is: 

Toy, J.A., Bernardi, G. A high-quality reference genome of the kelp surfperch, 
Brachyistius frenatus (Embiotocidae), a wide-ranging Eastern Pacific reef fish 
with no pelagic larval stage. 
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ABSTRACT 

The surfperches (family Embiotocidae) are a unique group of mostly marine 

fishes whose phylogenetic position within the Ovalentaria clade (Percomorpha) is still 

unresolved. As a result of their viviparity and lack of a dispersive larval stage, 

surfperches are an excellent model for the study of speciation, gene flow, and local 

adaptation in the ocean. They are also the target of an immensely popular recreational 

fishery. Very few high-quality molecular resources, however, are available for this 

group and only for a single species. Here we describe a highly complete reference 

genome for the kelp surfperch, Brachyistius frenatus, assembled using a combination 

of short read (Illumina, ~47x coverage) and long read (Oxford Nanopore 

Technologies, ~27x coverage) sequencing. The 596 Mb assembly has a completeness 

level of 98.1% (BUSCO), an N50 of 2.6 Mb (n = 56), and an N90 of 406.6 Kb (n = 

293). Comparative analysis revealed a high level of synteny between B. frenatus and 

its close relative, Embiotoca jacksoni. This assembly will serve as a valuable 

molecular resource upon which future evolutionary dynamics research will build, 

such as the investigation of local adaptation and the genomic potential for climate 

adaptation in wild populations. 

INTRODUCTION 

 The surfperches (Embiotocidae) comprise a family of mostly marine, mostly 

Eastern Pacific fishes whose phylogenetic position within the Ovalentaria clade (a 

percomorph group that also includes the damselfishes, cichlids, mullets, and others) is 
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still unresolved (Ghezelayagh et al., 2022; G. Longo & Bernardi, 2015). Among 

marine fishes, the family of 23 species exhibits unusual life history traits. Surfperches 

undergo internal fertilization and viviparous gestation, and lack the dispersive pelagic 

larval stage exhibited by most other marine groups (Leis, 1991). Surfperches are also 

notable within the Ovalentaria because although they comprise relatively few species, 

they have invaded a large diversity of nearshore habitats, including sandy surf zones, 

rocky reefs, kelp forests, seagrass beds, estuaries, and even coastal freshwater habitats 

(Tarp, 1952), and can make up a large proportion of the fish biomass within these 

habitats in the Eastern Pacific (Laur & Ebeling, 1983). This unique ecology makes 

the surfperches an excellent group in which to study a range of ecological and 

evolutionary topics including speciation, adaptive radiation, life history evolution, 

and local adaptation. 

 The kelp surfperch, Brachyistius frenatus, is a smaller species (max TL: 21.6 

cm) within the Embiotocinae subfamily with a highly kelp-associated ecology (Love, 

2011). It is one of the widest ranging of the surfperches, occurring along the Pacific 

Coast of North America from at least Bahia Tortugas, Baja California Sur, MX to 

north of Sitka, Alaska, USA (personal observation; Love, 2011). This makes it an 

ideal species in which to study local adaptation and gene flow in coastal marine 

environments. Here we present a highly complete, highly contiguous de novo genome 

assembly for B. frenatus constructed with a combination of long read nanopore and 

short read shotgun sequencing data. In addition to its application to forthcoming 

continent-scale population genomics studies, this genome will serve as an important 
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resource for future studies of comparative genomics and evolutionary dynamics in the 

Eastern Pacific. 

METHODS 

DNA sampling and sequencing 

We collected an adult male B. frenatus from Stillwater Cove in Pebble Beach, 

CA, USA (36.564821, -121.943556) on January 18, 2021 (CDFW permit S-

193170005-19318-001) via spear and kept it on ice during transport back to the UC 

Santa Cruz Coastal Science Campus (Santa Cruz, CA, 95060). We sexed the 

specimen by dissection and sampled liver tissue for DNA extraction, after which the 

specimen was preserved in 95% ethanol. Genomic DNA was extracted from liver 

tissue using chloroform methods (adapted from Sambrook et al., 1989) and high 

molecular weight confirmed on a 0.7% agarose gel. Genomic DNA was then used to 

prepare libraries for both Nanopore long read sequencing and Illumina short read 

sequencing. 

We prepared two libraries for two separate Nanopore sequencing runs using 

the SQK-LSK109 chemistry kit and protocol. Prior to preparation of the second 

library, we spun genomic DNA through a Covaris g-TUBE™ shearing tube to 

increase sequencer output. Libraries were sequenced on a Nanopore MinION device 

using two R9.4.1 flow cells. In total, we obtained 20.05 Gb of raw sequence data 

(6,782,325 raw reads). 
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Preparation of an Illumina sequencing library was done by Novogene 

Corporation Inc. (Sacramento, CA, USA) using fragmentation by sonication and the 

NEBNext® Ultra™ DNA Library Prep Kit for Illumina®. Library size distribution 

was evaluated on an Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA) and 

real-time PCR was used for quantification. Short read data was obtained in two 

sequencing runs on an Illumina NovaSeq 6000 (2 x 150 bp reads). In total, we 

obtained 28.7 Gb of raw sequence data (191,338,318 raw reads). 

Read processing and genome assembly 

Software versions used in the assembly are listed in Table 2.1. Base-calling of 

Nanopore reads was done using Oxford Nanopore Technologies’ Guppy base caller 

software (v5.0.15) and the dna_r9.4.1_450bps_sup (“super accurate”) model with 

default quality filtering parameters, resulting in only reads with >Q7 quality scores 

(nearly all reads >Q10). Sequencing adapters were then trimmed using Porechop 

(v2.4; https://github.com/rrwick/Porechop) and trimmed reads quality-checked with 

FastQC (v0.11.7; Andrews, 2010). Finally, reads less than 500 bp were removed. This 

filtered and trimmed dataset contained 4,966,516 reads with a mean length of 3,268.7 

bp and an N50 of 4,886 bp. Additional Nanopore sequencing stats are listed in Table 

S2.1. Illumina reads were trimmed with Trimmomatic (v0.39; parameters: 

LEADING:2 TRAILING:2 MINLEN:25, Bolger et al., 2014) and quality-checked 

with FastQC.  
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The trimmed and filtered Nanopore reads were aligned into large contigs 

using the fuzzy-Bruijn graph-based assembler, wtdbg2 (v0.0, Ruan & Li, 2020), and 

twice-polished with the same reads using minimap2 (v2.17-r941, Li, 2018) for 

alignment and Racon (v1.4.13, Vaser et al., 2017) for consensus generation. The 

resulting assembly was then twice-polished with the trimmed Illumina short read data 

using BWA (v0.7.17-r1188; Li & Durbin, 2009) for alignment and Pilon (v1.23; 

Walker et al., 2014) for consensus generation. A blastn (v2.12.0) search of the 

polished assembly was then run against the nt database (NCBI) for use in 

contaminant detection via Blobtools2 (v3.0.0; Challis et al., 2020). In total, only five 

small contigs (less than 7,200 bp each; 27,511 bp total) were identified as 

contaminants (Proteobacteria) and removed from the assembly. 

Following contamination removal, the mitochondrial genome was assembled 

and then mapped to the nuclear assembly to remove mitochondrial sequences. First, 

long and short reads were mapped to a reference mitogenome from the black 

surfperch, Embiotoca jacksoni (GenBank accession JAKOON010000230.1; Bernardi 

et al., 2022) using minimap2. The reads that successfully mapped were then imported 

into Geneious Prime (v2022.1.1, http://www.geneious.com/) for mitogenome 

assembly. In Geneious Prime, the long reads were mapped to the E. jacksoni 

reference mitogenome using the “Map to Reference” function and the default 

Geneious iterative mapper (Medium Sensitivity/Fast, default parameters). The 

generated consensus sequence was then used as a scaffold on which to map the paired 

short read data for polishing, again using the Geneious mapper. This consensus 
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sequence was then annotated using E. jacksoni reference annotations from GenBank 

accession NC_029362.1 (G. C. Longo et al., 2016) to identify potential spurious 

frameshift mutations and stop codons introduced by sequencing and/or assembly 

errors. We identified a total of three stop codons, one each in the coding sequences of 

the ND2, COI, and ND4 genes, which were all caused by incorrect calling of the 

length of mononucleotide repeats. After manual inspection of read data at each of 

these sites, an additional nucleotide was added to each repeat, which in each case 

resulted in the elimination of the stop codon through the re-shifting of the reading 

frame. A similar process was also used to change the only “N” in the sequence to an 

additional “C” at the end of a multi-C repeat (see supplementary methods). The final, 

corrected mitogenome assembly was then annotated using the MitoAnnotator pipeline 

(v3.74; Iwasaki et al., 2013). 

In Geneious Prime, we ran a megablast search (NCBI, Altschul et al., 1990) 

with the completed mitogenome as query and the nuclear assembly as the database to 

identify regions of the nuclear assembly where mitochondrial sequence was 

incorrectly included. We filtered the list of contigs with BLAST hits by considering 

for removal only those contigs where BLAST hits to mitochondrial sequence made up 

>20% of the contig length. All other hits were assumed to be potential NUMTs 

(nuclear DNA segments of mitochondrial origin). We removed mitochondrial 

sequence from a total of four small contigs (largest: 11,036 bp). In each case, the 

validity of the remaining contig fragments was assessed by mapping long read data to 

each fragment. Fragments or portions of fragments with clear support from long read 
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data were kept as new contigs. In total, this process led to the complete removal of 

two contigs from the nuclear assembly, the splitting of one contig into two, and the 

trimming of another. For details, see supplementary methods. 

Using RepeatMasker (v4.1.2-p1), we determined the repeat content of the 

final genome assembly by running a slow search (-s parameter) with the -species 

parameter set to “actinopterygii”. 

Synteny Analysis 

To compare the genome structure of B. frenatus to that of a close relative, an 

initial version of the assembly was aligned to an existing high-quality assembly for 

the genome of a close relative, the black surfperch, Embiotoca jacksoni 

(GCA_022577435.1; Bernardi and Toy et al. 2022), using minimap2 (H. Li, 2018) 

via the D-GENIES application (Cabanettes & Klopp, 2018). This mapping led to the 

identification of an apparent “translocation”, which upon further investigation, had 

little read support and was therefore determined to be a mis-assembly of two separate 

contigs. This contig was therefore split at a clear break in read support (see 

supplementary methods for details). The new assembly was again mapped to the E. 

jacksoni reference using D-GENIES. 

An alternate version of the assembly was also created by further scaffolding 

the draft B. frenatus assembly with RagTag (v2.1.0; Alonge et al., 2021), using the E. 

jacksoni assembly as a reference. This scaffolding reduces the number of contigs 

from 1004 to 355. 
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RESULTS 

A highly complete B. frenatus reference genome assembly 

After contamination screening and mitogenome assembly, the final genome 

assembly has a size of 595,951,806 bp distributed across 1004 contigs (including the 

mitogenome). This indicates an average long read coverage of ~27x and an average 

short read coverage of ~47x. The largest contig is 12.3 Mb in length, and 50% of the 

genome is contained in 56 contigs that are ~2.6 Mb or greater in length (N50, Table 

2.2). Ninety percent of the genome is contained in 293 contigs of length 406.6 Kb or 

greater (N90). The inner circle of Figure 2.1 shows the size distribution of all contigs 

in the genome. BUSCO analysis of the genome revealed a high level of completeness, 

with 98.1% of orthologs identified as present and complete. See Table 2.2 for 

additional assembly statistics. 

The final mitochondrial assembly is 16,545 bp in length, 30 bp longer than the 

E. jacksoni reference used for assembly. Pairwise alignment of the B. frenatus 

mitogenome and reference sequence revealed a 90.2% pairwise identity between the 

two species. The base composition of the B. frenatus mitogenome assembly is 

A=28.0%, C=27.6%, G=16.3%, and T=28.1%. Annotation by MitoAnnotator 

identified 22 tRNAs, the 12S and 16S rRNAs, and 13 protein coding genes. 

In total, RepeatMasker identified 50,258,669 bp of repeat sequence 

representing 8.43% of the genome. Retroelements accounted for 1.38% of the 

genome and DNA transposons 2.03%. Simple repeats were the largest major repeat 



75 
 

group, making up 4.34% of the genome, while low complexity regions, satellites, and 

small RNA (rRNA, snRNA, tRNA) accounted for 0.42%, 0.04%, and 0.08%, 

respectively (Table S2.2). 

DISCUSSION 

In this study, we present the second complete reference genome for the family 

Embiotocidae, providing new opportunities for comparative genomic and 

phylogenetic analyses within and outside of this group of uncertain placement. The 

assembly is of high quality, contiguity (contig N50 = 2.6 Mb), and completeness 

(98.1%) as a result of our combination of high accuracy shotgun and long read 

nanopore sequencing. With 90% of the genome contained within only 293 contiguous 

sequences of length 406.6 Kb or greater (N90), this assembly will serve as a reliable 

resource for comparative genomic studies and the estimation of population genomic 

parameters using whole genome resequencing data. 

Overall, we found that the genome of B. frenatus is very similar to that of its 

close relative, E. jacksoni. The dot plot created with D-GENIES reveals a high level 

of synteny and sequence similarity between the two species, indicating speciation 

between the two occurred without a major structural rearrangement (Figure 2.2). The 

genome assemblies are also similar in size (596 Mb vs 635 Mb), repeat content 

(~8.4% of the genome for both species), and GC content (41.9% vs 41.6%), as would 

be expected for closely related species (Bernardi et al., 2022). Moving forward, this 

molecular resource will serve as the critical foundation for future resequencing 
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studies focusing on the characterization of genomic diversity and gene flow, as well 

as the evaluation of past and potential future climate adaptation, in reef fishes along 

the Pacific Coast. This work will ultimately inform management and conservation 

efforts, such as the classification of fisheries stocks and the evaluation of MPA 

efficacy. 
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FIGURES

 

Figure 2.1 - Snail summary plot of the complete B. frenatus genome assembly 
produced using Blobtools2. The inner radial axis (gray) shows the length of each 
contig in descending order, with dark orange and light orange portions representing 
the N50 and N90 lengths, respectively. The dark/light blue ring shows the GC content 
along the length of the genome. The notched outer ring denotes the position 
(bp/proportion) along the genome. The inset at the top right shows the assembly 
completeness as assessed by BUSCO. 
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Figure 2.2 - Dot plot produced using D-GENIES of the alignment of the B. frenatus 
genome (vertical axis) to a reference E. jacksoni genome (horizontal axis; accession 
GCA_022577435.1). Dotted gridlines represent scaffold/contig boundaries. 
Darker/greener colors indicate greater similarity between the query and reference 
sequences. E. jacksoni scaffolds are ordered numerically in ascending order from left 
to right. 
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TABLES 

Table 2.1 - Software names and versions used in the de novo genome assembly 

Assembly Step Software Version 
Nanopore base calling Guppy 5.0.15 
Nanopore adaptor trimming Porechop 2.4 
Illumina read trimming Trimmomatic 0.39 
De novo long read contig assembly Wtdgb2 0.0 
Long read contig polishing mapping Minimap2 2.17-r941 
Long read contig polishing consensus 

 
Racon 1.4.13 

Short read contig polishing mapping BWA 0.7.17-r1188 
Short read contig polishing consensus 

 
Pilon 1.23 

Contaminant detection Blobtools2 3.0.0 
Completeness evaluation BUSCO 5.2.2 
Repeat identification RepeatMasker 4.1.2-p1 
Filtering of mitochondrial reads Minimap2 2.17-r941 
Alignment of mitochondrial reads to reference Geneious Prime 2022.1.1 
Mitochondrial sequence consensus generation Geneious Prime 2022.1.1 
Mitochondrial genome annotation MitoAnnotator 3.74 
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Table 2.2 - Assembly statistics and BUSCO completeness assessment for the B. 
frenatus genome 

Assembly Statistics   
Assembly nuclear + mitochondrial genome 
Size (bp) 595,951,806 
n scaffolds 1004 
Average scaffold length 593,577.50 
Largest scaffold 12,326,090 
N50 (bp, n) 2,589,815 (56) 
N60 1,896,895 (83) 
N70 1,185,759 (123) 
N80 758,445 (185) 
N90 406,612 (293) 
N100 597 (1004) 
N count 0 
Gaps 0 
BUSCO Results   
Complete 98.1% (3572) 
Complete and single-copy 97.4% (3547) 
Complete and duplicated 0.7% (25) 
Fragmented 0.5% (20) 
Missing 1.4% (48) 
Total BUSCOs searched 3640 
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Chapter 3: Range-wide whole genome resequencing reveals strong 
genetic structure and substantial adaptive variation to climate 
variables in the temperate reef fish, Brachyistius frenatus 
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ABSTRACT 

Understanding the capacity of species to adapt genetically to a changing 

climate is a central question in global change biology that is still poorly understood. 

The characterization of the patterns of genetic diversity present within species and 

associations between this genetic variation and environmental variables can provide 

critical insight into the potential for evolutionary rescue. Population genetic structure, 

when combined with spatial variation in environmental conditions, can lead to local 

adaptation that maintains genetic variation within a species. Surfperches (family: 

Embiotocidae) are a unique group of mostly marine fishes in the temperate Pacific. 

Their viviparity and lack of pelagic larval stage reduces their dispersal and increases 

their likelihood of showing genetic structure across populations. Some species, like 

the kelp surfperch (Brachyistius frenatus), inhabit a latitudinal range that spans a 

large temperature gradient and a diverse mosaic of upwelling intensity. Here, I 

resequenced the genomes of kelp surfperch collected from Southeast Alaska to San 

Diego, California and, using medium-coverage whole genome resequencing 

techniques, estimated the levels of overall diversity and the extent of genetic structure 

among populations. I then looked for evidence of selection and local adaptation 

across the genome using two separate selection scan methods. Data provided 

evidence of very high levels of population structure along the latitudinal range, with 

individuals clustered into 5 major groups. The data also provide strong support for a 

pattern of isolation-by-distance among the California locations. Individuals collected 

from Alaska, British Columbia, and Puget Sound each had unique genetic 
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characteristics and low genetic diversity, suggesting a strong influence of founding 

effects in these regions. Selection scans revealed a large number of SNPs and genes 

under putative selection across all populations. Environmental association analysis 

confirmed the correlation of allele frequency differences in many of these candidate 

SNPs with environmental variables, most notably minimum sea surface temperature 

and mean annual pH. This study provides important insight into the patterns of 

adaptive genomic diversity present in temperate marine species, as well as the 

prevalence of local adaptation, both of which have implications for the resilience of 

marine species in the face of ongoing ocean change. 

INTRODUCTION 

In the face of rapidly changing environmental conditions, a species or 

population has three potential fates. A population may go extinct, shift its spatial 

distribution to fit that of its preferred climate envelope, and/or it may genetically 

adapt over generations to better survive and reproduce within its current range in a 

process often described as evolutionary rescue (Gomulkiewicz & Holt, 1995). While 

there is now a substantial body of research documenting climate-driven range shifts in 

terrestrial and marine systems, the potential role of adaptation in the persistence of 

species is still poorly understood. This is particularly true in marine species, where 

population dynamics are often more difficult to study (Selkoe et al., 2008). 

Although genetic adaptation through de novo mutation is possible, rapid 

adaptation and evolutionary rescue on time scales relevant to modern conservation 
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concerns are generally thought to require standing genetic variation (Carlson et al., 

2014). The level of genetic variation in a population is determined by a suite of 

evolutionary and ecological processes, including migration (gene flow), mutation 

rate, life history (e.g., mating patterns and reproductive strategies), spatial and 

temporal patterns of selection, and population size. A high level of genetic diversity 

increases the potential diversity in a population’s phenotypic response to 

environmental change, which in turn increases the likelihood of evolutionary rescue 

(Carlson et al., 2014).  

One potential source of genetic diversity for a species may be the local 

adaptation of subpopulations to their respective environmental conditions. Local 

adaptation in species that span a large range of environmental conditions may provide 

especially relevant genetic variation in the face of global change (Hofmann et al., 

2014), potentially allowing species as a whole to be partially preadapted to future 

conditions. Local adaptation, however, may arise from a spectrum of evolutionary 

scenarios involving strong selection and/or limited gene flow (migration) (Sanford & 

Kelly, 2011). Local adaptation driven by extremely limited gene flow (e.g., low 

dispersal) may maintain adaptive genetic variation at the species level, but the 

restricted gene flow between subpopulations may limit its relevance to evolutionary 

rescue, and instead lead to subpopulations with relatively low effective genetic 

variation due to the diversity-depleting effects of selective sweeps. If, however, 

dispersal in a species is more moderate and selection relatively strong, local 
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adaptation may maintain high levels of adaptive diversity within a species without 

removing the possibility of adaptive gene flow between locations. 

Until relatively recently, the extent of local adaptation in marine species was 

not well understood (compared to terrestrial or freshwater systems), in large part 

because of the traditional view that large dispersal distances and an open environment 

should result in low levels of local adaptation in the ocean (Palumbi, 1992, 2003). 

Numerous recent studies, however, have now documented evidence of local 

adaptation even within large, high-gene flow populations (Hofmann et al., 2014; 

Sanford & Kelly, 2011). Marine species with relatively low dispersal may therefore 

show even greater levels of local adaptation, further increasing the potential for 

species-level genotypic (and therefore phenotypic) diversity. Conversely, low 

dispersal may restrict the spread of adaptive alleles from one location to another, 

limiting the potential for evolutionary rescue in subpopulations with low immigration 

rates. In this study, I assess the effect of low dispersal on local adaptation along the 

west coast of North America using the kelp perch (Brachyistius frenatus), a 

viviparous, kelp-associated reef fish with no dispersive larval stage, as a model 

system. B. frenatus spans 29° of latitude from Baja California Sur, Mexico to 

Southeast Alaska, USA, a range that exhibits significant spatial heterogeneity in 

environmental conditions due to a combination of variation in upwelling occurrence 

and a latitudinal gradient in average sea-surface temperatures. These characteristics 

make B. frenatus in the NE Pacific an ideal system in which to study the capacity of 
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nearshore species to adapt to a changing coastal environment, and to gain insight into 

the prevailing drivers and mechanisms of selection within this range. 

From Washington State, USA to Baja California Sur, MX, a major driver of 

environmental variation is a mosaic in the prevalence of coastal upwelling driven by 

northwesterly winds (Huyer, 1983). This translates into a mosaic of spatially variable 

temperature, pH/pCO2, dissolved oxygen concentrations, and primary productivity as 

upwelling brings cold, acidic, deoxygenated, and nutrient-rich waters to the surface. 

Peaks in upwelling occur at various locations within this range, but the greatest levels 

occur in Northern California (between Eureka and Point Arena) and Southern Oregon 

(near Port Orford)(Chan, Barth, Blanchette, Byrne, Chavez, Cheriton, Feely, 

Friederich, Gaylord, Gouhier, Hacker, et al., 2017; Feely et al., 2008; Kroeker et al., 

n.d.). South of Point Conception the prevalence of upwelling decreases significantly, 

but increases again near Ensenada, MX (Huyer, 1983). North of Vancouver Island, 

BC, oceanographic conditions are driven instead by the Alaska Current and 

predominantly downwelling winds, and coastal ecosystems exhibit highly seasonal 

dynamics in abiotic and biotic conditions (Kroeker et al., 2021). This variation in 

upwelling, combined with a general latitudinal gradient in sea surface temperature 

(SST), result in a wide range of environmental conditions within the geographic range 

of B. frenatus. In Sitka Sound, AK, for example, subtidal winter temperatures are as 

low as 5 °C and summer pH can reach 8.6 (Kroeker et al., 2021), while summer 

temperatures in Southern California can exceed 24 °C and spring pH in Northern 

California can drop below 7.5 (Donham et al., n.d.). 
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Given these highly divergent environments and the limited dispersal of this 

species, one may expect substantial divergence between subpopulations in coding 

DNA sequences (as a consequence of selection on the thermal stability of proteins), 

as well as signals of selection in genes related to metabolism. Differences in 

temperature range/variability between regions may also lead to selection on genes 

related to transcript/protein turnover. Moreover, divergent pH regimes may lead one 

to anticipate differences in genes related to acid/base balance, homeostasis, and cell 

signaling (Toy et al., 2022). In this study, I use medium-coverage whole genome 

resequencing to compare the genomic diversity of B. frenatus subpopulations across 

this range. I assess the level of population genetic structure between regions, identify 

genomic signals of selection between subpopulations, and test for significant 

associations between genetic differences and specific environmental variables to 

better understand the mechanisms of climate adaptation in coastal populations. 

METHODS 

Sample collection 

From 2018 to 2021, I collected B. frenatus from 13 sites along the coast of North 

America from Southeast Alaska to San Diego, California, spanning >24° of latitude 

(Table 3.1, Figure 3.1). Due to a combination of the inaccessibility of dive sites, poor 

diving conditions, and limited (or non-existent) sightings of B. frenatus on the outer 

coasts of Oregon and Washington, I was unable to sample this region (Figure 3.1). I 

collected 15 individuals from each location, except for Malcom Island, BC, where I 
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collected 16 because one individual had an anomalous appearance, and Tomales Bay, 

CA, Santa Cruz, CA, and Point Buchon, CA, where my sampling efforts yielded only 

2, 2, and 3 individuals, respectively. Specimens were collected by spear and either 

immediately dissected or stored on ice until dissection. Gill tissue was dissected from 

each individual and stored in 100% ethanol in 2 mL screw-cap tubes. Preserved 

samples were kept as cool as possible (room temperature, on ice, in a refrigerator) 

until they could be stored at -20°C in the laboratory. 

DNA library preparation, sequencing, and read processing 

I extracted genomic DNA from all samples using a chloroform-based protocol 

adapted from Sambrook et al. (1989) and confirmed DNA quality on a 0.7% agarose 

gel. Genomic DNA was then used to prepare sequencing libraries using half reactions 

of the NEBNext® Ultra™ II FS DNA Library Prep Kit (New England Biolabs). 

Prepared libraries were quantified via Qubit, fragment analyzed, pooled, and then 

sequenced (150 bp paired end) on an Illumina NovaSeq 6000 (S4) at the Vincent J. 

Coates Genomics Sequencing Lab at the University of California, Berkeley. 

Sequences were adapter- and quality-trimmed using fastp v0.23.2 (Chen et al., 2018) 

with default parameters and a minimum length cutoff of 40 (-l parameter). Read 

quality before and after trimming was visually inspected using fastp, FASTQC 

v0.11.7 (Andrews, 2010), and multiQC v1.6 (Ewels et al., 2016). I mapped the 

trimmed reads to a B. frenatus reference genome (GenBank accession 

JANHZZ000000000)(Toy & Bernardi, n.d.) using Bowtie2 v2.4.1 (Langmead & 
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Salzberg, 2012). I then removed duplicates from the aligned reads on a per sample 

basis using the Picard (v2.27.1) MarkDuplicates function (“Picard Toolkit,” 2019) 

and clipped overlapping read pairs using the clipOverlap function of BamUtil 

(v1.0.15)(Jun et al., 2015). Finally, reads were realigned around indels using the 

IndelRealigner tool from GATK (v3.8)(McKenna et al., 2010). Sequencing depth 

statistics were calculated for each sample using the Samtools v1.14 depth function 

(Danecek et al., 2021). 

Reference genome annotation 

To enable functional enrichment analysis, I annotated the B. frenatus reference 

genome using the AUGUSTUS v3.4.0 gene predictor (Stanke et al., 2008) with 

default settings (–species = zebrafish). I then identified predicted genes by running a 

blastp (Altschul et al., 1990) search of amino acid sequences against UniProt’s 

SwissProt database (The UniProt Consortium, 2021) with the e-value parameter set to 

1e-5. Genes with multiple hits were thinned to keep only the hit with the lowest e-

value. UniProt accession numbers were converted to gene names using UniProt’s ID 

mapping tool (https://www.uniprot.org/id-mapping). 

Genotype and SNP calling 

Using the ANGSD (v0.937)(Korneliussen et al., 2014) software package, I calculated 

genotype likelihoods across the genome (-GL 1), using only uniquely mapping paired 

reads (-uniqueOnly 1 -only_proper_pairs 1) with a mapping quality score of 20 (-
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minMapQ 20). Sites were included only if data was present for at least 79 individuals 

(-minInd 79) at a given site and total depth across all individuals was greater than 316 

(-setMinDepth) and less than 2294 (-setMaxDepth). Allele frequencies (-doMaf 1) 

and the determination of major and minor alleles were called using genotype 

likelihoods (-doMajorMinor 1). 

Single nucleotide polymorphisms (SNPs) were called using the calculated allele 

frequencies with a minimum minor frequency filter of 0.01 (-minMaf 0.01) and a p-

value cutoff (minor allele frequency significantly different from 0) of 1e-6 (-

SNP_pval 1e-6). I then estimated linkage disequilibrium (LD) between SNPs using 

genotype likelihoods and ngsLD v1.1.1 (Fox et al., 2019) and used the 

prune_ngsLD.py script included with ngsLD to create an LD-pruned SNP list for 

downstream analysis (--max_dist = 10000, --min_weight = 0.5). 

Principal Components Analysis & Genetic Differentiation 

To assess genetic variation within and between sampling locations, I calculated from 

the genotype likelihoods a covariance matrix of allele frequencies across individuals 

using PCAngsd (Meisner & Albrechtsen, 2018) with default settings (-minMaf 0.05). 

Using the eigen function in R v4.1.0 (R Core Team, 2021), I then performed an 

individual-level principal components analysis (PCA). I simultaneously estimated 

admixture proportions for all individuals using the –admix option to visualize genetic 

ancestry. At this point, the anomalous individual from Malcom Island stood out as an 

outlier from the PCA grouping and ancestry of its sampling location. Given its 
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anomalous appearance, it was removed from the dataset for all further analyses, and 

the PCA and admixture analyses were rerun without it. The general results of these 

analyses were unaffected by this removal.  

I removed low sample size populations (Tomales Bay, Santa Cruz, and Point Buchon) 

from the dataset, as further analyses are sensitive to low sample sizes. I then 

calculated sample allele frequency likelihoods at each genomic site for each 

population using the -doSaf option in ANGSD with -setMaxDepth set to 218, which 

were used to generate a 2D-site frequency spectrum (SFS) for each pairwise 

comparison of the 10 remaining sampling locations. To estimate genetic 

differentiation between sampling locations, the 2D-SFS were then used as input into 

the realSFS program in ANGSD to calculate site-level pairwise weighted FST 

statistics for each comparison. Site-level FST values were summarized at the contig 

level, normalized by contig length, and then averaged across contigs to calculate 

mean genome-wide FST values for each comparison. Finally, to visualize the extent of 

isolation by distance (IBD) exhibited by B. frenatus, linearized weighted FST for each 

comparison, as defined by Rousset (1997), was plotted against the straight-line 

geographic distance (great circle distance) between sampling locations. Distances 

were calculated using the distHaversine function of the geosphere R package 

(Hijmans, 2021). 
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Identifying Genes Under Selection 

During the above run of PCAngsd, I also performed a PC-based scan for SNPs under 

selection using the –selection option (Meisner et al., 2021). This analysis is an 

extension of the method implemented in FastPCA (Galinsky et al., 2016) that detects 

unusual allele frequency differences along the principal components (PCs) inferred by 

PCAngsd. It produces a list of outlier SNPs for each PC (SNPs with differentiation 

along a given PC that is significantly greater than the null distribution under genetic 

drift). 

In addition to the PC-based scan for SNPs under selection described above, I also 

identified candidate SNPs using an outlier scan method implemented in the “core 

model” of BayPass v2.31 (Gautier, 2015), using allele counts calculated from the 

allele frequencies estimated in ANGSD. The core model calculates the XtX statistic 

introduced by Günther and Coop (2013), which is an FST-like statistic of genetic 

differentiation that explicitly accounts for population structure and shared 

demographic history. For this model, I calibrated the XtX threshold used to determine 

candidate SNPs by creating pseudo-observed datasets (PODs) from the original data 

under the null model of no selection. I used the value of XtX corresponding to the 

99th percentile of the POD null distribution as the calibrated selection/neutrality 

threshold. 

I compared the list of candidate SNPs from the XtX analysis to the combined list 

derived from the PC-based selection scan described above and created a final list of 
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SNPs putatively under selection by keeping only those identified in both analyses. To 

generate a list of genes putatively under selection, the final list of SNPs was mapped 

to genes in the reference genome annotation file and then thinned so that SNPs were 

only kept if they were inside or up to 1000 bp upstream of a predicted and annotated 

gene. I then performed a gene set enrichment analysis with g:profiler (Raudvere et al., 

2019), querying the list of annotated candidate genes against a background annotation 

from the spiny damselfish (Acanthochromis polyacanthus; Ensembl ID 

ASM210954v1) (Cunningham et al., 2022). Gene sets tested included those from the 

Gene Ontology (GO) Biological Process (BP), Molecular Function (MF), and 

Cellular Component (CC) databases (The Gene Ontology Consortium, 2020). GO 

gene sets were filtered to include only those containing between 3 and 500 genes and 

a false discovery rate (FDR) of 0.05 was used to determine significance. To elucidate 

biological trends, the enriched gene sets were clustered by similarity using 

AutoAnnotate and clusterMaker2 applications for the Cytoscape platform (Reimand 

et al., 2019). Clusters were manually summarized and renamed using QuickGO 

(Binns et al., 2009) to reference the hierarchical relationship between clustered GO 

terms. To determine if there were different biological themes underlying the outlier 

SNPs along each PC in the PCAngsd analysis, I also repeated this process separately 

for each PC, using only those SNPs which were also identified as outliers by the XtX 

analysis. 
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Environmental Association Analysis 

To better understand the environmental factors underlying the signatures of selection 

seen in the selection scan analyses, I performed a genotype-environment association 

(GEA) analysis using BayPass’s Markov chain Monte Carlo (MCMC)-based  

“auxiliary model”. This model identifies SNPs with allele frequencies that are 

significantly associated with environmental variables while accounting for the 

covariance between sampled locations that results from shared history. The 

environmental variables used in this analysis were annual mean sea surface 

temperature (SST), SST range, maximum SST, minimum SST, mean dissolved 

oxygen concentration, and mean pH. Environmental data corresponding to the GPS 

coordinates of each sampling location (Table 3.2) was extracted from the Bio-

ORACLE climatology dataset (Assis et al., 2018) using the sdmpredictors package in 

R (Bosch & Fernandez, 2022). Allele frequencies were tested against each variable 

separately, with each analysis consisting of a burn-in of 5,000 MCMC iterations and 

25,000 post-burn-in iterations, sampled every 25 iterations. I considered SNPs with 

Bayes factors (BF) > 20 deciban as significantly associated with the tested 

environmental variable, as recommended by Gautier (2015). 

Estimates of Diversity 

Finally, to estimate and compare overall levels of nucleotide diversity within each 

population, a separate list of genomic sites was created using sequence data from all 

individuals from the original 13 locations in ANGSD with no SNP significance 
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threshold (including both variable and non-variable sites) and no minimum allele 

frequency threshold. The parameters used were -minInd 79, -setMinDepth 316, and -

setMaxDepth 2294. This generated a list of 574,065,898 sites, representing 96.9% of 

all sites in the reference genome. Using the limited list of samples from the 10 well-

sampled locations mentioned above, I again calculated sample allele frequency 

likelihoods, this time to produce a single dimensional SFS for each population. Both 

the sample allele frequency likelihoods and SFS for each population were then used 

as input for the ThetaStat program in ANGSD to calculate the estimates of genetic 

diversity, Watterson’s estimator (θW) and Tajima’s theta (θπ). 

RESULTS 

Sequencing, SNP calling & LD-pruning 

Across all 158 samples sequenced, the median of the median genome-wide depth was 

8x with a standard deviation of 6.52 after deduplicating, overlap clipping, and 

realignment of reads around indels (mean of means = 10.22x, SD = 6.26). The mean 

proportion of the 596 Mb reference sequence that was covered by at least one read 

was 97.4%. Additional information on sequencing coverage and depth is provided in 

the supplementary materials (Figures S3.1 & S3.2). Variant calling in ANGSD 

resulted in 9,020,431 SNPs that met the filtering criteria. Among these, the mean 

depth summed across all individuals was 1200x with a mode of 1500x, corresponding 

to an average of 7.6x per individual. LD-pruning with ngsLD yielded a final list of 

6,711,262 unlinked SNPs. 
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Population genomic analyses 

The principal components analysis resulted in 4 significant axes of variation (PCs, 

MAP test), explaining 11.4%, 6.7%, 3.4%, and 2.4% of the genetic variance, 

respectively. Overall, I observed strong structure between geographic regions. At the 

continental scale, individuals clustered into 5 major groups composed of the 

Southeast Alaska, British Colombia, Puget Sound, Northern California, and Southern 

California sampling regions, although most sampling locations within the Northern 

and Southern California regions also exhibit separation from each other along the 

major axes. In general, the placement of populations along PC 1 correlated with 

latitude, although the relative distances between locations along this axis did not 

always reflect relative geographic distances (Figure 3.3). The 5 major clusters were 

substantially differentiated along PC 1, except for British Columbia and Puget Sound, 

which held similar positions along this axis. Along PC 2, however, Puget Sound was 

highly differentiated from all other clusters, and British Columbia instead grouped 

together with the northern California and, to a lesser extent, southern California 

clusters. PC 3 mostly separated British Columbia from all other locations, although 

the other major clusters remained distinct (Figure 3.4). The Puget Sound and Alaska 

clusters grouped closely along PC 3 and PC 4. With respect to the Northern and 

Southern California locations, placement along PC 4 also strongly reflected latitude, 

but with greater separation among sampling locations, relative to their distances from 

the other three clusters, than was seen along PC 1. Along PC 4, the Alaska and Puget 

Sound clusters grouped closely with the sampling locations from Central California 
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(Santa Cruz, Pacific Grove, Carmel Bay, Big Sur), while British Columbia grouped 

closely with the Santa Barbara location. Most sampling locations exhibited relatively 

low levels of within-location variance, with most forming tight clusters along each set 

of PCs. One individual from Santa Barbara, however, broke with this pattern, 

grouping more closely to the Northern California cluster along PCs 1 and 2 than to 

the Southern California cluster. 

 As expected, pairwise weighted FST calculations confirmed the strong 

structure visualized in the PCA. Puget Sound exhibited the strongest differentiation of 

all the sampling locations, with all pairwise comparisons including this location 

resulting in FST values greater than 0.26 (Table 3.3). Surprisingly, the greatest 

differentiation seen across all comparisons was between Puget Sound and Sitka 

Sound (FST = 0.40), locations separated by only 1365 km. By contrast, San Diego and 

Salisbury Sound are separated by over 3000 km, but the divergence between them 

was 0.25. The lowest level of differentiation was seen between the two Southeast 

Alaska locations (Sitka Sound and Salisbury Sound), which also represent one of the 

smallest geographic distances between sampling locations (43 km). 

 To understand the extent to which population structuring might be driven by 

geographic distance, i.e., isolation by distance (IBD), and to highlight deviations from 

expected IBD patterns, I plotted linearized weighted FST for each comparison as a 

function of the shortest geographic distance between sampling locations (Figure 3.5). 

This resulted in a highly linear relationship for the majority of comparisons (r2 = 0.96, 
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p < 2.2 x 10-16), with those involving Puget Sound, as well as comparisons between 

British Columbia and Alaska, deviating strongly from this pattern with comparatively 

greater ratios between FST and geographic distance. 

 PCAngsd infers admixture proportions by assigning the number of ancestral 

populations (K) as K = D + 1, where D is the number of significant principal 

components (Meisner & Albrechtsen, 2018). K was therefore set to 5 populations, 

which correspond to the 5 major clusters described above. The analysis revealed little 

admixture between the four northernmost populations (Alaska, British Columbia, and 

Puget Sound, and Northern California). Within the Southern California population, 

individuals from San Diego had little to no ancestry derived from the other four 

populations, but there appears to be a trend of increasing Northern California ancestry 

moving north from Santa Barbara (~10% admixture, n = 15) to Santa Cruz (~30% 

admixture, n = 2). Patterns in ancestry were generally consistent within sampling 

locations. Two individuals deviated notably from this general pattern. In addition to 

Northern California ancestry, an individual from Santa Barbara also had ancestry 

corresponding to the Puget Sound and British Columbia populations, up to a total of 

approximately 40% admixture. Another individual from Pacific Grove had a roughly 

twice the proportion of the Northern California ancestry (~40%) than the other 

individuals from that location (~20%). 
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Estimates of Diversity 

Estimates of the site frequency spectra revealed substantial differences in 

spectrum shape between regions. The two Alaska locations, British Columbia, and 

Puget Sound all showed a relative lack of low frequency alleles, while the California 

locations exhibited a relative excess of these alleles (Figure 3.7). In general, there was 

an increasing trend of low frequency alleles moving south from Bodega Bay to San 

Diego. 

Estimates of mean nucleotide diversity (θπ) revealed substantial differences 

between sampling locations. In general, diversity increased from the south to the 

north (Table 3.4). The highest estimated diversity was observed in the San Diego and 

Carmel Bay locations (0.00260), though estimates for the other Southern California 

locations were only marginally smaller (> 0.00257). Bodega Bay, which was the only 

Northern California location included in this analysis, had an estimated nucleotide 

diversity of 0.00234. The lowest diversity estimates were observed in the four 

northernmost locations. Puget Sound had an estimated diversity of 0.00114 and the 

two Alaska populations were only slightly more diverse (Sitka Sound = 0.00125, 

Salisbury Sound = 0.00135). Interestingly, British Columbia had the highest diversity 

of the non-California locations (0.00176). Estimates of Watterson’s θ (θW) were also 

calculated for each population and yielded similar general patterns (Table 3.4). 
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Evidence of Selection 

The PC-based test for selection did not identify any outlier SNPs along PC 1, but 

found 10,247 outliers along PC 2, 16,798 along PC 3, and 7,528 along PC 4 (chi-

squared test, FDR-adjusted p-value < 0.05). The four lists of outlier SNPs were 

combined (34,566 unique SNPs) and compared with the list of 120,339 outliers 

derived from the BayPass core model analysis (XtX > 99% quantile of the POD 

distribution). Only those SNPs present in both outlier lists were considered to be 

under selection, yielding a final list of 12,670 candidate SNPs. These SNPs mapped 

to a total of 6,473 genes on the annotated reference genome. 

 Enrichment analysis of the candidate gene list yielded 160 enriched gene sets 

(GO terms) with FDR-adjusted p-value < 0.05. Of the 6,473 genes queried, 4,006 

were included in the analysis, 1,320 were duplicates, and 1,147 had gene names that 

were not recognized against the A. polyacanthus background. The enriched GO terms 

were clustered by similarity to form 23 functional gene set clusters (Table 3.5). In 

general, the two major biological themes among the enriched terms were embryonic 

development and metabolic processes. The three largest gene set clusters were 

associated with tissue, organ, and skeletal system development (30 gene sets), 

axonogenesis and neuron development (25 gene sets), and vasculature development 

and ameboidal-type cell migration (25 gene sets). 

The PC-level enrichment analysis resulted in similar biological themes across 

PCs with substantial overlap of enriched terms among them. There were, however, 
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some differences in the lower-level, more specific GO terms (Table 3.6). For 

example, both PC 2 (which mainly separates Puget Sound from all other populations) 

and PC 3 (which does the same for British Columbia) have clusters related to 

development/morphogenesis, but PC 3 includes specific systems that aren't enriched 

along PC 2, such as vasculature development and sensory organ development. PC 4 

(which mostly separates out California populations by latitude) gene set clusters are 

also mainly related to development and cell signaling, with a specific focus on eye, 

blood vessel, and nephron development. 

GEA analysis yielded associated candidate SNPs (BF > 20) for all 6 

environmental variables tested, which were filtered to include only those that were 

also identified in the XtX and PC-based analyses. The greatest number of filtered 

SNPs were associated with mean pH (4413 SNPs) and minimum annual sea surface 

temperature (SST, 1523 SNPs), respectively (Table 3.7). These SNPs mapped to 1813 

unique genes for mean pH, 907 genes for minimum annual SST, 762 for mean annual 

SST, 592 for dissolved oxygen, 230 for maximum annual SST, and 83 for SST range.  

Filtering greatly reduced the number of candidate SNPs and genes associate 

with each variable and therefore the number of enriched gene sets. Clustering of 

enriched gene sets for each environmental variable resulted in 7 enriched gene set 

clusters for mean pH, 4 clusters for minimum annual SST, 2 clusters for dissolved 

oxygen, 1 cluster for mean annual SST, 1 cluster for SST range, and no enriched gene 

sets or clusters for maximum annual SST (Table 3.8). The main difference in 
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enrichment results across environmental variables was the number of enriched gene 

sets. pH, min SST, mean SST, and dissolved oxygen were all associated with gene 

sets related to development, especially of the nervous system. 

DISCUSSION 

In this study, I demonstrated strong genetic structuring within B. frenatus 

across the majority of the species range. Genetic diversity generally decreased from 

south to north, suggesting a general recent history of northward expansion. I also 

revealed that a significant amount of the genetic structuring in this species is likely 

caused by differential selection and local adaptation. In particular, my results suggest 

the presence of a substantial amount of adaptive genetic variation to climate stressors, 

including varying levels of temperature and acidification. However, they also suggest 

low gene flow across the sampled range, which may limit the movement (and 

therefore availability) of adaptive genetic variation between subpopulations. 

Patterns of differentiation & diversity 

 The observed population structure in B. frenatus seems to be the product of a 

combination of isolation-by-distance and vicariance (geographic/physical separation). 

In California, the overwhelming signal of divergence is that of isolation by distance, 

with pairwise weighted FST values (linearized) forming a strongly linear relationship 

with geographic distance (r2 = 0.96) (Figure 3.5). Even within this region, however, 

there are indications of potential geographic boundaries.  Most notably, individuals 
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from Bodega Bay are more diverged from the Central California populations than 

would be expected based on the regression of linearized FST and geographic distance. 

This can be seen visually in both the IBD plot (Figure 3.5), where these points are 

above the regression line and outside the standard error range, and in the PC plots 

(Figures 3.2-3.4).  This divergence likely represents the San Francisco Bay as an 

ecological and geographic barrier. Kelp perch are highly associated with kelp forests, 

especially Macrocystis pyrifera, though they can also be found within other species of 

kelp (e.g., Nereocystis luetkeana and Pterygophora californica), seagrass beds, and 

other shallow, structured habitats (Love, 2011; Toy, personal obs.). The San 

Francisco Bay does not host appreciable amounts of canopy forming kelps 

(https://kelp.codefornature.org/) and may therefore represent an uninhabitable stretch 

of coast for B. frenatus. Additionally, kelp perch are rarely found at depths greater 

than 30 m (Hubbs & Hubbs, 1954; Love, 2011), so the depth and flow dynamics of 

the bay likely inhibit dispersal across its mouth. The Monterey Bay may represent a 

similar barrier to gene flow, but inference is limited due to a small sample size from 

Santa Cruz. Although there is abundant kelp habitat at the northern and southern 

edges, the interior of Monterey Bay is characterized by a low-structure, sandy coastal 

benthos, as well as a submarine canyon that divides it at the middle (Eittreim et al., 

2002). This lack of suitable habitat may explain the gap seen between the Santa Cruz 

and Pacific Grove locations (Figure 3.3). 

 Admixture analysis supports the existence of these two biogeographic breaks 

by revealing low levels of admixture between California populations north of San 
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Francisco Bay and those south of it, with the two Santa Cruz individuals showing 

notably higher levels of Northern California ancestry than most other individuals 

from the Southern California cluster. Conversely, admixture analysis shows very 

similar ancestry proportions (~20% Northern California and 80% Southern 

California) for nearly all individuals from Pacific Grove to Point Buchon, with 

perhaps a slight increase in Southern California ancestry in the three individuals from 

Point Buchon. This pattern indicates relatively high levels of gene flow in this region, 

which is characterized by a relatively continuous distribution of large canopy-forming 

kelps (i.e., M. pyrifera and N. luetkeana; Nicholson et al., 2018). One individual from 

Pacific Grove, however, exhibits twice the proportion of Northern California ancestry 

(~40%) compared to others from that sampling location, likely reflecting a more 

recent admixture event (e.g., a fist generation backcross) in that individual lineage. 

Moving south from Point Buchon, the proportion of Southern California ancestry 

increases again to ~90% in individuals from Santa Barbara. Notably, I found little 

additional evidence of the traditionally hypothesized phylogeographic break at Point 

Conception (summarized by Burton, 1998), in concordance with predictions by 

Dawson (2001). Indeed, one individual from Santa Barbara displays a more admixed 

ancestry than most of the Central California locations (combined ~40% non-Southern 

California) with apparent additional ancestry from both the Puget Sound and British 

Columbia clusters, in addition to Northern California ancestry. The lack of strong 

evidence for this hypothesized phylogenetic gap may be due, in part, to the adult-

centric mode of dispersal in B. frenatus. Structure between individuals within and 
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north of the Southern California Bite may be more prominent in species with pelagic 

larvae, whose dispersal is determined in large part by prevailing currents. Because 

kelp perch lack a pelagic larval stage, their connectivity may be less impacted by the 

potential effects of the divergent currents north and south of Point Conception. I also 

found little evidence of the well-documented Palos Verde break between Santa 

Barbara and San Diego (FST =0.03), as this point is very close to the regression line of 

linearized FST and geographic distance (Figure 3.5). There is, however, substantial 

separation between individuals from San Diego and Santa Barbara along PC 4 in 

Figure 3.4. Individuals from the San Diego location also exhibit a complete lack of 

admixture with locations north of San Francisco, while all other locations in the 

Southern California cluster showed some level of mixed ancestry/gene flow. This 

high structuring of individuals within the San Diego location may be the result of the 

effects of the Palos Verdes peninsula on local flow and deposition regimes (Dawson, 

2001), and therefore habitat connectivity, possibly in combination with selection on 

divergent temperature regimes in the two locations. 

 Locations north of California are highly differentiated from the more southern 

locations, but also show strong differentiation from each other, apart from the two 

geographically close locations in Southeast Alaska (Figures 3.2 & 3.4). Comparisons 

between Puget Sound, British Columbia, and Alaska all stand out as outliers from the 

IBD regression, with high values of FST relative to geographic distance (Figure 3.5, 

red and green points). Even British Columbia and Puget Sound, which are separated 

by only 486 km, exhibit an FST of 0.31. For comparison, the divergence between San 
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Diego and Big Sur, which are separated by 535 km, is only 0.04. Interestingly, Puget 

Sound and British Columbia cluster relatively closely along PC 1, but are highly 

divergent along PC 2, indicating some level of genetic similarity relative to the 

Alaska locations. Similarly, Puget Sound and Alaska are highly divergent along PC 2 

(and to a lesser extent along PC 1), but cluster closely along both PC 3 and PC 4. This 

strong genome-wide divergence (FST), but close similarity along some principal 

components is consistent with a scenario of a single initial colonization event of the 

more northern locations from California, followed by subsequent colonization events 

(and founder effects) within this region, with little recent gene flow between them 

(Figure 3.6). 

 This idea is further supported by estimates of nucleotide diversity within each 

location. Overall genetic diversity is highest in the southernmost locations, and 

generally declines with increasing latitude (Table 3.4), suggesting a generally 

poleward-expanding history of the species. Among the northern locations, British 

Columbia has the highest diversity and Puget Sound the lowest, indicating that British 

Columbia may have been the first of these locations to be colonized, and that Puget 

Sound and Southeast Alaska may have been subsequently colonized by individuals 

from British Columbia. Further, British Columbia and the two Alaska locations each 

show relatively lower levels of divergence from the two locations within the Southern 

California Bite (Santa Barbara and San Diego) than from the more northern 

California locations (these points fall below the regression line and outside of the 

standard error range in Figure 3.5). This may indicate that the individuals involved in 
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the initial colonization of this northernmost region migrated from Southern 

California, rather than Northern California. A possible mechanism of dispersal in this 

scenario would be through the association of migrants with kelp rafts, detached 

masses of tangled and buoyant kelp, which have been documented to travel great 

distances with their associated communities of algae and animals (Hobday, 2000a, 

2000b; Mitchell & Hunter, 1970). Although the California Current pushes nearshore 

waters southward during the spring and summer, the Davidson current surfaces 

during the winter and runs south to north, close to shore (Checkley & Barth, 2009). 

The prevalence of kelp rafts in the Southern California Bite is also highest in winter 

(Hobday, 2000a), and the Southern California Countercurrent and Eddy, which drive 

water movement along the Southern California Bite, may have pushed kelp rafts 

hosting B. frenatus northwest and into the Davidson Current, where they were 

transported up towards British Columbia. 

At the northernmost extent of this range, historical data also seems to support 

a more modern expansion north from British Columbia, though the remoteness of 

these northern areas may introduce historical sampling bias. Early records place the 

northern range limit of B. frenatus at Puget Sound (Jordan & Starks, 1895; Starks & 

Morris, 1907), but this limit was extended to Vancouver Island by 1928 at the latest 

(Ulrey & Greeley, 1928), and seems to have remained unchanged through the end of 

the century (Clemens & Wilby, 1961; Miller & Lea, 1976). The most reliable 

evidence of a modern northern expansion, however, comes from the first record of B. 

frenatus in Alaska. In 1998, 36 specimens were collected near Craig, AK (Csepp & 
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Wing, 1999). In this same study, several sites near Sitka Sound, farther north of 

Craig, were also sampled, but no B. frenatus individuals were recorded at these sites, 

indicating that the region around Craig may have been the true northernmost extent of 

the species range. However, three years later, several specimens were collected by 

Csepp from the southern end of Sitka Sound (Mecklenburg et al., 2002). During my 

own sampling, I observed large numbers of B. frenatus at sites throughout Sitka 

Sound, and my collection site in Salisbury Sound reflects the northernmost 

observation yet recorded for the species. 

The shape of the site frequency spectrum in each location can also provide 

insight into the demographic history of this species. Population expansions and 

contractions can have strong effects on the frequency of singletons (alleles present in 

only one individual in a population) across the genome. Population expansions will 

tend to create a relative excess of singletons in a population compared to a neutrally 

evolving Wright-Fisher population. In contrast, population contractions will tend to 

remove singletons from the population, creating a skew in the distribution towards 

alleles of intermediate frequencies (Tajima, 1989). All four northern populations 

exhibit the lack of singletons that one would expect from a strong population 

contraction. The British Columbia spectrum is less skewed than the other three, 

further supporting the idea that British Columbia was colonized first by a small 

number of individuals and that this subpopulation then facilitated the colonization of 

locations to the north (Alaska) and south (Puget Sound). Conversely, the California 

populations exhibit site frequency spectra much closer in shape to what would be 
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expected from a constant-size Wright-Fisher population or an expanding population, 

with singletons by far representing the greatest proportion of polymorphic sites. 

From both PC analysis and FST estimates, it is clear that the subpopulation 

within Puget Sound exhibits exceptional divergence from all other locations, even 

those closest to it. This likely results from a mix of the processes discussed above as 

well as strong local selection. As discussed previously, Puget Sound was likely 

colonized relatively recently. As such, this subpopulation may exhibit genetic 

divergence associated with a population bottleneck (founder effect). Subsequent 

physical separation (vicariance) may also have contributed to the divergence of this 

subpopulation. The Sound is a sheltered body of water with few outlets to the north 

and none to the south. Its main connection to the outer coast is the deep Strait of Juan 

de Fuca, which exhibits strong east-west tidal flows that may act as a barrier to 

dispersal (Holbrook et al., 1980). Selection may also play a role in this divergence, as 

the oceanographic conditions and terrestrial influences (freshwater flow, nutrient and 

pollutant concentrations) within the Sound can differ greatly from those of the outer 

coast (Holbrook et al., 1980; Moore et al., 2008; West et al., 2017). Along PC 2, 

which mainly separates Puget Sound from all other locations, I identified 10,247 

SNPs as outliers potentially under selection. Thus, a combination of neutral and 

selective forces may contribute to the substantial divergence of this subpopulation 

from the others. 
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Given the seemingly high overall divergence between Puget Sound and 

British Columbia, it is possible that the Puget Sound location represents an 

independent colonization event from California migrants rather than colonization 

from nearby Vancouver Island. The lowest levels of divergence from Puget Sound are 

seen in comparison to the Pacific Grove location (FST = 0.26), but this value is only 

0.05 less than the divergence between Puget Sound and British Columbia. Each of the 

four northern locations also exhibit nearly identical patterns of relative differentiation 

from the 6 southern locations (Figure 3.5), suggesting a common ancestry of the 

northern subpopulations. Furthermore, along the first two principal components 

(which together explain ~20% of the observed variance), British Columbia is the 

most similar location to Puget Sound, with the two grouping especially closely along 

PC 1. Ultimately, however, further demographic analysis is needed to determine 

which of these alternative histories is more likely. 

Evidence of selection and local adaptation across the genome 

 Overall, I found strong evidence of selection across the B. frenatus genome 

(Figure S3.3). Between the PC and XtX analyses, 12,670 SNPs were overlapping. 

These SNPs mapped to 6,473 unique genes, which account for 19% of the 33,503 

predicted genes within the genome, or 28% of the 22,936 genes with annotations. 

These proportions indicate a strong influence of selection in shaping the genetic 

diversity of this species. 
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 Enrichment analysis of all candidate genes together identified 160 enriched 

GO terms, which clustered together into 23 general biological categories (Table 3.5). 

The largest cluster contained gene sets related to tissue, organ, and skeletal system 

morphogenesis and development, suggesting that the differences in environment 

across the species range have strong impacts on the development of embryos and 

juveniles. This makes intuitive sense, given that temperature is expected to be one of 

the largest differences in the abiotic environment between the northern and southern 

range extents, and that developmental rates are directly correlated with temperature in 

most ectotherms (Precht et al., 1973). In fact, this relationship has been directly 

documented in Cymatogaster aggregata, another Eastern Pacific surfperch species 

(Wiebe, 1968). Similarly, one would expect genes related to metabolism and 

transcript/protein turnover to be under selection under divergent temperature regimes. 

Indeed, I saw enrichment of gene sets consistent with this expectation, such as those 

related to protein catabolism, positive regulation of metabolic processes, and 

transcription coregulator activity. 

 The idea that temperature is an important selective factor was further 

corroborated by the environmental association analysis, as minimum sea surface 

temperature had the second highest number of candidate SNPs and candidate genes 

among all environmental variables tested (Table 3.7). The result that minimum SST, 

rather than mean or maximum SST, had the greatest number of associated SNPs is 

also consistent with theoretical expectations, given that the SST difference between 

the north and south range edges is greatest when using minimum SST (Table 3.2), 
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and that extreme temperature events can have strong impacts on species abundances 

and range boundaries (Kroeker et al., 2020; Wethey et al., 2011). Previous work on 

yellowtail clownfish populations in the Western Pacific also found more SNPs 

associated with minimum SST than maximum SST, although totals for minimum and 

mean SST were similar (Clark et al. 2021). 

 The strength of selection on gene sets related to development may in part 

reflect the viviparous reproduction of B. frenatus. In colder waters, slower rates of 

development would translate to longer gestation times for pregnant females. 

Prolonged gestation would likely have a substantial effect on fitness through direct 

impacts on both the mother and offspring. In elasmobranchs, for example, it has been 

suggested that longer gestation times may give mothers less time after parturition to 

restore energy reserves prior to the onset of winter conditions and the next 

reproductive cycle (Wallman & Bennett, 2006). Concomitantly, newborn offspring 

would also begin feeding later in the season, providing less opportunity for growth 

while resources are still abundant (Wallman & Bennett, 2006). Furthermore, 

pregnancy is often associated with increased risk of predation due to a decrease in 

mobility (Magnhagen, 1991), so prolonged gestation could further decrease the odds 

of female survival. The signals of selection observed in development-related genes 

may therefore reflect physiological adaptations that decrease gestation time, though 

common garden experiments would be necessary to confirm this. 
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 Interestingly, there appeared to be a particular emphasis among the 

development-related gene sets on those related to the development of the central 

nervous system. Selection on these gene sets in particular may reflect spatially 

divergent pH regimes in the Northeast Pacific. Previous work in black surfperch 

(Embiotoca jacksoni) has demonstrated that even modest changes in pH can elicit 

changes in brain gene expression that may significantly impact neurological 

functioning (Toy et al., 2022). Mean pH was significantly associated with the second 

greatest number of candidate SNPs and genes among the environmental variables 

tested and, in fact, had the greatest totals of both when including only SNPs that were 

commonly identified as putatively under selection by the PC, XtX, and environmental 

association analyses (Table 3.7). The enrichment of gene sets related to neurological 

development may therefore reflect local adaptation to divergent pH regimes. 

 It is important to note that although enrichment analysis helps to interpret 

broader themes in adaptive differences between populations, it is also inherently 

biased against SNPs of large effect, since an ontology term with a single (or very few) 

genes under selection will likely never be recognized as significantly enriched, even 

if it is under strong selection. Therefore, this list of enriched gene set clusters is not 

necessarily inclusive of all important adaptive differences that may exist between 

populations. These analyses do, however, provide a useful overview of the general 

patterns of adaptation across the range of the species, and allow us to generate more 

specific hypotheses for mechanisms of adaptation. 
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Conclusions 

 In this study, I demonstrated strong population genetic structure in marine 

populations at the regional scale, and moderate levels at relatively small spatial scales 

(e.g., 0.017 over the <20 km between Pacific Grove and Carmel Bay). I found strong 

evidence that genetic variation in B. frenatus is shaped mainly by the pattern of 

isolation-by-distance in the south and by founder effects and vicariance in the north. I 

additionally identified evidence of phylogeographic breaks along the coast of 

California that are consistent with previous studies in other species. The signal of 

these phylogeographic breaks in divergence estimates stresses the importance of 

habitat continuity in maintaining connectivity in low-dispersal species. In the context 

of kelp forest conservation and restoration, my results demonstrate that large 

distances without suitable habitat (patchiness) may make recolonization of deforested 

areas difficult for direct-developing marine organisms. These are also important 

factors to consider in the design of MPAs, especially when setting and evaluating 

goals for connectivity between them (Palumbi, 2004). 

 I also found strong signals of selection across the range of B. frenatus, despite 

relatively low levels of genetic diversity in the northern populations. The strongest 

signal of selection seemed to be among genes related to development, with an 

emphasis on the central nervous system, and the two strongest selective pressures 

among the environmental variables tested were minimum SST and mean pH. These 

results provide evidence of local adaptation to climate stressors, and therefore a 
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potential standing stock of adaptive variation that may increase the adaptive capacity 

of the species to future environmental changes.  However, the high levels of 

population structure in the species indicates low levels of gene flow. Admixture 

analysis revealed little to no gene flow between each of the northern subpopulations 

and the other sampled locations, indicating a low likelihood that adaptive alleles from 

the south could reach the northern populations on a time-scale relevant to ongoing 

environmental change. The California populations, however, may fare better in this 

respect. Though these populations exhibited moderate levels of structuring, admixture 

analysis indicated significant gene flow occurs between them, likely due to relatively 

high habitat continuity in this region. Additional work is necessary to quantitatively 

estimate the rate at which adaptive alleles may be expected to flow between regions 

as well as the rate of gene flow that would be expected to significantly increase the 

likelihood of evolutionary rescue in this species. 

 Finally, my findings indicate a general history of south-to-north expansion in 

B. frenatus, with genetic diversity generally decreasing with latitude. Additionally, I 

have provided further evidence of a more recent range expansion in the North, as I 

note the northernmost observation of this species yet recorded. Both the genetic 

similarity of the two Alaska populations and their comparable levels of genetic 

diversity also indicate that my northernmost sites in Alaska may not represent the true 

current range edge, and that B. frenatus may in fact be present further north. I suggest 

that B. frenatus would therefore provide an excellent system in which to empirically 

test hypotheses regarding the evolutionary dynamics of range edge populations during 
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marine range expansion, a pressing area of study in the face of a rapidly changing 

ocean environment. 

 

 



117 
 

FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 - Brachyistius frenatus sampling locations. SAAK = Salisbury Sound, 
AK; SIAK = Sitka Sound, AK; MIBC = Malcolm Island, BC; PSWA = Puget 
Sound, WA; BBCA = Bodega Bay, CA; TBCA = Tomales Bay, CA; SCCA = 
Santa Cruz, CA; PGCA = Pacific Grove, CA; CBCA = Carmel Bay, CA; BSCA = 
Big Sur, CA; PBCA = Point Buchon, CA; SBCA = Santa Barbara, CA; SDCA = 
San Diego, CA. AK = Alaska, USA; BC = British Columbia, Canada; WA = 
Washington State, USA; CA = California, USA. 
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Brachyistius frenatus 
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Figure 3.2 - Individual-level principal components plot for all sampling locations 
along the first two principal components. Axes show in parentheses the percent of the 
total variation explained by each principal component. Location codes as in Figure 
3.1 and Table 3.1. 
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Figure 3.3 - Individual-level principal components plot for California locations along 
the first two principal components. Location codes as in Figure 3.1 and Table 3.1. 
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Figure 3.4 - Individual-level principal components plot for all sampling locations 
along the third and fourth principal components. Axes show in parentheses the 
percent of the total variation explained by each principal component. Location codes 
as in Figure 3.1 and Table 3.1. 
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Figure 3.5 - Plot of isolation-by-distance (IBD) for all sampling locations. Linearized 
FST was regressed against the straight-line distance between sampling locations, 
excluding comparisons that included Puget Sound (red) and comparisons between the 
northern locations (green), which are likely to be driven by founder effects and 
vicariance. 
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Figure 3.6 - Plot of admixture proportions for all individuals. K=5 was selected 
based on the number of significant principal components. 
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Figure 3.7 - Site frequency spectra (SFS) for each sampling location. Major and 
minor alleles were defined based on genotype likelihoods from all 158 sequenced 
individuals. An allele count of 30 indicates a fixed minor allele. 
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TABLES 
Table 3.1 - Collection date, name, code, coordinates, and sample size for each 
location. 

Collection 
date Location name 

Location 
code Latitude Longitude n 

2019-06-21 Salisbury Sound, AK SAAK 57.332 -135.712 15 
2018-06-20 Sitka Sound, AK (Harris Island) SIAK 57.031 -135.277 13 
2018-06-20 Sitka Sound, AK (Sandy Cove) SIAK 56.985 -135.321 2 
2019-10-18 Malcolm Island, BC MIBC 50.634 -127.159 16 
2019-11-25 Puget Sound, WA (Seacrest Park) PSWA 47.589 -122.379 15 
2020-08-14 Bodega Bay, CA BBCA 38.314 -123.052 15 
2020-09-29 Tomales Bay, CA TBCA 38.216 -122.95 2 
2021-11-21 Santa Cruz, CA SCCA 36.954 -122.023 2 
2020-07-08 Pacific Grove, CA PGCA 36.621 -121.901 15 
2019-09-27 Carmel Bay, CA CBCA 36.564 -121.944 15 
2020-07-16 Big Sur, CA BSCA 36.069 -121.601 15 
2020-08-12 Pt. Buchon, CA PBCA 35.241 -120.896 3 
2020-08-31 Santa Barbara, CA SBCA 34.395 -119.73 15 
2020-08-25 San Diego, CA SDCA 32.852 -117.276 15 

 
 
 
 
 
Table 3.2 - Environmental data used in the BayPass environmental association 
analysis. Data are derived from the Bio-ORACLE database. SST = sea surface 
temperature in degrees Celsius. DO = dissolved oxygen concentration in mL/L. 

Location 
Mean 
SST 

SST 
range 

SST 
max SST min DO pH Latitude 

SAAK 6.852 13.480 15.300 1.820 6.803 8.153 57.332 
SIAK 8.541 12.605 15.544 2.939 6.921 8.151 57.031 
MIBC 8.908 6.595 13.400 6.805 6.847 8.147 50.634 
PSWA 10.918 7.686 14.797 7.111 6.094 7.833 47.589 
BBCA 12.352 3.469 14.353 10.884 6.230 8.210 38.314 
PGCA 13.865 3.884 16.239 12.355 6.345 8.207 36.621 
CBCA 13.028 3.552 15.189 11.637 6.269 8.206 36.564 
BSCA 13.237 3.456 14.935 11.479 5.987 8.198 36.069 
SBCA 16.006 4.855 18.874 14.019 5.980 8.200 34.395 
SDCA 18.155 7.311 22.136 14.825 5.798 8.221 32.852 
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Table 3.3 - Weighted FST values for all pairwise comparisons of sampling locations. 
Cells are colored according to FST value. Deeper red indicates greater differentiation. 

  SAAK SIAK MIBC PSWA BBCA PGCA CBCA BSCA SBCA 
SIAK 0.0156                 
MIBC 0.2247 0.2264               
PSWA 0.3976 0.4023 0.3149             
BBCA 0.2463 0.2475 0.1685 0.2766           
PGCA 0.2306 0.2316 0.1587 0.2618 0.0585         
CBCA 0.2314 0.2325 0.1595 0.2626 0.0600 0.0165       
BSCA 0.2316 0.2326 0.1598 0.2629 0.0602 0.0167 0.0167     
SBCA 0.2347 0.2355 0.1630 0.2647 0.0666 0.0236 0.0237 0.0231   
SDCA 0.2520 0.2532 0.1818 0.2827 0.0850 0.0406 0.0405 0.0399 0.0331 

 
 
 
 
 
 
 
 
 
 
 
 
Table 3.4 - Estimates of genetic diversity for each sampling location 

Location Mean θW Mean θπ 
SAAK 0.00101 0.00135 
SIAK 0.00093 0.00125 
MIBC 0.00141 0.00176 
PSWA 0.00091 0.00114 
BBCA 0.00243 0.00234 
PGCA 0.00322 0.00259 
CBCA 0.00327 0.00260 
BSCA 0.00325 0.00258 
SBCA 0.00328 0.00258 
SDCA 0.00336 0.00260 
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Table 3.5 - Enriched gene set clusters across genes under selection. Gene list 
included only genes putatively under selection according to all both the PC and XtX 
analyses. Gene sets are from the GO Biological Process, Molecular Function, and 
Cellular Component databases. Enriched gene sets were clustered by similarity and 
manually summarized. The second column indicates the number of enriched gene sets 
within a given cluster. 

Gene set cluster 
Num. gene 
sets 

tissue, organ, & skeletal system 
morphogenesis/development 30 
axonogenesis & neuron development 25 
vasculature development & ameboidal-type cell migration 25 
dendritic spine 12 
protein catabolism 11 
protein kinase activity 10 
positive regulation of GTPase activity 8 
renal system development 6 
endosome/vesicle 5 
Wnt signaling pathway 4 
ATP-dependent chromatin remodeler activity 3 
extracellular matrix organization 3 
positive regulation of metabolic process 3 
receptor complex & plasma membrane 3 
Golgi vesicle transport 2 
metallopeptidase activity 2 
pattern specification process/regionalization 2 
central nervous system development 1 
flavin adenine dinucleotide binding 1 
muscle structure development 1 
response to mechanical stimulus 1 
transcription coregulator activity 1 
UDP glucosyltransferase activity 1 
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Table 3.6 - Clusters of enriched gene sets along each significant principal 
component. Gene sets are from the GO Biological Process, Molecular Function, 
and Cellular Component databases. Enriched gene sets were clustered by 
similarity and manually summarized. The second column indicates the number of 
enriched gene sets within a given cluster. 
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Table 3.7 - Total counts of SNPs and genes associated with each environmental 
variable. "Common" indicates the totals of associated SNPs and genes after filtering 
to include only those also identified in the two outlier analyses (PC and XtX). 

Env. variable 

Num 
candidate 
SNPs 

Mean 
BF 

Num 
genes w/ 
candidate 
SNPs 

Mean 
BF 

Num 
common 
candidate 
SNPs 

Mean 
BF 

Num 
genes w/ 
common 
candidate 
SNPs 

Mean 
BF 

Mean pH 109,216 24.42 7160 31.64 4413 34.08 1813 37.39 
Min. SST 143,160 24.20 7844 30.49 1523 23.93 907 24.56 
Mean SST 86,308 25.33 6978 31.70 1212 26.00 762 27.17 
Diss. oxygen 63,985 25.93 6161 32.22 901 29.01 592 30.88 
Max. SST 27,509 26.71 4406 31.43 281 26.50 230 27.09 
SST Range 79,676 24.75 6625 30.31 103 24.05 83 23.88 
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Table 3.8 - Clusters of enriched gene sets for genes associated with each 
environmental variable. Gene sets are from the GO Biological Process, Molecular 
Function, and Cellular Component databases. Enriched gene sets were clustered 
by similarity and manually summarized. The number of enriched gene sets within 
each cluster is also indicated. 
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Synthesis 

To best understand, mitigate, and withstand the environmental disruptions 

caused by anthropogenic carbon emissions, the ecological framework of plastic, 

individual-level responses must be merged with an evolutionary framework of 

population-level responses. To this end, I conducted my dissertation research as an 

investigation of the relationships between population genomic diversity, local 

adaptation, and adaptive capacity in the face of global environmental change. The 

studies described in this dissertation have provided much-needed empirical insight 

into the role of local adaptation in mediating population persistence through rapid 

environmental change, as well as the biological mechanisms through which climate 

adaptation may occur. 

In Chapter 1, I provided evidence of acidification as a significant selective 

force in surfperches through impacts on neurological function. This work also 

highlighted the importance of environmental variability in organismal responses to 

changing environments, and I argue that natural variability must be considered in 

manipulative ocean change experiments to ensure accurate prediction of ecological 

impacts. In Chapter 2, I assembled a high-quality reference genome for the kelp 

perch, Brachyistius frenatus, providing an important molecular resource (and only the 

second reference genome) for the study of this unique family of fishes and for the 

field of comparative genomics. In Chapter 3, I provide the first whole genome-level 

assessment of the genomic diversity of a surfperch species, incorporating samples 

from almost the entire species range. I demonstrated that limited dispersal has indeed 
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resulted in striking genetic differentiation within this species. I also identified several 

thousand outlier genes, indicating that the observed differentiation is in part due to 

spatial environmental heterogeneity and the local adaptation of subpopulations. 

Finally, I showed that a substantial number of genes under selection are significantly 

associated with regional differences in climate-related variables, most notably 

minimum sea surface temperature and mean pH. Taken together, I have provided 

strong evidence of local adaptation to climate variables across the sampled range, 

indicating significant standing adaptive variation in this species. My results, however, 

also indicate that limited dispersal may limit the flow and therefore availability of 

adaptive variation in and out of geographically distant subpopulations. 

 By providing a better understanding of the adaptive genetic diversity present 

within marine populations, this work should prove valuable not only to ecologists and 

evolutionary biologists, but to conservation practitioners and managers as well. A 

more comprehensive framework of global change impacts that incorporates 

evolutionary processes will allow managers to more accurately anticipate 

demographic and genetic changes in natural populations and allow them to better 

prepare for potential negative outcomes of global change. Additionally, the patterns 

of diversity revealed by this work provide insight into likely “hot” and “cold” spots of 

genomic diversity in an ecologically important group of fishes. This type of data is of 

critical importance to the management of coastal species, especially those that may be 

impacted by other human activities (i.e., fisheries), and may facilitate more effective 

use of limited resources by conservation practitioners. Finally, this work has provided 
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critical and novel insight into the likelihood of evolutionary rescue in nearshore, 

Eastern Pacific fishes. It has demonstrated that local adaptation along this coast has 

likely maintained a standing stock of potentially adaptive variation, but that low 

levels of gene flow within a species may limit its availability to subpopulations when 

faced with rapid environmental change. Overall, this dissertation not only addresses 

important empirical gaps in the field of global change biology, but also a pertinent 

practical management need: a more comprehensive and accurate understanding of 

population responses to global change. 
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Appendix 1: Supplementary material for Chapter 1 
 
 
REFERENCE GENOME INFORMATION 
 
Sample collection and DNA extraction  
We generated a de novo genome of E. jacksoni using gill and liver tissue from a 
single individual freshly collected in Monterey, California in September of 2014 
(collected on September 13th, sacrificed September 14th. Total DNA was extracted 
with Qiagen Blood and Cell Midi Kit following the manufacturer’s protocol. 
  
Sequencing and assembly  
Sequencing and assembly were carried out by Dovetail® genomics. Briefly, genomic 
DNA was sheared and used to make an Illumina sequencing library (Meyer and 
Kircher, 2010). First, the DNA was sonicated to approximately 300 bp and end 
repaired.  Next, sequencing adapters were ligated to both ends of the DNA. The 
adapters were filled-in, and the DNA was amplified in an indexing PCR. After library 
preparation, the library size distribution was confirmed by agarose gel 
electrophoresis, and the library was size-selected with a Sage Science BluePippin 
with a 2% agarose gel cassette. The library was sequenced on an Illumina HiSeq 2500 
with 2x150 PE rapid run chemistry. 
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Genome Assembly Statistics 
 
E. jacksoni Genome Assembly Statistics (accession JALAZG000000000)   

Genome Assembly Size 567,544,745 bp 
Estimated Chicago Library physical 
coverage (1-50 Kb pairs) 

52.4x 

Number of Scaffolds 1452 
Number of Scaffolds > 1 kb 1450 
Average Scaffold Length 390,871.04 bp 
Longest Scaffold 21,990,620 bp 
N50 5,372,808 bp; n = 25 scaffolds 
N60 3,570,986 bp; n = 39 scaffolds 
N70 2,019,634 bp; n = 61 scaffolds 
N80 1,404,917 bp; n = 95 scaffolds 
N90 746,313 bp; n = 149 scaffolds 
N100 1,000 bp; n = 1452 scaffolds 
N count 8,862,637 
Gaps 95,485   
  

BUSCO Scores 
Summary  C:92.4%[S:91.7%,D:0.7%], 

F:2.6%, M:5.0%, n:3640 
Complete BUSCOs (C) 3361 
Complete and single-copy BUSCOs (S) 3337 
Complete and duplicated BUSCOs (D) 24 
Fragmented BUSCOs (F) 93 
Missing BUSCOs (M) 186 
Total BUSCO groups searched (n) 3640 
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Figure S1.1 - Calibrated pH time series data for the duration of Experiment 2. 
Solid lines represent hourly averaged Durafet data. Dashed lines represent daily 
YSI data. The two vertical grey lines indicate the dates where each group of 
treatments was sampled for brain tissue (September 23 and 24). Headers 1 and 6 
correspond to the ambient treatment, 2 and 7 to the pH 7.85 static treatment, 3 and 
8 to the pH 7.85 variable treatment, 4 and 9 to the pH 7.70 static treatment, and 5 
and 10 to the pH 7.70 variable treatment. 
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Figure S1.2 - Post-hoc test of the effect of fouled Durafets on measured pH. The 
plot shows the pH (uncalibrated) recorded by each Durafet during a 4.5 hr time 
period around midday on October 5, 2017 (11 days after the experiment ended). 
Headers 1 and 6 correspond to the ambient treatment, 2 and 7 to the pH 7.85 static 
treatment, 3 and 8 to the pH 7.85 variable treatment, 4 and 9 to the pH 7.70 static 
treatment, and 5 and 10 to the pH 7.70 variable treatment. 
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Figure S1.3 - Metric MDS plot of global gene expression (all genes) in Experiment 1. 
The distance matrix was created using Manhattan distances between points.  
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Figure S1.4 - nMDS plot of global gene expression (all genes) in Experiment 2. The 
distance matrix was created using Manhattan distances between points. Ellipses are 
95% confidence ellipses. 
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Figure S1.5 - Heatmap of gene expression profiles for each individual in Experiment 
2. Each column represents an individual fish, and each row represents a gene. 
Relative expression is shown here for all genes found to be differentially expressed 
(DEGs) across all treatment comparisons. Yellow represents upregulation in a given 
treatment and purple represents downregulation. 
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Figure S1.6 - Metric MDS plot of DEG expression in Experiment 1. The distance 
matrix was created using Manhattan distances between points. 
 
 
 
 
 
 
SUPPLEMENTARY TABLES 
 
Table S1.1 - Summary of relevant dates for Experiments 1 and 2. 

  Experiment 1 Experiment 2 
Collection Date(s) 4 Sep 2015 28 Jul - 14 Aug 2017 
Tank Acclimation 
(start) 27 Oct 2015 23-24 Aug 2017 
Ramp-up (start) 27 Oct 2015 26 Aug 2017 
Ramp-up (end) 3 Nov 2015 28 Aug 2017 
Experiment Start 3 Nov 2015 1-2 Sep 2017 
Tissue Sampling 26 Nov 2015 23-24 Sep 2017 
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Table S1.2 - Summary statistics of the E. jacksoni transcriptome assembly calculated 
using the TransRate software. 

  E. jacksoni Assembly 
n_seqs 71933 
smallest 61 
largest 40145 
n_bases 2.11 E+08 
mean_len 2933.171 
n_under_200 4090 
n_over_1k 51458 
n_over_10k 1635 
n_with_orf 46928 
mean_orf_percent 43.72653 
n90 1666 
n70 3286 
n50 4808 
n30 6665 
n10 10030 
gc_percent 47.408 
bases_n 142100 
proportion_n 0.00067 
score NA 
optimal_score NA 
cutoff NA 
weighted NA 
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Table S1.3 - Number of reads per sample, mean reads per sample, and standard 
deviation for Experiment 1 samples after quality trimming with Trimmomatic. 

Sample (Experiment 1) 
 

Reads per Sample 
(trim) 

Mean Reads per 
Sample 

SD 

pH 7.30 - 1 16,367,926  17,074,659  711,261  
pH 7.30 - 2 17,797,231  
pH 7.30 - 3 17,564,720  
pH 7.30 - 4 16,568,758  
pH 7.85 - 1 16,200,642  13,453,330  1,977,285  
pH 7.85 - 2 12,866,976  
pH 7.85 - 3 13,239,618  
pH 7.85 - 4 11,506,085  

 
 
 
 
 
Table S1.4 - Number of reads per sample, mean reads per sample, and standard 
deviation for Experiment 2 samples after quality trimming with Trimmomatic. 

Sample (Experiment 2) Reads per Sample 
(trim) 

Mean Reads per 
Sample 

SD 

Ambient 1 13,935,486  16,371,070 2,952,497 
Ambient 2 14,130,786  
Ambient 3 20,169,981  
Ambient 4 17,248,026  
pH 7.70 Static - 1 16,672,746  17,848,144 2,037,506 
pH 7.70 Static - 2 15,589,007  
pH 7.70 Static - 3 19,376,973  
pH 7.70 Static - 4 19,753,849  
pH 7.70 Variable - 1 18,107,479  18,527,366 1,910,768 
pH 7.70 Variable - 2 16,023,025  
pH 7.70 Variable - 3 20,328,241  
pH 7.70 Variable - 4 19,650,719  
pH 7.85 Static - 1 14,132,210  17,816,049 2,941,341 
pH 7.85 Static - 2 16,785,087  
pH 7.85 Static - 3 19,852,330  
pH 7.85 Static - 4 20,494,568  
pH 7.85 Variable - 1 14,428,536  18,858,298 3,474,465 
pH 7.85 Variable - 2 22,922,441  
pH 7.85 Variable - 3 18,974,671  
pH 7.85 Variable - 4 19,107,544  
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Table S1.5 - PERMANOVA analysis of global gene expression for Experiment 1 
(single factor). 

1-way PERMANOVA (Experiment 1, factor = treatment) 
 df Sums of sqs Mean sqs F Model r2 Pr(>F)   
Treatment 1 7119107119 7119107119 25.766 0.81112 0.02857 
Residuals 6 1657807605 276301268  0.18888  
Total 7 8776914724   1  

 
 
 
 
Table S1.6 - PERMANOVA analysis of global gene expression for Experiment 2 (2-
factor). 

2-Factor PERMANOVA (Experiment 2, ambient treatment excluded) 
 df Sums of sqs Mean sqs F Model r2 Pr(>F) 
pH mean  
(no ambient) 

1 946119146 946119146 2.53414 0.15874 0.02137 

pH var  
(no ambient) 

1 221435079 221435079 0.59311 0.03715 0.88953 

pH mean: 
pH var 

1 312333151 312333151 0.83657 0.0524 0.52444 

Residuals 12 4480184179 373348682 0.7517   
Total 15 5960071555 1    

 
 
 
Table S1.7 - Results of pairwise comparisons of global gene expression for all 
treatments in Experiment 2 using the pairwiseAdonis package for R. 

Pairs df Sums of sqs F model r2 p value 
Ambient vs. pH 7.70 Static 1 632943714 1.7877803 0.229562 0.085714 
Ambient vs. pH 7.70 Var 1 421245194 1.140972 0.159778 0.314286 
Ambient vs. pH 7.85 Static 1 278412470 0.8893589 0.129092 0.542857 
Ambient vs. pH 7.85 Var 1 194698128 0.6091689 0.09217 1 
pH 7.70 Static vs. pH 7.70 Var 1 247959677 0.5923027 0.089848 0.942857 
pH 7.70 Static vs. pH 7.85 Static 1 896000714 2.4718167 0.291769 0.057143 
pH 7.70 Static vs. pH 7.85 Var 1 553236095 1.4990777 0.199902 0.142857 
pH 7.70 Var vs. pH 7.85 Static 1 614318130 1.626702 0.21329 0.171429 
pH 7.70 Var vs. pH 7.85 Var 1 362451583 0.9433668 0.135866 0.4 
pH 7.85 Static vs. pH 7.85 Var 1 285808553 0.8712066 0.126791 0.571429 



151 
 

Table S1.8 - Multivariate analysis of DEG expression in Experiment 1. Single-factor 
PERMANOVA analysis of DEG expression in Experiment 1 yielded similar results 
to the analysis of global gene expression. There was a strong and significant effect of 
pH level (r2 = 0.953, F = 122.26, p = 0.029), with pH explaining 95% of the observed 
variation. 

1-way PERMANOVA (Experiment 1, factor = treatment) 
 df Sums of sqs Mean sqs F model r2 p value   
Treatment 1 3319506452 3319506452 122.26 0.95322 0.02857 
Residuals 6 162905622 27150937  0.04678  
Total 7 3482412074   1  

 
 
 
Table S1.9 - Results of 2-factor PERMANOVA reveal significant differences in 
DEG expression levels between pH-level treatments, but not pH variability treatments 
(ambient treatment not included) in Experiment 2. The interaction, however, is 
marginally significant. 

 df Sums of sqs Mean sqs F model r2 p value 
pH mean 1 590351 590351 10.7713 0.3878 0.003913 
pH var 1 63093 63093 1.1512 0.04145 0.290594 
pH mean:pH var 1 211192 211192 3.8533 0.13873 0.052156 
Residuals 12 657692 54808 0.43203   
Total 15 1522328 1    

 
 
 
Table S1.10 - Results of pairwise comparisons of DEG expression for all treatments 
in Experiment 2 using the pairwiseAdonis package for R. 

Pairs df Sums of sqs F model r2 p value 
Ambient vs. pH 7.70 Static 1 262744.4 4.690179 0.438737 0.085714 
Ambient vs. pH 7.70 Var 1 159891.2 1.901314 0.240633 0.171429 
Ambient vs. pH 7.85 Static 1 126518.2 2.911884 0.326742 0.057143 
Ambient vs. pH 7.85 Var 1 58742.33 0.835613 0.122244 0.428571 
pH 7.70 Static vs. pH 7.70 Var 1 116785.3 1.717644 0.222561 0.171429 
pH 7.70 Static vs. pH 7.85 Static 1 663043.7 24.24698 0.801633 0.028571 
pH 7.70 Static vs. pH 7.85 Var 1 262125.7 4.836718 0.446327 0.057143 
pH 7.70 Var vs. pH 7.85 Static 1 391319 7.060927 0.540615 0.057143 
pH 7.70 Var vs. pH 7.85 Var 1 138499.2 1.683474 0.219103 0.228571 
pH 7.85 Static vs. pH 7.85 Var 1 157499.8 3.783892 0.386747 0.057143 
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Table S1.11 - Results of one-tailed t-tests of log(F-ratio) for each pH level in 
Experiment 2. F-ratios were calculated as the average variance of the variable 
treatment divided by the average variance of the static treatment. Alternative 
hypothesis: true mean is greater than 0. 
 
One-tailed t-tests of log(F-ratio) 

  df t-statistic p value 
Target pH 7.85 199 3.7205 0.000129 
Target pH 7.70 199 1.8234 0.034869 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S1.12 - See supplementary file “tables_s1.12-1.15_combined.xlsx”. Enriched 
gene sets between the pH 7.85 and pH 7.30 treatments in Experiment 1 (identified 
using FGSEA analysis). 
 
 
Table S1.13 - See supplementary file “tables_s1.12-1.15_combined.xlsx”. Enriched 
gene sets between the static pH treatments (7.85 and 7.70) in Experiment 2 (identified 
using FGSEA analysis). 
 
 
Table S1.14 - See supplementary file “tables_s1.12-1.15_combined.xlsx”. Enriched 
gene sets between the pH 7.85 static and pH 7.85 variable treatments in Experiment 2 
(identified using FGSEA analysis). 
 
 
Table S1.15 - See supplementary file “tables_s1.12-1.15_combined.xlsx”. Enriched 
gene sets between the pH 7.70 static and pH 7.70 variable treatments in Experiment 2 
(identified using FGSEA analysis). 
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Table S1.16 - Overlapping enriched gene sets between the static vs. variable 
treatment comparisons (pH 7.85 and pH 7.70) in Experiment 2. 

Upregulated in pH 7.85 Var / 
Downregulated in pH 7.70 Var 

Downregulated in pH 7.85 Var / Upregulated in pH 7.70 Var 

GOBP RNA splicing via 
transesterification reactions 

GOBP anatomical structure formation involved in morphogenesis 

GOBP RNA splicing GOCC vesicle membrane 
GOBP mRNA processing GOBP supramolecular fiber organization 

GOCC spliceosomal complex GOBP positive regulation of cell differentiation 
GOBP RNA processing GOBP vasculature development 
KEGG spliceosome GOMF cell adhesion molecule binding 

GOBP mRNA metabolic process GOBP regulation of cellular component movement 
GOCC nuclear protein-containing 
complex 

GOBP positive regulation of locomotion 

GOCC ribonucleoprotein complex GOCC cell surface 

  GOBP regulation of cell adhesion 
  GOBP myeloid leukocyte differentiation 
  GOBP exocytosis 

  GOCC ficolin 1 rich granule membrane 
  GOBP cell-cell adhesion 
  GOBP integrin-mediated signaling pathway 

  GOMF molecular transducer activity 
  GOBP phagocytosis 
  GOBP positive regulation of cell adhesion 

  GOBP regulation of leukocyte differentiation 
  GOBP leukocyte mediated immunity 
  GOBP leukocyte migration 
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Table S1.17 - Up- and Downregulated genes related to GABA signaling (GO - 
gamma-aminobutyric acid signaling pathway, KEGG - GABAergic synapse) in 
Experiment 1 and 2. “U” and orange coloration indicate upregulation in the lower 
pH treatment. “D” and blue coloration indicate downregulation in the lower pH 
treatment. “C” and grey coloration indicate conflicting directions of expression 
change between gene IDs with the same gene symbol annotation. The “Exp 2” 
column refers to the comparison of the two static pH treatments only. 
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Gene Description Exp 1 Exp 2 
adcy1 Adenylate Cyclase 1 D   
adcy2 Adenylate Cyclase 2 D   
adcy3 Adenylate Cyclase 3 D   
adcy5 Adenylate Cyclase 5 D   
adcy6 Adenylate Cyclase 6 D   
adcy8 Adenylate Cyclase 8 D   
atf4  Activating Transcription Factor 4 U   
bdnf Brain Derived Neurotrophic Factor D   
cacna1a Calcium Voltage-Gated Channel Subunit Alpha1 A D   
cacna1b Calcium Voltage-Gated Channel Subunit Alpha1 B D   
cacna1c Calcium Voltage-Gated Channel Subunit Alpha1 C D   
cacna1d Calcium Voltage-Gated Channel Subunit Alpha1 D D   
cacnb4 Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 D   
gabarapl1 GABA Type A Receptor Associated Protein Like 1 U   
gabarapl2 GABA Type A Receptor Associated Protein Like 2 D   
gabbr1 Gamma-Aminobutyric Acid Type B Receptor Subunit 1 D   
gabbr2 Gamma-Aminobutyric Acid Type B Receptor Subunit 2 D   
gabra1 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha1 D   
gabra2 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha2 D   
gabra3 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha3 D   
gabra4 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha4 D   
gabra5 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha5 D   
gabra6 Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha6 D U 
gabrb1 Gamma-Aminobutyric Acid Type A Receptor Subunit Beta1 D   
gabrb2 Gamma-Aminobutyric Acid Type A Receptor Subunit Beta2 D   
gabrb3 Gamma-Aminobutyric Acid Type A Receptor Subunit Beta3 D U 
gabrg1 Gamma-Aminobutyric Acid Type A Receptor Subunit Gamma1 D   
gabrg2 Gamma-Aminobutyric Acid Type A Receptor Subunit Gamma2 D   
gabrg3 Gamma-Aminobutyric Acid Type A Receptor Subunit Gamma3 D   
gabrp Gamma-Aminobutyric Acid Type A Receptor Subunit Pi D   
gabrr2 Gamma-Aminobutyric Acid Type A Receptor Subunit Rho2 D   
gad1 Glutamate Decarboxylase 1 D   
gad2 Glutamate Decarboxylase 2 D   
gls Glutaminase C   
glul Glutamate-Ammonia Ligase D   
gnai1 G Protein Subunit Alpha I1 D   
gnai2 G Protein Subunit Alpha I2 D   
gnao1 G Protein Subunit Alpha O1 D   
gnb1 G Protein Subunit Beta 1 D   
gnb2 G Protein Subunit Beta 2 D   
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gnb5 G Protein Subunit Beta 5 D   
gng12 G Protein Subunit Gamma 12 D   
gng13 G Protein Subunit Gamma 13 D   
gng2 G Protein Subunit Gamma 2 D   
gng4 G Protein Subunit Gamma 4 D   
gng7 G Protein Subunit Gamma 7 D   
gphn Gephyrin D   
gpr156 G Protein-Coupled Receptor 156 U   
htr4 5-Hydroxytryptamine Receptor 4 D   
kcnj6 Potassium Inwardly Rectifying Channel Subfamily J Member 6 D   
nsf N-Ethylmaleimide Sensitive Factor, Vesicle Fusing ATPase D   
phf24 PHD Finger Protein 24 D   
plcl1 Phospholipase C Like 1 (Inactive) D   
plcl2 Phospholipase C Like 2 D   
prkaca Protein Kinase CAMP-Activated Catalytic Subunit Alpha D   
prkca Protein Kinase C Alpha D   
prkcb Protein Kinase C Beta D   
slc12a2 Solute Carrier Family 12 Member 2 D   
shisa7 Shisa Family Member 7 D   
slc12a5 Solute Carrier Family 12 Member 5 D   
slc32a1 Solute Carrier Family 32 Member 1 D   
slc38a3 Solute Carrier Family 38 Member 3 C   
slc6a1 Solute Carrier Family 6 Member 1 D   
slc6a11 Solute Carrier Family 6 Member 11 D   
slc6a13 Solute Carrier Family 6 Member 13 D   
src SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase D   

 
 
 
 
 
 
 
 
 
 
 
 
SUPPLEMENTARY MATERIAL REFERENCES 
TransRate: reference free quality assessment of de-novo transcriptome assemblies 
(2016). Richard D Smith-Unna, Chris Boursnell, Rob Patro, Julian M Hibberd, 
Steven Kelly. Genome Research doi: http://dx.doi.org/10.1101/gr.196469.115 

http://dx.doi.org/10.1101/gr.196469.115
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Appendix 2: Supplementary material for Chapter 2 

 

SUPPLEMENTARY METHODS 

See supplementary file “supplementary_methods_ch2.docx”. 
 
 
 
SUPPLEMENTARY TABLES 
 
Table S2.1 - Summary table of MinION sequencing reads after quality filtering, 
adapter trimming, and length filtering (>500 bp). Produced using NanoStat (v1.5.0). 

General Summary   
Mean read length 3,268.7 
Mean read quality 14.6 
Median read length 2,418.0 
Median read quality 14.7 
Number of reads 4,966,516.0 
Read length N50 4,886.0 
STDEV read length 2,973.0 
Total bases 16,234,043,863 
Number, percentage and megabases of reads above quality cutoffs 

>Q5 4,966,515 (100.0%) 16,234.0 Mb 
>Q7 4,966,503 (100.0%) 16,234.0 Mb 

>Q10 4,965,319 (100.0%) 16,231.7 Mb 
>Q12 4,276,732 (86.1%) 14,000.6 Mb 
>Q15 2,250,354 (45.3%) 7,299.6 Mb 

Top 5 highest mean base call quality scores and their read lengths 
1 37.7 (2036) 
2 35.0 (662) 
3 28.6 (675) 
4 27.7 (506) 
5 27.4 (651) 

Top 5 longest reads and their mean base call quality score 
1   8,7449 (14.5) 
2   8,3790 (11.0) 
3   8,0001 (15.0) 
4   7,7865 (14.8) 
5   7,7769 (13.9) 
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Table S2.2 - See supplementary file “table_s2.2.xlsx”. Summary table of repeats 
identified in the genome assembly using RepeatMasker. 
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Appendix 3: Supplementary material for Chapter 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.1 - Plot of mean sequencing depth across all 158 individuals sampled. 
The black dotted line indicates the mean of the mean depths, and the dotted red 
line indicates the median of the mean depths. 
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Figure S3.2 - Plot of the distribution of the proportion of the reference sequence 
covered for each of the 158 individuals sampled. The mean proportion covered 
across all individuals is 0.974. 
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Figure S3.3 - XtX scores for variable sites across the genome. Points above the 
dotted line are considered putatively under selection. This threshold was 
determined by creating pseudo-observed datasets (PODs) from the data under the 
null model of no selection, using the value corresponding to the 99th percentile of 
the POD null distribution as the calibrated selection/neutrality threshold. 
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List of Supplemental Files 

 

The following supplementary files are included electronically: 

 

“tables_s1.12-1.15_combined.xlsx” 

This file contains the following: 

• Table S1.12 – Enriched gene sets between the pH 7.85 and pH 7.30 
treatments in Experiment 1 (identified using FGSEA analysis). 

• Table S1.13 – Enriched gene sets between the static pH treatments (7.85 and 
7.70) in Experiment 2 (identified using FGSEA analysis). 

• Table S1.14 – Enriched gene sets between the pH 7.85 static and pH 7.85 
variable treatments in Experiment 2 (identified using FGSEA analysis). 

• Table S1.15 – Enriched gene sets between the pH 7.70 static and pH 7.70 
variable treatments in Experiment 2 (identified using FGSEA analysis). 

 
“supplementary_methods_ch2.docx” 

      This file contains the following: 

• Detailed methods for the mitogenome assembly, removal of mitochondrial 
sequences from the nuclear genome assembly, and the splitting of a mis-join 
in the nuclear assembly. 

• Accompanying images 

 
“table_s2.2.xlsx” 

      This file contains the following: 

• Table S2.2 – Summary table of repeats identified in the genome assembly 
using RepeatMasker. 
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