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Abstract

The circadian timing system orchestrates daily rhythms in physiology and behavior via the 

suprachiasmatic nucleus (SCN), the master brain clock. Because endocrine secretions have far-

reaching influence on the brain and periphery, circadian regulation of hormones is essential for 

normal functioning and disruptions to circadian timing (e.g., irregular sleep patterns, limited 

exposure to sunlight, jet lag, nighttime light exposure) have detrimental health consequences. 

Herein, we provide an overview of circadian timing in three major endocrine axes, the 

hypothalamo-pituitary-gonadal (HPG), hypothalamo-pituitary-adrenal (HPA) and hypothalamo-

pituitary-thyroid (HPT) axes, and then consider the negative health consequences of circadian 

disruptions in each of these systems. For example, disruptions to HPG axis circadian timing lead 

to a host of negative reproductive outcomes such as irregular menstrual cycles, low sperm density 

and increased rates of miscarriages and infertility. Dysregulation of HPA axis timing is associated 

with obesity and metabolic disease, whereas disruptions to the HPT axis are associated with 

dysregulated metabolic gene rhythms in the heart. Together, this overview underscores the 

significance of circadian endocrine rhythms in normal health and disease prevention.
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1. Introduction

Walter Cannon coined the term homeostasis (standing the same) to describe the remarkable 

precision with which brain and bodily processes are maintained within stable operating 

parameters to promote optimal health and prevent illness [1]. However, physiological and 

behavioral needs vary markedly and predictably over the course of the day, necessitating that 
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biological systems adjust correspondingly. he circadian timing system synergizes with 

homeostatic drive to anticipate changing daily requirements and modify central and 

peripheral physiology accordingly. Under ideal circumstances, exposure to sunlight during 

the day and darkness at night optimally entrains (synchronizes) endogenously-generated 

circadian rhythms to environmental time to temporally coordinate neural and hormonal 

events for optimal health and functioning. Unfortunately, a major consequence of the 

modern lifestyle is increased exposure to sun-free environments during the day and artificial 

lighting at night, resulting in an incongruence between the endogenous circadian timing 

system and the external environment [2,3]. Such concerns have attracted the attention of the 

medical community, with the American Medical Association adopting a policy statement on 

the dangers of light at night for a number of maladies [4].

Hormones are substantial regulators of biological and behavioral events, including sexual 

motivation and reproduction, feeding and metabolism, sleep and vigilance, and immune 

function. Given the broad functional implications of hormones and their ability to travel long 

distances through the bloodstream, rhythms in endocrine secretions have far-reaching 

consequences for physiology and behavior [5–8]. Likewise, circadian-controlled rhythms in 

physiology and behavior (e.g., feeding) can influence rhythmic endocrine secretion (e.g., 

[9]; Figure 1). In the present overview, we consider circadian timing in three major 

endocrine axes (the hypothalamo-pituitary-gonadal (HPG), hypothalamo-pituitary-adrenal 

(HPA) and hypothalamo-pituitary-thyroid (HPT) axes) their functional significance, and 

clinical implications when their circadian timing is disrupted.

2. The Circadian Timing System

The circadian system includes a master brain clock in the suprachiasmatic nucleus (SCN) of 

the anterior hypothalamus that is synchronized to environmental time via a direct retinal 

pathway [10]. The SCN has direct access to environmental time cues and uses neural, 

diffusible and autonomic communication to convey timing information to the whole 

organism [5,11]. By communicating to hypothalamic neuroendocrine cells and hormone-

producing glands, the SCN has widespread influence over the timing of physiology and 

behavior. At the cellular level, circadian rhythms are generated by a autoregulatory 

transcription-translation feedback loop consisting of clock genes and their protein products 

[12]. The core feedback loop begins in the morning with the clock protein, CLOCK, binding 

to BMAL1 to drive the transcription of the Period (Per1 and Per2) and Cryptochrome (Cry1 
and Cry2) genes. Over the course of the day, Per and Cry transcripts are translated into their 

respective proteins that inevitably feed back to the cell nucleus to repress CLOCK:BMAL1-

mediated transcription until the next morning when transcription resumes. Circadian 

timekeeping is a ubiquitous property of cells throughout the brain and body, with virtually 

all cells exhibiting circadian timekeeping [13]. However, in the absence of light input, the 

SCN maintains indefinite circadian rhythms at the tissue level due to unique coupling among 

independent oscillators in this master pacemaker. In contrast, in the absence of master clock 

communication or other entraining stimuli, extra-SCN brain loci and peripheral organs 

exhibit loss of rhythmicity after several cycles [14,15]. This loss of rhythmicity in extra-

SCN systems results from loss of coupling among cellular oscillators having slightly 

different periods [16]. Disruptions to this circadian timing through night or rotating shift 
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work, international travel, irregular sleep patterns, limited exposure to sunlight, and 

exposure to light pollution and electronic devices at night precipitates a host of illnesses, 

including obesity and metabolic disease [17,18], breast cancer [19], prostate cancer [20], 

mental illness [21,22], and reproductive deficits [23,24].

3. The Hypothalamo-Pituitary Gonadal Axis

The HPG axis controls reproduction, including the generation and maintenance of gametes 

and sexual motivation and behavior. Secretion of hypothalamic gonadotropin-releasing 

hormone (GnRH) triggers the release of the gonadotropins, luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH), from the anterior pituitary. In turn, LH and FSH 

stimulate gonadal sex steroid (i.e., estradiol, progesterone, and testosterone) synthesis and 

secretion and gamete maturation, respectively. Sex steroids and gonadotropins feed back 

onto the HPG axis to regulate its activity. Hormones produced by the HPG axis are under 

strong circadian control [5,6], with male and female reproductive function negatively 

affected by disruptions to circadian timing [23–25].

3.1 Circadian timing and female reproduction

Converging lines of evidence implicate a critical role for circadian timing in successful 

female reproduction across mammalian species, including humans (see [23,24,26–28] for 

comprehensive reviews on this topic). Ovulation, behavioral estrus, fertilization, pregnancy 

maintenance, and birth each require specific temporal patterns of hormone secretion 

regulated by the circadian system [29–33]. The negative consequences of chronic circadian 

disruption for female reproductive health are underscored in studies investigating women or 

animals with marked circadian deficits. Women with irregular work or sleep cycles, for 

example, exhibit abnormal menstrual cycles [34,35], reduced fertility [36,37] and increased 

miscarriage rates [37–39]. In rodents, destruction of the SCN, its neural output, or the genes 

regulating cellular clock function lead to pronounced abnormalities in ovulation and 

fecundity [40–44].

Because the majority of functional studies have explored the role of the circadian system in 

ovulation, the present overview will focus on this aspect of the female reproductive cycle. In 

spontaneously ovulating mammals, estradiol secretion from maturing ovarian follicles 

maintains LH at low concentrations through estradiol negative feedback during the follicular 

phase of the ovulatory cycle. Just prior to ovulation, estradiol negative feedback is 

suppressed and estradiol acts through positive feedback to stimulate the LH surge that 

initiates ovulation. Findings across rodent species by our group and others have shown that 

the SCN acts to coordinate the timing of negative and positive feedback via actions on the 

inhibitory neuropeptide, gonadotropin-inhibitory hormone (GnIH; also know as RFamide-

related peptide 3) and the stimulatory neuropeptide, kisspeptin (reviewed in [45–47]). At the 

time of the preovulatory LH surge that stimulates ovulation, the SCN suppresses estradiol 

negative feedback by acting on GnIH neurons and stimulates estradiol positive drive via 

actions on the kisspeptin and GnRH systems. In addition to these monosynaptic projections 

to neuroendocrine cells, the SCN may be communicating via autonomic outflow through the 

PVN to the ovary [48,49]. Finally, circadian timekeeping at the level of GnIH, GnRH and 
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kisspeptin neurons furthers precision in the balance of these negative and positive and 

regulators [50–53] (Figure 1).

In addition to actions at the level of the brain, cellular clocks in the ovary have been 

implicated in follicular growth, hormone synthesis, and ovulation [54], with clock gene 

expression observed in theca, granulosa, and luteal cells [55]. Additionally, abnormal 

rhythms of Per2 are seen in ovary in a mouse model of polycystic ovarian syndrome [56], 

suggesting abnormal ovarian rhythmicity may contribute to the symptoms of the disease. 

Using RT-qPCR, rhythms in clock genes are observed in the rat ovary across the ovulatory 

cycle [57]. Likewise, in rats with a luciferase reporter for Per1, circadian rhythms are seen in 

the ovary in vitro with large phase adjustments observed in response to LH and FSH [58]. In 
vivo, rats treated with LH during the subjective night ovulate more frequently and produced 

more oocytes than animals treated during the subjective day[59]. Together, these results 

suggest that ovarian timers mediate the sensitivity of the ovary to LH across the day, further 

establishing an important role for the circadian system in ovulation. The generation of 

ovarian cell-phenotype-specific clock gene knockout/knockdown mice will help to clarify 

the specific role of ovarian clocks.

3.2 Circadian timing and male reproductive function

Although the significance of circadian timing in male reproduction has received less 

attention than that of females, several lines of evidence point to an important role for 

rhythmicity in males. Men exhibit daily changes in semen quality and sperm numbers 

[60,61], and those who work irregular shifts exhibit compromised fertility and lower sperm 

density, motile count, and testosterone [20]. Global knockout of Bmal1 leads to loss of 

circadian rhythmicity and infertility in male mice, presumably due to abnormal hormone 

secretion, small testes and seminal vesicles, and low sperm count [62]. However, testes from 

these mice still produce viable sperm, suggesting infertility may be due to alterations in 

behavior in these mice. More recent findings reveal that Bmal1 knockout males fail to mate 

with receptive females [63]. Interestingly, this deficit appears to be due abnormal olfactory 

processing. Although the vomeronasal organ (VNO) responds appropriately to pheromonal 

stimulation, hypothalamic targets of the VNO do not respond properly to downstream 

signaling from the VNO. These findings indicate that, although Bmal1 knockout mice may 

be capable of sexual behavior, the motivation to engage is such behavior is abolished due to 

deficits in olfactory processing. Whether these deficits result from loss of rhythmicity in 

neural targets of the olfactory system or through pleiotropic effects resulting from the loss of 

Bmal1 remains to be determined. Together, these findings point to several factors that may 

contribute to infertility in Bmal1 knockout mice, deficits in hormone secretion, reduced 

sperm production, and reduced sexual motivation.

In mice, clock genes are expressed in the testes, but do not exhibit detectable rhythms [64–

66]. In Clock mutant mice, Per1 expression is not altered relative to wild-type mice, 

indicating that typical CLOCK:BMAL1-mediated transcription may not drive Period gene 

production in mouse testis [66]. Mice lacking Bmal1 have reduced steroidogenic acute 

regulatory protein (StAR), the rate-limiting enzyme in steroidogenesis, reduced serum 

testosterone levels, and elevated LH concentrations [62], pointing to a central role for this 
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clock gene in normal testicular function. Intriguingly, in Syrian hamster testis, Per1 and 

Bmal1 are expressed rhythmically [67]. This same study identified two Per1 transcripts in 

testis that differed from those seen in mice and other hamster organs, with these transcript 

variants lacking a nuclear localization signal and lacking a putative CRY1-binding domain. 

Whether or not these hamster transcript variants account for the apparent rhythmicity of 

testicular clock gene expression in this species remains to be determined.

4. Hypothalamo-Pituitary Adrenal Axis

The HPA axis regulates arousal and energy mobilization under typical conditions and 

rapidly mobilizes energy from stored sources to facilitate the fight or flight response. 

Analogous to the HPG axis, the hypothalamic peptide, corticotropin-releasing hormone 

(CRH), is released into the anterior pituitary blood supply and stimulates the release of 

adrenocorticotropic hormone (ACTH). ACTH released into systemic circulation, in turn, 

acts on the adrenal cortex to stimulate glucocorticoid (GC) (i.e., cortisol and corticosterone) 

release. GC acts broadly within the brain and body through negative feedback to inhibit its 

own production. Humans, non-human primates, and rodents exhibit pronounced daily GC 

rhythms that persist in constant conditions, with GC concentrations rising prior to waking, 

decreasing throughout the day, and falling in anticipation of sleep [5,68,69]. Like the 

ovaries, the adrenal glands exhibit rhythms in clock gene expression that likely drive daily 

changes in responsiveness to ACTH stimulation and stress [70–73]. Rhythms in adrenal GC 

secretion and adrenal clock gene expression are eliminated by SCN lesions [74,75], 

suggesting that circadian rhythms in individual cells of the adrenal become uncoupled in the 

absence of SCN input.

The SCN drives rhythmic secretion of GC through several pathways (Figure 1). The first 

pathway indirectly targets CRH neurons in the paraventricular nucleus of the hypothalamus 

(PVN) through SCN arginine vasopressin-ergic projections to an area just below the PVN 

(the subPVN) and the dorsomedial hypothalamus (DMH) [76–78]. In turn, the subPVN and 

DMH regulate CRH production. Secondly, the SCN continues through this PVN pathway, 

sending autonomic outflow through a multisynaptic projection to the adrenal cortex [79]. As 

removal of the pituitary (and resulting abolition of ACTH secretion) does not alter clock 

gene rhythmicity in the adrenal cortex [72], it is likely that SCN control of autonomic input 

to the adrenals is responsible for the coordination/maintenance of adrenal cellular clocks. 

Finally, feeding influences GC rhythms, underscoring the importance of circadian-controlled 

behavior in maintaining typical endocrine rhythmicity [9].

GC can act throughout the periphery to set the phase of oscillators in individual peripheral 

systems [9,80–82]. As a result, disruptions to GC rhythms have far-reaching,negative impact 

on normal physiology, particularly metabolism (see [83] a review of this topic). Travel in 

humans and experimental jet lag in rodents increases GC [84,85], contributing to negative 

health consequences of circadian disruption. In addition, advancing the sleep-wake and 

light-dark cycles by 8 hours in humans results in elevated nighttime cortisol concentrations, 

likely contributing to difficulty falling asleep at the new circadian phase. Individuals 

suffering from depression have abnormal cortisol and ACTH rhythms, with the trough of 
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both hormones advanced 3 h [86,87]. Whether disruptions to the cortisol rhythm are a cause 

or consequence of depressive symptoms remains to be determined.

Given the role of GC in energy mobilization and utilization, disruptions to HPA axis 

rhythmicity are implicated in obesity and metabolic disease. Chronic stress, for example, 

results in elevated GC concentrations and abnormal GC rhythmicity and is associated with 

obesity, insulin resistance, dyslipidemia, hypertension, and hyperglycemia [83]. Obese mice 

and humans exhibit flattened GC rhythms, further pointing to HPA axis dysregulation in 

obesity [88,89]. People with select polymorphisms in the Clock gene are at greater risk for 

obesity and metabolic disease [90,91]. Furthermore, patients with abnormal HPA axis 

functioning and receiving cortisol replacement at tonic high levels (rather than mimicking 

the endogenous rhythm) are at greater risk for cardiovascular and metabolic bone disease 

[92]. Likewise, Cry deficient mice exhibit HPA axis deficits and are vulnerable to obesity 

and enhanced fat deposition when fed a high fat diet [93]. Similarly, mice deficient in Clock 
or Bmal1 exhibit abnormal glucose and triglycerides rhythms, and develop obesity, 

hyperlipidemia and diabetes mellitus [94,95]. Although these disease risks have not been 

directly linked to disruptions in HPA axis rhythmicity in these knockout mice, it is 

noteworthy that glucocorticoid excess results in the same negative outcomes across studies 

[83]. Whereas it has been challenging to specifically link alterations in HPA axis rhythms 

directly to metabolic outcomes, these converging lines of evidence, along with established 

functions of GC, suggest that disrupted HPA rhythms contribute to metabolic dysregulation.

4. Hypothalamo-Pituitary Thyroid Axis

The HPT axis is responsible for regulating metabolism. Hypothalamic release of 

thyrotropin-releasing hormone (TRH) into the anterior pituitary stimulates production and 

release of thyroid-stimulating hormone (TSH) in the general circulation. TSH stimulates 

production of thyroid hormones from the thyroid gland. Thyroid hormones are initially 

produced as thyroglobulin, which is converted primarily to thyroxine (T4). T4 is considered 

inactive and is further converted into the active thyroid hormone, triiodothyronine (T3) in 

target tissues. In humans, the HPT axis is under circadian control, with free T3 and TSH 

being low during the day and high at night [96,97]. In rats, TSH is rhythmic and in antiphase 

to that of humans (low during the night and high during the day), with rhythmic secretion 

abolished by SCN lesions [98–100]. As with the adrenals, clock genes (Per1 and Bmal1) are 

rhythmically expressed in the rat thyroid [101]. Whereas daily rhythms in thyroid hormones 

are abolished by hypophysectomy, rhythms in clock gene expression are unaffected, 

suggesting that thyroid clock maintenance is accomplished through SCN autonomic 

innervation of the thyroid gland. Indeed, retrograde transneuronal tracing from the thyroid 

gland reveals multisynaptic projections from the SCN [100]. This same study found direct 

projections to TSH neurons located in the PVN, indicating that, as with the HPA and 

potentially the HPG axes, the SCN regulates thyroid hormone secretion both via actions on 

TSH neuroendocrine cells and via autonomic outflow to the thyroid (Figure 1).

Relative to the HPA and HPG axis, less work has focused on the negative effects of 

disrupted HPT axis rhythms. Given the contribution of circadian disruption to obesity and 

metabolic disease, it is feasible that disruptions to the HPT axis contribute to these 
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outcomes. Thyroidectomy followed by ‘flat’ T3 replacement negatively impact clock and 

metabolic genes in the heart and may contribute to heart conditions associated with hypo-

and hyperthyroid disease [102]. In mice, exposure to constant light reduces TSH 

concentrations and abolishes day-night rhythms in free T3 and leptin [103], indicating that 

entraining stimuli likely contribute to HPT axis rhythmicity and underscore the importance 

of stable exposure to day-night cycles in maintaining HPT axis health. Finally, thyroid 

cancer is associated with dysregulated clock gene expression in thyroid cells during the 

transition from a benign to malignant state [104,105]. Whether dysregulated clock gene 

expression is a cause or consequence of this transition remains to be determined.

5. Conclusions and Considerations

Circadian control of physiological functioning is ubiquitous throughout the brain and body 

and contributes to the maintenance of optimal health. The endocrine system provides a 

mechanism of circadian control by which systemic chemical communicators can broadly 

influence organismal rhythms. Disruptions to endocrine rhythms are associated with 

deteriorating health and vulnerability to disease. Given that circadian disruption is virtually 

inescapable in the modern world, it is imperative to develop strategies to maximize circadian 

health in the face of such chronic disruptions. Likewise,this overview underscores the 

importance of educating patients suffering from chronic or recurrent disease, as well as 

healthy individuals, about the importance of consistent sleep-wake patterns, exposure to 

sunlight, and avoidance of nighttime lighting wavelengths that markedly alter circadian 

timing.
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Highlights

• The circadian system coordinates physiology and behavior with time of day

• Hormones broadly affect central and peripheral physiology and behavior.

• The circadian system coordinates endocrine timing via direct communication 

to neuroendocrine cells, autonomic outflow to endocrine glands and through 

and rhythmic behavior.

• Disruptions to endocrine timing have marked, negative impact on normal 

physiology and behavior and are associated with a variety of disease states.
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Figure 1. 
The SCN influences endocrine timing via projections to neuroendocrine cells in the brain, 

autonomic outflow through initial projections to the PVN, and rhythmic behavioral output. 

Autonomic outflow from the SCN to the gonads, while likely, has not been specifically 

examined. Peripheral clocks are found in the gonads, adrenals, and thyroid, keeping their 

own circadian time coordinated by the SCN. Peripheral clock functioning likely serves to 

further control hormonal output from these glands. Finally, hormones from these glands feed 

back to the hypothalamus and pituitary to further regulate their own production and 

secretion.
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