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ABSTRACT 

 
Zero-Emission Heavy-Duty Vehicle Integration in Support of a 100% Renewable Electric Grid 

By 

Kate Forrest 

Doctor of Philosophy in Environmental Engineering 

University of California, Irvine, 2019 

Professor Scott Samuelsen, Chair 

For California and other parts of the world to move towards a net-zero-emission grid, 

potentially a 100% renewable grid, complementary technologies to support renewable solar 

and wind integration need to be clearly established. Specifically, the integration of variable 

and intermittent solar and wind renewable generation requires resources that can respond 

dynamically to changes in the net load in order to ensure stable grid performance. Zero-

emission vehicles (ZEVs), encompassing battery electric vehicles (BEVs) and fuel cell electric 

vehicles (FCEVs), are uniquely positioned to (1) support variable renewable generation and 

provide benefits to the grid while, at the same time (2) reducing emissions from the 

transportation sector. Due to their disproportionately large contribution to air pollution and 

greenhouse gas (GHG) emissions, targeting heavy-duty vehicles (HDVs) is essential if reduction 

goals are to be met. This work assesses the feasibility of heavy duty ZEVs (HD-ZEVs), selecting 

California as the example. From a technical standpoint, more than half of Class 3-7 vehicle 

miles travelled (VMT) can be met with heavy-duty BEV product in development today without 

trip modification. Class 8 trucks have a much lower BEV feasibility due to their longer trip 

distances and heavy-duty FCEV product becomes more likely. The challenge becomes 

providing carbon-free fuel, namely renewable electricity for HD-BEVs, and renewable 



xx 
 

hydrogen for HD-FCEVs. This study assesses the fuel supply chain impact of HD-ZEV 

deployment on GHG emissions and air quality for the year 2050. HD-BEVs relying on 

uncoordinated charging can increase peak load demand and hinder the target of achieving 

zero GHG emissions from the electric grid. Intelligent charging of HD- BEVs and renewable 

hydrogen production for HD-FCEVs are both effective methods for utilizing otherwise curtailed 

renewable generation for the support of a zero or near-zero emissions electric grid. This study 

also finds that moving towards an 80% reduction in GHG emissions from HDVs through ZEV 

adoption has the co-benefit of significantly reducing ozone and PM2.5 concentrations in key 

regions of California. In comparison, reducing grid emissions from an 80% reduction to a 100% 

clean electric grid has a significantly smaller, but not trivial, impact in criteria air pollutant 

concentrations. 
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Chapter 1. Introduction 

1.1 Overview  

 
 The rise of anthropogenic greenhouse gas (GHG) emissions over the last century and the 

continued emission of criteria pollutants, predominantly tied to transportation, electricity 

generation, heat production, and fossil fuel production, present a critical threat to human 

health and the environment. The commitment of regions, such as California, to reduce their 

emissions in response to these impacts has led to the deployment of renewable energy 

technologies worldwide. It has also spurred the push for zero-emission vehicles (ZEV) to replace 

conventional internal combustion engine vehicles. ZEVs, chiefly battery electric vehicles and 

fuel cell electric vehicles, serve as a new load on the electric grid, either directly through 

charging or through the production of hydrogen fuel using electrolysis. Initially, ZEV 

deployment focused on light-duty vehicles and much of the research on both the charging 

infrastructure and vehicle requirements focused on the needs of the light-duty sector. 

However, to meet the aggressive goal of an 80% reduction in GHG emissions below 1990 levels 

statewide would require that not only a majority of LDVs but also a significant portion of heavy 

duty vehicles (HDV) to be converted to zero-emission options. The integration of light duty and 

heavy duty vehicles onto the electric grid system can offset GHG emissions, but it presents new 

challenges that must be addressed in order to achieve the ultimate goal of a robust zero GHG 

emission grid.  

 Despite the United States’ withdrawal from the Paris Agreement, California has 

maintained and expanded its commitments to reducing its emissions to combat climate change. 

Governor Schwarzenegger issued Executive Order (EO) S-3-05 directing the state to reduce its 
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GHG emissions to 2000 levels by 2010, 1990 levels by 2020, and 80% below 1990 levels by the 

year 2050 [3]. The next year, California passed AB 32, establishing into law the 2020 target and 

ordering the California Air Resources Board (CARB) to develop a Scoping Plan to inform sectors 

on comprehensive strategies for achieving the reduction target [4]. California followed up this 

commitment with SB 32, which established an interim target of 40% below 1990 levels by 2030 

[5,6]. Most recently, Governor Brown signed EO B-55-18 accelerating the previous 2050 GHG 

emissions reduction goal by mandating the state become carbon neutral no later than 2045 [7]. 

The timing of these targets are depicted in Figure 1, with historical emissions from the CARB 

GHG emissions inventory [8]. 

 

Figure 1. Projected GHG Emissions Reductions under California Policies  

In order to achieve these ambitious goals, the main sources of GHG emissions must be 

addressed (Figure 2, data from [9]). California’s most recent Scoping Plan seeks an integrated 

approach to meet the 2030 target, with a strong emphasis on strategies that promote co-

benefits such as improved air quality, public health, and economic growth [10].  
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Figure 2. 2016 Total California GHG Emissions: 429.4 MMTCO2e as reported by the California Air 
Resources Board  

The promotion of strategies with air quality co-benefits highlights California’s on-going 

challenge to meet State and National Ambient Air Quality Standards for ozone and particulate 

matter (PM 2.5 and/or PM 10) in numerous counties [11]. Emissions paired with the natural 

topography of the state result in the retention of primary pollutants and the formation of 

secondary pollutants at levels harmful to human health. The state’s largest contributor to GHG 

emissions—the transportation sector—is also the largest contributor to nitrogen oxides (NOx), 

carbon monoxide (CO), and volatile organic carbons (VOCs), which are the precursors to ozone 

(Figure 3) [12]. Therefore, preferred strategies in sectors that contribute to both GHG and 

criteria pollutant emissions are ones that help meet both types of reduction goals.  
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Figure 3. 2015 California Daily NOx Emissions: 2300 tonnes as reported by the California Air 
Resources Board  

A complement to California’s statewide GHG emissions goals is the passage of legislation 

targeting individual sectors. For addressing emissions from the production of electricity, 

California has adopted a series of renewable portfolio standards (RPS) between 2002 and 2018 

requiring that the percentage of electricity sales coming from renewable resources grows to 

meet a certain level by the committed date (SB 1078, SB 107, SB X1-2, SB 350, and SB 100) [13–

17]. The state’s current targets can be summarized as follows: 33% of electricity procurement 

coming from renewables by 2020 (SB X1-2), 44% by 2024, 52% by 2027, and 60% by 2030 (SB 

100) [15,17]. SB 100 additionally calls for the California electric grid to be carbon neutral by 

2045. The distinction between carbon neutral and renewable is important, as large hydropower 

plants greater than 30 MW in the state are generally considered carbon neutral but not 

renewable [18]. This classification in California stems from concerns that large hydropower 
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plants have a large environmental footprint (including habitat destruction) not captured by 

emissions metrics [19].   

California has also set a range of emissions regulations and future vehicle targets for 

addressing emissions from the transportation sector. Governor Brown has passed executive 

orders directing the state to support ZEV deployment efforts including setting the target of 1.5 

million ZEVs by 2025 (EO B-16-12) and expanding ZEV adoption to 5 million by 2030 (EO B-48-

18) [20,21]. EO B-48-18 also expanded targets for hydrogen fueling stations to 200 stations 

(previously 100) and 250,000 EV charging stations, including 10,000 DC fast charging stations, 

by 2025 [21]. In late 2018, the California Air Resources Board voted for the “Innovative Clean 

Transit” measure to move California’s public transit agencies to 100% zero-emission buses by 

2040 [22].  

To meet these targets, the state has implemented programs that include credits, grants, 

loans, and rebates. For example, the Alternative and Renewable Fuel and Vehicle Technology 

Program (ARFVTP) and the Air Quality Improvement Program were created under AB 118 in 

2007 to fund programs for the development of new and advanced clean fuels and vehicles and 

the improvement of air quality through vehicle-related projects, respectively [23]. The 

Advanced Clean Car Program was developed to guide automakers in reducing both GHG and 

criteria pollutants through multiple new regulations for light-duty vehicles including fuel 

economy targets and the promotion of zero and near-zero-emission vehicles [24].  The ZEV 

program, a part of the Advanced Clean Car Program, mandates automakers provide zero-

emission vehicle options to consumers through a credit-based system and although it was 

originally created to reduce air pollutant emissions, it now sets credit levels that account for 
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both air quality and GHG emissions targets [25]. Considered in the roll-out of these credits are 

ZEV deployment scenarios that meet the state’s 2050 emissions reduction goal. One of these 

scenarios is presented in Figure 4. Reducing GHG emissions to 80% below 1990 levels by 2050 

would require almost 90% of the LDV fleet to be ZEVs by 2050 and more than half of the 

remaining vehicles to be hybrid options [24].  

 
Figure 4. A Scenario for 80% Reduction in Passenger Vehicle GHG Emissions [24] 

To support EO B-16-12, the governor’s office released a roadmap to meeting the ZEV 

target called “the ZEV Action Plan” [26]. In 2016, a new action plan was released and in 2018 

updates to the 2016 ZEV Action Plan were announced following the signing of EO B-48-18 [27]. 

The ZEV Action Plan not only covers regulations and programs for LDVs, but also HDVs. Heavy-

duty specific efforts highlighted in the 2016 plan include incentive programs, such as the 

California Hybrid and Zero-Emission Truck and Bus Voucher Incentive Program, which helps 

offset the higher cost of lower emission HDVs, as well as pilot projects, such as testing the 

feasibility of zero-emission drayage trucks at California ports [28].  Overarching these programs 
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is the Sustainable Freight Action Plan, commissioned under EO B-32-15, which has set the 

following targets: a) 25% increase in system efficiency, b) 100,000 zero-emission capable 

vehicles and equipment by 2030, and c) increased freight competitiveness to promote 

economic growth within the state [29,30]. Future targets and plan updates are expected in the 

coming years as state agencies evaluate the success or failure of different strategies and as 

California moves closer to its sustainability goals. 

 The advancement of the established targets is dependent on the state’s ability to 

implement strategies under an integrated approach. The simultaneous evolution of the electric 

grid and the transportation sector presents a unique challenge to ensure that emission 

reduction efforts in each sector support rather than disrupt efforts in the other. In particular, 

integrating a high level of variable renewable generation can lead to issues of energy 

imbalance, increased ramping requirements, and power quality concerns. Transitioning the 

transportation sector to ZEVs without considering grid dynamics can exacerbate these issues, 

increasing grid-related emissions [31]. Alternatively, if ZEVs are utilized as a flexible resource 

that can be coordinated with the electric grid, they can support a highly renewable electric grid 

[32–35]. 

 It has been previously established that in order to achieve and maintain the emissions 

reduction potential of a high renewable portfolio with up to 100% renewable penetration, 

variable renewable generation needs to be partnered with low to zero-emission resources that 

can respond quickly and reliably in order maintain grid performance [36–43]. ZEVs (e.g., plug-in 

electric vehicles and fuel cell electric vehicles) have emerged as promising dispatchable grid 

resources that may provide flexible support to renewable generation, while additionally 
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reducing emissions from the transportation sector. This in turn can offset needed capacity of 

other grid resources, reducing system costs and ensuring emissions reductions. 

Previous studies examining the dynamics of vehicle-grid integration have focused on 

plug-in light-duty vehicles (LDVs) [34,36,44–46]. While LDVs are currently a much greater 

contribution of the ZEVs deployed worldwide, HDVs make up a disproportionate amount of the 

energy consumed for transportation and, California’s GHG and air pollutant emissions targets 

cannot be met without converting a significant portion of the HDV fleet to ZEVs. To do this 

effectively, the potential impact of ZEV HDV deployment need to be quantified. The different 

charging and fueling scenarios of zero-emission HDVs versus LDVs can provide insight into their 

roles in meeting grid emissions reduction targets and, conversely, the role of the grid to meet 

transportation emissions reduction targets. Evaluating 100% clean electricity  portfolio options 

with vehicle integration will provide insight into the flexibility of these strategies to adapt to 

shifting and growing electricity demand associated with efforts of other sectors to reduce their 

own emissions. It may also provide an opportunity to identify system inefficiencies, new 

redundancies, and/or additional support requirements to ensure a robust grid. 

1.2 Goal 
 

The goal of this dissertation is to identify and assess the role of zero-emission heavy-

duty vehicle deployment scenarios to achieve a robust, 100% clean electric grid system.  

                                                           
1 100% clean electricity incorporates both renewable resources and large hydropower plants (>30 MW), which are 
considered carbon-neutral but not renewable in California. In some regions, large hydropower is considered 
renewable and therefore studies examining 100% renewables may include large hydropower in the energy mix. 
The focus of this study is California’s 2045 100% clean electricity goal and therefore large hydropower will be 
included in the final portfolio mixes developed. 
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This work examines the strengthening interdependency of transportation and the 

electric grid to identify key co-benefits of addressing emissions reductions in multiple sectors. 

The results of this work will inform on the sector requirements for California to reach the 

ambitious target of an 80 percent reduction in GHG emissions compared to 1990 levels by 

2050, and a goal of 100% clean generation.  

1.3 Objectives 
 
To meet this dissertation goal, the following objectives were established: 
 
Objective 1. Develop an understanding of vehicle flexibility to integrate renewable energy and 
the additional balancing requirements to achieve up to 100% renewable penetration into the 
California grid. 
 
Objective 2. Simulate electricity and hydrogen demand to achieve transformation of the heavy-
duty vehicle sector to zero-emission vehicles.  
 
Objective 3. Develop strategies that achieve a) 80% reduction in GHG emissions from the 
electric grid and b) a 100% clean electric grid with vehicle-grid integration. 
 
Objective 4. Evaluate the impact of zero-emission vehicle integration on grid balancing 
requirements, GHG emissions, air quality, and levelized cost of energy. 
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Chapter 2. Background and Literature Review 

2.1 Barriers to a 100% Renewable Electric Grid 
 

While there may be a few regions in the world where there are sufficient, reliable 

hydropower and/or geothermal resources to meet most electricity demands (eg. Iceland), a 

vast majority of regions seeking to reduce their emissions and increase renewable use will most 

likely rely heavily on wind and solar energy to meet their energy needs [47,48]. The integration 

of variable renewable generation (i.e. solar and wind technologies) can lead to less efficient 

operation of other generation resources and a greater reliance on resources that can respond 

dynamically to changes in the net load [49,50]. The severity of specific problems, such as high 

ramping rates of balancing generation resources, is dependent on the net load profile [35]; 

however, problems such as intermittency, over-generation, and increased ramping of balancing 

generation are common among systems with a significant percentage of variable renewable 

generation [50].  

As renewable capacity increases, the disparity between renewable generation and 

electricity demand becomes more pronounced, requiring greater efforts to shift renewable 

generation using energy storage technologies and/or manipulate load demand profiles in order 

to utilize available renewable electricity [50–53]. If these efforts are not sufficient to resolve the 

time discrepancy between renewable generation and electric load demand, periods of 

renewable over-generation will result in curtailment (or export of electricity to the degree 

feasible) and periods with insufficient renewable generation will still require other, 

dispatchable grid resources; renewable utilization will not be maximized [51]. A 100% 

renewable grid will only be achieved if sufficient renewable generation can be utilized either 
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directly (when produced) or indirectly (through renewable fuels or battery energy storage) to 

satisfy electric load demand 100% of the time. Determining the barriers and solutions to 100% 

renewable generation for the California electric grid in 2050 will require determining the future 

electric load demand, future renewable capacity requirements, and the resulting net load 

dynamics that must be balanced.   

2.1.1 Future Electric Load Demand  

Electricity load demand in California is projected to increase, tied to population growth 

as well as the electrification of sectors such as heating and transportation that have 

traditionally relied on fossil fuel inputs. Per capita electricity demand has remained relatively 

flat since the 1970s tied to energy efficiency measures, with reported 2017 consumption 

around 7,300 kWh/person, see Figure 5 [54–56]. Therefore, historically, total statewide growth 

in electricity demand has been proportional to population growth.  

 
Figure 5. Historical Trends in California per Capita Electricity Consumption (1960 to 2017).  
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State estimations of future demand assume that total demand will continue to grow with 

population, but may be offset with greater adoption of energy efficiency measures [57,58]. 

Additionally, estimations indicate that demand will also grow in response to the added load 

requirements of electric vehicles as well as the electrification of industry, commercial, and/or 

residential processes [58].  

Not only does increased electrification add to total electric load demand [59], it can also 

alter the timing of demand, affecting the operation and performance of generation resources 

[60].  Estimations for future shifts in the daily load profile are dependent on technology 

adoption assumptions, as well as assumptions on future needs for cooling and heating (eg. 

whether climate change impacts are considered), but most studies examining future load 

assume efficiency improvements and electrification of processes that currently rely on fossil 

fuel inputs [59–64]. Wei et al. (2013) found that in order to meet California’s 2050 goals, 

significant adoption of energy efficiency measures and electrification of transportation and 

building heat demand are needed, which will result in electricity demand in winter shifting to a 

morning peak (associated with added heating demand) and demand for the rest of the year 

shifting to a later evening peak [59].  Ebrahimi, MacKinnon, and Brouwer (2018) also found that 

electrification resulted in increased loads during the morning and evening times [64], and 

Tarroja et al. (2018) further concluded that these additions do not align well with renewable 

generation availability [60].  

California state agencies’ PATHWAY project, ordered by the California Energy 

Commission, the California Public Utilities Commission, and the California Air Resources Board, 

and conducted by Energy + Environmental Economics, Inc. (E3) developed a techno-economic 
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analysis tool to evaluate pathways to meet California’s 2050 GHG emissions reduction goals 

[57]. In the development of the PATHWAYS model, future load demands were modeled for 

defined subsectors, which are intended to be aggregated to form future statewide electricity 

load profiles. The load profiles incorporate future demand changes and technology turnover, 

such as for heating, cooling, and lighting [65]. The established state-level profile for 2050 in 

PATHWAYS will be used in this study.  

2.1.2 Renewable Energy Resources  

 
A portfolio of renewable energy technologies is available to provide renewable 

electricity generation. Mature technologies that are commercially available today include 

geothermal, solar photovoltaic panels, concentrated solar power, wind (on-shore and off-

shore), biopower (biogas and biomass), and small hydropower.2 Each technology has its own 

constraints, and are not without trade-offs. For example, wind and solar are by far the most 

abundant resources, but utilizing them requires significant land area [37,66] and, due to their 

variable nature, deploying wind and solar power technologies requires additional support 

strategies to manage power supply intermittency [67–69]. At high variable renewable 

penetrations, the effort to manage intermittency may require a significant investment in 

additional capacity and may still not yield a 100% renewable grid [43]. Biopower resources, on 

the other hand, can be utilized in conventional power plants (either as baseload or load-

following) [70]. Biofuel/biomass resources are less abundant than solar and wind and are tied 

to specific feedstocks that affect the quality, cost, and emissions potential of the resulting fuels 

                                                           
2 The renewable classification of hydropower varies by region; California does not consider hydroelectric plants 
with a power capacity greater than 30 MW to be renewable [81].  
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[71]. Additionally, while considered “carbon neutral,” biopower can still emit criteria pollutants 

that contribute to air pollution, tied to negative impacts on human health [72,73]. Biopower for 

electricity production, while feasible, utilizes a limited resource that may serve other uses that 

have a greater emissions-reduction potential. For example, there has been a focus on bio-

resources for transportation applications where electricity and hydrogen as fuels are 

challenging or infeasible to utilize [74–77]. Geothermal generation is most often operated as 

baseload power, i.e. it supplies a relatively flat output with little ramping of power up or down 

in order to match changes in load demand [78]. The baseload performance of geothermal 

plants is at least partially driven by the economics of these plants, which have historically 

required a high capacity factor to ensure sufficient revenue to offset fixed and variable costs 

[79]. Increasing dispatch flexibility of geothermal plants is possible, with some systems already 

able to ramp up and down significantly [78]. Another option is to add storage or additional 

turbines to the system to provide flexibility while the geothermal portion of the plant runs as 

baseload [79]. Both of these strategies may increase operational costs [78,79]. Lastly, small 

hydropower plants are moderately dispatchable. Potential outflow from these plants is 

dependent on upstream flow, and their ability to time water releases is dependent on reservoir 

capacity, turbine constraints, and water demands for other uses, such as environmental flows 

(eg. water temperature control) [80]. Small hydropower capacity in California is relatively 

limited compared to solar and wind. Future capacity growth of hydropower is constrained by 

location availability and regulatory hurdles [81]. 

Current renewable generation within California is a combination of all the above 

technologies, with solar being the dominant utilized resource, followed by wind (on-shore only) 
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and geothermal, see Figure 6 for an example day’s generation profiles in 2018 summed across 

the state, data from [82].  

 
Figure 6. Renewable generation in California for a sample day in 2018 

Most renewable technologies are projected to increase to the year 2050 [57]. The capacity 

projections in PATHWAYS’ pre-set scenarios are based on estimations for generation needs to 

meet future load demand and satisfy GHG reduction goals. The growth of individual 

technologies includes considerations for technical feasibility and economic constraints and 

result in future renewable capacity dominated by solar and wind [65]. This analysis uses the 

baseline capacity projections modeled by E3. 

2.1.3 Balancing Net Load Dynamics to Meet 100% Renewables 

 
The future net load profile can be determined by incorporating projections for electricity 

load demand and renewable capacity growth. Net load is the electric load demand minus 

renewable generation. In the perfect balance of renewable generation and demand, the net 
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load would be zero. Where a misalignment of renewable generation and load exists, the net 

load becomes a series of positive and negative values, corresponding to periods of insufficient 

and excess generation, respectively, see Figure 7. The challenge then becomes to add or shift 

generation (or load) in order to reduce the net load to at least zero.  

 

Figure 7. Load and Net Load for a week in the year 2050, using PATHWAYS baseline assumptions 

The specific challenges that need to be addressed can be categorized by the timescale at 

which they affect the grid. Power output from variable renewable generation can vary across all 

timescales, with real-time small fluctuations impacting power quality [83]. Larger fluctuations 

require additional support strategies that can balance the net load changes, either by providing 

generation or reducing load demand when renewable generation drops [84]. In general, 

literature agrees that high variable renewable grids result in a need for more flexible generation 

that can compensate for increased fluctuations in the net load [36,38,41,51,61,85]. Solar has a 

distinct generation profile which consists of a significant increase in power output as the sun 
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rises and a significant drop to zero when the sun sets. In California, the decline in solar 

generation coincides with peak electricity demand, resulting in a large increase in demand in a 

short period of time that other generation resources must ramp up to meet. Wind fluctuations 

are less consistent at the day scale and changes tend to occur more slowly [86]. On average, 

wind generation peaks in the evening and is at a minimum during the middle of the day [87,88]. 

Wind generation may, therefore, provide some generation when solar is low or not available 

and result in a smoother net load than solar alone [88].  

The growth in solar and wind capacity on the grid increases the ramping requirements 

of the grid, in terms of both overall ramping magnitude and rate [51,89], see Figure 8. In Figure 

8b, it is assumed that renewables are curtailed when net load demand drops below zero and 

therefore the negative values do not contribute to ramping requirements. For example, if the 

net load between hour 1 and hour 2 changes from -10 GW to 10 GW, the ramping demand for 

the grid would be 10 GW (10 GW minus 0 GW). When examining the net load, the most 

prominent increases in ramping occur in the morning between 7 and 9 am (ramp down) and in 

the early evening between 6 and 8 pm (ramp up). These periods also coincide with an increase 

and decrease in solar generation, respectively. Peak electricity demand occurs during the early 

evening period when the greatest amount of ramping up is required. According to the California 

Independent System Operator, maximum ramping rates vary by season as well, with lower 

maxima in the summer, despite peak load occurring during that time [90]. This trend is 

consistent for the 2050 scenario depicted in Figure 8, and is due to improved alignment of 

renewable generation and electricity demand during those months.   
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a)  

b)  

Figure 8. 2050 Ramping demand for a) electric load demand and b) net load demand assuming 
PATHWAYS renewable capacity values in baseline 2050 compliant scenarios  
 
 Further exploration of seasonal variability shows that solar and wind generation can 

have strong seasonal trends, which can affect renewable penetration and flexibility 

requirements for the grid. Solar generation peaks in summer (June-September for California), 

corresponding to longer days and higher solar irradiance values [91]. Seasonal wind trends vary 

regionally, driven by local conditions [92]. In California, current wind generation is at a 

minimum December-January, peaks in June and then declines the rest of the year [92,93]. The 
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combined seasonality of wind and solar availability results in distinct periods of the year with 

high or low generation of renewable electricity, see Figure 9. Despite a theoretical annual 

renewable penetration of 90% in the case illustrated, the hourly load met by solar and wind 

varies from 20 to 100%, due to the misalignment of load and solar and wind generation. The 

average monthly load met by solar and wind varies from 53 to 79%, due to seasonal variability 

in solar and wind generation. The implications of this pattern are demonstrated by Tarroja, 

Shaffer, and Samuelsen (2018), who found that the limiting period for a 100% renewable grid 

for the year 2050 is winter, when renewable generation is insufficient to meet demand and 

concluded that large-scale seasonal storage capacity is required if excess summer generation is 

to be used to meet the deficit [43].  

 

Figure 9. Percent hourly load met by solar and wind and the monthly average for a 2050 grid 

using PATHWAYS baseline assumptions for load, solar, and wind 

The challenges outlined here indicate a need for a comprehensive suite of strategies that 

can address problems at multiple timescales. Proposed solutions for overcoming variable 

renewable generation challenges include: over-building renewable capacity [36,43], increasing 
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flexible generation and/or removing baseload generation [51,94], expanding energy storage 

capacity [50,52,95,96], expanding demand response of flexible load demand [97,98], including 

vehicle-grid integration [32,35,44,84], and increasing grid interconnectivity with regional 

expansion [85,99,100]. Different strategies are well-suited for different challenges and adopting 

them may result in trade-offs.  

Overbuilding solar and wind capacities has some advantages. Tarroja et al. (2018) found 

that increasing solar and wind capacities above generation needs reduces the material mass 

requirements to reach 100% renewable penetration [43]. Budischak et al. (2013) found that it 

was more cost-effective to overbuild renewable capacity than add additional storage [36]. 

However, trade-offs exist: allowing curtailment during periods of over-generation leads to lost 

revenue at the plant level and underutilization of available generation resources [101]. While 

some curtailment may be more cost-effective, and overbuilding capacity may reduce the net 

load demand, there are diminishing returns for expanding renewable capacity above demand 

and this strategy would most likely still require additional management strategies to achieve a 

100% renewable grid for California [43,102].  

A major focus of literature examining renewable integration is that increased flexibility is 

needed from the generation mix in order to reach high renewable penetrations 

[38,41,50,51,69,85,89,94,103]. Denholm and Hand (2011) and Li, Paster, and Stubbins (2015) 

found that removing baseload generation resources and replacing them with flexible 

generation increases renewable penetration [50,51]. Lew et al. (2010) concluded that in order 

to balance new net load variability, dispatchable generation should increase their flexibility as 

characterized by response time, ramp rate (change in power output per unit of time), minimum 
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uptime and/or downtime constraints, and maximum turndown (i.e. minimum part load 

condition) [94]. While thermal plants have been a central focus of grid flexibility, flexibility 

requirements of high renewable grids may be met through a variety of grid resources [53].  

Energy storage is one example of a supply-side resource that can increase grid flexibility. 

Energy storage technologies range in composition, scale, and functionality. Prominent 

technologies include pumped hydropower, different chemical configurations of battery energy 

storage and flow batteries, compressed air, flywheels, thermal energy storage, hydrogen 

storage, and supercapacitors [96,104]. V2G-enabled vehicles may also be considered a form of 

energy storage [105]. Energy storage technologies that can respond at the millisecond range—

conventional and flow batteries, flywheels, and supercapacitors—can provide real-time power 

quality management [106]. Most energy storage technologies are able to handle intermittency 

at the minute to day scale, and select technologies such as hydrogen storage have the potential 

to provide longer-term storage [96,107]. A more detailed discussion of generation-side zero-

emission technology options for grid balancing services is presented in Section 2.3. 

Flexibility is not limited to generation-side strategies. Demand-side management, 

particularly demand response, can also provide flexibility. Under demand response programs, 

participants agree to shift or reduce their load during periods when a change in load will 

support grid stability [108].  Utilizing demand response can reduce the cost of energy, improve 

renewable integration, and may help to decrease overall generation capacity requirements 

[97]. Historically, the California ISO (CAISO) has had much lower demand response 

contributions compared to other U.S. ISOs [109]. Currently, the state is leading a coordinated 

effort between stakeholders and researchers to evaluate the potential scale of demand 
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response, requiring the investigation of potential flexible loads [110]. Future flexible loads may 

come from a variety of sources. Industrial, commercial, and residential loads that have set daily 

patterns may become flexible with smart appliances and improved, real-time communication 

with the grid [111]. New and future loads may also be flexible, most relevantly, plug-in vehicles 

and electrolyzers used to produce renewable hydrogen [31,111]. In order to take full advantage 

of the state’s demand response potential, CAISO will need these load sources to respond 

dynamically to changes on the grid.  

 In addition to installing new power plants or other grid resources, researchers have 

found that renewable integration can be improved through regional coordination of renewable 

resources. As previously stated, renewable resources may have regionally varying hourly output 

tied to local conditions. Aggregating generation from renewable resources over a large 

geographical region can reduce the number of hours with no renewable generation and can 

create a smoother overall profile [87,112]. Huber, Dimkova, and Hamacher (2014) determined 

that larger regions with moderate penetration of variable renewable generation had lower 

flexibility requirements compared to small regions [85]. Schaber et al. (2012) and Delucchi and 

Jacobson (2011) determined that increasing regional interconnections decreased the need for 

energy storage [100,112]. King et al. (2011) found that flexibility reserves required to ensure 

grid stability can be reduced by implementing an energy imbalance market that allows for 

electricity sales between other regions [89]. This approach takes advantage of the smoothing 

effect of aggregating renewable generation across a larger area and the sharing of generation 

resources for ancillary requirements.   
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 This analysis will focus on vehicles and related infrastructure as flexible loads, as well as 

supportive generation-side strategies for achieving up to a 100% renewable grid. There will be a 

discussion on how demand-side management (eg. demand response to reduce peak load 

demand) may affect results, including the identification of periods of the year where demand 

response may help lower infrastructure costs and improve grid performance.  

2.2 Transportation Considerations for the Deployment of Zero-Emission Vehicles 
 

ZEVs are in a unique position to provide flexible support to variable renewable 

generation, as they can utilize resources that allow for the transportation sector to reach low 

emission targets to also provide benefits to the grid. Not only can the production of hydrogen 

for fuel cell vehicles through power-to-gas (P2G) pathways provide load following and load 

shifting services, coordinated charging of plug-in vehicles can provide similar support and 

vehicle to grid (V2G) charging can further increase renewable utilization and provide additional 

support like spinning reserve and frequency regulation by discharging back to the grid [32,113]. 

Previous research focused on the deployment of light duty plug-in ZEVs found that when 

charging is coordinated, renewable integration can increase and both grid and vehicle 

emissions can be reduced [32,46].  They also found that the deployment of a large fleet of plug-

in electric vehicles with V2G charging can offset the need for stationary energy storage in order 

to achieve high renewable utilization (above 75%) [32]. Because California has called upon the 

transportation sector to transition to ZEVs, it can be expected that a significant number will be 

available to provide services, if the appropriate infrastructure and charging strategies are 

adopted [114].  
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The transportation sector is diverse, consisting of all modes of transport: vehicles (on-

road and off-road), airplanes, shipping, and rail [9]. This work focuses on the on-road vehicle 

portion of the transportation sector. Not only do these vehicles make up a majority of 

transportation demand, the zero-emission alternatives for these vehicles are closer to being 

adopted with options either in late development or commercially available today. This indicates 

that widespread adoption of ZEVs could be achieved by 2050, the time period investigated in 

this analysis. On-road vehicles types range in both size and use [1,115]. Vehicles can be divided 

into a) light-duty vehicles, which are of a low gross vehicle weight and are primarily used for 

personal travel and b) heavy-duty vehicles, which are distinguished from the light-duty sector 

both by their weight (greater than 8500 pounds) and their use (mainly for commercial 

applications) [116,117]. The heavy-duty vehicle sector is a diverse collection of vehicles 

designed for a broad list of applications from goods delivery and transport to waste pick-up and 

disposal [116,118]. 

Conventional on-road vehicles rely on internal combustion engines (ICE) running on 

fossil fuels (eg. gasoline, diesel).  The suitability of different ZEVs to replace a given 

conventional ICE vehicle is dependent on their ability to meet the travel demands of the vehicle 

they would be replacing. Key factors in assessing suitability are: vehicle fuel economy, travel 

patterns-both the frequency and length of trips—, access to electric vehicle supply equipment 

(EVSE), and charging/vehicle-to-grid (V2G) intelligence. These factors can vary between 

individual vehicles as well as across different vehicle types. 

When examining the transition to ZEVs at the regional or state level, it is important to 

determine the fraction of the ICE vehicle population that can be replaced with battery electric 
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vehicles, fuel cell electric vehicles, or either, as well as determine whether the travel demands 

of certain vehicles may prohibit them from being replaced by either ZEV type. In the case that 

either ZEV type could be adopted, an evaluation of priorities may be used to determine a range 

of optimal mixes between BEV and FCEV deployment. In the case that a portion of vehicles 

cannot readily be replaced by either ZEV type, alternative strategies may be assessed given the 

known constraints that prohibit the ZEV adoption.   

2.2.1 Zero-Emission Vehicle Options 

By definition, ZEVs do not emit any GHG emissions or criteria pollutants from the tail-

pipe. Currently, two ZEV technology options that are commercially available: battery electric 

vehicles (BEVs) and fuel cell electric vehicles (FCEVs). Some OEMs are researching plug-in fuel 

cell electric vehicles (PFCEVs), an option that combines the efficiency and connectivity of a BEV 

with the longer range and reduced weight of a FCEV [119]. Mercedes-Benz has announced a 

PFCEV model, but the current focus by most automakers is on BEVs and FCEVs [120].  

BEVs and FCEVs both rely on electric motors, but have different fuel inputs and 

operational considerations. BEVS use batteries to provide an electric current to the vehicle 

motor, while FCEVs use fuel cells, which create a current by splitting hydrogen molecules. A 

variety of BEV and FCEV models are available on the market today, each with its own technical 

specifications (Table 1, Table 2). Most of the ZEVs options available are light-duty vehicles. 

These vehicles range from passenger vehicles to SUVs and trucks. In general, the fuel economy 

(sometimes referenced to as fuel efficiency) for BEVs range between 0.25 (passenger vehicles) 

up to 0.51 kWh/mi (for larger SUVs). Average fuel economy for FCEVs range from 60 to 67 

mi/kg. The vehicle range for different ZEVs varies significantly, depending on the size of the 



26 
 

battery or fuel tank, see Table 1. Estimated range of the vehicle may also vary from the 

observed range, depending on the fuel economy achieved during a specific drive cycle 

[121,122]. While a majority of Light-duty ZEV options are currently smaller, passenger vehicles, 

automakers are setting up to release larger SUV and truck models to accommodate the full 

range of LDV vehicle types [120,123,124].  

Table 1. Examples of Light-Duty Zero-Emission Vehicle Models and Technical Specifications  

Vehicle Make & 
Model 

ZEV 
Type 

Vehicle 
Type 

Battery Size 
(kWh), H2 

Capacity (kg) 

Est. Fuel Efficiency 
(kWh/mi or mi/kg) 

Est. Range 
(mi) 

Audi e-tron [125] BEV SUV 95 0.44-0.51 200-230 

BMW i3 [126]  BEV Auto 42 0.29 153 

Chevy Bolt [127] BEV Auto 60 0.27 238 

Ford Focus Electric 
[128] 

BEV Auto 33.5  0.31 115 

Hyundai Ioniq [129] BEV Auto 28 0.25 124 

Tesla Model 3 [130] BEV Auto 75 0.26 310 

Tesla Model X [123] BEV SUV 100  0.34-0.38 289-295 

Honda Clarity Fuel Cell 
[131] 

FCEV Auto 1.7, 5.5 67 360 

Hyundai Nexo [124] FCEV SUV 1.6, 6.3 60 380 

Toyota Mirai [132] FCEV Auto 1.6, 4.7 67 312 

Mercedes GLC F-CELL* 
[120] 

PFCEV SUV 13.5, 4.4 0.22 and 180 270-478** 

*Announced, ** Depending on tank pressure 

Zero-emission HDVs are an emerging market with a few larger vehicles options, and 

several automakers developing the drivetrains and vehicle body designs for future models, with 

reported zero-emission HDV fuel economy varying by make and vehicle class, see Table 2. 

Future improvements and new vehicle models for all ZEV classes are expected in the coming 

years as ZEV technologies mature and legislation pushes for greater deployment of ZEVs [116]. 
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Table 2. Examples of Heavy-Duty Zero-Emission Vehicle Models and Technical Specifications 

Vehicle Make and 
Model 

ZEV 
Type 

Vehicle Type Class Battery Size (kWh), 
H2 Capacity (kg) 

Estimated Fuel Eff.  
(kWh/mi or mi/kg) 

Range (mi) 

BYD [133] BEV Bus 7,8 324,500 >1.86,>1.97+ 156, 255 

BYD [134] BEV Day cab 8 435 >2.47+ 124 (full-load), 
167 (half-load) 

BYD [135] BEV Cab Chassis/ 
Step Van 

6 221 >1.68+ 124 (Full load)-125 

Cummins [136]* BEV Truck 7 140 >1.33+ 100-300 

Daimler/ 
Mercedes [137]* 

BEV Truck 7 240 >1.84+ Up to 124 

Einride [138]* BEV Autonomous 
truck 

8 200 1.6 124 

Lightning Systems [139] BEV Van 2B-3 43, 86 0.55 60,120 

Navistar eStar [140]** BEV Van 3 80 0.74 99.4 

Smith Newton [141]** BEV Truck 6 80, 120 1.34 60, <= 150 

Smith Newton [140]** BEV Van 6 80 1.41 99.4 

Tesla [142]* BEV Truck 8 800 (est.) <2  300, 500 

Zenith Motors [143] BEV Van 2B-3 51.8-74.5 >0.65+ 80-135 

Proterra [144] BEV Bus 7-8 220,440 1.46-2.32 93-234 

Phoenix Motorcars 
[145] 

BEV Flatbed 4 105 >1.0+ 100 

Nikola/Bosch [146]* FCEV Truck 8 240 kWh, 9 kg Not available 500-750 

Toyota/Kenworth [147] FCEV Truck 8 12 kWh, 40 kg 6 mi/kg 200, 300 (Gen 2) 

Van Hool/UTC Power 
[148]**  

FCEV  Bus 8 53 kWh, 50 kg 4.79 mi/kg  240 (est.) 

US Hybrid [149] PFCEV Step Van 3 28 kWh, 9.78kg 1.18-1.47 kwh/mi, 12.8 
mi/kg 

125 

+Range assumes depth of discharge 95% of battery capacity, *Announced, ** On-road test
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Current and near future models report fuel efficiencies ranging from approximately 0.5 to 2.5 

kWh/mi, depending on vehicle class and vehicle configuration. While vehicle designs range by 

vehicle size and application, the design and manufacturing of the drive-train may be applied 

across body types. For example, Toyota, in a press release, detailed its efforts to apply 

knowledge gained through their development of the Toyota Mirai for the design and operation 

of their larger heavy-duty FCEV truck [147].  

Fuel economy is projected to improve for all vehicle types tied to advancements in 

vehicle design and changes in fuel type, with E3 projecting the average fuel economy for light-

duty vehicles to reach around 40 mi/gallons of gasoline equivalent (GGE) by 2050 and efficient 

ICE LDVs achieving 80 mi/GGE [150]. Fuel efficiency for heavy-duty vehicles is also projected to 

increase, with advancements in design and the transition to alternative fuels [116]. Because 

battery and fuel cell electric vehicles for heavy-duty applications are emerging technologies, 

OEMS and researchers anticipate significant advancements in fuel economy and range [116]. 

For example, between 2017 and 2019 Toyota increased the range of its class 8 fuel cell drayage 

truck from 200 mi to 300 mi [147]. 

Future ZEV population levels are dependent on which vehicle classes are offered as ZEVs 

and what the technical specifications of vehicles offered are, specifically fuel economy and 

range, because ZEVs will only replace ICE vehicles if vehicle demands can be met. Assuming 

vehicle availability, ZEV adoption rates are dependent on fleet turnover rates and economic 

drivers [151]. Several studies have projected likely ZEV population growth to 2050 [75,152]. This 

work will use the scenarios developed for the E3 Pathways Model to explore a range of possible 

ZEV penetration levels [150]. Additionally, a high hydrogen case is included to complement the 
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high electrification case that assumes an almost total adoption of ZEVs by 2050. These 

scenarios are presented in Section 5.3.  

2.2.2 Present and Future Vehicle Energy Demands 

As previously discussed in Section 1.1, vehicles contribute to a significant portion of 

California’s energy consumption. Energy consumption is not uniform across the different 

vehicle classes nor fuel type, see Table 3 for daily fuel consumption in the year 2012 [1].  

Table 3. EMFAC Daily Fuel Consumption for Vehicle Categories 

A majority of light-duty vehicles use gasoline, with a small portion of vehicles running on 

electric drive trains. Alternatively, heavy-duty vehicles tend to be diesel or natural gas vehicles, 

with little to no adoption of zero-emission options. Despite light-duty vehicles making up about 

90% of VMT and 50% of vehicles on the road, heavy-duty vehicles have a disproportionate 

impact on fuel consumption and related vehicle emissions [1]. While heavy-heavy duty vehicles 

make up only 16% percent of the heavy-duty vehicle fleet, they travel over a third of total 

heavy-duty VMT and are responsible for half of HDV fuel consumption (Figure 10), data from 

[1]. 

 

 

Vehicle Category 
Year 2012 

Gasoline 
(GGE) 

Diesel (DGE) 
Natural Gas 

(GGE) 
Electricity 

(GGE) 

Light-Duty Vehicles 3.9E+07 1.0E+05 0 2.3E+04 

Buses 2.7E+05 2.1E+05 1.7E+05 2.0E+02 

Light-Heavy Duty Vehicles 2.2E+05 9.5E+05 0 0 

Medium-Heavy Duty Vehicles 4.9E+05 1.5E+06 0 0 

Heavy-Heavy Duty Vehicles 6.7E+04 5.4E+06 5.1E+04 0 
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a) b)   c)   

Light-heavy  Medium-heavy   Heavy-heavy 

Figure 10. Breakdown of California heavy-duty vehicles by a) population, b) vehicle miles 
traveled, and c) fuel consumption gallons of gasoline equivalent (GGE) as reported by EMFAC 

Vehicle energy demand is expected to continue to grow, with the scale of vehicle fuel 

consumption growth dependent on future changes to annual distance traveled and fuel 

economy/efficiency. Generally, VMT increases with population and economic growth [153]. 

Assuming historical trends in VMT growth, total VMT is projected to increase past the year 

2050, see Figure 11, data from [2]. 

 
Figure 11. California Daily Vehicle Miles Traveled ARB Baseline Projections to 2050 
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While LDV VMT is generally assumed to increase with population, fuel cost and the availability 

of other transit choices can affect VMT, with higher fuel costs reducing VMT and increased 

access to vehicles increasing VMT [154]. Additionally, the growth of ridesharing services and the 

prospect of autonomous vehicles add additional uncertainty surrounding future VMT [155]. 

HDV VMT associated with different commodities may be influenced by varying economic 

drivers [117]. Fuel economy, measured in miles per gallon of fuel (eg. gasoline, diesel, or 

natural gas), can vary depending on vehicle age, type, and weight. Fuel economy declines with 

increased gross vehicle weight as well as increased cargo weight; it can decline 20-40% from 

empty to a full payload [156]. It is, therefore, important to consider average vehicle loads when 

calculating fleet-wide fuel economy.  

 

2.2.3 Vehicle Travel Patterns 

 
Vehicles are used for a wide range of transportation tasks from personal travel to 

commercial transport of goods and services. The timing and length of miles traveled are 

dependent on a vehicle’s type as well as the individual needs of the vehicle’s owner. Distinct 

travel pattern emerge when looking at the VMT distribution for a population of vehicles sorted 

by vehicle category. Understanding these travel patterns is key when considering transitioning 

these vehicle categories to ZEV options.   

2.2.3.1 Light-duty Vehicle Travel Patterns 

 
The travel behavior of LDVs has been well captured in previous national and statewide 

surveys, such as the 2009 National Household Travel Survey, which aggregated state household 

surveys including the California Household Travel Survey, since updated in 2013 [157,158]. The 
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LDV population has distinct weekday and weekend travel patterns, see Figure 12, data from 

[157].  

 
Figure 12. Light-Duty Vehicle Hourly VMT Distribution 

These general patterns are consistent across U.S. regions, although the average distance 

traveled and the exact distribution of trips may vary [157]. During the week, a majority of 

vehicles leave home in the morning to go to work and then in the early evening, these vehicles 

tend to leave work and go home. This results in a bimodal distribution of VMT. On the 

weekends, morning VMT is low, with a single peak in VMT occurring in the late afternoon. Trip 

destinations are more likely to be personal, such as shopping or recreation, on Saturday and 

Sunday [114]. Overall, LDVs tend to dwell most often at home, followed by work [159]. If EVSE 

were placed in these two locations, it would cover more than half of all dwell periods and 

satisfy most charging needs [114]. California vehicle surveys and associated modeling work 

have stated that on average, LDVs travel about 32-36 miles a day, with an average trip distance 
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of around 7-8 miles [2,114,159]. The distribution of daily VMT is skewed to the right with a 

majority of daily travel under 50 miles [158]. 

2.2.3.2 Heavy-duty Vehicle Travel Patterns 

 
Heavy-duty vehicle travel patterns are more diverse than light-duty vehicles, and studies 

examining HDV behavior are less consistent both in terms of methodology and values reported, 

such as values for the timing and scale of HDV VMT, see Table 4, Figure 14. There is currently a 

coordinated effort to better quantify heavy-duty vehicle travel patterns due to the important 

role they play in both air quality and climate change [116,118,160,161]. Vehicle surveys 

conducted over the last 20 years have compiled data on individual vocations and vehicle types, 

as well as capturing statewide vehicle statistics [118,160,161]. Several regional and statewide 

models have been developed using collected data to assist in planning and emission reduction 

efforts, eg. [2,162–164]. These models range in both model inputs and insights that can be 

gained from their use.  

When exploring individual vehicle behavior, data show travel patterns can vary by 

vocation [118]. For example, school buses have distinct travel demand peaks: morning, when 

children are picked up for school and mid-afternoon: when children are dropped off after 

school. Additionally, there may be regionally variations in the timing and distance of vehicle 

travel for the same vocation, depending on regional planning and regulated hours of operation. 

For example, the port of Long Beach and the Port of Oakland handle similar import/export 

goods, but have different hours of operation, leading to distinct VMT profiles; Long Beach has 

overnight vehicle operations, while Oakland’s profile is closer to the traditional work day, 

ending operations around 6 pm [160]. 
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Table 4. Relevant Models and Surveys for California Heavy-Duty Transportation Studies 
Model(*)/ 

Dataset 
Organization Description/Features Year 

CA-VIUS [161] Caltrans 
California survey for updated, expanded 

information on HDV characteristics  
2016-
2017 

CSTDM (Short and Long Distance 
Commercial)* [117] 

Caltrans 
By commodity and weight (light-heavy, 

medium-heavy, and heavy-heavy) 
2010 

California Statewide Freight 
Forecasting Model (CSFFM)* [165] 

Caltrans 
Freight network model to be used as a 
planning tool; compatible with CSTDM 

2007 

California Hybrid, Efficient and 
Advanced Truck Research Center 

(CalHEAT) [116] 

CALSTART/California 
Energy Commission 

Research to develop a roadmap for 
California to achieve a clean heavy duty 

transportation sector 

2010-
2012 

Freight Analysis Framework FAF3* 
[166] 

Federal Highway 
Administration 

(FHWA) 

Commodity based truck volume, 
tonnage, and VMT for long distance 

travel along highways  
2007 

EMFAC* and VISION* [1,2] 
California Air 

Resources Board 
(CARB) 

By vehicle and fuel type, annual, spatially 
resolved to regions 

2012 

Fleet DNA [118] NREL 
Vehicle type (limited categories); trip 

data including drive cycle statistics 
2008-
2014 

Heavy Duty Diesel Truck Survey 
[160] 

CARB/UC Riverside 
Activity data for medium-heavy and 

heavy-heavy duty vehicles 
2015 

Heavy Duty Truck Model* [162] 
So. California 
Association of 

Governments (SCAG) 

Regional travel by weight (light-, 
medium-, and heavy-heavy) within 

Southern California 
2008 

Heavy-Duty Truck Activity Data 
[167] 

FHWA and 
CARB/Battelle 

Activity data by gross vehicle weight (5 
categories); four regions within CA 

1999 

Sparse Matrix Operator Kernel 
Emissions (SMOKE)* [168] 

U.S. EPA 

Activity and emission profiles spatially 
allocated across the state; profiles 

applied in this study are from EMFAC 
vehicle categories 

2012 

Texas Commercial Vehicle Survey 
[169] 

Texas Department of 
Transportation 

Vehicle trip data by vehicle class and 
commodity 

2009-
2010 

Travel Demand Model (Truck 
Model)* [163] 

San Diego 
Association of 
Governments 

Regional travel for all modes; internal 
and external truck flows based on SCAG  

and FAF models 
2008 

Truck Activity Monitoring System 
(TAMS) [170] 

Caltrans/UC Irvine 
Data collection system for spatial and 

temporal distribution of vehicles in 
California 

2017-
present 

MOtor Vehicle Emission Simulator 
(MOVES)* [171] 

U.S. EPA 
Activity and fuel inputs for calculating 

region-specific vehicle emission factors 
and developing emission inventories 

2011 

Vehicle Inventory and Use Survey 
(VIUS) [172] 

U.S. Census Bureau 
U.S. survey of heavy-duty vehicle 
characteristics; California sub-set  

2002 

Vehicle Volume Distributions 
By Classification [173] 

FHWA/Washington 
State Transportation 
Center and Chaparral 
Systems Corporation 

Vehicle volume and VMT distributions by 
road type, vehicle class, and day of week 

1997 
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When examining heavy-duty vehicle travel patterns aggregated to a regional level, 

considering populations of vehicles across numerous vocations, a more homogeneous profile 

emerges, see Figure 13 and Figure 14. These results show that HDV VMT tends to peak in the 

middle of the day, with some variability depending on road type, driving direction, day of the 

week, and vehicle class [162,167,173]. The heavy duty model used for planning purposes by the 

Southern California Association of Governments (SCAG) assumes a greater weight of nighttime 

trips by heavy-heavy duty vehicles (GVW > 33,000 lbs.), compared to light-heavy (8,500 – 

14,000 lbs.) and medium-heavy (14,001-33,000 lbs.) [162]. Hypotheses on why the share of day 

versus overnight travel varies by survey/model/vehicle class include that nighttime travel may 

be dependent on a) the size and regional scope of the vehicle population sampled, b) regional 

differences in traffic constraints, and c) truck vocations captured. Exploring this further, a heavy 

duty diesel truck survey conducted by the University of California, Riverside, found that a 

number of vehicle vocations operated during the day, peaking midday with low to no operation 

overnight, including refuse, construction, beverage distribution, and local moving; however, 

some vocations had a more evenly distributed profile, with vehicles, such as in-state line-haul 

trucks and agriculture, operating throughout the day and night [160]. Similarly, a study across 

19 states in the U.S. by the Washington State Transportation Center and Chaparral Systems 

Corporation for the Federal Highway Administration observed that long-distance drivers were 

more likely to travel at night and stated that traffic congestion, prevalent in major California 

cities, influenced night-time driving patterns [173].  
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a) 2008 Southern California Association of Governments Heavy-Duty Vehicle Model. Time of day 
factors are divided into hourly estimates to approximate heavy-duty populations on the road. 

 
b) CARB Heavy Duty Vehicle Statewide Activity Profile Applied in SMOKE 

Figure 13. Traffic and VMT Distributions Reported in Previous HDV Models 
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a) 1997 Washington State Transportation Center and Chaparral Systems Corporation Study for 
the Federal Highway Administration 
 

   
b) 1999 Battelle Study for California Air Resources Board 

Figure 14. VMT Distributions Reported in Previous HDV Surveys  

Caltrans in its short distance commercial vehicle model has “fleet allocators” operating 

throughout the day and predominantly at night, while all other vehicle types (organized into 
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“industrial, wholesale, retail, service, transport, and handling”) operate during the day with 

peak travel during the middle of the day [117]. Caltrans defines fleet allocators as, “businesses 

where vehicles operate on regular, and thus relatively fixed, routes rather than making stops in 

response to individual requirements (e.g., parcel delivery/pick-up)” [164]. Stefan, McMillan, and 

Hunt (2005) elaborate on this description, providing examples such as garbage pick-up trucks 

and police [174]. Assuming these patterns, changing the percent of fleet allocators operating 

within California can strongly influence the overall hourly distribution of VMT. 

In addition to the HDV hourly VMT distribution being distinctly different from LDVs, the 

average trip length and vehicle-miles per day for HDVs can also vary between HDV sub-

categories, see Table 5. Presented in Table 5 are the average values by subcategory for daily 

VMT per vehicle stated in EMFAC for the base year of 2012. Values collected by CalHEAT are 

presented for comparison. Light-heavy duty vehicles (Class 2b/3) tend to travel around the 

same distance or slightly farther per day as LDVs (Class 1-2a), but they tend to take more 

frequent, shorter trips [1,116]. Heavy-heavy duty (class 8) vehicles have an average daily VMT 

per vehicle 2-5 times greater than light- and medium-heavy duty vehicles [1]. Medium-heavy 

and heavy-heavy duty vehicles have a significant range in daily VMT/vehicle, with EMFAC 

reporting agriculture vehicles traveling very short distances (16-17 miles/day) and out of state 

vehicle categories traveling the farthest (>100 miles/day). 
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Table 5. Heavy-Duty Vehicle Average Daily Vehicle Distance and Trip Data by Sub-Category 

Vehicle Category 
VMT/vehicle (Avg.) 

EMFAC 2017 [1] 
VMT/vehicle/day 

CalHEAT [116] 

Light-Heavy 34 – 39 (36) 57* 

94* (overall) Medium-Heavy 17 – 170 (50) – 

Heavy-Heavy 16-256 (122) 150-233* 
*Annual values averaged over 365 days to yield daily average. 21,000 annual miles per vehicle reported 
for Class 2B/3 vans and pick-up trucks, 55,000 miles for short haul, and 85,000 miles for over-the-road 
tractors. Assuming fewer operating days within the year will yield higher VMT estimates [116].  

 
Two major statewide surveys have been conducted to explore truck travel behavior in 

California in the last 20 years [161,172]. The 2002 Vehicle Inventory and Use Survey (VIUS) was 

the last in a series of surveys examining private and commercial truck travel behavior across the 

U.S., with survey results available by state [172]. In 2016-2017, a new survey was conducted in 

California to replace the previous 2002 VIUS survey results for planning purposes [175]. This 

new survey endeavored to improve the documentation of commercial trucks travel statistics for 

vehicles traveling within and through the state [176].  

The two surveys have distinct differences in how trip behavior was captured and what 

the results indicate. In the 2002 VIUS, California trip length frequency was reported for the total 

truck population (all classes), see Table 6, data from [172]. These results show travel skewed 

heavily towards short distance trips, with long distance trips greater than 200 miles making up 

less than 6% of the on-road, reported sample. In the 2017 CA-VIUS survey, trip length 

frequencies were more greatly resolved: trip length frequencies were reported by vehicle class, 

grouped here into vehicle categories to be consistent with the model developed later in this 

work (light-heavy: 8,501-14,000 lbs., medium-heavy: 14,001-33,000 lbs., and heavy-heavy duty: 

> 33,000 lbs.). Additionally, trip frequency distributions could be separated further based on 
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vehicle registration, allowing analysis of trends between in-state and out-of-state vehicles 

[161].  

Table 6. VIUS 2002-California Reported Truck Range of Operation (Trip Length Frequency)*  

Range of Operation Percent of Sample Percent of On-road, Reported Sample 

50 mi or less 53.6% 71.2% 

51 – 200 mi 17.5% 23.3% 

201 mi +  4.1% 5.5% 

Off-road, not reported, not 
applicable 

24.7% -- 

*Excludes some light-duty truck and van types [172] 

In the 2017 survey, trips by in-state registered light-heavy and medium-heavy duty 

vehicles are heavily weighted towards distances less than 50 miles, but the survey found a 

greater share of trips longer than 50 miles compared to the 2002-VIUS survey. Additionally, 

light-heavy duty vehicles were found to have more trips greater than 500 miles from home base 

compared to medium-heavy duty vehicles. Heavy-heavy duty vehicles were found to have a 

more even distribution of trips across the different trip distance categories, with a larger 

portion of vehicles traveling over 50 miles per trip from their home base compared to all other 

categories. Out-of-state trucks tend to have longer distance trips compared to vehicles 

registered in the state, with a high percentage of trips greater than 500 miles (>20% for light-

heavy duty, and >70% for medium-heavy and heavy-heavy duty). Examining the weighted 

results of the survey, 95% of the light- and medium-heavy duty VMT comes from vehicles 

registered in California. For heavy-heavy duty, it is 70%. Sorting trip distributions by home base 

state and registration resulted in the same distribution percentages, with 96% of vehicles 

calling the state in which the vehicle was registered “home base” [161]. 
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 The distinction of “home base” is important, because, while LDVs tend to dwell at 

locations such as work, home, and school, HDVs tend to dwell mostly at their “home base.” 

Home base can range from warehouses to airports, depending on the vehicle vocation. For 

example, data from a commercial vehicle survey in Corpus Christi, Texas show that vehicles in 

the region spend, on average, less than an hour per dwell period at non-home base locations 

compared to 6-16 hours at home base locations [169]. Understanding where and when HDVs 

dwell is crucial for planning charging infrastructure. Not only will the locations determine the 

placement of EVSE, the length of dwell periods will dictate the charging rates needed to meet 

energy requirements without affecting travel demands.  

 

2.2.4 Vehicle Deployment Strategies  

The widespread adoption of ZEVs would shift vehicle emissions from tailpipes to power 

plants, either through increased electricity demand for charging or for hydrogen production 

(assuming renewable hydrogen is used). The effect of ZEVs on greenhouse gas and criteria 

pollutant emissions is therefore dependent on the electricity mix as well as charging strategies 

utilized [31,177,178]. ZEV adoption has the potential to reduce both greenhouse gas and 

criteria pollutant emissions by utilizing renewable power resources and switching to more 

efficient power trains [179,180]. To what degree ZEVs utilize renewable power is dependent on 

how ZEVs and the associated infrastructure are deployed [35,113,181].  

2.2.4.1 Battery Electric Vehicle Charging Strategies and Infrastructure Considerations 

 
BEV impacts on the grid are dependent on how and when vehicles charge. This is, in 

part, determined by vehicle travel patterns, as well as infrastructure build-out [32,140].  
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Different charging strategies for grid-connected vehicles can be distinguished by their level of 

grid connectivity and intelligence. The primary types of charging strategies considered for BEV 

deployment include: 

 Immediate charging—Vehicle begins charging when plugged in and stops when the 

battery’s state-of-charge (SOC) reaches 100% or vehicle is unplugged, whichever comes 

first. The vehicle does not communicate with the grid.  

 Time-of-Use charging—Vehicle charging is planned around a basic cost function with 

two or more different costs at set times of the day. Usually weekdays follow one TOU 

profile and weekends and holidays follow another. The hourly costs do not change 

based on day-to-day changes in load and generation, but may be different for a defined 

“summer” and “winter” period, see Figure 15 [182–184]. The charging time can be 

planned, either by 1) the owner waiting to plug in at the cheaper time, or 2) setting a 

smart plug or charger that is timed to turn on at a scheduled time [130]. In the future, 

there could be direct communication with the grid, having the grid send a signal to the 

car to charge, however, this control strategy is more likely to be applied in the case of 

smart charging. The limitation of having a tiered pricing schedule is that it only accounts 

for the general curve of the net load profile and not the day to day variation in 

generation or demand conditions.  
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a)   b)  

Figure 15. An Example Electric Vehicle Time-of-Use Schedule: Southern California Edison EV 
rates for weekday a) summer and b) winter. Price does not include fixed daily fee for connection. 

 Smart charging—Vehicle charging is scheduled using a cost optimization with a highly 

resolved cost function based on the electric grid’s net load profile [45]. The algorithm 

considers the vehicle’s trips and dwell periods to determine the least cost periods to 

charge in order to meet the day’s travel demands. Scheduling vehicle charging can 

provide grid benefits including renewable integration and load smoothing, which 

reduces ramping demands on power plants [185]. The different optimization methods 

based on the type charging control are:  

o Centralized Control —a centrally-situated aggregator receives stationary load 

forecasts and vehicle travel demands, including dwell times and locations. The 

aggregator computes and disseminates the charging schedule for each vehicle in 

the connected system [186]. This approach is dependent on having accurate 

forecasts of both grid and vehicle conditions in order to compute the optimal 

timing of vehicle charging [187]. Methods for determining the appropriate 

charging schedules may vary depending on grid structure and identified 
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priorities, as well as assumptions made about the flexibility of vehicle charging 

[188,189].  

o Decentralized (or Distributed) Control — the planning of charging events is 

controlled by the vehicle and not a central aggregator. Each vehicle receives a 

cost signal and decides its charging schedule based on its travel constraints. 

Vehicle decisions are then conveyed back to the grid and a new cost signal is 

produced that incorporates the added load. The rate at which the cost signal is 

updated affects the net profile; less frequent updates are less computationally 

intensive but result in greater net load fluctuations that power plants must ramp 

up and down to meet [34,187,190]. Chiang et al. (2018) found that decentralized 

charging yielded increased reliance on peaker plant generation compared to 

centralized charging, with update times up to 120 minutes having similar GHG 

emissions impacts as centralized control but with increased air quality impacts 

[187].  

 Vehicle-to-grid charging—Vehicle charging follows the same strategy as smart charging 

but the controller now accounts for bi-directional flow of current, allowing the vehicle 

to discharge back to the grid. Again, vehicle charging can be controlled through a 

centralized or decentralized mechanism. Under a V2G charging strategy, vehicles can 

plan charging events to correspond with renewable generation and discharge during 

peak load times to balance the grid [45]. In fact, V2G-enabled vehicles have the 

potential to participate in a range of grid services, from frequency regulation to spinning 

reserve, if their operations are aggregated into a responsive unit [191]. Similar to smart 
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charging, vehicle-to-grid charging has been deployed in pilot projects and the control 

and communication strategies are still being tested [192]. Juul et al. (2015) tested 

multiple scheduling methods for a fleet of BEVs to provide frequency regulation to the 

grid in real-time and developed a new scheme that improved the service performance 

at higher capacity commitments. They also suggest that future work into scheduling 

optimization methods can further improve load-following accuracy [193].   

 Realizing the optimal scheduling of vehicle charging is dependent on the availability of 

sufficient electric vehicle charging infrastructure. Infrastructure considerations include the 

location and charging power, or level, of electric vehicle supply equipment [194]. A description 

of different charging levels is presented in Table 7. The lower value estimates presented include 

additional component losses including AC/DC conversion losses and transformer losses [195]. 

Vehicle discharging results in greater losses compared to charging, driven by greater conversion 

and transformer losses.     

Table 7. Charging Levels and Technical Specifications 

Charging 
Level 

Charging 
Power Range  

Configurations 
[194,196] 

AC/ 

DC 

Charging Eff. 
(%) [195,197] 

Discharging 
Eff. (%) [195] 

Level 1 1.44 to 1.9 kW 120 V, 12-20 A AC 80-85 64-81 

Level 2 3 to 19.2 kW 208/240 V, 16-80 A AC 89-95 70-91 

Level 3  25 kW + 208-480 V,<40 kW 

208-480 V,<90 kW 

208-600 V,<240 kW 

AC 

DC 

90-95 (lower 
value est.) 

80-90 (est.) 

 

While the ubiquitous placement of level 3 EVSE would ensure BEVs have access to fast 

charging throughout the day, this approach may be cost-prohibitive. Rather, a more strategic 
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approach is to place chargers in locations where vehicles exhibit the longest dwell periods to 

maximize charging flexibility and/or key travel corridors with potential fast charging to ensure 

long-distance trip demands are met [114,198]. Additionally, when building out charging 

infrastructure it is important to consider which EVSE will allow vehicles to charge within dwell 

times at reasonable cost [198]. For example, while a small, passenger vehicle may be able to 

charge fully in 1-2 hours using level 2 charger, it might take an HDV several hours, due to its 

larger battery capacity and higher travel demands [140]. Depending on the HDV’s travel 

demands, a level 3 charger may be required to ensure the vehicle receives enough energy 

during its dwell period to meet its next trip(s), especially in the case of vocations where vehicles 

are expected to travel long routes with short dwell periods between trips, such as public transit 

[199].  

EVSE installation costs can vary based on location and charger rating, see Table 8. 

Installation costs reported include the cost of the charger, labor and supplies for the 

installation, permitting, O&M costs, as well as any upgrades that may be needed. Price tends to 

increase with greater charger ratings and the amount of upgrades required for the local grid to 

support a vehicle charging [198,200]. For level 3 chargers, a new transformer installation can 

cost between $10,000-50,000 above the installation cost of the charger [201–204]. 

Maintenance costs can range in price depending on the set-up and type of charger. The higher 

the power of the charger and the greater the number of connected vehicles, the more likely 

there will be additional transmission upgrade costs, especially in residential areas [200]. These 

costs may be passed on to users that are on non-residential electricity plans through demand 

charges—fees based on peak electricity use [205]. 
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Table 8. Vehicle EVSE Installation Costs 

Charger Rating Location Cost per Charger 

Level 1 (120 V) Home $0-$1500 – Plug-in EVs come with charging cable that can be 
connected to home outlet (120V) [206,207] 

Level 2 (240 V)  Home $1,000-$3000 [194] 

Level 2 (240 V) Public $1,000 (wall mount)-$6,000 (Advanced communication 
features) [207,208] 

Level 3 (480 V) 
DC Fast Charging 

Public $4,000-$51,000 [202,207]  
Some estimates above $100,000, eg. [209] with large (1000 
kVA/480V) transformer upgrades 

 

The charger rating can also influence how grid-connected vehicles participate in grid 

services. As most electricity markets are currently structured, vehicles need to be aggregated to 

a set minimum capacity in order to participate formally in grid services. The minimum bid varies 

by region and by grid service: for example, in Singapore the minimum bid for spinning reserve is 

1 MW [210]. Southern California Edison requires a minimum bid of 100 kW for regulation 

up/regulation down, with a minimum of 500 kW/1 hour charging and/or discharging capability, 

and bid steps of at least 10 kW [211].  

2.2.4.2 Hydrogen Pathways and Fueling Infrastructure for Fuel Cell Electric Vehicles 

 
 Understanding hydrogen productions pathways is important in determining grid impacts 

as well as the net emissions impact of using FCEVs. Hydrogen may be produced through several 

methods, the most prevalent today being steam methane reformation (SMR) [212]. 

Conventional SMR has associated GHG emissions and is not renewable, as it converts fossil fuel-

based natural gas (CH4) and oxygen to hydrogen and carbon dioxide [213]. In order to meet 

California emissions reduction targets, hydrogen must be produced at scale through a 

renewable pathway. Renewable pathways include electrolysis, thermochemical pathways— 



 

48 
 

biomass gasification, liquefaction, and pyrolysis—, and biological pathways—anaerobic 

digestion, fermentation, and metabolic processing [212].  

In electrolysis, hydrogen is produced through the electrochemical separation of water 

into hydrogen and oxygen. This process is considered renewable if the electricity used to 

separate the water molecules is from a renewable source (eg. solar or wind power). The 

dominant electrolyzer technologies include alkaline, proton exchange membrane (PEM), and 

solid oxide (SOEC) electrolyzers, with alkaline electrolyzers being the most mature and SOEC 

electrolyzers being the least [106,214]. Alkaline and PEM electrolyzers operate at relatively low 

temperatures 60-80oC, with system efficiencies around 50-70% [215,216]. Both types of 

electrolyzers have the ability to ramp up and down; studies such as Ursúa et al (2016), Barbir 

(2005), and Valverde et al (2013) have demonstrated their operation in coordination with 

variable renewable generation to produce renewable hydrogen [215–217]. PEM electrolyzers 

generally have lower minimum loads (0-5% of full load) compared to alkaline electrolyzers (10-

20%), indicating a greater flexibility in dynamic operation [218]. SOECs, on the other hand, are 

operated at high temperatures, generally between 500-1000oC, with efficiencies of 70-85% 

possible [219]. SOECs tend to have a higher minimum production rate compared to alkaline and 

PEM electrolyzers and are less mature, both in terms of overall technology development and 

dynamic operation of the SOECs [220]. While SOEC ramping has been demonstrated in 

simulation and in the laboratory, eg. [221–223], there remains work to be done to bring this 

technology to full market maturity [220].  

Renewable thermochemical pathways require a biomass feedstock, such as switchgrass 

or agricultural waste [224]. In biomass gasification, the feedstock is transformed into methane 
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and other byproducts, which are then cleaned and reformed into hydrogen [225]. Alternatively, 

in pyrolysis, biomass is transformed to produce carbon monoxide—along with other 

byproducts—which is reacted with water to form hydrogen and carbon dioxide [226]. In 

liquefaction, a slurry is produced combining biomass with water, sometimes a catalyst, and 

then reacted under pressure to produce an oil, which can then reformed to produce hydrogen 

[227,228].  

Utilizing thermochemical pathways to produce hydrogen has some drawbacks. In 

general, thermochemical processes require significant energy inputs to break down the 

feedstock, and specifically, the equipment required for liquefaction currently make it cost-

prohibitive [227]. Also, hydrogen production through these pathways can still result in 

emissions from the growth of the feedstock and processing, which can depend on methods 

used to remove pollutants during hydrogen production; these emissions are generally much 

lower than traditional fuels [224,226]. Additionally, hydrogen production rates and purity can 

vary over time in response to natural changes in feedstock composition [71].  

The biological pathways for producing hydrogen are even less mature [229], and 

therefore, they are not likely to provide a significant percent of hydrogen in the timescale of 

this study. This analysis will focus on hydrogen from electrolysis to meet FCEV hydrogen 

demand. Of the mature technologies, only electrolysis results in no additional GHG and criteria 

emissions in the production of hydrogen if it relies solely on renewable electricity. The potential 

impact of fuel source diversification will be discussed and a sensitivity analysis will be 

conducted to determine grid impacts of reducing electrolyzer load.  
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Unlike vehicle charging infrastructure, which can build on the existing electric grid for 

the transmission of energy to vehicles, FCEVs require hydrogen production plants, a new 

network of hydrogen fueling stations, and the method to transport hydrogen from the 

production site to refueling station (unless hydrogen is made and dispensed on-site) [230]. In 

order to meet fuel demands, stations should be strategically distributed across the state and 

sized to match projected fuel demands of the region. Analyses have been conducted in 

coordination with state agencies to optimize the placement of future refueling stations, such as 

Kang et al. (2013) where hydrogen refueling stations were sited such that the average distance 

to a station would be 2.5 minutes [231]. In the proposed roadmap that resulted from this work, 

researchers estimate that a minimum of 68 stations strategically sited could be sufficient in 

supporting statewide FCEV deployment [232]. Nicholas and Ogden (2006) looked at regional 

analysis within California to ascertain which factors affect siting results and found that 

population density and convenience (measured in time to a station) were the main drivers 

[233]. Currently, California already has over 40 stations across the state with more than 20 in 

some stage of planning or construction [234]. This work assumes that fueling stations are 

adequately distributed across the state to supply fueling demands.  

2.2.5 Vehicle-Grid Integration Impacts 

A significant amount of research examines light-duty vehicle electrification [32,33,235–

238,34,35,44–46,105,114,193]. Researchers have examined LDV electrification from a number 

of perspectives, examining BEV feasibility and charging strategies, as well as impacts on grid 

dynamics, and overall grid performance. These studies establish a strong foundation that can 

be applied to heavy-duty vehicle electrification.  
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A number of studies have examined the feasibility of battery electric vehicles for light-

duty applications [114,239,240]. Zhang, Brown, and Samuelsen (2013) evaluated how many 

miles traveled by light-duty vehicles could be electrified given different vehicle and 

infrastructure parameters in California. They found that prioritizing placement of EVSE in 

locations with the highest dwell periods (home and work for light-duty vehicles) can result in 

feasibility levels between 80-96% of vehicles, with only home charging at level 2 already 

satisfying almost 90% of vehicles [114]. Greaves, Backman, and Ellison (2014) investigated the 

effect of a vehicle’s drive cycle on the reported range of the BEV as well as overall BEV 

feasibility. They also found that around 90% of daily trips could be met with only at-home 

charging, but electrifying long distance trips would require additional charging options [239]. 

Dong and Lin (2014) investigated how driver behavior may influence BEV feasibility, allowing for 

travel modifications in order for drivers to adapt to the constraints of BEVs. They found that if 

drivers are willing to drive at a very low state-of-charge (SOC) (equivalent to a near-empty tank 

of gasoline), almost 60% of drivers were able to meet their travel demands with very few days 

(0-5%) requiring trip modifications, but as the minimum acceptable SOC increases, so does the 

level of trip modification [240]. 

In addition to feasibility, studies have explored grid and emissions impacts of integrating 

zero-emission vehicles, with special emphasis on grid-connected vehicles. In reviewing these 

works it can be concluded that understanding the timing and scale of vehicle charging is crucial 

in determining the impact of electrification on the grid as well as overall emissions. Immediate 

charging of light-duty plug-in electric vehicles (PEVs)—plug-in hybrid vehicles and battery 

electric vehicles—results in electric load demands that do not align well with renewable 
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generation availability [32]. In the cases that light-duty PEVs can charge at home or at home 

and work, a majority of the charging demand occurs in the early evening, when electricity 

demand is already at its peak [114,241]. This can result in increased peak demand during the 

time that power plants are already ramping up to balance the sharp decline in solar generation 

that occurs at sunset [31]. Greater ramping and higher peaks may require further transmission 

and distribution upgrades as well as affect the resource planning policies of electric utilities to 

ensure they have the capacity and system flexibility to manage vehicle charging [186,241]. 

Coordinating the timing of PEV charging, whether through a time-of-use or smart 

charging strategy, can have significant benefits compared to immediate charging including 

increased renewable utilization, decreased ramping requirements for balance generation, and 

reduced peak demand [32,35,242]. At low renewable penetration levels, charging vehicles 

serve as a new electric load, which can increase demand for conventional power generation, 

but as renewable generation increases, and particularly otherwise curtailed renewable 

generation increases, there’s a greater opportunity for grid-connected vehicles to support 

renewable integration while offsetting emissions from the transportation sector [31]. 

Furthermore, Wang et al. (2019) found the reducing emissions by adopting zero-emission 

vehicles was more cost-effective than stationary energy storage pathways in reducing system 

GHG emissions [230].  

2.3 Zero-Emission Technologies for the Dynamic Support of a 100% Clean Electricity Grid 
 

While the integration of transportation fuel demands onto the grid will provide a 

significant level of flexible load control, there may remain a need for additional dynamic 

support technologies to ensure electric demand and generation are balanced at all times and 
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that the state consistently meets its emissions reduction targets. Zero-emission technologies 

include electric power generators, energy conversion technologies, and/or energy storage 

technologies that can respond quickly and reliably in order maintain grid performance. Each 

strategy has different features, with their own benefits and limitations for meeting dynamic 

support needs. Clearly defining technology capabilities along with grid needs will aid in the 

development of portfolios that achieve a 100% clean electricity grid. Important technical 

characteristics of available technologies include response time, ramp rate, efficiency, minimum 

part load condition [243], and for energy storage technologies: charge/discharge rate, storage 

duration, and power-to-energy ratios [107,244].  

The technical constraints of different technologies can affect how well they are suited 

for different grid services. Generally, dispatchable power resources can provide flexible 

generation to balance renewable variability, but are unable to utilize excess renewable 

electricity directly [51]. Conversely, flexible loads are able to shift demand to use otherwise 

curtailed renewable generation and avoid times of peak load [35]. Energy storage technologies 

can respond the renewable variability through charging during over-generation events and 

discharging during renewable deficits; however, these technologies are limited by their storage 

capacity and other operational constraints [52].  

Within these broad categories, different technologies can have significantly different 

characteristics. For example, response times range from milliseconds to minutes, depending on 

the technology. Lithium ion batteries and other batteries with similar chemistries can respond 

within milliseconds, and have high round-trip efficiencies. However, batteries tend to lose their 
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charge over time (termed “self-discharge”), making them less effective for seasonal or longer-

term storage, and are limited to the amount of energy that can be stored [52].  

On the other hand, power-to-gas (P2G), which uses electricity to produce gaseous fuel,, 

in this case, hydrogen, also has no direct emissions, has a lower efficiency than lithium ion 

batteries when used in the same type of services [245]. Nevertheless, hydrogen, the gas 

produced, can be stored for longer periods of time and be used in a greater variety of 

applications, including power generation with stationary fuel cells, fuel for fuel cell vehicles, 

conversion to other gaseous or liquid fuels, and direct use in industrial processes [246]. 

Renewable hydrogen can be used directly to produce zero-emission electricity, or it can be 

stored, potentially for long periods of time either in the natural gas pipeline or a designated 

hydrogen storage system [247]. Hydrogen is also spatially flexible, since it can be utilized at the 

site of production or can be transported (by truck or pipeline). Demand for renewable hydrogen 

may also increase in the future, independent of grid emissions goals as other sectors, like 

industry, seek to reduce their own carbon footprints [59,246]. 

The rate at which a technology ramps is also limited by its configuration. For example, 

compressed air energy storage (CAES) relies on compressed air as the storage medium and 

requires feeding this compressed air into a turbine [106]. While generation output can ramp up 

fully under a minute, the compression (“charging”) stage is slower, about 20% of capacity per 

minute [248]. Fuel cell ramping rates can vary significantly based on the fuel technology. Lower 

temperature fuel cells (eg. PEMFC) tend to ramp faster than high temperature fuel cells (eg. 

SOFC) [249]. In comparison, natural gas combined cycle power plants ramp 2-7% per minute, 

depending on design and part load condition at the time of ramping [248,250]. 
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Another consideration, particularly to dispatchable generation and energy conversion 

technologies, is minimum load points below which power plants cannot operate. These 

minimum generation levels affect the flexibility of the resource to respond to variation in the 

net load [251]. Conventional load-following natural gas power plants have minimum turndown 

levels around 40-50% (limited by emissions regulations rather than technical constraints) 

[250,252]. Fuel cells currently deployed operate as baseload generation; however, future fuel 

cells may provide dynamic, load-following support [249,253–256]. Shaffer et al. (2015) found 

that lowering the minimum load point of load-following fuel cells increased renewable 

integration and that deploying load-following fuel cells reduced both GHG and criteria pollutant 

emissions at moderate renewable penetration levels [256]. In general, lowering minimum load 

points can increase the ability of dispatchable resources to manage variable renewable 

generation; however, it will have negative consequences on efficiency, and greater cycling of 

the power plant in response to increased ramping will increase wear on the power plant 

[257,258].  

Another important distinction is that most dispatchable generation and energy 

conversion technologies currently deployed in California use natural gas as the input fuel, 

including load-following power plants, peaker power plants, and fuel cells [258]. In the future, if 

these resources are to be used, they will either need to switch to a renewable fuel (eg. biogas 

or hydrogen), capture produced GHG emissions, or be used sparingly, in order to meet GHG 

emissions reduction goals [259]. In a 100% renewable grid scenario, only the option of 

switching to a renewable fuel would be permitted. Proton-exchange membrane (PEM) fuel cells 

already directly use hydrogen in vehicle applications and solid oxide fuel cells (SOFC) have an 
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internal reformation system that converts natural gas to hydrogen [260,261]. Fuel cells can also 

utilize waste streams directly [262]. Conventional load-following and peaker power plants can 

be paired with carbon capture technologies, which have shown that up to 90-99% of the carbon 

dioxide produced at a natural gas power plant can be recovered and stored [252,263,264]; 

however, this process has a negative impact on system efficiency (about -10%) [263] and 

system cost (up to 30%) [264], and it would not be considered a renewable resource. These 

power plants can also be retrofitted to utilize renewable fuels, although it may decrease system 

efficiency and still may result in some criteria pollutant emissions depending on the fuel and 

system design [265]. 

Multiple technologies may be suited technically to provide the same service, and 

ultimately which technology is deployed is dependent on other considerations such as 

technology maturity, scalability, and cost [77,266]. This analysis, therefore, will focus on the 

type of services required to achieve 100% clean electricity grid. A portfolio approach will be 

applied to develop a number of reasonable technology mixes to meet the future grid’s flexibility 

requirements, and the variability in cost between these portfolios will be assessed. This method 

will allow for a better understanding of the challenges and trade-offs of a high renewable grid 

versus achieving a 100% clean electricity grid.  

2.4 Remaining Gaps in Literature 

For California and other parts of the world to move towards 100% renewable, zero-

emission grids, complementary technologies to support renewable integration need to be 

clearly established. Previous studies have examined high renewable penetration up to 100% 

into different grids and the role of support technologies in achieving high levels of renewable 
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utilization [37,40,50,51,267,268]. A summary of important literature covering these topics is 

presented in Table 9. However, the studies that identified challenges to high renewable 

penetration either proposed solutions but did not do an in-depth analysis of those strategies, or 

focused on a single strategy to overcome challenges that did not include coordinated heavy-

duty ZEV integration. The studies examining 100% renewable penetration mainly focus on 

demonstrating feasibility with (1) a limited exploration of scenarios, and (2) consideration of 

neither the challenges to renewable integration nor required support technologies [37,40,112]. 

For example, several studies examined the simultaneous deployment of ZEVs and renewable 

generation and how ZEV adoption can improve renewable integration; however, most of these 

studies only investigated moderate ZEV penetration into the transportation sector and not for a 

100% renewable grid [31,35,44,269]. A few studies examined the transition to 100% ZEVs under 

a renewable paradigm, but  either focused on only one vehicle type (light-duty vehicles) with a 

great emphasis on plug-in electric options or applied a methodology that does not measure the 

impact of vehicle deployment on grid dynamics [75,270]. The studies examining heavy-duty 

vehicle charging dynamics in detail focus on the deployment of a limited number of vehicles 

and do not explore the net impact on the electric grid, eg. [140,271].   

Furthermore, work examining the combined impact of strategies on both GHG and air 

pollutant emissions is limited. Most studies on vehicle-grid integration that examine emissions 

impacts focus on climate, eg. [59,259,272]. These studies found that switching vehicles to zero-

emission options is crucial for meeting California’s GHG emissions reduction goals. Less in-focus 

are the subsequent air quality co-benefits. Studies exploring the impact of vehicle-grid 

integration on air quality find a significant reduction in air pollutant emissions is achievable 
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through zero-emission vehicle adoption [273,274]. Of the studies found that examine air quality 

and/or GHG emissions benefits of vehicle electrification [152,275], very few explore the distinct 

benefits of intelligent charging of heavy-duty vehicles [276]. In fact, most emissions reduction 

studies that include HDV electrification do not quantify BEV feasibility nor do they seek to 

compare the timing and scale of electricity demand of battery electric HDVs versus LDVs 

[37,75,152,275]. Heavy-duty BEV feasibility is an emerging area of research. One study by 

Çabukoglu et al. (2018) modeled BEV feasibility based on known fleet usage in Switzerland and 

found that given current battery technologies and home-base charging, only between 6–19% of 

heavy duty vehicles could be electrified; high electrification could only be achieved with 

multiple battery swaps or significant battery improvements [277]. There remains an 

opportunity to couple ZEV feasibility constraints with vehicle-grid integration in order to 

identify trade-offs in pursuing high heavy-duty vehicle electrification.  

In addition to the potential environmental benefits of ZEVs, the adoption of zero-

emission vehicles will have impacts on the cost of energy, primarily driven by the increase in 

infrastructure required to support a large-scale deployment of grid-connected vehicles. Much 

of the work exploring infrastructure costs of zero-emission vehicles have been informed by the 

current and anticipated demands of light-duty PEVs and FCEVs [26,194]. Heavy-duty vehicles 

are expected to utilize higher charging rates (level 2 and level 3) than light-duty vehicles due to 

higher energy demands and greater travel constraints [278]. While costs for level 3 chargers are 

available [194], the literature on how these costs may influence the future levelized cost of 

energy is limited, especially at high adoption of heavy-duty BEVs. Wang et al. (2019) found that 

the cost of greenhouse gas emission reduction ($/tonne GHG reduced) using grid-connected 
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light-duty vehicles increases with higher charging levels, particularly moving from level 2 to 

level 3 [230]. Investigating potential costs is needed to understand potential trade-offs of 

installing level 3 chargers—comparing potential increased costs with potential increased grid 

benefits.  

In effect, there remains a need to examine, from a systems perspective, the potential 

for grid-connected heavy-duty vehicles to provide grid services in order to establish a greater 

understanding of the challenges and opportunities to transition towards a robust electricity 

system that seeks to maximize climate and air quality co-benefits.  This is the focus of this 

dissertation.
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Table 9. Relevant Literature in the Investigation of Vehicle-Grid Integration Dynamics and Environmental Impacts

Authors Year Scope 
Heavy Duty 
Vehicles? 

HDV Fuel Mixes 
E-/H2/Biofuels/Petrol. 

Grid 
Simulation 

V2G GHG AQ Cost 

Kempton and 
Tomic [45] 

2005 V2G Integration No NA 
Load 
Signal 

Yes, 
LDV 

No No No 

Lund and 
Kempton [44] 

2008 V2G Integration No NA 
Full Grid 
Model 

Yes, 
LDV 

No No No 

Zhang et al. 
[34] 

2014 
Optimal Charging for 

RE integration 
No NA 

Full Grid 
Model 

No No No No 

Duran et al. 
[140] 

2014 
HDV Travel patterns 

and charging demand 
Light-, Medium-

Heavy Duty 
Battery Electric Vehicles No No No No No 

Zhao et al. 
[276] 

2016 V2G Integration 
Medium-Heavy 

Duty 
BEVs and Extended Range 

Electric Vehicles 
Price 
Signal 

Yes Yes Limited Yes 
          

Yang et al. 
[75] 

2009 
80% Reduction in GHG 

Emissions 

Yes, not 
dynamically 

modeled 

5/0/95, 
23/56/0/21, 
53/9/13/25 

No No Yes No No 

Williams et al. 
[279] 

2012 
80% Reduction in GHG 

Emissions 
Limited Biofuels 

Full Grid 
Model 

No Yes No Yes 

Budiscak et al. 
[36] 

2013 
Towards 100% 

Renewables 
No NA 

Full Grid 
Model 

Yes, 
LDV 

Limited No 
Yes, 

Minimized 

Wei et al. [59] 2013 
80% Reduction in GHG 

Emissions 
Yes 14/0/0/86 

Full Grid 
Model 

No Yes No 
Yes, 

Minimized 

Jacobson and 
Delucchi [37] 

2015 100% Renewables 
Yes, travel 

assumptions 
not stated 

70/30/0/0 (est.) 
Full Grid 
Model 

Yes, 
LDV 

Limited Limited Yes 

Steinberg et 
al. [152] 

2017 
80% Reduction in GHG 

Emissions 
Yes 

50% BEV, 9% FCEV, 33% 
Petrol., 8% HEV 

Full Grid 
Model 

No Yes No Yes 
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Chapter 3. Approach 

Overall, this work investigates the potential for zero-emission heavy-duty vehicles to 

provide flexible support to a highly renewable grid, and provides new insights into vehicle-grid 

integration challenges and opportunities. Task one establishes the foundational understanding 

of the challenges to high renewable integration and the potential strategies to overcome them 

from the grid perspective. The second task (Task 2) focuses on the development of a model to 

simulate heavy-duty vehicle integration onto the electric grid. The third task develops vehicle-

grid integration scenarios for the year 2050 given two California goals: an economy-wide 

reduction in GHG emissions by 80% compared to 1990 levels and a 100% clean electricity grid. 

These scenarios are then analyzed in Task 4, based on changes to grid balancing requirements, 

greenhouse gas emissions, air quality, and levelized cost of energy.  

Task 1. Develop an understanding of vehicle flexibility to integrate renewable energy and the 
additional balancing requirements to achieve up to 100% renewable penetration into the 
California grid. 
 

Task 1.1 Literature review for barriers to 100% renewable electric grid 

Task 1.2 Literature review for vehicle energy demand, travel behavior, zero-emission 

vehicle options, and vehicle charging strategies   

Task 1.3 Literature review for zero-emission technology portfolio options for dynamic 

support to accommodate variable renewable electricity generation to achieve 100% 

renewable electricity generation  

The disparity between the timing of variable renewable power generation and electric 

load demand presents an impediment to achieving 100% renewable integration without 

additional strategies to balance the grid. In this task, a literature review was conducted to 

characterize the types of events that lead to under-utilization of available renewable 

generation. Common as well as grid-dependent challenges were identified and defined. This 
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first investigation informed a second examination of zero GHG emission technology options for 

mitigating the identified challenges.   

Current understanding of large scale ZEV impacts on the electric grid comes primarily 

from studies focused on transitioning light duty, passenger vehicles to ZEVs [31,35,44,269]. 

However, heavy duty vehicles, mostly used for commercial activities, have quite different travel 

patterns and operational constraints compared to light duty passenger vehicles 

[1,167,173,280], which will influence their suitability to provide grid services. The different 

charging and fueling constraints of heavy duty vehicles versus light-duty vehicles can provide 

insight into their varying roles in meeting grid emissions reduction targets and, conversely, the 

role of the grid to meet transportation emissions reduction targets. 

The studies addressing vehicle-grid integration tend to focus on battery electric vehicles 

and plug-in hybrid electric vehicles [34,46,281]. The potential grid impacts of renewable 

hydrogen production for fuel cell electric vehicles (FCEVs) are less discussed, despite many 

projections to 2050 assuming moderate to high utilization of hydrogen as a transportation fuel 

for both LDVs and HDVs [37,75,152,282]. Renewable hydrogen production from electrolysis in 

many cases can serve as a more flexible load than plug-in vehicles due to the decoupling of fuel 

production and travel demand [31]. Additionally, the future potential for large-scale hydrogen 

storage means that hydrogen may ultimately be stored months before use, essentially shifting 

renewable use across seasons [283]. The advance of HDVs towards zero-emission options 

renews the need to understand the constraints and opportunities for renewable hydrogen 

production in terms of impacts on the grid and satisfaction of FCEV demand.  



 

63 
 

Not all pathways for vehicle-grid integration will result in a robust, 100% renewable grid 

without additional support technologies. Therefore, a portfolio of technologies which 

complement vehicle-grid integration will be explored. Technologies to be considered must have 

the following characteristics: 1) have the potential to maintain a 100% clean electric grid, 2) be 

a flexible, dispatchable resource, and 3) emit low to zero criteria pollutants. Given these 

constraints, the following preliminary technologies have been identified: stationary energy 

storage (battery energy storage, flow batteries, pumped hydro), power to gas, and stationary 

fuel cells [53,106,256]. The results of this task are presented as an expanded background 

section in Chapter 2, preceding this chapter.  

Task 2. Simulate electricity and hydrogen demand to achieve transformation of the heavy-duty 
vehicle sector to zero-emission vehicles.  
 

Task 2.1 Characterize HDV integration with probable charging/fueling strategies 

 Task 2.2 Develop HDV module 

Task 2.3 Conduct a sensitivity analysis for battery electric vehicle feasibility 

A range of vehicle types are projected to transition to zero-emission alternatives. These 

new vehicles will either have a direct impact on electric load profiles due to plug-in charging on 

the grid or an indirect impact through the increased demand for renewable fuel production, 

most likely dominated by hydrogen production. A light-duty vehicle module was previously 

developed by Zhang (2014) [115] and demonstrated in several applications [31,32,34,46]. These 

previous studies illustrate the capability of this module to simulate BEV, PHEV, and FCEV 

deployment scenarios. This work draws from this established capability to simulate both plug-in 

electric and fuel cell electric LDV deployments at levels projected by the ARB for 2050 [282]. 

The objective of this task is to develop a similar module for heavy duty vehicles as feasible given 
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available data on vehicle travel patterns and vehicle parameters. The travel data were collected 

from existing datasets [160,169,284] and vehicle parameters were determined from literature 

as well as the California Air Resources Board’s mobile source emission inventory (EMFAC) and 

Vision Scenario Planning model [1,2].  

The characterization of the heavy-duty vehicle fleet required the identification and 

classification of relevant vehicle types and associated travel patterns. Dwell time, and 

consequently charging availability, were extrapolated from the established characteristic travel 

profiles. The HDV vehicle module was validated against existing California data. Charging 

behavior was simulated based on travel demands, charging intelligence, and available charging 

infrastructure, including electric vehicle supply equipment (EVSE) and charging location. The 

charging model was integrated into the modeling platform, the Holistic Grid Resource 

Integration and Deployment tool (HiGRID), in order to simulate the impact of electric vehicle 

charging and the production of hydrogen for fuel cell vehicles on the grid.  

HiGRID was developed by the Advanced Power and Energy Program (APEP) at the 

University of California, Irvine and will used to simulate the vehicle-grid scenarios [49]. HiGRID 

is a temporally-resolved platform that simulates the dispatch of defined grid resources to meet 

the electric load profile. The structure of this multi-module platform is outlined in Figure 16 

[285].  
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Figure 16. HiGRID Flow Chart, reproduced from [281] with permission from Elsevier   

The flexible structure of this tool allows for new and advanced technologies to be 

evaluated for their impact on the grid, including changes to grid operations and the dynamic 

dispatch of balancing generation resources. This makes it especially valuable in answering 

questions regarding the complete integration of renewable generation to achieve a robust 

zero-emission grid. Previously, this model has been applied to related research questions, such 

as examining the impact of deploying renewable generation on grid GHG emissions, the role of 

hydropower for helping to integrate renewable generation, the GHG emissions impact of 

vehicle integration, and the air quality impacts of stationary fuel cells [31,256,286].  

The heavy duty module built as a part of this work has been designed to provide insight 

into the potential of grid-connected vehicles to balance variable renewable generation. Factors 

affecting vehicle flexibility to balance the grid include: vehicle state of charge, EVSE charging 

rate, dwell time, charging intelligence, and travel constraints [287,288].  
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Task 3. Develop strategies that achieve a) 80% reduction in GHG emissions from the electric 
grid and b) a 100% clean electric grid with vehicle-grid integration. 
 

Task 3.1 Project vehicle populations to 2050 and determine zero-emission vehicle 

deployment strategies for 80% reduction in GHG emissions from the transportation 

sector and the electric grid 

Task 3.2 Determine additional balancing requirements to achieve a 100% renewable 

grid given vehicle strategies  

Task 3.3 Identify viable technology mixes to meet emissions targets and grid balancing 

requirements for a 100% clean electric grid 

By framing this analysis around a 100% clean electric grid, it provides the opportunity to 

explore the marginal increases in cost and capacity investments as the grid moves towards 

100% renewable integration in comparison to the emissions benefits returned. To that end, this 

task identifies new challenges and opportunities for renewable integration with the 

coordination of battery electric vehicle (BEV) charging and hydrogen fuel production for fuel 

cell electric vehicles (FCEVs). It evaluates the potential for transportation to integrate variable 

renewable generation with particular focus on the feasibility of heavy-duty vehicles to provide 

grid support. This was achieved through the development of vehicle deployment scenarios set 

in the year 2050.  

Using the existing LDV module and the new HDV module, the deployment of ZEVs on 

the grid was simulated with HiGRID. Vehicle populations and corresponding vehicle miles 

traveled were scaled to the year 2050 based on EMFAC assumptions and E3 PATHWAYS 

scenarios [1,150]. Fuel economy assumptions reflect reasonable efficiency improvements 

informed by current tests of new vehicle technologies and supported by literature [289–291]. 

Both battery electric and fuel cell vehicles were deployed to simulate different ZEV deployment 

scenarios. The scope of strategies explored include: a) relatively low ZEV adoption that meets 
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California’s State Implementation Plan (SIP) targets [2,292], b) significant adoption of ZEVs with 

an emphasis on electrifying short trips, and c) maximized transformation of heavy-duty vehicles 

to electricity and hydrogen use, as limited by assumed vehicle range constraints. These 

strategies aim to explore the sensitivity of grid services to the level of vehicle penetration and 

fuel/charging assumptions.  

 Strategies to achieve a 100% clean electric grid should not only eliminate grid GHG 

emissions but also ensure grid performance. In scenarios where vehicle deployment is 

insufficient to meet grid firming demands, additional strategies were deployed to balance 

demand. Viable strategies were informed by Task 1, and include power-to gas pathways, 

stationary energy storage, and stationary fuel cells.  

Task 4. Evaluate the impact of zero-emission vehicle integration on grid balancing 
requirements, GHG emissions, air quality, and levelized cost of energy. 
 

Task 4.1 Evaluate the impact on grid balancing requirements of zero-emission vehicle 

integration for a) a grid that meets an 80% reduction in GHG emissions and b) a 100% 

clean grid. 

Task 4.2 Evaluate the impact on grid and transportation emissions of zero-emission 

vehicle integration at a) an 80% reduction in grid GHG emissions and b) a 100% clean 

grid. 

Task 4.3 Evaluate the impact on statewide air quality of zero-emission vehicle 

integration at a) an 80% reduction in grid GHG emissions and b) a 100% clean grid. 

Task 4.4 Evaluate the impact on levelized cost of energy of zero-emission vehicle 

integration at a) an 80% reduction in grid GHG emissions and b) a 100% clean grid. 

Task 4 evaluates the scenarios developed in Task 3. Metrics used for evaluation include 

grid balancing requirements (Section 4.1), reduction in GHG emissions (Section 4.2), change in 

criteria pollutant emissions (Section 4.3), and levelized cost of energy (Section 4.4). Grid 

flexibility has been identified as a key requirement of high renewable systems [51,53,293]. 
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Although a consensus on how flexibility requirements will translate to reserve capacity 

requirements under high renewable utilization has not been reached, an understanding of how 

new grid-connected vehicles may serve as flexible loads to balance renewable variability can 

inform reserve capacity discussions. Additionally, examining the flexibility of deployed 

resources around high renewable utilization provides insight into how these technologies may 

provide additional support to other sectors as they implement their own strategies to reduce 

emissions [10]. GHG emissions reductions are evaluated for the transportation sector. The 

vehicle emissions for each vehicle deployment scenario is presented as CO2e emissions for the 

following categories: light-duty, bus, and heavy-duty vehicles. Grid GHG emissions changes will 

be determined based on the results of the vehicle-grid analyses conducted in HiGRID and are 

presented as a change in emissions from the “Current Policy Reference” (CPR) base case. 

 The air quality analysis was conducted using the Community Multiscale Air Quality 

Modeling system version 5.2 (CMAQv5.2) (CMAQ) from the U.S. Environmental Protection Agency 

[294]. CMAQ simulates the spatial and temporal emission and dispersal of pollutants as well as 

the non-linear reactions in the atmosphere that result in formation of secondary pollutants, 

most notably ozone. Model inputs include: meteorological conditions, emissions 

(anthropogenic, biogenic), initial conditions, and boundary conditions [294]. While CMAQ is 

most frequently applied for the year 2035, it recently has been applied for projections out to 

the year 2050 [274].  

In order to simulate air quality for the year 2050, emissions for the base year 2012 were 

first established using EMFAC, the California Air Resources Board (CARB)’s statewide emissions 

inventory [1]. The baseline emissions were projected to the year 2035 using CARB’s CEPAM: 
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2016 SIP - Standard Emission Tool, assuming growth of emissions as well as implementation of 

control measures in line with the State Implementation Plan (SIP) [295]. 2035 emissions were 

further projected to the year 2050 using the current policy reference assumptions in E3’s 

PATHWAYS model [65]. Emissions factors were temporally and spatially allocated across the 

state using the Sparse Matrix Operator Kernel Emissions tool (SMOKE) [168]. The output of 

SMOKE was then applied to CMAQ to derive the spatial and temporal impact of emissions 

changes on criteria pollutant concentrations. For this analysis, the criteria pollutant emissions 

of interest are PM2.5 and ozone. Primary and secondary PM2.5 are incorporated. Air quality 

impacts are presented for the heavy-duty zero-emission vehicle scenarios as the change in 

concentration between each deployment scenario and the CPR base case. 

The levelized cost of energy (LCOE) was calculated using the HiGRID Cost of Generation 

module, previously applied in [49,296], see Figure 17. As a part of this work, costs associated 

with integrating vehicles include the cost of EVSE equipment, hydrogen fueling stations, and 

transmission upgrades. The cost of battery degradation and potential revenue for providing grid 

services are not evaluated.  



 

70 
 

 

Figure 17. Cost of Generation Model Flow Chart, reproduced from [297] with permission from 
Elsevier   
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Chapter 4. Electricity and Hydrogen Demand to Achieve Transformation of the 

Heavy Duty Vehicle Sector to Zero-Emission Vehicles 

This chapter focuses on developing a model to simulate the electricity demands of zero-

emission heavy-duty vehicles onto the future California electric grid. The steps to meet this task 

are: 1) Characterize heavy-duty vehicle integration with probable charging and fuel strategies 

based on the literature review, 2) develop a heavy duty vehicle charging module, and 3) 

conduct a sensitivity analysis to assess the impact of vehicle and infrastructure assumptions on 

BEV feasibility. 

4.1 Characterization of Zero-Emission Heavy-Duty Vehicle Integration onto the Grid with 

Probable Charging and Fueling Strategies 

The heavy-duty vehicle population is a diverse collection of vehicles ranging in weight 

(8,501 – 33,000+ lbs.) and use (agriculture to public transit to work-site operations). The first 

task of this chapter is to define how heavy-duty vehicles will be categorized. Based on this 

categorization, a dataset of vehicle trips will be developed that is representative of the overall 

HDV travel profile at the state level. The dataset should encompass the range of operational 

diversity to sufficiently capture overall HDV travel constraints that influence BEV adoptability.  

Previous work investigating heavy-duty vehicle activity have employed a range of 

methods for grouping HDVs into different categories and characterizing their activities. The 

California Air Resources Board has supported research into characterizing both heavy-duty 

vehicles by weight class and, for class 7 and 8, by specific vocations [160,167]. Caltrans, in its 

commercial vehicle models, separates HDVs by trip distance (0-50 miles and 50+ miles) as well 

as by region within the state. In the Caltrans long distance commercial vehicle model, vehicles 

are further characterized by their commodity type [117]. In its heavy-duty vehicle model, SCAG 
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models trips based on whether they are internal (local), external (crossing through multiple 

regions), or port-related. Within each model, vehicles are sorted by region, commodity, and 

weight category: light-heavy, medium-heavy, and heavy-heavy [162], consistent with the ARB’s 

weight class delineation. For the U.S. EPA model Motor Vehicle Emission Simulator (MOVES), 

heavy-duty vehicles are classified into the following categories based on activity patterns: single 

unit short-haul trucks, single unit long-haul trucks, combination short-haul trucks, combination 

long-haul trucks, refuse trucks, and three types of buses: intercity, transit, and school [171]. For 

the purpose of producing emissions rates, these activity profiles are re-categorized into the 

following regulatory classes: light-heavy (class 2b with 4 tires, 8,501-10,000 lbs.), light-heavy 

(Class 2b with 6+ tires and Class 3, 8,501-14,000 lbs.), light-heavy (14,001-19,500  lbs.), 

medium-heavy (19,500 lbs. to 33,000 lbs.), heavy-heavy (>33,000 lbs.), and urban buses 

(>33,000 lbs.) [171]. The CalHEAT study, funded by the California Energy Commission, 

subdivided heavy-duty trucks into six categories: Class 2B/3 (1. pickups/vans), class 3-8 

vocational work trucks (2. urban, 3. rural/intra-city, 4. work site support), and class 7/8 tractors 

(5. over the road, 6. short haul/regional) [116]. Lastly, in the E3 PATHWAYS model, heavy-duty 

vehicles (weight 8,501-33,000+ lbs.) are categorized as medium duty (8,501-33,000 lbs.), heavy 

duty  only includes vehicles greater than 33,000 lbs., and buses are their own category [150]. In 

general, most previous categorization methods take into consideration gross vehicle weight, 

with some methods including additional classifications by distance traveled and/or vocation.   

For this study, multiple methods of classification were investigated based on available 

data to create a representative dataset and validation it. While there have been a few studies 

characterizing activities by vocation, eg. [118,160], only limited statistical trends on behavior 
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were available and did not include sufficient information on the location and dwell periods of 

vehicles needed to establish potential charging profiles nor validate profiles generated from 

other sources. Instead, three categories were devised in line with the California Air Resources 

Board’s general categories: light-heavy (8,501-14,000 lbs.), medium-heavy (14,001-33,000 lbs.), 

and heavy-heavy (>33,000 lbs.), Table 10. Buses span the weight range of heavy duty vehicles 

from Type A school buses (<10,000 lbs.) [298] to transit buses that can weigh over 60,000 lbs. at 

full capacity [299]. The sample data applied in this study had limited bus data (less than 10 

vehicles of varying bus types) and therefore these vehicle trips were removed and the resulting 

dataset accounts only for trucks (straight and tractor configurations).  

Table 10. Vehicle Weight Classifications Including Current Study  

Gross Vehicle 
Weight Rating 

(lbs.) 

Vehicle Classifications 

Class California ARB (EMFAC2011) [1] 
U.S. FHWA 

[300] 
Current 
Study 

0-6,000 1 
Light-duty cars and 

trucks (LDA, LDT1, LDT2) 
 

Light truck 
 

Light duty 
vehicles 

6,001 – 8,500 2a 
Medium-duty 

cars and trucks (MDV) 

8,501-10,000 2B 
Light-heavy duty trucks 

(LHD1) 

Buses  
(SBUS, 
Motor 
Coach,  
UBUS, 
OBUS, 

All Other 
Buses) 

 

Light/Medium 
duty truck Light-heavy 

duty 
10,001 – 14,000 3 

Light-heavy duty trucks 
(LHD2) 

Medium Duty 
Truck 

14,001 – 16,000 4 

Medium-heavy duty 
trucks (T6 Small) Medium-

heavy duty 

16,001 – 19,500 5 

19,501 – 26,000 6 

26,001 – 33,000 7 
Medium-heavy duty 

trucks (T6 Heavy) 

Heavy Duty 
Truck 

33,001 – 60,000 8a 
Heavy-heavy duty 

trucks (T7) 
Heavy-

heavy duty 
>60,000 8b 
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Based on information on dwell periods of heavy-duty vehicles, there are two general 

categories of locations that vehicles can charge at: home base and other (not home base) 

locations. Charging at home base would require fleet owners to install EVSE equipment at their 

home base location(s). Charging at other locations would require private and/or public 

installation of EVSE across a diverse set of locations accessible to heavy-duty vehicles along 

their routes. If the focus of implementation is to maximize the number of trips that can be met 

with BEVs, widespread EVSE placement may be reasonable. However, if heavy-duty vehicles are 

also planning to provide grid services, it may be more desirable to coordinate charging events 

during home base dwell periods, because the vehicles dwell there longer and more 

consistently, allowing for greater flexibility in grid participation. Additionally, non-home base 

dwell locations may vary from day to day, making it harder to plan grid participation at these 

sites. The impact of charging at home base versus everywhere will be explored in later sections.  

In addition to the three weight classifications, it is important to clarify that the heavy 

duty vehicle charging model developed for this study is intended to represent statewide travel 

by heavy-duty vehicles registered and traveling within California. It is assumed that vehicles 

registered within the state are subject to California regulations and will be the first to be 

converted to zero-emission vehicles. According to the 2017 CA-VIUS, this encompasses roughly 

95% of all light-heavy and medium-heavy duty VMT within California and 72% of heavy-heavy 

duty. The survey also found that in-state registration also indicates an in-state home base 

location [161]. Home base location is critical in the deployment and operation of battery 

electric vehicles, as well as grid impacts of electrification.  
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Another consideration is that HDVs may be transitioned to fuel cell electric vehicles 

operating on renewable hydrogen. Whereas BEVs require a direct connection to the grid to 

charge, the decoupling of hydrogen production and FCEV hydrogen use provides an opportunity 

to produce hydrogen when most beneficial to the grid and keep it stored for later fueling 

demands. The constraints for FCEV feasibility are fuel tank capacity of the vehicle and the 

availability of refueling stations.  

While there are limited data on current heavy-duty FCEV models, Kast et al. (2017) 

simulated potential vehicle configurations for various vocations given known drive cycle 

behavior; a summary of the heavy-duty FCEV results is presented in Figure 18 [291].  

 

Figure 18. Heavy-Duty Fuel Cell Electric Vehicle Specifications for Heavy-Duty Vehicles Calculated 
in Kast et al. (2017) [291]  
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These vehicle results indicate that fuel efficiency is dependent on both a vehicle’s gross vehicle 

weight rating and vocation, and for the purposes of this study a general average for vehicle 

category (light-heavy, medium-heavy, and heavy-heavy) can be determined. Additionally, Kast 

et al. (2017) calculated that on-board hydrogen capacity can meet 40% - 100% travel demands 

of the given vocations [291], based on the travel data used [118].    

In the case that a vehicle’s daily miles traveled exceeds its range, it will need to refuel, 

potentially multiple times a day depending on demand versus range. This work assumes that 

hydrogen refueling stations are readily available by the year 2050, and hydrogen is produced 

on-site through electrolysis and stored in tanks to provide on-demand hydrogen. Of the 

hydrogen refueling stations in California, a few already have on-site production of hydrogen, 

including the stations in Anaheim and at Cal State Los Angeles [301]. While refueling can be 

accomplished in a matter of minutes, multiple refueling events in a day can be burdensome to 

the driver and may begin to affect operational feasibility. For the sensitivity analysis conducted 

in Section 4.3, the number of refueling events for different FCEV configuration assumptions will 

be evaluated. 

4.2 Heavy-Duty Vehicle Model 

4.2.1 Model Source Data and Validation 

Several datasets and previous models were considered for application in this study. The 

following travel information is required to sufficiently model the electric vehicle charging 

demand at the state level: data from a sufficient number and diversity of vehicles to encompass 

trip variability by purpose, time, and length; and, for each vehicle: trip start and end times, 

location types, trip lengths, dwell times, and vehicle weight. Studies with detailed trip data 
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available tend to be narrow in scope, looking at more detail characteristics of select vehicle 

vocations, e.g. [118]. Data from these studies cannot be expanded to represent sufficiently 

state-level behavior. Additionally, most heavy-duty studies tend to be focused more on the 

operational characteristics of the vehicles and less on dwelling periods or vehicle locations 

throughout the day [116,160,302], limiting their application in a study where dwell times and 

locations are critical for evaluating EVSE infrastructure requirements and potential electric grid 

impacts.  

While there have been a few previous studies that have collected California-specific 

statewide travel data, most recently and relevantly the 2017 CA-VIUS survey, data from these 

studies are confidential, and therefore, unavailable for use. Additionally, Caltrans has 

developed two models, Short Distance Commercial Vehicle Model and Long Distance 

Commercial Vehicle Model, to represent commercial truck travel throughout the state. Of the 

two models, only the SDCVM trip data were available, as the long-distance (trips >50 mi) model 

for Caltrans is currently under revision. A complete and representative dataset for all trip 

lengths, therefore, could not be aggregated from the Caltrans models.  

After reviewing available datasets, the trip data from the 2007/2008 Texas Commercial 

Vehicle Survey, provided by the Transportation Planning and Programming Division of the Texas 

Department of Transportation, were selected to be used as the base input for this study, to be 

calibrated to align with known California statistics on heavy-duty vehicle travel. A similar 

methodology was previously applied by Caltrans for the development of its CSTDM model, 

when it calibrated survey data from Canada to align with California vehicle statistics [117]. The 

Texas dataset was selected, as it is the only available dataset with the required detailed trip 
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tables. Additionally, this dataset provides the largest sample of vehicles from a wide range of 

vocations encompassing over 20 regions, varying in city size and economic activity [169].  

As previously discussed, hourly profiles can vary by region depending on a number of 

factors including traffic patterns, share of truck vocations, and proportion of local versus long-

distance travel. Therefore, the truck dataset was filtered to select regions with similar hourly 

VMT distributions compared to accepted California trends. The filtering process was as follows: 

the vehicle trip data for each city region were sorted into the categories: light-duty, light-heavy 

duty, medium-heavy duty, and heavy-heavy duty. The light-duty category was excluded from 

this study as HiGRID already has a validated California-specific light-duty vehicle model. For the 

three remaining categories, the normalized hourly VMT distribution for each vehicle sub-

sample was calculated. These hourly distributions were compared to the established CARB 

heavy-duty vehicle activity profiles for weekday and weekend days that are integrated into the 

U.S. EPA’s Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System [168], see Figure 

19.  

 
Figure 19. CARB Heavy-duty Vehicle Activity Profiles used for Air Quality Simulations [1]   
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The root mean square error (RMSE) (in percent daily VMT) between the calculated profiles and 

the established profiles was calculated by region and category to determine how well each 

regional sample aligned with California trends and identify subsets that align well:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1          (1) 

The subsets whose RMSE was 2.5% or less were selected and included in the final datasets in 

order to select profiles that best-aligned with the established profile. The 2.5% variation is 

approximately the same as the range of values observed in [167,173], presented in Figure 14.   

The aggregated datasets for each vehicle category (light-heavy, medium-heavy, and 

heavy-heavy) were then evaluated based on trip length frequencies, given the importance of 

trip length in determining overall BEV feasibility. It was found that the initial trip length 

frequencies for all categories were skewed towards trips under 50 miles, having an 

underrepresentation of long distance trips. Therefore, an additional calibration step was 

implemented in order to have the model dataset match the newest information on trip length 

frequencies. First, trip data in the model dataset were sorted by vehicle into one of five 

categories: 0-50 mi, >50-100 mi, >100-150 mi, >150-500 mi, and >500 mi trip lengths, based on 

the majority of trips. Each category was then scaled to match the corresponding distribution 

frequency reported in the CA-VIUS results. The trip distribution frequencies reported in the CA-

VIUS results, calculated for the initial model, and calibrated for the final model are presented in 

Table 11.   
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Table 11. Trip Length Frequencies Model Calibration  

LHDV 

Trip Range 
Model Initial  

(% of vehicles) 
Difference from 

observed 
Model Adjusted 
(% of vehicles) 

Difference from 
observed 

0-50 82.0% 49% 55.0%  0.0% 

>50-100 9.0% -67% 26.3% -2.4% 

>100-150 3.6% -64% 9.7% -2.6% 

>150-500 4.5% -25% 5.9% -1.7% 

>500 0.4% -87% 3.0% -0.0% 

Totals 100%  100%  

MHDV 

Trip Range 
Model Initial  

(% of vehicles) difference 
Model Adjusted 
(% of vehicles) difference 

0-50 80.0% 57% 50.7% -0.6% 

>50-100 10.3% -63% 27.9% -0.4% 

>100-150 3.9% -68% 12.3%  2.3% 

>150-500 5.5% -31% 8.2%  2.0% 

>500 0.4% -61% 1.0% -3.0% 

Totals 100%  100%  

HHDV 

Trip Range 
Model Initial  

(% of vehicles) difference 
Model Adjusted 
(% of vehicles) difference 

0-50 42.1% 56% 26.7% -1.0% 

>50-100 21.8% 9% 19.5% -2.4% 

>100-150 12.5% -10% 14.0% -0.1% 

>150-500 19.8% -24% 25.8% -0.7% 

>500 3.7% -73% 14.0% -0.4% 

Totals 100%  100%  

 

The calibration of trip data resulted in an increase in VMT per vehicle per day, compared to 

the initial model, see Table 12.  

Table 12. Vehicle Miles Traveled per Vehicle per Day Comparisons 

Vehicle Category 
HDV Model 

Initial 
HDV Model 

Adjusted 
EMFAC 
2017 

CalHEAT [116] 

Light-Heavy 36 72 36 57 
94 

(avg for all 3) 
Medium-Heavy 37 74 50 -- 

Heavy-Heavy 113 186 122 150-233 
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The calculated VMT/vehicle/day for LHDVs increased to 72 miles/vehicle/day. This value is 

higher than EMFAC. The discrepancy may be due to a couple of factors:  

 The scope of vehicles that were considered: the 2002 VIUS survey included both 

commercial and private vehicles, whereas the 2017 CA-VIUS survey focused on 

commercial vehicles. CalHEAT also focused on commercial vehicles, but relies on 

different vehicle categories for its analysis, and so a direct comparison for the light-

heavy category (classes 2B and 3) is challenging. Doubly challenging is that private 

vehicles may be used in commercial applications, so the distinction between private and 

commercial vehicles is not exact. Private class 2B and 3 vehicles not used for commercial 

purposes may have travel patterns more similar to light-duty vehicles, however, this is 

not definite. Additionally, the portion of class 2B and 3 vehicles that are operated as 

private versus commercial vehicles within California is not well-defined. Birky et al. 

(2017) surveyed stakeholders and provided a preliminary estimation that about 50% of 

class 2B vehicles and 90% of class 3 vehicles are used for commercial applications. They 

also highlighted the need for additional research into the distinct travel behavior of 

these vehicles [303]. 

 The assumed number of operating days in the year and/or the percent of the population 

active each day: distance traveled is commonly reported in terms of annual VMT, and 

therefore, scaling down annual VMT to daily values requires an understanding of the 

average days per year vehicles operate.  EMFAC assumes different operating days for 

each of its vehicle categories: 327 days for light-heavy duty vehicles and either 312 or 

327 days for medium- and heavy-duty vehicles depending on the subcategory [1]. 
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 The underestimation of long-distance travel in previous studies: The scope of most 

vehicle surveys is at the regional level, due to their application in regional planning. A 

challenge of these studies is accurately capturing vehicle trips that originate outside of 

the area of interest. How the study is designed and what resources are utilized to count 

trips may result in the exclusion of vehicles involved in inter-regional travel.  

For MHDVs, the calculated VMT per vehicle per day also increased (up to 74 

miles/vehicle/day), again greater than the average reported in EMFAC, but within the range of 

in-state vocations included in EMFAC. CalHEAT did not have a specific category for classes 4-7, 

so a direct comparison to that study could not be drawn for MHDVs. However, the three 

categories including MHDVs (class 3-8: urban, rural/intra-city, and work site support) have daily 

VMT ranging from 36 to 96 miles, assuming miles spread evenly across the year [116].  Lastly, 

the new average for HHDVs, 186 mi/vehicle/day, while greater than EMFAC’s average for that 

category, falls within the range of values reported in CalHEAT’s survey.  

The average dwell times for home base and other locations for each vehicle category 

are in Figure 20. Vehicles dwell significantly longer at home base locations compared to other 

locations. Vehicles tend to leave home base at the beginning of their route, take several trips, 

and then return to home base, where they dwell until the start of their next tour. The average 

dwell time for non-home base locations is about three-fourths of an hour for all categories. The 

average dwell time for home base locations ranges from about 11-13 hours, depending on the 

category. 
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Figure 20. Average Dwell Times for Location Types for Each Vehicle Category 

The calibration of the trip length frequency also modified the hourly VMT profile, 

increasing the number of evening and overnight trips and reducing the relative daily peak, see 

Figure 21.   

 

Figure 21. VMT Distribution after Trip Length Calibration  
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The RMSE for all categories were reduced compared to the uncalibrated data. The final RMSE 

for each category compared to the weekday and weekend profiles are in Table 13. The 

difference in hourly VMT between the dataset and the reference profiles are within the range 

of variation observed in the previous surveys and models.  

Table 13. RMSE for Final Calibrated Data  

Vehicle Category Weekday Profile Weekend Profile 

Light-heavy duty 1.3% 1.2% 

Medium-heavy duty 0.92% 1.2% 

Heavy-heavy duty 0.70% 0.88% 

 

There are several challenges in determining the potential BEV feasibility of out-of-state 

vehicles and their impact on the California electric grid given the available datasets. First, the 

2017 CA-VIUS recorded trip distance as a measurement from home base. However, it is unclear 

how frequently these vehicles return to home base as a representative group. Following the 

assumption that registration state correlates strongly with home base state, few to none of the 

out-of-state vehicles will have access to charging within the state if EVSE equipment is 

constrained to home base locations. Since this analysis is focused on California grid impacts, 

out-of-state vehicles charging at out-of-state home bases would not impact the California grid. 

Due to the far distances these vehicles travel from home base, sometimes across multiple 

states, it follows that, in order for a significant portion of out-of-state vehicles to be electrified, 

they must have access to publically available charging stations. The establishment of publically 

available charging stations or battery swapping locations, as mentioned by [277], would take 

the coordination of multiple stakeholders including trucking companies as well as local and 

state governments. 
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4.2.2 Battery Electric Vehicle Charging Model 

The heavy-duty vehicle charging model developed for this work generates an 

aggregated, scaled charging profile that will be applied within the Holistic Grid Resource and 

Deployment Tool to determine the impact of vehicle charging on the electric grid. The heavy-

duty vehicle charging algorithms for immediate and smart charging are from the previous 

centralized electric vehicle charging model developed by Zhang (2014) [115]. The vehicle-to-

grid charging model algorithm is from Tarroja (2016) [105]. Whereas light-duty vehicle 

applications of this algorithm had the equality constraint be applied for a 24-hour period, this 

analysis used a 72-hour period to account for the multiday travel of some heavy-duty vehicles. 

The cost function is as follows [115]: 

𝑚𝑖𝑛 (

𝑞
∑

𝑗 = 1
𝑓𝑗  ×  𝑥𝑗) 

 
            (2) 

 

where, f is electricity cost per kWh, x is charging rate (kW), j is dwell segment, and q is total number  

of dwell segments. 

Equality constraint is: 

𝑞
∑

𝑗 = 1
𝑥𝑗  +

𝑚
∑

𝑖 = 1
𝑦𝑖 = 0 

  

   

                (3)

where, i is trip number, y is discharged energy (kWh), and m is total number of trips. 

 

Inequality Constraints are: 

𝑦1 > −𝑐            (4)
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𝑦1 +

𝑞
∑

𝑗 = 1
𝑥1𝑗 + 𝑦2 + ⋯ +

𝑚 − 1
∑

𝑗 = 1
𝑥(𝑚−1)𝑗 + 𝑦𝑚 > −𝑐 

  

       (5)

 

where, c is battery energy capacity. 

 
Bounds on the variables are: 

                                 (𝑠𝑚𝑎𝑟𝑡) 0 ≤ 𝑥𝑗 ≤ 𝑝𝑗 × ∆𝑡𝑖𝑗 × 𝜂    (6) 

                          (𝑉2𝐺) − 𝑝𝑗 × ∆𝑡𝑗 × 𝜂 ≤ 𝑥𝑖𝑗 ≤ 𝑝𝑗 × ∆𝑡𝑗 × 𝜂                          (7) 

where, η = charging efficiency and p is rated power capacity (kW) of EVSE.   

 
The hourly net load profile entering the energy storage model serves as a proxy for 

“electricity price” for smart and V2G charging algorithms. Selecting for the least cost periods to 

charge will result in valley-filling of the net load, and V2G discharging during peak cost periods 

will result in peak shaving. The new load profile, including vehicle charging and discharging, is 

then applied to the next module: the hydrogen demand model. 

The heavy-duty vehicle electric load demands generated by the vehicle charging module 

depend on the vehicle, EVSE parameters, and charging intelligence set for the model. Selecting 

home base charging versus everywhere charging will result in vehicles charging at different 

periods of the day, see Figure 22. Home base only charging with immediate charging results in a 

peak load demand around 7-9 pm, depending on the heavy-duty vehicle category. The 

minimum charging load demand occurs between 9 am and noon. This indicates that the heavy-

duty vehicle charging profile with home base only charging does not align well with solar 

electricity generation. 
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The differences in the peak load demand for each of the vehicle categories is a function 

of the differences in VMT distribution (both in terms of trip distance and hourly distribution) as 

well as home base return patterns versus dwell periods in other locations. They are also 

dependent on the vehicle range assumed for the BEVs deployed. If it is assumed that the BEVs 

for each category can travel 100 miles before recharging, only vehicles with trips totaling 100 

miles or less before returning to home base will be selected. Increasing the vehicle range means 

that more heavy-duty vehicles with longer trip demands can be converted to BEVs. 

Electrification of vehicles with higher travel demands results in a greater portion of the BEVs 

charging into the evening and overnight (These vehicles need to charge longer to meet their 

higher energy demand.), see Figure 23. The number of vehicles electrified at different vehicle 

ranges is dependent on the trip distribution patterns for each category. Greater vehicle 

electrification will increase overall electricity demand, but this demand will be more distributed 

across the day, so that the relative peak decreases. In general, peak vehicle demand for home 

base only charging occurs when peak electricity demand from stationary loads occurs, see 

Figure 24. The simultaneous occurrence of vehicle and stationary peak loads can result in 

increased demand for fossil fuel generation capacity and increased ramping demands.  
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(a)  

(b)  

Figure 22. Charging Profiles for: a) at Home Base Only Charging and b) Charging Everywhere 
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 (a)  

(b)  

(c)  

Figure 23. Charging Profiles for Each Vehicle Category with Increasing Vehicle Range: a) Light-
Heavy Duty, b) Medium-Heavy Duty, and c) Heavy-Heavy Duty Vehicles  
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a)  

b)

c)  

Figure 24. Cumulative Charging Profile for at Home Base Charging with Increased Charging 
Rate: a) Immediate, b) Smart, and c) V2G Charging Strategies 

-80

-60

-40

-20

0

20

40

0

2

4

6

8

10

1 5 9 13 17 21 25 29 33 37 41 45

N
et

 L
o

ad
 D

em
an

d
 (

G
W

)

V
eh

ic
le

 L
o

ad
 D

em
an

d
 (

G
W

) Immediate Charging

19.2 kW 40 kW 80 kW 120 kW Net Load

-80

-60

-40

-20

0

20

40

0

4

8

12

16

20

24

1 5 9 13 17 21 25 29 33 37 41 45 N
et

 L
o

ad
 D

em
an

d
 (

G
W

)

V
eh

ic
le

 L
o

ad
 D

em
an

d
 (

G
W

)

Smart Charging

19.2 kW 40 kW 80 kW 120 kW Net Load

-80

-60

-40

-20

0

20

40

-24
-16

-8
0
8

16
24
32

1 5 9 13 17 21 25 29 33 37 41 45 N
et

 L
o

ad
 D

em
an

d
 (

G
W

)

V
eh

ic
le

 L
o

ad
 D

em
an

d
 (

G
W

)

V2G Charging

19.2 kW 40 kW 80 kW 120 kW Net Load

 Day 1     Day 2 

Day 1     Day 2 

Day 1     Day 2 



 

91 
 

Heavy-duty BEV load demand is also dependent on the assumed EVSE charging rate. 

With immediate charging, higher charging rates result in faster charging of the vehicles, which 

in turn increases the peak demand and reduces overnight charging. Increasing charging rate 

with intelligent charging strategies also results in increased peak vehicle load demand, 

however, with intelligent charging these peaks are coordinated with “valleys” in the net load. 

The result is improved load smoothing. Increasing the charging rate for V2G-enabled vehicles 

increases the peak vehicle load and the peak vehicle discharge power, resulting in a greater 

capture and shifting of renewable energy.   

Comparing the immediate charging with home base charging versus everywhere 

charging, by allowing vehicles to charge along their daily routes increases daytime charging and 

shifts the vehicle electricity demand to earlier in the day, especially for light-heavy duty 

vehicles, see Figure 25. The peak charging demand also decreases, as the vehicle load is spread 

more evenly across the day. In addition, everywhere charging increases charging (and 

discharging) flexibility for vehicles with intelligent charging. For the smart charging cases, 

everywhere charging is more effective in filling the midday valley compared to home base only 

charging due to the low percentage of HDVs that return to home base throughout the day. 

More common is vehicles dwelling at different locations along their route. A majority of 

vehicles dwell overnight, making home base only charging effective in filling overnight valleys 

that occur.  
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a)  

b)  

c)   

Figure 25. Cumulative Charging Profile for at Charging Everywhere with Increased Charging 
Rate: a) Immediate, b) Smart, and c) V2G Charging Strategies 
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4.2.3 Hydrogen Demand Model 

For this study, hydrogen production and refueling performance are modeled using the 

existing hydrogen module in HiGRID. This module was developed by Tarroja et al (2015) [31] 

and has most recently been employed in Wang et al. (2019) [230], where it was expanded to 

include updated costs to represent a suite of different electrolyzer technologies and 

distribution methods for hydrogen use in FCEVs. For this analysis, alkaline electrolyzers are used 

to produce hydrogen on-site at refueling stations. 

The hourly hydrogen demand in Figure 26 is derived from available data on hydrogen 

and gasoline fueling stations as well as overall gasoline demand trends [304–306]. Hydrogen 

demand is expected to follow closely with gasoline demand behavior due to the similarity in 

vehicle characteristics and refueling experience [304]. The demand profile includes both light-

duty and heavy-duty vehicles, which is appropriate, since this analysis incorporates hydrogen 

demand for both vehicle categories.  

 
Figure 26. Hourly Hydrogen Refueling Demand  
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rate is not constrained by whether vehicles are driving or dwelling at the time. Hydrogen 

production is optimized for lowest cost, similar to the BEV charging model; the hydrogen 

demand model uses the modified net load as the cost function to determine least cost periods 

to produce hydrogen. Figure 27 demonstrates the hydrogen load demand output of the model.  

 
Figure 27. Hydrogen Load Demand Based on a Modified Net Load Input 

The hydrogen storage level for the same period of time is in Figure 28. Increases in the 

hydrogen storage level are the result of hydrogen production exceeding use by vehicles. 

Conversely, hydrogen storage decreases when vehicle hydrogen demand exceeds production. 

Because hydrogen demand constraints are aggregated to a total VMT demand within the 

model, it is important to consider how this demand translates to individual vehicles. This is 

explored in Section 4.3.2. 
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Figure 28. Hydrogen Storage Based on Production and Vehicle Consumption Rates  

4.3 Sensitivity Analyses for Zero-Emission Vehicle Feasibility 

 Sensitivity analyses were performed for both types of zero-emission vehicles examined 

in this work: Battery electric vehicles and fuel cell electric vehicles. The impact of vehicle and 

infrastructure assumptions are assessed. This work assumes that vehicles are able to meet the 

peak power and acceleration demands of all vehicle applications and therefore are not limiting 

factors in feasibility. The results of these analyses will inform the strategies developed in 

Chapter 5.  

4.3.1 Sensitivity Analysis for Battery Electric Vehicle Feasibility 

A sensitivity analysis was conducted to examine the impact of fuel efficiency, vehicle 

range, and EVSE assumptions on BEV feasibility. BEV feasibility can be measured in terms of the 

percent of VMT that can be met by a specific BEV/EVSE configuration without modifying vehicle 

travel patterns. Another, equivalent measurement is the percent of vehicles that can be 

operated as BEVs under the same assumptions. The values presented in the analysis are 

percent of VMT and vehicle population for in-state vehicles. Out-of-state vehicles are not 

0%

20%

40%

60%

80%

100%

1 25 49 73 97 121 145 169 193 217 241 265 289

H
2

 S
to

ra
ge

 (
%

 o
f 

C
ap

ac
it

y)

Days of the Year

Hydrogen Storage

     1          2  3         4         5         6          7         8         9         10         11        12    



 

96 
 

accounted for in total percentages. As previously stated, out-of-state vehicles account for 5% of 

light-heavy and medium-heavy duty vehicle miles traveled in California and 28% of heavy-heavy 

duty vehicle miles traveled in California.  

A reasonable range of current and near future fuel efficiencies is presented in Table 14 

based on literature values as well as assumptions made in the Vision model and E3 Pathways 

study [2,57]. It is important to note that some values gathered are based on laboratory tests or 

simulations versus on-road driving. The values from on-road tests are noted in Table 2. 

Additionally, fuel economy is affected by payload carried. The scenarios developed in Chapter 5 

will use the average fleet values calculated in previous work that take into account payload and 

varying fuel economy based on drive cycle [2,150].  

Table 14. Fuel Efficiencies and Vehicle Ranges Reported in Literature and Future Projections                                                                                                                                                                                                                 

 

Conversion assumptions for table are: 1 kWh = 0.030 Gallons Gasoline Equivalent (GGE), 1 Diesel Gallon 
= 1.155 GGE, 1 GGE = 0.112 MMBTU, 1 kWh = 0.026 Diesel Gallon [307]  

* From Table 2 

Vehicle 
Category 

Current/Near 
Future Range 

Reported (mi)* 

Current Fuel 
Efficiency 
Reported 

(kWh/mi)* 

Vision 
Individual and 
Fleet Average 

Values [2] 

E3 Pathways Values [150] 

Year 2050 Year 2030 Year 2050 

Light-Duty  100 – 310 0.25 – 0.51 
0.16 – 0.58 
Avg. 0.20 

0.22 (auto), 
0.30 (truck) 

0.17 (auto), 
0.24 (truck) 

Light-Heavy 25 – 145 0.55 – 0.74 
0.76 – 1.37 
Avg. 0.95 1.03 

(combined), 
1.85 (buses) 

0.97 
(combined), 
1.45 (buses) 

Medium-
Heavy 

80 – 300 1.34 – 1.90  
1.62 – 2.09 
Avg. 1.80 

Heavy-
Heavy 

102 – 500 1.97 – 2.47  
2.11 – 6.61 
Avg. 2.42 

2.06 1.96 
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This analysis calculates the upper and lower bound for BEV feasibility, given the range of 

projected fuel efficiency values for a selection of vehicle range and EVSE assumptions. BEV 

feasibility is calculated as a percent of in-state vehicles only. The different configurations are 

listed in Table 15. Charging efficiency is assumed to be 0.9 for level 2 charging (<= 19.2 kW) and 

0.95 for level 3 charging (>19.2 kW). Level 1 charging is not considered. The results of the 

sensitivity analysis are summarized in Figure 29 and Figure 30.

Table 15. Parameters for BEV Sensitivity Analysis     

Vehicle 
Category 

Low Fuel 
Efficiency 
(kWh/mi) 

High Fuel 
Efficiency 
(kWh/mi) 

Charging 
Locations 

Charging Rates (kW) 
Vehicle 
Range 

Light-heavy 1.37 0.55 
Home base, 
Everywhere 

Level 2: 3.3, 6.6, 9.6, 19.2  
Level 3: 25, 80, 120, 350 

100, 200, 
500 

Medium-
heavy 

2.09 1.34 
Home base, 
Everywhere 

Level 2: 3.3, 6.6, 9.6, 19.2 
Level 3: 25, 80, 120, 350 

100, 200, 
500 

Heavy-
heavy 

6.61 1.97 
Home base, 
Everywhere 

Level 2: 3.3, 6.6, 9.6, 19.2 
Level 3: 25, 80, 120, 350 

100, 200, 
500 

As demonstrated in this feasibility analysis, BEV feasibility is strongly dependent on 

travel patterns, vehicle range, fuel efficiency achieved, and EVSE available. In general, BEV 

feasibility increases with greater vehicle range, higher charging rates, and increased access to 

EVSE—home base versus everywhere (all dwell locations). As charging rate increases, the 

difference between high and low fuel efficiency decreases; trip distance becomes a limiting 

factor in BEV feasibility. For this reason, increasing the charging rate to higher level 3 capacities 

does not always yield improved feasibility. For at home charging, there are only marginal 

improvements in BEV feasibility after level 2 – 19.2 kW with a vehicle range of 100 miles and 

after level 3 – 80 kW with a 200 to 500 mile range except for least efficient heavy-heavy duty 
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vehicles with a 500 mile range, which see similar levels of improvement up to the maximum 

charging rate tested of 350 kW. For the EVSE parameters presented here, maximum BEV 

feasibilities for 100-mile light-heavy duty, medium-heavy duty, and heavy-heavy duty, 

respectively, as a percent of daily VMT, are: 40%, 36%, and 8%; for 200-mile vehicles: 63%, 62%, 

and 24%; and for 500-mile vehicles: 72%, 75%, and 48%. 

Once route distance becomes a limit to BEV deployment, charging other locations 

beyond home base are required to increase BEV feasibility. Allowing heavy-duty vehicles to 

charging anywhere they dwell for 15 minutes or longer increased the BEV feasibility of all 

vehicle categories, with level 3 charging rates up to 350 kW continuing to increase the percent 

of VMT electrified, especially  for heavy-heavy duty vehicles. Charging everywhere increased 

the maximum BEV feasibility most significantly compared to home base charging for short 

range vehicles. Comparing the two different charging location strategies—home base only and 

everywhere—the increased access to charging stations with everywhere charging results in an 

increase in BEV feasibility. For vehicles with a range of 100 miles, LHDVs had a 50% increase in 

VMT electrified with everywhere charging compared to home base only charging, MHDVs, a 

64% increase, and HHDVs, a 175-238% increase depending on fuel efficiency. There remains to 

be a benefit to charging everywhere in terms of BEV feasibility at higher vehicle ranges, but 

there are diminishing returns. For vehicles with a range of 500 miles, the increase in VMT 

electrified for LHDVs is 17%, for MHDVs, 12-24%, and HHDVs 6-21%.   
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Figure 29. BEV Feasibility by HDV Category as a Percent of daily VMT 
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Figure 30. BEV Feasibility by HDV Category as a Percent of Vehicle Population 
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Comparing the different vehicle categories, the trip distribution for each vehicle 

category drives what the maximum BEV feasibilities are for different vehicle range 

configurations. Despite an overlap in fuel efficiency values between low efficiency MHDV and 

high efficiency HHDV categories, HHDVs have much lower BEV feasibility compared to MHDVs. 

This difference is the direct result of HHDVs having a much greater percentage of long-distance 

trips compared to MHDVs. Conversely, LHDVs and MHDVs also have overlap between their 

lower and upper bounds of fuel efficiency, respectively, and at lower ranges and charging rates, 

have very similar levels of BEV feasibility. This is due to their similar proportion of trips under 

200 miles from home base. This trend shifts at higher vehicle ranges and charging rates. In fact, 

despite a greater energy demand per mile, because MHDVs have a smaller percentage of long-

distance trips (>500 miles from home base) (1% versus 3% for LHDVs), MHDVs have a higher 

BEV feasibility than LHDVs under certain configurations with higher level 3 charging rates.  

Examining BEV feasibility in terms of percentage of vehicles converted to BEVs shows 

that a relatively large percentage of vehicles can be electrified with vehicle ranges of 100-200 

miles and home base charging. However, these vehicles are the ones traveling short distances 

and therefore, they make up a smaller percent in terms of total VMT, for example: 76% of the 

light-heavy duty vehicle population can be electrified with 100-mile range BEVs with home base 

charging at a peak level 2 rate, but this encompasses only 40% of the VMT from in-state 

vehicles.  

4.3.2 Sensitivity Analysis for Fuel Cell Electric Vehicle Refueling Demand 

Fuel cell electric vehicle refueling frequency depends on vehicle technical specifications 

assumed. Refueling frequency depends on vehicle miles traveled. In the cases that a trip 
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distance exceeds the vehicle’s range, it may be assumed that the vehicle cannot be a FCEV. This 

assumption is to maintain the same operational constraints as for the BEV sensitivity analysis. 

For this sensitivity analysis, it is assumed that the vehicle is able to refuel during a dwell period 

if it is 15 minutes or more. The FCEV parameters for the sensitivity analysis are in Table 16.  

Table 16. Parameters for FCEV Sensitivity Analysis     

Vehicle Category 
Low Fuel Efficiency 

(mi/kg H2) 
High Fuel Efficiency 

(mi/kg H2) 
Vehicle H2 Capacity 

(kg) 

Light-heavy 15**  23.6* 5, 10, 20, 40, 70 

Medium-heavy 11.1* 15** 5, 10, 20, 40, 70 

Heavy-heavy 4.79+ 11.2** 5, 10, 20, 40, 70 

* Values from Kast et al. (2017) [291], ** Values from E3 PATHWAYS [150], + Value from Chandler and 
Eudy (2008) [148] 

 
 The results of the sensitivity analysis are in Figure 31. A 100 mile range is equivalent to a 

tank capacity of 4.2 – 6.7 kg H2 for light-heavy duty vehicles, 6.7 – 9 kg H2 for medium-heavy 

duty vehicles, and 8.9 – 20.9 kg H2 for heavy-heavy duty vehicles. The wide span of potential 

hydrogen capacity requirements for heavy-heavy duty vehicles is due to the wide range in fuel 

efficiency values found in the literature. A 200 mile range is equivalent to doubling the tank size 

of the 100 mile range results, and a 500 mile range is equivalent to increasing the 100-mi tank 

size 5x.  
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Figure 31. FCEV Feasibility Assuming No Trip Interruption for Different H2 Capacities 

Similar to the results for BEV feasibility, medium-heavy duty vehicles see an increase in 

FCEV feasibility as a percent of total VMT compared to low-efficiency light-heavy duty vehicles. 

Again, this is driven by the varying trip distributions for each vehicle category. Medium-heavy 

duty vehicles have fewer long trips (+500 miles from home base) compared to light-heavy duty 

vehicles. Fewer longer distance trips which cannot met by short-range ZEVs results in a greater 

percent of total VMT met.  

 The number of refilling events per vehicle for a 24-hour period at different vehicle 

ranges can also be calculated. It is assumed that trips cannot be interrupted to refuel. The 

refueling frequency for light-heavy duty vehicles is in Figure 32, for medium-heavy duty, Figure 

33, and for heavy-heavy duty, Figure 34. “NA” refers to vehicles that cannot be FCEVs based on 

the vehicle range specified.  
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Figure 32. Refueling Frequency of Light-Heavy Duty FCEVs for Different Vehicle Ranges 

 

Figure 33. Refueling Frequency of Medium-Heavy Duty FCEVs for Different Vehicle Ranges 
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Figure 34. Refueling Frequency of Heavy-Heavy Duty FCEVs for Different Vehicle Ranges 

Light-heavy and medium-heavy duty vehicles have similar trends in refueling frequency. 

Light-heavy duty vehicles have a greater portion of the population that takes trips over 500 

miles, resulting in lower feasibility with 500 mi range FCEVs.  Most light-heavy and medium-

heavy duty vehicles are able to meet travel demands with one or less refills per day. Heavy-

heavy duty vehicles require more refueling events per day for all vehicle ranges due to their 

longer trips. 100-mile range FCEVs would require some HHDVs to refuel 4-5 times a day to meet 

demand. While multiple refills per day is feasible, a high refill frequency may make operation 

inconvenient or unreasonable. 

A comparison of ZEV feasibility for different vehicle range assumptions is presented in 

Table 17. Home base only charging is denoted “H” and everywhere charging, “E”. FCEVs are 

able to meet a greater percent of VMT for all range assumptions compared to BEVs for the 
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three heavy-duty vehicle categories. For the configurations examined, the 100-mi BEVs with 

home base charging have the lowest feasibility in terms of VMT electrified. As the BEV range 

increases, the percent of VMT captured increases both in absolute terms and as a percent 

compared to FCEVs. However, in order for BEV and FCEVs to support equivalent VMT levels, the 

BEVs need a 500 mile range and charge at 350 kW.  

Table 17. Comparison of Feasibility (% VMT) for FCEVs and BEVs at Maximum Charging Rate  

 

100 mi Range 200 mi Range 500 mi Range 

FCEV 
BEV 
(H) 

BEV 
(E) 

FCEV 
BEV 
(H) 

BEV 
(E) 

FCEV 
BEV 
(H) 

BEV 
(E) 

Light-heavy 65% 40% 60% 73% 62% 72% 84% 72% 84% 

Medium-heavy 63% 36% 59% 76% 61% 75% 94% 75% 93% 

Heavy-heavy 29% 8% 27% 38% 23% 34% 71% 48% 58% 

 

4.4 Chapter Summary and Conclusions 

This chapter assessed the feasibility of two types of zero-emission vehicles—battery 

electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs)—for the heavy-duty vehicle sector. 

It first categorized heavy-duty vehicles and defined methods for integrating zero-emission 

vehicles onto the grid. Next, it presented a heavy-duty vehicle charging model that incorporates 

validated heavy-duty vehicle data and applies intelligent (smart/V2G) vehicle charging 

algorithms to determine future heavy-duty BEV charging behavior on the electric grid. The 

feasibility of BEVs for the heavy-duty sector was assessed for a range of potential future vehicle 

and infrastructure configurations. Lastly, renewable hydrogen production dynamics were 

presented and the feasibility of FCEVs to meet HDV demand was evaluated based on projected 
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vehicle parameters. Based on the results of this chapter, the following conclusions can be 

drawn: 

1. Heavy-duty BEVs require significantly greater charging rates and battery capacities 

compared to light-duty vehicles in order to meet travel demands. From a technical 

standpoint, more than half of Class 3-7 VMT can be met with heavy-duty BEV models in 

development today without trip modification, but further increasing electrification will 

require level 3 charging at locations other than home base. Class 8 trucks have a much 

lower BEV feasibility for the same vehicle configurations due to their lower fuel 

efficiency and longer trip distances. Overall, BEV feasibility can increase with 

improvements to batteries and vehicle designs, as well as with the expanded availability 

of EVSE beyond home base locations. Meeting a high percentage of VMT with BEVs may 

require multiple charging events per day at different locations throughout their routes.  

2. FCEV feasibility is dependent on achievable range. Due to the fast refueling times of 

FCEVs, they are able to meet a greater percentage of VMT compared to BEVs with home 

base charging as well as most everywhere charging cases except those with high level 3 

charging. Unlike BEVs, FCEVs are not constrained by refueling times. Rather, they are 

limited in their ability to meet VMT demands by their range – tied to tank size and fuel 

efficiency.  

3. The future maximum zero-emission vehicle feasibility for heavy-duty vehicles will 

depend on vehicle improvements. Heavy-duty ZEV models are still in development, 

with estimates on fuel efficiency and maximum battery capacity in flux. Converting 

some HDVs, especially for vocations with longer travel and more challenging drive 
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cycles, will require increased battery capacity compared to current models. The 

increased weight of the battery may reduce the payload weight that can be added to 

the truck. Increased battery weight can also reduce the fuel efficiency of the vehicle as 

well as the achieved range. Reducing vehicle weight through vehicle redesigns and 

battery improvements can help counter these issues and increase ZEV utilization.  

4. The ability of vehicles to support renewable integration is dependent on the scale of 

BEV deployment and charging location assumptions. Vehicles charging only at home 

base may not capture solar generation, whereas, vehicles charging along their routes 

during the day have a greater ability to directly charge with solar generation. Vehicles 

with home base charging are able to utilize wind generation and can still provide valley-

filling during evening decreases in demand.  

5. Everywhere charging increases renewable utilization for immediate charging of heavy-

duty vehicles. By allowing vehicles to charge along their routes, more of their electricity 

demand occurs during the middle of the day when peak solar occurs.  Additionally, 

because the vehicles have been charging throughout the day, they charge less when 

returning to home base, reducing the vehicles’ impact on the grid during peak demand 

periods when natural gas power plants are operating.
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Chapter 5. Strategies that Achieve a) a 80% Reduction in GHG Emissions and b) a 

100% Clean Electric Grid with Vehicle-Grid Integration 

This chapter presents a series of heavy-duty zero-emission vehicle deployment 

scenarios for the year 2050. The first set of scenarios starts with a current policy reference 

(CPR) scenario that incorporates all vehicle and grid emissions policies to date. While the grid 

parameters established in the CPR base case meet the 80% reduction in GHG emissions target, 

the vehicle parameters do not. Following the CPR base case is a series of expanded ZEV 

deployment scenarios, exploring the potential growth in light-duty to heavy-duty ZEVs, starting 

with the target of an 80% reduction in GHG emissions from these vehicle categories and then 

further reducing their emissions. The expanded ZEV scenarios maintain the same stationary 

load assumptions from the CPR base case so that changes in GHG emissions between scenarios 

is solely driven by changes in vehicle composition and vehicle-grid interactions. The role of 

increased heavy-duty ZEVs for achieving an 80% reduction in GHG emissions is examined in 

Chapter 6.  

Section 5.2 first analyzes a subset of 80% GHG reduction scenarios to evaluate the 

remaining requirements needed to meet a 100% clean grid under different scales and strategies 

for vehicle-grid integration. Additional renewable capacity requirements as well as balancing 

requirements are assessed. This analysis will establish a set of 100% clean electric grid scenarios 

that will also be analyzed in Chapter 6.  
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5.1 Strategies for Achieving an 80% Reduction in Grid GHG Emissions with Expanded 

Zero-Emission Heavy Duty Vehicle Deployment 

The basis of the current policy reference (CPR) scenario used here as the base case is 

directly from the E3 PATHWAYS Project, and it includes the E3 baseline 2050 electric load 

profile including load demand for light-duty vehicles and buses [150]. The baseline renewable 

capacity is also assumed, see Table 18.  

Table 18. Resource Generation Capacities Applied in Analysis from E3 PATHWAYS [150] 

Technology Capacity (GW) 

Rooftop PV 41.5 

Solar 66.0 

Wind 99.7 

Geothermal 4.86 

Hydropower 15.1 

The expanded heavy-duty ZEV deployment scenarios are also based on scenarios from the 

same project, taking the zero-emission vehicle VMT from different portfolio scenarios [150]. 

Each scenario is named based on the average percentage of heavy-duty VMT met by ZEVs. The 

high BEV and High H2 scenarios assume a near-total conversion to zero-emission options. The 

High BEV and High H2 scenarios assume the same level of ZEV VMT. The high hydrogen case 

examines an expanded deployment of FCEVs versus BEVs, completely switching heavy-heavy 

duty BEVs to FCEVs and switching 66% of percent of the light- and medium-heavy duty vehicle 

miles previously met through BEVs to FCEVs. A summary of the vehicle scenarios is presented in 

Table 19.  
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Table 19. 2050 Zero Emission Vehicle Energy Consumption for Scenarios [150] 

 
Light-Duty Light-Heavy Duty* 

Medium-Heavy 
Duty* 

Heavy-Heavy 
Duty** 

Elec 
(GWh) 

Hyd 
(MMBTU) 

Elec 
(GWh) 

Hyd 
(MMBTU) 

Elec 
(GWh) 

Hyd 
(MMBTU) 

Elec 
(GWh) 

Hyd 
(MMBTU) 

CPR base 
case 

4.74 
E+04 

1.77 
E+07 

9.00 
E+02 

3.54 
E+06 

1.30 
E+03 

5.11 
E+06 

1.87 
E+03 

7.26 
E+06 

CPR- 
Increased 

BEV^ 

6.23 
E+04 

1.04 
E+07 

9.00 
E+02 

3.54 
E+06 

1.30 
E+03 

5.11 
E+06 

1.87 
E+03 

7.26 
E+06 

40% HD 
ZEV+ 

6.23 
E+04 

1.04 
E+07 

2.74 
E+03 

0 
3.98 
E+03 

0 
1.54 
E+04 

0 

73% HD 
ZEV+ 

6.23 
E+04 

1.04 
E+07 

5.55 
E+03 

0 
8.05 
E+03 

0 
2.51 
E+04 

4.22 
E+07 

High BEV 
6.23 
E+04 

1.04 
E+07 

6.60 
E+03 

0 
9.55 
E+03 

0 
2.75 
E+04 

1.24 
E+08 

High 
Hydrogen 

6.23 
E+04 

1.04 
E+07 

2.10 
E+03 

3.54 
E+07 

3.02 
E+03 

5.11 
E+07 

0 
2.51 
E+08 

*Weighted average of LHDV and MHDV BEV = 34.3 mi/GGE (2050); FCEV = 15 mi/GGE (2050) [150] 

** HHDV BEV = 17 mi/GGE (2050); HHDV FCEV = 11.2 mi/GGE (2050) [150] 

^ The CPR with increased BEVs is a supplemental scenario applied for the grid balancing requirement 

and air quality analyses to isolate the impact of heavy-duty ZEVs independent from changes in light-

duty/bus ZEV assumptions.  
+ Percentage refers to % annual VMT 

The full composition of the light-duty, bus, and heavy-duty vehicle populations in California 

(including vehicles registered in-state and out-of-state) is presented in Figure 35 and Figure 36. 

These populations will be applied for calculating the change in GHG emissions and air quality 

impacts. They also will be applied in the 100% clean electric grid scenarios. The difference 

between the scenarios presented here and the scenarios presented in Section 5.2 is the 

deployment of additional support technologies to reduce grid GHG emissions to zero for the 

100% clean electric grid scenarios. It is assumed that all heavy-duty BEVS are in-state vehicles, 

except for the high BEV scenario, in which a small portion of the out-of-state vehicles will need 

to be electrified in order to achieve the 95% of VMT stated in that scenario.  For this case, it is 
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assumed that the out-of-state vehicles electrified follow the same electric load demand 

patterns as the in-state BEVs. FCEVs may be in-state or out-of-state vehicles. Hydrogen demand 

for FCEVs are assumed to support the vehicle miles traveled within the state. 

 

Figure 35. Fraction of VMT met by Different Fuel Types for E3 Scenarios: light-duty and buses  

As previously discussed in the introduction of this work, light-duty vehicles encompass a 

majority of the GHG emissions from the transportation sector. Therefore, in order for the 

transportation sector to reduce its emissions by 80%, a significant portion of the light-duty 

vehicle population must be converted to ZEVs. Electrifying light-duty vehicles will introduce a 

considerable load onto the electric grid and therefore it is incorporated in this analysis. For the 

CPR base case, the light-duty ZEV population encompasses approximately 37% of light-duty 

VMT. The expanded ZEV scenarios maintain a consistent penetration of both light-duty and bus 
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ZEVs, which account for slightly greater than 80% reduction in GHG emissions from both 

categories of vehicles. 

a)  

b)  

Figure 36. Fraction of VMT met by Different Fuel Types for E3 Scenarios, a) light-heavy and 
medium-heavy duty vehicles and b) heavy-heavy duty vehicles.  
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The BEV and EVSE infrastructure assumptions for the scenarios are informed by the 

sensitivity analysis conducted in Section 4.3. A summary is presented in Table 20. Incorporated 

into this analysis are the conversion losses applied for both charging and discharging. 

Transformer losses are applied for discharging back to the grid. Transformer losses on the 

charging side are already accounted for in the transmission and distribution losses applied on 

the generation side.  

Table 20. BEV Vehicle and Infrastructure Assumptions for Year 2050  

Scenario 
Vehicle Range 
(mi) 

Vehicle Charging 
Rate (kW) 

Charging 
Locations 

Charging/Discharging 
Efficiency (%) 

CPR base case 200 120 Home base 0.95/0.85 

40% HD ZEV 200 120 Home base 0.95/0.85 

73% HD ZEV 
500 (LHDV/MHDV) 
400 (HHDV) 

120 Everywhere 0.95/0.85 

High BEV 600 350 Everywhere 0.95/0.85 

High H2 100 19.2 Home base 0.90/0.85 

 

The modest heavy-duty ZEV adoption in the CPR base case can be achieved with either 

level 2 or level 3 charging rates and vehicle ranges as low as 100 miles. Spanning the possible 

variations in BEV and EVSE configurations for the CPR base case has minimal impacts on grid 

emissions and cost, due to the relatively low level of deployment. Therefore, a vehicle range of 

200 miles with a 120 kW charging rate for at home base charging only was selected. These 

parameters are in line with the specifications of heavy-duty BEVs already being deployed, eg. 

[135,144]. The scenarios with higher BEV deployments require increased vehicle range and 

higher EVSE charging rates. The highest BEV deployment requires a larger vehicle range as well 
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as a higher charging rate than are currently available. This scenario represents significant 

improvement in battery technology.   

In the high hydrogen scenario, the BEV range and charging rate can both be reduced by 

concentrating on electrifying short distance trips. Referencing Figure 30, a BEV with a range of 

100 miles, charging only at home base at a Level 2 (19.2 kW) charging rate, can meet 39% of the 

VMT from in-state vehicles. The 100-mi range and 19.2 kW charging rate can be met through 

existing technologies and would not require significant improvements in vehicle or 

infrastructure designs.  

5.2 Strategies for Achieving a 100% Clean Electric Grid with Vehicle-Grid Integration 
 

There are several complementary strategies for achieving a 100% renewable or clean 

grid applied in the literature. It is most likely that a portfolio approach will be implemented, 

combining the most effective, least-cost options first and then applying (if needed) additional 

technologies and/or management strategies to move the electric grid from near-zero to 100% 

carbon neutral. Most studies focus on a portfolio of renewable resources (including 

hydropower) to achieve low emissions from the electric grid, eg. [40,103,272]. To move to a 

100% clean, carbon-neutral grid, the most frequently proposed technology strategies include 

biopower, energy storage, and demand-side management, eg. [36,37,39,43].  

This analysis focuses on energy storage utilization to meet 100% clean electric grid, 

analyzing the changes in energy storage requirements associated with increased zero-emission 

vehicle charging intelligence. Stationary Energy storage systems (ESS) are promising, because 

they not only have quick response times, but they can also utilize otherwise wasted electricity 
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generated from renewable resources. However, when considering the deployment of ESS, it is 

important to determine the scale and the functions they are intended to serve. Tarroja et al. 

(2018) demonstrated that achieving 100% through energy storage can be challenging and 

material intensive due to seasonal shifting demands [43]. They also found that even with an 

overbuilding of renewable capacity, the energy storage fleet will need over 4600 GWh energy 

capacity, which translates to a battery fleet power capacity of 1095 GW. In comparison, the 

peak net demand that needs to be met for the 80% GHG reduction CPR base case is only 63.8 

GW. This indicates that energy capacity, not power capacity is driving the high level of battery 

energy storage deployment needed. Energy storage technologies such as lithium ion, lead acid 

batteries, etc. that are limited to 1-5 hours of dispatch at maximum power would need to be 

operated in series to fully meet the renewable energy shifting needs to reach a 100% 

renewable grid. In contrast, ESS such as flow batteries and hydrogen energy storage can have 

their energy and power capacities independently sized. Therefore, power capacity can be 

scaled to match maximum charge or discharge demand and energy capacity can be scaled to 

meet energy shifting requirements, creating a more tailored buildout of capacity to meet grid 

needs. The trade-off with implementing a hydrogen storage based system is lower round-trip 

efficiencies compared to some battery energy storage technologies [230].   

This work builds upon the previous analysis by Forrest et al. (2016), which found that 

increasing the charging intelligence of light-duty BEVs can reduce the energy storage capacity 

needed to reach 80% renewable utilization onto the California grid [32]. Similarly, heavy-duty 

ZEV deployment may reduce the additional energy storage capacity to meet a 100% clean 

electric grid. For the 100% clean electric grid scenarios, two of the expanded vehicle cases—
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40% HD ZEVs and High H2—from the 80% reduction scenarios are replicated in order to explore 

1) how increased renewable capacity affects vehicle-grid dynamics and 2) how ZEV integration 

onto the grid affects resource requirements for meeting a 100% clean electric grid. These two 

scenarios represent the more conservative estimates in terms of vehicle technical 

improvements.  

To meet electric load demand with 100% carbon-neutral energy, additional solar and 

wind capacity is added compared to the 80% GHG reduction scenarios. The increased 

renewable capacity is to accommodate energy losses associated with energy storage used to 

meet the 100% target. The new baseline for the High H2 scenarios is higher than the 40% HD 

ZEV scenarios, based on the higher renewable generation requirements to support the 

increased vehicle load demand. In addition to the 100% clean electric grid baseline capacities, 

an additional renewable overbuild scenario is developed for each vehicle case in order to 

evaluate the impact of renewable capacity on balancing requirements to achieve a 100% clean 

grid. In multiple studies, eg. Budischak et al. (2013) [36] and Tarroja (2018) [43], renewable 

capacity overbuild has shown to reduce additional resource capacity to meet high renewable 

penetrations. The renewable capacity assumptions for the 40% HD ZEV-100% clean electric grid 

scenarios are in Table 21. The renewable capacity assumptions for the High H2-100% clean 

electric grid scenarios are in Table 22. Solar and wind capacity is increased for the baseline and 

overbuild scenarios, and the other renewable resources are kept constant due to the high 

availability of solar and wind and the limited capacity to expand geothermal and small 

hydroelectric power plants. 
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Table 21. Renewable Capacity Expansion for 40% HD ZEV—100% Clean Electric Grid Scenarios 

Technology 80% GHG Reduction 
Baseline Capacity (GW) 

100% Clean Electric Grid 
Baseline Capacity (GW) 

100% Clean Electric Grid 
Overbuild Capacity 

(GW) 

Rooftop PV 41.5 50.8 62.2 

Solar 66.0 80.8 99.0 

Wind 99.7 122 157 

Geothermal 4.86 4.86 4.86 

Small Hydro 1.29 1.29 1.29 

 

Table 22. Renewable Capacity Expansion for High H2—100% Clean Electric Grid Scenarios 

Technology 80% GHG Reduction 
Baseline Capacity (GW) 

100% Clean Electric Grid 
Baseline Capacity (GW) 

100% Clean Electric Grid 
Overbuild Capacity 

(GW) 

Rooftop PV 41.5 62.2 77.8 

Solar 66.0 99.0 124 

Wind 99.7 157 196 

Geothermal 4.86 4.86 4.86 

Small Hydro 1.29 1.29 1.29 

For each heavy-duty ZEV deployment scenario, a suite of charging scenarios is 

evaluated, see Figure 37. In addition to HDV immediate, smart, and V2G charging strategies 

previously applied for the 80% reduction scenarios, a scenario with LDV smart charging with 

HDV V2G charging is added in order to assess an “optimistic” utilization of intelligent vehicle 

charging to balance the electric grid. The grid balancing requirements to meet the 100% clean 

electric grid target are for each charging scenario are assessed and energy storage capacity is 

spanned to evaluate the power and energy capacities that can meet the identified 

requirements. While Forrest et al. (2016) spanned the capacity of a single ESS technology [32], 

this analysis seeks to deploy a portfolio of battery energy storage systems (BESS), eg. Lithium-

ion batteries, and H2 storage such that the benefits of each type of storage can be realized. For 

each vehicle scenario, two different energy storage cases will be examined: deploying BESS 
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capacity versus the H2 storage, in order to examine how technology assumptions may affect 

capacity requirements and the levelized cost of energy for a 100% clean electric grid. The 

scaling process is described in more detail in Section 6.1.2.   
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Figure 37. Flowchart for 100% Clean Energy Scenarios 
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Chapter 6. The Impact of Zero-Emission Vehicle Integration on Grid Balancing 

Requirements, GHG Emissions, Air Quality, and Levelized Cost of Energy 

 This chapter analyzes the impact of heavy-duty ZEV deployment for the scenarios 

developed in Chapter 5. It focuses on the net impacts of heavy-duty ZEV deployment on grid 

performance, achieving GHG emissions and air pollution reductions, as well as impacts on 

levelized cost of energy.   

6.1 Grid Balancing Requirements 

 The electrification of vehicle demand can result in an increased need for electricity 

generation. The misalignment of vehicle demand with renewable availability may negatively 

impact the grid’s balancing requirements: increasing ramping rates, peak demand, and fossil 

fuel generation. The deployment of zero-emission HDVs with intelligent charging can help 

mitigate these impacts and potentially provide a net benefit in terms of grid performance. This 

section investigates the impact of heavy-duty ZEV deployment on grid balancing requirements, 

such as peak power, ramp rates, and balancing generation.  

Grid balancing requirements for the 80% reduction in GHG emission scenarios are 

calculated from the remaining load unmet by renewables and hydropower generation. The net 

load must be met by dispatchable generation resources. For the 80% GHG reduction scenarios, 

natural gas power plants are used to balance the net load. For the 100% clean electricity grid 

scenarios, different portfolios of energy storage using renewable power are applied. 

6.1.1 Grid Balancing Requirements for 80% Reduction in GHG Emissions 

 The first step to investigating grid balancing requirements for the 80% GHG 

emissions reduction scenarios is to gauge the changes in the net load profile. The net load 
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duration curves for each vehicle deployment scenario with immediate charging is presented in 

Figure 38.  The net load duration curve shows the portion of the year that has a certain demand 

or greater. The x-axis spans 0-8760 hours of the year. Values above the zero on the x-axis 

indicate unmet demand that must be satisfied by the balance generation model. Values below 

the x-axis indicate the total length of the year with over-generation of renewable electricity.  

 

Figure 38. Net Load Duration Curves for 80% GHG reduction Scenarios with Immediate Charging 

Overall, the addition of heavy-duty vehicles increases the load, but the net impact on 

the load duration curve depends on the deployment scenario. There is an increase in peak 

demand for all scenarios compared to the base case with immediate charging, see Figure 39. 

The greatest peak is observed for the 40% HD ZEV scenario. Even though there are fewer 

vehicles being electrified in this scenario, they are short range vehicles with home base 
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charging only, which as shown in Figure 23, can result in higher peak loads compared to longer 

range vehicles (as in 70% HD ZEV scenario, High BEV scenario) and vehicles that are able to 

charge everywhere (as in High BEV scenario). The High H2 scenario with immediate charging has 

the smallest increase in peak demand. Shifting to smart charging still results in an increased in 

peak demand compared to the CPR base case, but the new peak values are reduced compared 

to the same vehicle scenarios with immediate charging. The smart charging scenarios with high 

BEV deployment (40% HD BEV, 73% HD BEV, and High BEV) are more effective in reducing peak 

demand compared to the cases with low BEV deployment (CPR Base Case, High H2).  

 

Figure 39. Change in Peak Net Load Demand for All 80% GHG Reduction Scenarios Compared to 
CPR Base Case with Immediate Charging   

In addition to changes in maximum load, there are differences in the minimum load as 

well. Compared to the base case, the 40% heavy-duty ZEV scenario results in a lower minimum. 
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This is a direct result of decreasing FCEV hydrogen demand compared to the CPR base case. A 

comparison between the original CPR base case and the base case with increased light-duty 

BEVs is presented in Figure 40 to demonstrate how different light-duty vehicle assumptions 

affect net load dynamics. The 40% HD ZEV curve is included for reference. Immediate charging 

of BEVs does not align with peak curtailed renewable generation, and so under the 40% HD 

ZEV, the reduced hydrogen production decreases the amount of peak curtailed renewables that 

can be captured. At the same time, increasing uncoordinated vehicle load demand on the grid 

increases peak net demand.  

 

Figure 40. Impact of Increased Light-duty BEV Charging and Reduced FCEV H2 Demand on the 
Base Case Modified Net Load Duration Curve 



 

124 
 

 Increasing light-duty and heavy-duty ZEV loads on the grid also affects the ramping 

requirements of the grid. Examining the frequency of different ramp rates in the CPR base case, 

the median and mode ramp rate for most hours are both zero, see Figure 41. The high number 

outliers indicates infrequent high ramping events across the year.  With immediate charging, 

ramping requirements are most affected between 4-8 pm (hours 16-20 in Figure 41b). This time 

period also corresponds to peak electricity demand.    

a)  

b)  

Figure 41. Distribution of Hourly Ramping Requirements for: (a) CPR Base Case with Immediate 
Charging and (b) High BEV scenario with Immediate Charging 
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The High BEV scenario with immediate charging represents the scenario with the least flexibility 

to shift vehicle load demand. The greatest median ramping rate, which occurs between 5-6 pm, 

is approximately 7 GW/hour. This is equivalent to requiring about half the hydropower plants in 

the state going from zero to full power in an hour to meet the increase in electricity demand.  

Increasing BEV charging intelligence not only results in a reduction in peak demand 

compared to immediate charging, it can also result in a “flattening” of the net load duration 

curve, affecting ramping requirements, see Figure 42. A flatter net load duration curve 

translates to a reduction in demand variability (improved load smoothing), allowing balancing 

power plants to operate at a steady power output level for longer of the year, which a) 

improves system efficiency if plants are operated at a high part-load condition and b) reduces 

demand for fast-ramping peaker plants. Increasing the number of BEVs with V2G charging 

further increases load smoothing.  



 

126 
 

 

Figure 42. Modified Net Load Duration Curves for All 80% GHG Reduction Scenarios 

Comparing the two high ZEV scenarios: High BEVs and High H2, both net load curves 

have similar trends in terms of net load smoothing. The higher total load demands for the High 

H2 scenarios come from the lower efficiency of hydrogen production versus BEV charging, 

requiring increased load demand to supply the same number of VMT. The High H2 scenarios are 

more effective in smoothing the net load compared to the High BEV scenario with immediate 

charging, and they result in lower peak net demand. The High BEV scenario with V2G charging is 

more effective than the High H2 scenario with V2G charging in reducing the percent of the year 
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with higher load demand values, due to the greater number of BEVs discharging back to the 

grid compared to the High H2 scenario.  

The difference in dispatch flexibility between these scenarios can be further elaborated 

on by comparing the hourly modified net load ramp rate distributions (Figure 43). Increasing 

charging intelligence reduces both the magnitude and frequency of ramping events. The High 

BEV scenario with smart charging (Figure 43a) has a similar distribution of hourly ramp rates 

compared to the High H2 scenario with immediate charging (Figure 43b), with some hours 

(most distinctly 5 pm) seeing less frequent positive ramping under the High H2 scenario with 

V2Gcharging. High BEV scenario with V2G charging (Figure 43c) has the smallest range in hourly 

ramp rates of all the 80% GHG reduction scenarios. All upper and lower quartiles fall between 

+4.5 GW/hour and -2.5 GW/hour, respectively. Including outlier day values, the maximum 

hourly ramp rate + 18 GW/hour between 4-5 pm. In comparison, for the 40% HD ZEV scenario 

with immediate charging, which has the greatest positive and negative hourly ramping rates, 

the upper and lower quartiles fall between +17 GW/hour and -9 GW/hour, respectively, and the 

maximum hourly ramp rate for the year is +34 GW/hour between 4-5 pm.  
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(a)   

(b)  

(c)  

Figure 43. Distribution of Hourly Ramping Requirements for: (a) High BEV Scenario with Smart 
Charging, (b) High H2 Scenario with Immediate Charging, and (c) High BEV Scenario with V2G 
Charging  
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In addition to the ramping requirements, another important metric for grid 

performance is the degree to which renewable generation is integrated, measured in terms of 

total renewable penetration. Renewable penetration is the percent of the electric load demand 

met by renewable generation either directly or indirectly through energy storage, see Equation 

8. The renewable penetration for each scenario, see Figure 44, does not include large 

hydropower.  

                       𝑅𝐸𝑝𝑒𝑛 =  
𝑅𝐸𝑡𝑜𝑡𝑎𝑙 − 𝑅𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑜𝑎𝑑+ 𝐸𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑜𝑎𝑑
∗ 100                          (8) 

 

 

Figure 44. Renewable Penetration and Curtailment for All 80% GHG Reduction Scenarios 
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 As the ZEV population increases, so does the demand for electricity, see Figure 45. 

Because renewable generation is constant across the scenarios, the maximum potential 

renewable penetration declines in the expanded ZEV deployment scenarios compared to the 

CPR base case. The high hydrogen scenarios result in greater absolute renewable usage 

compared to the other scenarios (see Figure 45), but the lower efficiency of hydrogen 

production versus BEV charging results in a higher electric load demand. The net impact is a 

potential renewable penetration of less than 90%.   

Increased charging intelligence for each expanded vehicle results in marginal increases 

in renewable penetration associated with an increase in the percentage of the BEV load met 

with renewable generation. Increased charging intelligence also decreases the reliance on 

peaker plants. As demonstrated in Figure 43, smart and V2G charging strategies reduce the 

hourly ramping rates that balancing generators need to meet, reducing the need for the fast-

ramping of peaker plants. Allowing vehicles to discharge back to the grid during peak demand 

times further reduces the number of periods when peaker plants would have otherwise 

provided power. In addition to reducing peaker plant generation, the V2G scenarios reduce 

load following generation, except for the High H2 scenario with V2G charging. In the High H2 

scenario with V2G charging, peaker plant generation is reduced, but the generation that 

replaces it is not renewables but rather increased load-following generation. In this scenario, 

there is a significantly lower availability of excess renewables to utilize compared to the other 

V2G scenarios, and therefore, load-followers provide additional generation. 
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Figure 45. Generation by Resource for All 80% GHG Reduction Scenarios 
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6.1.2 Grid Balancing Requirements for 100% Clean Electric Grid 

 Increasing the renewable capacity for the 100% clean electric grid scenarios affects the 

grid balancing requirements that must be met with energy storage compared to the 80% GHG 

reduction scenarios. The modified net load duration curves for the baseline and overbuild 

scenarios demonstrate the impact of greater solar and wind power capacity on the net load and 

peak demand, see Figure 46 and Figure 47. Increasing variable renewable capacity shifts the 

modified net load duration curve down, reducing the remaining load demand that needs to be 

met with energy storage or other dispatchable resources. The trends between immediate, 

smart, and V2G charging for heavy-duty vehicles remain consistent with the previous 80% GHG 

reduction scenarios; increasing charging intelligence results in a flattening of the net load 

duration curve, decreasing curtailed renewable generation as well as peak demand.  

 

Figure 46. Modified Net Load Duration Curves for 100% Clean Grid: 40% HD ZEV Scenarios  
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Figure 47. Modified Net Load Duration Curves for 100% Clean Grid: High H2 Scenarios 

The added charging strategy of combining light-duty vehicle smart charging with heavy-

duty V2G-enabled charging further reduces peak demand compared to intelligent charging for 

heavy-duty vehicles only. Figure 48 isolates the High H2 curves for V2G and Smart LD/HD V2G-

enabled charging to highlight the difference between the two strategies. The V2G scenarios for 

both the baseline and overbuild cases have similar peak net demands despite the increase in 

renewable availability under the overbuild scenario. Deploying smart charging for light-duty 

vehicles shifts light-duty vehicle load demand to non-peak periods and more effectively reduces 

peak net demand compared to overbuilding renewable capacity. This indicates that light-duty 

vehicles were contributing significantly to peak net demand when relying on immediate 

charging.  
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Figure 48. Modified Net Load Duration Curves Comparing Heavy-Duty V2G Only and Added 
Light-Duty Smart Charging 

 The decrease in peak net demand for each scenario is presented in Figure 49. For the 

40% HD ZEV scenarios, increasing renewable capacity by 20-50% decreases peak net demand by 

up to 1.2-1.5 GW, and for the High H2 scenarios, increasing the renewable capacity by 50-90% 

decreases peak net demand by up to 4.5-4.6 GW. The reduction of up to 4.6 GW in peak 

demand versus a peak increase in renewable capacity of 80 GW, indicates a low correlation 

between the timing of added renewable generation and demand. More effective is shifting the 

loads contributing to the peak net demand: heavy-duty and light-duty vehicles. For the 40% HD 

ZEV overbuild scenarios, switching from immediate charging to smart light-duty and V2G-

enabled heavy-duty vehicles reduces the peak net load demand by 20%. For the High H2 
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overbuild scenarios, switching to smart charging light-duty and V2G-enabled heavy-duty 

vehicles reduces peak net load demand by 24%.  

  

Figure 49. Change in Peak Net Load Demand with Increased Solar and Wind Capacity for 100% 
Clean Electric Grid Scenarios 

The reduction in peak net demand for the heavy-duty intelligent charging scenarios is 

proportional to the BEV load demand that can be shifted to avoid peak load periods. For 

example, the High H2 has about 23% of the heavy-duty BEV load demand compared to the 40% 

HD ZEV scenarios. Measuring load-shifting flexibility, switching from immediate to V2G charging 
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for heavy-duty vehicles for the same scenarios reduces the peak demand by 7%, which is only 

21% of the peak reduction realized for shifting from immediate to V2G-enabled HDV charging in 

the 40% HD ZEV scenarios. 

Increasing renewable capacity also translates to incremental increases in renewable 

utilization, see Figure 50. In the 80% GHG reduction scenarios, the 40% HD ZEV cases resulted in 

a renewable penetration between 77% (with immediate charging) and 81% (with V2G-enabled 

charging). In the 100% clean grid baseline, renewable penetration increases 2-3% for each 

charging case. Despite increasing renewable capacity by 25% for the overbuild scenario, the 

resulting increase in renewable penetration is only 1-3%. For the High H2 scenarios, renewable 

penetration increases 6-8% between the 80% GHG reduction scenarios and the 100% clean grid 

baseline. The overbuild scenario increases the renewable penetration another 1-2%. Utilizing 

smart light-duty vehicles in addition to V2G-enabled heavy-duty vehicles further increases the 

renewable penetration by 1-2% for all scenarios. The relatively small increase in renewable 

utilization demonstrates the limit in utilizing connected vehicles to increase renewable 

penetration. Vehicles are able to smooth the net load and utilize renewable generation, but 

cannot shift renewable energy across the longer time periods required to meet higher 

renewable penetration levels.  
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Figure 50. Initial Renewable Penetration for 100% Clean Electric Grid Scenarios before Added 
Energy Storage Capacity 

 In addition to changes in peak load demand, increasing renewable capacity and charging 

intelligence affects ramping requirements that must be met in order to achieve a 100% clean 

electric grid. The 0.025, 0.25, 0.50, 0.75, and 0.975 quantiles for hourly ramp rates are plotted 

for the high hydrogen immediate (labeled “Imm.”) and V2G charging scenarios (labeled “V2G”) 
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for the baseline Renewable capacity are in Figure 51. The hourly ramp rates for the 40% HD ZEV 

immediate and V2G charging scenarios are in Figure 52.  

 

Figure 51. Hourly Ramp Rate Quantile Values for High Hydrogen Scenarios with Increased 
Renewable Capacity 

Increasing renewable capacity for the 40% HD ZEV reduces non-zero median ramp rate 

magnitudes to zero, but increases the peak magnitudes for the 2.5% and 97.5% percentile 

(Figure 52b). Increasing charging intelligence reduces the frequency of high magnitude ramping 

events for both the 40% HD ZEV scenarios and High H2 scenarios, but as was shown with 

reduction in peak demand, ramp reductions are dependent on the scale of BEV deployment, 

see Figure 51 and Figure 52a. Switching from immediate to V2G-enabled charging for the High 

H2 scenarios has smaller reductions in ramp rate magnitudes compared to the same switch for 

the 40% HD ZEV, due to the lower BEV penetration. The higher electrolyzer capacity in the High 

H2 scenarios is able to reduce the median ramp rate magnitude to zero for all hours even with 
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BEV immediate charging, but they do not address the magnitude of outlier peak ramp rate 

events. 

a)  

b)   

Figure 52. Hourly Ramp Rate Quantile Values for 40% HD ZEV Scenarios with Increased 
Renewable Capacity, for a) Baseline Renewable Capacity and b) Overbuild Capacity  
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 In order to meet a 100% clean electric grid, additional resources must be incorporated 

to balance the remaining load. For these scenarios, the combined energy storage capacity must 

be able to meet the remaining peak net demand and shift otherwise curtailed renewable 

generation to meet the remaining demand. The minimum amount of curtailed renewable 

energy that needs to be utilized in order to meet a 100% clean electric grid differs for each 

scenario. A summary of the renewable energy requirements for each scenario are in Table 23. 

The calculated percentages do not include round trip energy losses. The average daily energy 

demand remaining that needs to be met through energy storage for each scenario is in Table 

24.  

Table 23. Minimum Percent of Curtailed Renewable Energy Required to Meet Remaining Load  

 

40% HD ZEV – 
100% Baseline 

40% HD ZEV – 
Overbuild 

High H2 –  
100% Baseline 

High H2 – 
Overbuild 

Immediate Charging 26% 14% 21% 11% 

Smart Charging 25% 13% 21% 10% 

V2G Charging 22% 11% 20% 10% 

LD SMART/HD V2G 18% 9% 17% 9% 

Table 24. Average Daily Energy Demand Remaining 

 

40% HD ZEV – 
100% Baseline 

40% HD ZEV – 
Overbuild 

High H2 –  
100% Baseline 

High H2 – 
Overbuild 

Immediate Charging 191 GWh 147 GWh 138 GWh 109 GWh 

Smart Charging 179 GWh 138 GWh 136 GWh 107 GWh 

V2G Charging 148 GWh 110 GWh 131 GWh 103 GWh 

LD SMART/HD V2G 117 GWh 84.4 GWh 101 GWh 80.2 GWh 
 

Increasing charging intelligence reduces the average daily energy demand that needs to 

be met with energy storage to reach a 100% clean electric grid. Switching from immediate to 

smart charging of heavy-duty BEVs, results in a 1-6% reduction in remaining demand, with the 

greater reduction achieved through higher heavy-duty BEV penetration. Switching from 
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immediate to V2G, reduces remaining demand by about 25-26% for the 40% HD ZEV scenario, 

and switching for the High H2 reduces the demand by 5-6%. The 40% HD ZEV scenario has a 

greater penetration of heavy-duty BEVs compared to the high H2 scenario. Introducing smart 

light-duty BEV charging with V2G-enabled heavy-duty BEV deployment decreases remaining 

demand by 39-43% compared to immediate charging for the 40% HD ZEV scenario, and 26-27% 

for the High H2 scenario.  

For this analysis, BESS is assumed to have a round-trip efficiency of 90% and can 

discharge at maximum power for up to four hours. Hydrogen energy storage is assumed to 

have a round trip efficiency of 46% and discharge time at maximum power is spanned to meet 

demand. The maximum feasible discharge time limit is assumed to be one season or 2190 

hours. BESS and hydrogen storage are spanned for each scenario to determine the scale of 

energy storage required to meet a 100% clean electric grid.  

The initial spanning results for the BESS cases are presented in Figure 53 and Figure 54.  
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a)  

b)  

Figure 53. Marginal Decreases in Remaining Annual Demand with Increased BESS Capacity: 40% 
HD ZEV Scenarios 
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a)  

b)  

Figure 54. Marginal Decreases in Remaining Annual Demand with Increased BESS Capacity: High 
H2 Scenarios 
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It is more challenging to reach a 100% clean electric grid for the baseline scenarios due 

to the lower availability of curtailed renewables. In order to achieve a 100% clean electric grid, 

curtailed renewable generation must be captured and stored for a large portion of the year. 

Overbuilding renewable capacity significantly reduces the energy storage capacity required to 

meet the 100% renewable target for both the 40% HD ZEV and the High H2 scenarios.  

The final BESS energy capacities for each scenario at the 100% clean electric grid target 

are in Figure 55.  

 

Figure 55. BESS Energy Capacities for 100% Clean Electric Grid Scenarios 
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duty BEVs reduces BESS energy capacity. However, renewable capacity assumptions have a 

larger impact on energy storage capacity requirements compared to changes in vehicle 

charging intelligence.  

The hydrogen energy capacity required to reach 100% clean electric grid for each 

scenario is in Figure 56. 

 

Figure 56. Hydrogen Energy Capacities with 80 GW Power Capacity for 100% Clean Electric Grid 
Scenarios 

The energy capacity required to reach a 100% clean electric grid with hydrogen energy 

storage is significantly greater than for BESS due to the difference in round-trip efficiencies. 

However, due to the decoupling of power and energy capacity, the power capacity required to 

meet a 100% clean grid significantly decreases, see Figure 57, with the minimum required 

power capacity of the hydrogen energy storage system being equal to the minimum generation 

required to meet remaining peak demand.  

0

10000

20000

30000

40000

50000

100% Baseline Overbuild 100% Baseline Overbuild

40% HD ZEV High H2

En
er

gy
 C

ap
ac

it
y 

(G
W

h
)

Hydrogen Energy Capacity

Immediate Charging Smart Charging V2G Charging LD SMART/HD V2G



 

146 
 

  

Figure 57. Minimum Energy Storage Power Capacities Required to Reach a 100% Clean Electric 
Grid Target  

The fixed power to energy ratio of 1:4 for the BESS drives the higher power capacity of the 

energy storage fleet compared to the hydrogen storage cases.  Conversely, the lower power 

capacity of the hydrogen storage is paired with a greater energy capacity that is achieved 

through longer-term underground storage of the hydrogen. 

6.2 GHG Emissions 
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overall GHG emissions is critical. In order to determine the net impact of ZEV deployment, the 

changes in GHG emissions from both the grid and the transportation sector are assessed. The 

grid and transportation GHG emissions are calculated in tons of CO2e using the following 

equation:  

CO2e = 1CO2 + 25CH4 + 298 N2O                (9) 

where, tons of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are weighted by 

their 100-year global warming potential values relative to CO2. Carbon dioxide is the 

predominant GHG produced by electricity production and transportation, with a weighted 

contribution of around 95% of the total tons of CO2e.   

Increases in the ZEV populations will decrease emissions from the transportation sector, 

but integrating them onto the electric grid, either directly through BEVs or indirectly through 

hydrogen production, may have positive or negative impacts on the electric grid’s GHG 

emissions, depending on how they are integrated. The change in grid GHG emissions for each 

scenario is in Figure 58. The CPR base case with immediate charging represents the 

approximate grid emissions reductions needed to support an economy-wide 80% in GHG 

reductions compared to 1990 levels. Emissions from the electric grid come from two sources: 

load-following natural gas combined cycle power plants and natural gas peaker power plants. 

The change in grid GHG emissions between the scenarios is a fraction of the remaining 20% of 

emissions still being emitted. In the highest GHG emission case-High H2 with immediate 

charging, this translates to 74% reduction in GHG emissions below 1990 levels. The greatest 

reduction is High BEV with V2G charging: 85% reduction in GHG emissions below 1990 levels.  
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Figure 58. Change in Grid GHG Emissions for All 80% GHG Reduction Scenarios 

 All immediate and smart charging scenarios result in GHG emissions increases compared 

to the CPR base case. Increasing heavy-duty vehicle charging intelligence from immediate to 

smart charging results in reduced emissions. Switching to smart charging is more effective in 

reducing grid GHG emissions for scenarios with higher heavy-duty BEV deployments (40% HD 

ZEV, 73% HD ZEV, and High BEV). Increasing charging intelligence is least effective for the High 

Hydrogen scenarios. Increasing charging intelligence to V2G charging further reduces emissions 

from the respective immediate charging scenarios, and emissions drop below the CPR base case 

for the 73% HD ZEV and High BEV scenarios for V2G charging. The 40% HD ZEV scenario with 

V2G charging results in GHG emissions only slightly higher than the CPR base case.  

In the 100% clean electric grid scenarios, the inclusion of additional renewable capacity 

alone reduces grid GHG emissions compared to the 80% GHG reduction scenarios, see Figure 

59. Increasing the renewable capacity by 20% for the baseline 100% clean electric grid scenarios 
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reduces emissions by 17-29% compared to the corresponding 80% GHG reduction scenarios. 

Further increasing the renewable capacity by 25% for the 40% HD ZEV scenarios reduces 

emissions by another 11-17% compared to the corresponding 80% GHG reduction scenarios. 

This reduction highlights the dependency of grid GHG emissions on the renewable capacity 

installed. It also demonstrates diminishing returns in overbuilding renewable capacity. As 

shown in Section 6.1.2, as renewable capacity increases, more of the added generation is 

curtailed and a decreasing margin of the new generation resource offsets natural gas 

generation.  

The trends between charging strategies remain consistent compared to the previous 

scenarios, with increasing charging intelligence reducing grid GHG emissions. Adding light-duty 

BEV smart charging to the V2G charging heavy-duty vehicle scenarios further decreases grid 

GHG emissions. As analyzed in Section 6.1.2, smart charging of the light-duty BEV population 

further reduces reliance on both peaker and load-following power plants by smoothing the net 

load and increasing renewable utilization. For the completed scenarios, zero-emission energy 

storage replaces all natural gas power plants thereby zeroing the GHG emissions coming from 

electricity generation. 
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Figure 59. Change in Grid GHG Emissions with Increased Solar and Wind Capacity for 100% 
Clean Electric Grid Scenarios 

 Emissions reductions from the transportation sector are driven by the number of vehicle 

miles that can be met with ZEVs. Switching between immediate, smart, and V2G charging 

strategies for the same ZEV deployment portfolio does not change the emissions reductions 

from the transportation sector. The GHG emissions reductions compared to the CPR base case 

are presented in Figure 60. Emissions for the EMFAC 2050 Baseline are taken from [1] and 

emissions factors are calculated from [1,150,308]. The EMFAC 2050 Baseline does not 

incorporate any policies mandating the adoption of ZEVs, the CPR base case incorporates 
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current policies, and the four expanded ZEV scenarios include 80% GHG reduction targets for 

light-duty and bus categories (kept constant between the four scenarios).  

 
Figure 60. Change in Transportation GHG Emissions for All Scenarios 

The 40% HD ZEV scenario results in the target 80% reduction in GHG emissions 

compared to 1990 levels.  The remaining three scenarios (73% HD ZEVs, High BEV, and High H2) 

represent a greater than 80% reduction in emissions. Decreasing transportation vehicle 

emissions below an 80% reduction may offset increased emissions from the grid. Also, the 

higher reduction in emissions may have increased benefits in terms of air quality. 

6.3 Air Quality Analysis 

 The air quality analysis for the heavy duty ZEV scenarios focuses on changes in ozone 

and PM2.5 concentrations during peak seasonal events. The State and National Ambient Air 

Quality Standards for tropospheric ozone and PM2.5 are listed in Table 25, data from [309]. 
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Much of the state is in nonattainment for ozone and the San Diego, Southern California, and 

San Joaquin air basins being in non-attainment for PM2.5 [11]. 

Table 25. Ambient Air Quality Standards 

Pollutant Averaging Time California Standard U.S. Standard 
(primary) 

Ozone (O3) 1 hour 90 ppb (none) 

8 hour 70 ppb (Same as CA) 

Particulate Matter 
(PM2.5) 

24 hour (none) 35 µg/m3 

Annual average 12 µg/m3 12 µg/m3 

 

 Two-week periods in January and July are selected as “peak episodes,” representing the 

periods when conditions are prime for peak criteria pollutant concentrations. Peak events for 

ozone occur during the summer, driven in part by seasonal photochemical conditions [310]. 

Peak events for PM2.5 occur during both winter and summer [311]. The first three days of the 

simulation are excluded from the results as model spin up, where the initial condition 

assumptions are dominating pollutant emission concentrations results. The remaining 11 days 

are used to calculate the average change in pollutant concentrations and the peak change in 

concentrations.   

6.3.1 Air Quality Impacts of Zero Emission Vehicle Deployment 

Changes in air quality presented are the result in changes from vehicle and grid 

emissions compared to the CPR base case. The change in the 8-hour average for ozone 

concentration and the 24-hour average for PM2.5 concentration for select scenarios are in Table 

26. It also includes the change in the absolute peak for both criteria pollutants for the same 

periods. The changes in ozone and PM2.5 concentrations are mostly due to changes in NOx 
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emissions. The change in PM2.5 concentrations includes reductions in NH3NO3 particles due to 

reduced emissions of NOx and NH3 [312].  

Table 26. Change in Criteria Pollutants Compared to CPR Base Case 

 

Summer 
Ozone 
Peak 

Summer 
Ozone 

Average 

Summer 
PM2.5 
Peak 

Summer 
PM2.5 

Average 

Winter 
PM2.5 
Peak 

Winter 
PM2.5 

Average 

40% HD 
ZEV-

Immediate 

-5.70 ppb/ 
-8.5% 

-2.31 ppb/ 
-2.9% 

-1.03 ug/m3 -0.47 ug/m3 -2.86 ug/m3 -1.58 ug/m3 

73% HD 
ZEV-

Immediate 

-10.36 ppb/ 
-16.0% 

-4.18 ppb/ 
-6.7% 

-2.20 ug/m3 -1.03 ug/m3 -6.31 ug/m3 -3.48 ug/m3 

High BEV-
Immediate 

-12.59 ppb/ 
-19.4% 

-5.08 ppb/ 
-8.5% 

-2.77 ug/m3 -1.30 ug/m3 -7.90 ug/m3 -4.36 ug/m3 

High BEV- 
V2G 

-12.90 ppb/ 
-20.1% 

-5.44 ppb/ 
-9.3% 

-2.86 ug/m3 -1.37 ug/m3 -8.68 ug/m3 -4.62 ug/m3 

High H2 - 
Immediate 

-12.58 ppb/ 
-19.4% 

-5.07 ppb/ 
-8.5% 

2.77 ug/m3 -1.30 ug/m3 -7.88 ug/m3 -4.35 ug/m3 

The first three scenarios selected represent increased heavy-duty ZEV deployment for 

the state. For these scenarios, grid emissions increase 26-31% compared to the CPR base case. 

At the same time, transportation emissions decrease by 69-91%. The net impact is a reduction 

in peak and average PM2.5 and tropospheric ozone concentrations. Greater reductions in peak 

and average ozone and PM2.5 concentrations are observed as the level of ZEVs increase. The 

High BEV scenario with immediate charging and the High Hydrogen scenario with immediate 

charging result in nearly identical impacts on air quality. Grid emissions for both scenarios are 

within 2% of each other, and they have the same vehicle emissions assumptions. The greatest 

reduction for the 80% GHG reduction scenarios is achieved for the High BEV scenario with V2G. 

This scenario combines the highest ZEV deployment and the lowest grid emissions.  
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In addition to statewide changes in emissions, it is important to consider spatial 

patterns. The location of pollutant reductions is critical in evaluating the potential health 

benefits and assessing whether the reduction is occurring in locations currently in 

noncompliance. Also, while there is an average reduction across the state, it is important to 

observe whether any regions are negatively impacted. The maximum change in the average 8-

hour ozone concentrations compared to the CPR base case are plotted in Figure 61 for the 40% 

HD ZEV Scenario with Immediate Charging and in Figure 62 for High BEV Scenario – Immediate 

Charging. High BEV Scenario –V2G is in Figure 63.  

 

 
     

Figure 61. Change in Peak Summer 8-hour Average O3 Concentration: 40% HD ZEV Scenario – 
Immediate Charging  
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Figure 62. Change in Peak Summer 8-hour Average O3 Concentration: High BEV Scenario – 
Immediate Charging 

 

 
Figure 63. Change in Peak Summer 8-hour Average O3 Concentration: High BEV Scenario–V2G 

Summer 8-Hour Maximum Difference 
Ozone Concentration (ppb) 

Summer 8-Hour Maximum Difference 
Ozone Concentration (ppb) 



 

156 
 

Increasing ZEV deployment compared to the CPR base case significantly reduces peak 

and average ozone concentrations. The difference between the CPR base case and the 

presented scenarios includes an increase in light-duty, bus, and heavy-duty zero emission 

vehicles. The greatest reductions are observed in the south coast air basin and Kern County. 

Reductions extend north, south, with reductions observed for most of the San Joaquin Valley as 

well as portions of the Sacramento valley and east of Sacramento. Further increasing the heavy-

duty ZEV deployment (Figure 62) results in additional reductions, with most of the state seeing 

reductions in 8-hour ozone concentrations of at least 1.7 ppb during a peak event. Again the 

highest reductions are observed in the south coast air basin and Kern County, peaking around -

11 ppb below the CPR base case. The average reduction across the state is more than twice the 

reduction observed for the 40% HD ZEV scenario. The difference between these scenarios is a 

more than doubling of VMT met by heavy-duty ZEVs and a less than 5% change in GHG 

emissions from the electric grid.   

Increasing ZEV deployment compared to the CPR base case also reduces PM2.5 

concentrations, see Figure 64, Figure 65, and Figure 66 for summer results. The 40% HD ZEV 

scenario with immediate charging results in reductions in the south coast air basin, San Joaquin 

Valley, and Sacramento region compared to the CPR base case. Increasing heavy-duty ZEV 

deployment further reduces the average and peak PM2.5 concentrations, expanding the impacts 

across the state. Maximum reductions were still observed in the same regions.  
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Figure 64. Change in Peak Summer 24-hour Average PM2.5 Concentration: 40% HD ZEV Scenario 
– Immediate Charging  

 

 
Figure 65. Change in Peak Summer 24-hour Average PM2.5 Concentration: High BEV Scenario – 
Immediate Charging 
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Figure 66. Change in Peak Summer 24-hour Average PM2.5 Concentration: High BEV Scenario –
V2G 

Comparing seasonal impacts, reductions shift west in winter compared to the summer 

season, see Figure 67, Figure 68, and Figure 69. Also, PM2.5 reductions are more concentrated in 

the Central Valley and, to a smaller degree, the south coast. Observed reductions in PM2.5 

concentration are also not as widespread across the state in winter compared to summer. The 

spatial change in winter concentrations is driven primarily by meteorology [312]. Summer tends 

to be dominated by westerly winds, but in winter, wind direct shifts and speeds slow resulting 

in more stagnate conditions [313]. For winter, the differences in PM2.5 concentration reductions 

between the High BEV scenarios with immediate charging and with V2G charging are also 

minimal compared to the changes observed with increased ZEV deployment. 
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Figure 67. Change in Peak Winter 24-hour Average PM2.5 Concentration: 40% HD ZEV Scenario – 
Immediate Charging 

 

 
Figure 68. Change in Peak Winter 24-hour Average PM2.5 Concentration: High BEV Scenario – 
Immediate Charging 
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Figure 69. Change in Peak Winter 24-hour Average PM2.5 Concentration: High BEV Scenario –
V2G 

There are much smaller magnitude differences between the High BEV scenario with 

immediate charging and the High BEV scenario with V2G for both ozone and PM2.5 changes, 

which may not be discernable in the previous figures. The maximum difference between these 

two scenarios is around 1 ppb or less for ozone concentrations and around 2 ug/m3 for PM2.5 

concentrations. The difference in ozone concentration and PM2.5 concentration reductions 

between the two scenarios is plotted in Figure 70.  
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Figure 70. Difference between Immediate and V2G Charging for High BEV Scenario in a) Summer 
O3 Concentration Reduction, b) Summer PM2.5 Concentration Reduction, and c) Winter PM2.5 
Concentration Reduction 

Switching from immediate charging to V2G charging/discharging does not affect 

emissions from vehicles, but it results in changes from the electric grid. Immediate and V2G for 

the High BEV scenario were selected because they represent the greatest difference in 
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emissions from the grid as a result of changing charging intelligence. The High BEV scenario 

with V2G represents the greatest reduction in grid GHG reductions compared to the CPR base 

case for the 80% reduction scenarios (-24%), a 42% reduction in grid GHG emissions from the 

High BEV immediate charging case.  

The greatest reductions in ozone and PM2.5 concentrations are observed for Southern 

California, associated with reduced power plant emissions for the High BEV V2G scenario versus 

immediate charging. Winter reductions in PM2.5 concentrations are more widespread than for 

the summer, including reductions in the San Joaquin Valley.  The difference in peak and average 

ozone concentrations between the two scenarios compared to the CPR base case is -0.31 ppb 

and -0.36 ppb, respectively. The change in PM2.5 concentration for the peak summer period is -

0.09 ug/m3 (peak) and -0.07 ug/m3 (average). The change in PM2.5 concentration for the peak 

winter period is -0.78 ug/m3 (peak) and -0.26 ug/m3 (average). 

6.3.2 Air Quality Impacts of a 100% Clean Electric Grid  

 Increasing renewable utilization to achieve a 100% clean electric grid will not only 

reduce grid GHG emissions to zero, it will also remove criteria pollutant emissions from the 

electric grid (assuming biopower does not replace natural gas power plants). The removal of 

power plant emissions will not only affect the surrounding area of each power plant but it will 

also have more regional impacts due to the natural dispersion of pollutants across the state. 

 For the 80% GHG grid emissions scenarios, the greatest increase in grid GHG emissions 

occurred for the High H2 scenario with immediate charging. This scenario is compared here to 

the same vehicle scenario but with a 100% clean grid, in order to demonstrate the maximum 
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potential impact of switching to a 100% clean electric grid for the investigated scenarios. The 

grid emissions from the High H2 scenario with immediate charging are removed and the 

resulting criteria pollutant concentrations are compared to the original, 80% GHG reduction 

High H2 scenario, see Table 27. The differences in criteria pollutant emissions identified here 

can be attributed solely to the removal of all electricity generation emissions in the 100% clean 

electric grid scenario. The vehicle contribution to criteria pollutant emissions is held constant. 

Table 27. Change in Criteria Pollutants for High H2 Scenario with 100% Clean Electric Grid 

 
Summer 

Ozone Peak 

Summer 
Ozone 

Average 

Summer 
PM2.5 Peak 

Summer 
PM2.5 

Average 

Winter 
PM2.5 Peak 

Winter 
PM2.5 

Average 

High H2 - 
Immediate 

-12.58 ppb/ 
-19.4% 

-5.07 ppb/ 
-8.5% 

2.77 ug/m3 -1.30 ug/m3 -7.88 ug/m3 -4.35 ug/m3 

High H2 -
Immediate &  
100% Clean 

Grid 

-16.46 ppb/ 
-21.2% 

-6.65 ppb/              
-10.53% 

-3.51 ug/m3 -2.01 ug/m3 -9.80 ug/m3 -4.98 ug/m3 

 

Peak reduction in summer ozone concentration due to achieving a 100% clean electric 

grid is -3.88 ppb and the average is -1.58 ppb. Peak reduction in summer PM2.5 concentration is 

0.74 ug/m3, with an average reduction of 0.71 ug/m3. Peak reduction in winter PM2.5 

concentration is 1.92 ug/m3, with an average reduction of 0.63 ug/m3. The change in criteria 

pollutant concentrations across the state are plotted in Figure 71, Figure 72, and Figure 73. 

Switching to a 100% clean electric grid reduces ozone concentrations across most of southern 

and central California for the High Hydrogen scenario with immediate charging. The observed 

changes to PM2.5 concentrations vary by seasons. For the peak summer period, reductions in 

PM2.5 concentrations occur in southern California along the coast and smaller areas to the north 
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and east of the south coast air basin. For the winter peak period, reductions in PM2.5 

concentrations occur in the San Joaquin Valley in addition to the south coast air basin. Again, 

these seasonal shifts in impacts is due to the different meteorological conditions between 

summer and winter. In winter, stagnation concentrates primary PM2.5 and provides conditions 

for greater production of secondary PM2.5 [314].  

 

 
Figure 71. Change in Peak Summer 8-hour Average O3 Concentration between High H2 Scenario 
with Immediate Charging and High H2 scenario with a 100% Clean Electric Grid 

Summer 8-Hour Maximum Difference 
Ozone Concentration (ppb) 
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Figure 72. Change in Peak Summer 8-hour Average PM2.5 Concentration between High H2 
Scenario with Immediate Charging and High H2 scenario with a 100% Clean Electric Grid 

 

 
Figure 73. Change in Peak Winter 8-hour Average PM2.5 Concentration between High H2 
Scenario with Immediate Charging and High H2 scenario with a 100% Clean Electric Grid 

Summer 24-Hour Maximum Difference 
PM2.5 Concentration (µg/m3) 

Winter 24-Hour Maximum Difference 
PM2.5 Concentration (µg/m3) 
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Changes in criteria pollutant concentrations can be translated into potential human 

health changes. The Environmental Benefits Mapping and Analysis Program- Community 

Edition (BenMAP-CE), developed by the U.S. Environmental Protection Agency is an open 

source tool to calculate the economic impacts of changes in human exposure to criteria 

pollutants [315]. Economic values are evaluated from treatment costs and “willingness to pay” 

to avoid negative health impacts [316]. The methodology from Benosa et al. (2018) [317] was 

applied to two scenarios—High Hydrogen Scenario with Immediate Charging and the same case 

with a 100% Clean Electric Grid—to evaluate the potential health impacts of decreasing criteria 

pollutant emissions from heavy-duty ZEV and achieving a 100% clean electric grid. The BenMAP 

valuation is in Figure 74. 

 

Figure 74. BenMAP Health Impacts Valuation for Peak Summer Episode: High Hydrogen 
Scenario-Immediate Charging with and without a 100% Clean Electric Grid 
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The reported health impact valuation is the result of the change in criteria pollutant 

exposure for the High Hydrogen scenarios compared to the CPR base case. Comparing the High 

Hydrogen scenario with immediate charging with and without a 100% clean electric grid, the 

electric grid emissions affect potential health savings/costs, particularly for PM-related illness 

and death. The degradation in health impacts degradation associated with the electricity sector 

are $52 million, relative to the $188 million in benefits from electrifying trucks, cars and buses.  

6.4 Levelized Cost of Energy  

 The levelized cost of energy for the electric grid is the cost of energy delivered, levelized 

over the lifetime of the grid resources. It incorporates costs and resource operating parameters 

for each deployed technology, such as capital costs, operation and maintenance costs, fuel 

costs, the lifetime of each resource, and capacity factors [49]. The LCOE values for this analysis 

are calculated using the existing HiGRID Cost of Generation module, with updated costs for 

level 3 EVSE as well as transformer costs in order to account for the higher charging rates 

required for HDVs compared to LDVs. FCEV infrastructure costs, as well as energy storage costs 

are from Wang et al. (2019) [230]. 

6.4.1 Levelized Cost of Energy for 80% Reduction in GHG Emissions Scenarios 

Transformer upgrades will most likely be required for level 2 charging in residential 

areas and for level 3 charging in commercial areas [207]. The BEV and FCEV infrastructure costs 

used in this analysis are in Table 28 and Table 29. The transformer upgrade cost and intelligent 

charging equipment are included as separate costs in the table but are added to the instant 

cost in the model. Costs for installing and operating level 3 chargers are based on existing 

projects, but due to the variability of location-specific costs as well as the relatively small-scale 



 

168 
 

of level 3 EVSE that have been installed, these costs may evolve in the future. Additionally, 

smart and V2G charging strategies are still in development, so the intelligent charging costs 

may also evolve as the technologies mature. A sensitivity to the frequency of transformer 

upgrades will be conducted to evaluate the overall impact of upgrade requirements on LCOE. 

Table 28. LCOE Parameters for BEV Infrastructure 

 Level 2 
(19.2 kW) 

Level 3 
(40 kW) 

Level 3 
(120 kW) 

Level 3 
(350 kW) 

Instant Cost ($/kW)* 157.70 1200 650 384.00 

Fixed O&M ($/kW-yr)** 131.80 96.00 50.00 50.00 

Variable O&M ($/MWh)** 0 0 0 0 

Transformer Upgrade ($/kW) + 69.44 65.00 72.22 74.29 

Intelligent Charging Equipment 
($/kW) ++ 

221.35 106.25 35.42 12.14 

* Values from [202,207], ** Values from [230], +Transformer upgrades costs based on price for 225 kVA 

and 1000 kVA transformers and the number of chargers that can be supported per transformer 

[203,204,207,318], ++Smart/V2G Charging hardware/software upgrade assumed to be $4250 per charger 

[207,208] 

Table 29. LCOE Parameters for FCEV Infrastructure* 

 Alkaline 
Electrolyzer, Onsite 
for Fueling Station 

Solid Oxide 
Electrolyzer, Onsite 
for Fueling Station 

PEM Electrolyzer, 
Onsite for Fueling 
Station 

Instant Cost ($/kW) 289.62 466.60 398.30 

Fixed O&M ($/kW-yr) 10.43 15.40 14.32 

Variable O&M ($/MWh) 1.24 13.00 0.17 
*Values from [230] 

  

The LCOE results for all of the 80% GHG reduction scenarios are in Figure 75. Despite the 

cost of installing BEV and FCEV infrastructure, the increase in the renewable electricity 

utilization by ZEVs results in a decrease in LCOE. This trend continues as more ZEVs are 

integrated. Comparing the High BEV and High H2 scenarios, where there is an equal level ZEV 

deployment, the High H2 scenarios result in a greater utilization of otherwise curtailed 
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renewable electricity and therefore, despite FCEV infrastructure costs, they result in lower 

levelized cost per megawatt-hour.  

 

Figure 75. LCOE for All 80% GHG Reduction Scenarios  

For each scenario, EVSE capacity was calculated from the peak BEV load demand. For 

the smart and V2G charging scenarios, the BEV peak demand increased significantly compared 

to the immediate charging scenarios for the same level of BEV deployment, due to the vehicles’ 

role in providing valley-filling services. Increased peak demand translates to a higher installed 

capacity for EVSE. Increased EVSE capacity requirements for smart charging result in net 

increase LCOE compared to immediate charging, but this is not the case for the V2G charging 

scenarios, where the increase in renewable utilization offsets increased EVSE capacity costs.  

The influence of transformer upgrade costs and intelligent charging equipment costs on 

LCOE values was assessed and was found to have a minimal impact on the portfolio-wide LCOE, 

see Table 30.  
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Table 30. Changes in LCOE from Transformer Upgrades and Intelligent Charging Equipment 
 

CPR 
Base 

40% HD 
ZEV 

73% HD 
ZEV 

High 
BEV 

High H2 

Immediate (Without Upgrade Costs Included) 214.31 202.50 186.89 172.18 148.59 

Change in LCOE with Transformer Upgrade 
($/MWh) 

0.02 0.11 0.11 0.12 0.02 

Smart (Without Upgrade Costs Included) 215.17 204.04 188.90 172.64 148.93 

Change in LCOE with Transformer Upgrade 
($/MWh) 

0.10 0.30 0.37 0.36 0.05 

Change in LCOE with Intelligent Charging 
Equipment ($/MWh) 

0.05 0.15 0.18 0.06 0.15 

V2G (Without Upgrade Costs Included) 213.88 197.50 184.43 166.82 147.91 

Change in LCOE with Transformer Upgrade 
($/MWh) 

0.21 0.42 0.80 0.91 0.06 

Change in LCOE with Intelligent Charging 
Equipment ($/MWh) 

0.10 0.20 0.39 0.15 0.19 

For each scenario, upgrade costs were excluded to determine the “base” cost assuming 

transformer capacities were not exceeded and intelligent vehicle connectivity did not have an 

added cost. Then, costs for transformer upgrades and intelligent charging equipment were 

added back in to isolate the impact of these costs on overall LCOE. The change in LCOE were 

low, less than $1/MWh, indicating that while these upgrades require a relatively high capital 

cost, they do not significantly impact the LCOE of the system.  

6.4.2 Levelized Cost of Energy for a 100% Clean Electric Grid 

For the 100% clean electric grid scenarios, additional stationary ESS capacity is scaled to 

meet the remaining load demand requirements. The cost parameters for these ESS 

technologies are presented in Table 31. The range of costs for different hydrogen storage 

technologies from Wang et al. (2019) is included to demonstrate how different technology 

assumptions may affect the LCOE [230]. The selected technology combination of alkaline 

electrolyzers paired with PEM fuel cells represents a mid-range cost compared to the available 
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electrolyzer-fuel cell configurations. These costs also assume underground storage of hydrogen, 

with costs used in Wang et al. (2019) from [319].  

Table 31. LCOE Parameters for Stationary Energy Storage Technologies* 

 
Lithium Ion 

Batteries 
Range of Costs for H2 
Storage Technologies 

H2 Storage: Alkaline 
Electrolyzer with PEM Fuel 

Cell, Delivered to Grid 

Instant Cost ($/kW) 1327.87 1958.53 – 3236.63 2223.50 

Fixed O&M ($/kW-yr) 307.78 47.81 – 78.37 53.07 

Variable O&M ($/MWh) 2.78 2.99 – 34.44 15.69 
*Values from Wang et al. (2019) [230] 

 The impact of the increased renewable capacity on LCOE are evaluated in Figure 76, 

excluding stationary energy storage deployment.  

 

Figure 76. Levelized Cost of Energy for 100% Clean Electric Grid Pre-ESS Deployment 

Comparing the baseline and overbuild scenarios, increased renewable capacity increases the 

LCOE. Although the 40% HD ZEV overbuild scenarios have the same renewable capacity as the 
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High H2 baseline scenarios, the High H2 baseline scenarios have lower LCOE values, due at least 

in part to increased renewable utilization (reduced curtailment) compared to the 40% HD ZEV 

overbuild scenarios. Differences in LCOE between charging strategies is significantly less 

pronounced compared to LCOE differences between different renewable capacity assumptions. 

However, the trends between the different strategies are consistent with the 80% GHG 

reduction scenarios: smart charging results in the highest LCOE and V2G results in the lowest 

LCOE. Adding smart light-duty vehicle charging results in an increase in LCOE compared to 

heavy-duty V2G-enabled charging only. 

 The addition of energy storage (BESS, hydrogen storage) will increase the capacity of 

resources on the grid, potentially increasing the LCOE. However, at the same time, deploying 

energy storage will improve renewable utilization, increasing the capacity factors of solar and 

wind generation, potentially decreasing the LCOE. The resulting LCOE for each scenario with 

scaled BESS capacity to meet a 100% clean electric grid target is in Figure 77. Adding BESS 

capacity significantly increases LCOE for all scenarios. For the 40% HD ZEV scenarios, the LCOE 

increases by over 600% for the baseline renewable capacity case and by over 300% for the 

overbuild scenarios. For the High H2 scenarios, the LCOE for the baseline renewable capacity 

scenarios increase by over 300% and by over 100% for the overbuild scenarios. 
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Figure 77. Levelized Cost of Energy for 100% Clean Electric Grid with BESS Deployment 

 Whereas the overbuild scenarios pre-energy storage deployment resulted in higher 

LCOE values compared to the baseline scenarios, the overbuilding of renewable capacity 

increases flexibility for battery charging as well as reducing the remaining load needing to be 

met with energy storage. This results in a reduction in the stationary energy storage capacity 

required to meet the 100% clean grid target. The net impact is lower final LCOE values for the 

overbuild scenarios compared to the respective baselines. Again, the difference in LCOE 

between the different BEV charging strategies is overshadowed by the impact of renewable 

capacity. Increased charging intelligence does reduce energy storage capacity required to meet 

the 100% target, and smart light-duty BEVs with V2G-enabled heavy-duty BEVs result in the 

lowest LCOE for all the charging strategy cases.  

 The LCOE values for the 100% clean electric grid scenarios with hydrogen energy storage 

are presented in Figure 78. 
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Figure 78. Levelized Cost of Energy for 100% Clean Electric Grid with Hydrogen Energy Storage 
Deployment 

LCOE values for the hydrogen storage scenarios are about 10% greater than the respective 

scenarios without energy storage deployed. The lower LCOE values of the hydrogen energy 

storage compared to the BESS scenarios is due in part to the difference in how these two 

systems are deployed. The power-energy ratio of the BESS system is fixed at 1:4, resulting in a 

high power short duration configuration. In order to meet the high energy capacity 

requirements of a 100% clean electric grid, a high power capacity must be deployed, 

significantly increasing the cost of the energy storage system. Conversely, for the hydrogen 

energy storage system, the power capacity and energy capacity are scaled independently, 

resulting in a much lower power capacity compared to the BESS cases. Fuel cell and 

electrolyzers are scaled to meet peak “charging” and “discharging” demand, and hydrogen 

storage is scaled to meet energy capacity requirements. The assumption that storage of 

hydrogen underground is relatively cheap means that a large energy capacity can be 

maintained without driving up the LCOE. 
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Due to the long-duration storage potential of hydrogen storage, there is reduced need 

for the increased renewable generation provided by the overbuild scenario. The reduction in 

storage capacity requirements with overbuilding does not offset the increased cost of installing 

greater renewable capacity. The net result is that the overbuild scenarios retain a higher LCOE 

compared to their respective baseline renewable capacity scenarios. 

6.5 Chapter Summary and Conclusions 

 This chapter analyzed the impacts of integrating zero-emission vehicle load demands 

onto a highly renewable grid for the year 2050. The impact of heavy-duty ZEV deployment on 

meeting two different grid GHG emissions goals were evaluated: a) an 80% reduction in GHG 

emissions from 1990 levels and b) a 100% clean electric grid. The difference in grid balancing 

requirements, GHG emissions, air quality, and levelized cost of electricity were determined.    

Based on the results of this chapter, the following conclusions can be drawn: 

1. Home base charging only does not maximize renewable utilization. Home base only 

charging limits renewable utilization by heavy-duty vehicles due to misalignment with 

peak solar. Either target vehicles that have dwell periods during the day (limited), have 

publically available chargers for in-route charging, or utilize an interim medium, such as 

hydrogen which can be produced during renewable periods, stationary energy storage, 

or battery swapping stations.  

2. Enabling intelligent charging of BEVs is critical for reducing peak electricity demand. 

Immediate charging of light-duty and heavy-duty vehicles adds to peak demand periods, 

increasing the balancing generation capacity required. For a grid with natural gas power 
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plants, increased peak demand and the associated ramping demand can increase the 

need for simple-cycle peaker plants and increase grid GHG and criteria pollutant 

emissions. For a 100% clean electric grid, it can increase the energy storage capacity 

required to balance the grid and subsequently increase the levelized cost of energy. 

3. While a high degree of BEV charging intelligence and/or renewable hydrogen 

production through electrolysis can significantly reduce ramp rates, intermittent high 

magnitude ramping events will still need to be addressed with additional support 

technologies. Integrating zero-emission vehicles onto the grid is able to provide load 

smoothing support, but there remain sporadic high ramping events that need to be 

balanced. The reduction in the frequency of high ramping rates reduces reliance on 

peaker plants, however, it does not fully remove the need for fast-responding, dynamic 

power supply.  

4. The conversion of the heavy-duty vehicle fleet to zero-emission vehicles to meet an 

80% reduction in transportation GHG emissions may have positive or negative impacts 

on electric grid emissions depending on charging strategies. Heavy-duty BEVs relying 

on uncoordinated charging can increase peak load demand and exacerbate power plant 

ramping. Intelligent charging of heavy-duty BEVs and renewable hydrogen production 

are both effective methods for utilizing otherwise curtailed renewable generation and 

reducing ramping requirements, but may still increase grid GHG emissions if relying on 

natural gas power plants for grid balancing. Heavy-duty BEVs equipped with V2G 

capability can effectively reduce peak electricity demand and increase renewable 
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penetration. At very high levels of heavy-duty BEVs with V2G charging, grid GHG 

emissions can be halved compared to immediate charging.   

5. Increased GHG emissions from the electric grid for the immediate and smart charging 

scenarios are more than offset by reductions in GHG emissions from the 

transportation sector. While the grid emissions increase significantly under immediate 

and smart charging of a high penetration of heavy-duty BEVs, the net impact is an 

overall reduction in system wide GHG emissions. In 2050, the greatest increase in grid 

GHG emissions is on the scale of 10 MMT CO2e, whereas the decreases in the 

transportation sector range from 60 MMT CO2e or more. The impact of the spatial shift 

in criteria pollutant emissions can be observed in the air quality results.  

6. Overbuilding renewable capacity can reduce grid GHG emissions regardless of 

additional zero-emission support technologies, but has diminishing returns and may 

increase LCOE. The increase in renewable capacity from the 80% reduction scenarios 

resulted in additional GHG reductions. However, the marginal GHG reduction potential 

of overbuilding decreases as renewable capacity increases. Additionally, if the added 

renewable generation is left under-utilized, LCOE will increase.  

7. Utilizing intelligent charging of heavy-duty BEVs has only marginal impacts in reducing 

the scale of energy storage required to meet a 100% clean electric grid. While 

intelligent charging of heavy-duty vehicles decreased grid emissions and reduced 

ramping requirements for balance generation for the 80% GHG reduction scenarios, 

meeting a 100% clean electric grid requires energy shifting across longer timescales than 
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heavy-duty vehicles can provide, and therefore, significant additional energy storage 

capacity was required for all scenarios.  

8. Hydrogen energy storage can be more efficiently scaled than battery energy storage to 

meet the balancing requirements of a 100% clean electric grid. The buildout of battery 

energy storage required a BESS power capacity well over 1000 GW for most cases, 

despite peak net demand 75 GW or less and minimum negative load associated with 

curtailed renewable generation about 160 GW or less. The high power capacity of the 

BESS system is required in order meet the energy shifting requirements of a 100% clean 

electric grid. An energy storage technology, such as hydrogen storage, that has power 

and energy capacity decoupled such that each can be scaled appropriately may reduce 

costs of meeting a 100% renewable grid. The net impact on LCOE of a different storage 

technology will depend on the cost of storing energy (eg. in the natural gas pipeline, 

underground storage, tanks, etc.). 

9. An 80% reduction in GHG emissions from HDVs through ZEV adoption has significant 

air quality co-benefits.  Expanding zero-emission vehicle deployment into the heavy-

duty sector significantly reducing peak ozone and PM2.5 concentrations in key regions 

of California that are currently in nonattainment.   

10. Further reducing grid emissions to achieve a 100% clean electric grid has non-trivial 

impacts on air quality. While reducing heavy-duty vehicle emissions has a greater 

impact on air quality across the state, achieving a 100% clean electric grid can reduce 

criteria pollutant concentrations.  
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11. The integration of zero-emission vehicles onto the grid can reduce the LCOE due to the 

increased utilization of renewable generation. The expanded heavy-duty vehicle 

deployment scenarios resulted in a decrease in the LCOE. The High Hydrogen scenarios, 

which utilized the most otherwise curtailed renewable generation resulted in the 

greatest reduction in LCOE compared to the CPR base case (about 31% lower).  
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Chapter 7. Summary, Conclusions, and Future Work 

7.1 Summary 

The goal of this dissertation was to identify and assess the role of zero-emission heavy-

duty vehicles in supporting an ultimate target of a 100% clean electric grid system. To achieve 

this goal, the literature was reviewed, and several gaps were identified for critical study, 

including the ZEV feasibility for the California heavy-duty sector, the impact of heavy-duty zero 

emission vehicles on the electric grid assuming different deployment strategies, and the 

potential for grid-connected heavy-duty vehicles to provide grid services. This work developed a 

heavy-duty vehicle charging model to evaluate the charging behavior of future instate heavy-

duty BEVs under different deployment assumptions. It also employed an existing hydrogen 

demand model to simulate FCEV demands on the electric grid.  

Scenarios with expanded heavy-duty ZEV deployment were developed for the year 2050 

assuming a) an 80% reduction in grid GHG emissions and b) a 100% clean electric grid. These 

deployment strategies were evaluated based on changes to grid performance and balancing 

requirements, GHG emissions, air quality, and levelized cost of electricity. For the scenarios, 

tradeoffs between the different metrics were discussed and air quality improvements were 

translated into potential health benefits.  

7.2 Conclusions 

In addition to the Chapter 4 and Chapter 6 conclusions, the following are overarching 

conclusions from this dissertation: 
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1. Significant heavy-duty ZEV deployment is achievable with existing and near-term 

technologies. About half of heavy-duty vehicle travel demand can be met with battery 

and fuel cell electric vehicle models available or in development, given their reported 

technical specifications. A majority of this travel demand will be for light-heavy and 

medium-heavy duty vehicles. Increasing the share of heavy-heavy duty vehicle travel 

demand that can be met with ZEVs will require improving vehicle design and optimizing 

charging/fueling strategies. The actual adoption rate of heavy-duty ZEVs will depend on 

cost, willingness to adopt, vehicle turn-over rates, and infrastructure availability to 

support charging and/or refueling needs.  

2. Heavy-duty ZEV deployment will require significant infrastructure expansion. 

Expanding ZEV adoption will require investment in charging stations, grid upgrades, and 

hydrogen refueling stations to support ZEVs. Heavy-duty ZEVs require three or more 

times the energy per mile compared to light-duty ZEVs, and therefore, Level 3 charging 

will be required to support higher volumes of heavy-duty BEVs and high capacity 

hydrogen refueling stations will be needed to meet the travel demands of FCEVs.  

3. As more sectors are electrified, it will be important to maximize the flexibility of these 

new loads in order to maintain grid performance. In this analysis, integrating 

uncoordinated heavy-duty BEVs resulted in increased peak electricity demand and 

higher ramping rates. This in turn made it more difficult to achieve the emissions 

reduction targets of an 80% GHG reduction and a 100% clean electric grid. By increasing 

vehicle load flexibility, grid performance improved, and with V2G-enabled charging, 

vehicle integration reduced grid balancing requirements. Other sectors, such industry or 
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residential, that are planning to reduce their emissions by electrifying equipment and/or 

processes have the same potential to hinder or support the electric grid’s performance.  

4. Utility pricing structures and market participation rules may need to be updated in 

order to support heavy-duty vehicle participation in grid services. Increasing the 

charging intelligence of heavy-duty BEVs resulted in increased charging peaks. The net 

impact is improved grid performance at the regional scale. However, in order achieve 

load smoothing, it requires that vehicles are not penalized for increasing local peak 

demand. As previously discussed, commercial buildings are charged a “Demand Charge” 

based on their peak electricity use as a way to disincentive them from exceeding local 

transformer limits, which may result in transformer repair and upgrade costs. However, 

demand charges would be a disincentive vehicles to provide certain grid services. 

Utilities must consider, as BEV adoption grows, which is more valuable: to have dynamic 

load support or to limit transformer upgrades.  

5.  Reducing GHG emissions in the electric grid sector and/or transportation sector by 

more than 80% can provide greater flexibility to sectors that are not well-equipped to 

reduce their emissions. In order to meet the 80% reduction in GHG emissions from 

1990s levels, increases in grid or transportation emissions would need to be offset by 

another sector. Conversely, decreases in either grid emissions or transportation 

emissions beyond the 80% GHG emissions target may provide other sectors some 

flexibility in how much they reduce their emissions. A 100% clean electricity grid would 

provide further flexibility to other sectors. However, replacing equivalent reductions in 
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GHG emissions in another sector may have varying impacts on air quality, due to 

differences in criteria air pollutant emissions between sectors. 

7.3 Future Work 

Historical travel patterns were assumed for this analysis. However, there may be 

opportunities for drivers to shift their behavior in response to fueling and charging constraints 

of heavy-duty zero-emission vehicles. Future work should investigate the willingness of drivers 

to change routes to meet charging demand or to better align with renewable generation. 

The literature review for this work identified uncertainty surrounding the share of Class 

2B/3 vehicles operated for commercial versus personal use. Due to their relatively high fuel 

efficiency and large share of total heavy-duty VMT, these vehicles are an important potential 

market for zero-emission vehicles. Further examination of Class 2B/3 travel behavior can 

provide insight into zero emission vehicle feasibility for and refine our understanding of future 

grid impacts from electrifying these vehicles.  

This dissertation focused on the electrification of in-state vehicles, due to their more-

likely candidacy for zero-emission vehicles, but also due to limited data on out-of-state vehicle 

trip data. Future work should investigate BEV feasibility for out-of-state vehicles and how 

charging behavior of out-of-state vehicles will differ from in-state vehicles, including charging 

time, charging EVSE requirements, and the reliance on public versus home base locations for 

charging. Additionally, surveying out-of-state businesses that send vehicles to California may 

provide insight into their willingness to adopt zero-emission vehicles.  
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Further investigating vocation-specific behavior can help identify fleets whose travel 

behavior are well-suited for zero-emission vehicles and have dwell times that align well with 

renewable availability. It can also identify fleets where FCEVs may better meet travel demands 

and where vehicle dwell periods do not align well with renewable generation and may benefit 

from either FCEV or intelligent BEV deployment to avoid negative impacts on the grid.  

Lastly, the air quality analysis identified general regions where air quality improvements 

would occur with heavy-duty ZEV deployment. However, further work should identify the net 

impacts on disadvantaged communities.  It should also investigate whether nonlinear ozone 

formation dynamics may result in an increase in ozone concentrations in disadvantaged 

communities.
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Appendix 

Table A.1 Operation Days for EMFAC Vehicle Categories, data from [1,2] 

 
VCC EMFAC2011 Fuel  Days 

32028 
All Other 
Buses Dsl 292 

12100 LDA Dsl 347 

13100 LDA Elec 347 

11100 LDA Gas 347 

21100 LDT1 Gas 347 

22100 LDT1 Dsl 347 

23100 LDT1 Elec 347 

21200 LDT2 Gas 347 

22200 LDT2 Dsl 347 

21400 LHD1 Gas 327 

22400 LHD1 Dsl 327 

21500 LHD2 Gas 327 

22500 LHD2 Dsl 327 

41000 MCY Gas 347 

22300 MDV Dsl 347 

21300 MDV Gas 347 

51000 MH Gas 327 

52000 MH Dsl 327 

32027 Motor Coach Dsl 292 

31028 OBUS Gas 327 

22703 PTO Dsl 312 

32026 SBUS Dsl 327 

31026 SBUS Gas 327 

22601 T6 Ag Dsl 312 

22605 
T6 CAIRP 
Heavy Dsl 312 

22604 T6 CAIRP Small Dsl 312 

22609 
T6 Instate 
Constr. Heavy Dsl 312 

22608 
T6 Instate 
Constr. Small Dsl 312 

22611 
T6 Instate 
Heavy Dsl 312 

22610 
T6 Instate 
Small Dsl 312 

22613 T6 OOS Heavy Dsl 312 

22612 T6 OOS Small Dsl 312 

22602 T6 Public Dsl 312 

22614 T6 Utility Dsl 312 

21600 T6TS Gas 327 

22701 T7 Ag Dsl 312 

22706 T7 CAIRP Dsl 312 

22707 
T7 CAIRP 
Constr. Dsl 312 

22715 T7 NNOOS Dsl 312 

22716 T7 NOOS Dsl 312 

22717 T7 Other Port Dsl 312 

22718 T7 POAK Dsl 312 

22719 T7 POLA Dsl 312 

22702 T7 Public Dsl 312 

22720 T7 Single Dsl 312 

22721 
T7 Single 
Constr. Dsl 312 

22724 T7 SWCV Dsl 312 

24724 T7 SWCV NG 312 

22722 T7 Tractor Dsl 312 

22723 
T7 Tractor 
Constr. Dsl 312 

22714 T7 Utility Dsl 312 

21700 T7IS Gas 327 

32025 UBUS Dsl 327 

34025 UBUS NG 327 

31025 UBUS Gas 327 

23200 LDT2 Elec 347 

23300 MDV Elec 347 

24602 T6 Public NG 312 

24605 
T6 CAIRP 
Heavy NG 312 

24608 
T6 Instate 
Constr. Small NG 312 

24609 
T6 Instate 
Constr. Heavy NG 312 

24610 
T6 Instate 
Small NG 312 

24611 
T6 Instate 
Heavy NG 312 

24614 T6 Utility NG 312 

24702 T7 Public NG 312 

24706 T7 CAIRP NG 312 

24707 
T7 CAIRP 
Constr. NG 312 

24718 T7 POAK NG 312 

24719 T7 POLA NG 312 

24720 T7 Single NG 312 

24721 
T7 Single 
Constr. NG 312 

24722 T7 Tractor NG 312 

24723 
T7 Tractor 
Constr. NG 312 

34026 SBUS NG 327 

34028 
All Other 
Buses NG 292 

  




