
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Towards Adversarial Robustness of Sequential Decision Making Algorithms

Permalink
https://escholarship.org/uc/item/7z241037

Author
Liu, Guanlin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z241037
https://escholarship.org
http://www.cdlib.org/

Towards Adversarial Robustness of Sequential Decision Making Algorithms

By

GUANLIN LIU

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Lifeng Lai, Chair

Junshan Zhang

Khaled Abdel-Ghaffar

Committee in Charge

2024

i

Abstract

Reinforcement Learning (RL) is a framework for control-theoretic problems that make

decisions over time under uncertain environments. RL has many applications in a variety of

scenarios such as displaying advertisements, articles recommendation, cognitive radios, and search

engines, to name a few. The growing applications of RL in security and safety-critical areas, such as

large language models and autonomous driving, highlight the need for adversarially robust RL and

motivate this work. In order to develop trustworthy machine learning systems, we make progress in

understanding adversarial attacks on learning systems and correspondingly building robust defense

mechanisms.

In this dissertation, we discuss our work in mainly five increasingly complex scenarios.

Firstly, we introduce a new class of attacks named action manipulation attacks on stochastic

multi-armed bandits, which is special class of RL problem with only one state in the state space. In

this class of attacks, an adversary can change the action signal selected by the user. We show

that without knowledge of mean rewards of arms, our proposed attack can manipulate Upper

Confidence Bound (UCB) algorithm into pulling a target arm very frequently by spending only

logarithmic cost. To defend against this class of attacks, we introduce a novel algorithm that is

robust to action-manipulation attacks when an upper bound for the total attack cost is given. We

prove that our algorithm has a pseudo-regret upper bounded by O(max{log(T), A}) with a high

probability, where T is the total number of rounds and A is the upper bound of the total attack cost.

Secondly, we design action poisoning attack schemes against linear contextual bandit

algorithms in both white-box and black-box settings. Contextual bandits are a class of problems

that sit between the stochastic multi-armed bandits and the general RL. In contextual bandits, one

learns in different states, but the state transition is independent on the agent’s action and the state.

We analyze the cost of the proposed attack strategies for a very popular and widely used bandit

algorithm: LinUCB. We further extend our proposed attack strategy to generalized linear models.

Thirdly, building on the work on multi-arm bandits and contextual bandits, we extend the

ii

study to the general RL. We study the action poisoning attack in both white-box and black-box

settings. We introduce an adaptive attack scheme called LCB-H, which works for most RL agents

in the black-box setting. We prove that the LCB-H attack can force any efficient RL agent, whose

dynamic regret scales sublinearly with the total number of steps taken, to choose actions by

following a target policy. In addition, we apply LCB-H attack against a popular model-free RL

algorithm: UCB-H. We show that, even in the black-box setting, by spending only logarithm cost,

the proposed LCB-H attack scheme can force the UCB-H agent to choose actions according to the

policy selected by the attacker very frequently.

Fourthly, we broaden the study to the multi-agent RL (MARL) problem. We investigate the

impact of adversarial attacks on MARL. In the considered setup, there is an exogenous attacker

who is able to modify the rewards before the agents receive them or manipulate the actions before

the environment receives them. The attacker aims to guide each agent into a target policy or

maximize the cumulative rewards under some specific reward function chosen by the attacker,

while minimizing the amount of manipulation on feedback and action. We first show the limitations

of the action poisoning only attacks and the reward poisoning only attacks. We then introduce a

mixed attack strategy with both the action poisoning and the reward poisoning. We show that

the mixed attack strategy can efficiently attack MARL agents even if the attacker has no prior

information about the underlying environment and the agents’ algorithms.

Finally, building on the insights from the adversarial attacks on RL, we design a robust RL

algorithm, which aims to find a policy that optimizes the worst-case performance in the face of

uncertainties. we focus on action robust RL with the probabilistic policy execution uncertainty,

in which, instead of always carrying out the action specified by the policy, the agent will take

the action specified by the policy with probability 1 − ρ and an alternative adversarial action

with probability ρ. We show the existence of an optimal policy on the action robust MDPs

with probabilistic policy execution uncertainty and provide the action robust Bellman optimality

equation for its solution. Based on that, we develop Action Robust Reinforcement Learning with

Certificates (ARRLC) algorithm that achieves minimax optimal regret and sample complexity.

iii

Acknowledgement

I am incredibly grateful to all those who have supported and encouraged me throughout my

doctoral journey.

Firstly, I express my deepest gratitude to my advisor, Professor Lifeng Lai. His guidance,

mentorship, and unwavering support have been instrumental in shaping my research trajectory and

academic growth. I am particularly grateful to him for introducing me to the field of reinforcement

learning. He not only opened my eyes to the potential of reinforcement learning, but also instilled

in me a strong foundation for further exploration. His research passion truly sparked my interest

and motivated me to dive deeper into this field. He also worked on my papers a lot, to improve my

writing styles and the organization of papers. I am incredibly grateful for the opportunity to have

learned under your mentorship.

Apart from my advisor, I would like to thank other committee members, Prof. Junshan Zhang

and Prof. Khaled Abdel Ghaffar, for their effort spent in my research. They provided fruitful

comments and insightful feedback, which helped me to improve my results.

I wish to show my appreciation to everyone in my research group, Yulu Jin, Xinyi Ni, Parisa

Oftadeh, Puning Zhao, Fuwei Li, Minhui Huang, Xinyang Cao, Xiaochuan Ma, Chenye Yang

and Haodong Liang, for their great support and technical advice. I am also deeply grateful to my

co-authors, Zhihan Zhou, Ziqing Lu, and Weiyu Xu. Thank all my friends for their support and

encouragement throughout this journey.

My heart overflows with gratitude for my parents, Fanyun Liu and Dong bing Xie. I am

eternally grateful for the sacrifices they made to ensure I received the best education possible.

This accomplishment would not have been possible without them.

To my wife, Perry Yang, my deepest thanks and affection. She has been my rock throughout

this entire journey. Her unwavering support, love, and understanding have provided me with the

strength and motivation to persevere during challenging times. She is an essential part of my

success.

iv

Contents

Abstract . ii

Acknowledgement . iv

1 Introduction 1

1.1 Preliminaries . 2

1.2 Attacks on Stochastic Bandits . 7

1.3 Attacks on Contextual Bandits . 11

1.4 Attacks on Reinforcement Learning . 14

1.5 Adversarial Attacks on Multi-Agent RL . 16

1.6 Action Robust Reinforcement Learning . 18

2 Action Attacks on Stochastic Bandits 22

2.1 Model . 22

2.2 Attack on UCB and Cost Analysis . 25

2.2.1 Attack strategy . 25

2.2.2 Cost analysis . 27

2.2.3 Attacks fail when the target arm is the worst arm 30

2.3 Robust Algorithm and Regret Analysis . 32

2.3.1 Robust bandit algorithm . 33

2.3.2 Regret analysis . 35

2.4 Numerical Results . 37

v

2.4.1 LCB attack strategy . 37

2.4.2 MOUCB bandit algorithm . 38

2.5 Conclusion . 41

3 Action Attacks on Contextual Bandits 42

3.1 Problem Setup . 42

3.2 Attack Schemes and Cost Analysis . 45

3.2.1 Overview of LinUCB . 45

3.2.2 White-box attack . 47

3.2.3 Black-box attack . 49

3.3 Generalized Linear Model . 53

3.4 Numerical Experiments . 60

3.5 Conclusion . 62

4 Action Attacks on Reinforcement Learning 63

4.1 Problem Formulation . 63

4.2 Attack Strategy and Analysis . 65

4.2.1 White-box attack . 66

4.2.2 Black-box attack . 69

4.2.3 Black-box attack on UCB-H . 73

4.3 Numerical Experiments . 74

4.3.1 1D grid world . 74

4.3.2 2D grid world . 75

4.4 Limitations . 77

4.5 Conclusions . 78

5 Adversarial Attacks on Multi-agent Reinforcement Learning 79

5.1 Problem Setup . 80

5.1.1 Definitions . 80

vi

5.1.2 Poisoning attack setting . 82

5.2 White-box Attack Strategy and Analysis . 84

5.2.1 The limitations of the action poisoning attacks and the reward poisoning

attacks . 85

5.2.2 White-box action poisoning attacks . 87

5.2.3 White-box reward poisoning attacks . 88

5.3 Gray-box Attack Strategy and Analysis . 90

5.4 Black-box Attack Strategy and Analysis . 91

5.5 Numerical Results . 95

5.6 Conclusion . 98

6 Action Robust Reinforcement Learning 100

6.1 Problem formulation . 100

6.2 Existence of the optimal robust policy . 102

6.3 Model-based algorithm and main results . 105

6.3.1 Algorithm description . 105

6.3.2 Theoretical guarantee . 107

6.4 Model-free method . 107

6.5 Simulation results . 109

6.6 Conclusion . 115

7 Conclusion 116

A Appendix of Chapter 2 118

A.1 Attack Cost Analysis of LCB attack strategy . 118

A.1.1 Proof of Lemma 2 . 118

A.1.2 Proof of Lemma 3 . 118

A.1.3 Proof of Lemma 4 . 120

A.1.4 Proof of Theorem 1 . 122

vii

A.1.5 Proof of Theorem 2 . 124

A.1.6 Proof of Proposition 1 . 128

A.2 Regret Analysis of MOUCB . 130

A.2.1 Proof of Lemma 5 . 130

A.2.2 Proof of Theorem 3 . 132

B Appendix of Chapter 3 134

B.1 Attack Cost Analysis of White-box Setting . 134

B.1.1 Proof of Proposition 2 . 134

B.1.2 Proof of Lemma 6 . 135

B.1.3 Proof of Theorem 4 . 138

B.2 Attack Cost Analysis of Black-box Setting . 139

B.2.1 Proof of Lemma 7 . 139

B.2.2 Proof of Lemma 8 . 141

B.2.3 Proof of Lemma 9 . 145

B.2.4 Proof of Theorem 5 . 148

B.3 Proof of Generalized Linear Model . 150

B.3.1 Proof of Lemma 10 . 150

B.3.2 Proof of Theorem 6 . 153

B.3.3 Proof of Lemma 11 . 155

B.3.4 Proof of Lemma 12 . 157

B.3.5 Proof of Lemma 13 . 162

B.3.6 Proof of Theorem 7 . 167

C Appendix of Chapter 4 169

C.1 Proofs for the white-box attack . 169

C.1.1 Proof of Lemma 1 . 169

C.1.2 Proof of Theorem 8 . 170

viii

C.2 Proofs for LCB-H attack . 172

C.2.1 Proof of Lemma 2 . 172

C.2.2 Proof of Theorem 9 . 174

C.3 Proof of LCB-H attacks on UCB-H . 177

C.3.1 Proof of Lemma 4 . 178

C.3.2 Proof of Theorem 10 . 182

D Appendix of Chapter 5 190

D.1 Notations . 190

D.2 Proof of the insufficiency of action poisoning only attacks and reward poisoning

only attacks . 191

D.2.1 Proof of Theorem 11 . 191

D.2.2 Proof of Theorem 12 . 192

D.3 Analysis of the d-portion Attack . 194

D.3.1 Proof of Theorem 13 . 194

D.3.2 Proof of Theorem 14 . 196

D.4 Analysis of the η-gap attack . 203

D.4.1 Proof of Theorem 15 . 203

D.4.2 Proof of Theorem 16 . 205

D.5 Analysis of the gray-box attacks . 206

D.5.1 Proof of Theorem 17 . 206

D.5.2 Proof of Theorem 18 . 207

D.6 Analysis of the black-box attacks . 208

D.6.1 Proof of Lemma 14 . 208

D.6.2 Proof of Theorem 19 . 212

E Appendix of Chapter 6 216

E.1 Proof of Proposition 4 . 216

ix

E.2 Proof for Action Robust Reinforcement Learning with Certificates 222

E.2.1 Proof sketch . 223

E.2.2 Proof of monotonicity . 225

E.2.3 Regret Analysis . 228

E.3 Proof for model-free algorithm . 240

x

List of Figures

1.1 The agent–environment interaction in Reinforcement Learning. 2

1.2 Adversarial attacks against reinforcement learning. 7

2.1 Action-manipulation attack model . 23

2.2 Number of rounds the target arm was pulled . 37

2.3 Attack cost vs σ
∆K,iW

. 38

2.4 Attack cost vs
∑

j ̸=iW

∆K,iW

∆j,iW
. 38

2.5 Comparison of number of rounds the optimal arm was pulled 39

2.6 Number of rounds the optimal arm was pulled using UCB algorithm 40

2.7 Pseudo-regret of MOUCB algorithm . 40

2.8 Pseudo-regret of UCB algorithm . 41

3.1 An example of one dimension linear contextual bandit model. 45

3.2 The cumulative cost of the attacks for the synthetic (Left), Jester (Center) and

MovieLens (Right) datasets. 60

4.1 Action poisoning attacks against RL agents . 75

4.2 2-d grid world . 76

4.3 Action poisoning attacks against RL agents . 77

5.1 The attack loss (cost) on case 1. 96

5.2 The attack loss (cost) on case 2. 96

5.3 Energy level transitions at h ≤ 3. 97

xi

5.4 Energy level transitions at h ≥ 4. 97

5.5 The cumulative attack loss and cost of the mixed attack and the approximate mixed

attack. 98

6.1 ARRLC v.s. ORLC [19] . 110

6.2 ARRLC v.s. Robust TD [45] . 111

6.3 ARRLC v.s. PR-PI [97] v.s. RARL [81] . 111

6.4 ARRLC v.s. RARL v.s. PR-PI . 112

6.5 Ablation study on InvertedPendulum-v4 with fixed ρ. 113

6.6 Ablation study on InvertedPendulum-v4 with fixed ρ. 113

6.7 ARRLC v.s. ORLC. 114

6.8 ARRLC v.s. Robust TD . 114

xii

List of Tables

3.1 Average number of rounds when the agent pulls the target arm over T = 106 rounds. 60

5.1 Differences of the white/gray/black-box attackers 84

5.2 Reward matrices . 95

6.1 Final rewards under cross-comparison between ARRLC, PR-PI and RAPL 115

D.1 Reward matrix . 191

D.2 Post-attack reward matrix . 192

D.3 Reward matrix . 193

D.4 Post-attack reward matrix . 193

xiii

Chapter 1

Introduction

In order to develop trustworthy machine learning systems, understanding adversarial attacks

on learning systems and correspondingly building robust defense mechanisms have attracted

significant recent research interests [4, 9, 29, 37, 49, 55, 74, 108]. Reinforcement learning (RL),

a framework for control-theoretic problems that make decisions over time under uncertain

environment, has many applications in a variety of scenarios. As RL models are being increasingly

used in safety critical and security related applications, it is critical to understand the effects

of adversarial attacks on RL systems in order to develop trust-worthy RL systems. While

there are many existing works addressing adversarial attacks on supervised learning models

[3,13,16,17,20,22,29,46,50,75,80,95,101,102,114], the understanding of adversarial attacks on

RL models is less complete. The goal of this dissertation is to fill in the gap and develop robust RL

algorithms that can tolerate adversarial attacks.

In this chapter, we introduce the background of this dissertation. In Chapter 1.1, we introduce

basic concepts used in this dissertation. In Chapter 1.2, we introduce the adversarial attacks on

stochastic bandits and a robust stochastic multi-armed bandits algorithm that can defend the action

poisoning attacks. In Chapter 1.3, we introduce the adversarial attacks on linear contextual bandits

and generalized linear contextual bandits. In Chapter 1.4, we introduce the adversarial attacks on

RL. In Chapter 1.5, we introduce the adversarial attacks on multi-agent reinforcement learning

1

(MARL). In Chapter 1.6, we introduce the action robust RL with probabilistic policy execution

uncertainty.

1.1 Preliminaries

RL is a framework for control-theoretic problems that make decisions over time under uncertain

environment. RL problems aim to directly construct algorithms that learn from interactions to

achieve a goal. The learner or decision maker is called an agent. The thing it interacts with is called

the environment, which includes everything outside the agent. The agent and the environment

continually interact. The agent chooses actions and the environment responds to these actions and

presents the agent with new situations. The environment also generates rewards. The agent aims

to maximize the total rewards over time. A task, an instance of a RL problem, is defined by a

complete specification of an environment.

Figure 1.1: The agent–environment interaction in Reinforcement Learning.

More specifically, we denote a tabular episodic Markov decision process (MDP) as a tuple

M = (S,A, H, P,R), where S is the state space with |S| = S,A is the action space with |A| = A,

H ∈ Z+ is the number of steps in each episode (planning horizon), Ph : S ×A×S → [0, 1] is the

probability transition function which maps state-action-state pair to a probability, Rh : S × A →

[0, 1] represents the reward function in the step h. In general, the probability transition functions

and the reward functions can be different over steps.

The agent interacts with environment in a sequence of episodes. In each episode k of this

MDP, s1 is generated randomly by a distribution or chosen by the environment. Initial states may

2

be different between episodes. We define [H] := {1, · · · , H} to denote the set of integers from 1

to H . At each step h ∈ [H] in an episode,, the agent observes the state sh and chooses an action ah.

After receiving the action, the environment generates a random reward rh ∈ [0, 1] derived from a

random distribution with mean Rh(sh, ah) and next state sh+1 which is drawn from the distribution

Ph(·|s, a). Ph(·|s, a) represents the probability distribution over states if action a is taken for state

s. The agent stops interacting with environment after H steps and start another episode.

The policy π of agent is expressed as a mapping π : S × [H]→ A. For notational convenience,

we use πh(s) to denote π(s, h). Interacting with the environmentM, the policy induces a random

trajectory {s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH , sH+1}, where s1 is the initial state, ah = πh(sh),

rh is derived from a random distribution with mean Rh(sh, ah), and sh+1 ∼ Ph(·|sh, ah) for each

h. RL agents learn to maximize the expected cumulative reward E[
∑H

h=1 rh].

We use V π
h : S → R to denote the value function at step h under policy π, so that V π

h (s) gives

the expected sum of remaining rewards received under policy π, starting from sh = s, until the end

of the episode. Accordingly, we also use Qπ
h : S×A → R to denote the Q-function at step h under

policy π, so that Qπ
h(s, a) gives the expected sum of remaining rewards received under policy π,

starting from sh = s, ah = a, until the end of the episode. In symbols:

V π
h (s) = E

[
H∑

h′=h

rh′

∣∣∣∣∣sh = s, π

]
, Qπ

h(s, a) = E

[
H∑

h′=h

rh′

∣∣∣∣∣sh = s, ah = a, π

]
. (1.1)

These functions represent the expected total rewards received from step h to H , under policy π,

starting from state s and state-action pair (s, a) respectively.

The value function and Q-function satisfy the Bellman consistency equations [41]:

V π
h (s) = Qπ

h(s, π(s)),

Qπ
h(s, a) = Rh(s, a) + Es′∼Ph(·|s,a)[V

π
h+1(s

′)].

(1.2)

For simplicity, we denote V π
H+1 = 0, Qπ

H+1 = 0 and PhV
π
h+1(s, a) = Es′∼Ph(·|s,a)[V

π
h+1(s

′)].

Under mild technical assumptions, there exists an optimal policy π∗ such that π∗ maximizes

3

the value function and Q-function:

V π∗

h (s) = V ∗
h (s) = sup

π
V π
h (s),

Qπ∗

h (s, a) = Q∗
h(s, a) = sup

π
Qπ

h(s, a),

(1.3)

for all s, a and h.

Regret(K) =
K∑
k=1

[V ∗
1 (s

k
1)− V

πk
h

1 (sk1)], (1.4)

where sk1 is the initial state for each episode k and πk is the control policy followed by the agent at

episode k.

Among the general RL problems, there are classes of special cases that are simpler but are still

useful in practice. The first class of such special cases is multi-armed bandits that involve learning

to act in only one situation. In other words, stochastic multi-armed bandits are RL problem with

only one state in the state space. More specifically, in each round t = 1, 2, 3, . . . , T , the user

pulls an arm (or action) It ∈ {1, . . . , K} and receives a random reward rt drawn from the reward

distribution of arm It. The user aims to maximize the cumulative rewards over T rounds.

Another special case is contextual bandit problems that sit somewhere in between the stochastic

multi-armed bandits and general RL. It learns in different states, but the state transition is

independent on the agent’s action and the state. More specifically, in each round t = 1, 2, 3, . . . , T ,

the agent observes a context xt ∈ D where D ⊂ Rd, pulls an arm It and receives a reward rt,It .

Each arm i is associated with an unknown but fixed coefficient vector θi ∈ Θ where Θ ⊂ Rd. In

each round t, the reward depends on both xt and θi.

RL has many applications in a variety of scenarios such as recommendation systems [119],

autonomous driving [78], finance [64] and business management [76], to name a few. As RL

models are being increasingly used in safety critical and security related applications, it is critical

to develop trustworthy RL systems. For example, in recommendation systems, the transitions of the

decisions and the reward signal rely on a feedback loop between the recommendation system and

4

the user. A restaurant may attack the recommendation systems to force the systems into increasing

the restaurant’s exposure. Such attacks can disrupt the users’ experience and cause damage to the

recommendation company’s interests. Another example is self-driving car. If a car’s self-driving

system is built on RL, the attacker may be able to implement destabilizing forces or manipulate

the action signal, so as to change the brake force. This can cause a car accident and bring a serious

threat to life and property safety. In this project, we focus on the following research question:

• Should we trust the decision made by an RL agent?

• Can an adversary mislead the RL agent?

• Is there any powerful adversary which can efficiently mislead the RL agent even in the

black-box setting?

• Could we design algorithms that archive robustness to adversarial attacks?

Understanding the effects of adversarial attacks on RL systems is the first step towards the goal

of safe applications of RL models. In the modern industry-scale applications of RL models, action

decisions, reward and state signal collection, and policy iterations are normally implemented in

a distributed network. When data packets containing the reward signals and action decisions etc

are transmitted through the network, an attacker can intercept and modify these data packets to

implement adversarial attacks.

There are some recent interesting work on adversarial attacks against RL algorithms under

various setting [8, 38, 60, 69, 83, 84, 92, 116]. Adversarial attacks in online RL differ significantly

from adversarial attacks in classical supervised learning and are more difficult due to the following

challenges.

Challenge I: Consideration of long-term rewards. In reinforcement learning, the agent aims to

maximize the expected cumulative reward instead of the immediate reward. However, actions may

affect not only the immediate reward but also the next situation and, through that, all subsequent

rewards. Unlike classical supervised learning, there is no examples of correct actions. The agent

5

needs to learn the correct action by considering long-term rewards. The adversary also has to

consider long-term rewards to decide the attack strategy, which makes adversarial attacks in online

RL challenging.

Challenge II: No access to future data. Adversarial attacks in classical supervised learning [46,

51] often require access to the entire training dataset, so the attacker can decide on the optimal

attack strategy before learning begins. In online RL, the training data (trajectories) is collected

while the agent is learning. The adversary can only access and change the data in the history. The

adversary does not know the future data. Since the adversary has to consider long-term rewards, he

needs to predict the future data, e.g. the next state, which makes adversarial attacks in online RL

challenging.

Challenge III: Unknown dynamics of environment. While challenges I and II can be partially

addressed by predicting future trajectories, it requires prior knowledge of the dynamics of the

underlying MDP. However, knowing the underlying dynamics of environment is impractical. More

generally, the attacker learns the environment only based on the agent’s observations. We called

this case as black-box attack. In black-box attack, the adversary needs to estimate the underlying

dynamics of environment, which makes adversarial attacks in online RL challenging.

As shown in Figure 1.2, there are several different types attacks against RL: observation

poisoning attack, environment poisoning attacks and action poisoning attacks. The observation

attacks can change the observations of the agent from the environment including the reward signal

or the state signal [8, 116]. At the time step t, the adversary can replace the true reward rt by an

arbitrary reward r̃t. By changing the reward, the agent can manipulate the agent’s estimation of the

environment and then could impact the agent’s behavior.

In the environment poisoning setting, the adversary can arbitrarily change both the rewards

and the state transition functions [69]. When no corruption happens, the agent faces a nominal

MDPM = (S,A, H, P,R). If the adversary decides to corrupt, the adversary can changeM to

M̃ = (S,A, H, P̃ , R̃).

An attacker may introduce action poisoning attacks on RL agent. In particular, at the time step

6

(a) RL without attack (b) Observation poisoning [116]

(c) Environment poisoning [83] (d) Action poisoning [61]

Figure 1.2: Adversarial attacks against reinforcement learning.

t, after the agent chooses an action at, the attacker can change it to another action ãt ∈ A. Then

the environment receives ãt instead of at, and generates a random reward rt and the next state st+1

corresponding to the action ãt. Note that the agent may not know the attacker’s manipulations and

the presence of the attacker and hence will still view rt as the reward and st+1 as the next state

generated from state-action pair (st, at).

In this research dissertation, we study the following problems: 1) adversarial attacks against

stochastic bandits and defense strategies; 2) adversarial attacks against contextual bandits; 3)

adversarial attacks against reinforcement learning; 4) adversarial attacks against multi-agent

reinforcement learning; 5) efficient action robust reinforcement learning with probabilistic policy

execution uncertainty.

1.2 Attacks on Stochastic Bandits

In this section, we focus on multiple armed bandits (MABs), a simple but very powerful framework

of online learning that makes decisions over time under uncertainty. Stochastic multi-armed bandits

7

a special case of the general RL, in which there is only one state in the state space.

In Chapter 2, we will introduce a new class of attacks on MABs named action-manipulation

attack. In the action-manipulation attack, an attacker, sitting between the environment and the

user, can change the action selected by the user to another action. The user will then receive a

reward from the environment corresponding to the action chosen by the attacker. Compared with

the reward-manipulation attacks discussed above, the action-manipulation attack is more difficult

to carry out. In particular, as the action-manipulation attack only changes the action, it can impact

but does not have direct control of the reward signal, because the reward signal will be a random

variable drawn from a distribution depending on the action chosen by the attacker. This is in

contrast to reward-manipulation attacks where an attacker has direct control and can change the

reward signal to any value.

In order to demonstrate the significant security threat of action-manipulation attacks to

stochastic bandits, we propose an action-manipulation attack strategy against the widely used

UCB algorithm. We choose to attack the UCB algorithm as it is widely used in practice and has

been extensively studied in the literature. The proposed attack strategy aims to force the user to

frequently pull a target arm chosen by the attacker. We assume that the attacker does not know the

true mean reward of each arm. The assumption that the attacker does not know the mean rewards of

arms is necessary for the design of attack strategies, as otherwise the attacker can perform the attack

trivially. To see this, with the knowledge of the mean rewards, the attacker knows which arm has the

worst mean reward and can perform the following oracle attack: when the user pulls a non-target

arm, the attacker changes the arm to the worst arm. This oracle attack makes all non-target arms

have expected rewards less than that of the target arm, if the target arm selected by the attacker

is not the worst arm. In addition, under this attack, all sublinear-regret bandit algorithms will pull

the target arm O(T) times. However, the oracle attack is not practical. The goal of our work is

to develop an attack strategy that has similar performance of the oracle attack strategy without

requiring the knowledge of the true mean rewards. When the user pulls a non-target arm, the

attacker could decide to attack by changing the action to the possible worst arm. As the attacker

8

does not know the true value of arms, our attack scheme relies on lower confidence bounds (LCB)

of the value of each arm in making attack decisions. Correspondingly, we name our attack scheme

as LCB attack strategy. On the other hand, we also show that, if the target arm is the worst arm

and the attacker can only incur logarithmic costs, no attack algorithm can force the user to pull the

worst arm more than T −O(Tα) times with 0 < α < 1. In addition, we study an oracle attack to

illustrate the challenges arise for the case where the target arm is the worst arm.

Motivated by the analysis of the action-manipulation attacks and the significant security threat

to MABs, we then design a bandit algorithm which can defend against the action-manipulation

attacks and still is able to achieve a small regret. The main idea of the proposed algorithm is

to bound the maximum amount of offset, in terms of user’s estimate of the mean rewards, that

can be introduced by the action-manipulation attacks. We then use this estimate of maximum

offset to properly modify the UCB algorithm and build specially designed high-probability upper

bounds of the mean rewards so as to decide which arm to pull. We name our bandit algorithm

as maximum offset upper confidence bound (MOUCB). In particular, our algorithm first pulls

every arm a certain of times and then pulls the arm whose modified upper confidence bound is the

largest. Furthermore, we prove that MOUCB bandit algorithm has a pseudo-regret upper bounded

byO(max{log T,A}), where T is the total number of rounds and A is an upper bound for the total

attack cost. In particular, if A scales as log(T), MOUCB archives a logarithm pseudo-regret which

is same as the regret of UCB algorithm.

Related work: In this paragraph, we discuss related works. There is a line of interesting

recent work on online reward-manipulation attacks on stochastic MABs [43, 56, 65]. In the

reward-manipulation attacks, there is an adversary who can change the reward signal from the

environment, and hence the reward signal received by the user is not the true reward signal from

the environment. In particular, [43] proposes an interesting attack strategy that can force a user,

who runs either ϵ-Greedy or Upper Confidence Bound (UCB) algorithm, to select a target arm

while only spending effort that grows in logarithmic order. [56] proposes an optimization based

9

framework for offline reward-manipulation attacks. Furthermore, it studies a form of online attack

strategy that is effective in attacking any bandit algorithm that has a regret scaling in logarithm

order, without knowing what particular algorithm the user is using. [30] considers an attack model

where an adversary attacks with a certain probability at each round but its attack value can be

arbitrary and unbounded. The paper proposes algorithms that are robust to these types of attacks.

[65] considers how to defend against reward-manipulation attacks, a complementary problem to

[43, 56]. In particular, [65] introduces a bandit algorithm that is robust to reward-manipulation

attacks under certain attack cost, by using a multi-layer approach. [33] presents an algorithm named

BARBAR that is robust to reward poisoning attacks and the regret of the proposed algorithm

is nearly optimal. [24] introduces another model of adversary setting where each arm is able to

manipulate its own reward and seeks to maximize its own expected number of pull count. Under

this setting, [24] analyzes the robustness of Thompson Sampling, UCB, and ϵ-greedy under attacks,

and proves that all three algorithms achieve a regret upper bound that increases over rounds in a

logarithmic order or increases with attack cost in a linear order. This line of reward-manipulation

attack has also recently been investigated for contextual bandits in [67], which develops an attack

algorithm that can force the bandit algorithm to pull a target arm for a target contextual vector by

slightly manipulating rewards in the data.

Contributions: The contributions of this work are: (1) we introduce a new class of attacks on

MABs named action-manipulation attack. We propose an action-manipulation attack strategy, LCB

attack strategy. Our analysis shows that, if the target arm selected by the attacker is not the worst

arm, the LCB attack strategy can successfully manipulate the user to select the target arm almost

all the time with an only logarithmic cost. In particular, LCB attack strategy can force the user

to pull the target arm T − O(log(T)) times over T rounds, with the total attack cost being only

O(log(T)). (2) We show the necessity of the assumption that the target arm selected by the attacker

is not the worst arm. We show that, if the target arm is the worst arm and the attacker can only

incur logarithmic costs, no attack algorithm can force the user to pull the worst arm more than T −

10

O(Tα) times. (3) We design a bandit algorithm which can defend against the action-manipulation

attacks and still is able to achieve a small regret. We prove that MOUCB bandit algorithm has a

pseudo-regret upper bounded by O(max{log T,A}), where T is the total number of rounds and A

is an upper bound for the total attack cost. (4) We evaluate our attack strategies and the MOUCB

algorithms using synthetic data. MOUCB algorithm archives logarithmic pseudo-regrets under

both LCB attacks and the oracle attacks.

The results in this part have been published in [58, 59].

1.3 Attacks on Contextual Bandits

Contextual bandits are class of problems that are more complex than multi-armed bandit problems

but are still simpler than the general RL. It learns in different states, but the state transition is

independent on the agent’s action and the state. Existing works on adversarial attacks against

linear contextual bandits focus on the reward [26, 67] or context poisoning attacks [26]. In the

reward poisoning attacks, the adversary can modify the reward. In the context poisoning attacks,

the adversary can modify the context observed by the agent without changing the reward associated

with the context.

In Chapter 3, we aim to investigate the impact of action poisoning attacks on contextual bandit

models. More detailed comparisons of various types of attacks against contextual bandits will

be provided in Chapter 3.1. We note that the goal of this work is not to promote any particular

type of poisoning attack. Rather, our goal is to understand the potential risks of action poisoning

attacks. We note that for the safe applications and design of robust contextual bandit algorithms,

it is essential to address all possible weaknesses of the models and understanding the risks of

different kinds of adversarial attacks. Since the action poisoning attack is an important aspect of

poisoning attacks and may threaten the bandit systems, it is important to understand the potential

risks of action poisoning attacks.

In Chapter 3, we study the action poisoning attack against linear contextual bandit in both

11

white-box and black-box settings. In the white-box setting, we assume that the attacker knows

the coefficient vectors associated with arms. Thus, at each round, the attacker knows the mean

rewards of all arms. While it is often unrealistic to exactly know the coefficient vectors, the

understanding of the white-box attacks could provide valuable insights on how to design the more

practical black-box attacks. In the black-box setting, we assume that the attacker has no prior

information about the arms and does not know the agent’s algorithm. The limited information that

the attacker has are the context information, the action signal chosen by the agent, and the reward

signal generated from the environment. In both white-box and black-box settings, the attacker aims

to manipulate the agent into frequently pulling a target arm chosen by the attacker with a minimum

cost. The cost is measured by the number of rounds that the attacker changes the actions selected

by the agent.

Related work: In this part, we discuss related works on two parts: adversarial attacks that cause

standard bandit algorithms to fail and robust bandit algorithms that can defend against such attacks.

Attacks Models. In linear contextual bandit setting, [67] studies offline reward poisoning attacks

and investigates the feasibility and impacts of such attacks. The attacker in [67] aims to force

the agent to pull a target arm on a particular context. [26] extends the attack idea of [43, 56] to

linear contextual bandits. It proves that the proposed reward poisoning attack strategy can force

any bandit algorithms to pull a specific set of arms when the rewards are bounded. It introduces

an adaptive reward poisoning attack strategy and observes empirically that the total cost of the

adaptive attack is sublinear. In addition, [26] analyzes the context poisoning attacks in white-box

setting and shows that LinUCB is vulnerable to such attack.

The action poisoning attack on contextual linear bandit is not a simple extension of the case of

MAB or RL. Firstly, in the MAB settings the rewards only depend on the arm (action), while in

the contextual bandit setting, the rewards depend on both the arm (action) and the context (state).

Secondly, [60] discusses the action poisoning attack in the tabular RL case where the number of

states (contexts) is finite. In the linear contextual bandit problem, the number of contexts is infinite.

12

These factors make the design of attack strategies and performance analysis for the contextual

linear bandit problems much more challenging.

Robust algorithms. Lots of efforts have been made to design robust bandit algorithms to defend

adversarial attacks in the MABs setting [24, 30, 33, 58, 65]. In the linear contextual bandit setting,

[10] proposes a stochastic linear bandit algorithm, called Robust Phased Elimination (RPE), that

is robust to reward poisoning attacks. It provides two variants of RPE algorithm which separately

work on known attack budget case and agnostic attack budget case. [21] provides a robust linear

contextual bandit algorithm, called RobustBandit, that works under both the reward poisoning

attacks and context poisoning attacks.

Contributions: The contributions of this work are: (1) We propose a new online action poisoning

attack against contextual bandit in which the attacker aims to force the agent to frequently pull a

target arm chosen by the attacker via strategically changing the agent’s actions. (2) We introduce

a white-box attack strategy that can manipulate any sublinear-regret linear contextual bandit agent

into pulling a target arm T − o(T) rounds over a horizon of T rounds, while incurring a cost that

is sublinear dependent on T . The proposed attack strategy can further be extended to generalized

linear contextual bandit models. (3) We design a black-box attack strategy whose performance

nearly matches that of the white-box attack strategy. We apply the black-box attack strategy against

a very popular and widely used bandit algorithm: LinUCB. We show that our proposed attack

scheme can force the LinUCB agent into pulling a target arm T −O(log3 T) times with attack cost

scaling as O(log3 T). (4) We evaluate our attack strategies using both synthetic and real datasets.

We observe empirically that the total cost of our black-box attack is sublinear for a variety of

contextual bandit algorithms.

The results in this part have been published in [61].

13

1.4 Attacks on Reinforcement Learning

Building on the insights and techniques developed for multi-armed bandit and contextual bandit

problems, we then focus on the general RL problems. While there is much existing work addressing

adversarial attacks on supervised learning models [3,13,16,17,20,22,29,46,50,75,80,95,101,102,

114], the understanding of adversarial attacks on general RL models is less complete. Among the

limited existing works on adversarial attacks against RL, they formally or experimentally considers

different types of poisoning attack [8,38,69,83,84,92,116]. [92] discusses the differences between

the poisoning attacks. In the observation poisoning attack setting, the attacker is able to manipulate

the observations of the agent. Before the agent receives the reward signal or the state signal from

the environment, the attacker is able to modify the data. In the environment poisoning setting,

the attacker could directly change the underlying environment, i.e., the Markov decision process

(MDP) model.

In Chapter 4, we introduce a suite of novel attacks on RL named action poisoning attacks. In the

proposed action poisoning attacks models, an attacker sits between the agent and the environment

and could change the agent’s action. For example, in auto-driving systems, the attacker could

implement destabilizing forces or manipulate the action signal, so as to change the brake force.

Compared with the observation poisoning or environment poisoning attacks, the ability of the

attacker in the action poisoning attack is more restricted, which brings some design challenges.

In particular, compared with observation poisoning and environment poisoning attacks, the effects

of the action poisoning attack on the change of observation is less direct. Furthermore, when the

action space is discrete and finite, the ability of the action poisoning attacker is severely limited.

We note that the goal of this work is not to promote action manipulation attacks. Rather our goal

is to understand the potential risks of action manipulation attacks, as understanding the risks of

different kinds of adversarial attacks on RL is essential for the safe applications of RL model and

designing robust RL systems.

In Chapter 4, we investigate action poisoning attacks in both white-box and black-box settings.

The white-box attack setting makes strong assumptions. In particular, the attacker has full

14

information of the underlying MDP, the agent’s algorithm or the agent’s previous policy models,

or all of them. While it is often unrealistic to exactly know the underlying environment or have the

right to obtain the information of the agent’s model, the understanding of the white-box attacks

could provide insights on how to design black-box attack schemes. In the black-box setting, the

attacker has no prior information of the underlying MDP and does not know the agent’s algorithm.

The only information the attacker has is observations generated from the environment when the

agent interacts with the environment. The black-box setting is much more practical and is suitable

for more realistic scenarios.

Related work: Existing works on poisoning attacks against RL have studied different types

of adversarial manipulations. [69] studies reward poisoning attack against batch RL in which

the attacker is able to gather and modify the collected batch data. [83] proposes a white-box

environment poisoning model in which the attacker could manipulate the original MDP to a

poisoned MDP. [8, 116] study online white-box reward poisoning attacks in which the attacker

could manipulate the reward signal before the agent receives it. [92] proposes a practical black-box

poisoning algorithm called VA2C-P. Their empirical results show that VA2C-P works for deep

policy gradient RL agents without any prior knowledge of the environment. [84] develops a

black-box reward poisoning attack strategy called U2, that can provably attack any efficient

RL algorithms. There are also some interesting works that focus on attacking multi-arm bandit

problems [30, 43, 56, 58, 59] and contextual bandit problems [26, 67]. Existing work on action

poisoning attacks against RL is limited. There are some empirical studies in deep RL [48, 81, 92].

Contributions: Our main contributions are as follows: (1) We propose an action poisoning attack

model in which the attacker aims to force the agent to learn a policy selected by the attacker

(will be called target policy in the sequel) by changing the agent’s actions to other actions. We

use loss and cost functions to evaluate the effects of the action poisoning attack on a RL agent.

The cost is the cumulative number of times when the attacker changes the agent’s action, and

the loss is the cumulative number of times when the agent does not follow the target policy. It is

15

clearly of interest to minimize both the cost and loss functions. (2) In the white-box setting, we

introduce an attack strategy named α-portion attack. We show that the α-portion attack strategy

can force any sub-linear-regret RL agent to choose actions according to the target policy specified

by the attacker with sub-linear cost and sub-linear loss. (3) We develop a black-box attack strategy,

LCB-H, that nearly matches the performance of the white-box α-portion attack. To the best of

our knowledge, LCB-H is the first black-box action poisoning attack scheme that provably works

against RL agents. (4) We investigate the impact of the LCH-B attack on UCB-H [41], a popular

and efficient model-free Q-learning algorithm, and show that, by spending only logarithm cost, the

LCB-H attack can force the UCB-H agent to choose actions according to the target policy with

logarithm loss.

The results in this part have been published in [60].

1.5 Adversarial Attacks on Multi-Agent RL

Building on the insights and techniques developed for RL problems, we study the adversarial

attacks on multi-agent RL (MARL). In MARL, at each state, each agent takes its own action, and

these actions jointly determine the next state of the environment and the reward of each agent.

The rewards may vary for different agents. For MARL setting, we focus on the model of Markov

Games (MG) [86]. In this class of problems, researchers typically consider learning objectives such

as Nash equilibrium (NE), correlated equilibrium (CE) and coarse correlated equilibrium (CCE)

etc. A recent line of works provide non-asymptotic guarantees for learning NE, CCE or CE under

different assumptions [6, 42, 63, 71, 89, 109, 113].

Existing work on adversarial attacks on MARL is limited. In this thrust, we aim to fill in this

gap and systematically investigate the impact of adversarial attacks on online MARL. We consider

a setting in which there is an attacker sits between the agents and the environment, and can monitor

the states, the actions of the agents and the reward signals from the environment. The attacker is

able to manipulate the feedback or action of the agents. The objective of the MARL learner is

16

to learn an equilibrium. The attacker’s goal is to force the agents to learn a target policy or to

maximize the cumulative rewards under some specific reward function chosen by the attacker,

while minimizing the amount of the manipulation on feedback and action.

Related work: Attacks on Single Agent RL: Adversarial attacks on single agent RL have

been studied in various settings [8, 38, 69, 83, 84, 92, 116]. For example, [8, 85, 116] study online

reward poisoning attacks in which the attacker could manipulate the reward signal before the agent

receives it. [60] studies online action poisoning attacks in which the attacker could manipulate

the action signal before the environment receives it. [85] studies the limitations of reward only

manipulation or action only manipulation in single-agent RL.

Attacks on MARL: [68] considers a game redesign problem where the designer knows the full

information of the game and can redesign the reward functions. The proposed redesign methods

can incentivize players to take a specific target action profile frequently with a small cumulative

design cost. [27, 32] study the poisoning attack on multi-agent reinforcement learners, assuming

that the attacker controls one of the learners. [107] studies the reward poisoning attack on offline

multi-agent reinforcement learners.

Defense Against Attacks on RL: There is also recent work on defending against adversarial

attacks on RL [7,14,66,104,106,115]. These works focus on the single-agent RL setting where an

adversary can corrupt the reward and state transition.

Contributions: Our contributions are follows. 1) We propose an adversarial attack model in

which the attacker aims to force the agent to learn a target policy selected by the attacker or to

maximize the cumulative rewards under some specific reward function chosen by the attacker.

We use loss and cost functions to evaluate the effectiveness of the adversarial attack on MARL

agents. The cost is the cumulative sum of the action manipulations and the reward manipulations.

If the attacker aims to force the agents to learn a target policy, the loss is the cumulative number

of times when the agent does not follow the target policy. Otherwise, the loss is the regret to the

policy that maximizes the attacker’s rewards. It is clearly of interest to minimize both the loss

17

and cost. 2) We study the attack problem in three different settings: the white-box, the gray-box

and the black-box settings. In the white-box setting, the attacker has full information of the

underlying environment. In the gray-box setting, the attacker has no prior information about the

underlying environment and the agents’ algorithm, but knows the target policy that maximizes its

cumulative rewards. In the black-box setting, the target policy is also unknown for the attacker. 3)

We show that the effectiveness of action poisoning only attacks and reward poisoning only attacks

is limited. Even in the white-box setting, we show that there exist some MGs under which no

action poisoning only Markov attack strategy or reward poisoning only Markov attack strategy can

be efficient and successful. At the same time, we provide some sufficient conditions under which

the action poisoning only attacks or the reward poisoning only attacks can efficiently attack MARL

algorithms. Under such conditions, we introduce an efficient action poisoning attack strategy and

an efficient reward poisoning attack strategy, and analyze their cost and loss. 4) We introduce

a mixed attack strategy in the gray-box setting and an approximate mixed attack strategy in the

black-box setting. We show that the mixed attack strategy can force any sub-linear-regret MARL

agents to choose actions according to the target policy specified by the attacker with sub-linear

cost and sub-linear loss. We further investigate the impact of the approximate mixed attack strategy

attack on V-learning [42], a simple, efficient, decentralized algorithm for MARL.

The results in this part have been published in [62].

1.6 Action Robust Reinforcement Learning

The solutions to standard RL methods are not inherently robust to uncertainties, perturbations,

or structural changes in the environment, which are frequently observed in real-world settings.

A trustworthy reinforcement learning algorithm should be competent in solving challenging

real-world problems with robustness against perturbations and uncertainties. Robust RL aims to

improve the worst-case performance of algorithms deterministically or statistically in the face

of uncertainties in different MDP components, including observations/states [93, 112], actions

18

[45, 97], transitions [39, 77, 96, 103], and rewards [38, 47].

In Chapter 6, we consider action uncertainties, also called policy execution uncertainties, and

probabilistic uncertainty set proposed in [97]. Robust RL against action uncertainties focuses on

the discrepancy between the actions generated by the RL agent and the conducted actions. Taking

the robot control as an example, such policy execution uncertainty may come from the actuator

noise, limited power range, or actuator failures in the real world. Taking the medication advice

in healthcare as another example, such policy execution uncertainty may come from the patient’s

personal behaviors such as drug refusal, forgotten medication, or overdose etc.

To deal with the policy execution uncertainty, robust RL methods [81,97] adopt the adversarial

training framework [29, 70] and assume an adversary conducting adversarial attacks to mimic

the naturalistic uncertainties. Training with an adversary can be formulated as a zero-sum game

between the adversary and the RL agent. However, these interesting works do not provide

theoretical guarantee on sample complexity or regret. In Chapter 6, we aim to fill this gap. The

approaches in [81, 97] iteratively apply two stages: (i) given a fixed adversary policy, it calculates

the agent’s optimal policy; and (ii) update the adversary policy against the updated agent’s policy.

The repetition of stage (i) requires repeatedly solving MDP to find the optimal policy, which is

sample inefficient. Motivated by the recent theoretical works on transition probability uncertainty

that use the robust dynamic programming method [39] and achieve efficient sample complexity

[79, 103, 110], we introduce the action robust Bellman equations and design sample efficient

algorithms based on the action robust Bellman equations. Our methods simultaneously update

the adversary policy and agent’s policy instead of updating one after the other has converged.

Related work: We mostly focus on papers that are related to sample complexity bounds for the

episodic RL and the two-player zero-sum Markov game, and action robust RL, that are closely

related to our model. There are also some related settings, e.g., infinite-horizon discounted MDP

[36,52], robust RL with other uncertainties [39,47,103,112], robust offline RL [31,88], adversarial

training with a generative RL model [79, 110], adversarial attacks on RL [60, 92, 116], etc, whose

19

techniques may be also related to our aciton robust RL work.

Action robust RL. [81] introduce robust adversarial RL to address the generalization issues

in RL by training with a destabilizing adversary that applies disturbance forces to the system.

[97] introduce two new criteria of robustness for RL in the face of action uncertainty. We follow

its probabilistic action robust MDP (PR-MDP) in which, instead of the action specified by the

policy, an alternative adversarial action is taken with probability ρ. They generalize their policy

iteration approach to deep reinforcement learning (DRL) and provide extensive experiments. A

similar uncertainty setting was presented [45], which extends temporal difference (TD) learning

algorithms by a new robust operator and shows that the new algorithms converge to the optimal

robust Q-function. However, no theoretical guarantee on sample complexity or regret is provided

in these works. We develop a minimax sample efficient algorithm and fill this gap.

Sample complexity bounds for the episodic RL. There is a rich literature on sample

complexity guarantees for episodic tabular RL, for example [5, 18, 19, 40, 41, 44, 90, 91, 117, 118].

However, these methods cannot be directly applied in action robust MDP with small technical

changes. Most relevant one is the work about policy certificates [19]. The algorithm ORLC in

[19] calculates both the upper bound and lower bound of the value functions, and outputs policy

certificates that bound the sub-optimality and return of the policy. Our proposed ARRLC shares a

similar structure with ORLC, but we develop new adversarial trajectory sampling and action robust

value iteration method in ARRLC, and new techniques to bound the sum of variances so that our

algorithm suits for action robust MDPs.

Sample complexity bounds for the two-player zero-sum Markov game. Training with an

adversary can naturally be formulated as a zero-sum game between the adversary and the RL agent.

Some sample efficient algorithms for two-player zero-sum Markov game can be used to train the

action robust RL agent. The efficient multi-agent RL algorithms, like [42,63], can be used to solve

the action robust optimal policy but are not minimax optimal. They are a factor of A or H2 above

the minimax lower bound. Our algorithm ARRLC is minimax optimal.

20

Contributions: Our major contributions of this work are summarized as follows: (1) We show

that the robust problem can be solved by the iteration of the action robust Bellman optimality

equations. Motivated by this, we design two efficient algorithms. (2)We develop a model-based

algorithm, Action Robust Reinforcement Learning with Certificates (ARRLC), for episodic action

robust MDPs, and show that it achieves minimax order optimal regret and minimax order optimal

sample complexity. (3) We develop a model-free algorithm for episodic action robust MDPs, and

analyze its regret and sample complexity. (4) We conduct numerical experiments to validate the

robustness of our approach. In our experiments, our robust algorithm achieves a much higher

reward than the non-robust RL algorithm when being tested with some action perturbations; and

our ARRLC algorithm converges much faster than the robust TD algorithm in [45].

The results in this part have been submitted for possible publication [57].

21

Chapter 2

Action Attacks on Stochastic Bandits

In this chapter, we focus on stochastic bandit problems. We introduce a new class of attacks named

action-manipulation attacks, an efficient attack strategy, and a novel algorithm that is robust to

action-manipulation attacks when an upper bound for the total attack cost is given. In Chapter

2.1, we describe the model. In Chapter 2.2, we describe the LCB attack strategy and analyze its

accumulative attack cost. In Chapter 2.3, we propose a defense strategy and analyze its regret. In

Chapter 2.4, we provide numerical examples to validate the theoretic analysis. Finally, we offer

several concluding remarks in Chapter 2.5. The proofs are collected in Appendix A.

2.1 Model

In this section, we introduce our model. We consider the standard multi-armed stochastic bandit

problems setting. The environment consists of K arms, with each arm corresponds to a fixed but

unknown reward distribution. The bandit algorithm, which is also called “user” in this chapter,

proceeds in discrete time t = 1, 2, . . . , T , in which T is the total number of rounds. At each round

t, the user pulls an arm (or action) It ∈ {1, . . . , K} and receives a random reward rt drawn from

the reward distribution of arm It. Denote µi as the mean reward of arm i. Denote τi(t) := {s : s ≤

t, Is = i} as the set of rounds up to t where the user chooses arm i, Ni(t) := |τi(t)| as the number

22

of rounds that arm i was pulled by the user up to time t and

µ̂i(t) := Ni(t)
−1
∑

s∈τi(t)

rs (2.1)

as the empirical mean reward of arm i. The pseudo-regret R̄(T) is defined as

R̄(T) = T max
maxi∈[K]

µi − E

[
T∑
t=1

rt

]
. (2.2)

The goal of the user is to minimize R̄(T).

In this chapter, we introduce a novel adversary setting, in which the attacker sits between

the user and the environment. The attacker can monitor the actions of the user and the reward

signals from the environment. Furthermore, the attacker can introduce action-manipulation attacks

on stochastic bandits. In particular, at each round t, after the user chooses an arm It, the attacker can

manipulate the user’s action by changing It to another I0t ∈ {1, . . . , K}. If the attacker decides not

to attack, I0t = It. Then the environment generates a random reward rt from the reward distribution

of post-attack arm I0t . The user and the attacker receive reward rt from the environment.

Figure 2.1: Action-manipulation attack model

Without loss of generality and for notation convenience, we assume armK is the “attack target”

arm or the target arm. The attacker’s goal is to manipulate the user into pulling the target arm very

frequently but by making attacks as rarely as possible. Define the set of rounds when the attacker

decides to attack as C := {t : t ≤ T, I0t ̸= It}. The cumulative attack cost is the total number of

23

rounds where the attacker decides to attack, i.e., |C|.

In this chapter, we follow the general assumption of the previous works [12, 56, 65] on

bandits problem, which consider the short-tail reward distribution environments, e.g. the clicks of

article recommendation, and assume that the reward distribution of arm i follows σ2-sub-Gaussian

distributions with mean µi. Denote the true reward vector as µ = [µ1, · · · , µK]. Neither the user

nor the attacker knows µ, but σ2 is known to both the user and the attacker. We note that the

assumption that the attacker does not know µ is only necessary for Chapter 2.2, in which we

design attack strategies. We do not use this assumption in Chapter 2.3 where we design defense

strategies. Define the difference of mean value of arm i and j as ∆i,j = µi − µj . Furthermore, we

refer to the best arm as iO = argmaxi µi and the worst arm as iW = argmini µi.

In Chapter 2.2, the assumption that the attacker does not know µ is important. If the attacker

knows these values, the attacker can adopt a trivial oracle attack scheme: whenever the user pulls a

non-target arm It, the attacker changes It to the worst arm iW . Assuming that the target arm is not

the worst, it is easy to show that, if the user uses a bandit algorithm that has a regret upper bounded

of O(log(T)) when there is no attack, the oracle attack scheme can force the user to pull the target

arm T − O(log(T)) times, using a cumulative cost |C| = O(log(T)). However, the oracle attack

scheme is not practical when the true reward vector is unknown. In this chapter, we will first design

an effective attack scheme, which does not assume the knowledge of true reward vector and nearly

matches the performance of the oracle attack scheme, to attack the UCB algorithm. We will then

design a new bandit algorithm that is robust against the action-manipulation attack.

The action-manipulation attack considered here is different from reward-manipulation attacks

introduced by interesting recent work [43, 56], where the attacker can change the reward signal

from the environment. In the setting considered in [43, 56], the attacker can change the reward

signal rt from the environment to an arbitrary value chosen by the attacker. Correspondingly, the

cumulative attack cost in [43,56] is defined to be the sum of the absolute value of the changes on the

reward. Compared with the reward-manipulation attacks discussed above, the action-manipulation

attack is more difficult to carry out. In particular, as the action-manipulation attack only changes

24

the action, it can impact but does not have direct control of the reward signal, which will be a

random variable drawn from a distribution depending on the action chosen by the attacker. This is

in contrast to reward-manipulation attacks where an attacker can change the reward to any value.

2.2 Attack on UCB and Cost Analysis

In this section, we use UCB algorithm as an example to illustrate the effects of action-manipulation

attack. We will introduce LCB attack strategy on the UCB bandit algorithm and analyze the cost.

2.2.1 Attack strategy

UCB algorithm [12] is one of the most popular bandit algorithm. UCB algorithm keeps optimism

in the face of uncertainty and chooses the arm with the highest upper confidence bound of its

estimated reward. In UCB algorithm, the user initially pulls each of the K arms once in the first K

rounds. After that, the user chooses arms according to

It = argmax
i

{
µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)

}
. (2.3)

Under the action-manipulation attack, as the user does not know that rt is generated from arm I0t

instead of It, the empirical mean µ̂i(t) computed using (2.1) is not a proper estimate of the true

mean reward of arm i anymore. On the other hand, the attacker is able to obtain a good estimate of

µi by

µ̂0
i (t) := N0

i (t)
−1
∑

s∈τ0i (t)

rs, (2.4)

where τ 0i (t) := {s : s ≤ t, I0s = i} is the set of rounds up to t when the attacker changes an

arm to arm i, and N0
i (t) = |τ 0i (t)| is the number of pulls of post-attack arm i up to round t. This

information gap provides a chance for attack. In this section, we assume that the target arm is not

25

the worst arm, i.e., µK > µiW . We will discuss the case where the target arm is the worst arm in

Chapter 2.2.3.

The proposed attack strategy works as follows. In the first K rounds, the attacker does not

attack. After that, at round t, if the user chooses a non-target arm It, the attacker changes it to arm

I0t that has the smallest lower confidence bound (LCB):

I0t = argmin
i

{
µ̂0
i (t− 1)− CB

(
N0

i (t− 1), δ
)}
, (2.5)

where

CB(N, δ) =
√

2σ2

N
log

π2KN2

3δ
. (2.6)

Here δ ∈ (0, 1) is a parameter that is related to the probability statements in the analytical results

presented in Chapter 2.2.2. We call our scheme as LCB attack strategy. Note that the form of (2.6)

is slightly different from typical form used in UCB algorithms. We choose to use this form for

the simplicity of proofs. If at round t the user chooses the target arm, the attacker does not attack.

Thus the cumulative attack cost of our LCB attack scheme is equal to the total of times when the

non-target arms are selected by the user. The algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 LCB attack strategy on UCB algorithm
Require:

The user’s bandit algorithm namely UCB algorithm, target arm K
1: for t = 1, 2, . . . do
2: The user chooses arm It to pull according to UCB algorithm (2.3).
3: if It = K then
4: The attacker does not attack, and I0t = It.
5: else
6: The attacker attacks and changes arm It to I0t chosen according to (2.5).
7: end if
8: The environment generates reward rt from arm I0t .
9: The attacker and the user receive rt.

10: end for

Here, we highlight the main idea why LCB attack strategy works. As discussed in Chapter 2.1,

if the attacker knows which arm is the worst, the attacker can simply change the action to the worst

26

arm when the user pulls the non-target arm. The main idea of the attack scheme is to estimate the

mean of each arm, and change the non-target arm to the arm whose lower confidence bound is the

smallest. Effectively, this will almost always change the non-target arm to the worst arm. More

formally, for i ̸= K, we will show that this attack strategy will ensure that µ̂i computed using (2.1)

by the user converges to µiW . On the other hand, as the attacker does not attack when the user

selects K, µ̂K computed by the user will still converge to the true mean µK with NK increasing.

Because the assumption that the target arm is not the worst, which implies that µK > µiW , µ̂i could

be smaller than µ̂K . Then the user will rarely pull the non-target arms as µ̂i is smaller than µ̂K .

Hence, the attack cost would also be small. The rigorous analysis of the cost will be provided in

Chapter 2.2.2.

2.2.2 Cost analysis

To analyze the cost of the proposed scheme, we need to track µ̂0
i (t), the estimate obtained by the

attacker using (2.4), and µ̂i(t), the estimate obtained by the user using (2.1).

The analysis of µ̂0
i (t) is relatively simple, as the attacker knows which arm is truly pulled and

hence µ̂0
i (t) is the true estimate of the mean of arm i. Define event

E1 := {∀i,∀t > K : |µ̂0
i (t)− µi| < CB(N0

i (t), δ)}. (2.7)

In specific, event E1 is the event that the empirical mean at step i computed by the attacker

using (2.4), i.e. µ̂0
i (t), is not far from the true mean µi by CB(N0

i (t), δ), for any arm i at any

step t. The following lemma, proved in [43], shows that the attacker can accurately estimate the

average reward to each arm.

Lemma 1. (Lemma 1 in [43]) For δ ∈ (0, 1), P(E1) > 1− δ.

The analysis of µ̂i(t) computed by the user is more complicated. When the user pulls arm

i, because of the action-manipulation attacks, the random rewards may be drawn from different

reward distributions. Define τi,j(t) := {s : s ≤ t, Is = i and I0s = j} as the set of rounds up to

27

t when the user chooses arm i and the attacker changes it to arm j. We define the empirical mean

rewards of a part of arm i whose post-attack arm is j by

µ̂i,j(t) := Ni,j(t)
−1

∑
s∈τi,j(t)

rs, (2.8)

where Ni,j(t) := |τi,j(t)|.

Define event

E2 :=
{
∀i, ∀j,∀t > K : |µ̂i,j(t)− µj| < CB

(
Ni,j(t),

δ

K

)}
. (2.9)

In specific, event E2 is the event that the empirical mean at step i computed by (2.4), i.e. µ̂i,j(t), is

not far from the true mean µi by CB(Ni,j(t), δ/K), for any arm i and any post-attack arm j at any

step t.

Lemma 2. For δ ∈ (0, 1), P(E2) > 1− δ.

Proof. Please refer to Appendix A.1.1.

Lemma 2 shows a high-probability confidence bounds of the empirical mean rewards of a part

of arm i whose post-attack arm is j.

Although rs in (2.1), used to calculate µ̂i(t), may be drawn from different reward distributions,

we can build a high-probability bound of µ̂i(t) with the help of Lemma 2.

Lemma 3. Under event E2, for all arm i and all t > K, we have

∣∣∣∣∣∣µ̂i(t)−
1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣ < CB
(
Ni(t)

K
,
δ

K

)
, (2.10)

Proof. Please refer to Appendix A.1.2.

Under events E1 and E2, we can build a connection between µ̂i(t) and µiW . In the proposed

LCB attack strategy, the attacker explores and exploits the worst arm by a lower confidence bound

28

method. Thus, when the user pulls a non-target arm, the attacker changes it to the worst arm at

most of rounds, which means that for all i ̸= K, µ̂i(t) will converge to µiW as Ni(t) increases.

Lemma 4 shows the relationship between µ̂i(t) and µiW .

Lemma 4. Under events E1 and E2, using LCB attack strategy 2.1, we have

µ̂i(t) ≤ µiW +
1

Ni(t)

∑
j ̸=iW

8σ2

∆j,iW

log
π2Kt2

3δ
+

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
,∀i, t. (2.11)

Proof. Please refer to Appendix A.1.3.

Lemma 4 shows an upper bound of the empirical mean reward of pre-attack arm i, for all arm

i ̸= K. Our main result is the following upper bound on the attack cost |C|.

Theorem 1. With probability at least 1 − 2δ, when T ≥
(

π2K
3δ

) 2
5
, using LCB attack strategy

specified in Algorithm 2.1, the attacker can manipulate the user into pulling the target arm in at

least T − |C| rounds, with an attack cost

|C| ≤ K − 1

4∆2
K,iW

C1 +

(
C2

1 + 4∆K,iW

∑
j ̸=iW

8σ2

∆j,iW

log
π2KT 2

3δ

) 1
2

2

. (2.12)

where C1 = 3σ
√
log T +

√
2σ2K log π2T 2

3δ
.

Proof. Please refer to Appendix A.1.4.

The expression of the cost bound in Theorem 1 is complicated. The following corollary

provides a simpler bound that is more explicit and interpretable.

Corollary 1. Under the same assumptions in Theorem 1, the total attack cost |C| of Algorithm 2.1

is upper bounded by

O

Kσ2 log T

∆2
K,iW

K +
∑
j ̸=iW

∆K,iW

∆j,iW

+

√
K
∑
j ̸=iW

∆K,iW

∆j,iW

 , (2.13)

29

and the total number of target arm pulls is T − |C|.

From Corollary 1, we can see that the attack cost scales as log T . Two important constants

σ
∆K,iW

and
∑

j ̸=iW

∆K,iW

∆j,iW
have impact on the prelog factor. In Chapter 2.4, we provide some

numerical examples to illustrate the effects of these two constants on the attack cost.

In the above analysis, the attacker has only one target arm and aims to force the user to pull

it. We can extend our algorithm to the scenario where there is a set of target arms and the attacker

aims to manipulate the user into pulling any one of them very frequently. For this case, we need an

assumption that the worst arm is not in the target set. When the user pulls a target arm, the adversary

does not attack. When the user pulls a non-target arm, the LCB attack strategy can change it to the

worst arm at most of rounds. In this way, the estimate of any non-target arm could be smaller than

the estimate of any target arm. As a result, the user will rarely pull the non-target arms and pull

arms in the target set very frequently. The attack cost also scales as log(T).

2.2.3 Attacks fail when the target arm is the worst arm

One weakness of our LCB attack strategy is that the attack target arm is necessarily a non-worst

arm. In the LCB attack strategy, the attacker cannot force the user to pull the worst arm very

frequently by spending only logarithmic cost. The main reason is that, when the target arm is the

worst, the average reward of each arm is larger or equal to that of the target arm. As the result,

our attack scheme is not able to ensure that the target arm has a higher expected reward than

the user’s estimate of the rewards of other arms. In fact, the following theorem shows that all

action-manipulation attack cannot manipulate the UCB algorithm into pulling the worst arm more

than T −O(log(T)) by spending only logarithmic cost.

Theorem 2. Let δ < 1
2
. Suppose the attack cost is limited by O(log(T)). Then no attack can force

the UCB algorithm to pick the worst arm more than T − O(Tα) times with probability at least

1− δ, in which α < 1.

Proof. Please refer to Appendix A.1.5.

30

This theorem shows a contrast between the case where the target arm is not the worst arm and

the case where the target arm is the worst arm. If the target arm is not the worst arm, our scheme

is able to force the user to pick the target arm T − O(log(T)) times with only logarithmic cost.

On the other hand, if the target arm is the worst, Theorem 2 shows that there is no attack strategy

that can force the user to pick the worst arm more than T − O(Tα) times while incurring only

logarithmic cost.

In the proof of Theorem 2, we do not use the assumption on whether the attacker knows the true

underlying mean vector or not. Hence this theorem is also valid even when the attacker knows the

true underlying mean vector and can carry out an oracle attack. To further illustrate the challenges

arise for the case where the target arm is the worst arm, we now study the oracle attack for this

case. Even though the attacker knows the true underlying mean vector, it is difficult for him to carry

out the attack. The main reason is that, since the target arm is the worst arm, in order to make this

arm appears to be better to the user, the attacker now needs to attack even when the user pulls the

target arm, i.e., to change it to the best arm. Hence the attack has two parts: 1) when the user pulls

a non-target arm, the attacker changes the arm to the worst arm; 2) when the user pulls the target

arm, the attacker changes the arm to the best arm sometimes. We set the number of rounds that the

attacker change the target arm to the best arm as CK . So the attack cost has two parts: the number

of rounds where the user pulls a non-target arm and CK . The following proposition analyze the

cost of this oracle attack.

Proposition 1. With probability at least 1 − δ, when T >
(

π2K2

12δ

)4
, given the number of rounds

that the attacker change the target arm to the best arm as CK , the oracle attack can manipulate the

user into pulling the target arm that is the worst arm in at most

T −min

 1
4
(K − 1)σ2T 2 log T

K(
KCK∆iO,K + 6σ

√
KT log T

K

)2 , T (K − 1)

K

 (2.14)

31

rounds, with an attack cost |C| at least

CK +min

 1
4
(K − 1)σ2T 2 log T

K(
KCK∆iO,K + 6σ

√
KT log T

K

)2 , T (K − 1)

K

 . (2.15)

Proof. Please refer to Appendix A.1.6.

Compared with the performance of LCB attacks for the cases when the target arm is the worst

arm, the oracle attack for the case when the target arm is the worst arm requires significantly more

attack cost to achieve the similar performance. According to Proposition 1, in order to manipulate

the user into pulling the target arm in T −O(log T) rounds, the CK should scale as T . The attack is

extremely ineffective, as now the attack cost scales with T . Furthermore, from (2.15), to minimize

the cost, we need to set

CK =
1

K∆iO,K

((
1

2
K(K − 1)∆iO,Kσ

2T 2 log
T

K

) 1
3

− 6σ

√
KT log

T

K

)
(2.16)

which scales as Ω
(
T

2
3 (log T)

2
3

)
. Hence, for the case where the target arm is the worst arm, the

minimal attack cost of the oracle attack is large. There is no effective attacks when the target arm

is the worst arm.

2.3 Robust Algorithm and Regret Analysis

The results in Chapter 2.2 expose a significant security threat of the action-manipulation attacks on

MABs. Under only O(log(T)) times of attacks carried out using the proposed LCB strategy, the

UCB algorithm will almost always pull the target arm selected by the attacker. Although there are

some defense algorithms [65] and universal best arm identification schemes [87] for stochastic or

adversarial bandit, they do not apply to the action-manipulation attack setting. This motivates us

to design a new bandit algorithm that is robust against action-manipulation attacks. In this section,

we propose such a robust bandit algorithm and analyze its regret.

32

2.3.1 Robust bandit algorithm

In this section, we assume that a valid upper bound A for the cumulative attack cost |C| is known

for the user, although the user does not have to know the exact cumulative attack cost |C|. A does

not need to be constant, it can scale with T . In other words, for a given A, our proposed algorithm

is robust to all action-manipulation attacks with a cumulative attack cost |C| < A. This assumption

is reasonable, as if the cost is unbounded, it will not be possible to design a robust scheme.

We first introduce some notation. Denote N(t − 1) := (N1(t − 1), . . . , NK(t − 1)) as the

vector counting how many times each action has been taken by the user, and µ̂(t − 1) = (µ̂1(t −

1), . . . , µ̂K(t−1)) as the vector of the sample means computed by the user. The proposed algorithm

is a modified UCB method by taking the maximum possible mean estimate offset due to attack into

consideration. We name our scheme as maximum offset UCB (MOUCB).

The proposed MOUCB works as follows. In the first 2AK rounds, MOUCB algorithm pulls

each arm 2A times. After that, at round t, the user chooses an arm It by a modified UCB method:

It = argmax
a
{µ̂a(t− 1) + β(Na(t− 1)) + γ(µ̂(t− 1),N(t− 1))} , (2.17)

where

γ(µ̂(t− 1),N(t− 1)) =
2A

Na(t− 1)
×

max
i,j
{µ̂i(t− 1)− µ̂j(t− 1) + β(Ni(t− 1)) + β(Nj(t− 1))} ,

and

β(N) = CB
(
N

K
,
δ

K

)
=

√
2σ2K

N
log

π2N2

3δ
. (2.18)

The algorithm is summarized in Algorithm 2.2.

Compared with the original UCB algorithm in (2.3), the main difference is the additional term

33

Algorithm 2.2 Proposed MOUCB bandit algorithm
Require:

A valid upper bound A for the cumulative attack cost.
1: for t = 1, 2, . . . do
2: if t ≤ 2AK then
3: The user pulls the arm whose pull count is the smallest, i.e. It = argminiNi(t− 1).
4: else
5: The user chooses arm It to pull according (2.17).
6: end if
7: if The attacker decides to attack then
8: The attacker attacks and changes It to I0t .
9: else

10: The attacker does not attack and I0t = It.
11: end if
12: The environment generates reward rt from arm I0t .
13: The attacker and the user receive rt.
14: end for

γ(µ̂(t− 1),N(t− 1)) in (2.17). We now highlight the main idea why our bandit algorithm works

and the role of this additional term. In particular, in the standard multi-armed stochastic bandit

problem, µ̂i(t) is a proper estimation of µi, the true mean reward of arm i. However, under the

action-manipulation attacks, as the user does not know which arm is used to generate rt, µ̂i(t) is

not a proper estimate of the true mean reward anymore. However, we can try to find a good bound

of the true mean reward. If we know ∆iO,iW , the reward difference between the optimal arm and

the worst arm, we can describe the maximum offset of the mean rewards caused by the attack. In

particular, we have

µi −
A

Ni(t)
∆iO,iW ≤

1

Ni(t)

∑
s∈τi(t)

µI0s
≤ µi +

A

Ni(t)
∆iO,iW , (2.19)

which implies

µi ≤
A

Ni(t)
∆iO,iW +

1

Ni(t)

∑
s∈τi(t)

µI0s
. (2.20)

In (2.20), the first term in the right hand side is the maximum offset that an attacker can

introduce regardless of the attack strategy. The second term in the right hand side is related to

34

the mean estimated by the user. In particular, under event E2, as shown in Lemma 3, we have

1

Ni(t)

∑
s∈τi(t)

µI0s
< µ̂i(t) + β(Ni(t)). (2.21)

Hence, regardless the attack strategy, we have a upper confidence bound on µi:

µi ≤ µ̂i(t) +
A

Ni(t)
∆iO,iW + β(Ni(t)). (2.22)

In our case, however, ∆iO,iW is also unknown. In our algorithm, we obtain a high-probability bound

on ∆iO,iW :

∆iO,iW ≤ 2max
i,j
{µ̂i − µ̂j + β (Ni(t)) + β (Nj(t))} , (2.23)

which will proved in Lemma 5 below. Now, the second term of (2.22) becomes γ(µ̂(t−1),N(t−1))

if we replace ∆iO,iW with the bound (2.23), and we obtain our final algorithm.

The design of robust algorithms under the adversarial setup can be alternatively viewed as

a MABs problem with limited number of mean changes. When the user pulls a single arm, the

rewards he receives are drawn from different reward distributions with different means. The means

are varying with time because of the manipulation of the attacker. The means change between only

K fixed values. In our setting, if the attacker does not decide to attack, the arm chosen by the

user does not change and the mean does not change. In this sense, the attack cost is the number of

rounds when the mean is different from the initial value. In most rounds, each arm corresponds to

a fixed but unknown reward distribution. However, in at most A rounds, the mean of each arm is

varying between K − 1 fixed values.

2.3.2 Regret analysis

Lemma 5 shows a bound of ∆iO,iW , the maximum reward difference between any two arms, under

event E2.

35

Lemma 5. For δ ≤ 1
3
, t > 2AK and under event E2, MOUCB algorithm have

∆iO,iW ≤ 2max
i,j
{µ̂i − µ̂j + β (Ni(t)) + β (Nj(t))}

≤ 2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ
.

(2.24)

Proof. Please refer to Appendix A.2.1.

Using Lemma 5, we now bound the regret of Algorithm 2.2.

Theorem 3. Let A be an upper bound on the total attack cost |C|. For δ ≤ 1
3

and T ≥ 2AK,

MOUCB algorithm has pseudo-regret R̄(T)

R̄(T) ≤
∑
a̸=iO

max

{
8σ2K

∆iO,a

log
π2T 2

3δ
, A

(
∆iO,a + 2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)}
, (2.25)

with probability at least 1− δ.

Proof. Please refer to Appendix A.2.2.

Theorem 3 reveals that our bandit algorithm is robust to the action-manipulation attacks. If

the total attack cost is bounded by O(log T), the pseudo-regret of MOUCB bandit algorithm

is still bounded by O(log T). This is in contrast with UCB, for which we have shown that the

pseudo-regret is O(T) with attack cost O(log T) in Chapter 2.2. If the total attack cost is up to

Ω(log T), the pseudo-regret of MOUCB bandit algorithm is bounded by O(A), which is linear

in A. Note that in the design of defense strategy, we do not assume what the attack strategy is.

MOUCB can defend against both LCB attacks and oracle attacks. In fact, MOUCB is robust to all

action-manipulation attacks, as long as the total attack cost is smaller than A. In a sense, A can be

viewed as a parameter chosen by the user to strike a balance between performance and robustness

against attacks: the larger the value A is, the larger class of attacks the user can defend against, but

with the cost of a larger regret.

36

2.4 Numerical Results

In this section, we provide numerical examples to illustrate the analytical results obtained. In our

simulation, the bandit has 10 arms. The rewards distribution of arm i is N (µi, σ). The attacker’s

target arm is K. We let δ = 0.05. We then run the experiment for 20 trials and in each trial we run

T = 107 rounds.

2.4.1 LCB attack strategy

We first illustrate the impact of the proposed LCB attack strategy on UCB algorithm.

0 2 4 6 8 10

T 10
6

0

2

4

6

8

10

T
a

rg
e

t
A

rm
 P

u
ll

C
o

u
n

t

10
6

Figure 2.2: Number of rounds the target arm was pulled

In Figure 2.2, we fix σ = 0.1 and ∆K,iW = 0.1 and compare the number of rounds at which

the target arm is pulled with and without attack. In this experiment, the mean rewards of all arms

are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1, and 0.2 respectively. Arm K is not the worst arm, but

its average reward is lower than most arms. The results are averaged over 20 trials. The attacker

successfully manipulates the user into pulling the target arm very frequently.

In Figure 2.3, in order to study how σ
∆K,iW

affects the attack cost, we fix ∆K,iW = 0.1 and set

σ as 0.1, 0.3 and 0.5 respectively. The mean rewards of all arms are the same as above. From the

figure, we can see that as σ
∆K,iW

increases, the attack cost increases. In addition, as predicted in our

analysis, the attack cost increases with T , the total number of rounds, in a logarithmic order.

37

0 2 4 6 8 10

T 10
6

0

1

2

3

c
o

s
t

10
4

Figure 2.3: Attack cost vs σ
∆K,iW

0 2 4 6 8 10

T 10
6

0

500

1000

1500

c
o

s
t

Figure 2.4: Attack cost vs
∑

j ̸=iW

∆K,iW

∆j,iW

Figure 2.4 illustrates how
∑

j ̸=iW

∆K,iW

∆j,iW
affects the attack cost. In this experiment, we fix

σ
∆K,iW

= 1 and set ∆K,iW as 0.2, 0.6 and 0.9 respectively. The mean rewards of all arms are the

same as above. The figure illustrates that, as
∑

j ̸=iW

∆K,iW

∆j,iW
increases, the attack cost also increases.

This is consistent with our analysis in Corollary 1.

2.4.2 MOUCB bandit algorithm

We now illustrate the effectiveness of MOUCB bandit algorithm.

In this experiment, we use the similar setting as in the simulation of the LCB attack scheme. The

38

mean rewards of all arms are set to be 1.0, 0.8, 0.9, 0.5, 0.2, 0.3, 0.1, 0.4, 0.7, and 0.6 respectively.

The total attack cost |C| is limited by 2000. A given valid upper bound for total attack cost is

A = 3000. The results are averaged over 20 trials.

0 2 4 6 8 10

T 10
6

0

2

4

6

8

10

O
p

ti
m

a
l
A

rm
 P

u
ll

C
o

u
n

t

10
6

Figure 2.5: Comparison of number of rounds the optimal arm was pulled

In Figure 2.5, we simulate MOUCB algorithm with two different attacks, and compare the

numbers of rounds when the optimal arm is pulled under these attacks. The first attack is the LCB

attack discussed in Chapter 2.2. The second attack is the oracle attack, in which the attacker knows

the true mean reward of arms and implements the oracle attacks that change any non-target arm to a

worst arm (see the discussion in Chapter 2.1). For comparison purposes, we also add the curve for

MOUCB under no attack, and the curve for UCB under no attack. The results show that, even under

the oracle attack, the proposed MOUCB bandit algorithm achieves almost the same performance

as the UCB without attack.

To further compare the performance of UCB and MOUCB, in Figure 2.6, we illustrate the

performance of UCB algorithm for the three scenarios discussed above: under LCB attack,

under oracle attack and under no attack. The results show that both LCB and oracle attacks can

successfully manipulates the UCB algorithm into pulling a non-optimal arm very frequently, as the

curves for the LCB attack and oracle attack are far away from the curve for no attack. This is in

sharp contrast with the situation for MOUCB algorithm shown in Figure 2.5, where the all curves

are almost identical.

39

0 2 4 6 8 10

T 10
6

0

2

4

6

8

10

O
p

ti
m

a
l
A

rm
 P

u
ll

C
o

u
n

t

10
6

Figure 2.6: Number of rounds the optimal arm was pulled using UCB algorithm

0 2 4 6 8 10

T 10
6

0

2

4

6

P
s
e

u
d

o
-R

e
g

re
t

10
-3

Figure 2.7: Pseudo-regret of MOUCB algorithm

40

Figure 2.7 and Figure 2.8 illustrate the pseudo-regret of MOUCB bandit algorithm and UCB

bandit algorithm respectively. In Figure 2.7, as predicted in our analysis, MOUCB algorithm

archives logarithmic pseudo-regrets under both LCB attacks and the oracle attacks. Furthermore,

the curves under both attacks are very close to that of the case without attacks. However,

as shown in Figure 2.8, the pseudo-regret of UCB grows linearly under both attacks, while

grows logarithmically under no attack. The figures again show that UCB is vulnerable to

action-manipulation attacks while the proposed MOUCB is robust to the attacks (even for oracle

attacks).

0 2 4 6 8 10

T 10
6

-0.1

0

0.1

0.2

0.3

0.4

P
s
e

u
d

o
-R

e
g

re
t

Figure 2.8: Pseudo-regret of UCB algorithm

2.5 Conclusion

In this chapter, we have introduced a new class of attacks on stochastic bandits: action-manipulation

attacks. We have analyzed the attack against the UCB algorithm and proved that the proposed

LCB attack scheme can force the user to almost always pull a non-worst arm with only logarithm

effort. To defend against this type of attacks, we have further designed a new bandit algorithm

MOUCB that is robust to action-manipulation attacks. We have analyzed the regret of MOUCB

under any attack with bounded cost, and have showed that the proposed algorithm is robust to the

action-manipulation attacks.

41

Chapter 3

Action Attacks on Contextual Bandits

In this chapter, we introduce action poisoning attacks against linear contextual bandits and some

efficient attack strategies. We also extend the proposed attack strategies to generalized linear

mode. In Section 3.1, we describe the model. In Section 3.2, we describe the attack strategies and

analyze their accumulative attack cost. In Section 3.3, we extend the proposed attack strategies to

generalized linear model. In Section 3.4, we provide numerical examples to validate the theoretic

analysis. The proofs are collected in Appendix B.

3.1 Problem Setup

Consider the standard contextual linear bandit model in which the environment consists ofK arms.

In each round t = 1, 2, 3, . . . , T , the agent observes a context xt ∈ D where D ⊂ Rd, pulls an

arm It and receives a reward rt,It . Each arm i is associated with an unknown but fixed coefficient

vector θi ∈ Θ where Θ ⊂ Rd. In each round t, the reward satisfies rt,It = ⟨xt, θIt⟩ + ηt, where ηt

is a conditionally independent zero-mean R-subgaussian noise and ⟨·, ·⟩ denotes the inner product.

Hence, the expected reward of arm i under context xt follows the linear setting E[rt,i] = ⟨xt, θi⟩

for all t and all arm i. If we consider the σ-algebra Ft = σ(x1, . . . , xt+1, η1, . . . , ηt), xt becomes

Ft−1 measurable and ηt becomes Ft measurable.

In this chapter, we assume that there exist L > 0 and S > 0, such that for all round t and arm

42

i, ∥xt∥2 ≤ L and ∥θi∥2 ≤ S, where ∥ · ∥2 denotes the ℓ2-norm. We assume that there exist D ⊂ Rd

such that for all t, xt ∈ D and, for all x ∈ D and all arm i, ⟨x, θi⟩ > 0.

The agent is interested in minimizing the cumulative pseudo-regret

R̄T =
T∑
t=1

(
⟨xt, θI∗t ⟩ − ⟨xt, θIt⟩

)
, (3.1)

where I∗t = argmaxi⟨xt, θi⟩.

In this chapter, we introduce a novel adversary setting, in which the attacker can manipulate

the action chosen by the agent. In particular, at each round t, after the agent chooses an arm It,

the attacker can manipulate the agent’s action by changing It to another I0t ∈ {1, . . . , K}. If the

attacker decides not to attack, I0t = It. The environment generates a random reward rt,I0t based on

the post-attack arm I0t and the context xt. Then the agent and the attacker receive reward rt,I0t from

the environment. Since the agent does not know the attacker’s manipulations and the presence of

the attacker, the agent will still view rt,I0t as the reward corresponding to the arm It.

The goal of the attacker is to design attack strategy to manipulate the agent into pulling a target

arm very frequently but by making attacks as rarely as possible. Without loss of generality, we

assume arm K is the “attack target” arm or target arm. Define the set of rounds when the attacker

decides to attack as C := {t : t ≤ T, I0t ̸= It}. The cumulative attack cost is the total number

of rounds where the attacker decides to attack, i.e., |C|. The attacker can monitor the contexts, the

actions of the agent and the reward signals from the environment.

We now compare the three types of poisoning attacks against contextual linear bandit: reward

poisoning attack, action poisoning attack and context poisoning attack. In the reward poisoning

attack [26, 67], after the agent observes context xt and chooses arm It, the environment will

generate reward rt,It based on context xt and arm It. Then, the attacker can change the reward rt,It

to r̃t and feed r̃t to the agent. Compared with the reward poisoning attacks, the action poisoning

attack considered in this chapter is more difficult to carry out. In particular, as the action poisoning

attack only changes the action, it can impact but does not have direct control of the reward signal.

43

By changing the action It to I0t , the reward received by the agent is changed from rt,It to rt,I0t which

is a random variable drawn from a distribution based on the action I0t and context xt. This is in

contrast to reward poisoning attacks where an attacker has direct control and can change the reward

signal to any value r̃t of his choice. In the context poisoning attack [26], the attacker only changes

the context shown to the agent. The reward is also generated based on the true context xt and the

agent’s action It. Nevertheless, the agent’s action may be indirectly impacted by the manipulation

of the context, and so as the reward. Since the attacker attacks before the agent pulls an arm, the

context poisoning attack is the most difficult to carry out. As mentioned in the introduction, the

goal of this chapter is not to promote any particular types of poisoning attacks. Instead, our goal is

to understand the potential risks of action poisoning attacks, as the safe applications and design of

robust contextual bandit algorithm relies on the addressing all possible weakness of the models.

As the action poisoning attack only changes the actions, it can impact but does not have direct

control of the agent’s observations. Furthermore, when the action space is discrete and finite, the

ability of the action poisoning attacker is severely limited. It is reasonable to limit the choice of the

target policy. Here we introduce an important assumption that the target arm is not the worst arm:

Assumption 1. For all x ∈ D, the mean reward of the target arm satisfies ⟨x, θK⟩ >

mini∈[K]⟨x, θi⟩.

If the target arm is the worst arm in most contexts, the attacker should change the target arm to

a better arm or the optimal arm so that the agent learns that the target set is optimal for almost every

context. In this case, the cost of attack may be up to O(T). Assumption 1 does not imply that the

target arm is optimal at some contexts. The target arm could be sub-optimal for all contexts. Fig. 3.1

shows an example of one dimension linear contextual bandit model, where the x-axis represents

the contexts and the y-axis represents the mean rewards of arms under different contexts. As shown

in Fig. 3.1, arms 3 and 4 satisfy Assumption 1. In addition, arm 3 is not optimal at any context.

Under Assumption 1, there exists α ∈ (0, 1
2
) such that maxx∈D

mini⟨x,θi⟩
⟨x,θK⟩ ≤ (1 − 2α).

44

Context(x)

M
e
a
n
 R

e
w

a
rd

(<
x
,

>
) arm 1

arm 2

arm 3

arm 4

Figure 3.1: An example of one dimension linear contextual bandit model.

Equivalently, Assumption 1 implies that there exists α ∈ (0, 1
2
), such that for all t, we have

(1− 2α)⟨xt, θK⟩ ≥ min
i∈[K]
⟨xt, θi⟩. (3.2)

Assumption 1 is necessary in our analysis to prove a formal bound of the attack cost. In practice,

the proposed algorithms in Section 3.2.2 and 3.2.3 may still work if the target arm is the worst in a

small portion of the contexts (as illustrated in the numerical example section).

3.2 Attack Schemes and Cost Analysis

In this section, we introduce action poisoning attack schemes in the white-box setting and

black-box setting respectively. In order to demonstrate the significant security threat of action

poisoning attacks to linear contextual bandits, we investigate our action poisoning attack strategy

against a widely used algorithm: LinUCB algorithm. Furthermore, we analyze the attack cost of

our action poisoning attack schemes.

3.2.1 Overview of LinUCB

For reader’s convenience, we first provide a brief overview of the LinUCB algorithm [53]. The

LinUCB algorithm is summarized in Algorithm 3.1. The main steps of LinUCB are to obtain

estimates of the unknown parameters θi using past observations and then make decisions based on

45

these estimates. Define τi(t) := {s : s ≤ t, Is = i} as the set of rounds up to t where the agent

pulls arm i. Let Ni(t) = |τi(t)|. Then, at round t, the ℓ2-regularized least-squares estimate of θi

with regularization parameter λ > 0 is obtained by [53]

θ̂t,i = V −1
t,i

 ∑
k∈τi(t−1)

rt,ixk

 , (3.3)

where Vt,i =
∑

k∈τi(t−1) xkx
T
k + λI with I being identity matrix.

After θ̂i’s are obtained, at each round, an upper confidence bound of the mean reward has to be

calculated for each arm (step 5 of Algorithm 3.1). Then, the LinUCB algorithm picks the arm with

the largest upper confidence bound (step 7 of Algorithm 3.1). By following the setup in ”optimism

in the face of uncertainty linear algorithm” (OFUL) [1], we set

βt,i =
√
λS +R

√
2 logK/δ + d log (1 + L2Ni(t)/(λd)).

We define ω(N) =
√
λS + R

√
2 logK/δ + d log (1 + L2N/(λd)). It is easy to verify that ω(N)

is a monotonically increasing function over N ∈ (0,+∞).

Algorithm 3.1 Contextual LinUCB [53]
Require:

regularization λ, number of arms K, number of rounds T , bound on context norms L, bound
on parameter norms S.

1: Initialize for every arm i, Vi ← λI, bi ← 0, θ̂i ← V −1
i bi.

2: for t = 1, 2, . . . , T do
3: observe the context xt.
4: for i = 1, 2, . . . , K do
5: Compute the upper confidence bound: pt,i ← xTt θ̂i + βt,i

√
xTt V

−1
i xt.

6: end for
7: Pull arm It = argmaxi pt,i.
8: The environment generates reward rt according to arm It.
9: The agent receive rt.

10: VIt ← VIt + xtx
T
t , bIt ← bIt + rtxt, θ̂It ← V −1

It
bIt .

11: end for

46

3.2.2 White-box attack

We first consider the white-box attack scenario, in which the attacker has knowledge of the

environment. In particular, in the white-box attack scenario, the attacker knows the coefficient

vectors θi’s for all i. The understanding of this scenario could provide useful insights for the more

practical black-box attack scenario to be discussed in Section 3.2.3.

Our proposed attack strategy works as follows. When the agent chooses arm K, the attacker

does not attack. When the agent chooses arm It ̸= K, the attacker changes it to arm

I0t =


K with probability ϵt

I†t with probability 1− ϵt
(3.4)

where I†t = argmini⟨xt, θi⟩ and

ϵt =
(1− α)⟨xt, θK⟩ −mini⟨xt, θi⟩
⟨xt, θK⟩ −mini⟨xt, θi⟩

. (3.5)

We now explain the main idea behind the attack strategy specified in (3.4) and (3.5). Intuitively

speaking, using (3.4) and (3.5), the attacker can manipulate the agent into learning some particular

coefficient vectors. In particular, for arm K (the target arm), the agent obtains the true coefficient

vector θK . For any arm i ̸= K, because of the attacks, the agent will obtain an estimate of arm i’s

coefficient vector to be close to (1− α)θK . This can be seen as follows. Under Assumption 1 and

the fact that the mean rewards are positive, we have that 1/2 < ϵt < 1 − α. Under the white-box

attack, when the agent pulls a non-target arm It ̸= K, the mean reward received by the agent

should satisfy

E[rt,I0t |Ft−1, It] = E[⟨xt, θI0t ⟩|Ft−1, It]

= ϵt⟨xt, θK⟩+ (1− ϵt)min
i
⟨xt, θi⟩ = (1− α)⟨xt, θK⟩.

Because of the positive mean reward assumption and the fact that 0 < 1−α < 1, the target arm K

appears to be the optimal arm for any context. Hence the proposed white-box attack strategy can

easily mislead an agent who employs a contextual bandit algorithm with sublinear pseudo-regret,

47

as shown in the following proposition whose proof can be found in Appendix B.1.1. The proposed

attack strategy can be further extended to the generalized linear contextual bandit model. We

discuss the generalized linear contextual bandit model in Section 3.3.

Proposition 2. For δ > 0. Suppose the agent employs a linear contextual bandit algorithm whose

cumulative pseudo-regret is upper bounded by o(T) over T with probability at least 1 − δ. When

using the proposed white-box attack scheme, with probability at least 1− δ, the attacker can force

the agent to pull the target arm for T − o(T) times, while the total attack cost |C| is upper bounded

by o(T).

Proposition 2 applies to any contextual bandit algorithm whose cumulative pseudo-regret is

upper bounded by o(T). To further illustrate the proposed attack scheme, we now provide a

finer analysis the impact of this attack on LinUCB described in Algorithm 3.1. We first build

a high probability bound for the estimate of parameter at the agent, when the agent computes

the estimate of θi by (3.3) and the attacker employs the white-box attack. Recall that ω(N) =
√
λS +R

√
2 logK/δ + d log (1 + L2N/(λd)).

Lemma 6. Under the proposed white-box attack, the estimate of θi for each arm i obtained by

LinUCB agent as described in Algorithm 3.1 satisfies

|xTt θ̂t,i − xTt (1− α)θK | ≤
(
ω(Ni(t)) + LS

√
0.5 log (2KT/δ)

)
∥xt∥V −1

t,i
, (3.6)

with probability 1− 2(K − 1)δ/K, for all arm i ̸= K and all t ≥ 0. Here, ∥x∥V =
√
xTV x is the

weighted norm of vector x for a positive definite matrix V .

The proof of Lemma 6 is provided in Appendix B.1.2. Lemma 6 shows that, under our

white-box attack, the agent’s estimate of the parameter of non-target arm, i.e. θ̂i, will converge

to (1− α)θK . Thus, the agent is misled to believe that arm K is the optimal arm for every context

in most rounds. The following theorem provides an upper bound of the cumulative cost of the

attack.

48

Theorem 4. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 6, for any

δ > 0 with probability at least 1−2δ, for all T ≥ 0, the attacker can manipulate the LinUCB agent

into pulling the target arm in at least T − |C| rounds, using an attack cost

|C| ≤2d(K − 1)

(αγ)2
log
(
1 + TL2/(dλ)

) (
2ω(T) + LS

√
0.5 log (2KT/δ)

)2
. (3.7)

The proof of Theorem 4 is provided in Appendix B.1.3. Theorem 4 shows that our white-box

attack strategy can force LinUCB agent into pulling the target arm T −O(log2 T) times with attack

cost scaled only as O(log2 T).

3.2.3 Black-box attack

We now focus on the more practical black-box setting, in which the attacker does not know any

of arm’s coefficient vector. The attacker knows the value of α (or a lower bound) in which the

equation (3.2) holds for all t. Although the attacker does not know the coefficient vectors for all

arms, the attacker can compute an estimate of the unknown parameters by using past observations.

On the other hand, there are multiple challenges brought by the estimation errors that need to

properly addressed.

The proposed black-box attack strategy works as follows. When the agent chooses arm K, the

attacker does not attack. When the agent chooses arm It ̸= K, the attacker changes it to arm

I0t =


K with probability ϵt

I†t with probability 1− ϵt
(3.8)

where

I†t = argmin
i ̸=K

(
⟨xt, θ̂0t,i⟩ − β0

t,i∥xt∥(V 0
t,i)

−1

)
, (3.9)

and

β0
t,i = ϕi

(
ω(N †

i (t)) + LS
√
0.5 log (2KT/δ)

)
, (3.10)

49

ϕi = 1/α when i ̸= K and ϕK = 2, and

ϵt = clip

1

2
,
(1− α)⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t ⟩

⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t
⟩

, 1− α

 , (3.11)

with clip(a, x, b) = min(b,max(x, a)) where a ≤ b.

For notational convenience, we set I†t = K and ϵt = 1 when It = K. We define that, if i ̸= K,

τ †i (t) := {s : s ≤ t, I†s = i} and N †
i (t) = |τ

†
i (t)| ; τ

†
K(t) := {s : s ≤ t} and N †

K(t) = |τ
†
K(t)|.

θ̂0t,i =
(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,irk,I0kxk

 , (3.12)

where V 0
t,i =

∑
k∈τ†i (t−1) xkx

T
k + λI and

wt,i =


1/ϵt if i = I0t = K

1/(1− ϵt) if i = I0t = I†t

0 if i ̸= I0t

. (3.13)

Here, θ̂0t,i is the estimation of θi by the attacker, while θ̂t,i in (3.3) is the estimation of θi at the agent

side. We will show in Lemma 7 and Lemma 9 that θ̂0t,i will be close to the true value of θi while

θ̂t,i will be close to a sub-optimal value chosen by the attacker. This disparity gives the attacker the

advantage for carrying out the attack.

We now highlight the main idea why our black-box attack strategy works. As discussed in

Section 3.2.2, if the attacker knows the coefficient vectors of all arms, the proposed white-box

attack scheme can mislead the agent to believe that the coefficient vector of every non-target arm is

(1−α)θK , hence the agent will think the target arm is optimal. In the black-box setting, the attacker

does not know the coefficient vector for any arm. The attacker should estimate the coefficient

vector of each arm. Then, the attacker will use the estimated coefficient vector to replace the true

coefficient vector in the white-box attack scheme. As the attacker does not know the true values of

50

θi’s, we need to design the estimator θ̂0t,i, the attack choice I†t and the probability ϵt carefully. In

the following, we explain the main ideas behind our design choices.

Firstly, we explain why we design estimator θ̂0t,i using the form (3.12), in which the attacker

employs the importance sampling to obtain an estimate of θi. There are two reasons for this. Firstly,

for a successful attack, the number of observation in arm i ̸= K will be limited. Hence if the

importance sampling is not used, the estimation variance of the mean reward ⟨x, θi⟩ at the attacker

side for some contexts x may be large. Secondly, the attacker’s action is stochastic when the agent

pulls a non-target arm. Thus, the attacker uses the observations at round t when the attacker pulls

arm i with certain probability, i.e. when t ∈ τ †i , to estimate θi. At the agent side, since the agent’s

action is deterministic, the agent uses the observations at round t when the agent pulls arm i, i.e.

when t ∈ τi, to estimate θi.

Secondly, we explain ideas behind the choice of I†t in (3.9). Under our black-box attack, when

the agent pulls a non-target arm It ̸= K, the mean reward received by the agent satisfies

E[rt,I0t |Ft−1, It] = E[⟨xt, θI0t ⟩|Ft−1, It]

= ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†t ⟩.
(3.14)

In white-box attack scheme, I†t is the worst arm at context xt. In the black-box setting, the attacker

does not know a prior which arm is the worst. In the proposed black-box attack scheme, as indicated

in (3.9), we use the lower confidence bound (LCB) method to explore the worst arm and I†t is the

arm whose lower confidence bound is the smallest.

Finally, we provide reasons why we choose ϵt using (3.11). In our white-box attack scheme,

we have that 1/2 < ϵt < 1 − α. Thus, in our black-box attack scheme, we limit the choice of

ϵt to [1/2, 1 − α]. Furthermore, in (3.5) used for the white-box attack, ϵt is computed by the true

mean reward. Now, in the black-box attack, as the attacker does not the true coefficient vector, the

attacker use the estimation of θ to compute the second term in the clip function in (3.11).

In summary, our design of θ̂0t,i, I
†
t and ϵt can ensure that the attacker’s estimation θ̂0t,i is close

to θi, while the agent’s estimation θ̂t,i will be close to (1 − α)θK . In the following, we make

51

these statements precise, and formally analyze the performance of the proposed black-box attack

scheme.

First, we analyze the estimation θ̂0t,i at the attacker side. We establish a confidence ellipsoid of

⟨xt, θ̂0t,i⟩ at the attacker.

Lemma 7. Assume the attacker performs the proposed black-box action poisoning attack. With

probability 1− 2δ, we have

|xTt θ̂0t,i − xTt θi| ≤ β0
t,i∥xt∥(V 0

t,i)
−1 . (3.15)

holds for all arm i and all t ≥ 0 simultaneously.

Lemma 7 shows that θ̂0i lies in an ellipsoid with center at θi with high probability, which implies

that the attacker has good estimate of each arm.

We then analyze the estimation θ̂t,i at the agent side. The following lemma provides an upper

bound on the absolute difference between E[rt,I0t |Ft−1, It] and (1− α)⟨xt, θK⟩.

Lemma 8. Under the black-box attack, with probability 1 − 2δ, the estimate obtained by an

LinUCB agent satisfies

∣∣E[rt,I0t |Ft−1, It]− (1− α)⟨xt, θK⟩
∣∣ ≤ (1− α)β0

t,K∥xt∥(V 0
t,K)

−1 + (1 + α)β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

simultaneously for all t ≥ 0 when It ̸= K.

The bound in Lemma 8 consists of the confidence ellipsoid of the estimate of arm I†t and that

of arm K. As mentioned above, for a successful attack, the number of observations on arm I†t will

be limited. Thus, in our proposed algorithm, the attacker use the importance sampling to obtain

the estimate of θi, which will increase the number of observations that can be used to estimate

the coefficient vector of arm I†t . Using Lemma 8, we have the following lemma regarding the

estimation θ̂t,i at the agent side.

52

Lemma 9. Consider the same assumption as in Lemma 7. With a probability at least 1− (3K−1)δ
K

,

the estimate θ̂t,i obtained by the LinUCB agent will satisfy

|xTt θ̂t,i − xTt (1− α)θK |

≤
(
1 + 4d/α

√
K log (1 + tL2/(dλ))

)(
ω(Ni(t)) + LS

√
0.5 log (2KT/δ)

)
∥xt∥V −1

t,i

(3.16)

simultaneously for all arm i ̸= K and all t ≥ 0.

Lemma 9 shows that, under the proposed black-box attack scheme, the agent’s estimate of the

parameter of non-target arm, i.e. θ̂i, will converge to (1− α)θK . Hence the agent will believe that

the target armK is the optimal arm for any context in most rounds. Using these supporting lemmas,

we can then analyze the performance of the proposed black-box attack strategy.

Theorem 5. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 9, with

probability at least 1− 3δ, for all T ≥ 0, the attacker can manipulate a LinUCB agent into pulling

the target arm in at least T − |C| rounds, using an attack cost

|C| ≤ 2d(K − 1)

(αγ)2

(
2 +

4d

α

√
K log

(
1 +

TL2

dλ

))2

×

log

(
1 +

TL2

dλ

)(
ω(T) + LS

√
0.5 log (2KT/δ)

)2
.

(3.17)

Theorem 5 shows that our black-box attack strategy can manipulate a LinUCB agent into

pulling a target arm T − O(log3 T) times with attack cost scaling as O(log3 T). Compared with

the result for the white-box attack, the black-box attack only brings an additional log T factor.

3.3 Generalized Linear Model

In this section, we extend the proposed attack strategy to the generalized linear contextual bandit

model. In the generalized linear model (GLM), there is a fixed, strictly increasing link function

µ : R → R such that the reward satisfies rt,It = µ(⟨xt, θIt⟩) + ηt, Hence, the expected reward of

53

arm i under context xt follows the GLM setting: E[rt,i] = µ(⟨xt, θi⟩) for all t and all arm i. One

can verify that µ(x) = x leads to the linear model and µ(x) = exp(x)/(1 + exp(x)) leads to the

logistic model.

We assume that the link function µ is continuously twice differentiable, Lipschitz with constant

kµ and such that cµ = infθ∈Θ,x∈D µ̇(x
T θ) > 0, where µ̇ denote the first derivatives of µ. It can be

verified that the link function of the linear model is Lipschitz with constant kµ = 1 and which of

the logistic model is Lipschitz with constant kµ = 1/4.

The agent is interested in minimizing the cumulative pseudo-regret, and the cumulative

pseudo-regret for the GLM can be formally written as

RT =
T∑
t=1

(
µ(⟨xt, θI∗t ⟩)− µ(⟨xt, θIt⟩)

)
, (3.18)

where I∗t = argmaxi µ(⟨xt, θi⟩).

For the GLM considered here, since µ is a strictly increasing function, I∗t =

argmaxi µ(⟨xt, θi⟩) = argmaxi⟨xt, θi⟩. Thus, our proposed attack strategy can be extended to

the generalized linear contextual bandit model.

When the agent chooses arm K, the attacker does not attack. When the agent chooses arm

It ̸= K, the attacker changes it to arm

I0t =


K with probability ϵt

I†t with probability 1− ϵt
(3.19)

where I†t = argmini⟨xt, θi⟩ and

ϵt =
µ((1− α)⟨xt, θK⟩)− µ(mini⟨xt, θi⟩)

µ(⟨xt, θK⟩)− µ(mini⟨xt, θi⟩)
. (3.20)

Similar as the proposed attack strategy on linear bandit model, the attacker can manipulate the

agent into learning some particular coefficient vectors. In particular, for arm K (the target arm),

54

the agent obtains the true coefficient vector θK . For any arm i ̸= K, because of the attacks, the

agent will obtain an estimate of arm i’s coefficient vector to be close to (1 − α)θK . Under the

white-box attack, when the agent pulls a non-target arm It ̸= K, the mean reward received by the

agent should satisfy

E[rt,I0t |Ft−1, It] = µ((1− α)⟨xt, θK⟩).

Proposition 3. For δ > 0, suppose the agent employs a generalized linear contextual bandit

algorithm whose cumulative pseudo-regret is upper bounded by o(T) over T with probability at

least 1− δ. When using the proposed white-box attack scheme, with probability at least 1− δ, the

attacker can force the agent to pull the target arm for T − o(T) times, while the total attack cost

|C| is upper bounded by o(T).

Proof. Let us consider a contextual bandit problem P1, in which the arm K (the target arm) is

associated with a fixed coefficient vector θK and all other arms are associated with the coefficient

vector (1 − α)θK . For a generalized linear contextual bandit algorithm A , we suppose that

the cumulative pseudo-regret regret of algorithm A for the problem P1 is upper bounded with

probability at least 1− δ by a function fA (T) such that fA (T) = o(T).

Under the proposed white-box attack, when the agent pulls a non-target arm It ̸= K, the

mean reward received by the agent should satisfy E[rt,I0t |Ft−1, It] = µ((1 − α)⟨xt, θK⟩). In the

observation of the agent, the target arm becomes optimal and the non-target arms are associated

with the coefficient vector (1 − α)θK . For the agent, the combination of the attacker and the

environment form problem P1. The cumulative pseudo-regret should satisfy

RT =
T∑
t=1

1{It ̸=K} (µ (⟨xt, θK⟩)− µ (⟨xt, (1− α)θK⟩))

≥
T∑
t=1

1{It ̸=K}cµ⟨xt, αθK⟩

≥
T∑
t=1

1{It ̸=K}cµLS,

55

which is equivalent to
∑T

t=1 1{It ̸=K} ≤ RT/(cµLS). SinceRT is upper bounded by fA (T) = o(T),

|C| =
∑T

t=1 1{It ̸=K} is also upper bounded by o(T).

To further illustrate the proposed attack scheme, we now provide a finer analysis the impact

of this attack on GLM-UCB described in Algorithm 3.2. The algorithm is simply initialized by

playing every arm j times to ensure a unique solution of θ̂i for each arm i. We assume that after

playing arm i J times, Vi is invertible and the minimal eigenvalue of Vi is greater or equal to λ0 for

all arm i. We assume that xt is drawn iid from some distribution v with support in the unit ball and

set Σ := E[xtx
T
t]. Proposition 1 in [54] shows that there exist positive, universal constants D1 and

D2 such that λmin(Vi) ≥ λ0 with probability at least 1− δ, as long as

J ≥

(
D1

√
d+D2

√
log(1/δ)

λmin(Σ)

)2

+
2λ0

λmin(Σ)
. (3.21)

Algorithm 3.2 GLM-UCB [54]
Require:

number of arms K, number of rounds T , number of initial rounds j.
1: Initialize for every arm i.
2: Play every arm J times. At each time, update V̄It ← VIt + xtx

T
t .

3: for t = KJ + 1, KJ + 2, . . . , T do
4: observe the context xt.
5: for i = 1, 2, . . . , K do
6: Calculate the maximum-likelihood estimator θ̂i by solving the equation∑

n∈τi(t−1)

(rn − µ(xTn θ̂i))xn = 0.

7: Compute the upper confidence bound: pt,i ← xTt θ̂i + βt,i
√
xTt V̄

−1
i xt.

8: end for
9: Pull arm It = argmaxi pt,i.

10: The environment generates reward rt according to arm It.
11: The agent receive rt.
12: V̄It ← V̄It + xtx

T
t .

13: end for

56

By following the setup in [54], we set

βt,i =
2R

cµ

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
.

Lemma 10. Under the proposed white-box attack, the estimate of θi for each arm i ̸= K obtained

by GLM-UCB agent as described in Algorithm 3.2 satisfies

|xTt θ̂t,i − xTt (1− α)θK | ≤
2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
∥x∥V̄ −1

t,i
. (3.22)

The proof of Lemma 10 is provided in Appendix B.3.1.

Theorem 6. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 6, for any

δ > 0 with probability at least 1−2δ, for all T ≥ 0, the attacker can manipulate the LinUCB agent

into pulling the target arm in at least T − |C| rounds, using an attack cost

|C| ≤4d(K − 1)

(αγ)2
log

(
1 +

tL2

dλ0

)(
2kµLS + 4R

cµ

)2(
log

K

δ
+ d log

(
1 +

L2T

λ0d

))
. (3.23)

The proof of Theorem 6 is provided in Appendix B.3.2.

The proposed black-box attack strategy works as follows. When the agent chooses arm K, the

attacker does not attack. When the agent chooses arm It ̸= K, the attacker changes it to arm

I0t =


K with probability ϵt

I†t with probability 1− ϵt
(3.24)

where

I†t = argmin
i ̸=K

(
⟨xt, θ̂0t,i⟩ − β0

t,i∥xt∥(V̄ 0
t,i)

−1

)
, (3.25)

and

β0
t,i = 2ϕi

kµLS +R

cµ

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
, (3.26)

57

ϕi =
kµ
cµα

when i ̸= K and ϕK = 1 + kµ
cµ

, and

ϵt = clip

 cµ
cµ + kµ

,
µ((1− α)xTt θ̂0t,K)− µ(xTt θ̂0t,I†t)

µ(xTt θ̂
0
t,K)− µ(xTt θ̂0t,I†t

)
, 1− αcµ

kµ

 , (3.27)

with clip(a, x, b) = min(b,max(x, a)) where a ≤ b.

For notational convenience, we set I†t = K and ϵt = 1 when It = K. We define that, if i ̸= K,

τ †i (t) := {s : s ≤ t, I†s = i} and N †
i (t) = |τ

†
i (t)| ; τ

†
K(t) := {s : s ≤ t} and N †

K(t) = |τ
†
K(t)|.

Calculate the maximum-likelihood estimator θ̂0t,i by solving the equation

∑
n∈τi(t−1)†

(wt,irn − µ(xTn θ̂t,i))xn = 0.

where V̄ 0
t,i =

∑
k∈τ†i (t−1) xkx

T
k

wt,i =


1/ϵt if i = I0t = K

1/(1− ϵt) if i = I0t = I†t

0 if i ̸= I0t

. (3.28)

First, we analyze the estimation θ̂0t,i at the attacker side. We establish a confidence ellipsoid of

⟨xt, θ̂0t,i⟩ at the attacker.

Lemma 11. Assume the attacker performs the proposed black-box action poisoning attack. With

probability 1− 2δ, we have

|xTt θ̂0t,i − xTt θi| ≤ β0
t,i∥xt∥(V̄ 0

t,i)
−1 . (3.29)

holds for all arm i and all t ≥ 0 simultaneously.

The proof of Lemma 11 is provided in Appendix B.3.3.

58

Lemma 12. Under the black-box attack, with probability 1 − 2δ, the estimate obtained by an

GLM-UCB agent satisfies

∣∣E[rt,I0t |Ft−1, It]− µ((1− α)xTt θK)
∣∣ ≤ 2kµβ

0
t,K∥xt∥(V̄ 0

t,K)
−1 + 2kµβ

0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 .

simultaneously for all t ≥ 0 when It ̸= K.

Lemma 13. Consider the same assumption as in Lemma 7. With a probability at least 1− 3Kδ
K

, the

estimate θ̂t,i obtained by the GLM-UCB agent will satisfy

|xTt θ̂t,i − xTt (1− α)θK |

≤

(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))
2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2t

λ0d

)
∥x∥V̄ −1

t,i

(3.30)

simultaneously for all arm i ̸= K and all t ≥ 0.

Theorem 7. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 6, for any

δ > 0 with probability at least 1−2δ, for all T ≥ 0, the attacker can manipulate the LinUCB agent

into pulling the target arm in at least T − |C| rounds, using an attack cost

|C| ≤4d(K − 1)

(αγ)2

(
2kµLS + 2R

cµ

)2

log

(
1 +

TL2

dλ0

)

×
(
log

K

δ
+ d log

(
1 +

L2T

λ0d

))(
1 +

16k2µd

cµα

√
K log

(
1 +

TL2

dλ0

))2

.

(3.31)

The proof of Theorem 7 is provided in Appendix B.3.6. Theorem 7 shows that our black-box

attack strategy can manipulate a GLM-UCB agent into pulling a target arm T − O(log3 T) times

with attack cost scaling as O(log3 T). Compared with the result for the white-box attack, the

black-box attack only brings an additional log T factor.

59

0 2 4 6 8 10

Time(t) 10
5

0

2

4

6

8

10

C
o

s
t

10
4

0 2 4 6 8 10

Time(t) 10
5

0

5

10

15

C
o

s
t

10
4

0 2 4 6 8 10

Time(t) 10
5

0

0.5

1

1.5

2

C
o

s
t

10
5

White-box attack on LinTS

Black-box attack on LinTS

White-box attack on LinUCB

Black-box attack on LinUCB

White-box attack on -Greeedy

Black-box attack on -Greeedy

Figure 3.2: The cumulative cost of the attacks for the synthetic (Left), Jester (Center) and
MovieLens (Right) datasets.

Synthetic Jester MovieLens
ϵ-Greeedy without attacks 2124.6 5908.7 3273.5
White-box attack on ϵ-Greeedy 982122.5 971650.9 980065.6
Black-box attack on ϵ-Greeedy 973378.5 939090.2 935293.8
LinUCB without attacks 8680.9 16927.2 13303.4
White-box attack on LinUCB 981018.7 911676.9 969118.6
Black-box attack on LinUCB 916140.8 875284.7 887373.1
LinTS without attacks 5046.9 18038.0 9759.0
White-box attack on LinTS 981112.8 908488.3 956821.1
Black-box attack on LinTS 918403.8 862556.8 825034.8

Table 3.1: Average number of rounds when the agent pulls the target arm over T = 106 rounds.

3.4 Numerical Experiments

In this section, we empirically evaluate the performance of the proposed action poisoning attack

schemes on three contextual bandit algorithms: LinUCB [1], LinTS [2], and ϵ-Greedy. We run the

experiments on three datasets:

Synthetic data: The dimension of contexts and the coefficient vectors is d = 6. We set the

first entry of every context and coefficient vector to 1. The other entries of every context and

coefficient vector are uniformly drawn from (− 1√
d−1

, 1√
d−1

). Thus, for all round t and arm i,

∥xt∥2 ≤
√
2, ∥θi∥2 ≤

√
2 and mean rewards ⟨xt, θi⟩ > 0. The reward noise ηt is drawn from

a Gaussian distribution N (0, 0.01).

Jester dataset [28]: Jester contains 4.1 million ratings of jokes in which the rating values scale

from −10.00 to +10.00. We normalize the rating to [0, 1]. The dataset includes 100 jokes and the

ratings were collected from 73,421 users between April 1999 - May 2003. We consider a subset

of 10 jokes and 38432 users. Every jokes are rated by each user. We perform a low-rank matrix

60

factorization (d = 6) on the ratings data and obtain the features for both users and jokes. At each

round, the environment randomly select a user as the context and the reward noise is drawn from a

Gaussian distribution N (0, 0.01).

MovieLens 25M dataset: [34] MovieLens 25M dataset contains 25 million 5-star ratings

of 62,000 movies by 162,000 users. The preprocessing of this data is almost the same as the

Jester dataset, except that we consider a subset of 10 movies and 7344 users. At each round, the

environment randomly select a user as the context and the reward noise is drawn fromN (0, 0.01).

We set δ = 0.1 and λ = 2. For all the experiments, we set the total number of rounds T = 106

and the number of arms K = 10. We independently run ten repeated experiments. Results reported

are averaged over the ten experiments. We set α to 0.2 for the two proposed attack strategies, hence

the target arm may be the worst arm in some rounds.

The results are shown in Table 3.1 and Figure 3.2. These experiments show that the action

poisoning attacks can force the three agents to pull the target arm very frequently, while the agents

rarely pull the target arm under no attack. Under the attacks, the true regret of the agent becomes

linear as the target arm is not optimal for most context. Table 3.1 show the number of rounds

the agent pulls the target arm among T = 106 total rounds. In the synthetic dataset, under the

proposed white-box attacks, the target arm is pulled more than 98.1% of the times by the three

agent (see Table 3.1). The target arm is pulled more than 91.6% of the times in the worst case (the

black-box attacks on LinUCB). Fig 3.2 shows the cumulative cost of the attacks on three agents

for the three datasets. The results show that the attack cost |C| of every attack scheme on every

agent for every dataset scales sublinearly, which exposes a significant security threat of the action

poisoning attacks on linear contextual bandits. These results also illustrate that, even though our

theoretical results are derived under Assumption 1, the proposed attack strategies still work in

practical scenarios where Assumption 1 may not be strictly satisfied.

61

3.5 Conclusion

In this chapter, we have proposed a class of action poisoning attacks on linear contextual bandits.

We have shown that our white-box attack strategy is able to force any linear contextual bandit

agent, whose regret scales sublinearly with the total number of rounds, into pulling a target arm

chosen by the attacker. We have also shown that our white-box attack strategy can force LinUCB

agent into pulling a target arm T −O(log2 T) times with attack cost scaled as O(log2 T). We have

further shown that the proposed black-box attack strategy can force LinUCB agent into pulling

a target arm T − O(log3 T) times with attack cost scaled as O(log3 T). Our results expose a

significant security threat to contextual bandit algorithms.

62

Chapter 4

Action Attacks on Reinforcement Learning

In this chapter, we study the action poisoning attack on RL in both white-box and black-box

settings. We introduce an adaptive attack scheme called LCB-H, which works for most RL agents

in the black-box setting. In Section 4.1, we describe the model. In Section 4.2, we describe the

attack strategies and analyze their accumulative attack cost. In Section 4.3, we provide numerical

examples to validate the theoretic analysis. The proofs are collected in Appendix C.

4.1 Problem Formulation

Consider a tabular episodic MDPM = (S,A, H, P,R), where S is the state space with |S| = S,

A is the action space with |A| = A, H ∈ Z+ is the number of steps in each episode, Ph :

S × A × S → [0, 1] is the probability transition function which maps state-action-state pair to a

probability, Rh : S × A → [0, 1] represents the reward function in the step h. In this chapter, the

probability transition functions and the reward functions can be different at different steps.

The agent interacts with the environment in a sequence of episodes. The total number of

episodes isK. In each episode k ∈ [K] of this MDP, the initial states s1 is generated randomly by a

distribution or chosen by the environment. Initial states may be different between episodes. At each

step h ∈ [H] of an episode, the agent observes the state sh and chooses an action ah. After receiving

the action, the environment generates a random reward rh ∈ [0, 1] derived from a distribution with

63

mean Rh(sh, ah) and next state sh+1 which is drawn from the distribution Ph(·|sh, ah). Ph(·|s, a)

represents the probability distribution over states if action a is taken for state s. The agent stops

interacting with environment after H steps and starts another episode.

The policy π of the agent is expressed as a mappings π : S × [H]×A → [0, 1]. πh(a|s)

represents the probability of taking action a in state s under stochastic policy π at step h. We

have that
∑

a∈A πh(a|s) = 1. A deterministic policy is a policy that maps each state to a particular

action. For notation convenience, for a deterministic policy π, we use πh(s) to denote the action

a which satisfies πh(a|s) = 1. Interacting with the environmentM, the policy induces a random

trajectory {s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH , sH+1}.

We use V π
h : S → R to denote the value function at step h under policy π. Given a policy

π and step h, the value function of a state s ∈ S and the Q-function Qπ
h : S × A → R

of a state-action pair (s, a) are defined as: V π
h (s) = E

[∑H
h′=h rh′ |sh = s, π

]
and Qπ

h(s, a) =

E
[∑H

h′=h rh′ |sh = s, ah = a, π
]
, which represent the expected total rewards received from step h

to H , under policy π, starting from state s and state-action pair (s, a) respectively. It is well-known

that the value function and Q-function satisfy the Bellman consistency equations. For notation

simplicity, we denote V π
H+1 = 0, Qπ

H+1 = 0 and PhV
π
h+1(s, a) = Es′∼Ph(·|s,a)[V

π
h+1(s

′)].

In this chapter, we assume that the state space S and action space A are finite sets, and the

planning horizon H is finite. Reward rh is bounded by [0, 1], so the value function and Q-function

are bounded. Under this case, there always exists an optimal policy π∗ such that π∗ maximize the

value function and Q-function: V ∗
h (s) := V π∗

h (s) = supπ V
π
h (s) and Q∗

h(s, a) := Qπ∗

h (s, a) =

supπQ
π
h(s, a), for all s, a and h. We measure the performance of the agent over K episodes by the

regret defined as:

Regret(K) =
K∑
k=1

[V ∗
1 (s

k
1)− V πk

1 (sk1)], (4.1)

where sk1 is the initial state and πk is the control policy followed by the agent for each episode k.

In this chapter, we introduce a novel adversary setting, in which the attacker sits between the

agent and the environment. The attacker can monitor the state, the actions of the agent and the

reward signals from the environment. Furthermore, the attacker can introduce action poisoning

64

attacks on RL agent. In particular, at each episode k and step h, after the agent chooses an action akh,

the attacker can change it to another action ãkh ∈ A. If the attacker decides not to attack, ãkh = akh.

Then the environment receives ãkh, and generates a random reward rkh with meanRh(s
k
h, ã

k
h) and the

next state skh+1 which is drawn from the distribution Ph(·|skh, ãkh). The agent and attacker receive

the reward rkh and the next state skh+1 from the environment. Note that the agent does not know the

attacker’s manipulations and the presence of the attacker and hence will still view rkh as the reward

and skh+1 as the next state generated from state-action pair (skh, a
k
h).

The attacker has a target policy π†. We assume that the target policy π† is a deterministic policy.

The attacker’s goal is to manipulate the agent into following the target policy π† to pick its actions.

We measure the performance of the attack over K episodes by the total attack cost and the total

number of the steps that the agent does not follow the target policy π†. By setting 1(·) as the

indicator function, the attack cost function and the loss function are defined as

Cost(K,H) =
K∑
k=1

H∑
h=1

1
(
ãkh ̸= akh

)
, Loss(K,H) =

K∑
k=1

H∑
h=1

1
(
akh ̸= π†(skh)

)
, (4.2)

The attacker aims to minimize both the attack cost and the loss of attacks, or minimize one of

them subject to a constraint on the one another. However, obtaining optimal solutions to these

optimization problems is challenging. As the first step towards understanding the impact of action

poisoning attacks, we design some specific simple yet effective attack strategies.

4.2 Attack Strategy and Analysis

In this chapter, we study the black-box action poisoning attack problem. In black-box attack

case, the attacker has no prior knowledge about the underlying environment and the agent’s

policy. It only knows the observations, i.e., skh, akh, and rkh, generated when the agent interacts

with the environment. This makes the attack practical as the attacker only needs to hijack the

communication between the environment and the agent without stealing information from or

attacking the agent and the environment. To build up intuitions about the proposed black-box action

65

poisoning attack strategy, we first consider a white-box attack model, in which the attacker knows

the underlying MDP and hence it is easier to design attack schemes. Building on insights obtained

from the white-box attack schemes, we then introduce our proposed black-box attack strategy and

analyze its performance.

4.2.1 White-box attack

In the white-box attack model, the attacker has full information of the underlying MDPM. Thus,

the attacker is able to calculate V ∗
h (s) and Q∗

h(s, a) according to the Bellman optimality equations:

Q∗
h(s, a) = Rh(s, a) + PhV

∗
h+1(s, a), V

∗
h (s) = max

a∈A
Q∗

h(s, a). (4.3)

Since V π
H+1 = 0 and Qπ

H+1 = 0, V ∗
h (s) and Q∗

h(s, a) can be obtained from the Bellman optimality

equation. The optimal policy π∗ are derived from π∗
h(s) = argmaxa∈AQ

∗
h(s, a).

With the knowledge of the optimal policy, the attacker can perform an intuitive attack: exchange

the optimal action and the target action. In particular, at the step h and state s, when the agent picks

the optimal action a = π∗
h(s), the attacker changes it to the action specified by the target policy

ã = π†
h(s). When the agent selects the target action a = π†

h(s), the attacker changes it to the action

might be taken under the optimal policy ã = π∗
h(s). In addition, when the agent’s action does not

follow the optimal policy or the target policy, the attacker does not attack. We name this attack

scheme as the exchange attack (E-attack) strategy. From the agent’s point of view, π† becomes the

optimal strategy under the E-attack strategy, as the agent does not know the presence of the attacker.

If the optimal policy is singular, any RL algorithm with sub-linear regret will learn to follow the

optimal strategy in his observation, i.e. π†, with a sub-linear regret. As the result, the loss will be

sub-linear. However, the cost of the E-attack strategy may be up to O(T), where T = KH is the

total number of steps. The main reason is that, in the E-attack strategy, the attacker needs to change

the actions whenever the agent chooses an action specified by the target policy π†, which happens

most of the time as the agent views π† as the optimal policy. Furthermore, another drawback of the

66

E-attack is that the expected reward the agent receives is not impacted.

Even though the E-attack strategy discussed above could force the agent to follow the target

policy π†, the cost is too high and it does not affect the agent’s total expected rewards. In order

to reduce the cost and have real impact on the agent’s total expected rewards, the attacker should

avoid to attack when the agent takes an action specified by π†. This is possible if π† satisfies certain

conditions to be specified in the sequel.

Before presenting the proposed attack strategy, we first discuss conditions under which such an

attack is possible. If the target policy is the worst policy such that V π†

h (s) = infπ V
π
h (s), the attacker

cannot force the agent to learn the target policy without attacking the target action. For notation

simplicity, we denote V †
h (s) := V π†

h (s). The combination of the attacker and the environment can

be considered as a new environment to the agent. As the action poisoning attack only changes the

actions, it can impact but does not have direct control of the agent’s observations. Although the

action poisoning attack is widely applicable, the attacker’s ability is weaker than the attacker in the

environment poisoning attack model. It is reasonable to limit the choice of the target policy. In this

chapter, we study a class of target policies denoted as Π†, for which each element π† ∈ Π† satisfies

V †
h (s) > min

a∈A
Q†

h(s, a), (4.4)

for all state s and all step h. That is π† is not the worst policy.

Assumption 2. For the underlying MDPM = (S,A, H, P,R), Π† ̸= ∅, and the attacker’s target

policy π† satisfies π† ∈ Π†.

For a given target policy π†, as |S|, |A| and H are finite, the minimum of Q†
h(s, a) subject to

a ∈ A exists for all step h and state s. We define the minimum gap ∆min by

∆min = min
h∈[H],s∈S

(
V †
h (s)−min

a∈A
Q†

h(s, a)

)
. (4.5)

Under Assumption 2, the minimum gap is positive, i.e. ∆min > 0. This positive gap provides a

67

chance of efficient action poisoning attacks. All results in this chapter are based on Assumption 2.

We now introduce an effective white-box attack schemes: α-portion attack. Specifically, at the

step h and state s, if the agent picks the target action, i.e., a = π†
h(s), the attacker does not attack,

i.e. ã = a = π†
h(s). If the agent picks a non-target action, i.e., a ̸= π†

h(s), the α-portion attack sets

ã as

ã =


π†
h(s),with probability 1− α

argmin
a∈A

Q†
h(s, a),with probability α.

(4.6)

For a given target policy π†, we define π−
h (s) = argmina∈AQ

†
h(s, a). We have the following result:

Lemma 1. If the attacker follows the α-portion attack scheme on an RL agent, in the observation

of the agent, the target policy π† is the optimal policy.

The detailed proof can be found in the Appendix C.1.1. Using Lemma 1, we can derive upper

bounds of the loss and the cost functions of the α-portion attack scheme.

Theorem 8. Assume the expected regret Regret(K) of the RL agent’s algorithm is bounded by a

sub-linear boundR(T), i.e., Regret(K) ≤ R(T). The α-portion attack will force the agent to learn

the target policy π† with the expected cost and the expected loss bounded by

E[Cost(K,H)] ≤ E[Loss(K,H)] ≤ R(T)/(α∆min), (4.7)

In addition, with probability 1− p, the loss and the cost is bounded by

Cost(K,H) ≤ Loss(K,H) ≤
(
R(T) + 2H2

√
log(1/p)R(T)

)
/(α∆min). (4.8)

The detailed proofs can be found in Appendix C.1.2. In the white-box setting, the attacker can

simply choose α = 1 to most effectively attack RL agents. Intuitively speaking, if α = 1, whenever

the agent chooses a non-target action, the attacker changes it to the worst action under policy π†,

so that all non-target actions become worse than the target action and the target policy becomes

optimal in the observation of the agent.

68

4.2.2 Black-box attack

In the black-box attack setting, the attacker has no prior information about the underlying

environment and the agent’s algorithm, it only observes the samples generated when the agent

interacts with the environment. Since the α-portion attack described in (4.6) for the white-box

setting relies on the information of the underlying environment to solve π−
h , the α-portion attack

is not applicable in the black-box setting. However, by collecting the observations and evaluating

the Q-function Q†
h(s, a), the attacker can perform an attack to approximate the α-portion attack.

In the proposed attack scheme, the attacker evaluates the Q-values of the target policy π† with

an important sampling (IS) estimator. Then, the attacker calculates the lower confidence bound

(LCB) on the Q-values so that he can explore and exploit the worst action by the LCB method. In

this chapter, we use Hoeffding-type martingale concentration inequalities to build the confidence

bound. Using this information, the attacker can then carry out an attack similar to the α-portion

attack. We name the proposed attack strategy as LCB-H attack. The algorithm is summarized in

Algorithm 1. In the following, we will show that the LCB-H attack nearly matches the performance

of the α-portion attack.

Here, we highlight the main idea of the LCB-H attack. As discussed in Section 4.2.1, if the

attacker has full information of the MDP and knows the worst action of any state s at any step h

under policy π†, he can simply change the agent’s non-target action to the worst action. However,

in the black-box setting, the attacker does not know the worst actions under policy π†. One intuitive

idea is to estimate Q† and find the possible worst actions by the estimates of Q†. Once the attacker

obtains esimate Q̂†, it carries out an attack similar to the α-portion attack by setting α = 1/H (the

reason why we set α = 1/H will be discussed in the sequel): 1) when the agent picks a target

action, the LCB-H attacker does not attack ; 2) when the agent picks a non-target action, with

probability 1− 1
H

, the LCB-H attacker changes it to the target action, while with probability 1
H

, the

LCB-H attacker changes it to the action that has the lowest lower confidence bound value. Here,

we use the lower confidence bound value because in the black-box setting, the LCB-H attacker

does not know which action is the worst, and hence uses confidence bounds to explore and exploit

69

Algorithm 4.1 LCB-H attack strategy on RL algorithm
Require:

Target policy π†.
1: Initialize Lh(s, a) = −∞, Q̂†

h(s, a) = 0, and Nh(s, a) = 0 for all state s ∈ S, all action a ∈ A
and all step h ∈ [H].

2: for episode k = 1, 2, . . . , K do
3: Receive sk1. Initialize the set of trajectory traj = {sk1}.
4: for step h = 1, 2, . . . , H do
5: The agent chooses an action akh.
6: if akh = π†

h(s
k
h) then

7: The attacker does not attack, i.e. ãkh = akh, and sets the IS weight wh = 1.
8: else

9: ãkh =


argmin
a̸=π†

h(s
k
h)

Lh(s
k
h, a) and set wh = 0, with probability 1/H,

π†
h(s

k
h) and set wh = H/(H − 1), with probability 1− 1/H.

10: end if
11: The environment receives action ãkh, and returns the reward rkh and the next state skh+1.
12: Update the trajectory by plugging ãkh, rkh and skh+1 into traj.
13: end for
14: Set the cumulative reward GH+1 = 0 and the importance ratio ρH+1:H+1 = 1.
15: for step h = H,H − 1, . . . , 1 do
16: Gh = rkh +Gh+1, ρh:H+1 = ρh+1:H+1 · wh, t = Nh(s

k
h, ã

k
h)← Nh(s

k
h, ã

k
h) + 1.

17: Q̂†
h(s

k
h, ã

k
h)← (1− 1

t
)Q̂†

h(s
k
h, ã

k
h) +

1
t

(
rkh +Gh+1 · ρh+1:H+1

)
.

18: Lh(s
k
h, ã

k
h) = Q̂†

h(s
k
h, ã

k
h)− (e(H − h) + 1)

√
2 log(2SAT/p)/t.

19: end for
20: end for

the worst action.

As shown in Algorithm 4.1, after collecting observations, the LCB-H attacker uses IS estimator

to evaluate the target policy, which is an off-policy method [82, 98]. The IS estimator provides an

unbiased estimate of the target policy π†. Suppose πk is the control policy followed by the agent at

episode k and the attacker applies LCB-H attack on the agent. From Algorithm 4.1, the probability

70

of an action ã chosen by the behavior policy bkh at the state s and step h can be written as

P(ã|s, bkh) =



1 if ã = akh = π†
h(s),

1/H if ã = argmin
a̸=π†

h(s)

Lk
h(s, a) and akh ̸= π†

h(s),

1− 1/H if ã = π†
h(s) and akh ̸= π†

h(s),

0 if otherwise.

(4.9)

Then, the trajectory at episode k, {sk1, ãk1, rk1 , sk2, ãk2, rk2 , · · · , skH , ãkH , rkH , skH+1}, is generated under

the behavior policy bk. Since we assume that the target policy is a deterministic function, we have

P(ã|s, π†
h) = 1(ã = π†

h(s)). (4.10)

The importance sampling ratio ρkh:H =
∏H

h′=h

P(ãk
h′ |s

k
h′ ,π

†)

P(ãk
h′ |s

k
h′ ,b

k)
can be computed using (4.9)

and (4.10), which is also used in Algorithm 4.1. Define the cumulative reward asGk
h:H =

∑H
h′=h r

k
h.

For notation simplicity, we set ρkh:H+1 = ρkh:H and Gk
h:H+1 = Gk

h:H when 1 ≤ h ≤ H , and

ρkH+1:H+1 = 1 and Gk
H+1:H+1 = 0. Since the trajectory is generated by following the behavior

policy bk, we have that for all step h with 1 ≤ h ≤ H + 1, V bk

h (s) = E[Gk
h:H |skh = s] and

V †
h (s) = E[ρkh:HGk

h:H |skh = s] = E[ρkh:H+1G
k
h:H+1|skh = s].

We here explain why we set α = 1/H . The main reason is that the performance of the estimates

ofQ† depends on the number of the observations that follow π†. Even though IS estimator provides

an unbiased estimate, the variance of the IS might be very high. By choosing α = 1/H , we can

control the variance. In particular, to obtain estimate Q̂†
h, by the Bellman consistency equations, we

first estimate V †
h+1. By setting α = 1

H
, we can show that the importance ratio ρkh+1:H+1 = ρkh+1:H ≤

1
(1−α)H−h ≤ 1

(1−α)H−1 ≤ e when H ≥ 2 and 1 ≤ h ≤ H − 1, and ρkH+1:H+1 = 1. As the result,

ρkh+1:HG
k
h+1:H will be bounded, and the variance of the estimate of V †

h+1 can be controlled.

We build a confidence bound to show the performance of the estimate error of Q†. The

confidence bound is built based on Hoeffding inequalities and shown in the following Lemma.

71

Lemma 2. If the attacker follows the LCB-H attack strategy on the RL agent, for any p ∈ (0, 1),

with probability at least 1− p, the following confidence bound of Q̂†
h holds simultaneously for all

(s, a, h, k) ∈ S ×A× [H]× [k]:

∣∣∣Q̂†
h,k(s, a)−Q

†
h(s, a)

∣∣∣ ≤ (e(H − h) + 1)
√
2 log(2SAT/p)/Nk

h (s, a), (4.11)

where Q̂†
h,k(s, a) represents the attacker’s evaluation of Q-values at the step h at the beginning of

the episode k, and Nk
h (s, a) represents the cumulative number of attacker’s state-action pair (s, a)

at the step h until the beginning of the episode k, i.e. Nk
h (s, a) =

∑k−1
k′=1 1(s

k′

h = s)1(ãk
′

h = a) .

The detailed proof can be found in Appendix C.2.1. In Lemma 2, the given bound on LCB-H

attacker’s estimation of the Q-values mainly based on Nk
h (s, a) the number of state-action pair

(s, a) at the step h. This bound is similar to the confidence bound in the UCB algorithm for the

bandit problem, except for the additional H factor. Compared with the bandit problem, Q-values

are the expected cumulative rewards, which bring the additional H factor.

The LCB-H attack scheme uses a LCB method to explore and exploit the worst action. Thus,

when the agent picks a non-target action, the LCB-H attacker changes it to different post-attack

actions in different episodes. In the observation of the agent, the environment is non-stationary,

i.e., the reward functions and probability transition function may change over episodes. Following

the existing works on non-stationary RL [15,23,72], we define V k,π
h (s) = E

[∑H
h′=h r

k
h′ |skh = s, π

]
and define the expected dynamic regret for the agent as:

D-Regret(K) =
K∑
k=1

[V k,πk,∗

1 (sk1)− V
k,πk

1 (sk1)], (4.12)

where πk,∗ is the optimal policy at episode k, i.e. V k,πk,∗

h (s) = supπ V
k,π
h (s).

Here we state our main theorem, whose proof is deferred to Appendix C.2.2.

Theorem 9. Assume the expected dynamic regret of the RL agent’s algorithm D-Regret(K) is

bounded by a sub-linear bound R(T), i.e., D-Regret(K) ≤ R(T). With probability 1 − 4p, the

72

LCB-H attack will force the agent to learn the target policy π† with the cost and loss bounded by

Cost(K,H) ≤ Loss(K,H) ≤
H
(
R(T) + 2H2

√
log(1/p)R(T)

)
∆min

+
307SAH4 log(2SAT/p)

∆2
min

.

From Theorem 9 we see that whenR(T) ≤ O(SAH3 log(2SAT/p)
∆min

), the cost and loss are bounded

by O(SAH4 log(2SAT/p)

∆2
min

), which scales as log(T), otherwise the cost and loss are bounded by

O(R(T)) that scales linearly withR(T). The LCB-H attack nearly matches the performance of the

α-portion attack, without requiring any information of the underlying environment and the agent’s

algorithm. Compared with the results of the α-portion attack, the additional part of the bound in

Theorem 9, i.e. 307SAH4 log(2SAT/p)

∆2
min

, is from the cost of exploring the worst action. Note that we

use a LCB method to explore the worst action and the confidence bound is built by Hoeffding

inequalities. The bound of the loss and cost can potentially be improved by using Bernstein-type

concentration inequalities.

4.2.3 Black-box attack on UCB-H

In this section, we use UCB-H algorithm [41] as an example to illustrate the effects of the proposed

LCB-H action poisoning attack strategy. UCB-H algorithm is a model-free Q-learning algorithm

equipped with a UCB-Hoeffding exploration policy. At a high level, this algorithm builds an

high-probability upper bound of Q-function for every state-action pairs. Then, it greedily chooses

the action according to the optimistic estimations. In this section, we derive an upper bound of the

loss and the cost of the LCB-H attack against UCB-H agent. Complete proofs of Theorem 10 and

its supporting lemmas are provided in Appendix C.3.

Theorem 10. For any given target policy π† ∈ Π†, with probability 1 − 4p, the LCB-H attacker

can successfully manipulate the UCB-H algorithm to implement the target policy π†, with the cost

and the loss bounded as follow:

Cost(K,H) ≤ Loss(K) ≤ O

(
H5 log(2H/p) +

1

∆min

SAH4 +
1

∆2
min

H10SA log(2SAT/p)

)
.

73

Theorem 10 reveals a significant security threat of efficient RL agents. It shows that by spending

only logarithm cost, the LCB-H attack is able to force UCB-H agent to choose actions specified by

a policy decided by the attack with only logarithm loss.

The results in Theorem 10 are consistent with the results in Theorem 9. In particular, [111]

proved a gap-independence bound on UCB-H that scales as O(H
6SA
∆

log(T)), where ∆ =

minh,s,a{V ∗
h (s)−Q∗

h(s, a) : V
∗
h (s)−Q∗

h(s, a) > 0} is the sub-optimality gap. If an algorithm whose

dynamic regret bound scales as O(H
6SA
∆

log(T)), the cost and loss are scale as O(H
7SA
∆2 log(T)).

UCB-H is a stationary RL algorithm, while the LCB-H adaptively attacks the agent and hence the

effective environment observed by the agent is non-stationary. This adds a factor to the loss and

cost.

4.3 Numerical Experiments

In this section, we empirically evaluate the performance of LCB-H attacks against three efficient

RL agents, namely UCB-H [41], UCB-B [41] and UCBVI-CH [5], respectively.

4.3.1 1D grid world

We perform numerical simulations on an environment represented as an MDP with ten states

and five actions, i.e. S = 10 and A = 5. The environment is a periodic 1-d grid world. The

action space A is given by {two steps left, one step left, stay, one step right, two steps right}.

For any given state-action pair (s, a), with probability p(s, a), the agent navigates by the action;

with probability 1 − p(s, a), the agent’s next state is sampled randomly from the five adjacent

states (include itself). For example, if the environment receives state-action pair (s, a) = (5, stay),

with probability p(5, stay), the next state is 5; with probability 1−p(5,stay)
5

, the next state is 3, 4,

5, 6 or 7. By randomly generating p(s, a) with 0.5 < p(s, a) < 1, we randomly generate the

transition probabilities P (s′|s, a) for all action a and state s. The mean reward of state-action

pairs are randomly generated from a set of values {0.2, 0.35, 0.5, 0.65, 0.8}. In this chapter, we

74

assume the rewards are bounded by [0, 1]. Thus, we use Bernoulli distribution to randomize the

reward signal. The target policy is randomly chosen by deleting the worst action, so as to satisfy

Assumption 2. We set the total number of stepsH = 10 and the total number of episodesK = 109.

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

8

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-H under no attack

(a) Attack UCB-H

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

5

10

15
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-B under no attack

(b) Attack UCB-B

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

1

2

3

4

5

6
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCBVI under no attack

(c) Attack UCBVI-CH

Figure 4.1: Action poisoning attacks against RL agents

In Figure 4.1, we illustrate 1
H

-portion white-box attack and LCB-H black-box attack against

three different agents separately and compare the loss and cost of these two attack schemes. For

comparison purposes, we also add the curves for the regret of three agents under no attack. In

the figure, the non-optimal action pull count are defined as
∑K

k=1

∑H
h=1 1(Q

∗
h(s

k
h, a

k
h) < V ∗

h (s
k
h)).

The x-axis uses a base-10 logarithmic scale and represents the time step t with the total time step

T = KH . The y-axis represents the cumulative loss, cost and regret that change over time steps.

The results show that, the loss and cost of 1
H

-portion white-box attack and LCB-H black-box

attack scale as log(T). Furthermore the performances of our black-box attack scheme, LCB-H,

nearly matches those of the 1
H

-portion white-box attack scheme. In addition, the cost and loss are

aboutH/∆min times as much as the regret. This is consistent with our analysis in Theorem 9. Each

of the individual experimental runs costs about twenty hours on one physical CPU core. The type

of CPU is Intel Core i7-8700.

4.3.2 2D grid world

In this section, we introduce some additional numerical experiments. We perform numerical

simulations on an environment represented as an MDP with 12 states and 4 actions, i.e. S = 12 and

75

A = 4. The environment is a 4-by-4 grid world. The action space A is given by {North = 1, South

= 2, West = 3, East = 4}. The terminal state is at cell [4, 4] (blue cell). If the agent at the terminal

state and chooses any actions, the next state will be the beginning state at cell [1, 1] and the agent

receives reward +1. The agent is blocked by obstacles in cells [2, 2], [2, 3], [2, 4] and [3, 2] (black

cells). The environment contains a special jump from cell [1, 3] to cell [3, 3] with +1 reward. When

the agent at the cell [1, 3] and chooses action ”South”, the agent will jump to the cell [3, 3]. Actions

that would take the agent off the grid leave its location unchanged.

Figure 4.2: 2-d grid world

To add randomness to the environment, we set the states transit randomly: after the environment

receives the action signal, the next state may generated by following the action with probability

0.7 and any of the other three actions with probability 0.1 separately. For example, if the agent is

at cell [4, 3] and chooses action ”North”, the next state will be [3, 3] with probability 0.7, [4, 2]

with probability 0.1, [4, 3] with probability 0.1, or [4, 4] with probability 0.1. The rewards of

actions that would take the agent off the grid or towards the obstacle are 0. The rewards of other

state-action pairs are 0.2 or 0.4. In this Chapter, we assume the rewards are bounded by [0, 1]. Thus,

we use Bernoulli distribution to randomize the reward signal. The optimal policy encourages the

agent to take the special jump and reach the terminal state. In the target policy, the agent will

reach the terminal state as soon as possible but avoid to take the special jump. We set the total

number of steps H = 10 and the total number of episodes K = 109. We empirically evaluate

76

the performance of LCB-H attacks against three efficient RL agents, namely UCB-H [41], UCB-B

[41] and UCBVI-CH [5], respectively.

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

8

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-H under no attack

(a) Attack UCB-H

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

5

10

15
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-B under no attack

(b) Attack UCB-B

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

1

2

3

4

5

6
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCBVI under no attack

(c) Attack UCBVI-CH

Figure 4.3: Action poisoning attacks against RL agents

In Figure 4.3, we illustrate 1
H

-portion white-box attack and LCB-H black-box attack against

three different agents separately and compare the loss and cost of these two attack schemes. For

comparison purposes, we also add the curves for the regret of three agents under no attack. The

x-axis uses a base-10 logarithmic scale and represents the time step t with the total time step T =

KH . Similar to the results in Figure 4.1, the results in 4.3 show that the loss and cost of 1
H

-portion

white-box attack and LCB-H black-box attack scale as log(T). Furthermore the performances of

our black-box attack scheme, LCB-H, nearly matches those of the 1
H

-portion white-box attack

scheme.

4.4 Limitations

Here we highlight the assumptions and limitations of our work. Our theoretical results rely on

Assumption 2 which limits the choice of the target policy. A violation of Assumption 2 may cause

linear cost or loss of the proposed attack scheme. In Theorem 9, we assume the expected dynamic

regret of the RL agent is bounded. Generally, the expected dynamic regret is a stronger notation

than the dynamic regret. In other words, the optimal policy πk,∗ in (4.12) may change in each

episode k, while the optimal policy πk in (4.1) is fixed over episodes. In this chapter, we discuss

the action poisoning attack in the tabular episodic MDP context. Although we are convinced that

77

the idea of our proposed attack scheme can be carried over to RL with function approximation, the

current results only apply to the tabular episodic MDP setting.

4.5 Conclusions

In this chapter, we have introduced a new class of attacks on RL: action poisoning attacks. We have

proposed the α-portion white-box attack and the LCB-H black-box attack. We have shown that

the α-portion white-box attack is able to attack any efficient RL agent and the LCB-H black-box

attack nearly matches the performance of the α-portion attack. We have analyzed the LCB-H attack

against the UCB-H algorithm and proved that the proposed attack scheme can force the agent to

almost always follow a particular class of target policy with only logarithm loss and cost.

78

Chapter 5

Adversarial Attacks on Multi-agent

Reinforcement Learning

Building on insights obtained in previous chapters, we now investigate the impact of adversarial

attacks on MARL. In the considered setup, there is an exogenous attacker who is able to modify the

rewards before the agents receive them or manipulate the actions before the environment receives

them. The attacker aims to guide each agent into a target policy or maximize the cumulative

rewards under some specific reward function chosen by the attacker, while minimizing the amount

of manipulation on feedback and action. In Section 5.1, we describe the problem setup. In Section

5.2, we show hat the effectiveness of action poisoning only attacks and reward poisoning only

attacks is limited. In Section 5.3, we introduce a mixed attack strategy in the gray-box setting which

can can force any sub-linear-regret MARL agents to choose actions according to the target policy

specified by the attacker with sub-linear cost and sub-linear loss. In Section 5.4, we an approximate

mixed attack strategy in the black-box setting, and investigate the impact of the approximate mixed

attack strategy attack on V-learning [42]. In Section 5.5, we conduct numerical experiments to

validate the analysis of our attack strategies. The proofs are collected in Appendix D

79

5.1 Problem Setup

5.1.1 Definitions

We first introduce some standard definitions related to MARL that will be used throughout of

this chapter. These definitions mostly follow those defined in [42]. We denote a tabular episodic

MG with m agents by a tuple MG(S, {Ai}mi=1, H, P, {Ri}mi=1), where S is the state space with

|S| = S, Ai is the action space for the ith agent with |Ai| = Ai, H ∈ Z+ is the number of

steps in each episode. We let a := (a1, · · · , am) denote the joint action of all the m agents and

A := Ai × · · · × Am denote the joint action space. P = {Ph}h∈[H] is a collection of transition

matrices. Ph : S ×A×S → [0, 1] is the probability transition function that maps state-action-state

pair to a probability, Ri,h : S × A → [0, 1] represents the reward function for the ith agent in the

step h. The probability transition functions and the reward functions can be different at different

steps. We note that this MG model incorporates both cooperation and competition because the

reward functions of different agents can be arbitrary.

Interaction protocol: The agents interact with the environment in a sequence of episodes. The

total number of episodes is K. In each episode k ∈ [K] of MG, the initial states s1 is generated

randomly by a distribution P0(·). Initial states may be different between episodes. At each step

h ∈ [H] of an episode, each agent i observes the state sh and chooses an action ai,h simultaneously.

After receiving the action, the environment generates a random reward ri,h ∈ [0, 1] for each agent

i derived from a distribution with mean Ri,h(sh,ah), and transits to the next state sh+1 drawn from

the distribution Ph(·|sh,ah). Ph(·|s,a) represents the probability distribution over states if joint

action a is taken for state s. The agent stops interacting with environment after H steps and starts

another episode. At each time step, the agents may observe the actions played by other agents.

Policy and value function: A Markov policy takes actions only based on the current state. The

policy πi,h of agent i at step h is expressed as a mappings πi,h : S → ∆Ai
. πi,h(ai|s) represents the

probability of agent i taking action ai in state s under policy πi at step h. A deterministic policy is

a policy that maps each state to a particular action. For notation convenience, for a deterministic

80

policy πi, we use πi,h(s) to denote the action ai which satisfies πi,h(ai|s) = 1. We denote the

product policy of all the agents as π := π1 × · · · × πm. We also denote π−i := π1 × · · · × πi−1 ×

πi+1 × · · · × πm to be the product policy excluding agent i. If every agent follows a deterministic

policy, the product policy of all the agents is also deterministic. We use V π
i,h : S → R to denote the

value function of agent i at step h under policy π and define V π
i,h(s) := E

[∑H
h′=h ri,h′|sh = s, π

]
.

Given a policy π and step h, the ith agent’s Q-function Qπ
i,h : S × A → R of a state-action pair

(s,a) is defined as: Qπ
i,h(s,a) = E

[∑H
h′=h ri,h′ |sh = s,ah = a, π

]
.

Best response: For any policy π−i, there exists a best response of agent i, which is a policy

that achieves the highest cumulative reward for itself if all other agents follow policy π−i. We

define the best response of agent i towards policy π−i as µ†(π−i), which satisfies µ†(π−i) :=

argmaxπi
V

πi×π−i

i,h (s) for any state s and any step h. We denote maxπi
V

πi×π−i

i,h (s) as V †,π−i

i,h (s) for

notation simplicity. By its definition, we know that the best response can always be achieved by a

deterministic policy.

Nash Equilibrium (NE) is defined as a product policy where no agent can improve his own

cumulative reward by unilaterally changing his strategy.

Nash Equilibrium (NE) [42]: A product policy π is a NE if for all initial state s,

maxi∈[m](V
†,π−i

i,1 (s)−V π
i,1(s)) = 0 holds. A product policy π is an ϵ-approximate Nash Equilibrium

if for all initial state s, maxi∈[m](V
†,π−i

i,1 (s)− V π
i,1(s)) ≤ ϵ holds.

General correlated policy: A general Markov correlated policy π is a set of H mappings

π := {πh : Ω × S → ∆A}h∈[H]. The first argument of πh is a random variable ω ∈ Ω sampled

from some underlying distributions. For any correlated policy π = {πh}h∈[H] and any agent i, we

can define a marginal policy π−i as a set of H maps πi = {πh,−i : Ω × S → ∆A−i
}h∈[H], where

A−i = A1 × · · · × Ai−1 ×Ai+1 × · · · × Am. It is easy to verify that a deterministic joint policy is

a product policy. The best response value of agent i towards policy π−i as µ†(π−i), which satisfies

µ†(π−i) := argmaxπi
V

πi×π−i

i,h (s) for any state s and any step h.

Coarse Correlated Equilibrium (CCE)[42]: A correlated policy π is an CCE if for all initial

state s, maxi∈[m](V
†,π−i

i,1 (s)− V π
i,1(s)) = 0 holds. A correlated policy π is an ϵ-approximate CCE if

81

for all initial state s, maxi∈[m](V
†,π−i

i,1 (s)− V π
i,1(s)) ≤ ϵ holds.

Strategy modification: A strategy modification ϕi for agent i is a set of mappings ϕi := {(S×

A)h−1 × S ×Ai → Ai}h∈[H]. For any policy πi, the modified policy (denoted as ϕi ⋄ πi) changes

the action πi,h(ω, s) under random sample ω and state s to ϕi((s1,a1, . . . , sh, ai,h), πi,h(ω, s)).

For any joint policy π, we define the best strategy modification of agent i as the maximizer of

maxϕi
V

(ϕi⋄πi)⊙π−i

i,1 (s) for any initial state s.

Correlated Equilibrium (CE)[42]: A correlated policy π is an CE if for all initial state s,

maxi∈[m] maxϕi
(V

(ϕi⋄πi)⊙π−i

i,1 (s) − V π
i,1(s)) = 0. A correlated policy π is an ϵ-approximate CE if

for all initial state s, maxi∈[m] maxϕi
(V

(ϕi⋄πi)⊙π−i

i,1 (s)− V π
i,1(s)) ≤ ϵ holds.

In Markov games, it is known that an NE is an CE, and an CE is an CCE.

Best-in-hindsight Regret: Let πk denote the product policy deployed by the agents for each

episode k. After K episodes, the best-in-hindsight regret of agent i is defined as Regi(K,H) =

maxπ′
i

∑K
k=1[V

π′
i,π

k
−i

i,1 (sk1)− V πk

i,1 (s
k
1)].

5.1.2 Poisoning attack setting

We are now ready to introduce the considered poisoning attack setting, in which there is an attacker

sits between the agents and the environment. The attacker can monitor the states, the actions of the

agents and the reward signals from the environment. Furthermore, the attacker can override actions

and observations of agents. In particular, at each episode k and step h, after each agent i chooses an

action aki,h, the attacker may change it to another action ãki,h ∈ Ai. If the attacker does not override

the actions, then ãki,h = ai. When the environment receives ãk
h, it generates random rewards rki,h

with mean Ri,h(s
k
h, ã

k
h) for each agent i and the next state skh+1 is drawn from the distribution

Ph(·|skh, ãk
h). Before each agent i receives the reward rki,h, the attacker may change it to another

reward r̃ki,h. Agent i receives the reward r̃ki,h and the next state skh+1 from the environment. Note

that agent i does not know the attacker’s manipulations and the presence of the attacker and hence

will still view r̃ki,h as the reward and skh+1 as the next state generated from state-action pair (skh,a
k
h).

We call an attack as action poisoning only attack, if the attacker only overrides the action but

82

not the rewards. We call an attack as reward poisoning only attack if the attacker only overrides

the rewards but not the actions. In addition, we call an attack as mixed attack if the attack can carry

out both action poisoning and reward poisoning attacks simultaneously.

The goal of the MARL learners is to learn an equilibrium. On the other hand, the attacker’s

goal is to either force the agents to learn a target policy π† of the attacker’s choice or to force the

agents to learn a policy that maximizes the cumulative rewards under a specific reward function

R†,h : S × A → (0, 1] chosen by the attacker. We note that this setup is very general. Different

choices of π† or R†,h could lead to different objectives. For example, if the attacker aims to

reduce the benefit of the agent i, the attacker’s reward function R†,h can be set to 1 − Ri,h,

or choose a target policy π† that is detrimental to the agent i’s reward. If the attacker aims to

maximize the total rewards of a subset of agents C, the attacker’s reward function R†,h can be

set to
∑

i∈C Ri,h, or choose a target policy π† = argmax
∑

i∈C V
π
i,1(s1) that maximizes the total

rewards of agents in C. We assume that the target policy π† is deterministic and Ri,h(s, π
†(s)) > 0.

We measure the performance of the attack over K episodes by the total attack cost and the

attack loss. Set 1(·) as the indicator function. The attack cost over K episodes is defined as

Cost(K,H) =
∑K

k=1

∑H
h=1

∑m
i=1

(
1(ãki,h ̸= aki,h) + |r̃ki,h − rki,h|

)
.

There are two different forms of attack loss based on the different goals of the attacker.

If the attacker’s goal is to force the agents to learn a target policy π†, the attack loss over K

episodes is defined as Loss1(K,H) =
∑K

k=1

∑H
h=1

∑m
i=1 1

(
aki,h ̸= π†

i,h(s
k
i,h)
)

.

If the attacker’s goal is to force the agents to maximize the cumulative rewards under some

specific reward function R† chosen by the attacker, the attack loss over K episodes is defined

as Loss2(K,H) =
∑K

k=1[V
π∗

†,1 (s
k
1) − V πk

†,1 (s
k
1)]. Here, V π

†,1(s) is the expected cumulative rewards

in state s based on the attacker’s reward function R† under product policy π and V π∗

†,1 (s) =

maxπ V
π
†,1(s). π

k denote the product policy deployed by the agents for each episode k. π∗ is

the optimal policy that maximizes the attacker’s cumulative rewards. We have Loss2(K,H) ≤

H ∗ Loss1(K,H).

Denote the total number of steps as T = KH . In the proposed poisoning attack problem, we

83

call an attack strategy successful if the attack loss of the strategy scales as o(T). Furthermore, we

call an attack strategy efficient and successful if both the attack cost and attack loss scale as o(T).

The attacker aims to minimize both the attack cost and the attack loss, or minimize one of them

subject to a constraint on the other. However, obtaining optimal solutions to these optimization

problems is challenging. As the first step towards understanding the attack problem, we show the

limitations of the action poisoning only or the reward poisoning only attacks and then propose a

simple mixed attack strategy that is efficient and successful.

Depending on the capability of the attacker, we consider three settings: the white-box, the

gray-box and the black-box settings. The table below summarizes the differences among these

settings.

Table 5.1: Differences of the white/gray/black-box attackers

white-box attacker gray-box attacker black-box attacker
MG Has full information No information No information
π† Can be calculated if R† given Required and given Not given
R† Not required if π† given Not required if π† given Required and given
Loss1 Suitable by specify π† Suitable Not suitable
Loss2 Suitable if R† given Suitable if R† given Suitable

5.2 White-box Attack Strategy and Analysis

In this section, to obtain insights to the problem, we consider the white-box model, in which

the attacker has full information of the underlying MG (S, {Ai}mi=1, H, P, {Ri}mi=1). Even in

the white-box attack model, we show that there exist some environments where the attacker’s

goal cannot be achieved by reward poisoning only attacks or action poisoning only attacks in

Section 5.2.1. Then, in Section 5.2.2 and Section 5.2.3, we provide some sufficient conditions

under which the action poisoning attacks alone or the reward poisoning attacks alone can efficiently

attack MARL algorithms. Under such conditions, we then introduce an efficient action poisoning

attack strategy and an efficient reward poisoning attack strategy.

84

5.2.1 The limitations of the action poisoning attacks and the reward poison-

ing attacks

As discussed in Section 5.1, the attacker aims to force the agents to either follow the target policy

π† or to maximize the cumulative rewards under attacker’s reward function R†. In the white-box

poisoning attack model, these two goals are equivalent as the optimal policy π∗ on the attacker’s

reward function R† can be calculated by the Bellman optimality equations. To maximize the

cumulative rewards under attacker’s reward function R† is equivalent to force the agents follow

the policy π† = π∗.

Existing MARL algorithms [42,63] can learn an ϵ-approximate {NE, CE, CCE} with Õ(1/ϵ2)

sample complexities. To force the MARL agents to follow the policy π†, the attacker first needs

to attack the agents such that the target policy π† is the unique NE in the observation of the

agents. However, this alone is not enough to force the MARL agents to follow the policy π†.

Any other distinct policy should not be an ϵ-approximate CCE. The reason is that, if there exists an

ϵ-approximate CCE π such that π(π†(s)|s) = 0 for any state s, the agents, using existing MARL

algorithms, may learn and then follow π, which will lead the attack loss to be O(T) = O(KH).

Hence, we need to ensure that any ϵ-approximate CCE stays in the neighborhood of the target

policy. This requirement is equivalent to achieve the following objective: for all s ∈ S , and policy

π,

max
i∈[m]

(Ṽ
†,π†

−i

i,1 (s)− Ṽ π†

i,1 (s)) = 0;

if π is a product policy and π ̸= π†, then max
i∈[m]

(Ṽ
†,π−i

i,1 (s)− Ṽ π
i,1(s)) > 0;

if π(π†(s′)|s′) = 0 for all s′, then max
i∈[m]

(Ṽ
†,π−i

i,1 (s)− Ṽ π
i,1(s)) > ϵ,

(5.1)

where Ṽ is the expected reward based on the post-attack environments.

We now investigate whether there exist efficient and successful attack strategies that use action

poisoning alone or reward poisoning alone. We first show that the power of action poisoning attack

85

alone is limited.

Theorem 11. There exists a target policy π† and a MG (S, {Ai}mi=1, H, P, {Ri}mi=1) such that no

action poisoning Markov attack strategy alone can efficiently and successfully attack MARL agents

by achieving the objective in (5.1).

We now focus on strategies that use only reward poisoning. If the post-attack mean reward

R̃ is unbounded and the attacker can arbitrarily manipulate the rewards, there always exists an

efficient and successful poisoning attack strategy. For example, the attacker can change the rewards

of non-target actions to −H . However, such attacks can be easily detected, as the boundary of

post-attack mean reward is distinct from the boundary of pre-attack mean reward. The following

theorem shows that if the post-attack mean reward has the same boundary conditions as the

pre-attack mean reward, the power of reward poisoning only attack is limited.

Theorem 12. If we limit the post-attack mean reward R̃ to have the same boundary condition as

that of the pre-attack mean rewardR, i.e. R̃ ∈ [0, 1], there exists a MG (S, {Ai}mi=1, H, P, {Ri}mi=1)

and a target policy π† such that no reward poisoning Markov attack strategy alone can efficiently

and successfully attack MARL agents by achieving the objective in (5.1).

The proofs of Theorem 11 and Theorem 12 are provided in Appendix D.2. The main idea of

the proofs is as follows. In successful poisoning attacks, the attack loss scales as o(T) so that the

agents will follow the target policy π† in at least T − o(T) times. To efficiently attack the MARL

agents, the attacker should avoid to attack when the agents follow the target policy. Otherwise,

the poisoning attack cost will grow linearly with T . The proofs of Theorem 11 and Theorem 12

proceed by constructing an MG and a target policy π† where the expected rewards under π† is

always the worst for some agents if the attacker avoids to attack when the agents follow the target

policy.

86

5.2.2 White-box action poisoning attacks

Even though Section 5.2.1 shows that there exists MG and target policy such that the action

poisoning only attacks cannot be efficiently successful, here we show that it can be efficient and

successful for a class of target policies. The following condition characterizes such class of target

policies.

Condition 1: For the underlying environment MG (S, {Ai}mi=1, H, P, {Ri}mi=1), the attacker’s

target policy π† satisfies that for any state s and any step h, there exists an action a such that

V π†

i,h (s) > Qπ†

i,h(s,a), for any agent i.

Under Condition 1, we can find a worse policy π− by

π−
h (s) = argmax

a∈A
min
i∈[m]

(
V π†

i,h (s)−Qπ†

i,h(s,a)
)
s.t.∀i ∈ [m], V π†

i,h (s) > Qπ†

i,h(s,a). (5.2)

Under this condition, we now introduce an effective white-box action attack strategies:

d-portion attack. Specifically, at the step h and state s, if all agents pick the target action, i.e.,

a = π†
h(s), the attacker does not attack, i.e. ã = a = π†

h(s). If some agents pick a non-target

action, i.e., a ̸= π†
h(s), the d-portion attack sets ã as

ã =


π†
h(s),with probability dh(s,a)/m

π−
h (s),with probability 1− dh(s,a)/m,

(5.3)

where dh(s,a) = m/2 +
∑m

i=1 1(ai = π†
i,h(s))/2.

Theorem 13. If the attacker follows the d-portion attack strategy on the MG agents, the best

response of each agent i towards the target policy π†
−i is π†

i . The target policy π† is an {NE, CE,

CCE} from any agent’s point of view. If every state s ∈ S is reachable at every step h ∈ [H] under

the target policy, π† is the unique {NE, CE, CCE}.

The detailed proof can be found in Appendix D.3.1. Theorem 13 shows that the target policy

π† is the unique {NE, CE, CCE} under the d-portion attack. Thus, if the agents follow an MARL

87

algorithm that is able to learn an ϵ-approximate {NE, CE, CCE}, the agents will learn a policy

approximate to the target policy. We now discuss the high-level idea why the d-portion attack

works. Under Condition 1, π− is worse than the target policy π† at the step H from every agent’s

point of view. Thus, under the d-portion attack, the target action strictly dominates any other action

at the step H , and π† is the unique {NE, CE, CCE} at the step H . From induction on h = H,H −

1, · · · , 1, we can further prove that the π† is the unique {NE, CE, CCE} at any step h. We define

∆†−
i,h(s) = Qπ†

i,h(s, π
†
h(s)) − Qπ†

i,h(s, π
−
h (s)) and the minimum gap ∆min = minh∈[H],s∈S,i∈[m] =

∆†−
i,h(s). In addition, any other distinct policy is not an ϵ-approximate CCE with different gap

ϵ < ∆min/2. We can derive upper bounds of the attack loss and the attack cost when attacking

some special MARL algorithms.

Theorem 14. If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded

by a sub-linear bound R(T) for any MG in the absence of attack, and mins∈S,i∈[m]∆
†−
i,h(s) ≥∑H

h′=h+1maxs∈S,i∈[m] ∆
†−
i,h′(s) holds for any h ∈ [H], then d-portion attack will force the agents to

follow the target policy with the attack loss and the attack cost bounded by

E[Loss1(K,H)] ≤ 2m2R(T)/∆min, E[Cost(K,H)] ≤ 2m3R(T)/∆min. (5.4)

5.2.3 White-box reward poisoning attacks

As stated in Theorem 12, the reward poisoning only attacks may fail, if we limit the post-attack

mean reward R̃ to satisfy the same boundary conditions as those of the pre-attack mean reward

R, i.e. R̃ ∈ [0, 1]. However, similar to the case with action poisoning only attacks, the reward

poisoning only attacks can be efficiently successful for a class of target policies. The following

condition specifies such class of target policies.

Condition 2: For the underlying environment MG (S, {Ai}mi=1, H, P, {Ri}mi=1), there exists

constant η > 0 such that for any state s, any step h, and any agent i, (Ri,h(s, π
†(s))−η)/(H−h) ≥

∆R > 0 where ∆R = [maxs×a×h′ Ri,h′(s, a)−mins×a×h′ Ri,h′(s, a)].

We now introduce an effective white-box reward attack strategies: η-gap attack. Specifically,

88

at the step h and state s, if agents all pick the target action, i.e., a = π†
h(s), the attacker does not

attack, i.e. r̃i,h = ri,h for each agent i. If agent i picks a non-target action, i.e., a ̸= π†
h(s), the

η-gap attack sets r̃i,h = Ri,h(s, π
†(s))− (η + (H − h)∆R)1(ai ̸= π†

i,h(s)) for each agent i. From

Condition 2, we have r̃i,h ∈ [0, 1].

Theorem 15. If the attacker follows the η-gap attack strategy on the MG agents, the best response

of each agent i towards any policy π−i is π†
i . The target policy π† is the {NE, CE, CCE} from any

agent’s point of view. If every state s ∈ S is reachable at every step h ∈ [H] under the target policy,

π† is the unique {NE, CE, CCE}.

The detailed proof can be found in Appendix D.4.1. Theorem 15 shows that the target policy

π† is the unique {NE, CE, CCE} under the η-gap attack. Thus, if the agents follow an MARL

algorithm that is able to learn an ϵ-approximate {NE, CE, CCE}, the agents will learn a policy

approximate to the target policy. Here, we discuss the high-level idea why the η-gap attack works.

∆R is the difference between the upper bound and the lower bound of the mean rewards. Condition

2 implies that each action is close to other actions from every agent’s point of view. Although we

limit the post-attack mean reward R̃ in [0, 1], the target policy can still appear to be optimal by

making small changing to the rewards. Under Condition 2 and the η-gap attacks, the target actions

strictly dominates any other non-target actions by at least η and any other distinct policy is not an

ϵ-approximate CCE with different gap ϵ < η. Thus, π† becomes the unique {NE, CE, CCE}. In

addition, we can derive upper bounds of the attack loss and the attack cost when attacking MARL

algorithms with sub-linear best-in-hindsight regret.

Theorem 16. If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded by a

sub-linear boundR(T) for any MG in the absence of attack, then η-gap attack will force the agents

to follow the target policy with the attack loss and the attack cost bounded by

E[Loss1(k,H)] ≤ mR(T)/η, E[Cost(K,H)] ≤ m2R(T)/η. (5.5)

We note that proposed sufficient conditions (namely Condition 1 and Condition 2), under

89

which the action poisoning only attacks or the reward poisoning only attacks can be efficient and

successful, may be strict. They may not always hold in practice. This motivates us to investigate

mixed attack strategy to be discussed in the sequel.

5.3 Gray-box Attack Strategy and Analysis

In the gray-box attack setting, the attacker has no prior information about the underlying

environment and the agents’ algorithm, and it only observes samples generated when the agents

interact with the environment. However, the attacker is given the target policy π†. Since the

η-gap reward attack strategy and d-portion action attack strategy described in Section 5.2 for

the white-box setting rely on the information of the underlying environment, these two attack

strategies are not applicable in the gray-box setting. In addition, without the information of the

underlying environment, the attacker cannot check whether the action poisoning attack alone or

the reward poisoning attack alone can be efficiently successful. Building on insights obtained from

the white-box attack strategies, we develop a mixed attack strategy for MG in the gray-box attack

setting.

In the proposed mixed attack strategy, at the step h and state s, if agent i picks the target action,

i.e., ai,h = π†
i,h(s), the attacker does not override the action and the reward, i.e. ãi,h = ai,h and

r̃i,h = ri,h. If agent i picks a non-target action, i.e., ai,h ̸= π†
i,h(s), the attacker overrides its action

ãi,h = π†
i,h(s) and then overrides the reward r̃i,h = 0.

Theorem 17. If the attacker follows the mixed attack strategy the best response of each agent i

towards any product policy π−i is π†
i . The optimal policy π† is the unique {NE, CE, CCE}.

The detailed proof can be found in Appendix D.5.1. Here, we discuss the high-level idea

why the mixed attack works. Under the mixed attacks, the state transitions are the same over the

different actions and the reward of the non-target actions is worse than the target action. Thus, in

the post-attack environment, the target policy is better than any other policy from any agent’s point

of view, and any other distinct policy is not an ϵ-approximate CCE with different gap ϵ < Rmin,

90

where Rmin = minh∈[H] mins∈S mini∈[m]Ri,h(s, π
†
h(s)). Thus, π† is the unique {NE, CE, CCE}.

In addition, we can derive upper bounds of the attack loss and the attack cost when attacking some

special MARL algorithms.

Theorem 18. If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded by a

sub-linear boundR(T) for any MG in the absence of attacks, then the mixed attacks will force the

agents to follow the target policy π† with the attack loss and the attack cost bounded by

E[Loss1(K,H)] ≤ mR(T)/Rmin, E[Cost(K,H)] ≤ 2mR(T)/Rmin. (5.6)

5.4 Black-box Attack Strategy and Analysis

In the black-box attack setting, the attacker has no prior information about the underlying

environment and the agents’ algorithm, and it only observes the samples generated when the

agents interact with the environment. The attacker aims to maximize the cumulative rewards under

some specific reward functions R† chosen by the attacker. But unlike in the gray-box case, the

corresponding target policy π† is also unknown for the attacker. After each time step, the attacker

will receive the attacker reward r†. Since the optimal (target) policy that maximizes the attacker’s

reward is unknown, the attacker needs to explore the environment to obtain the optimal policy. As

the mixed attack strategy described in Section 5.3 for the gray-box setting relies on the knowledge

of the target policy, it is not applicable in the black-box setting.

However, by collecting observations and evaluating the attacker’s reward function and

transition probabilities of the underlying environment, the attacker can perform an approximate

mixed attack strategy. In particular, we propose an approximate mixed attack strategy that has two

phases: the exploration phase and the attack phase. In the exploration phase, the attacker explores

the environment to identify an approximate optimal policy, while in the attack phase, the attacker

performs the mixed attack strategy and forces the agents to learn the approximate optimal policy.

The total attack cost (loss) will be the sum of attack cost (loss) of these two phases.

91

Algorithm 5.1 Exploration phase for Markov games

Require: Stopping time τ . Set B(N) = (H
√
S + 1)

√
log(2AHτ/δ)/(2N).

1: Initialize Q†,h(s,a) = V †,h(s,a) = H , Q†,h(s,a) = V †,h(s,a) = 0, V †,H+1 = V †,H+1 = 0,

∆ =∞, N0(s) = Nh(s,a) = Nh(s,a, s
′) = 0 and R̂†,h(s,a) = 0 for any (s, s′,a, i, h).

2: for episode k = 1, . . . , τ do
3: for step h = H, . . . , 1 do
4: for each (s,a) ∈ S ×A with Nh(s,a) > 0 do
5: Update Q†,h(s,a) = min{R̂†,h+ P̂hV †,h+1(s,a)+B(Nh(s,a)), H} and Q†,h(s,a) =

max{R̂†,h + P̂hV †,h+1(s,a)−B(Nh(s,a)), 0}.
6: end for
7: for each s ∈ S with Nh(s,a) > 0 do
8: Update πh(s) = maxa∈AQ†,h(s,a).
9: Update V †,h(s,a) = Q†,h(s, πh(s)) and V †,h(s,a) = Q†,h(s, πh(s)).

10: end for
11: end for
12: if Es∼P̂0(·)(V †,1(s)− V †,1(s)) +H

√
S log(2τ/δ)

2k
≤ ∆ then

13: ∆ = Es∼P̂0(·)(V †,1(s)− V †,1(s)) +H
√

S log(2τ/δ)
2k

and π† = π.
14: end if
15: for step h = 1, . . . , H do
16: Attacker overrides each agent’s action by changing ai,h to ãi,h, where ãh = πh(sh).
17: The environment returns the reward ri,h and the next state sh+1 according to action ãh.

The attacker receive its reward r†,h.
18: Attacker overrides each agent’s reward by changing ri,h to r̃i,h = 1.
19: Add 1 to Nh(sh, ãh) and Nh(sh, ãh, sh+1). P̂h(·|sh, ãh) = Nh(sh, ãh, ·)/Nh(sh, ãh)
20: Update R̂†,h(sh, ãh) = R̂†,h(sh, ãh) + (r†,t − R̂†,h(sh, ãh)/Nh(sh, ãh).
21: end for
22: Update N0(s1) = N0(s1) + 1 and P̂0(·) = N0(·)/k.
23: end for
24: Return π†.

92

In the exploration phase, the approximate mixed attack strategy uses an optimal-policy

identification algorithm, which is summarized in Algorithm 5.1. It will return an approximate

optimal policy π†. Note that πk denotes the product policy deployed by the agents for each episode

k. V is the upper bound of V π∗ and V is the lower bound of V πk . By minimizing V − V ,

Algorithm 5.1 finds an approximate optimal policy π†. Here, we assume that the reward on the

approximate optimal policy π† is positive, i.e. Rmin = minh∈[H] mins∈S mini∈[m]Ri,h(s, π
†
h(s)) >

0. In the exploration phase, the attacker will override both the agents’ actions and rewards.

After the exploration phase, the approximate mixed attack strategy performs the attack phase.

The attacker will override both the agents’ actions and rewards in this phase. At the step h and

state s, if agent i picks the action π†
i,h(s), the attacker does not override actions and rewards, i.e.

ãi,h = ai,h and r̃i,h = ri,h. If agent i picks action ai,h ̸= π†
i,h(s), the attacker overrides the action

ãi,h = ai,h and then overrides the reward r̃i,h = 0. The attack strategy in the attack phase is same

with the mixed attack strategy. From Theorem 17, in the attack phase, the best response of each

agent i towards product policy π†
−i is π†

i and π† is the unique NE. Here, we discuss the high-level

idea why the approximate mixed attack works. The attacker finds an approximate optimal policy

π† by Algorithm 5.1. If π∗ is close to π† and the exploration phase is sub-linear time dependent, the

performance of the approximate mixed attack strategy will be close to the mixed attack strategy. We

build a confidence bound to show the value function difference between π∗ and π† in the following

lemma.

Lemma 14. If the attacker follows the Algorithm 5.1 on the agents, for any δ ∈ (0, 1), with

probability at least 1− 5δ, the following bound holds:

Es1∼P0(·)[V
π∗

†,1 (s1)− V π†

†,1 (s1)] ≤ 2H2S
√
2A log(2SAHτ/δ)/τ . (5.7)

We now investigate the impact of the approximate mixed attack strategy attack on

V-learning [42], a simple, efficient, decentralized algorithm for MARL. For completeness, we

describe the main steps of V-learning algorithm [42] in Algorithm 5.2 and the adversarial bandit

93

algorithm in Algorithm 5.3.

Algorithm 5.2 V-learning [42]

1: For any (s, a, h), Vh(s)← H + 1− h, Nh(s)← 0, πh(a|s)← 1/A.
2: for episodes k = 1, . . . , K do
3: receive s1
4: for episodes h = 1, . . . , H do
5: take action ah ∼ πh(·|sh), observe reward rh and next state sh+1.
6: t = Nh(sh)← Nh(sh) + 1.
7: V h(sh)← (1− αt)V h(sh) + αt(rh+ Vh+1(sh+1) + βt).
8: Vh(sh)← min{H + 1− h, V h(sh)}
9: πh(·|sh) ← ADV BANDIT UPDATE(ah,

H−rh−Vh+1(sh+1)

H
) on (sh, h)

th adversarial
bandit.

10: end for
11: end for

Algorithm 5.3 FTRL for Weighted External Regret [42]

1: For any b ∈ B, θ1(b)← 1/B.
2: for episode t = 1, . . . , K do
3: Take action bt ∼ θt(·), and observe loss l̃t(bt).
4: l̂t(b)← l̃t(bt)1[bt = b]/(θt(b) + γt) for all b ∈ B.
5: θt+1(b) ∝ exp[−(γt/wt)

∑t
i=1wil̂i(b)]

6: end for

We use the same learning rate αt in [42].

Theorem 19. Suppose ADV BANDIT UPDATE of V-learning follows Algorithm 5.3 and it

chooses hyper-parameter wt = αt

(∏t
i=2(1− αi)

)−1
, γt =

√
H logB

Bt
and αt =

H+1
H+t

. For given K

and any δ ∈ (0, 1), let ι = log(mHSAK/δ). The attack loss and the attack cost of the approximate

mixed attack strategy during these K episodes are bounded by

E [Loss2(K,H)] ≤ Hτ +
40

Rmin

m
√
H9ASKι+ 2H2SK

√
2Aι/τ ,

E [Cost(K,H)] ≤ 2mHτ +
80

Rmin

√
H5ASKι.

(5.8)

Let π̂ be the executing output policy of V-learning, the attack loss of the executing output policy π̂

94

is upper bounded by

V π∗

†,1 (s1)− V π̂
†,1(s1) ≤

20mS

Rmin

√
H7Aι

K
+

2τmH2S

K
+ 2H2S

√
2Aι/τ . (5.9)

If we choose the stopping time of the exploration phase τ = K2/3, the attack loss and the attack

cost of the approximate mixed attack strategy during these K episodes are bounded by O(K2/3)

and V π∗

†,1 (s1)− V π̂
†,1(s1) ≤ O(K−1/3).

5.5 Numerical Results

In this section, we empirically compare the performance of the action poisoning only attack

strategy (d-portion attack), the reward poisoning only attack strategy (η-gap attack) and the mixed

attack strategy.

We consider a simple case of Markov game where m = 2, H = 2 and |S| = 3. This

Markov game is the example in Appendix D.2.2. The initial state is s1 at h = 1 and the transition

probabilities are:

P (s2|s1, a) = 0.9, P (s3|s1, a) = 0.1, if a = (Defect, Defect),

P (s2|s1, a) = 0.1, P (s3|s1, a) = 0.9, if a ̸= (Defect, Defect).
(5.10)

The reward functions are expressed in the following Table 5.2.

Table 5.2: Reward matrices

state s1 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.2, 0.2)

state s2 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.1, 0.1)

state s3 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.9, 0.9)

We set the total number of episodes K = 107. We set two different target policies. For the

first target policy, no action/reward poisoning Markov attack strategy alone can efficiently and

successfully attack MARL agents. For the second target policy, the d-portion attack and the η-gap

attack can efficiently and successfully attack MARL agents.

95

Case 1. The target policy is that the two agents both choose to defect at any state. As stated in

Section 5.2 and Appendix 5.2.1, the Condition 1 and Condition 2 do not hold for this Markov game

and target policy, and no action/reward poisoning Markov attack strategy alone can efficiently and

successfully attack MARL agents.

In Figure 5.1, we illustrate the mixed attack strategy, the d-portion attack strategy and the η-gap

attack strategy on V-learning agents for the proposed MG. The x-axis represents the episode k in

the MG. The y-axis represents the cumulative attack cost and attack loss that change over time

steps. The results show that, the attack cost and attack loss of the mixed attack strategy sublinearly

scale as T , but the attack cost and attack loss of the d-portion attack strategy and the η-gap attack

strategy linearly scale as T , which is consistent with our analysis.

0 2 4 6 8 10

episode 105

0

2

4

6

8

10

12

14

16

18

A
tt
a
c
k
 l
o
s
s

105

Mixed

eta-gap

d-portion

0 2 4 6 8 10

episode 105

0

2

4

6

8

10

12

14

A
tt
a
c
k
 c

o
s
t

105

Mixed

eta-gap

d-portion

Figure 5.1: The attack loss (cost) on case 1.

0 2 4 6 8 10

episode 105

0

2000

4000

6000

8000

10000

12000

A
tt
a
c
k
 l
o
s
s

Mixed

eta-gap

d-portion

0 2 4 6 8 10

episode 105

0

2000

4000

6000

8000

10000

12000

A
tt
a
c
k
 c

o
s
t

Mixed

eta-gap

d-portion

Figure 5.2: The attack loss (cost) on case 2.

Case 2. The target policy is that the two agents choose to cooperate at state s1 and s2 but to

defect at state s3. As stated in Section 5.2 and Appendix D.2, the Condition 1 and Condition 2 hold

for this Markov game and target policy. Thus, the d-portion attack strategy and the η-gap attack

strategy can efficiently and successfully attack MARL agents.

In Figure 5.2, we illustrate the mixed attack strategy, the d-portion attack strategy and the η-gap

attack strategy on V-learning agents for the proposed MG. The results show that, the attack cost

and attack loss of all three strategies sublinearly scale as T , which is consistent with our analysis.

Additional numerical results that compare the performance of the mixed attack strategy and

the approximate mixed attack strategy are provided in the following. We consider a multi-agent

system with three recycling robots. In this scenario, a mobile robot with a rechargeable battery and

a solar battery collects empty soda cans in a city. The number of agents is 3, i.e. m = 3. Each

96

robot has two different energy levels, high energy level and low energy level, resulting in 8 states

in total, i.e. S = 8.

Each robot can choose a conservative action or an aggressive action, so Ai = 2 and A = 8.

At the high energy level, the conservative action is to wait in some place to save energy and then

the mean reward is 0.4. At the high energy level, the aggressive action is to search for cans. All

the robots that choose to search will get a basic reward 0.2 and equally share an additionally mean

reward 0.9. For example, if all robots choose to search at a step, the mean reward of each robot

is 0.5. At the low energy level, the conservative action is to return to change the battery and find

the cans on the way. In this state and action, the robot only gets a low mean reward 0.2. At the

low energy level, the conservative action is to wait in some place to save energy and then the mean

reward is 0.3. We use Gaussian distribution to randomize the reward signal.

We set the total number of steps H = 6. At the step h ≤ 3, it is the daytime and the robot who

chooses to search will change to the low energy level with low probability 0.3. At the step h ≥ 4,

it is the night and the robot who chooses to search will change to the low energy level with high

probability 0.7. The energy level transition probabilities are stated in Figure 5.3 and Figure 5.4. ’H’

represents the high energy level. ’L’ represents the low energy level. ’C’ represents the conservative

action. ’A’ represents the aggressive action.

Figure 5.3: Energy level transitions at h ≤ 3. Figure 5.4: Energy level transitions at h ≥ 4.

We consider two different attack goals: (1) maximize the first robot’s rewards; (2) minimize

the the second robot’s and the third robot’s rewards. For the gray box case, we provide the target

policy that maximizes the first robot’s rewards or minimizes the the second robot’s and the third

robot’s rewards. For the black box case, we set R†,h = R1,h to maximize the first robot’s rewards

97

and set R†,h = 1−R2,h/2−R3,h/2 to minimize the second robot’s and the third robot’s rewards.

0 2 4 6 8 10

episode 106

0

1

2

3

4

5

6

7

A
tt
a
c
k
 l
o
s
s
 o

f
th

e
 m

ix
e
d
 a

tt
a
c
k

106

Maximize agent 1's reward

Minimize 2's and 3's reward

0 2 4 6 8 10

episode 106

0

1

2

3

4

5

6

7

8

9

10

A
tt
a
c
k
 l
o
s
s
 o

f
th

e
 a

p
p
ro

x
im

a
te

 m
ix

e
d
 a

tt
a
c
k

105

Maximize agent 1's reward

Minimize 2's and 3's reward

0 2 4 6 8 10

episode 106

0

1

2

3

4

5

6

7

8

9

A
tt
a
c
k
 c

o
s
t

106

min-mixed

min-approximate

max-mixed

max-approximate

Figure 5.5: The cumulative attack loss and cost of the mixed attack and the approximate mixed
attack.

We set the total number of episodes K = 107. In Figure 5.5, we illustrate the mixed attack

strategy and approximate-mixed attack strategy on V-learning agents for the proposed MG. The

x-axis represents the episode k in the MG. The y-axis represents the cumulative attack cost

and attack loss that change over time steps. The results show that, the attack cost and attack

loss of the mixed attack strategy and approximate-mixed attack strategy sublinearly scale as T ,

which is consistent with our analysis. Furthermore, Figure 5.5 shows that the performance of the

approximate-mixed attack strategy nearly match that of the mixed attack strategy. This illustrates

that the proposed approximate-mixed attack strategy is very effective in the black-box scenario.

5.6 Conclusion

In this chapter, we have introduced an adversarial attack model on MARL. We have discussed the

attack problem in three different settings: the white-box, the gray-box and the black-box settings.

We have shown that the power of action poisoning only attacks and reward poisoning only attacks is

limited. Even in the white-box setting, there exist some MGs, under which no action poisoning only

attack strategy or reward poisoning only attack strategy can be efficient and successful. We have

then characterized conditions when action poisoning only attacks or only reward poisoning only

attacks can efficiently work. We have further introduced the mixed attack strategy in the gray-box

setting that can efficiently attack any sub-linear-regret MARL agents. Finally, we have proposed

98

the approximate mixed attack strategy in the black-box setting and shown its effectiveness on

V-learning.

99

Chapter 6

Action Robust Reinforcement Learning

In this chapter, we focus on action robust RL with the probabilistic policy execution uncertainty,

in which, instead of always carrying out the action specified by the policy, the agent will take the

action specified by the policy with probability 1 − ρ and an alternative adversarial action with

probability ρ. In Section 6.1, we describe the model. In Section 6.2, we show the existence of

an optimal policy on the action robust MDPs with probabilistic policy execution uncertainty and

provide the action robust Bellman optimality equation for its solution. In Section 6.3, we develop

a model-based algorithm, Action Robust Reinforcement Learning with Certificates (ARRLC), for

episodic action robust MDPs, and show that it achieves minimax order optimal regret and minimax

order optimal sample complexity. In Section 6.4, we develop a model-free algorithm for episodic

action robust MDPs, and analyze its regret and sample complexity. In Section 6.5, we conduct

numerical experiments to validate the robustness of our approach. In our experiments, our robust

algorithm achieves a much higher reward than the non-robust RL algorithm when being tested with

some action perturbations; and our ARRLC algorithm converges much faster than other robust

algorithms. The proofs are collected in Appendix E

6.1 Problem formulation

Tabular MDPs. We consider a tabular episodic MDPM = (S,A, H, P,R) stated in Chapter 4.1.

100

The agent interacts with the MDP in episodes indexed by k. Each episode k is a trajectory

{sk1, ak1, rk1 , · · · , skH , akH , rkH} of H states skh ∈ S , actions akh ∈ A, and rewards rkh ∈ [0, 1]. At each

step h ∈ [H] of episode k, the agent observes the state skh and chooses an action akh. After receiving

the action, the environment generates a random reward rkh ∈ [0, 1] derived from a distribution with

mean Rh(s
k
h, a

k
h) and next state skh+1 that is drawn from the distribution Ph(·|skh, akh). For notational

simplicity, we assume that the initial states sk1 = s1 are deterministic in different episode k.

A (stochastic) Markov policy of the agent is a set of H maps π := {πh : S → ∆A}h∈[H],

where ∆A denotes the simplex overA. We use notation πh(a|s) to denote the probability of taking

action a in state s under stochastic policy π at step h. A deterministic policy is a policy that maps

each state to a particular action. Therefore, when it is clear from the context, we abuse the notation

πh(s) for a deterministic policy π to denote the action a which satisfies πh(a|s) = 1.

Action robust MDPs. In the action robust case, the policy execution is not accurate and lies in

some uncertainty set centered on the agent’s policy π. Denote the actual behavior policy by π̃ where

π̃ ∈ Π(π) and Π(π) is the uncertainty set of the policy execution. Denote the actual behavior action

at episode k and step h by ãkh where ãkh ∼ π̃k
h. Define the action robust value function of a policy

π as the worst-case expected accumulated reward over following any policy in the uncertainty set

Π(π) centered on a fixed policy π:

V π
h (s) = min

π̃∈Π(π)
Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
. (6.1)

V π
h represents the action robust value function of policy π at step h. Similarly, define the action

robust Q-function of a policy π:

Qπ
h(s, a) = min

π̃∈Π(π)
Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a

]
. (6.2)

The goal of action robust RL is to find the optimal robust policy π∗ that maximizes the worst-case

accumulated reward: π∗ = argmaxπ V
π
1 (s),∀s ∈ S. We also denote V π∗ and Qπ∗ by V ∗ and Q∗.

Probabilistic policy execution uncertain set. We follow the setting of the probabilistic action

101

robust MDP (PR-MDP) introduced in [97] to construct the probabilistic policy execution uncertain

set. For some 0 ≤ ρ ≤ 1, the policy execution uncertain set is defined as:

Πρ(π) := {π̃ : ∀s,∀h,∃π′
h(·|s) ∈ ∆A such that π̃h(·|s) = (1− ρ)πh(·|s) + ρπ′

h(·|s)}. (6.3)

The policy execution uncertain set can be even simpler expressed as Πρ(π) = (1−ρ)π+ρ(∆A)
S×H .

In this setting, an optimal probabilistic robust policy is optimal w.r.t. a scenario in which, with

probability at most ρ, an adversary takes control and performs the worst possible action. We call

π′ as the adversarial policy. For different agent’s policy π, the corresponding adversarial policy π′

that minimizes the cumulative reward may be different.

Additional notations. We set ι = log(2SAHK/δ) for δ > 0. For simplicity of notation, we

treat P as a linear operator such that [PhV](s, a) := Es′∼Ph(·|s,a)V (s′), and we define two additional

operatorsD and V as follows: [Dπh
Q](s) := Ea∼πh(·|s)Q(s, a) and

VPh
Vh+1(s, a) :=

∑
s′

Ph(s
′|s, a) (Vh+1(s

′)− [PhVh+1](s, a))
2

= [Ph(Vh+1)
2](s, a)− ([PhVh+1](s, a))

2.

6.2 Existence of the optimal robust policy

For the standard tabular MDPs, when the state space, action space, and the horizon are all finite,

there always exists an optimal policy. In addition, if the reward functions and the transition

probabilities are known to the agent, the optimal policy can be solved by solving the Bellman

optimality equation. In the following theorem, we show that the optimal policy also always exists

in action robust MDPs and can be solved by the action robust Bellman optimality equation.

Proposition 4. If the uncertainty set of the policy execution has the form in (6.3), the following

102

perfect duality holds for all s ∈ S and all h ∈ [H]:

max
π

min
π̃∈Πρ(π)

Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]

= min
π̃∈Πρ(π)

max
π

Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
.

(6.4)

There always exists a deterministic optimal robust policy π∗. The problem can be solved by the

iteration of the action robust Bellman optimality equation on h = H, · · · , 1. The action robust

Bellman equation and the action robust Bellman optimality equation are:


V π
h (s) = (1− ρ)[Dπh

Qπ
h](s) + ρmin

a∈A
Qπ

h(s, a),

Qπ
h(s, a) = Rh(s, a) + [PhV

π
h+1](s, a),

V π
H+1(s) = 0, ∀s ∈ S.

(6.5)


V ∗
h (s) = (1− ρ)max

a∈A
Q∗

h(s, a) + ρmin
b∈A

Q∗
h(s, b),

Q∗
h(s, a) = Rh(s, a) + [PhV

∗
h+1](s, a),

V ∗
H+1(s) = 0, ∀s ∈ S.

(6.6)

We define

Cπ,π′,ρ
h (s) := Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
. (6.7)

The perfect duality of the control problems in (6.4) is equivalent to maxπ minπ′ Cπ,π′,ρ
h (s) =

minπ′ maxπ C
π,π′,ρ
h (s). We provide the detailed proof of the perfect duality and the existence of

the optimal policy in Appendix E.1. Our proposed model-based algorithm in Section 6.3 and

model-free algorithm in Section 6.4 are based on the action robust Bellman optimality equation.

Using the iteration of the proposed action robust Bellman equation to solve the robust problem

can simultaneously update the adversary policy and agent policy and avoid inefficient alternating

updates.

103

Algorithm 6.1 ARRLC (Action Robust Reinforcement Learning with Certificates)

1: Initialize V h(s) = H − h + 1, Qh(s, a) = H − h + 1, V h(s) = 0, Q
h
(s, a) = 0, r̂h(s, a),

Nh(s, a) = 0 and Nh(s, a, s
′) = 0 for any state s ∈ S, any action a ∈ A and any step h ∈ [H].

V H+1(s) = V H+1(s) = 0 and QH+1(s, a) = Q
H+1

(s, a) = 0 for any s and a. ∆ = H .
2: for episode k = 1, 2, . . . , K do
3: for step h = 1, 2, . . . , H do
4: Observe skh.
5: Set πk

h(s) = argmaxaQh(s, a) , πk
h(s) = argminaQh

(s, a), π̃k
h = (1− ρ)πk

h + ρπk
h.

6: Take action akh ∼ π̃k
h(·|skh).

7: Receive reward rkh and observe skh+1.
8: Set Nh(s

k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1, Nh(s

k
h, a

k
h, s

k
h+1)← Nh(s

k
h, a

k
h, s

k
h+1) + 1.

9: Set r̂kh(s
k
h, a

k
h)← r̂kh(s

k
h, a

k
h) + (rkh − r̂kh(skh, akh))/Nh(s

k
h, a

k
h).

10: Set P̂h(·|skh, akh) = Nh(s
k
h, a

k
h, ·)/Nh(s

k
h, a

k
h).

11: end for
12: Output policy πk with certificates Ik = [V 1(s

k
1), V 1(s

k
1)] and ϵk = |Ik| .

13: if ϵk < ∆ then
14: ∆← ϵk and πout ← πk.
15: end if
16: for step h = H,H − 1, . . . , 1 do
17: for each (s, a) ∈ S ×A with Nh(s, a) > 0 do

18: Set θh(s, a) =

√
2VP̂h

[(V h+1+V h+1)/2](s,a)ι

Nh(s,a)
+
√

2r̂h(s,a)ι
Nh(s,a)

+
P̂h(V h+1−V h+1)(s,a)

H
+

(24H2+7H+7)ι
3Nh(s,a)

,

19: Qh(s, a)← min{H − h+ 1, r̂h(s, a) + P̂hV h+1(s, a) + θh(s, a)},
20: Q

h
(s, a)← max{0, r̂h(s, a) + P̂hV h+1(s, a)− θh(s, a)},

21: πk+1
h (s) = argmaxaQh(s, a) , πk+1

h (s) = argminaQh
(s, a),

22: V h(s)← (1− ρ)Qh(s, π
k+1
h (s)) + ρQh(s, π

k+1
h (s)),

23: V h(s)← (1− ρ)Q
h
(s, πk+1

h (s)) + ρQ
h
(s, πk+1

h (s)).
24: end for
25: end for
26: end for
27: Return πout

104

6.3 Model-based algorithm and main results

In this section, we introduce the proposed Action Robust Reinforcement Learning with Certificates

(ARRLC) algorithm and provides its theoretical guarantee. The pseudo code is listed in

Algorithm 6.1. Here, we highlight the main idea of our algorithm. Algorithm 6.1 trains the agent in

a clean (simulation) environment and learns a policy that performs well when applied to a perturbed

environment with probabilistic policy execution uncertainty. To simulate the action perturbation,

Algorithm 6.1 chooses an adversarial action with probability ρ. To learn the agent’s optimal policy

and the corresponding adversarial policy, Algorithm 6.1 computes an optimistic estimate Q of Q∗

and a pessimistic estimate Q of Qπk . Algorithm 6.1 uses the optimistic estimates to explore the

possible optimal policy π and uses the pessimistic estimates to explore the possible adversarial

policy π. As shown later in Lemma 17, V ≥ V ∗ ≥ V π ≥ V holds with high probabilities. The

optimistic and pessimistic estimates V and V can provide policy certificates, which bounds the

cumulative rewards of the return policy πk and V −V bounds the sub-optimality of the return policy

πk with high probabilities. The policy certificates can give us some insights about the performance

of πk in the perturbed environment with probabilistic policy execution uncertainty.

6.3.1 Algorithm description

We now describe the proposed ARRLC algorithm in more details. In each episode, the ARRLC

algorithm can be decomposed into two parts.

• Line 3-11 (Sample trajectory and update the model estimate): Simulates the action robust

MDP, executes the behavior policy π̃, collects samples, and updates the estimate of the

reward and the transition.

• Line 16-25 (Adversarial planning from the estimated model): Performs value iteration with

bonus to estimate the robust value functions using the empirical estimate of the transition P̂ ,

computes a new policy π that is optimal respect to the estimated robust value functions, and

computes a new optimal adversarial policy π respect to the agent’s policy π.

105

At a high-level, this two-phase policy is standard in the majority of model-based RL

algorithms [5, 19]. Algorithm 6.1 shares similar structure with ORLC (Optimistic Reinforcement

Learning with Certificates) in [19] but has some significant differences in line 5-6 and line 18-23.

The first main difference is that the ARRLC algorithm simulates the probabilistic policy execution

uncertainty by choosing an adversarial action with probability ρ. The adversarial policy and the

adversarial actions are computed by the ARRLC algorithm. The second main difference is that

the ARRLC algorithm simultaneously plans the agent policy π and the adversarial policy π by the

action robust Bellman optimality equation.

These two main difference brings two main challenges in the design and analysis of our

algorithm.

(1) The ARRLC algorithm simultaneously plans the agent policy and the adversarial policy.

However the planned adversarial policy π is not necessarily the true optimal adversary policy

towards the agent policy π because of the estimation error of the value functions. We carefully

design the bonus items and the update role of the value functions so that V h(s) ≥ V ∗
h (s) ≥

V π
h (s) ≥ V h(s) and Qh(s, a) ≥ Q∗

h(s, a) ≥ Qπ
h(s, a) ≥ Q

h
(s, a) hold for all s and a.

(2) A crucial step in many UCB-type algorithms based on Bernstein inequality is bounding the

sum of variance of estimated value function across the planning horizon. The behavior policies

in these UCB-type algorithms are deterministic. However, the behavior policy in our ARRLC

algorithm is not deterministic due to the simulation of the adversary’s behavior. The total variance

is the weighted sum of the sum of variance of estimated value function across two trajectories. Even

if action π(skh) or π(skh) is not sampled at state skh, it counts in the total variance. Thus, the sum of

variance is no longer simply the variance of the sum of rewards per episode, and new techniques are

introduced. For example, the variance of V +V can be connected to the variance ofCπk∗,πk,ρ, where

πk∗ is the optimal policy towards the adversary policy πk with πk∗
h (s) = argmaxπ C

π,πk,ρ
h (s). Then

the variance of Cπk∗,πk,ρ can be bounded via recursion on the sampled trajectories.

106

6.3.2 Theoretical guarantee

We define the cumulative regret of the output policy πk at each episodes k as Regret(K) :=∑K
k=1(V

∗
1 (s

k
1)− V πk

1 (sk1)).

Theorem 20. For any δ ∈ (0, 1], letting ι = log(2SAHK/δ), then with probability at least 1− δ,

Algorithm 6.1 achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH3ι2/ϵ2 + S2AH3ι2/ϵ).

• Regret(K) =
∑K

k=1(V
∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH3Kι+ S2AH3ι2).

For small ϵ ≤ H/S, the sample complexity scales as O(SAH3ι2/ϵ2). For the case with a large

number of episodes K ≥ S3AH3ι, the regret scales as O(
√
SAH3Kι). For the standard MDPs,

the information-theoretic sample complexity lower bound is Ω(SAH3/ϵ2) provided in [118] and

the regret lower bound is Ω(
√
SAH3K) provided in [41]. When ρ = 0, the action robust MDPs is

equivalent to the standard MDPs. Thus, the information-theoretic sample complexity lower bound

and the regret lower bound of the action robust MDPs should have same dependency on S, A, H ,

K or ϵ. The lower bounds show the optimality of our algorithm up to logarithmic factors.

6.4 Model-free method

In this section, we develop a model-free algorithm, called Action Robust Q-learning with

Hoeffding confidence bound (ARQ-H), and analyze its theoretical guarantee. The pseudo code is

listed in Algorithm 6.2. Here, we highlight the main idea of Algorithm 6.2. Algorithm 6.2 follows

the same idea of Algorithm 6.1, which trains the agent in a clean (simulation) environment and

learns a policy that performs well when applied to a perturbed environment with probabilistic

policy execution uncertainty. To simulate the action perturbation, Algorithm 6.2 chooses an

adversarial action with probability ρ. To learn the agent’s optimal policy and the corresponding

adversarial policy, Algorithm 6.2 computes an optimistic estimate Q of Q∗ and a pessimistic

estimate Q of Qπk . Algorithm 6.2 uses the optimistic estimates to explore the possible optimal

107

policy π and uses the pessimistic estimates to explore the possible adversarial policy π. The

difference is that Algorithm 6.2 use a model-free method to update Q and V values.

Algorithm 6.2 Action Robust Q-learning with Hoeffding Confidence Bound (ARQ-H)

Set αt =
H+1
H+t

. Initialize V h(s) = H − h+ 1, Qh(s, a) = H − h+ 1, V h(s) = 0, Q
h
(s, a) = 0,

r̂h(s, a), Nh(s, a) = 0 for any state s ∈ S , any action a ∈ A and any step h ∈ [H]. V H+1(s) =
V H+1(s) = 0 and QH+1(s, a) = Q

H+1
(s, a) = 0 for all s and a. ∆ = H . Initial policy π1

h(a|s)
and π1

h(a|s) = 1/A for any state s, action a and any step h ∈ [H].
for episode k = 1, 2, . . . , K do

for step h = 1, 2, . . . , H do
Observe skh.
Set akh = argmaxaQh(s

k
h, a) , akh = argminaQh

(skh, a), π̃
k
h(a

k
h|skh) = 1 − ρ and

π̃k
h(a

k
h|skh) = ρ.

Take action akh ∼ π̃k
h(·|skh).

Receive reward rkh and observe skh+1.
Set t = Nh(s

k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1; bt =

√
H3ι/t.

Qh(s
k
h, a

k
h)← (1− αt)Qh(s

k
h, a

k
h) + αt(r

k
h + V h+1(s

k
h+1) + bt),

Q
h
(skh, a

k
h)← (1− αt)Qh

(skh, a
k
h) + αt(r

k
h + V h+1(s

k
h+1)− bt).

Set πk+1
h (skh) = argmaxaQh(s

k
h, a), π

k+1
h (skh) = argminaQh

(sk+1
h , a).

V h(s
k
h)← min{V h(s

k
h), (1− ρ)Qh(s

k
h, π

k+1
h (skh)) + ρQh(s

k
h, π

k+1
h (skh))}.

V h(s
k
h)← max{V h(s

k
h), (1− ρ)Qh

(skh, π
k+1
h (skh)) + ρQ

h
(skh, π

k+1
h (skh))}.

if V h(s
k
h) > (1− ρ)Q

h
(skh, π

k+1
h (skh)) + ρQ

h
(skh, π

k+1
h (skh)) then

πk+1
h = πk

h.
end if

end for
Output policy πk+1 with certificates Ik+1 = [V 1(s

k
1), V 1(s

k
1)] and ϵk+1 = |Ik+1|.

end for
Return πout

Here, we highlight the challenges of the model-free method compared with the model-based

method. In the model-based planning, we perform value iteration and theQ values, V values, agent

policy π and adversarial policy π are updated on all (s, a). However, in the model-free method, the

Q values and V values are updated only on (skh, a
k
h) which are the samples on the trajectories.

The variances of the Q values and V values in model-free method are larger than the model-based

method. Compared with the model-based method, the update of the Q values and V values in the

model-free method is slower and less stable.

To deal with this challenges, we design a special update rule of the output policy. In line 14-16,

108

Algorithm 6.2 do not update the output policy until the lower bound on the value function of the

new output policy is improved. By this, the output policies are stably improved after every update.

The adversary policy is still updated at each episode.

We provide the regret and sample complexity bounds of Algorithm 6.2 in the following:

Theorem 21. For any δ ∈ (0, 1], letting ι = log(2SABHK/δ), then with probability at least 1−δ,

Algorithm 6.2 achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH5ι/ϵ2 + SAH2/ϵ).

• Regret(K) =
∑K

k=1(V
∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH5Kι+ SAH2).

The detailed proof is provided in Appendix E.3. The model-free method is more computational

efficient than the model-based method but is less sample efficient.

6.5 Simulation results

We use OpenAI gym framework [11], and consider two different problems: Cliff Walking, a toy

text environment, and Inverted Pendulum, a control environment with the MuJoCo [99] physics

simulator. We set H = 100. To demonstrate the robustness, the policy is learned in a clean

environment, and is then tested on the perturbed environment. Specifically, during the testing, we

set a probability p such that after the agent takes an action, with probability p, the action is chosen

by an adversary. The adversary follows a fixed policy. A Monte-Carlo method is used to evaluate

the accumulated reward of the learned policy on the perturbed environment. We take the average

over 100 trajectories.

Inverted pendulum. The inverted pendulum experiment is a classic control problem in RL.

An inverted pendulum is attached by a pivot point to a cart, which is restricted to linear movement

in a plane. The cart can be pushed left or right, and the goal is to balance the inverted pendulum

on the top of the cart by applying forces on the cart. A reward of +1 is awarded for each time step

109

that the inverted pendulum stand upright within a certain angle limit. The fixed adversarial policy

in the inverted pendulum environment is a force of 0.5 N in the left direction.

Cliff walking. The cliff walking experiment is a classic scenario proposed in [94]. The game

starts with the player at location [3, 0] of the 4 × 12 grid world with the goal located at [3, 11]. A

cliff runs along [3, 1− 10]. If the player moves to a cliff location, it returns to the start location and

receives a reward of −100. For every move which does not lead into the cliff, the agent receives a

reward of −1. The player makes moves until they reach the goal. The fixed adversarial policy in

the cliff walking environment is walking a step to the bottom.

To show the robustness, we compare our algorithm with a non-robust RL algorithm that is

ORLC (Optimistic Reinforcement Learning with Certificates) in [19]. We set ρ = 0.2 for our

algorithm, which is the uncertain parameter used during the training. In Figure 6.1, we plot

the accumulated reward of both algorithms under different p. It can be seen that overall our

ARRLC algorithm achieves a much higher reward than the ORLC algorithm. This demonstrates

the robustness of our ARRLC algorithm to policy execution uncertainty.

(a) p = 0.1 (b) p = 0.2 (c) p = 0.1 (d) p = 0.2

Figure 6.1: ARRLC v.s. ORLC [19]

To show the efficiency, we compare our algorithm with the robust TD algorithm in [45], which

can converge to the optimal robust policy but has no theoretical guarantee on sample complexity

or regret. We set ρ = 0.2. In Figure 6.2, we plot the accumulated reward of both algorithms under

different p using a base-10 logarithmic scale on the x-axis and a linear scale on the y-axis. It can be

seen that our ARRLC algorithm converges faster than the robust TD algorithm. This demonstrates

the efficiency of our ARRLC algorithm to learn optimal policy under policy execution uncertainty.

We also compare our algorithm with the approaches in [81, 97] that model the robust

110

(a) p = 0.1 (b) p = 0.2 (c) p = 0.1 (d) p = 0.2

Figure 6.2: ARRLC v.s. Robust TD [45]

problem as a zero-sum game and alternating update the agent policy and adversary policy. In

our implementation, [81] fixes one policy and updates another for 25 episodes, then alternatively

updates another in the next 25 episodes. [97] does not alternate the updating until the current policy

is converged. Figure 6.3 shows the efficiency of our ARRLC algorithm. ARRLC algorithm is more

stable than the other algorithms.

(a) p = 0.1 (b) p = 0.2 (c) p = 0.1 (d) p = 0.2

Figure 6.3: ARRLC v.s. PR-PI [97] v.s. RARL [81]

Here, we compare our algorithm with algorithms in [81, 97]. The method in [97] requires an

MDP solver to solve the optimal adversarial policy when the agent policy is given and the optimal

agent policy when the adversarial policy is given. The white-box MDP solver requires knowledge

of the underline MDP so that there is no learning curve and sample complexity discussion in [97].

Thus, we implement the algorithms in [81, 97] with a Q-learning MDP solver, and compared the

final evaluation rewards and the learning curve. In addition, we implement the ablation study by

setting different ρ and p. In our experiments, the policy is learned in a clean environment, and

is then tested on the perturbed environment. ρ is the parameter in algorithm when learning the

robust policy. ρ can be considered as the agent’s guess about the probability of a disturbance

111

occurring. However, p is the probability that the perturb happens in the perturbed environment. In

the perturbed environment, with probability p, the action is perturbed by an adversarial action.

(a) p = 0.1, ρ = 0.1 (b) p = 0.2, ρ = 0.1 (c) p = 0.2, ρ = 0.2 (d) p = 0.2, ρ = 0.3

(e) p = 0.3, ρ = 0.3 (f) p = 0.3, ρ = 0.4 (g) p = 0.4, ρ = 0.4 (h) p = 0.5, ρ = 0.5

(i) p = 0.1, ρ = 0.1 (j) p = 0.2, ρ = 0.1 (k) p = 0.2, ρ = 0.2 (l) p = 0.2, ρ = 0.3

(m) p = 0.3, ρ = 0.3 (n) p = 0.3, ρ = 0.4 (o) p = 0.4, ρ = 0.4 (p) p = 0.5, ρ = 0.5

Figure 6.4: ARRLC v.s. RARL v.s. PR-PI

In Figure 6.4, we show the learning curves under different p and ρ. It can be seen that our

ARRLC algorithm converges faster than the other algorithms. This demonstrates the efficiency of

our ARRLC algorithm to learn optimal policy under policy execution uncertainty.

In Figure 6.5, given the agents trained with fixed ρ (rho), we test the agents in different disturbed

environments with different p. In Figure 6.6, we compare the different agents trained with different

112

Figure 6.5: Ablation study on InvertedPendulum-v4 with fixed ρ.

ρ. The x-axis is the different choice of ρ or p. The y-axis is the final evaluation rewards.

Figure 6.6: Ablation study on InvertedPendulum-v4 with fixed ρ.

We also consider different adversary policies include both the fixed policy in the main page

and a random adversary policy. After the agent takes an action, with probability p, the random

adversary will uniformly randomly choose an adversary action to replace the agent’s action. In

Figure 6.7 and Figure 6.8, ”fix” represents that the actions are perturbed by a fixed adversarial

policy during the testing, ”random” represents that the actions are randomly perturbed during the

testing, p is the action perturbation probability.

The theoretical guarantee on sample complexity and regret of our algorithm relies on the

assumption of known uncertainty parameter. However, in the experimental results shown in Figure

6.5, the parameter can mismatch with the true disturb probability. In Figure 6.7, we test the

mismatch of the uncertainty parameter ρ and true uncertainty probability p. We train the agent

with ρ = 0.2, but we use p = 0.1 in the test. The proposed robust algorithm still outperforms the

non-robust algorithm.

Since we do not know whether the fixed policy or the random policy is the strongest adversary

policy against the agent, a more direct comparison is to use the learned worst-case policy in

113

(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 6.7: ARRLC v.s. ORLC.

(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 6.8: ARRLC v.s. Robust TD

114

different algorithms to do a cross-comparison. We use the learned worst-case policies to disturb the

different robust agents. We report the final evaluation rewards in Table 6.1. We train our method

in 2000 episodes and the approaches of [81, 97] in 30000 episodes. We set that p = ρ = 0.2.

The ARRLC agent performs the best against three different adversaries and the ARRLC adversary

impacts the most on three different agents.

Table 6.1: Final rewards under cross-comparison between ARRLC, PR-PI and RAPL

ARRLC ADVERSARY RAPL ADVERSARY PR-PI ADVERSARY

ARRLC AGENT 72.536 81.736 89.824
RAPL AGENT 49.936 72.216 70.6
PR-PI AGENT 52.788 63.784 86.648

6.6 Conclusion

In this Chapter, we have developed a novel approach for solving action robust RL problems with

probabilistic policy execution uncertainty. We have introduced a model-based algorithm ARRLC

and a model-free algorithm ARQ-H. We have theoretically proved the sample complexity bound

and the regret bound of the algorithms. The upper bound of the sample complexity and the regret

of proposed ARRLC algorithm match the lower bound up to logarithmic factors, which shows

the minimax optimality of our algorithm. Moreover, we have carried out numerical experiments

to validate our algorithm’s robustness and efficiency, revealing that ARRLC surpasses non-robust

algorithms and converges more rapidly than the other robust algorithms when faced with action

perturbations.

115

Chapter 7

Conclusion

RL has many applicants in a variety of scenarios. The goal of this research is to design RL

algorithms that are robust to adversarial attacks. In summary, we have made the following

contributions:

Firstly, we have introduced a new class of attacks on stochastic bandits: action-manipulation

attacks. We have analyzed the attack against the UCB algorithm and proved that the proposed

LCB attack scheme can force the user to almost always pull a non-worst arm with only logarithm

effort. To defend against this type of attacks, we have further designed a new bandit algorithm

MOUCB that is robust to action-manipulation attacks. We have analyzed the regret of MOUCB

under any attack with bounded cost, and have showed that the proposed algorithm is robust to the

action-manipulation attacks.

Secondly, we have proposed a class of action poisoning attacks on linear contextual bandits.

We have shown that our white-box attack strategy is able to force any linear contextual bandit

agent, whose regret scales sublinearly with the total number of rounds, into pulling a target arm

chosen by the attacker. We have also shown that our white-box attack strategy can force LinUCB

agent into pulling a target arm T −O(log2 T) times with attack cost scaled as O(log2 T). We have

further shown that the proposed blackbox attack strategy can force LinUCB agent into pulling a

target arm T −O(log3 T) times with attack cost scaled as T −O(log3 T).

116

Thirdly, we have introduced a new class of attacks on RL: action poisoning attacks. We have

proposed the α-portion white-box attack and the LCB-H black-box attack. We have shown that

the α-portion white-box attack is able to attack any efficient RL agent and the LCB-H black-box

attack nearly matches the performance of the α-portion attack. We have analyzed the LCB-H attack

against the UCB-H algorithm and proved that the proposed attack scheme can force the agent to

almost always follow a particular class of target policy with only logarithm loss and cost.

Fourthly, we have introduced an adversarial attack model on MARL. We have discussed the

attack problem in three different settings: the white-box, the gray-box and the black-box settings.

We have shown that the power of action poisoning only attacks and reward poisoning only attacks is

limited. Even in the white-box setting, there exist some MGs, under which no action poisoning only

attack strategy or reward poisoning only attack strategy can be efficient and successful. We have

then characterized conditions when action poisoning only attacks or only reward poisoning only

attacks can efficiently work. We have further introduced the mixed attack strategy in the gray-box

setting that can efficiently attack any sub-linear-regret MARL agents. Finally, we have proposed

the approximate mixed attack strategy in the black-box setting and shown its effectiveness on

V-learning.

Finally, we have developed a novel approach for solving action robust RL problems with

probabilistic policy execution uncertainty. We have theoretically proved the sample complexity

bound and the regret bound of the algorithms. The upper bound of the sample complexity and

the regret of proposed ARRLC algorithm match the lower bound up to logarithmic factors, which

shows the minimax optimality of our algorithm.

117

Appendix A

Appendix of Chapter 2

A.1 Attack Cost Analysis of LCB attack strategy

A.1.1 Proof of Lemma 2

The proof is similar with the proof of Lemma 1 that was proved in [43]. Let {Xj}∞j=1 be a

sequence of i.i.d σ2-sub-Gaussian random variables with mean µ. Let µ̂0(t) = 1
N(t)

∑N(t)
j=1 Xj .

By Hoeffding’s inequality.

P(|µ̂0(t)− µ| ≥ η) ≤ 2 exp

(
−N(t)η2

2σ2

)
. (A.1)

In order to ensure that E2 holds for all arm i, all arm j and all pull counts N = Ni,j(t), we set

δi,j,N := 6δ
π2K2N2 . We have

P

(
∃i, ∃j,∃N : |µ̂i,j(t)− µj| ≥

√
2σ2

N
log

π2K2N2

3δ

)
≤

K∑
i=1

K∑
j=1

∞∑
N=1

δi,j,N = δ. (A.2)

A.1.2 Proof of Lemma 3

According to event E2, we have

118

∣∣∣∣∣∣µ̂i(t)−
1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣
=

∣∣∣∣∣
K∑
j=1

Ni,j(t)

Ni(t)
(µ̂i,j(t)− µj)

∣∣∣∣∣
≤

K∑
j=1

Ni,j(t)

Ni(t)
|µ̂i,j(t)− µj|

<
1

Ni(t)

K∑
j=1

√
2σ2Ni,j(t) log

π2K2(Ni,j(t))2

3δ
.

(A.3)

Define a function f(N) =

√
2σ2N log

π2K2N2

3δ
: (0,+∞)→ R, and we have

f ′′(N) =
∂2

∂N2

√
2σ2N log

π2K2N2

3δ

=−

(
2σ2 log π2K2N2

3δ

)2
+ 16σ4

4
(
2σ2N log π2K2N2

3δ

) 3
2

<0,

(A.4)

when N ≥ 1.

Hence f is strictly concave whenN ≥ 1, and according to the property of the concave function,

K∑
j=1

f(Ni,j(t)) < Kf

(
1

K

K∑
j=1

Ni,j(t)

)
= Kf

(
Ni(t)

K

)
. (A.5)

119

Thus,

∣∣∣∣∣∣µ̂i(t)−
1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣
<

1

Ni(t)
K

√√√√
2σ2

Ni(t)

K
log

π2K2
(

Ni(t)
K

)2
3δ

=

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
.

(A.6)

A.1.3 Proof of Lemma 4

The LCB attack scheme uses lower confidence bound to exploit the worst arm, so we need to prove

that the attacker’s pull counts of all non-worst arms should be limited at round t.

Consider the case that in round t+ 1, the user chooses a non-target arm It+1 = i ̸= K and the

attacker changes it to a non-worst arm I0t+1 = j ̸= iW . On one hand, under event E1, we have

µ̂0
iW
(t)− µiW < CB(N0

iW
(t), δ),

and µ̂0
j(t)− µj > −CB(N0

j (t), δ).

(A.7)

On the other hand, according to the attack scheme, it must be the case that

µ̂0
iW
(t)− CB(N0

iW
(t), δ) > µ̂0

j(t)− CB(N0
j (t), δ), (A.8)

which is equivalent to

CB(N0
j (t), δ) > µ̂0

j(t)− (µ̂0
iW
(t)− CB(N0

iW
(t), δ)). (A.9)

120

Combining (A.9) with (A.7), we have

CB(N0
j (t), δ) > µj − CB(N0

j (t), δ)− µiW ,

and CB(N0
j (t), δ) >

∆j,iW

2
.

(A.10)

Using the fact that N0
j (t) ≤ t and Ni,j(t) ≤ N0

j (t), we have

∆j,iW

2
<CB(N0

j (t), δ)

=

√
2σ2

N0
j (t)

log
π2K(N0

j (t))
2

3δ

≤

√
2σ2

N0
j (t)

log
π2Kt2

3δ

≤

√
2σ2

Ni,j(t)
log

π2Kt2

3δ
,

(A.11)

which is equivalent to

Ni,j(t) <
8σ2

∆2
j,iW

log
π2Kt2

3δ
. (A.12)

Hence, under event E2, we have

µ̂i(t) <
1

Ni(t)

∑
s∈τi(t)

µI0s
+

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
1

Ni(t)

∑
j

∑
s∈τi,j(t)

µI0s
+

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
1

Ni(t)

∑
j

Ni,j(t)µj +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
∑
j

Ni,j(t)

Ni(t)
(∆j,iW + µiW) +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

<µiW +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
+

1

Ni(t)

∑
j ̸=iW

8σ2

∆j,iW

log
π2Kt2

3δ
.

(A.13)

121

The lemma is proved.

A.1.4 Proof of Theorem 1

By inferring from Lemma 1, we have that with probability 1 − δ
K

, ∀t > K : |µ̂0
K(t) − µK | <

CB(N0
K(t), δ).

Because the LCB attack scheme does not attack the target arm, we can also conclude that with

probability 1− δ
K

, ∀t > K : |µ̂K(t)− µK | < CB(NK(t), δ).

The user relies on the UCB algorithm to choose arms. If at round t, the user chooses an arm

It = i ̸= K, which is not the target arm, we have

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
> µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
, (A.14)

which is equivalent to

3σ

√
log t

Ni(t− 1)
> −µ̂i(t− 1) + µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
. (A.15)

We need to connect the estimate of arms to the true means. Under event E1, we have

µ̂K(t) > µK − CB(NK(t), δ). (A.16)

Under event E1 ∩ E2, according to Lemma 4, we have

µ̂i(t) ≤ µiW +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
+

1

Ni(t)

∑
j ̸=iW

8σ2

∆j,iW

log
π2Kt2

3δ
. (A.17)

122

Combing the inequalities above,

3σ

√
log t

Ni(t− 1)
> −µiW −

√
2σ2K

Ni(t− 1)
log

π2(Ni(t− 1))2

3δ

− 1

Ni(t− 1)

∑
j ̸=iW

8σ2

∆j,iW

log
π2K(t− 1)2

3δ
+

µK − CB(NK(t− 1), δ) + 3σ

√
log t

NK(t− 1)
.

(A.18)

The sum of the last two terms in the RHS of (A.18) is equal or larger than zero. We show it by

further bounding the last term as follows: when t ≥
(

π2K
3δ

) 2
5
,

3σ

√
log t

NK(t− 1)
≥

√
4σ2

log t

NK(t− 1)
+ 5σ2

log(π
2K
3δ

)
2
5

NK(t− 1)

≥

√
2σ2

log π2Kt2

3δ

NK(t− 1)

≥

√
2σ2

log π2K(NK(t−1))2

3δ

NK(t− 1)

= CB(NK(t− 1), δ).

(A.19)

Now the inequality only depends on Ni(t− 1) and some constants:

3σ

√
log t

Ni(t− 1)

>∆K,iW −

√
2σ2K

Ni(t− 1)
log

π2(Ni(t− 1))2

3δ
− 1

Ni(t− 1)

∑
j ̸=iW

8σ2

∆j,iW

log
π2K(t− 1)2

3δ

>∆K,iW −

√
2σ2K

Ni(t− 1)
log

π2t2

3δ
− 1

Ni(t− 1)

∑
j ̸=iW

8σ2

∆j,iW

log
π2Kt2

3δ
.

(A.20)

The last inequality is based on the fact that Ni(t− 1) < t. By solving the inequality above, we

123

have:

Ni(t− 1) <
1

4∆2
K,iW

C1 +

(
C2

1 + 4∆K,iW

∑
j ̸=iW

8σ2

∆j,iW

log
π2Kt2

3δ

) 1
2

2

, (A.21)

where C1 = 3σ
√
log t +

√
2σ2K log π2t2

3δ
. Since event E1 ∩ E2 occurs with probability at least

1− 2δ, we have that (A.21) holds with probability at least 1− 2δ. Theorem 1 follows immediately

from the definition of the attack cost and (A.21).

A.1.5 Proof of Theorem 2

Because the target arm is the worst arm, the mean rewards of all arms are larger than or equal to

that of the target arm. Thus, for any attack scheme, we have

1

Ni(t)

∑
s∈τi(t)

µI0s
≥ µK . (A.22)

If the user pulls arm K at round t, according to UCB algorithm, we have for the optimal arm

iO ̸= K,

µ̂iO(t− 1) + 3σ

√
log t

NiO(t− 1)
< µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
. (A.23)

Under event E2, we have Lemma 3 and (A.6) holds for all arm i, which implies

µ̂iO(t− 1) >
1

NiO(t− 1)

∑
s∈τiO (t−1)

µI0s
−

√
2σ2K

NiO(t− 1)
log

π2(NiO(t− 1))2

3δ
, (A.24)

and

µ̂K(t− 1) <
1

NK(t− 1)

∑
s∈τK(t−1)

µI0s
+

√
2σ2K

NK(t− 1)
log

π2(NK(t− 1))2

3δ
. (A.25)

124

Noted that for δ > 1
2
, when δ is fixed, CB

(
N
K
, δ
K

)
=
√
2σ2N

K
log π2N2

3δ
: (0,+∞) → R is

monotonically decreasing in N ≥ 1.

We aim to prove that the total number of non-target arms pull scales as T . We divide the

problem into three different cases.

Firstly, if Ni(t− 1) ≥ 1
16
NK(t− 1), Theorem 2 holds.

Secondly, if NiO(t − 1) < 1
16
NK(t − 1) and NiO(t − 1) <

√
3δ
π
t

9
64K hold for the optimal arm

iO, we have

3σ

√
log t

NK(t− 1)
<

3

4
σ

√
log t

NiO(t− 1)
, (A.26)

and √
2σ2K

NK(t− 1)
log

π2(NK(t− 1))2

3δ

<

√
2σ2K

NiO(t− 1)
log

π2(NiO(t− 1))2

3δ

<
3

4
σ

√
log t

NiO(t− 1)
.

(A.27)

Combining the inequalities above, we find

1

NK(t− 1)

∑
s∈τK(t−1)

µI0s
− µK >

3

4
σ

√
log t

NiO(t− 1)

>
3

4
σ

√
π log t√
3δt

9
64K

>
3

4
σ

√
π log t√

3δt
.

(A.28)

The RHS of (A.28) is monotonically decreasing in t ≥ 3, so 3
4
σ
√

π log t√
3δt

> 3
4
σ
√

π log T√
3δT

.

125

Since the attack cost is limited by O(log T),

1

NK(t− 1)

∑
s∈τK(t−1)

µI0s
− µK =

O(log T)
NK(t− 1)

, (A.29)

so

NK(t− 1) = O
(√

T log T
)
, (A.30)

in which Theorem 2 holds.

Thirdly, if NiO(t− 1) < 1
16
NK(t− 1) and NiO(t− 1) ≥

√
3δ
π
t

9
64K hold for the optimal arm iO,

we have

3σ

√
log t

NK(t− 1)
< 3σ

√
log t

NiO(t− 1)
, (A.31)

and (A.23) is equivalent to

µ̂iO(t− 1) < µ̂K(t− 1). (A.32)

Setting the number of attacks on the optimal arm as CiO and the number of attacks on the target

arm as CK , we have

1

NiO(t− 1)

∑
s∈τiO (t−1)

µI0s
≥ µiO −

CiO

NiO(t− 1)
∆iO,K , (A.33)

and

1

NK(t− 1)

∑
s∈τK(t−1)

µI0s
≤ µK +

CK

NK(t− 1)
∆iO,K , (A.34)

126

Thus, the inequality (A.32) becomes

µiO −
CiO

NiO(t− 1)
∆iO,K − CB

(
NiO(t− 1)

K
,
δ

K

)
<µK +

CK

NK(t− 1)
∆iO,K + CB

(
NK(t− 1)

K
,
δ

K

)
.

(A.35)

Because NiO(t − 1) < 1
16
NK(t − 1) < NK(t − 1), we have CB

(
NiO(t−1)

K
, δ
K

)
>

CB
(

NK(t−1)
K

, δ
K

)
.

From (A.35), we have

CK

NK(t− 1)
∆iO,K

>∆iO,K −
CiO

NiO(t− 1)
∆iO,K − 2CB

(
NiO(t− 1)

K
,
δ

K

)
>∆iO,K −

CiO

NiO(t− 1)
∆iO,K − 2

√
2σ2K

NiO(t− 1)
log

π2(NiO(t− 1))2

3δ
.

(A.36)

Here, based on NiO(t− 1) ≥
√
3δ
π
t

9
64K and the fact t ≥ NK(t− 1),

CK

NK(t− 1)
∆iO,K

>∆iO,K −
CiO√
3δ
π
t

9
64K

∆iO,K − 2

√√√√ 2σ2K
√
3δ
π
t

9
64K

log
π2(

√
3δ
π
t

9
64K)2

3δ

>∆iO,K −
CiO√

3δ
π

(NK(t− 1))
9

64K

∆iO,K − 2

√√√√ 2σ2K
√
3δ
π

(NK(t− 1))
9

64K

log
π2(

√
3δ
π
t

9
64K)2

3δ
.

(A.37)

Since the attack cost is limited by O(log T),

NK(t− 1) = O((log T)
64K
9), (A.38)

and Theorem 2 holds.

In summary, all cases show that the user pulls the non-target arm more than O(Tα) times, in

127

which α < 1. Since event E2 holds with probability at least 1 − δ, the conclusion in the theorem

holds with probability at least 1− δ.

A.1.6 Proof of Proposition 1

The oracle attack needs to occasionally change the action to the best arm when the user pulls the

target arm. Similar to Lemma 3, under event E2, for arm K and all t > K, we have

∣∣∣∣∣∣µ̂K(t)−
1

NK(t)

∑
s∈τK(t)

µI0s

∣∣∣∣∣∣ < CB
(
NK(t)

2
,
δ

K

)
, (A.39)

because when the user pulls the target arm, the rewards the user observes are only drawn from two

distributions.

Given the number of rounds that the attacker changes the action to the best arm as CK , we have

1

NK(t)

∑
s∈τK(t)

µI0s
≤ µK +

CK

NK(t)
∆iO,K , (A.40)

in which the equality holds when NK(t) ≥ CK .

The user relies on the UCB algorithm to choose arms. We denote the last round when the user

chooses the target arm before round T as t. At round t, the user chooses the target arm It = K.

For any non-target arm i, we have

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
≤ µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
. (A.41)

We focus on the last term of the RHS of (A.41). When t ≥
(

π2K2

12δ

)4
, we have

3σ

√
log t

NK(t)
≥

√
4σ2

NK(t)
log

π2K2t2

12δ
≥ CB

(
NK(t)

2
,
δ

K

)
. (A.42)

128

Thus, the RHS of (A.41) can be further bounded as:

µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
≤ µK +

CK

NK(t− 1)
∆iO,K + 6σ

√
log t

NK(t− 1)
. (A.43)

Similar to (A.42), when t ≥ π2K2

3δ
,

5

2
σ

√
log t

Ni(t)
>

√
2σ2

Ni(t)
log

π2Kt2

3δ
≥ CB

(
Ni(t),

δ

K

)
. (A.44)

The oracle attack changes every non-target arm to the worst arm. Using Lemma 1, we have that

with probability 1− δ(K−1)
K

, ∀t > K and i ̸= K : |µ̂i(t)− µK | < CB(Ni(t), δ).

Then, by combing (A.43) and (A.44), (A.41) is equivalent to:

µK +
1

2
σ

√
log t

Ni(t− 1)
< µK +

CK

NK(t− 1)
∆iO,K + 6σ

√
log t

NK(t− 1)
. (A.45)

If the attacker does not attack the target arm, all arms are changed to the worst arm. Thus, at

round t, the expectation of the target arm pull counts would be t
K

. Here, we divide the problem

into two cases: NK(t− 1) ≥ T
K

and NK(t− 1) < T
K

.

If NK(t− 1) ≥ T
K

, from (A.45), we have

1

2
σ

√
log t

Ni(t− 1)
<
KCK

T
∆iO,K + 6σ

√
K log t

T
, (A.46)

which is equivalent to

Ni(t− 1) >
σ2T 2 log t

4
(
KCK∆iO,K + 6σ

√
KT log t

)2 . (A.47)

129

Since equation (A.47) is monotonically increasing in t ≥ 1 and the fact that t > T
K

,

Ni(t− 1) >
σ2T 2 log T

K

4
(
KCK∆iO,K + 6σ

√
KT log T

K

)2 . (A.48)

If NK(t− 1) < T
K

, the attack cost |C| > T (K−1)
K

+ CK and
∑

i ̸=K Ni(t− 1) > T (K−1)
K

.

Combining the two cases, the proof is completed.

A.2 Regret Analysis of MOUCB

A.2.1 Proof of Lemma 5

Note that for δ ≤ 1
3
, β(N) =

√
2σ2K
N

log π2N2

3δ
is monotonically decreasing in N , as

∂

∂N
β2(N) =

2σ2K

N2

(
2− log

π2N2

3δ

)
≤ 2σ2K

N2

(
2− log

π2

3δ

)
< 0. (A.49)

We first prove the first inequality in Lemma 5. Consider the optimal arm iO and the worst arm

iW . Define Ci := |{t : t ≤ T, I0t ̸= It = i}|. In the action-manipulation setting, when t > 2AK,

MOUCB algorithm has

1

NiO(t)

∑
s∈τiO (t)

µI0s
≥ NiO(t)− CiO

NiO(t)
µiO +

CiO

NiO(t)
µiW

= µiO −∆iO,iW

CiO

NiO(t)

≥ µiO −∆iO,iW

CiO

2A
,

(A.50)

130

and

1

NiW (t)

∑
s∈τiW (t)

µI0s
≤ NiW (t)− CiW

NiW (t)
µiW +

CiW

NiW (t)
µiO

= µiW +∆iO,iW

CiW

NiW (t)

≤ µiW +∆iO,iW

CiW

2A
.

(A.51)

Combining (A.50) and (A.51), we have

1

NiO(t)

∑
s∈τiO (t)

µI0s
− 1

NiW (t)

∑
s∈τiW (t)

µI0s

≥µiO − µiW −∆iO,iW

CiW

2A
−∆iO,iW

CiO

2A

≥µiO − µiW −∆iO,iW

A

2A

=
∆iO,iW

2
.

(A.52)

From (A.6), we could find

1

NiO(t)

∑
s∈τiO (t)

µI0s
− 1

NiW (t)

∑
s∈τiW (t)

µI0s

≤µ̂iO(t) + β(NiO(t))− (µ̂iW (t)− β(NiW (t)))

≤max
i,j
{µ̂i(t) + β(Ni(t))− (µ̂j(t)− β (Nj(t)))} .

(A.53)

We now prove the second inequality in Lemma 5:

max
i,j
{µ̂i(t) + β(Ni(t))− (µ̂j(t)− β(Nj(t)))}

≤max
i,j

 1

Ni(t)

∑
s∈τi(t)

µI0s
+ 2β(Ni(t))−

 1

Nj(t)

∑
s∈τj(t)

µI0s
− 2β(Nj(t))


≤∆iO,iW +max

i,j
{2β(Ni(t)) + 2β(Nj(t))} .

(A.54)

131

Recall that for δ ≤ 1
3
, β(N) =

√
2σ2K
N

log π2N2

3δ
is monotonically decreasing in N . Therefore,

max
i,j
{2β(Ni(t)) + 2β(Nj(t))} ≤ 4β(2A). (A.55)

A.2.2 Proof of Theorem 3

MOUCB algorithm first pulls each arm 2A times. Then for t > 2AK and under event E2, if at

round t+ 1, MOUCB algorithm choose a non-optimal arm It+1 = a ̸= iO, we have

µ̂a + β(Na(t)) +
2A

Na(t)
max
i,j
{µ̂i − µ̂j + β(Ni(t)) + β(Nj(t))}

≥µ̂iO + β(NiO(t)) +
2A

NiO(t)
max
i,j
{µ̂i − µ̂j + β(Ni(t)) + β(Nj(t))} ,

which implies

µ̂a +
A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
+ β(Na(t))

≥µ̂iO +
A

NiO(t)
∆iO,iW + β(NiO(t)),

according to Lemma 5.

From equation (A.6), we could find

µ̂a ≤
1

Na(t)

∑
s∈τa(t)

µI0s
+ β(Na(t))

≤ µa +∆iO,a
Ca

Na(t)
+ β(Na(t))

≤ µa +∆iO,a
A

Na(t)
+ β(Na(t)),

132

and

µ̂iO ≥
1

NiO(t)

∑
s∈τiO (t)

µI0s
− β(NiO(t))

≥ µiO −∆iO,iW

CiO

NiO(t)
− β(NiO(t))

≥ µiO −∆iO,iW

A

NiO(t)
− β(NiO(t)).

By combining the inequalities above, we have

µiO ≤µa +∆iO,a
A

Na(t)
+ 2β(Na(t)) +

A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
,

which is equivalent to

∆io,a ≤∆iO,a
A

Na(t)
+ 2

√
2σ2K

Na(t)
log

π2(Na(t))2

3δ
+

A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)

≤2

√
2σ2K

Na(t)
log

π2t2

3δ
+

A

Na(t)

(
∆iO,a + 2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
.

Therefore,

Na(t) ≤ max

{
8σ2K

∆2
iO,a

log
π2t2

3δ
,
A

∆io,a

(
∆iO,a + 2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)}
. (A.56)

As event E2 holds with probability at least 1− δ, (A.21) holds with probability at least 1− δ. Then

Theorem 3 follows immediately from the definition of the pseudo-regret in (2.2) and equation

(A.56).

133

Appendix B

Appendix of Chapter 3

B.1 Attack Cost Analysis of White-box Setting

B.1.1 Proof of Proposition 2

When the agent pulls a non-target arm It ̸= K, the mean reward received by the agent should

satisfy E[rt,I0t |Ft−1, It] = (1− α)⟨xt, θK⟩. In the observation of the agent, the target arm becomes

optimal and the non-target arms are associated with the coefficient vector (1 − α)θK . In addition,

the cumulative pseudo-regret should satisfy R̄T =
∑T

t=1 1{It ̸=K}α⟨xt, θK⟩ ≤
∑T

t=1 1{It ̸=K}αLS.

If R̄T is upper bounded by o(T),
∑T

t=1 1{It ̸=K} is also upper bounded by o(T).

134

B.1.2 Proof of Lemma 6

If the agent computes an estimate of θi by (3.3) and Vt,i =
(∑

k∈τi(t−1) xkx
T
k + λI

)
, we have

xTt θ̂t,i − xTt (1− α)θK

=xTt V
−1
t,i

 ∑
k∈τi(t−1)

rt,I0kxk

− xTt V −1
t,i Vt,i(1− α)θK

=xTt V
−1
t,i

 ∑
k∈τi(t−1)

xk

(
rt,I0k − (1− α)xTk θK

)− λxTt V −1
t,i (1− α)θK

=
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k + ηk − (1− α)xTk θK

)
− λxTt V −1

t,i (1− α)θK ,

(B.1)

and by triangle inequality,

|xTt θ̂t,i − xTt (1− α)θK |

≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − (1− α)xTk θK

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xkηk

∣∣∣∣∣∣+ ∣∣λxTt V −1
t,i (1− α)θK

∣∣ .
(B.2)

In our model, the mean reward is bounded by 0 < ⟨xt, θi⟩ ≤ ∥xt∥22∥θi∥22 = LS.

Since the mean rewards are bounded and the rewards are generated independently, we

have 0 ≤
∣∣∣xTk θI0k − (1− α)xTk θK

∣∣∣ ≤ LS and E[xTk θI0k |Fk−1] = (1 − α)xTk θK . Thus,{
xTt V

−1
t,i xk

(
xTk θI0k − (1− α)xTk θK

)}
k∈τi(t−1)

is a bounded martingale difference sequence w.r.t

the filtration {Fk}k∈τi(t−1).

135

Then, by Azuma’s inequality,

P

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − (1− α)xTk θK

)∣∣∣∣∣∣ ≥ B


≤2 exp

(
−2B2∑

k∈τi(t−1)(x
T
t V

−1
t,i xkLS)

2

)

=Pt,i,

(B.3)

where B represents confidence bound. In order to ensure the confidence bounds hold for all arms

and all round t simultaneously, we set Pt,i =
δ

KT
so

B = LS

√√√√1

2
log

(
2KT

δ

) ∑
k∈τi(t−1)

(xTt V
−1
t,i xk)

2

≤ LS

√
1

2
log

(
2KT

δ

)
∥xt∥V −1

t,i
,

(B.4)

where the last inequality is obtained from the fact that

∥xt∥2V −1
t,i

= xTt V
−1
t,i

 ∑
k∈τi(t−1)

xkx
T
k + λI

V −1
t,i xt

≥ xTt V
−1
t,i

 ∑
k∈τi(t−1)

xkx
T
k

V −1
t,i xt

=
∑

k∈τi(t−1)

(xTt V
−1
t,i xk)

2.

(B.5)

In other words, with probability 1− δ, we have

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − (1− α)xTk θK

)∣∣∣∣∣∣
≤LS

√
1

2
log

(
2KT

δ

)
∥xt∥V −1

t,i
,

(B.6)

136

for all arms and all t.

Note that Vt,i =
∑

k∈τi(t−1) xkx
T
k + λI is positive definite. We define ⟨x, y⟩V = xTV y as the

weighted inner-product. According to Cauchy-Schwarz inequality, we have

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xkηk

∣∣∣∣∣∣ ≤ ∥xt∥V −1
t,i

∥∥∥∥∥∥
∑

k∈τi(t−1)

xkηk

∥∥∥∥∥∥
V −1
t,i

. (B.7)

Assume that λ ≥ L. From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with

probability at least 1− δ

∥∥∥∥∥∥
∑

k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤2R2 log

(
K det(Vt,i)

1/2 det(λI)−1/2

δ

)
≤R

√
2 log

K

δ
+ d log

(
1 +

L2Ni(t)

λd

)
,

(B.8)

for all arms and all t > 0.

For the third part of the right hand side of (B.10),

|λxTt V −1
t,i (1− α)θK | ≤ ∥(1− α)λθK∥V −1

t,i
∥xt∥V −1

t,i
. (B.9)

Since Vt,i ⪰ λI, the maximum eigenvalue of V −1
t,i is smaller or equal to 1/λ. Thus,

∥(1− α)λθK∥2V −1
t,i
≤ 1

λ
∥(1− α)λθK∥22 ≤ (1− α)2λS2.

In summary,

|xTt θ̂t,i − xTt (1− α)θK |

≤

(
(1− α)

√
λS + LS

√
1

2
log

(
2KT

δ

)
+R

√
2 log

K

δ
+ d log

(
1 +

L2Ni(t)

λd

))
∥xt∥V −1

t,i
.

(B.10)

137

B.1.3 Proof of Theorem 4

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt ≤ xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt.

Recall βt,i =
√
λS +R

√
2 log K

δ
+ d log

(
1 + L2Ni(t)

λd

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not

change and xTt θK ≤ xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt holds with probability 1− δ

K
.

Thus, by Lemma 1,

xTt θK ≤xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt

≤xTt (1− α)θK + βt,i∥xt∥V −1
t,i

+ LS

√
1

2
log

(
2KT

δ

)
ω (Ni(t)) ∥xt∥V −1

t,i
.

(B.11)

By multiplying both sides 1{It=i} and summing over rounds, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤
t∑

k=1

1{Ik=i}

(
βk,i +

√
λS + LS

√
1

2
log

(
2KT

δ

)

+R

√
2 log

K

δ
+ d log

(
1 +

L2Ni(k)

λd

))
∥xk∥V −1

k,i
.

(B.12)

Here, we use Lemma 11 from [1] and obtain

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤ 2d log(1 +

Ni(t)L
2

dλ
)

≤ 2d log

(
1 +

tL2

dλ

)
.

(B.13)

138

According to
∑t

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√
Ni(t)

∑t
k=1 1{Ik=i}∥xk∥2V −1

k,i

, we have

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)
. (B.14)

Thus, we have

t∑
k=1

1{Ik=i}αx
T
k θK ≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)(
LS

√
1

2
log

(
2KT

δ

)

+2
√
λS + 2R

√
2 log

K

δ
+ d log

(
1 +

tL2

λd

))
,

(B.15)

and

Ni(t) =
t∑

k=1

1{Ik=i} ≤
2d

(αγ)2
log

(
1 +

tL2

dλ

)(
2
√
λS + LS

√
1

2
log

(
2KT

δ

)

+2R

√
2 log

K

δ
+ d log

(
1 +

tL2

λd

))2

,

(B.16)

where γ = minx∈D⟨x, θK⟩.

B.2 Attack Cost Analysis of Black-box Setting

B.2.1 Proof of Lemma 7

Since the estimate of θi obtained by the agent satisfies

θ̂0t,i =
(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,irk,I0kxk

 , (B.17)

139

we have
xTt θ̂

0
t,i − xTt θi

=xTt
(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,irk,I0kxk

− xTt (V 0
t,i

)−1
V 0
t,iθi

=xTt
(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

(wk,irk,I0k − x
T
k θi)xk

− λxTt (V 0
t,i

)−1
θi

=xTt
(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

(wk,ix
T
k θI0k − x

T
k θi)xk


+ xTt

(
V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,iηk

− λxTt (V 0
t,i

)−1
θi.

We have 0 ≤
∣∣∣wk,ix

T
k θI0k − x

T
k θi

∣∣∣ ≤ wk,iLS and E[wk,ix
T
k θI0k |Fk−1] = xTk θi. In addition, by

the definition of wk,i, we have that wk,i ≤ 1/α if i ̸= K, and wk,i ≤ 2 if i = K. Thus,{
xTt
(
V 0
t,i

)−1
(∑

k∈τ†i (t−1)(wk,ix
T
k θI0k − x

T
k θi)xk

)}
k∈τi(t−1)

is also a bounded martingale difference

sequence w.r.t the filtration {Fk}k∈τi(t−1). By following the steps in Section B.1.2, we have, with

probability 1− K−1
K
δ, for any arm i ̸= K and any round t,

∣∣∣∣∣∣xTt (V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

(wk,ix
T
k θI0k − x

T
k θi)xk

∣∣∣∣∣∣ ≤ LS

α

√
1

2
log

(
2KT

δ

)
∥xt∥(V 0

t,i)
−1 ,

and with probability 1− 1
K
δ, for arm K and any round t,

∣∣∣∣∣∣xTt (V 0
t,K

)−1

 ∑
k∈τ†i (t−1)

(wk,Kx
T
k θI0k − x

T
k θK)xk

∣∣∣∣∣∣ ≤ 2LS

√
1

2
log

(
2KT

δ

)
∥xt∥(V 0

t,K)
−1 .

The confidence bound of the second item of the right side hand of (B.18) can be obtained

140

from (B.8). With probability, 1− K−1
K
δ, for any arm i ̸= K and any round t,

∣∣∣∣∣∣xTt (V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,iηk

∣∣∣∣∣∣ ≤ R

α

√√√√2 log
K

δ
+ d log

(
1 +

L2N †
i (t)

λd

)
∥xt∥(V 0

t,i)
−1 .

(B.18)

With probability, 1− 1
K
δ, for arm K and any round t,

∣∣∣∣∣∣xTt (V 0
t,i

)−1

 ∑
k∈τ†i (t−1)

wk,iηk

∣∣∣∣∣∣ ≤ 2R

√√√√2 log
K

δ
+ d log

(
1 +

L2N †
K(t)

λd

)
∥xt∥(V 0

t,K)
−1 .

(B.19)

In summary,

|xTt θ̂0t,i − xTt θi|

≤ϕi

√λS + LS

√
1

2
log

(
2KT

δ

)
+R

√√√√2 log
K

δ
+ d log

(
1 +

L2N †
i (t)

λd

) ∥xt∥(V 0
t,K)

−1 ,

(B.20)

where ϕi = 1/α when i ̸= K and ϕK = 2.

B.2.2 Proof of Lemma 8

Recall the definition of ϵt:

ϵt = clip

1

2
,
(1− α)⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t ⟩

⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t
⟩

, 1− α

 , (B.21)

and the definition of I†t :

I†t = argmin
i ̸=K

(
⟨xt, θ̂0t,i⟩ − β0

t,i∥xt∥(V 0
t,i)

−1

)
. (B.22)

By Lemma 7, ⟨xt, θ̂0t,I†t ⟩ − β
0

t,I†t
∥xt∥(V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ with probability 1− 2δ.

Because ϵt is bounded by [1/2, 1− α], we can analyze E[rt,I0t |Ft−1, It] in four cases.

141

Case 1: when ⟨xt, θ̂0t,K⟩ < ⟨xt, θ̂0t,I†t ⟩ and ϵt = 1− α, we have

E[rt,I0t |Ft−1, It] = (1− α)⟨xt, θK⟩+ α⟨xt, θI†t ⟩. (B.23)

Then, by Lemma 7,

(1− α)xTt θK + αxTt θI†t
− (1− α)xTt θK

≤(1− α)
(
xTt θ̂

0
t,K + β0

t,K∥xt∥(V 0
t,K)

−1

)
+ α

xTt θ̂0t,I†t + β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

− (1− α)xTt θK

≤xTt θ̂0t,I†t − (1− α)xTt θK + (1− α)β0
t,K∥xt∥(V 0

t,K)
−1 + αβ0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

≤(1− α)β0
t,K∥xt∥(V 0

t,K)
−1 + (1 + α)β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 ,

(B.24)

where the last inequality is obtained by xTt θ̂
0

t,I†t
− β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ and

Assumption 1. We also have

(1− α)xTt θK + αxTt θI†t
− (1− α)xTt θK = αxTt θI†t

≥ 0. (B.25)

Case 2: when ⟨xt, θ̂0t,K⟩ ≥ ⟨xt, θ̂0t,I†t ⟩ > (1− 2α)⟨xt, θ̂0t,K⟩ and ϵt = 1/2, we have

E[rt,I0t |Ft−1, It] =
1

2
⟨xt, θK⟩+

1

2
⟨xt, θI†t ⟩. (B.26)

142

Then, by Lemma 7,

1

2
(xTt θK + xTt θI†t

)− (1− α)xTt θK

=
1

2

(
xTt θI†t

− (1− 2α)xTt θK

)
≤1

2

xTt θ̂0t,I†t + β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 − (1− 2α)xTt θK


≤β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

where the last inequality is obtained by xTt θ̂
0

t,I†t
− β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ and

Assumption 1.

In addition, by Lemma 7,

1

2
(xTt θK + xTt θI†t

)− (1− α)xTt θK

≥1

2

xTt θ̂0t,I†t − β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

− 1

2
(1− 2α)

(
xTt θ̂

0
t,K + β0

t,K∥xt∥(V 0
t,K)

−1

)

≥− 1

2
β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 − 1

2
(1− 2α)β0

t,K∥xt∥(V 0
t,K)

−1 .

(B.27)

Case 3: when 0 ≤ ⟨xt, θ̂0t,I†t ⟩ ≤ (1− 2α)⟨xt, θ̂0t,K⟩ and 1/2 ≤ ϵt ≤ 1− α, we have

E[rt,I0t |Ft−1, It] = ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†t ⟩. (B.28)

143

We can find that

ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†t ⟩ − (1− α)⟨xt, θK⟩

=ϵt(⟨xt, θK⟩ − ⟨xt, θI†t ⟩) + ⟨xt, θI†t ⟩ − (1− α)⟨xt, θK⟩

=ϵt(⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t ⟩) + ⟨xt, θI†t ⟩ − (1− α)⟨xt, θK⟩

+ ϵt(⟨xt, θ̂0t,I†t ⟩ − ⟨xt, θI†t ⟩) + ϵt(⟨xt, θK⟩ − ⟨xt, θ̂0t,K⟩)

=(1− α)⟨xt, θ̂0t,K⟩ − ⟨xt, θ̂0t,I†t ⟩+ ⟨xt, θI†t ⟩ − (1− α)⟨xt, θK⟩

+ ϵt(⟨xt, θ̂0t,I†t ⟩ − ⟨xt, θI†t ⟩) + ϵt(⟨xt, θK⟩ − ⟨xt, θ̂0t,K⟩)

=(1− α− ϵt)
(
⟨xt, θ̂0t,K⟩ − ⟨xt, θK⟩

)
+ (1− ϵt)

(
⟨xt, θ̂0t,I†t ⟩ − ⟨xt, θI†t ⟩

)
,

(B.29)

which is equivalent to

∣∣E[rt,I0t |Ft−1, It]− (1− α)⟨xt, θK⟩
∣∣

≤(1− α− ϵt)β0
t,K∥xt∥(V 0

t,K)
−1 + (1− ϵt)β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 .
(B.30)

Case 4: when ⟨xt, θ̂0t,I†t ⟩ < 0 and ϵt = 1− α, we have

E[rt,I0t |Ft−1, It] = (1− α)⟨xt, θK⟩+ α⟨xt, θI†t ⟩. (B.31)

Then, by Lemma 7,

(1− α)xTt θK + αxTt θI†t
− (1− α)xTt θK

=αxTt θI†t

≤αxTt θ̂0t,I†t + αβ0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1

≤αβ0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 ,

(B.32)

where the last inequality is obtained by xTt θ̂
0

t,I†t
− β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ and

144

Assumption 1. We also have

(1− α)xTt θK + αxTt θI†t
− (1− α)xTt θK = αxTt θI†t

≥ 0. (B.33)

Combining these four cases, we have

∣∣E[rt,I0t |Ft−1, It]− (1− α)⟨xt, θK⟩
∣∣

≤(1− α)β0
t,K∥xt∥(V 0

t,K)
−1 + (1 + α)β0

t,I†t
∥xt∥(

V 0

t,I
†
t

)−1 .
(B.34)

B.2.3 Proof of Lemma 9

From Section B.1.2, we have, for any arm i ̸= K,

|xTt θ̂t,i − xTt (1− α)θK |

≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − (1− α)xTk θK

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xkηk

∣∣∣∣∣∣+ ∣∣λxTt V −1
t,i (1− α)θK

∣∣
≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − ϵk⟨xk, θK⟩ − (1− ϵk)⟨xk, θI†k⟩

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
ϵk⟨xk, θK⟩+ (1− ϵk)⟨xk, θI†k⟩ − (1− α)xTk θK

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xkηk

∣∣∣∣∣∣+ ∣∣λxTt V −1
t,i (1− α)θK

∣∣ .

(B.35)

Since the mean rewards are bounded and the rewards are generated independently, we have

0 ≤
∣∣∣xTk θI0k − ϵk⟨xk, θK⟩ − (1− ϵk)⟨xk, θI†k⟩

∣∣∣ ≤ LS and E[xTk θI0k |Fk−1] = ϵk⟨xk, θK⟩ + (1 −

ϵk)⟨xk, θI†k⟩.

Then
{
xTt V

−1
t,i xk

(
xTk θI0k − E[xTk θI0k |Fk−1]

)}
k∈τi(t−1)

is also a bounded martingale difference

145

sequence w.r.t the filtration {Fk}k∈τi(t−1). By following the steps in Section B.1.2, we have, with

probability 1− δ, for any arm i and any round t,

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
xTk θI0k − E[xTk θI0k |Fk−1]

)∣∣∣∣∣∣ ≤ LS

√
1

2
log

(
2KT

δ

)
∥xt∥V −1

t,i
. (B.36)

From (B.5) in Section B.1.2, we have

∥xt∥2V −1
t,i
≥

∑
k∈τi(t−1)

(xTt V
−1
t,i xk)

2. (B.37)

Then, the second item of the right hand side of (B.35) can be upper bounded by

∣∣∣∣∣∣
∑

k∈τi(t−1)

xTt V
−1
t,i xk

(
ϵk⟨xk, θK⟩+ (1− ϵk)⟨xt, θI†k⟩ − (1− α)xTk θK

)∣∣∣∣∣∣
≤
√ ∑

k∈τi(t−1)

(
E[rk,I0k |Fk−1, Ik]− (1− α)xTk θK

)2√ ∑
k∈τi(t−1)

(xTt V
−1
t,i xk)

2

≤

 ∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)
−1 + (1 + α)β0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

1
2

∥xt∥V −1
t,i
,

(B.38)

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is

obtained from Lemma 8 and (B.5).

In addition, by the fact that (a+ b)2 ≤ 2a2 + 2b2 for any real number, we have

∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)
−1 + (1 + α)β0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2

(
(1− α)β0

k,K∥xk∥(V 0
k,K)

−1

)2

+
∑

k∈τi(t−1)

2

(1 + α)β0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

.

(B.39)

146

Here, we use Lemma 11 from [1] and get, for any arm i,

∑
k∈τ†i (t−1)

∥xk∥2(V 0
k,i)

−1 ≤ 2d log

(
1 +

Ni(t)L
2

dλ

)

≤ 2d log

(
1 +

tL2

dλ

)
.

(B.40)

By the fact that
∑

i τi(t− 1) = τ †K(t− 1), and
∑

i ̸=K τi(t− 1) =
∑

i ̸=K τ
†
i (t− 1), we have, for

any arm i, τi(t− 1) ⊆ τ †K(t− 1), and τi(t− 1) ⊆
∑

j ̸=K τ
†
j (t− 1). Thus,

∑
k∈τi(t−1)

∥xk∥2(V 0
k,K)

−1 ≤
∑

k∈τ†K(t−1)

∥xk∥2(V 0
k,K)−1

≤ 2d log

(
1 +

tL2

dλ

)
,

(B.41)

and ∑
k∈τi(t−1)

∥xk∥2(
V 0

k,I
†
k

)−1 ≤
∑
i ̸=K

∑
k∈τ†i (t−1)

∥xk∥2(V 0
k,i)

−1

≤ 2(K − 1)d log

(
1 +

tL2

dλ

)
.

(B.42)

By combining (3.10), (B.39), (B.41) and (B.42), we have

∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)
−1 + (1 + α)β0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2

(
β0
k,K∥xk∥(V 0

k,K)
−1

)2

+
∑

k∈τi(t−1)

2

2β0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

≤16d2
(
ω(t) + LS

√
1

2
log

(
2KT

δ

))2

log

(
1 +

tL2

dλ

)

+
16d2(K − 1)

α2

(
ω(t) + LS

√
1

2
log

(
2KT

δ

))2

log

(
1 +

tL2

dλ

)

≤16d2K

α2

(
ω(t) + LS

√
1

2
log

(
2KT

δ

))2

log

(
1 +

tL2

dλ

)
.

(B.43)

147

In summary, we have

|xTt θ̂t,i − xTt (1− α)θK |

≤

(
1 +

4d

α

√
K log

(
1 +

tL2

dλ

))(
ω(Ni(t)) + LS

√
1

2
log

(
2KT

δ

))
∥xt∥V −1

t,i
.

(B.44)

B.2.4 Proof of Theorem 5

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt ≤ xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt.

In this case, βt,i = ω(Ni(t)) =
√
λS +R

√
2 log K

δ
+ d log

(
1 + L2Ni(t)

λd

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not

change and xTt θK ≤ xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt holds with probability 1− δ

K
.

Thus, by Lemma 2,

xTt θK ≤xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt

≤xTt (1− α)θK + ω(Ni(t))∥xt∥V −1
t,i

+

(
1 +

4d

α

√
K log

(
1 +

tL2

dλ

))(
ω(Ni(t)) + LS

√
1

2
log

(
2KT

δ

))
∥xt∥V −1

t,i
.

(B.45)

By multiplying both sides by 1{It=i} and summing over rounds, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤
t∑

k=1

1{Ik=i}

(
2 +

4d

α

√
K log

(
1 +

kL2

dλ

))(
ω(Nk(t)) + LS

√
1

2
log

(
2KT

δ

))
∥xk∥V −1

k,i
.

(B.46)

148

Here, we use Lemma 11 from [1] and get

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤ 2d log

(
1 +

Ni(t)L
2

dλ

)
≤ 2d log

(
1 +

tL2

dλ

)
.

(B.47)

According to
∑t

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√
Ni(t)

∑t
k=1 1{Ik=i}∥xk∥2V −1

k,i

, we have

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)
. (B.48)

Thus, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)(
2 +

4d

α

√
K log

(
1 +

tL2

dλ

))(
ω(t) + LS

√
1

2
log

(
2KT

δ

))
,

(B.49)

and

Ni(t) =
t∑

k=1

1{Ik=i}

≤ 2d

(αγ)2
log

(
1 +

tL2

dλ

)(
2 +

4d

α

√
K log

(
1 +

tL2

dλ

))2(
ω(t) + LS

√
1

2
log

(
2KT

δ

))2

,

(B.50)

where γ = minx∈D⟨x, θK⟩.

149

B.3 Proof of Generalized Linear Model

B.3.1 Proof of Lemma 10

The maximum-likelihood estimation can be written as the solution to the following equation

∑
n∈τi(t−1)

(rn − µ(xTn θ̂t,i))xn = 0. (B.51)

Define gt,i(θ) =
∑

n∈τi(t−1) µ(x
T
nθ))xn. gt,i(θ̂t,i) =

∑
n∈τi(t−1) rnxn. Since µ is continuously

twice differentiable, ∇gt,i is continuous, and for any θ ∈ Θ, ∇gt,i(θ) =
∑

n∈τi(t−1) xnx
T
n µ̇(x

T
nθ)).

∇gt,i(θ) denotes the Jacobian matrix of gt,i at θ. By the Fundamental Theorem of Calculus,

gt,i(θ̂t,i)− gt,i((1− α)θK) = Gt,i(θ̂t,i − (1− α)θK), (B.52)

where

Gt,i =

∫ 1

0

∇gt,i
(
sθ̂t,i + (1− s)(1− α)θK

)
ds. (B.53)

Note that ∇gt,i(θ) =
∑

n∈τi(t−1) xnx
T
n µ̇(x

T
nθ)). According to the assumption that cµ =

infθ∈Θ,x∈D µ̇(x
T θ) > 0, we have Gt,i ⪰ cµVt,i ⪰ cµVKJ,i ⪰ λ0I ≻ 0, where in the last two step we

used the assumption that the minimal eigenvalue of Vi is greater or equal to λ0 after playing arm i

J times. Thus, Gt,i is positive definite and non-singular. Therefore,

θ̂i − (1− α)θK = G−1
t,i

(
gt,i(θ̂i)− gt,i((1− α)θK)

)
. (B.54)

For arm K, gt,i(θ̂i)− gt,i(θK) =
∑

n∈τi(t−1) ηnxn.

150

For all arm i ̸= K, the right hand side of (B.54) is equivalent to

gt,i(θ̂i)− gt,i((1− α)θK)

=
∑

n∈τi(t−1)

(rn − µ((1− α)xTnθK))xn

=
∑

n∈τi(t−1)

(µ(xTnθI0n)− µ((1− α)x
T
nθK))xn +

∑
n∈τi(t−1)

ηnxn.

(B.55)

We set Z1 =
∑

n∈τi(t−1)(µ(x
T
nθI0n)− µ((1− α)x

T
nθK))xn and Z2 =

∑
n∈τi(t−1) ηnxn.

We have gt,i(θ̂i)− gt,i((1− α)θK) = Z1 + Z2 and

xTt (θ̂i − (1− α)θK) = xTt G
−1
t,i (Z1 + Z2). (B.56)

For any context x ∈ D and arm i ̸= K, we have

|xT (θ̂t,i − (1− α)θK)|

=|xTG−1
t,i (Z1 + Z2)|

≤|xTG−1
t,i Z1|+ |xTG−1

t,i Z2|.

(B.57)

We first bound |xTG−1
t,i Z2|. Since Gt,i is positive definite and G−1

t,i is also positive definite,

|xTG−1
t,i Z2| ≤ ∥x∥V −1

t,i
∥Z2∥G−1

t,i
.

Since Gt,i ⪰ cµVt,i implies that G−1
t,i ⪯ c−1

µ V̄ −1
t,i , we have ∥x∥G−1

t,i
≤ 1√

cµ
∥x∥V̄ −1

t,i
holds for any

x ∈ Rd. Thus,

|xTG−1
t,i Z2| ≤

1

cµ
∥x∥V̄ −1

t,i
∥Z2∥V̄ −1

t,i
. (B.58)

Note that Vt,i = V̄t,i + λI. Hence, for all vector x ∈ Rd

∥x∥2
V̄ −1
t,i

= ∥x∥2
V −1
t,i

+ xT (V̄ −1
t,i − V −1

t,i)x. (B.59)

151

Since (A+B)−1 = A−1 − A−1B(A+B)−1,

V −1
t,i = V̄ −1

t,i − λV̄ −1
t,i V

−1
t,i . (B.60)

The above implies that

0 ≤xT (V̄ −1
t,i − V −1

t,i)x

=xT
(
λV̄ −1

t,i V
−1
t,i

)
x

≤ λ

λ0
∥x∥2

V −1
t,i
.

(B.61)

and ∥x∥2
V̄ −1
t,i

≤ (1 + λ
λ0
)∥x∥2

V −1
t,i

.

From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with probability at least

1− δ ∥∥∥∥∥∥
∑

k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤2R2 log

(
K det(Vt,i)

1/2 det(λI)−1/2

δ

)
≤2R2

(
log

K

δ
+ d log

(
1 +

L2Ni(t)

λd

))
,

(B.62)

for all arms and all t > 0.

Set λ = λ0, we have

∥Z2∥V̄ −1
t,i
≤ 2R

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
. (B.63)

Now we bound |xTG−1
t,i Z1|. Similarly,

|xTG−1
t,i Z1| ≤

1

cµ
∥x∥V̄ −1

t,i
∥Z1∥V̄ −1

t,i
. (B.64)

152

In our model, we have 0 < ⟨xt, θi⟩ ≤ ∥xt∥22∥θi∥22 = LS. Further,

0 ≤
∣∣∣µ(xTk θI0k)− µ((1− α)xTk θK)∣∣∣

≤ kµ

∣∣∣xTk θI0k − (1− α)xTk θK
∣∣∣

≤ kµLS.

(B.65)

Since we have E[µ(xTk θI0k)|Fk−1] = µ((1 − α)xTk θK),
{
µ(xTk θI0k)− µ

(
(1− α)xTk θK

)}
k∈τi(t−1)

is a bounded martingale difference sequence w.r.t the filtration {Fk}k∈τi(t−1) and is also

kµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with probability at least

1− K−1
K
δ

∥Z1∥V̄ −1
t,i
≤ 2kµLS

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
, (B.66)

for any arm i ̸= K and all t > 0.

In summary, for all arm i ̸= K,

|xT (θ̂i − (1− α)θK)| ≤
2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
∥x∥V̄ −1

t,i
. (B.67)

B.3.2 Proof of Theorem 6

For round t and context xt, if GLM-UCB pulls arm i ̸= K, we have

xTt θ̂t,K + βt,K

√
xTt V̄

−1
t,Kxt ≤ xTt θ̂t,i + βt,i

√
xTt V̄

−1
t,i xt.

Recall βt,i = 4R
cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not

change and xTt θK ≤ xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt holds with probability 1− δ

K
.

153

Thus, by Lemma (10),

xTt θK ≤xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt

≤xTt (1− α)θK +
kµLS + 2R

R
βt,i∥xt∥V̄ −1

t,i
.

(B.68)

By multiplying both sides 1{It=i} and summing over rounds, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤
t∑

k=1

1{Ik=i}
kµLS + 2R

R
βt,i∥xt∥V̄ −1

t,i
.

(B.69)

Here, we use Lemma 11 from [1] and obtain

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤ 2d log(1 +

Ni(t)L
2

dλ
)

≤ 2d log

(
1 +

tL2

dλ

)
.

(B.70)

According to
∑t

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√
Ni(t)

∑t
k=1 1{Ik=i}∥xk∥2V −1

k,i

, we have

t∑
k=1

1{Ik=i}∥xk∥V −1
k,i
≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)
. (B.71)

Set λ = λ0, we have ∥x∥2
V̄ −1
t,i

≤ (1 + λ
λ0
)∥x∥2

V −1
t,i

≤ 2∥x∥2
V −1
t,i

. Thus, we have

t∑
k=1

1{Ik=i}αx
T
k θK ≤

kµLS + 2R

R
βt,i

√
4Ni(t)d log

(
1 +

tL2

dλ0

)
, (B.72)

and

Ni(t) =
t∑

k=1

1{Ik=i} ≤
4d

(αγ)2
log

(
1 +

tL2

dλ0

)(
kµLS + 2R

R
βt,i

)2

, (B.73)

where γ = minx∈D⟨x, θK⟩.

154

B.3.3 Proof of Lemma 11

The attacker calculate the maximum-likelihood estimator θ̂0t,i by solving the equation

∑
n∈τi(t−1)†

(wn,irn − µ(xTn θ̂i))xn = 0. (B.74)

Note that g0t,i(θ) =
∑

n∈τ†i (t−1) µ(x
T
nθ))xn. g0t,i(θ̂

0
t,i) =

∑
n∈τ†i (t−1)wn,irnxn.

For all arm i,

g0t,i(θ̂
0
t,i)− g0t,i(θi)

=
∑

n∈τ†i (t−1)

(wn,irn − µ(xTnθi))xn

=
∑

n∈τ†i (t−1)

(wn,iµ(x
T
nθI0n)− µ(x

T
nθi))xn +

∑
n∈τ†i (t−1)

wn,iηnxn.

(B.75)

Similarly, we set Z3 =
∑

n∈τ†i (t−1)wn,iηnxn and Z4 =
∑

n∈τ†i (t−1)(wn,iµ(x
T
nθI0n) − µ((1 −

α)xTnθK))xn .

We have g0t,i(θ̂
0
t,i)− g0t,i(θi) = Z3 + Z4 and

xTt (θ̂
0
t,i − θi) = xTt (G

0
t,i)

−1(Z3 + Z4), (B.76)

where

G0
t,i =

∫ 1

0

∇g0t,i
(
sθ̂0t,i + (1− s)θi

)
ds. (B.77)

For any context x ∈ D, we have

|xT (θ̂0t,i − θi)|

=|xT (G0
t,i)

−1(Z3 + Z4)|

≤|xT (G0
t,i)

−1Z3|+ |xT (G0
t,i)

−1Z4|.

(B.78)

155

We first bound |xT (G0
t,i)

−1Z3|. We have

|xT (G0
t,i)

−1Z3| ≤
1

cµ
∥x∥(V̄ 0

t,i)
−1∥Z3∥(V̄ 0

t,i)
−1 , (B.79)

where V̄ 0
t,i =

∑
n∈τi(t−1)† xnx

T
n

Note that V =
t,i V̄

0
t,i + λI. Hence,

∥Z3∥2(V̄ 0
t,i)

−1 =∥Z3∥2(V 0
t,i)

−1 + ZT
3 ((V̄

0
t,i)

−1 − (V 0
t,i)

−1)Z3

≤(1 + λ

λ0
)∥Z3∥2(V 0

t,i)
−1 .

(B.80)

From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with probability at least

1− δ ∥∥∥∥∥∥
∑

k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤2R2 log

(
K det(Vt,i)

1/2 det(λI)−1/2

δ

)
≤2R2

(
log

K

δ
+ d log

(
1 +

L2Ni(t)

λd

))
,

(B.81)

for all arms and all t > 0.

Set λ = λ0, we have

∥Z3∥2(V̄ 0
t,i)

−1 ≤ 2ϕiR

√
log

K

δ
+ d log

(
1 +

L2N0
i (t)

λ0d

)
. (B.82)

Now we bound |xT (G0
t,i)

−1Z4|. Similarly,

|xT (G0
t,i)

−1Z4| ≤
1

cµ
∥x∥(V̄ 0

t,i)
−1∥Z4∥(V̄ 0

t,i)
−1 . (B.83)

In our model, we have 0 < ⟨xt, θi⟩ ≤ ∥xt∥22∥θi∥22 = LS. Further,

0 ≤
∣∣∣wk,iµ(x

T
k θI0k)− µ((1− α)x

T
k θK)

∣∣∣ ≤ ϕikµLS. (B.84)

156

Since we have E[wk,iµ(x
T
k θI0k)|Fk−1] = µ(xTk θi),

{
wk,iµ(x

T
k θI0k)− µ

(
xTk θi

)}
k∈τi(t−1)

is a bounded martingale difference sequence w.r.t the filtration {Fk}k∈τi(t−1) and is also

ϕikµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with probability at least

1− δ

∥Z4∥2(V̄ 0
t,i)

−1 ≤ 2ϕikµLS

√
log

K

δ
+ d log

(
1 +

L2N0
i (t)

λ0d

)
. (B.85)

for any arm i ̸= K and all t > 0.

In summary, for all arm i ̸= K,

|xT (θ̂i − (1− α)θK)| ≤ 2ϕi
kµLS +R

cµ

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
∥x∥(V̄ 0

t,i)
−1 . (B.86)

B.3.4 Proof of Lemma 12

Recall the definition of ϵt:

ϵt = clip

 cµ
cµ + kµ

,
µ((1− α)xTt θ̂0t,K)− µ(xTt θ̂0t,I†t)

µ(xTt θ̂
0
t,K)− µ(xTt θ̂0t,I†t

)
, 1− αcµ

kµ

 , (B.87)

and the definition of I†t :

I†t = argmin
i ̸=K

(
⟨xt, θ̂0t,i⟩ − β0

t,i∥xt∥(V̄ 0
t,i)

−1

)
. (B.88)

By Lemma 11, ⟨xt, θ̂0t,I†t ⟩ − β0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ with probability 1 − 2δ. Thus, with

probability 1− 2δ, µ(xTt θ̂
0

t,I†t
)−mini µ(x

T
t θi) ≤ kµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 .

Because ϵt is bounded by [1/2, 1− α], we can analyze E[rt,I0t |Ft−1, It] in four cases.

Case 1: when ⟨xt, θ̂0t,K⟩ < ⟨xt, θ̂0t,I†t ⟩, we have ϵt = 1− α cµ
kµ

and µ(⟨xt, θ̂0t,K⟩) < µ(⟨xt, θ̂0t,I†t ⟩).

Thus,

E[rt,I0t |Ft−1, It] = (1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

). (B.89)

157

Then, by Lemma 11,

(1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

)− µ((1− α)xTt θK)

≤(1− αcµ
kµ

)

(
µ(xTt θ̂

0
t,K) + kµβ

0
t,K∥xt∥(V̄ 0

t,K)
−1

)

+ α
cµ
kµ

µ(xTt θ̂0t,I†t) + kµβ
0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1

− µ((1− α)xTt θK)
≤µ(xTt θ̂0t,I†t)− µ((1− α)x

T
t θK) + αcµβ

0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 + (1− αcµ
kµ

)kµβ
0
t,K∥xt∥(V̄ 0

t,K)
−1

≤(kµ − αcµ)β0
t,K∥xt∥(V̄ 0

t,K)
−1 + (kµ + αcµ)β

0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 ,

(B.90)

where the second inequality is obtains by µ(⟨xt, θ̂0t,K⟩) < µ(⟨xt, θ̂0t,I†t ⟩) and the last inequality is

obtained by µ(xTt θ̂
0

t,I†t
)−mini µ(x

T
t θi) ≤ kµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 and Assumption 1. We also have

(1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

)− µ((1− α)xTt θK)

≥(1− αcµ
kµ

)

(
µ(xTt θ̂

0
t,K)− kµβ0

t,K∥xt∥(V̄ 0
t,K)

−1

)

+ α
cµ
kµ

µ(xTt θ̂0t,I†t)− kµβ0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1

− µ((1− α)xTt θK)
≥µ(xTt θ̂0t,K)− µ((1− α)xTt θK)− αcµβ0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 − (1− αcµ
kµ

)kµβ
0
t,K∥xt∥(V̄ 0

t,K)
−1

≥µ(xTt θK)− µ((1− α)xTt θK)− αcµβ0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 − (2− αcµ
kµ

)kµβ
0
t,K∥xt∥(V̄ 0

t,K)
−1

≥− (2kµ − αcµ)β0
t,K∥xt∥(V̄ 0

t,K)
−1 − αcµβ0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 .

(B.91)

Case 2: when µ(xTt θ̂
0
t,K) ≥ µ(xTt θ̂

0

t,I†t
) > (1 + cµ

kµ
)µ((1 − α)xTt θ̂0t,K) −

cµ
kµ
µ(xTt θ̂

0
t,K) and ϵt =

158

cµ
cµ+kµ

, we have

E[rt,I0t |Ft−1, It] =
cµ

cµ + kµ
µ(xTt θK) +

kµ
cµ + kµ

µ(xTt θI†t
). (B.92)

By Lemma 11, with probability 1 − 2δ, µ(xTt θ̂
0

t,I†t
) − mini µ(x

T
t θi) ≤ kµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 . Since

mini x
T
t θi ≤ (1 − 2α)xTt θK , we have µ(xTt θ̂

0

t,I†t
) ≤ µ((1 − 2α)xTt θK) + kµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 and

then µ(xTt θI†t) ≤ µ((1− 2α)xTt θK) + 2kµβ
0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 . Thus,

cµµ(x
T
t θK)

cµ + kµ
+
kµµ(x

T
t θI†t

)

cµ + kµ
− µ((1− α)xTt θK)

=
cµ

cµ + kµ
µ(xTt θK)−

cµ
cµ + kµ

µ((1− α)xTt θK)

+
kµ

cµ + kµ
µ(xTt θI†t

)− kµ
cµ + kµ

µ((1− α)xTt θK)

≤ cµ
cµ + kµ

(
µ(xTt θK)− µ((1− α)xTt θK)

)
+

kµ
cµ + kµ

(
µ((1− 2α)xTt θK)− µ((1− α)xTt θK)

)
+

2k2µ
cµ + kµ

β0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1

(B.93)

According to the definition of kµ and cµ and Lemma 11,

cµµ(x
T
t θK)

cµ + kµ
+
kµµ(x

T
t θI†t

)

cµ + kµ
− µ((1− α)xTt θK)

≤ cµ
cµ + kµ

kµ
(
xTt θK − (1− α)xTt θK

)
+

kµ
cµ + kµ

cµ
(
(1− 2α)xTt θK − (1− α)xTt θK

)
+

2k2µ
cµ + kµ

β0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1

=
2k2µ

cµ + kµ
β0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 .

(B.94)

159

In addition, by Lemma 11,

cµµ(x
T
t θK)

cµ + kµ
+
kµµ(x

T
t θI†t

)

cµ + kµ
− µ((1− α)xTt θK)

=
cµµ(x

T
t θK)

cµ + kµ
+
kµµ(x

T
t θI†t

)

cµ + kµ
− µ((1− α)xTt θ̂0t,K)

+ µ((1− α)xTt θ̂0t,K)− µ((1− α)xTt θK)

≥ cµ
cµ + kµ

µ(xTt θK) +
kµ

cµ + kµ
µ(xTt θI†t

)

− cµ
cµ + kµ

µ(xTt θ̂
0
t,K)−

kµ
cµ + kµ

µ(xTt θ̂
0

t,I†t
)

+ µ((1− α)xTt θ̂0t,K)− µ((1− α)xTt θK)

≥− (1− α +
cµ

cµ + kµ
)kµβ

0
t,K∥xt∥(V̄ 0

t,K)
−1

− kµ
cµ + kµ

kµβ
0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 ,

(B.95)

where the first inequality is obtained by the condition of case 2: µ(xTt θ̂
0

t,I†t
) > (1 + cµ

kµ
)µ((1 −

α)xTt θ̂
0
t,K)−

cµ
kµ
µ(xTt θ̂

0
t,K) which is equivalent to

cµµ(xT
t θ̂0t,K)

cµ+kµ
+

kµµ(xT
t θ̂0

t,I
†
t

)

cµ+kµ
> µ((1− α)xTt θ̂0t,K).

Case 3: when the attacker’s estimates satisfy

kµ
αcµ

µ((1− α)xTt θ̂0t,K)− (
kµ
αcµ
− 1)µ(xTt θ̂

0
t,K)

≤µ(xTt θ̂0t,I†t)

≤(1 + cµ
kµ

)µ((1− α)xTt θ̂0t,K)−
cµ
kµ
µ(xTt θ̂

0
t,K)

(B.96)

and hence cµ
cµ+kµ

≤ ϵt ≤ 1− α cµ
kµ

, we have

E[rt,I0t |Ft−1, It] = ϵtµ(x
T
t θK) + (1− ϵt)µ(xTt θI†t). (B.97)

160

We can find that

ϵtµ(x
T
t θK) + (1− ϵt)µ(xTt θI†t)− µ((1− α)x

T
t θK)

=ϵt(µ(x
T
t θK)− µ(xTt θI†t)) + µ(xTt θI†t

)− µ((1− α)xTt θK)

=ϵt(µ(x
T
t θ̂

0
t,K)− µ(xTt θ̂0t,I†t)) + ϵt(µ(x

T
t θ̂

0

t,I†t
)− µ(xTt θI†t))

+ ϵt(µ(x
T
t θK)− µ(xTt θ̂0t,K)) + µ(xTt θI†t

)− µ((1− α)xTt θK)

=µ((1− α)xTt θ̂0t,K)− µ(xTt θ̂0t,I†t) + ϵt(µ(x
T
t θ̂

0

t,I†t
)− µ(xTt θI†t))

+ ϵt(µ(x
T
t θK)− µ(xTt θ̂0t,K)) + µ(xTt θI†t

)− µ((1− α)xTt θK)

=µ((1− α)xTt θ̂0t,K)− µ((1− α)xTt θK)+

ϵt(µ(x
T
t θK)− µ(xTt θ̂0t,K)) + (1− ϵt)

(
µ(xTt θI†t

)− µ(xTt θ̂0t,I†t)
)
,

(B.98)

From Lemma 11,

∣∣E[rt,I0t |Ft−1, It]− µ((1− α)xTt θK
∣∣

≤(1− α + ϵt)kµβ
0
t,K∥xt∥(V̄ 0

t,K)
−1 + (1− ϵt)kµβ0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 .
(B.99)

Case 4: when µ(xTt θ̂
0

t,I†t
) < kµ

αcµ
µ((1− α)xTt θ̂0t,K)− (kµ

αcµ
− 1)µ(xTt θ̂

0
t,K) and ϵt = 1− α cµ

kµ
, we

have

E[rt,I0t |Ft−1, It] = (1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

). (B.100)

161

Then, by Lemma 7,

(1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

)− µ((1− α)xTt θK)

≤(1− αcµ
kµ

)µ(xTt θK)− µ((1− α)xTt θK) + α
cµ
kµ
µ(xTt θ̂

0

t,I†t
) + αcµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1

<(1− αcµ
kµ

)µ(xTt θK)− µ((1− α)xTt θK) + µ((1− α)xTt θ̂0t,K)− (1− αcµ
kµ

)µ(xTt θ̂
0
t,K)

+ αcµβ
0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1

≤(kµ − cµ)β0
t,K∥xt∥(V̄ 0

t,K)
−1 + αcµβ

0

t,I†t
∥xt∥(V̄ 0

t,I
†
t

)−1 .

(B.101)

Since xTt θI†t > 0, µ(xTt θK)− µ(xTt θI†t) ≤ kµx
T
t θK . Hence, we also have

(1− αcµ
kµ

)µ(xTt θK) + α
cµ
kµ
µ(xTt θI†t

)− µ((1− α)xTt θK)

=µ(xTt θK)− µ((1− α)xTt θK)− α
cµ
kµ

(
µ(xTt θK)− µ(xTt θI†t)

)
≥cµαxTt θK − α

cµ
kµ
kµx

T
t θK = 0.

(B.102)

Combining these four cases, we have

∣∣E[rt,I0t |Ft−1, It]− µ((1− α)xTt θK)
∣∣ ≤ 2kµβ

0
t,K∥xt∥(V̄ 0

t,K)
−1 + 2kµβ

0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 .

(B.103)

B.3.5 Proof of Lemma 13

The agent’s maximum-likelihood estimation can be written as the solution to the following

equation ∑
n∈τi(t−1)

(rn − µ(xTn θ̂t,i))xn = 0. (B.104)

162

As described in the section B.3.1, we have gt,i(θ̂i)− gt,i((1− α)θK) = Z1 + Z2 and

xTt (θ̂i − (1− α)θK) = xTt G
−1
t,i (Z1 + Z2). (B.105)

We set Z1 =
∑

n∈τi(t−1)(µ(x
T
nθI0n)− µ((1− α)x

T
nθK))xn and Z2 =

∑
n∈τi(t−1) ηnxn.

In the white-box attack case, we have E[µ(xTk θI0k)|Fk−1] = µ((1 − α)xTk θK) and hence

E[Z1|Fk−1] = 0. Under the proposed black-box attack, E[Z1|Fk−1] ̸= 0 but

∣∣E[µ(xTt θI0t)|Ft−1, It]− (1− α)⟨xt, θK⟩
∣∣

≤2kµβ0
t,K∥xt∥(V̄ 0

t,K)
−1 + 2kµβ

0

t,I†t
∥xt∥(

V̄ 0

t,I
†
t

)−1 .
(B.106)

We set Z1 = Z5 + Z6, where

Z5 =
∑

n∈τi(t−1)

(µ(xTnθI0n)− E[µ(xTt θI0t)|Ft−1, It])xn

and

Z6 =
∑

n∈τi(t−1)

(E[µ(xTt θI0t)|Ft−1, It]− µ((1− α)xTnθK))xn.

For any context x ∈ D and arm i ̸= K, we have

|xT (θ̂t,i − (1− α)θK)| ≤ |xTG−1
t,i Z2|+ |xTG−1

t,i Z5|+ |xTG−1
t,i Z6|. (B.107)

Since we have
{
µ(xTk θI0k)− E[µ(xTk θI0k)|Fk−1, Ik]

}
k∈τi(t−1)

is a bounded martingale difference

sequence w.r.t the filtration {Fk, Ik}k∈τi(t−1) and is also kµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in [1], we know that for any δ > 0, with probability at least

1− K−1
K
δ

∥Z5∥V̄ −1
t,i
≤ 2kµLS

√
log

K

δ
+ d log

(
1 +

L2Ni(t)

λ0d

)
, (B.108)

for any arm i ̸= K and all t > 0.

163

Similar with the equation (B.5) in Section B.1.2, we have

∥xt∥2G−1
t,i

= xTt G
−1
t,i Gt,iG

−1
t,i xt

≥ cµx
T
t V

−1
t,i

 ∑
k∈τi(t−1)

xkx
T
k

V −1
t,i xt

= cµ
∑

k∈τi(t−1)

(xTt G
−1
t,i xk)

2.

(B.109)

and hence
∑

k∈τi(t−1)(x
T
t G

−1
t,i xk)

2 ≤ 1
c2µ
∥xt∥2V̄ −1

t,i

.

Then, |xTG−1
t,i Z6| can be upper bounded by

|xTG−1
t,i Z6|

≤
√ ∑

k∈τi(t−1)

(
E[rk,I0k |Fk−1, Ik]− µ((1− α)xTk θK)

)2√ ∑
k∈τi(t−1)

(xTt G
−1
t,i xk)

2

≤

 ∑
k∈τi(t−1)

2kµβ
0
k,K∥xk∥(V̄ 0

k,K)
−1 + 2kµβ

0

k,I†k
∥xk∥(

V̄ 0

k,I
†
k

)−1


2

1
2

1

cµ
∥xt∥V̄ −1

t,i
,

(B.110)

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is

obtained from Lemma 8 and (B.5).

In addition, by the fact that (a+ b)2 ≤ 2a2 + 2b2 for any real number, we have

∑
k∈τi(t−1)

2kµβ
0
k,K∥xk∥(V̄ 0

k,K)
−1 + 2kµβ

0

k,I†k
∥xk∥(

V̄ 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2

(
2kµβ

0
k,K∥xk∥(V̄ 0

k,K)
−1

)2

+
∑

k∈τi(t−1)

2

2kµβ
0

k,I†k
∥xk∥(

V̄ 0

k,I
†
k

)−1


2

.

(B.111)

164

Here, we use Lemma 11 from [1] and get, for any arm i,

∑
k∈τ†i (t−1)

∥xk∥2(V 0
k,i)

−1 ≤ 2d log

(
1 +

Ni(t)L
2

dλ

)

≤ 2d log

(
1 +

tL2

dλ

)
.

(B.112)

Set λ = λ0, we have ∥x∥2
V̄ −1
t,i

≤ (1 + λ
λ0
)∥x∥2

V −1
t,i

≤ 2∥x∥2
V −1
t,i

.

By the fact that
∑

i τi(t− 1) = τ †K(t− 1), and
∑

i ̸=K τi(t− 1) =
∑

i ̸=K τ
†
i (t− 1), we have, for

any arm i, τi(t− 1) ⊆ τ †K(t− 1), and τi(t− 1) ⊆
∑

j ̸=K τ
†
j (t− 1). Thus,

∑
k∈τi(t−1)

∥xk∥2(V̄ 0
k,K)

−1 ≤
∑

k∈τ†K(t−1)

∥xk∥2(V̄ 0
k,K)−1

≤ 4d log

(
1 +

tL2

dλ0

)
,

(B.113)

and ∑
k∈τi(t−1)

∥xk∥2(
V̄ 0

k,I
†
k

)−1 ≤
∑
i ̸=K

∑
k∈τ†i (t−1)

∥xk∥2(V̄ 0
k,i)

−1

≤ 4(K − 1)d log

(
1 +

tL2

dλ0

)
.

(B.114)

165

By combining (B.111), (B.113) and (B.114) and when K ≥ 3, we have

∑
k∈τi(t−1)

2kµβ
0
k,K∥xk∥(V 0

k,K)
−1 + 2kµβ

0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2

(
2kµβ

0
k,K∥xk∥(V 0

k,K)
−1

)2

+
∑

k∈τi(t−1)

2

2kµβ
0

k,I†k
∥xk∥(

V 0

k,I
†
k

)−1


2

≤
(
2ϕK

kµLS +R

cµ

)2(
log

K

δ
+ d log

(
1 +

L2t

λ0d

))
× 8k2µ × 16d2 log

(
1 +

tL2

dλ0

)
+

(
2
Kµ

cµα

kµLS +R

cµ

)2(
log

K

δ
+ d log

(
1 +

L2t

λ0d

))
× 8k2µ × 16d2(K − 1) log

(
1 +

tL2

dλ0

)
≤128k2µd2

(
2kµLS + 2R

cµ

)2(
log

K

δ
+ d log

(
1 +

L2t

λ0d

))
× log

(
1 +

tL2

dλ0

)
×
(
(K − 1)

k2µ
c2µα

2
+ (1 +

kµ
cµ

)2
)

≤256k2µd2
(
2kµLS + 2R

cµ

)2(
log

K

δ
+ d log

(
1 +

L2t

λ0d

))
× log

(
1 +

tL2

dλ0

)
×K

k2µ
c2µα

2

(B.115)

In summary, we have

|xTt θ̂t,i − xTt (1− α)θK |

≤

(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))
2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(B.116)

166

B.3.6 Proof of Theorem 7

For round t and context xt, if GLM-UCB pulls arm i ̸= K, we have

xTt θ̂t,K + βt,K

√
xTt V̄

−1
t,Kxt ≤ xTt θ̂t,i + βt,i

√
xTt V̄

−1
t,i xt.

Recall βt,i = 4R
cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not

change and xTt θK ≤ xTt θ̂t,K + βt,K

√
xTt V

−1
t,Kxt holds with probability 1− δ

K
.

Thus, by Lemma (13),

xTt θK

≤xTt θ̂t,i + βt,i

√
xTt V

−1
t,i xt

≤xTt (1− α)θK +
2kµLS + 2R

cµ

(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))√
log

K

δ
+ d log

(
1 +

L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(B.117)

By multiplying both sides 1{It=i} and summing over rounds, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤
t∑

k=1

1{Ik=i}

(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))
2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(B.118)

Here, we use Lemma 11 from [1] and obtain

t∑
k=1

1{Ik=i}∥xk∥2V −1
k,i
≤ 2d log(1 +

Ni(t)L
2

dλ
)

≤ 2d log

(
1 +

tL2

dλ

)
.

(B.119)

167

According to
∑t

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√
Ni(t)

∑t
k=1 1{Ik=i}∥xk∥2V −1

k,i

, we have

t∑
k=1

1{Ik=i}∥xk∥V −1
k,i
≤

√
Ni(t)2d log

(
1 +

tL2

dλ

)
. (B.120)

Set λ = λ0, we have ∥x∥2
V̄ −1
t,i

≤ (1 + λ
λ0
)∥x∥2

V −1
t,i

≤ 2∥x∥2
V −1
t,i

. Thus, we have

t∑
k=1

1{Ik=i}αx
T
k θK

≤
t∑

k=1

1{Ik=i}

(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))
×

2kµLS + 2R

cµ

√
log

K

δ
+ d log

(
1 +

L2t

λ0d

)√
4Ni(t)d log

(
1 +

tL2

dλ0

)
,

(B.121)

and

Ni(t) =
t∑

k=1

1{Ik=i}

≤ 4d

(αγ)2

(
2kµLS + 2R

cµ

)2

log

(
1 +

tL2

dλ0

)
×

(
log

K

δ
+ d log

(
1 +

L2t

λ0d

))(
1 +

16k2µd

cµα

√
K log

(
1 +

tL2

dλ0

))2

,

(B.122)

where γ = minx∈D⟨x, θK⟩.

168

Appendix C

Appendix of Chapter 4

C.1 Proofs for the white-box attack

C.1.1 Proof of Lemma 1

We assume that the agent does not know the attacker’s manipulations and the presence of the

attacker. We can consider the combination of the attack and the environment as a new environment,

and the RL agent interacts with the new environment in the attack setting. We define Q and V as

the Q-values and value functions of the new environment that the RL agent observes. The optimal

policy can be given from the the Bellman optimality equations. Suppose the target policy π† is

optimal at step h + 1 in the observation of the agent. Then, V
∗
h+1(s) = V

†
h+1(s) for all state s,

where V represents the value function in the observation of the agent. Similarly, we set Q as the

Q-values in the observation of the agent. As the attacker does not attack when the agent pick the

target action, V
†
h+1 = V †

h+1. For any a ̸= π†
h(s), from the equation (4.3), (4.4) and (4.6), Q

∗
h is

169

given by

Q
∗
h(s, a) =(1− α)(Rh(s, π

†
h(s)) + PhV

∗
h+1(s, π

†
h(s)))

+ α(Rh(s, π
−
h (s)) + PhV

∗
h+1(s, π

−
h (s)))

=(1− α)Q†
h(s, π

†
h(s)) + αQ†

h(s, π
−
h (s))

<Q†
h(s, π

†
h(s)) = V †

h (s) = Q
†
h(s, π

†
h(s)).

(C.1)

We can conclude that if the target policy π† is optimal at step h + 1 in the observation of the

agent, the target policy π† is also optimal at step h in the observation of the agent. Since V π
H+1 = 0

and Qπ
H+1 = 0, the target policy π† is the optimal policy, from induction on h = H,H − 1, · · · , 1.

C.1.2 Proof of Theorem 8

Here, we follows the idea of error decomposition proposed in [35, 111]. We first decomposed the

expected regret Regret(K) into the gap of Q-values. Denote by ∆k
h = V †

h (s
k
h)−mina∈AQ

†
h(s

k
h, a)

and ∆
k

h = V
†
h(s

k
h)−Q

†
h(s

k
h, a

k
h).

As shown in Lemma 1, the target policy π† is optimal in the observation of the agent. Thus,

Regret(K) =
K∑
k=1

[V
∗
1(s

k
1)− V

πk

1 (sk1)] =
K∑
k=1

[V
†
1(s

k
1)− V

πk

1 (sk1)]. (C.2)

170

For episode k,

V
†
1(s

k
1)− V

πk

1 (sk1)

=V
†
1(s

k
1)− Ea∼πk

1 (·|sk1)[Q
†
1(s

k
1, a)|Fk

1] + Ea∼πk
1 (·|sk1)[Q

†
1(s

k
1, a)|Fk

1]− V
πk

1 (sk1)

=E[∆k

1|Fk
1] + Es′∼P1(·|sk1 ,a∼πk

1 (·|sk1))[(V
†
2 − V

πk

2)(s′)]

= · · · = E[
H∑

h=1

∆
k

h|Fk
1]

①
=E

[
H∑

h=1

α∆k
h1(a

k
h ̸= π†

h(s
k
h))|Fk

1

]

≥α∆minE

[
H∑

h=1

1
(
ãkh ̸= akh

)]
,

(C.3)

where Fk
h represents the σ-field generated by all the random variables until episode k, step h

begins, and the equation ① holds due to Q
†
h(s

k
h, a

k
h) = (1 − α)Q†

h(s
k
h, π

†
h(s

k
h)) + αQ†

h(s
k
h, π

−
h (s

k
h))

when akh ̸= π†
h(s

k
h), and V

†
h(s

k
h) = V †

h (s
k
h).

In the α-portion attack, the attacker attacks only when the agent picks a non-target arm. Thus,

1
(
ãkh ̸= akh

)
≤ 1

(
akh ̸= π†

h(s
k
h)
)

and Cost(K,H) ≤ Loss(K,H).

We can conclude that

E[Cost(K,H)] ≤ E[Loss(K,H)] ≤ Regret(K)

α∆min

. (C.4)

Before the proof of the upper bound on the loss and the cost, we first introduce an important

lemma, which shows the connections between the expected regret to the loss and the cost.

Lemma 3. For any MDPM = (S,A, H, P,R) and any p ∈ (0, 1), with probability at least 1− p,

we have

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑
k=1

(
V

†
h(s

k
h)− V

πk

h (skh)
)
+ 2H2

√√√√log(1/p)
K∑
k=1

(
V

†
h(s

k
h)− V

πk

h (skh)
)
. (C.5)

The proof of Lemma 3 is based on the Freedman inequality [25,100]. Since E[
∑H

h=1∆
k

h|Fk
1] =

171

V
†
1(s

k
1) − V

πk

1 (sk1), denote by Xk =
∑H

h=1∆
k

h −
(
V

†
h(s

k
h)− V

πk

h (skh)
)

, then {Xk}Kk=1 is a

martingale difference sequence w.r.t the filtration {Fk
1 }k≥1. The difference sequence is uniformly

bounded by |X2
k | ≤ H2. Define the predictable quadratic variation process of the martingale

WK :=
∑K

k=1 E[X2
k |Fk

1], which is bounded by

WK ≤
K∑
k=1

E
[(

∆
k

h

)2
|Fk

1

]
≤

K∑
k=1

H2E
[
∆

k

h|Fk
1

]
=

K∑
k=1

H2
(
V

†
h(s

k
h)− V

πk

h (skh)
)
. (C.6)

By the Freedman’s inequality, we have

P

 K∑
k=1

Xk > 2H2

√√√√log(1/p)
K∑
k=1

(
V

†
h(s

k
h)− V

πk

h (skh)
)

≤ exp


−2H4 log(1/p)

∑K
k=1

(
V

†
h(s

k
h)− V

πk

h (skh)
)

WK +H2 ∗ 2H2

√
log(1/p)

∑K
k=1

(
V

†
h(s

k
h)− V

πk

h (skh)
)
/3


≤ exp {− log(1/p)} = p.

(C.7)

Theorem 8 is directly from Lemma 3 and ∆
k

h ≥ α∆min1(π
†
h(s

k
h) ̸= πk

h(s
k
h)).

C.2 Proofs for LCB-H attack

C.2.1 Proof of Lemma 2

At the beginning of the episode k, for any step h ∈ [H] and any (s, a) ∈ S ×A with Nk
h (s, a) ̸= 0,

according to Algorithm 2.1, the estimate of Q-values under the target policy π† are given by

Q̂†
h,k(s, a) =

1

Nk
h (s, a)

k−1∑
i=1

1
(
(ãkh, s

k
h) = (s, a)

) (
rkh + ρkh+1:H+1G

k
h+1:H+1

)
. (C.8)

172

Note that for any
(
(ãkh, s

k
h) = (s, a)

)
, we have

E[rkh + ρkh+1:H+1G
k
h+1:H+1|ãkh, skh] = Rh(s, a) + Es′∼Ph(·|s,a)[V

†
h+1(s

′)] = Q†
h(s, a). (C.9)

Thus, we can apply Hoeffding’s inequality here to bound |Q̂†
h,k(s, a) − Q

†
h(s, a)|. The cumulative

reward is bounded by 0 ≤ Gk
h+1:H+1 ≤ H − h and the important sampling ratio is bounded by

0 ≤ ρkh+1:H+1 ≤ e because

ρkh+1:H+1 ≤
(

1

(1− 1
H
)

)H−h

≤
(

1

(1− 1
H
)

)H−1

≤ e. (C.10)

By Hoeffding’s inequality, since |rkh + ρkh+1:H+1G
k
h+1:H+1| ≤ e(H − h) + 1, we have

P
(
|Q̂†

h,k(s, a)−Q
†
h(s, a)| > η

)
≤ 2 exp

− η2

2Nk
h (s, a)

(
H−h+1
Nk

h (s,a)

)2
 . (C.11)

To hold a high-probability confidence bound for any state s, any action a, any step h and any

episode k, set the right hand side of the above inequality to p/SAT . Then, we have η = (e(H −

h) + 1)
√

2ι
Nk

h (s,a)
and ι = log(2SAT/p).

173

C.2.2 Proof of Theorem 9

From Lemma 3, for any MDPM = (S,A, H, P,R) and any p ∈ (0, 1), with probability at least

1− p, we have

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑
k=1

(
V

k,†
h (skh)− V

k,πk

h (skh)
)
+ 2H2

√√√√log(1/p)
K∑
k=1

(
V

†
h(s

k
h)− V

k,πk

h (skh)
)

≤
K∑
k=1

(
V

k,∗
h (skh)− V

k,πk

h (skh)
)
+ 2H2

√√√√log(1/p)
K∑
k=1

(
V

k,∗
h (skh)− V

k,πk

h (skh)
)

=D-Regret(K) + 2H2
√

log(1/p)D-Regret(K).

(C.12)

Since the LCB-H attacker dose not attack the target action, V
k,†
h (skh) = V †

h (s
k
h). Thus, we have

∆
k

h = V
k,†
h (skh) − Q

k,†
h (skh, a

k
h) = V †

h (s
k
h) − Q

k,†
h (skh, a

k
h). When the agent picks a target action

akh = π†(skh), the attacker does not attack and Q
k,†
h (skh, a

k
h) = V

k,†
h (skh) = V †

h (s
k
h). Thus, the left

hand side of the equation (C.12) can be written as

K∑
k=1

H∑
h=1

∆
k

h =
K∑
k=1

H∑
h=1

1(akh ̸= π†
h(s

k
h))∆

k

h =
∑

(k,h)∈τ

∆
k

h, (C.13)

where τ = {(k, h) ∈ [K]× [H]|akh ̸= π†
h(s

k
h)}.

At episode k and step h, after the agent picks an action, since the attack scheme is given, we

have Q
k,†
h (skh, a

k
h) = E[Q†

h(s
k
h, ã

k
h)|Fk

1 , s
k
h, a

k
h]. Furthermore, E[V †

h (s
k
h) − Q

†
h(s

k
h, ã

k
h)|Fk

1 , s
k
h, a

k
h] =

∆
k

h. By the Hoeffding inequality, since |V †
h (s

k
h)−Q

†
h(s

k
h, ã

k
h)| ≤ H , we have

P

 ∑
(k,h)∈τ

(
V †
h (s

k
h)−Q

†
h(s

k
h, ã

k
h)−∆

k

h

)
> η

 ≤ exp

(
− η2

2|τ |H2

)
. (C.14)

174

Set the left hand side of the above inequality to p. With probability 1− p, we have,

K∑
k=1

H∑
h=1

∆
k

h ≥
∑

(k,h)∈τ

(
V †
h (s

k
h)−Q

†
h(s

k
h, ã

k
h)
)
−H

√
2|τ | log(1/p). (C.15)

If ãkh ̸= π†
h(s) holds, the attacker attacked the agent, and from Lemma 2, we have with

probability 1− p,

Q†
h(s, π

−
h (s)) ≥ Lk

h(s, π
−
h (s)) ≥ Lk

h(s, ã
k
h) ≥ Q†

h(s, ã
k
h)− 2(e(H − h) + 1)

√
2ι

Nk
h (s

k
h, ã

k
h)
,

(C.16)

and 0 ≤ Q†
h(s, ã

k
h)−Q

†
h(s, π

−
h (s)) ≤ 2(e(H − h) + 1)

√
2ι

Nk
h (s

k
h,ã

k
h)

. If ãkh ̸= π†
h(s) holds, V †

h (s
k
h) =

Q†
h(s

k
h, ã

k
h). For the second item in the right hand side of inequality (C.15), we have with probability

1− p,

∑
(k,h)∈τ

(
V †
h (s

k
h)−Q

†
h(s

k
h, ã

k
h)
)

≥
∑

(k,h)∈τ

1

(
ãkh ̸= π†

h(s)
)(

∆k
h − 2(e(H − h) + 1)

√
2ι

Nk
h (s

k
h, ã

k
h)

)
.

(C.17)

For (k, h) ∈ τ , E[1(ãkh ̸= π†
h(s))|Fk

h , (k, h) ∈ τ] = 1/H . By the Hoeffding inequality, we have

with probability 1− p,

∑
(k,h)∈τ

∣∣∣1(ãkh ̸= π†
h(s)

)
− 1/H

∣∣∣ ≤√2|τ | log(2/p). (C.18)

175

We regroup the right hand side of inequality (C.17) in a different way and further

∑
(k,h)∈τ

1

(
ãkh ̸= π†

h(s)
)√

1/Nk
h (s

k
h, ã

k
h)

=
∑
h∈[H]

∑
s∈S

∑
a̸=π†

h(s)

NK+1
h (s,a)∑
n=1

√
1/n

≤
∑
h∈[H]

∑
s∈S

∑
a̸=π†

h(s)

(
1 +

∫ NK+1
h (s,a)

n=1

√
1/ndn

)

≤
∑
h∈[H]

∑
s∈S

∑
a̸=π†

h(s)

2
√
NK+1

h (s, a)

①

≤2SAH

√∑
h∈[H]

∑
s∈S
∑

a̸=π†
h(s)

NK+1
h (s, a)

SAH

=2

√
SAH

∑
(k,h)∈τ

1

(
ãkh ̸= π†

h(s)
)

②

≤2
√
SAH

(
|τ |/H +

√
2|τ | log(2/p)

)
≤2
√
SA|τ |+ 2

√
2SAH|τ | log(2/p),

(C.19)

where ① holds due to the property of the concave function
√
n and ② holds due to the

inequality (C.18).

In addition,

∑
(k,h)∈τ

1

(
ãkh ̸= π†

h(s)
)
∆k

h ≥
(
|τ |/H −

√
2|τ | log(2/p)

)
∆min. (C.20)

Combing (C.12), (C.15), (C.17), (C.19) and (C.20), we have

∆min|τ |/H ≤D-Regret(K) + 2H2
√
log(1/p)D-Regret(K) + (H +∆min)

√
2|τ | log(1/p)

2(e(H − h) + 1)
√
2ι
(
2
√
SA|τ |+ 2

√
2SAH|τ | log(2/p)

)
,

(C.21)

176

which is equivalent to

|τ | ≤ H

∆min

(
D-Regret(K) + 2H2

√
log(1/p)D-Regret(K)

)
+

307SAH4ι

∆2
min

. (C.22)

In addition, Cost(K,H) ≤ Loss(K,H) =
∑K

k=1

∑H
h=1 1(a

k
h ̸= π†

h(s
k
h)) = |τ |. The proof is

completed.

C.3 Proof of LCB-H attacks on UCB-H

For completeness, we describe the main steps of UCB-H algorithm in Algorithm C.1.

Algorithm C.1 Q-learning with UCB-Hoeffding [41]

1: Initialize Qh(s, a) = 0 and Nh(s, a) = 0 for all state s ∈ S , all action a ∈ A and all step
h ∈ [H].

2: Define αt =
H+1
H+t

, ι = log(2SAT/p), and set a constant c.
3: for episode k = 1, 2, . . . , K do
4: Receive s1.
5: for step h = 1, 2, . . . , H do
6: Take action ah ← argmaxa′ Qh(sh, a

′), and observe sh+1 and rh.
7: t = Nh(sh, ah)← Nh(sh, ah) + 1; bt = c

√
H3ι/t.

8: Qh(sh, ah) = (1− αt)Qh(sh, ah) + αt[rh + Vh+1(sh+1) + bt].
9: Vh(sh)← min{H,maxa′ Qh(sh, a

′)}.
10: end for
11: end for

Before the proof of Theorem 10, we first introduce our main technical lemma.

We denote by Q
k

h, V
k

h, N
k

h the observations of UCB-H agent at the beginning of episode k.

The lemma below is our main technical lemma that shows the difference between the agent’s

observations Q
k

h and the true Q-values Q†
h can be bounded by quantities from the next step.

Lemma 4. Assume the attacker follows the LCB-H attack strategy on the UCB-H agent. Suppose

the constant c in UCB-H algorithm satisfies c > 0. Let βh(t) = (cH + 2(H − h) + 2)
√
Hι/t

when t > 0 and βh(0) = 0 for any step h, and let Bh(t) = (e(H − h) + 1)
√

2ι
t

when t > 0

and Bh(0) = H for any step h. For any p ∈ (0, 1), with probability at least 1 − 3p, the following

177

confidence bounds hold simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [k]:

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
≤ Q

k

h(s, π
†
h(s))−Q

†
h(s, π

†
h(s))

≤ α0
tH +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+ βh(t),

(C.23)

and

Q
k

h(s, a)−Q
†
h(s, π

†
h(s)) = Q

k

h(s, a)−Q
†
h(s, π

−
h (s))−∆h(s)

≤α0
tH +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+ βh(t)

+
t∑

i=1

αi
t1

(
ãkih ̸= π†

h(s)
) (

2Bh

(
Nki

h (s, ãkih)
)
−∆h(s)

)
,

(C.24)

where t = N
k

h(s, a), ∆h(s) := Q†
h(s, π

†
h(s)) − Q†

h(s, π
−
h (s)), and k1, k2, . . . , kt < k are the

episodes in which (s, a) was previously taken by the agent at step h.

By recursing the results in Lemma 4, we can obtained Theorem 10.

C.3.1 Proof of Lemma 4

Lemma 4 shows the result of the LCB-H attacks on the UCB-H algorithm. Thus, we need to refer

the readers to some settings and the Lemma 4.1 in [41]. Note that UCB-H chooses the learning rate

as αt :=
H+1
H+t

. For notational convenience, define α0
t :=

∏t
j=1(1−αt) and αi

t := αi

∏t
j=i+1(1−αt).

Here, we introduce some useful properties of αi
t which were proved in [41]:

(1)
∑t

i=1 α
i
t = 1 and α0

t = 0 for t ≥ 1;

(2)
∑t

i=1 α
i
t = 0 and α0

t = 1 for t = 0;

(3) 1√
t
≤
∑t

i=1
αi
t√
t
≤ 2√

t
for every t ≥ 1;

(4)
∑t

i=1(α
i
t)

2 ≤ 2H
t

for every t ≥ 1;

(5)
∑∞

t=i α
i
t ≤ (1 + 1

H
) for every i ≥ 1.

As shown in [41], at any (s, a, h, k) ∈ S ×A× [H]× [K], let t = N
k

h(s, a) and suppose (s, a)

178

was previously taken by the agent at step h of episodes k1, k2, . . . , kt < k. By the update equations

in the UCB-H Algorithm and the definition of αi
t, we have

Q
k

h(s, a) = α0
tH +

t∑
i=1

αi
t

(
rkih + V

ki
h+1(s

ki
h+1) + bi

)
. (C.25)

Then we can bound the difference between Q
k

h and Q†
h.

Q
k

h(s, a)−Q
†
h(s, π

−
h (s))

=α0
t

(
H −Q†

h(s, π
−
h (s))

)
+

t∑
i=1

αi
t

(
rkih + V

ki
h+1(s

ki
h+1) + bi −Q†

h(s, π
−
h (s))

)
=α0

t (H −Q
†
h(s, π

−
h (s)) +

t∑
i=1

αi
t

(
rkih − rh(s, ã

ki
h) + bi

)
+

t∑
i=1

αi
t

(
rh(s, ã

ki
h) + V

ki
h+1(s

ki
h+1).−Q

†
h(s, π

−
h (s))

)
.

(C.26)

We can rewrite the third term in the RHS of (C.26) as follows

rh(s, ã
ki
h) + V

ki
h+1(s

ki
h+1)−Q

†
h(s, π

−
h (s))

=rh(s, ã
ki
h) + V

ki
h+1(s

ki
h+1)−Q

†
h(s, ã

ki
h) +Q†

h(s, ã
ki
h)−Q

†
h(s, π

−
h (s))

=V
ki
h+1(s

ki
h+1)− PhV

†
h+1(s, ã

ki
h) +Q†

h(s, ã
ki
h)−Q

†
h(s, π

−
h (s))

=V
ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1) + V †

h+1(s
ki
h+1)− PhV

†
h+1(s, ã

ki
h) +Q†

h(s, ã
ki
h)−Q

†
h(s, π

−
h (s)).

(C.27)

179

As the result, the difference between Q
k

h and Q†
h can be rewritten as

Q
k

h(s, a)−Q
†
h(s, π

−
h (s))

=α0
t (H −Q

†
h(s, π

−
h (s)) +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+

t∑
i=1

αi
t

(
rkih − rh(s, ã

ki
h) + V †

h+1(s
ki
h+1)− PhV

†
h+1(s, ã

ki
h) + bi

)
+

t∑
i=1

αi
t

(
Q†

h(s, ã
ki
h)−Q

†
h(s, π

−
h (s))

)
.

(C.28)

Since E[V †
h+1(s

k
h+1)|Fk

h∪{skh, akh}] = E[V †
h+1(s

k
h+1)|skh, akh] = PhV

†
h+1(s, a) for any state-action

pair (skh, a
k
h) = (s, a),

∑t
i=1 α

i
t

(
V †
h+1(s

ki
h+1)− PhV

†
h+1(s, ã

ki
h)
)

is the weighted sum of a martingale

difference sequence w.r.t the filtration {Fki
h }i≥1. By Azuma-Hoeffding inequality, we have

P

(∣∣∣∣∣
t∑

i=1

αi
t

(
V †
h+1(s

ki
h+1)− PhV

†
h+1(s, ã

ki
h)
)∣∣∣∣∣ ≥ η

)
≤ 2 exp

(
− η2

2(H − h)2 2H
t

)
, (C.29)

where we used
∑t

i=1(α
i
t)

2 ≤ 2H
t

a property of αi
t . By setting the right hand side of the above

equation to p/(SAT) and t = N
k

h(s, a), we have for each fixed state-action pair (s, a, h) ∈ S ×

A× [H], with probability at least 1− p/(SAH), event E1 holds, where E1 is defined as

E1 := {∀k ∈ [K],∣∣∣∣∣
t∑

i=1

αi
t

(
V †
h+1(s

ki
h+1)− PhV

†
h+1(s, ã

ki
h)
)∣∣∣∣∣ ≤ (H − h)

√
4H log(2SAT/p)

N
k

h(s, a)

}
.

(C.30)

Similarly, for each fixed state-action-step pair (s, a, h) ∈ S ×A× [H], with probability at least

1− p/(SAH), we have event E2 holds with

E2 :=

{
∀k ∈ [K],

∣∣∣∣∣
t∑

i=1

αi
t

(
rkih − rh(s, ã

ki
h)
)∣∣∣∣∣ ≤

√
4H log(2SAT/p)

N
k

h(s, a)

}
. (C.31)

Then if the agent chooses bt = c
√
H3ι/t for some constant c and ι = log(2SAT/p), by the

180

property (3) of αi
t, we have bt ≤

∑t
i=1 α

i
tbt ≤ 2bt. Under events E1 and E2, for t ≥ 1,the third term

of the RHS of equation (C.28) can be bounded by

(cH − 2(H − h)− 2)
√
Hι/t

≤
t∑

i=1

αi
t

(
rkih − rh(s, ã

ki
h) + V †

h+1(s
ki
h+1)− PhV

†
h+1(s, ã

ki
h) + bi

)
≤ (cH + 2(H − h) + 2)

√
Hι/t.

(C.32)

For notational simplicity, let βh(t) = (cH + 2(H − h) + 2)
√
Hι/twhen t > 0 and βh(0) = 0

for any step h.

We split the fourth term of the RHS of equation (C.28) into two cases.

If ãkh = π†
h(s) holds,we have

Q†
h(s, ã

k
h)−Q

†
h(s, π

−
h (s)) = Q†

h(s, π
†
h(s))−Q

†
h(s, π

−
h (s)). (C.33)

Let Bh(t) = (e(H − h) + 1)
√

2Sι
t

when t > 0 and Bh(0) = H for any step h.

If ãkh ̸= π†
h(s) holds, the attacker attacked the agent, and from Lemma 2, we have with

probability 1− p,

Q†
h(s, π

−
h (s)) ≥ Lk

h(s, π
−
h (s)) ≥ Lk

h(s, ã
k
h) ≥ Q†

h(s, ã
k
h)− 2Bh

(
Nk

h (s, ã
k
h)
)
, (C.34)

and 0 ≤ Q†
h(s, ã

k
h)−Q

†
h(s, π

−
h (s)) ≤ 2Bh

(
Nk

h (s, ã
k
h)
)
.

If a = π†
h(s), the attacker does not attack so ãkih = a = π†

h(s). Then by combining (C.28)

and (C.32), we have for c ≥ 2

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
≤ Q

k

h(s, π
†
h(s))−Q

†
h(s, π

†
h(s))

≤ α0
tH +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+ βh(t).

(C.35)

181

Since V
ki
H+1 = V †

H+1 = 0, from induction on h = H,H − 1, . . . , 1, we have V
k

h(s) ≥

min{Qk

h(s, π
†
h(s)), H} ≥ V †

h (s) for all state s, step h and episode k with probability 1− 2p.

If a ̸= π†
h(s), the attacker attacks by changing the action to the target action or a possible worst

action. From (C.28) and (C.32), we have

Q
k

h(s, a)−Q
†
h(s, π

−
h (s))

≤α0
tH +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+ βh(t)

+
t∑

i=1

αi
t1

(
ãkih = π†

h(s)
)(

Q†
h(s, π

†
h(s))−Q

†
h(s, π

−
h (s))

)
+

t∑
i=1

αi
t1

(
ãkih ̸= π†

h(s)
)
2Bh

(
Nki

h (s, ãkih)
)
,

(C.36)

and

Q
k

h(s, a)−Q
†
h(s, π

†
h(s)) = Q

k

h(s, a)−Q
†
h(s, π

−
h (s))−∆h(s)

≤α0
tH +

t∑
i=1

αi
t

(
V

ki
h+1(s

ki
h+1)− V

†
h+1(s

ki
h+1)

)
+ βh(t)

+
t∑

i=1

αi
t1

(
ãkih ̸= π†

h(s)
) (

2Bh

(
Nki

h (s, ãkih)
)
−∆h(s)

)
,

(C.37)

where ∆h(s) := Q†
h(s, π

†
h(s))−Q

†
h(s, π

−
h (s)).

C.3.2 Proof of Theorem 10

In this section, we assume the two events E1, E2 hold. For any state s ∈ S and any step h ∈ [H],

Lemma 4 shows that in the agent’s observations, Q
k

h(s, π
†
h(s)) ≥ Q†

h(s, π
†
h(s)) for all episodes k ∈

[K] with probability 1−3p. Since UCB-H takes action by the function akh = argmaxa∈AQ
k

h(s
k
h, a),

we have that with probability 1 − 3p, Q
k

h(s
k
h, a

k
h) ≥ Q

k

h(s
k
h, π

†
h(s

k
h)) ≥ Q†

h(s
k
h, π

†
h(s

k
h)) for all

182

episodes k ∈ [K] and all steps h ∈ [H]. Thus, we can bound the loss and cost functions by

K∑
k=1

H∑
h=1

1
(
akh ̸= π†(skh)

)
∆h(s

k
h)

=
K∑
k=1

H∑
h=1

1
(
akh ̸= π†(skh)

) (
Q†

h(s
k
h, π

†
h(s

k
h))−Q

†
h(s

k
h, π

−
h (s

k
h))
)

≤
K∑
k=1

H∑
h=1

1
(
akh ̸= π†(skh)

) (
Q

k

h(s
k
h, a

k
h)−Q

†
h(s

k
h, π

−
h (s

k
h))
)
.

(C.38)

First consider a fixed step h. The contribution of step h to the loss function can be written as

Lossh(K) =
∑K

k=1 1
(
akh ̸= π†(skh)

)
. For notational convenience, denote

ϕk
h,h := 1

(
akh ̸= π†(skh)

)
and δkh := Q

k

h(s
k
h, a

k
h)−Q

†
h

(
skh, π

†
h(s

k
h)
)
. (C.39)

From the update equation of V -values in UCB-H algorithm, we have

V
k

h(s
k
h)− V

†
h(s

k
h) = min{H,max

a∈A
Q

k

h(s
k
h, a)} − V

†
h(s

k
h) ≤ δkh. (C.40)

From Lemma 4, with probability 1− 3p, we have

K∑
k=1

ϕk
h,hδ

k
h ≤

K∑
k=1

ϕk
h,hα

0

N
k
h(s

k
h,a

k
h)
H +

K∑
k=1

ϕk
h,hβh

(
N

k

h(s
k
h, a

k
h)
)

+
K∑
k=1

ϕk
h,h

N
k
h(s

k
h,a

k
h)∑

i=1

αi

N
k
h(s

k
h,a

k
h)
δ
ki(s

k
h,a

k
h,h)

h+1

+
K∑
k=1

ϕk
h,h

N
k
h(s

k
h,a

k
h)∑

i=1

αi

N
k
h(s

k
h,a

k
h)
1

(
ã
ki(s

k
h,a

k
h,h)

h ̸= π†
h(s

ki(s
k
h,a

k
h,h)

h)
)
·

(
2Bh

(
N

ki(s
k
h,a

k
h,h)

h (s
ki(s

k
h,a

k
h,h)

h , ã
ki(s

k
h,a

k
h,h)

h)
)
−∆h(s

ki(s
k
h,a

k
h,h)

h)
)
,

(C.41)

where ki(s, a, h) represents the episode where (s, a) was taken by the agent at step h for the ith

time.

The key step is to upper bound the third term in the RHS of (C.41). Note that for any

183

episode k, the third term takes all the prior episodes ki < k where (skh, a
k
h) was taken into

account. In other words, for any episode k′, the term δk
′

h+1 appears in the second term at

all posterior episodes k > k′ where (sk
′

h , a
k′

h) was taken. The first time it appears we have

N
k

h(s
k
h, a

k
h) = N

k

h(s
k′

h , a
k′

h) = N
k′

h (s
k′

h , a
k′

h) + 1 and the second time it appears we have

N
k

h(s
k
h, a

k
h) = N

k

h(s
k′

h , a
k′

h) = N
k′

h (s
k′

h , a
k′

h) + 2, and so on. Thus, we exchange the order of

summation and have

K∑
k=1

ϕk
h,h

N
k
h(s

k
h,a

k
h)∑

i=1

αi

N
k
h(s

k
h,a

k
h)
δ
ki(s

k
h,a

k
h,h)

h+1

=
K∑

k′=1

δk
′

h+1

N
K
h (sk

′
h ,ak

′
h)∑

t=N
k′
h (sk

′
h ,ak

′
h)+1

ϕ
kt(sk

′
h ,ak

′
h ,h)

h,h α
N

k′
h (sk

′
h ,ak

′
h)+1

t .

(C.42)

For any k ∈ [K], let ϕk
h,h+1 =

∑N
K
h (skh,a

k
h)

t=N
k
h(s

k
h,a

k
h)+1

ϕ
kt(skh,a

k
h)

h,h α
N

k
h(s

k
h,a

k
h)+1

t . The third term in the RHS

of (C.41) can be simplified as
∑K

k=1 ϕ
k
h,h+1δ

k
h+1. The fourth term in the RHS of (C.41) can be

simplified as
K∑
k=1

ϕk
h,h+11

(
ãkh ̸= π†

h(s
k
h)
) (

2Bh

(
Nk

h (s
k
h, ã

k
h)
)
−∆h(s

k
h)
)
. (C.43)

Since α0
t = 0 when t ≥ 1,

∑K
k=1 ϕ

k
h,hα

0

N
k
h(s

k
h,a

k
h)
H ≤ SAH . Thus, we can rewrite (C.41) as

K∑
k=1

ϕk
h,hδ

k
h ≤SAH +

K∑
k=1

ϕk
h,h+1δ

k
h+1 +

K∑
k=1

ϕk
h,hβh

(
N

k

h(s
k
h, a

k
h)
)

+
K∑
k=1

ϕk
h,h+11

(
ãkh ̸= π†

h(s
k
h)
) (

2Bh

(
Nk

h (s
k
h, ã

k
h)
)
−∆h(s

k
h)
)
.

(C.44)

Recursing the result for h′ = h, h + 1, . . . , H , and using the fact δkH+1 = 0 for all episode k,

184

we have

K∑
k=1

ϕk
h,hδ

k
h ≤SAH(H − h+ 1) +

H∑
h′=h

K∑
k=1

ϕk
h,h′βh′

(
N

k

h′(skh′ , akh′)
)

+
H∑

h′=h

K∑
k=1

ϕk
h,h′+11

(
ãkh′ ̸= π†

h′(s
k
h)
)
2Bh′

(
Nk

h′(skh′ , ãkh′)
)

−
H∑

h′=h

K∑
k=1

ϕk
h,h′+11

(
ãkh′ ̸= π†

h′(s
k
h)
)
∆h(s

k
h′).

(C.45)

Here, we present some important properties of ϕk
h,h′ for all step h′ ≥ h when step h are fixed:

(1)
∑K

k=1 ϕ
k
h,h =

∑K
k=1 1

(
akh ̸= π†(s)

)
= Lossh(K);

(2)
∑K

k=1 ϕ
k
h,h′ =

∑K
k=1 ϕ

k
h,h, for all step h′ ≥ h;

(3)maxk∈[K] ϕ
k
h,h′+1 ≤ (1 + 1

H
)maxk∈[K] ϕ

k
h,h′ for all step h′ ≥ h;

(4)maxk∈[K] ϕ
k
h,h = 1, and maxk∈[K] ϕ

k
h,h′ ≤ e for all step h′ ≥ h.

Property (1) is from the definition of N
k

h(s). Properties (2) and (3) can be proved by the

properties of αi
t. In particular, for all step h′ ≥ h,

K∑
k=1

ϕk
h,h′+1 =

K∑
k=1

ϕk
h,h′

N
k
h′ (s

k
h′ ,a

k
h′)∑

i=1

αi

N
k
h′ (s

k
h′ ,a

k
h′)

=
K∑
k=1

ϕk
h,h′ , (C.46)

and for all step h′ ≥ h and all episode k ∈ [K],

ϕk
h,h′+1 =

N
K
h′ (s

k
h′ ,a

k
h′)∑

t=N
k
h′ (s

k
h′ ,a

k
h′)+1

ϕ
kt(skh′ ,a

k
h′ ,h

′)

h,h′ α
N

k
h′ (s

k
h′ ,a

k
h′)+1

t

≤
N

K
h′ (s

k
h′ ,a

k
h′)∑

t=N
k
h′ (s

k
h′ ,a

k
h′)+1

α
N

k
h′ (s

k
h′ ,a

k
h′)+1

t max
k∈[K]

ϕk
h,h′

≤(1 + 1

H
) max
k∈[K]

ϕk
h,h′ .

(C.47)

Property (4) is from Property (3) and the fact (1 + 1
H
)H ≤ e.

185

Now we are ready to prove Theorem 10. At first, we bound the second term of the RHS

of (C.45). We regroup the summands in a different way.

H∑
h′=h

K∑
k=1

ϕk
h,h′ · βh′

(
N

k

h′(skh′ , akh′)
)
=

H∑
h′=h

∑
(s,a)∈S×A

N
K
h′ (s,a)∑
t=1

ϕ
kt(s,a,h′)
h,h′ βh′(t− 1)

=
H∑

h′=h

∑
(s,a)∈S×A

N
K
h′ (s,a)∑
t=2

ϕ
kt(s,a,h′)
h,h′ βh′(t− 1),

(C.48)

because βh′(0) = 0. Define ϕ(s,a)
h,h′ =

∑N
K
h′ (s,a)

t=1 ϕ
kt(s,a,h)
h,h′ . Since

√
1
t

is a monotonically decreasing

positive function for n ≥ 1 and ϕkt(s,a,h′)
h,h′ ≤ e, by the rearrangement inequality, for h′ ≥ h, we

have

N
K
h′ (s,a)∑
t=1

ϕ
kt(s,a,h)
h,h′

√
1

t
≤

⌊ϕ(s,a)

h,h′ /e⌋∑
t=1

e

√
1

t
+ (ϕ

(s,a)
h,h′ − ⌊ϕ(s,a)

h,h′ /e⌋)
√

1

⌈ϕ(s,a)
h,h′ /e⌉

≤ e

√
1

1
+

∫ ϕ
(s,a)

h,h′ /e

1

e

√
1

t
dt ≤ 2

√
eϕ

(s,a)
h,h′ .

(C.49)

By plugging (C.49) back into (C.48) we have

H∑
h′=h

K∑
k=1

ϕk
h,h′ · βh′

(
N

k

h′(skh′ , akh′)
)
≤

H∑
h′=h

2(cH + 2(H − h′) + 2)

√√√√eSAHι
K∑
k=1

ϕk
h,h

≤H(cH + 2H + 2)

√√√√eSAHι
K∑
k=1

ϕk
h,h

=H(cH + 2H + 2)
√
eSAHιLossh(K),

(C.50)

where the first inequality holds due to
∑

(s,a)∈S×A ϕ
(s,a)
h,h′ =

∑K
k=1 ϕ

k
h,h′ and

√
t is a concave function

for t ≥ 0.

186

Similarly, we can bound a part of the third term of the RHS of (C.45) by

H∑
h′=h

K∑
k=1

ϕk
h,h′+11

(
ãkh′ ̸= π†

h′(s
k
h)
)
2Bh′

(
Nk

h′(skh′ , ãkh′)
)

①

≤
H∑

h′=h

∑
(s,ã)∈S×A

NK
h′ (s,ã)∑
t=1

ϕ
kt(s,ã,h′)
h,h′+1 2Bh′(t− 1)

②

≤
H∑

h′=h

∑
(s,ã)∈S×A

NK
h′ (s,ã)∑
t=2

ϕ
kt(s,ã,h′)
h,h′+1 2Bh′(t− 1) + 2e(H − h+ 1)SAH

③

≤H2e

√√√√SAι

K∑
k=1

ϕk
h,h + 2e(H − h+ 1)SAH

=H2e
√
SAιLossh(K) + 2e(H − h+ 1)SAH

(C.51)

where kt(s, ã, h) represents the episode where (s, ã) was taken by the attacker at step h for the ith

time. Here, ① comes from deleting the indicator function and regrouping the summands; ② follows

ϕk
h,h′ ≤ e and Bh(0) = H; ③ follows the same steps in (C.49) and (C.50).

As shown in (C.38), we have

0 ≤
K∑
k=1

ϕk
h,h

(
Q

k

h(s
k
h, a

k
h)−Q

†
h

(
skh, π

−
h (s

k
h)
))
−

K∑
k=1

ϕk
h,h∆h(s

k
h) ≤

K∑
k=1

ϕk
h,hδ

k
h. (C.52)

Thus, we need to find the lower bound of the fourth term of the RHS of (C.45). Since ∆h(s
k
h) >

∆min > 0, we have

H∑
h′=h

K∑
k=1

ϕk
h,h′+11

(
ãkh′ ̸= π†

h′(s
k
h)
)
∆h(s

k
h′)

≥
K∑
k=1

ϕk
h,h+11

(
ãkh ̸= π†

h(s
k
h)
)
∆h(s

k
h)

≥∆min

K∑
k=1

ϕk
h,h+11

(
ãkh ̸= π†

h(s
k
h)
)

=∆min

(
Lossh(K)−

K∑
k=1

ϕk
h,h+11

(
ãkh = π†

h(s
k
h)
))

.

(C.53)

187

Recall the definition of ϕk
h,h+1 and the property (5) of αi

t, we have

K∑
k=1

ϕk
h,h+11

(
ãkh = π†

h(s
k
h)
)

=
K∑
k=1

N
K
h (skh,a

k
h)∑

t=N
k
h(s

k
h,a

k
h)+1

ϕ
kt(skh,a

k
h,h)

h,h α
N

k
h(s

k
h,a

k
h)+1

t 1

(
ãkh = π†

h(s
k
h)
)

=
∑
s∈S

K∑
k=1

1
(
skh = s

)
1

(
ãkh = π†

h(s)
)
1

(
akh ̸= π†

h(s)
) N

K
h (s,akh)∑

t=N
k
h(s,a

k
h)+1

α
N

k
h(s,a

k
h)+1

t

≤(1 + 1

H
)

K∑
k=1

1

(
ãkh = π†

h(s
k
h)
)
1

(
akh ̸= π†

h(s
k
h)
)
.

(C.54)

Recall the inequality (C.18). We have with probability 1− p, for all h ∈ [H]

K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
1

(
ãkh ̸= π†

h(s)
)

≥ 1

H

K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
−

√√√√2 log(2H/p)
K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
,

(C.55)

which is equivalent to

K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
1

(
ãkh = π†

h(s)
)

≤(1− 1

H
)

K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
+

√√√√2 log(2H/p)
K∑
k=1

1

(
akh ̸= π†

h(s
k
h)
)
,

(C.56)

Plugging these back into (C.54) and further (C.53), we have

H∑
h′=h

K∑
k=1

ϕk
h,h′+11

(
ãkh′ ̸= π†

h′(s
k
h)
)
∆h(s

k
h′)

≥ ∆min

 1

H2
Lossh(K)− (1 +

1

H
)

√√√√2 log(2H/p)
K∑
k=1

Lossh(K)

 .

(C.57)

188

Combining (C.45), (C.50), (C.51) and (C.57), we have

∆min

 1

H2
Lossh(K)− (1 +

1

H
)

√√√√2log(2H/p)
K∑
k=1

Lossh(K)


≤H2e

√
SAιLossh(K) + 2e(H − h+ 1)SAH

+ SAH(H − h+ 1) +H(cH + 2H + 2)
√
eSAHιLossh(K),

(C.58)

which is equivalent to

Lossh(K) ≤2(H2 +H)2 log(2H/p) +
1

∆min

SAH2(H − h+ 1)

+
1

∆2
min

e2H8SAι+
1

∆2
min

eH7(cH + 2H + 2)2SAι.

(C.59)

This establishes

Cost(K,H) ≤ Loss(K) ≤ O

(
H5 log(2H/p) +

1

∆min

SAH4 +
1

∆2
min

H10SAι

)
. (C.60)

189

Appendix D

Appendix of Chapter 5

D.1 Notations

In this section, we introduce some notations that will be frequently used in appendixes.

The attack strategies in this paper are all Markov and only depend on the current state

and actions. The post-attack reward function has the same form as the original reward

function which is Markov and bounded in [0, 1]. Thus, the combination of the attacker and

the environment MG(S, {Ai}mi=1, H, P, {Ri}mi=1) can also be considered as a new environment

M̃G(S, {Ai}mi=1, H, P̃ , {R̃i}mi=1), and the agents interact with the new environment. R̃i,h : S ×

A → [0, 1] represents the post-attack reward function for the ith agent in the step h. The post-attack

transition probabilities satisfy P̃h(s
′|s,aaa) =

∑
aaa′ Ah(aaa

′|s,aaa)Ph(s
′|s,aaa′).

We use R̃i, Ñi, Q̃i and Ṽi to denote the mean rewards, counter, Q-values and value functions of

the new post-attack environment that each agent i observes. We use Nk, V k and πk to denote the

counter, value functions, and policy maintained by the agents’ algorithm at the beginning of the

episode k.

190

For notation simplicity, we define two operators P andD as follows:

Ph[V](s,a) = Es′∼Ph(·|s,a) [V (s′)] ,

Dπ[Q](s) = Ea∼π(·|s) [Q(s,a)] .

(D.1)

Furthermore, we let A denote the action manipulation. A = {Ah}h∈[H] is a collection of

action-manipulation matrices, so thatAh(·|s,a) gives the probability distribution of the post-attack

action if actions a are taken at state s and step h. Using this notation, in the d-portion attack

strategy, we have Ah(π
†
h(s)|s,a) = dh(s,a)/m, and Ah(π

−
h (s)|s,a) = 1− dh(s,a)/m.

D.2 Proof of the insufficiency of action poisoning only attacks

and reward poisoning only attacks

D.2.1 Proof of Theorem 11

We consider a simple case of Markov game wherem = 2,H = 1 and |S| = 1. The reward function

can be expressed in the matrix form in Table D.1.

Table D.1: Reward matrix

Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.1, 0.1)

The target policy is that the two agents both choose to defect. In this MG, the two agents’

rewards are the same under any action. As the action attacks only change the agent’s action, the

post-attack rewards have the same property. The post-attack reward function can be expressed in

the matrix form in Table D.2.

To achieve the objective in (5.1), we first have r2 ≤ r4 and r3 ≤ r4, as the target policy should

be an NE. Since the other distinct policy should not be an ϵ-approximate CCE, we consider the

other three pure-strategy policies and have

191

Table D.2: Post-attack reward matrix

Cooperate Defect
Cooperate (r1, r1) (r2, r2)
Defect (r3, r3) (r4, r4)


r1 > r2 + ϵ, or r4 > r2 + ϵ

r1 > r3 + ϵ, or r4 > r3 + ϵ

r3 > r1 + ϵ, or r2 > r1 + ϵ

. (D.2)

Note that r3 > r1 + ϵ and r1 > r3 + ϵ are contradictory and r2 > r1 + ϵ and r1 > r2 + ϵ are

contradictory. We must have r4 > r3 + ϵ or r4 > r2 + ϵ. As the action attacks will keep the same

boundary of the rewards, r3 ≥ 0.1 and r2 ≥ 0.1. Then, r4 > 0.1 + ϵ.

Suppose there exists an action poisoning attack strategy that can successfully attack MARL

agents. We have
∑K

k=1

∑H
h=1

∑m
i=1 1

(
aki,h = π†(ski,h)

)
= T − o(T) = Ω(T), i.e. the attack loss

scales on o(T). To achieve the post-attack reward satisfy r4 > 0.1 + ϵ, the attacker needs to

change the target action (Defect, Defect) to other actions with probability at least ϵ, when the

agents choose the target action. Then, we have
∑K

k=1

∑H
h=1

∑m
i=1E(1(ã

k
i,h ̸= aki,h)) = Ω(ϵT). The

expected attack cost is linearly dependent on T . Hence, there does not exist an action poisoning

attack strategy that is both efficient and successful for this case.

D.2.2 Proof of Theorem 12

We consider a simple case of Markov game where m = 2, H = 2 and |S| = 3. The reward

functions are expressed in the following Table D.3.

The initial state is s1 at h = 1 and the transition probabilities are:

P (s2|s1, a) = 0.9, P (s3|s1, a) = 0.1, if a = (Defect, Defect),

P (s2|s1, a) = 0.1, P (s3|s1, a) = 0.9, if a ̸= (Defect, Defect).
(D.3)

The target policy is that the two agents both choose to defect at any state. The post-attack

192

Table D.3: Reward matrix

state s1 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.2, 0.2)
state s2 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.1, 0.1)
state s3 Cooperate Defect
Cooperate (1, 1) (0.5, 0.5)
Defect (0.5, 0.5) (0.9, 0.9)

reward function of the three states can be expressed in the matrix form in Table D.4.

Table D.4: Post-attack reward matrix

state s1 Cooperate Defect
Cooperate (r1, r2) (r3, r4)
Defect (r5, r6) (r7, r8)
state s2 Cooperate Defect
Cooperate (- , -) (- , -)
Defect (- , -) (r9, r10)

state s3 Cooperate Defect
Cooperate (- , -) (- , -)
Defect (- , -) (r11, r12)

We limit that the post-attack mean reward R̃ has the same boundary condition with that of the

pre-attack mean reward R, i.e. R̃ ∈ [0, 1]. Then, 0 ≤ r1, . . . , r12 ≤ 1.

Suppose there exists a reward poisoning attack strategy that can successfully attack MARL

agents, we have
∑K

k=1

∑H
h=1

∑m
i=1 1

(
aki,h = π†(ski,h)

)
= T − o(T) = Ω(T), i.e. the attack loss

scales on o(T).

If |r9 − 0.1| > 0.1, |r10 − 0.1| > 0.1, |r11 − 0.9| > 0.1, or |r12 − 0.9| > 0.1, we have the

attack cost
∑K

k=1

∑H
h=1

∑m
i=1E(|r̃ki,h − rki,h|) = Ω(0.1 ∗ K) = Ω(T). Thus, |r9 − 0.1| ≤ 0.1,

|r10 − 0.1| ≤ 0.1, |r11 − 0.9| ≤ 0.1 and |r12 − 0.9| ≤ 0.1.

For the target policy, we have Ṽ π†
i,1 (s1) = r7 + 0.9 ∗ r9 + 0.1 ∗ r11. For the policy π′ with

π′
1(s1) = (Cooperate, Defect), π′

2(s2) = (Defect, Defect), π′
2(s3) = (Defect, Defect), we have

Ṽ π′
i,1 (s1) = r3 + 0.1 ∗ r9 + 0.9 ∗ r11.

193

To achieve the objective in (5.1), the attacker should let the target policy to be an NE. Thus, we

have Ṽ π†
i,1 (s1) ≥ Ṽ π′

i,1 (s1) and then r7+0.9∗r9+0.1r11 ≥ r3+0.1∗r9+0.9∗r11. As |r9−0.1| ≤ 0.1

and |r11 − 0.9| ≤ 0.1, we have r7 ≥ r3 + 0.48. From the boundary condition, we have r3 ≥ 0

and then r7 ≥ 0.48. The attack cost scales at least on Ω(0.28 ∗ T) for a successful reward attack

strategy.

In summary, there does not exist an reward poisoning attack strategy that is both efficient and

successful for this case.

D.3 Analysis of the d-portion Attack

D.3.1 Proof of Theorem 13

We assume that the minimum gap exists and is positive, i.e. ∆min > 0. This positive gap provides

an opportunity for efficient action poisoning attacks.

We assume that the agent does not know the attacker’s manipulations and the presence of the

attacker. The attacker’s manipulations on actions are stationary. We can consider the combination

of the attacker and the environment MG(S, {Ai}mi=1, H, P, {Ri}mi=1) as a new environment

M̃G(S, {Ai}mi=1, H, P̃ , {R̃i}mi=1), and the agents interact with the new environment. We define Q̃i

and Ṽi as the Q-values and value functions of the new environment M̃G that each agent i observes.

We first prove that π† is an NE from every agent’s point of view.

Condition 1 implies that π† is not the worst policy from every agent’s point of view,

and there exists a policy π− that is worse than the target policy from every agent’s point of

view. Denote ∆†−
i,h(s) = Qπ†

i,h(s, π
†
h(s)) − Qπ†

i,h(s, π
−
h (s)). We define the minimum gap ∆min =

minh∈[H],s∈S,i∈[m] = ∆†−
i,h(s).

We set PhV
π
i,h+1(s,a) = Es′∼Ph(·|s,a)

[
V π
i,h+1(s

′)
]
. From d-portion attack strategy, we have

Q̃π
i,h(s,a) = R̃i,h(s,a) +

dh(s,a)

m
PhṼ

π
i,h+1(s, π

†
h(s)) +

(
1− dh(s,a)

m

)
PhṼ

π
i,h+1(s, π

−
h (s)),

(D.4)

194

and

R̃i,h(s,a) =
dh(s,a)

m
Ri,h(s, π

†
h(s)) +

(
1− dh(s,a)

m

)
Ri,h(s, π

−
h (s)). (D.5)

Since the attacker does not attack when the agents follow the target policy, we have Ṽ π†

i,h+1(s) =

V π†

i,h+1(s). Then,

Q̃π†

i,h(s,a) =
dh(s,a)

m
Qπ†

i,h(s, π
†
h(s)) +

(
1− dh(s,a)

m

)
Qπ†

i,h(s, π
−
h (s)). (D.6)

If ai ̸= π†
i,h(s), we have

Q̃π†

i,h(s, π
†
i,h(s)× a−i)− Q̃π†

i,h(s,a) =
1

2m

(
Qπ†

i,h(s, π
†
h(s))−Q

π†

i,h(s, π
−
h (s))

)
≥ ∆min

2m
. (D.7)

We have that policy π†
i is best-in-hindsight policy towards the target policy π†

−i at step h in the

observation of each agent i, i.e. Ṽ
π†
i×π†

−i

i,h+1 (s) = Ṽ
†,π†

−i

i,h+1 (s) for any agent i, any state s and any policy

π−i.

Since the above argument works for any step h ∈ [H], we have that the best response of each

agent i towards the target product policy π†
−i is π†

i and the target policy is an {NE, CE, CCE} under

d-portion attack.

Now we prove that the target policy π†
i is the unique {NE, CE, CCE}, when every state s ∈ S

is reachable at every step h ∈ [H] under the target policy.

If there exists an CCE π′ under d-portion attack, we have maxi∈[m](Ṽ
†,π′

−i

i,1 (s) − Ṽ π′
i,1 (s)) = 0

for any initial state s.

At the step H , Q̃π
i,H(s,a) = R̃i,H(s,a). Since Ri,H(s, π

†
H(s)) ≥ Ri,H(s, π

−
H(s)) + ∆min

with ∆min > 0, the policy π†
i,H is the unique best response towards any policy π−i,H , i.e.

Ṽ
π†
i,H ,π−i,H

i,H (s) = Ṽ
†,π−i,H

i,H (s) and Ṽ
π†
i,H ,π−i,H

i,H (s) > Ṽ
πi,H ,π−i,H

i,H (s) for any πi,H(·|s) ̸= π†
i,H(·|s).

Thus, we have π′
H(sH) = π†

H(sH) for any state sH that is reachable at the time step H under policy

195

π′. We assume that every state s ∈ S is reachable at every step h ∈ [H] under the target policy.

Under d-portion attacks, the post-attack action ãh = π†
h(s) with probability more than 0.5. Thus,

every state s ∈ S is reachable at every step h ∈ [H] under any policy π and d-portion attacks.

Recall that for any ai ̸= π†
i,h(s),

Q̃π†

i,h(s, π
†
i,h(s)× a−i)− Q̃π†

i,h(s,a) ≥ ∆min/2m. (D.8)

Suppose {π′
h′}Hh′=h+1 = {π†

h′}Hh′=h+1 for any states. If π′
i,h(·|s) ̸= π†

i,h(·|s) at a reachable state

s, we have

Ṽ π′

i,h(s) =Ea∼π′
h(·|s)[Q̃

π′

i,h(s,a)]

=Ea∼π′
h(·|s)[Q̃

π†

i,h(s,a)]

≤Ea−i∼π′
−i,h(·|s)[Q̃

π†

i,h(s, π
†
i,h(s)× a−i)]− c∆min/2m

=Ṽ
π†×π′

−i

i,h (s)− c∆min/m

(D.9)

with some constant c > 0. Then, π′ is not an CCE in such a case.

From induction on h = H,H − 1, · · · , 1, π′ = π† for any states. If every state s ∈ S is

reachable at every step h ∈ [H] under the target policy, π† is the unique {NE, CE, CCE}.

D.3.2 Proof of Theorem 14

Consider an arbitrary Markov policy π. From d-portion attack strategy, we have

Q̃π
i,h(s,a) =

dh(s,a)

m
Ri,h(s, π

†
h(s)) +

m− dh(s,a)
m

Ri,h(s, π
−
h (s))

+
dh(s,a)

m
PhṼ

π
i,h+1(s, π

†
h(s)) +

m− dh(s,a)
m

PhṼ
π
i,h+1(s, π

−
h (s))

=
dh(s,a)−m

m

(
Ri,h(s, π

†
h(s))−Ri,h(s, π

−
h (s))

)
+
dh(s,a)−m

m

(
PhṼ

π
i,h+1(s, π

†
h(s))−PhṼ

π
i,h+1(s, π

−
h (s))

)
+Ri,h(s, π

†
h(s)) +PhṼ

π
i,h+1(s, π

†
h(s))

(D.10)

196

and

Ṽ π
i,h(s) =Dπh

[Q̃π
i,h](s)

=
Dπh

[d](s)−m
m

(
Ri,h(s, π

†
h(s))−Ri,h(s, π

−
h (s))

)
+
Dπh

[d](s)−m
m

(
PhṼ

π
i,h+1(s, π

†
h(s))−PhṼ

π
i,h+1(s, π

−
h (s))

)
+Ri,h(s, π

†
h(s)) +PhṼ

π
i,h+1(s, π

†
h(s)).

(D.11)

Now we bound the difference between Ṽ π
i,h(s) and Ṽ π†

i,h (s) for any policy π.

Ṽ π†

i,h (s)− Ṽ π
i,h(s) = Ṽ π†

i,h (s)−Dπh
[Q̃π†

i,h](s)︸ ︷︷ ︸
(a)

+Dπh
[Q̃π†

i,h](s)− Ṽ π
i,h(s)︸ ︷︷ ︸

(b)

. (D.12)

For term (a), from equations (D.10) and (D.11), we have

Ṽ π†

i,h (s)−Dπh
[Q̃π†

i,h](s)

=
m−Dπh

[d](s)

m

(
Ri,h(s, π

†
h(s))−Ri,h(s, π

−
h (s))

)
+
m−Dπh

[d](s)

m

(
PhṼ

π†

i,h+1(s, π
†
h(s))−PhṼ

π†

i,h+1(s, π
−
h (s))

)
.

(D.13)

Since the attacker does not attack when the agents follow the target policy, we have Ṽ π†

i,h+1(s) =

V π†

i,h+1(s).

Ṽ π†

i,h (s)−Dπh
[Q̃π†

i,h](s) =
m−Dπh

[d](s)

m

(
Qπ†

i,h(s, π
†
h(s))−Q

π†

i,h(s, π
−
h (s))

)
. (D.14)

Denote ∆†−
i,h(s) = Qπ†

i,h(s, π
†
h(s))−Qπ†

i,h(s, π
−
h (s)). We have

Ṽ π†

i,h (s)−Dπh
[Q̃π†

i,h](s) =
∆†−

i,h(s)

2m
Ea∼πh(·|s)

[
m∑
i=1

1(ai ̸= π†
i,h(s))

]
. (D.15)

197

For term (b), from equations (D.10) and (D.11), we have

Dπh
[Q̃π†

i,h](s)− Ṽ π
i,h(s)

=
Dπh

[d](s)

m
PhṼ

π†

i,h+1(s, π
†
h(s)) +

m−Dπh
[d](s)

m
PhṼ

π†

i,h+1(s, π
−
h (s))

− Dπh
[d](s)

m
PhṼ

π
i,h+1(s, π

†
h(s))−

m−Dπh
[d](s)

m
PhṼ

π
i,h+1(s, π

−
h (s))

=
Dπh

[d](s)

m
Ph[Ṽ

π†

i,h+1 − Ṽ π
i,h+1](s, π

†
h(s)) +

m−Dπh
[d](s)

m
Ph[Ṽ

π†

i,h+1 − Ṽ π
i,h+1](s, π

−
h (s))

=Es′∼Ph(·|s,ã),ã∼Ah(·|s,a),a∼πh(·|s)[Ṽ
π†

i,h+1(s
′)− Ṽ π

i,h+1(s
′)].

(D.16)

By combining terms (a) and (b), we have

Ṽ π†

i,h (sh)− Ṽ π
i,h(sh)

=
∆†−

i,h(sh)

2m
Ea∼πh(·|sh)

[
1(ai ̸= π†

i,h(sh))
]

+Esh+1∼Ph(·|sh,ã),ã∼Ah(·|sh,a),a∼πh(·|sh)[Ṽ
π†

i,h+1(sh+1)− Ṽ π
i,h+1(sh+1)]

= · · · = Eπ,A,P

[
H∑

h′=h

m∑
i=1

1(ai,h′ ̸= π†
i,h′(sh′))

∆†−
i,h′(sh′)

2m

]
.

(D.17)

From the definition of the best-in-hindsight regret and (D.17), we have

Regi(K,H) =max
π′
i

K∑
k=1

[Ṽ
π′
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)]

≥
K∑
k=1

[Ṽ
π†
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)].

(D.18)

Now, we bound
∑m

i=1[Ṽ
π†
i×π−i

i,1 (s1) − Ṽ π
i,1(s1)] for any policy π. We introduce some special

strategy modifications {ϕ†
i,h}Hh=1. For any h′ ≥ h, we have ϕ†

i,h ⋄ πi,h′(s) = π†
i,h′(s) and for any

198

h′ < h, we have ϕ†
i,h ⋄ πi,h′(s) = πi,h′(s). Thus,

m∑
i=1

[Ṽ
π†
i×π−i

i,1 (s1)− Ṽ π
i,1(s1)]

=
H∑

h=1

m∑
i=1

[Ṽ
ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)].

(D.19)

When h = H , we have

m∑
i=1

(
Ṽ

ϕ†
i,H⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,H+1⋄πi×π−i

i,1 (s1)

)

=Eπ,A,P

[
m∑
i=1

(
Ṽ

ϕ†
i,H⋄πi×π−i

i,H (sH)− Ṽ
ϕ†
i,H+1⋄πi×π−i

i,H (sH)

)]

=Eπ,A,P

[
m∑
i=1

(
Ṽ

π†
i×π−i

i,H (sH)− Ṽ π
i,H(sH)

)]

=Eπ,A,P

[
m∑
i=1

1(ai,H ̸= π†
i,H(sH))

∆†−
i,H(sH)

2m

]
.

(D.20)

For h < H , we have

m∑
i=1

(
Ṽ

ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)

)

=Eπ,A,P

[
m∑
i=1

(
Ṽ

ϕ†
i,h⋄πi×π−i

i,h (sh)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,h (sh)

)]

=Eπ,A,P

[
m∑
i=1

(
Dϕ†

i,h⋄πi,h×π−i,h
−Dϕ†

i,h+1⋄πi,h×π−i,h

)[
Q̃

ϕ†
i,h+1⋄πi×π−i

i,h

]
(sh)

]

=Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m

(Dπ† −Dπ−)

[
Ri,h +PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1

]
(sh)



(D.21)

where the second equation holds as ϕ†
i,h ⋄ πi× π−i = ϕ†

i,h+1 ⋄ πi× π−i at any time step h′ > h and

the last equation holds from equation (D.10).

199

Note that Qπ†

i,h = Ri,h +PhV
π†

i,h+1 = Ri,h +PhṼ
π†

i,h+1. From equation (D.21), we have

m∑
i=1

(
Ṽ

ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)

)

=Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m

(Dπ† −Dπ−)
[
Qπ†

i,h

]
(sh)


︸ ︷︷ ︸

①

+Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m

(Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh)


︸ ︷︷ ︸

②

.

(D.22)

Denote ∆†−
i,h(s) = Qπ†

i,h(s, π
†
h(s))−Qπ†

i,h(s, π
−
h (s)). Thus,

① =Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m

∆†−
i,h(sh)

 . (D.23)

Now, we bound item ②. If (Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh) ≥ 0,

(Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh)

≥2Dπh
[d](sh)

m
Dπ†Ph[Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 − Ṽ π†

i,h+1](sh)

+
2(m−Dπh

[d](sh))

m
Dπ−Ph[Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 − Ṽ π†

i,h+1](sh)

=2Eπ,A,P

[
Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 (sh+1)− Ṽ π†

i,h+1(sh+1)

]
,

(D.24)

because the RHS of the inequality is smaller or equal to 0.

200

If (Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh) ≤ 0,

(Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh)

≥2Dπh
[d](sh)

m
(Dπ† −Dπ−)

[
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 −PhṼ
π†

i,h+1

]
(sh)

≥2Dπh
[d](sh)

m
Dπ†Ph[Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 − Ṽ π†

i,h+1](sh)

+
2(m−Dπh

[d](sh))

m
Dπ−Ph[Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 − Ṽ π†

i,h+1](sh)

=2Eπ,A,P

[
Ṽ

ϕ†
i,h+1⋄πi×π−i

i,h+1 (sh+1)− Ṽ π†

i,h+1(sh+1)

]
.

(D.25)

From (D.17), we have

Ṽ π†

i,h+1(sh+1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,h+1 (sh+1)

=Eϕ†
i,h+1⋄πi×π−i,A,P

[
H∑

h′=h+1

m∑
i=1

1(ai,h′ ̸= π†
i,h′(sh′))

∆†−
i,h′(sh′)

2m

]

≤
H∑

h′=h+1

(m− 1) max
s∈S,i∈[m]

∆†−
i,h′(s)

2m

≤(m− 1)

2m
∆†−

i,h(sh),

(D.26)

where the last inequality holds when mins∈S,i∈[m] ∆
†−
i,h(s) ≥

∑H
h′=h+1maxs∈S,i∈[m] ∆

†−
i,h′(s).

Combine the above inequalities, we have

② ≥−Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m

(m− 1)

m
∆†−

i,h(sh)

 , (D.27)

201

and

m∑
i=1

(
Ṽ

ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)

)
=① + ②

≥Eπ,A,P

 m∑
i=1

1− πi,h
(
sh, π

†
i,h(sh)

)
2m2

∆†−
i,h(sh)


=Eπ,A,P

[
m∑
i=1

1(ai,h ̸= π†
i,h(sh))

∆†−
i,h(sh)

2m2

]

≥Eπ,A,P

[
m∑
i=1

1(ai,h ̸= π†
i,h(sh))

]
∆min

2m2
.

(D.28)

In summary,

Regi(K,H) ≥
H∑

h=1

Eπ,A,P

[
m∑
i=1

1(ai,h ̸= π†
i,h(sh))

]
∆min

2m2
= E[Loss1(K,H)]

∆min

2m2
. (D.29)

If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded by a sub-linear

boundR(T), then the attack loss is bounded by E[Loss1(K,H)] ≤ 2m2R(T)/∆min.

The d-portion attack strategy attacks all agents when any agent i chooses an non-target action.

We have

Cost(K,H) =
K∑
k=1

H∑
h=1

m∑
i=1

(
1(ãki,h ̸= aki,h) + |r̃ki,h − rki,h|

)
≤

K∑
k=1

H∑
h=1

m∑
i=1

1[ãki,h ̸= aki,h]m.

(D.30)

Then, the attack cost is bounded by mE[Loss1(K,H)] ≤ 2m3R(T)/∆min.

202

D.4 Analysis of the η-gap attack

D.4.1 Proof of Theorem 15

We assume that the agent does not know the attacker’s manipulations and the presence of the

attacker. The attacker’s manipulations on rewards are stationary. We can consider the combination

of the attacker and the environment MG(S, {Ai}mi=1, H, P, {Ri}mi=1) as a new environment

M̃G(S, {Ai}mi=1, H, P, {R̃i}mi=1), and the agents interact with the new environment. We define Q̃i

and Ṽi as the Q-values and value functions of the new environment M̃G that each agent i observes.

We introduce some special strategy modifications {ϕ†
i,h}Hh=1. For any h′ ≥ h, we have ϕ†

i,h ⋄

πi,h′(s) = π†
i,h′(s) and for any h′ < h, we have ϕ†

i,h ⋄ πi,h′(s) = πi,h′(s). Thus,

Ṽ
π†
i×π−i

i,1 (s1)− Ṽ π
i,1(s1) =

H∑
h=1

[Ṽ
ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)]. (D.31)

We have that for any policy π,

[Ṽ
ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)]

=Eπ,A,P

[(
Ṽ

ϕ†
i,h⋄πi×π−i

i,h (sh)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,h (sh)

)]
=Eπ,A,P

[(
Dϕ†

i,h⋄πi,h×π−i,h
−Dϕ†

i,h+1⋄πi,h×π−i,h

)[
Q̃

ϕ†
i,h+1⋄πi×π−i

i,h

]
(sh)

]
=Eπ,A,P

[(
Dπ†

i,h×π−i,h
−Dπh

)[
R̃i,h +PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1

]
(sh)

]
.

(D.32)

Since R̃i,h(s,a) = Ri,h(s, π
†(s))−(η+(H−h)∆R)1(ai ̸= π†

i,h(s)) from η-gap attack strategy

and (H−h)mins′×a′×h′ Ri,h′(s′, a′) < PhṼ
π
i,h+1(s

′, a′) ≤ (H−h)maxs′×a′×h′ Ri,h′(s′, a′) for any

203

s and a, we have

[Ṽ
ϕ†
i,h⋄πi×π−i

i,1 (s1)− Ṽ
ϕ†
i,h+1⋄πi×π−i

i,1 (s1)]

=Eπ,A,P

[∑
a

πh(a|sh)(η + (H − h)∆R)1(ai ̸= π†
i,h(sh))

]

+Eπ,A,P

[∑
a

πh(a|sh)1(ai ̸= π†
i,h(sh))

(
PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 (sh, π
†
i,h(sh)× a−i)−PhṼ

ϕ†
i,h+1⋄πi×π−i

i,h+1 (sh,a)

)]

≥Eπ,A,P

[∑
a

πh(a|sh)η1(ai ̸= π†
i,h(s))

]

=Eπ,A,P

[
1(ai,h ̸= π†

i,h(s))
]
η.

(D.33)

Thus,

Ṽ
π†
i×π−i

i,1 (s1)− Ṽ π
i,1(s1) ≥ Eπ,A,P

[
H∑

h=1

1(ai,h ̸= π†
i,h(sh))

]
η ≥ 0. (D.34)

The target policy is an NE, and then also is an CE or CCE.

Now we prove that the target policy π†
i is the unique {NE, CE, CCE}, when every state s ∈ S

is reachable at every step h ∈ [H] under the target policy.

If there exists an CCE π′ under η-gap attack, we have maxi∈[m](Ṽ
†,π′

−i

i,1 (s) − Ṽ π′
i,1 (s)) =

0 for any initial state s. If π′
i,h(·|s) ̸= π†

i,h(·|s) at a reachable state s, we have that

Eπ′,A,P

[∑H
h=1 1(ai,h ̸= π†

i,h(sh))
]
. Thus,

Ṽ
π†
i×π′

−i

i,1 (s1)− Ṽ π′

i,1 (s1) ≥ Eπ′,A,P

[
H∑

h=1

1(ai,h ̸= π†
i,h(sh))

]
η > 0, (D.35)

and π′ is not an CCE. In summary, the target policy π†
i is the unique {NE, CE, CCE}.

204

D.4.2 Proof of Theorem 16

From the definition of the best-in-hindsight regret and (D.41), we have

Regi(K,H) =max
π′
i

K∑
k=1

[Ṽ
π′
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)]

≥
K∑
k=1

[Ṽ
π†
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)].

(D.36)

From (D.34), we have

Regi(K,H) ≥
K∑
k=1

Eπk,A,P

[
H∑

h=1

1[aki,h ̸= π†
i,h(s

k
h)]

]
η (D.37)

and
m∑
i=1

Regi(K,H) = ηE[Loss1(K,H)]. (D.38)

If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded by a sub-linear

boundR(T), then the attack loss is bounded by E[Loss1(K,H)] ≤ mR(T)/η.

The η-gap attack strategy attacks all agents when any agent i chooses an non-target action.

Note that the rewards are bounded in [0, 1]. We have

Cost(K,H) =
K∑
k=1

H∑
h=1

m∑
i=1

(
1(ãki,h ̸= aki,h) + |r̃ki,h − rki,h|

)
≤

K∑
k=1

H∑
h=1

m∑
i=1

1[aki,h ̸= π†
i,h(s

k
h)]m.

(D.39)

Hence, the attack cost is bounded by mE[Loss1(K,H)] ≤ m2R(T)/η.

205

D.5 Analysis of the gray-box attacks

D.5.1 Proof of Theorem 17

We assume that the agent does not know the attacker’s manipulations and the presence of the

attacker. The attacker’s manipulations on actions are stationary. We can consider the combination

of the attacker and the environment MG(S, {Ai}mi=1, H, P, {Ri}mi=1) as a new environment

M̃G(S, {Ai}mi=1, H, P̃ , {R̃i}mi=1), and the agents interact with the new environment. We define Q̃i

and Ṽi as the Q-values and value functions of the new environment M̃G that each agent i observes.

We first prove that the best response of each agent i towards any policy π−i is π†
i .

From the mixed attack strategy, we have

Q̃π
i,h(s,a) =1[ai = π†

i,h(s)]Ri,h(s, π
†
h(s)) +PhṼ

π
i,h+1(s, π

†
h(s)). (D.40)

Consider an arbitrary policy π and an arbitrary initial state s1. We have

Ṽ
π†
i×π−i

i,1 (s1)− Ṽ π
i,1(s1)

=Ṽ
π†
i×π−i

i,1 (s1)−Dπ[Q̃
π†
i×π−i

i,1](s1) +Dπ[Q̃
π†
i×π−i

i,1](s1)− Ṽ π
i,1(s1)

=Eai,1∼πi,1(·|s1)

[
1[ai,1 ̸= π†

i,1(s1)]Ri,1(s1, π
†
1(s1))

]
+P1Ṽ

π†
i×π−i

i,2 (s1, π
†
1(s1))−P1Ṽ

π
i,2(s1, π

†
1(s1))

=Eai,1∼πi,1(·|s1)

[
1[ai,1 ̸= π†

i,1(s1)]Ri,1(s1, π
†
1(s1))

]
+P1[Ṽ

π†
i×π−i

i,2 − Ṽ π
i,2](s1, π

†
1(s1))

= · · · = Eπ,A,P

[
H∑

h=1

(
1− πi,h

(
π†
i,h(sh)|sh

))
Ri,h(sh, π

†
h(sh))

]
≥ 0.

(D.41)

Since Ri,h(sh, π
†
h(sh)) > 0, Ṽ π†

i×π−i

i,1 (s1) − Ṽ π
i,1(s1) = 0 holds if and only if π†

i = πi holds for

the states that are reachable under policy π†. We conclude that the best response of each agent i

towards any policy π−i is π†
i under the mixed attack strategy. The target policy π† is an NE, CE,

CCE under the mixed attack strategy.

Now we prove that the target policy π†
i is the unique {NE, CE, CCE} under the mixed attack

206

strategy, when every state s ∈ S is reachable at every step h ∈ [H] under the target policy.

If there exists an CCE π′ under the mixed attack strategy, we have maxi∈[m](Ṽ
†,π′

−i

i,1 (s) −

Ṽ π′
i,1 (s)) = 0 for any initial state s.

From (D.41), we have that if π′
i,h(·|s) ̸= π†

i,h(·|s) at a reachable state s, Ṽ
π†
i×π′

−i

i,1 (s1)−Ṽ π′
i,1 (s1) >

0. Then Ṽ
†,π′

−i

i,1 (s1) > Ṽ
π†
i×π′

−i

i,1 (s1) > Ṽ π′
i,1 (s1). π

′ is not an CCE in this case.

We can conclude that π′ = π† for the states that are reachable under policy π′. If every state

s ∈ S is reachable at every step h ∈ [H] under the target policy, π† is the unique {NE, CE, CCE}.

D.5.2 Proof of Theorem 18

We setRmin = minh∈[H] mins∈S mini∈[m]Ri,h(s, π
†
h(s)). From the definition of the best-in-hindsight

regret and (D.41), we have

Regi(K,H) =max
π′
i

K∑
k=1

[Ṽ
π′
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)]

≥
K∑
k=1

[Ṽ
π†
i×πk

−i

i,1 (sk1)− Ṽ πk

i,1 (s
k
1)]

=
K∑
k=1

Eπk,A,P

[
H∑

h=1

(
1− πk

i,h

(
π†
i,h(s

k
h)|skh

))
Ri,h(s

k
h, π

†
h(s

k
h))

]

=
K∑
k=1

Eπk,A,P

[
H∑

h=1

1[aki,h ̸= π†
i,h(s

k
h)]Ri,h(s

k
h, π

†
h(s

k
h))

]

≥Rmin

K∑
k=1

Eπk,A,P

[
H∑

h=1

1[aki,h ̸= π†
i,h(s

k
h)]

]

(D.42)

and
m∑
i=1

Regi(K,H) ≥ RminE[Loss1(K,H)]. (D.43)

If the best-in-hindsight regret Reg(K,H) of each agent’s algorithm is bounded by a sub-linear

boundR(T) under the mixed attack strategy, then the attack loss is bounded byE[Loss1(K,H)] ≤

mR(T)/Rmin.

The mixed attack strategy only attacks agent i when agent i chooses a non-target action. We

207

have

Cost(K,H) =
K∑
k=1

H∑
h=1

m∑
i=1

(
1(ãki,h ̸= aki,h) + |r̃ki,h − rki,h|

)
≤

K∑
k=1

H∑
h=1

m∑
i=1

1[ãki,h ̸= aki,h] (1 + 1) .

(D.44)

Then, the attack cost is bounded by 2E[Loss1(K,H)] ≤ 2mR(T)/Rmin.

D.6 Analysis of the black-box attacks

D.6.1 Proof of Lemma 14

We denote by Q
k

†,h, Qk

†,h, V
k

†,h V
k
†,h, Nk

h , P̂k
h, πk

h and R̂k
†,h the observations of the approximate

mixed attacker at the beginning of episode k and time step h. As before, we begin with proving

that the estimations are indeed upper and lower bounds of the corresponding Q-values and state

value functions. We use π∗ to denote the optimal policy that maximizes the attacker’s rewards, i.e.

V π∗

†,1 (s) = maxπ V
π
†,1(s).

Lemma 15. With probability 1− p, for any (s,a, h) and k ≤ τ ,

Q
k

†,h(s,a) ≥ Qπ∗

†,h(s,a), Q
k

†,h(s,a) ≤ Qπk

†,h(s,a), (D.45)

V
k

†,h(s) ≥ V π∗

†,h (s), V
k
†,h(s) ≤ V πk

†,h (s). (D.46)

Proof. For each fixed k, we prove this by induction from h = H+1 to h = 1. For the stepH+1,

we have V
k

†,H+1 = V k
†,H+1 = Qπ∗

†,H+1 = 0. Now, we assume inequality (D.46) holds for the step

208

h+ 1. By the definition of Q-values and Algorithm 5.1, we have

Q
k

†,h(s,a)−Qπ∗

†,h(s,a)

=R̂k
†,h(s,a)−Rk

†,h(s,a) + P̂
k
hV

k

†,h+1(s,a)−PhV
π∗

i,h (s,a) +B(Nk
h (s,a))

=P̂k
h(V

k

†,h+1 − V π∗

†,h)(s,a) + (R̂k
†,h −Rk

†,h)(s,a) + (P̂k
h −Ph)V

π∗

†,h (s,a) +B(Nk
h (s,a)).

(D.47)

Recall thatB(N) = (H
√
S+1)

√
log(2AHτ/p)/(2N). By Azuma-Hoeffding inequality, we have

that with probability 1− 2p/SAH ,

∀k ≤ τ,
∣∣∣R̂k

†,h(s,a)−Rk
†,h(s,a)

∣∣∣ ≤√ log(2SAHτ/p)

2Nk
h (s,a)

, (D.48)

and

∀k ≤ τ,
∣∣∣(P̂k

h −Ph)V
π∗

†,h (s,a)
∣∣∣ ≤ H

√
S log(2SAHτ/p)

2Nk
h (s,a)

. (D.49)

Putting everything together, we have Q
k

†,h(s,a) − Qπ∗

†,h(s,a) ≥ P̂k
h(V

k

†,h+1 − V π∗

†,h)(s,a) ≥ 0.

Similarly, Qk

†,h(s,a) ≤ Qπk

†,h(s,a).

Now we assume inequality (D.45) holds for the step h. As discussed above, if inequality (D.46)

holds for the step h+ 1, inequality (D.45) holds for the step h. By Algorithm 5.1, we have

V
k

†,h(s) = Q
k

†,h(s, π
k
h(s)) ≥ Q

k

†,h(s, π
∗
h(s)) ≥ Qπ∗

†,h(s, π
∗
h(s)) = V π∗

†,h (s). (D.50)

Similarly, V k
†,h(s) ≤ V πk

†,h (s).

Now, we are ready to prove Lemma 14. By Azuma-Hoeffding inequality, we have that with

probability 1− 2p,

∣∣∣(Es1∼P0(·) − Es1∼P̂0(·)

) [
V π∗

†,1 (s1)− V πk

†,1 (s1)
]∣∣∣ ≤ H

√
S log(2τ/p)

2k
, (D.51)

209

and ∀k ≤ τ ,

∣∣∣∣∣
k∑

k′=1

(
Es1∼P0(·) − 1(s1 = sk

′

1)
) [
V π∗

†,1 (s1)− V πk′

†,1 (s1)
]∣∣∣∣∣ ≤ H

√
S log(2τ/p)

2k
. (D.52)

Thus, for any k ≤ τ ,

Es1∼P0(·)

[
V π∗

†,1 (s1)− V πk

†,1 (s1)
]

≤Es1∼P̂k
0(·)

[
V π∗

†,1 (s1)− V πk

†,1 (s1)
]
+H

√
S log(2τ/p)/(2k)

≤Es1∼P̂k
0(·)

[
V

k

†,1(s1)− V k
†,1(s1)

]
+H

√
S log(2τ/p)/(2k).

(D.53)

According to (D.51) and (D.52), we have

τ∑
k=1

(
Es1∼P̂k

0(·)

[
V

k

†,1(s1)− V k
†,1(s1)

]
+H

√
S log(2τ/p)/(2k)

)
≤

τ∑
k=1

(
V

k

†,1(s
k
1)− V k

†,1(s
k
1)
)
+

τ∑
k=1

3H
√
S log(2τ/p)/(2k).

(D.54)

We define ∆V k
h (s) = V

k

†,h(s)− V k
†,h(s), ∆Q

k
h(s,a) = Q

k

†,h(s,a)−Qk

†,h(s,a). By the update

equations in Algorithm 5.1, we have ∆Qk
h(s,a) ≤ P̂k

h∆V
k
h+1(s,a)+2B(Nk

h (s,a)) and ∆V k
h (s) =

∆Qk
h(s, π

k
h(s)). We define ψk

h = ∆V k
h (s

k
h) = ∆Qk

h(s
k
h, a

k
h). From (D.49) and (D.56), we have

ψk
h ≤P̂k

h∆V
k
h+1(s

k
h,a

k
h) + 2B(Nk

h (s
k
h,a

k
h))

≤Pk
h∆V

k
h+1(s

k
h,a

k
h) + 3B(Nk

h (s
k
h,a

k
h))

≤Pk
h∆V

k
h+1(s

k
h,a

k
h)− ψk

h+1 + ψk
h+1 + 3B(Nk

h (s
k
h,a

k
h)).

(D.55)

By Azuma-Hoeffding inequality, we have that with probability 1− p/H , ∀k ≤ τ ,

∣∣∣∣∣
k∑

k′=1

|Pk′

h ∆V
k
h+1(s

k′

h ,a
k′

h)− ψk′

h+1|

∣∣∣∣∣ ≤ H

√
S log(2Hτ/p)

2k
. (D.56)

210

Since ψk
H+1 = 0 for all k, we have

τ∑
k=1

ψk
1 ≤

τ∑
k=1

H∑
h=1

|Pk
h∆V

k
h+1(s

k
h,a

k
h)− ψk

h+1|+
τ∑

k=1

H∑
h=1

3B(Nk
h (s

k
h,a

k
h))

≤
H∑

h=1

H

√
S log(2Hτ/p)

2τ
+

H∑
h=1

∑
(s,a)

Nτ
h (s,a)∑
n=1

(H
√
S + 1)

√
log(2SAHτ/p)

2n

≤H2

√
S log(2Hτ/p)

2τ
+H(H

√
S + 1)

√
2SAτ log(2SAHτ/p)

(D.57)

and therefore

τ∑
k=1

(
Es1∼P̂k

0(·)

[
V

k

†,1(s1)− V k
†,1(s1)

]
+H

√
S log(2τ/p)/(2k)

)
≤H2

√
S log(2Hτ/p)

2τ
+ 3H

√
2Sτ log(2τ/p) +H(H

√
S + 1)

√
2SAτ log(2SAHτ/p).

(D.58)

Since

π† = min
πk

(
Es1∼P̂k

0(·)

[
m∑
i=1

(
V π∗

†,1 (s1)− V πk

†,1 (s1)
)]

+H
√
S log(2τ/p)/(2k)

)
, (D.59)

Es1∼P0(·)

[
V π∗

†,1 (s1)− V π†

†,1 (s1)
]

≤Es1∼P̂k
0(·)

[
V π∗

†,1 (s1)− V π†

†,1 (s1)
]
+H

√
S log(2τ/p)/(2k)

≤H2

√
S log(2Hτ/p)

2τ 3
+ 3H

√
2S log(2τ/p)/τ +H(H

√
S + 1)

√
2SA log(2SAHτ/p)/τ

≤2H2S
√

2A log(2SAHτ/p)/τ ,

(D.60)

where the last inequality holds when S,H,A ≥ 2. Similarly,

K∑
k=1

[
V π∗

†,1 (s
k
1)− V π†

†,1 (s
k
1)
]
≤ 2H2S

√
2A log(2SAHτ/p)/τ . (D.61)

211

D.6.2 Proof of Theorem 19

We use the same learning rate αt in [42]. We also use an auxiliary sequence {αi
t}ti=1 defined in

[42] based on the learning rate, which will be frequently used in the proof:

αt =
H + 1

H + t
, α0

t =
t∏

j=1

(1− αj), α
i
t = αi

t∏
j=i+1

(1− αj). (D.62)

We follow the requirement for the adversarial bandit algorithm used in V-learning, which is to

have a high probability weighted external regret guarantee as follows.

Assumption 1. For any t ∈ N and any δ ∈ (0, 1), with probability at least 1− δ, we have

max
θ

t∑
j=1

αj
t [⟨θj, lj⟩ − ⟨θ, lj⟩] ≤ ξ(B, t, log(1/δ)). (D.63)

In addition, there exists an upper bound Ξ(B, t, log(1/δ)) ≥
∑t

t′=1 ξ(B, t, log(1/δ)) where (i)

ξ(B, t, log(1/δ)) is non-decreasing in B for any t, δ; (ii) Ξ(B, t, log(1/δ)) is concave in t for any

B, δ.

In particular, it was proved in [42] that the Follow-the-Regularized-Leader (FTRL) algorithm

(Algorithm 5.3) satisfies Assumption 1 with bounds ξ(B, t, log(1/δ)) ≤ O(
√
HB log(B/δ)/t)

and Ξ(B, t, log(1/δ)) ≤ O(
√
HBt log(B/δ)). By choosing hyper-parameterwt = αt

(∏t
i=2(1− αi)

)−1

and γt =
√

H logB
Bt

, ξ(B, t, log(1/δ)) = 10
√
HB log(B/δ)/t and Ξ(B, t, log(1/δ)) =

20
√
HBt log(B/δ).

We use V k, Nk, πk to denote the value, counter and policy maintained by V-learning algorithm

at the beginning of the episode k. Suppose s was previously visited at episodes k1, · · · , kt < k at

the step h. Set t′ such that kt′ ≤ τ and kt′+1 > τ .

In the exploration phase of the proposed approximate mixed attack strategy, the rewards are

equal to 1 for any state s, any action a, any agent i and any step h. The loss updated to the

adversarial bandit update step in Algorithm 5.2 is equal to h−1
H

.

In the attack phase, the expected loss updated to the adversarial bandit update step in

212

Algorithm 5.2 is equal to

t′∑
j=1

αj
t

h− 1

H
+

t∑
j=t′+1

αj
tDπ†

(
H −PhV

kj

i,h+1

H

)
(s) +

t∑
j=t′+1

αj
tDπkj

h

(
−r̃i,h
H

)
(s). (D.64)

Thus, in both of the exploration phase and the attack phase, π† is the best policy for the

adversarial bandit algorithm.

By Assumption 1 and the adversarial bandit update step in Algorithm 5.2, with probability at

least 1− δ, for any (s, h) ∈ S × [H] and any k > τ , we have

ξ(A, t, ι) ≥
t′∑

j=1

αj
t

h− 1

H
+

t∑
j=t′+1

αj
tDπ†

(
H −PhV

kj

i,h+1

H

)
(s) +

t∑
j=t′+1

αj
tDπkj

h

(
−r̃i,h
H

)
(s)

−
t′∑

j=1

αj
t

h− 1

H
+

t∑
j=t′+1

αj
tDπ†

(
H −PhV

kj

i,h+1

H

)
(s) +

t∑
j=t′+1

αj
tDπ†

(
−r̃i,h
H

)
(s)

=
t∑

j=t′+1

αj
t

(
1− πkj

i,h(π
†
i,h(s)|s)

) ri,h(s, π†
h(s))

H
,

(D.65)

where ι = log(mHSAK/δ).

Note that Rmin = minh∈[H] mins∈S mini∈[m]Ri,h(s, π
†
h(s)). We have

H

Rmin

ξ(A, t, ι) ≥
t∑

j=t′+1

αj
t

(
1− πkj

i,h(π
†
i,h(s)|s)

)
. (D.66)

Let nk
h = Nk

h (s
k
h) and suppose skh was previously visited at episodes k1, · · · , knk

h < k at the step h.

Let kj(s) denote the episode that s was visited in j-th time.

H

Rmin

ξ(A, nk
h, ι) ≥

nk
h∑

j=Nτ
h (s

k
h)+1

αj

nk
h

(
1− πkj

i,h(π
†
i,h(s

k
h)|skh)

)
. (D.67)

213

According to the property of the learning rate αt, we have

H

Rminαt
t

ξ(A, nk
h, ι) +

nk
h−1∑

j=Nτ
h (s

k
h)+1

H

Rmin

ξ(A, j, ι) ≤
nk
h∑

j=Nτ
h (s

k
h)+1

(
1− πkj

i,h(π
†
i,h(s

k
h)|skh)

)
. (D.68)

Then,

40H

Rmin

√
HAnk

hι ≤
nk
h∑

j=Nτ
h (s

k
h)+1

(
1− πkj

i,h(π
†
i,h(s

k
h)|skh)

)
. (D.69)

Computing the summation of the above inequality over h and s, we have

E

[
H∑

h=1

K∑
k=τ+1

1[aki,h ̸= π†
i,h(s

k
h)]

]

=
H∑

h=1

∑
s∈S

NK
h (s)∑

j=Nτ
h (s)+1

(
1− πkj(s)

i,h (π†
i,h(s)|s)

)
≤
∑
s∈S

40

Rmin

√
H5ANK

h (s)ι

≤ 40

Rmin

√
H5ASKι.

(D.70)

In the exploration phase, the loss at each episode is up to H . In the attack phase, the expected

number of episodes that the agents do not follow π† is up to 40
Rmin

m
√
H7ASKι.

According to Lemma 14, the attack loss is bounded by

E [loss(K,H)] ≤ Hτ +
40

Rmin

m
√
H9ASKι+ 2H2SK

√
2Aι/τ . (D.71)

In the exploration phase, the approximate mixed attack strategy attacks at any step and any

episode. In the attack phase, the approximate mixed attack strategy only attacks agent i when

214

agent i chooses a non-target action. We have

Cost(K,H) =
K∑
k=1

H∑
h=1

m∑
i=1

(
1(ãki,h ̸= aki,h) + |r̃ki,h − rki,h|

)
≤

τ∑
k=1

H∑
h=1

m∑
i=1

(1 + 1) +
K∑

k=τ=1

H∑
h=1

m∑
i=1

1[ãki,h ̸= aki,h] (1 + 1) .

(D.72)

Then, the attack cost is bounded by

E [Cost(K,H)] ≤ 2mHτ +
80

Rmin

√
H5ASKι. (D.73)

For the executing output policy π̂ of V-learning, we have

1− π̂i,h(π†
i,h(s)|s)

=
1

K

K∑
k=1

Nk
h (s)∑
j=1

αj

Nk
h (s)

(
1− πkj(s)

i,h (π†
i,h(s)|s)

)

=
1

K

K∑
k=τ+1

Nk
h (s)∑

j=Nτ
h (s)+1

αj

Nk
h (s)

(
1− πkj(s)

i,h (π†
i,h(s)|s)

)
+

1

K

τ∑
k=1

Nk
h (s)∑
j=1

αj

Nk
h (s)

(
1− πkj(s)

i,h (π†
i,h(s)|s)

)

+
1

K

K∑
k=τ+1

Nτ
h (s)∑
j=1

αj

Nk
h (s)

(
1− πkj(s)

i,h (π†
i,h(s)|s)

)
≤ 20

Rmin

√
H3Aι

K
+

2τ

K
.

(D.74)

The probability that the agents with π̂ do not follow the target policy is bounded by 20mS
Rmin

√
H5Aι
K

+

2τmSH
K

.

According to Lemma 14, the attack loss of the executing output policy π̂ is upper bounded by

V π∗

†,1 (s1)− V π̂
†,1(s1) ≤ H

(
20mS

Rmin

√
H5Aι

K
+

2τmSH

K

)
+ 2H2S

√
2Aι/τ . (D.75)

215

Appendix E

Appendix of Chapter 6

E.1 Proof of Proposition 4

The uncertainty set of the policy execution has the form in:

Πρ(π) := {π̃|∀s, π̃h(·|s) = (1− ρ)π(·|s) + ρπ′
h(·|s), π′

h(·|s) ∈ ∆A}. (E.1)

We define

Cπ,π′,ρ
h (s) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]

Dπ,π′,ρ
h (s, a) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)

]
.

Robust Bellman Equation First we prove the action robust Bellman equation holds for any

policy π, state s action a and step h. From the definition of the robust value function in (6.1), we

have V π
H+1(s) = 0, ∀s ∈ S.

We prove the robust Bellman equation by building a policy π−. Here, policy π− is the optimal

adversarial policy towards the policy π.

216

At step H , we set π−
H(s) = argmina∈ARH(s, a). We have

V π
H(s) = min

π′
Cπ,π′,ρ

H (s)

= (1− ρ)[DπH
RH](s) + ρmin

π′
[Dπ′

H
RH](s)

= (1− ρ)[DπH
Qπ

H](s) + ρmin
a∈A

Qπ
H(s, a) = Cπ,π−,ρ

H (s),

(E.2)

as VH+1 = 0.

The robust Bellman equation holds at stepH and minπ′
∑

sw(s)C
π,π′,ρ
H (s) =

∑
sw(s)minπ′ Cπ,π′,ρ

H (s) =∑
sw(s)C

π,π−,ρ
H (s) for any state s and any weighted function w : S → ∆S .

Suppose the robust Bellman equation holds at step h + 1 and minπ′
∑

sw(s)C
π,π′,ρ
h+1 (s) =∑

sw(s)minπ′ Cπ,π′,ρ
h+1 (s) =

∑
sw(s)C

π,π−,ρ
h+1 (s) for any state s and any weighted function w :

S → ∆S .

Now we prove the robust Bellman equation holds at step h. From the definition of the robust

Q-function in (6.2) and the form of uncertainty set, we have

Qπ
h(s, a) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)

]

=min
π′

Dπ,π′,ρ
h (s, a)

=Rh(s, a) + min
π′
Es′∼Ph(·|s,a)C

π,π′,ρ
h+1 (s)

=Rh(s, a) +Es′∼Ph(·|s,a)min
π′

Cπ,π′,ρ
h+1 (s)

=Rh(s, a) + [PhV
π
h+1](s, a).

(E.3)

We also have that Qπ
h(s, a) = Dπ,π−,ρ

h (s, a).

Recall that a (stochastic) Markov policy is a set of H maps π := {πh : S → ∆A}h∈[H]. From

217

the definition of the robust value function in (6.1) and the form of uncertainty set, we have

V π
h (s) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]

=min
π′

Cπ,π′,ρ
h (s)

=min
π′

h

min
{π′

h′}Hh′=h+1

Cπ,π′,ρ
h (s)

≥(1− ρ) min
{π′

h′}Hh′=h+1

Ea∼πh(·|s)D
π,π′,ρ
h (s, a) + ρmin

π′
h

min
{π′

h′}Hh′=h+1

Ea∼π′
h(·|s)D

π,π′,ρ
h (s, a)

≥(1− ρ)Ea∼πh(·|s) min
{π′

h′}Hh′=h+1

Dπ,π′,ρ
h (s, a) + ρmin

π′
h

Ea∼π′
h(·|s) min

{π′
h′}Hh′=h+1

Dπ,π′,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρmin
a∈A

Qπ
h(s, a).

(E.4)

We set π−
h (s) = argmina∈AQ

π
h(s, a) = argmina∈AD

π,π−,ρ
h (s, a).

At step h, we have

V π
h (s) ≤C

π,π−,ρ
h (s)

=(1− ρ)[Dπh
Dπ,π−,ρ

h](s) + ρmin
a∈A

Dπ,π−,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρmin
a∈A

Qπ
h(s, a),

(E.5)

where the last equation comes from the robust Bellman equation at step h+ 1 and

Dπ,π−,ρ
h (s, a) = Rh(s, a) + [PhC

π,π−,ρ
h+1](s, a) = Rh(s, a) + [PhV

π
h+1](s, a).

Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step

h. For any weighted function w, we have minπ′
∑

sw(s)C
π,π′,ρ
h (s) ≥

∑
sw(s)minπ′ Cπ,π′,ρ

h (s).

Then, minπ′
∑

sw(s)C
π,π′,ρ
h (s) ≤

∑
sw(s)C

π,π−,ρ
h (s) =

∑
sw(s)minπ′ Cπ,π′,ρ

h (s).

By induction on h = H, · · · , 1, we prove the robust Bellman equation.

218

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect

duality holds and can be solved by the optimal robust Bellman equation.

The control problem in the LHS of (6.4) is equivalent to

max
π

min
π̃∈Πρ(π)

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
= max

π
min
π′

Cπ,π′,ρ
h (s). (E.6)

The control problem in the RHS of (6.4) is equivalent to

min
π̃∈Πρ(π)

max
π

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
= min

π′
max

π
Cπ,π′,ρ

h (s). (E.7)

For step H , we have Cπ,π′,ρ
H (s) = [D((1−ρ)π+ρπ′)H

RH](s) = (1 − ρ)[DπH
RH](s) +

ρ[Dπ′
H
RH](s). Thus, we have

max
π

min
π′

Cπ,π′,ρ
H (s) =(1− ρ)max

π
[DπH

RH](s) + ρmin
π′

[Dπ′
H
RH](s)

=(1− ρ)max
a∈A

RH(s, a) + ρmin
b∈A

RH(s, b),

(E.8)

and

min
π′

max
π

Cπ,π′,ρ
H (s) =(1− ρ)max

π
[DπH

RH](s) + ρmin
π′

[Dπ′
H
RH](s)

=(1− ρ)max
a∈A

RH(s, a) + ρmin
b∈A

RH(s, b).

(E.9)

At step H , the perfect duality holds for all s and there always exists an optimal robust policy

π∗
H(s) = argmaxa∈AQ

∗
H(s, a) = argmaxa∈ARH(s, a) and its corresponding optimal adversarial

policy π−
H(s) = argmina∈ARH(s, a) which are deterministic. The action robust Bellman

optimality equation holds at step H for any stats s and action a.

In addition, maxπ minπ′
∑

sw(s)C
π,π′,ρ
H (s) =

∑
sw(s)maxπ minπ′ Cπ,π′,ρ

H (s) for any

219

weighted function w : S → ∆S . This can be shown as

max
π

min
π′

∑
s∈S

w(s)Cπ,π′,ρ
H (s)

=(1− ρ)max
π

∑
s∈S

w(s)[DπH
RH](s) + ρmin

π′

∑
s∈S

w(s)[Dπ′
H
RH](s)

=(1− ρ)
∑
s∈S

w(s)max
a∈A

RH(s, a) + ρ
∑
s∈S

w(s)min
b∈A

RH(s, b).

(E.10)

Suppose that at steps from h + 1 to H , the perfect duality holds for any s, the

action robust Bellman optimality equation holds for any state s and action a, there always

exists an optimal robust policy π∗
h′ = argmaxa∈AQ

∗
h′(s, a) and its corresponding optimal

adversarial policy π−
h′(s) = argmina∈AQ

∗
h′(s, a), ∀h′ ≥ h + 1, which is deterministic, and

maxπ minπ′
∑

sw(s)C
π,π′,ρ
h′ (s) =

∑
sw(s)maxπ minπ′ Cπ,π′,ρ

h′ (s) for any state s, any weighted

function w : S → ∆S and any h′ ≥ h + 1. We have V ∗
h′(s) = V π∗

h′ (s) = Cπ∗,π−,ρ
h′ (s) and

Q∗
h′(s, a) = Qπ∗

h′ (s, a) = Dπ∗,π−,ρ
h′ (s, a) for any state s and any h′ ≥ h+ 1.

We first prove that the robust Bellman optimality equation holds at step h.

We have

Q∗
h(s, a) = max

π
min
π′

Dπ,π′,ρ
h (s, a)

= max
π

min
π′

(Rh(s, a) + [PhC
π,π′,ρ
h+1](s, a))

= Rh(s, a) + [Ph(max
π

min
π′

Cπ,π′,ρ
h+1)](s, a)

= Rh(s, a) + [PhV
∗
h+1](s, a).

(E.11)

and also Q∗
h(s, a) = Qπ∗

h (s, a) = Dπ∗,π−,ρ
h (s, a).

220

From the robust Bellman equation, we have

max
π

V π
h (s) =max

π

(
(1− ρ)[Dπh

Qπ
h](s) + ρmin

a∈A
Qπ

h(s, a)

)
≤(1− ρ)max

πh

max
{πh}Hh′=h+1

[Dπh
Qπ

h](s) + ρ max
{πh}Hh′=h+1

min
a∈A

Qπ
h(s, a)

≤(1− ρ)max
πh

max
{πh}Hh′=h+1

[Dπh
Qπ

h](s) + ρmin
a∈A

max
{πh}Hh′=h+1

Qπ
h(s, a)

≤(1− ρ)max
πh

[Dπh
Q∗

h](s) + ρmin
a∈A

Q∗
h(s, a)

=(1− ρ)max
a∈A

Q∗
h(s, a) + ρmin

a∈A
Q∗

h(s, a).

(E.12)

We set π∗
h(s) = maxa∈AQ

∗
h(s, a). According to the robust bellman equation, we have

max
π

V π
h (s) ≥ V π∗

h (s) = (1− ρ)[Dπ∗
h
Qπ∗

h](s) + ρmin
a∈A

Qπ∗

h (s, a)

= (1− ρ)max
a∈A

Qπ∗

h (s, a) + ρmin
a∈A

Qπ∗

h (s, a)

= (1− ρ)max
a∈A

Q∗
h(s, a) + ρmin

a∈A
Q∗

h(s, a).

(E.13)

Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal

robust policy π∗
h = argmaxa∈AQ

∗
h(s, a) and its corresponding optimal adversarial policy π−

h (s) =

argmina∈AQ
∗
h(s, a) that is deterministic so that Cπ∗,π−,ρ

h (s) = V ∗
h (s).

Then, we prove the commutability of the expectation, the minimization and the maximization

operations at step h.

In the proof of robust Bellman equation, we have shown that

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s) =

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s)

for any policy π and any weighted function w. Hence

max
π

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s).

221

First, we have

max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s) ≤

∑
s

w(s)max
π

min
π′

Cπ,π′,ρ
h (s).

Then, we can show

max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s) ≥

∑
s

w(s)min
π′

Cπ∗,π′,ρ
h (s)

=
∑
s

w(s)Cπ∗,π−,ρ
h (s)

=
∑
s

w(s)max
π

min
π′

Cπ,π′,ρ
h (s). (E.14)

In summary,

max
π

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= w(s)max
π

min
π′

Cπ,π′,ρ
h (s).

We can show the perfect duality at step h by

max
π

min
π′

Cπ,π′,ρ
h (s) = Cπ∗,π−,ρ

h (s) = max
π

Cπ,π−,ρ
h (s) ≥ min

π′
max

π
Cπ,π′,ρ

h (s). (E.15)

By induction on h = H, · · · , 1, we prove Proposition 4.

E.2 Proof for Action Robust Reinforcement Learning with

Certificates

In this section, we prove Theorem 20. Recall that we use Q
k

h,V
k

h,Qk

h
,V k

h, Nk
h , P̂ k

h ,r̂kh and θkh to

denote the values ofQh,V h,Q
h
,V h, max{Nh, 1}, P̂h, rh and θh at the beginning of the k-th episode

in Algorithm 6.1.

222

E.2.1 Proof sketch

In this section, we provide sketch of the proof, which will highlight our the main ideas of our proof.

First, we will show that V h(s) ≥ V ∗
h (s) ≥ V π

h (s) ≥ V h(s) hold for all s and a. The regret can be

bounded by V 1 − V 1 and then be divided by four items, each of which can be bounded separately.

The full proof can be found in the appendix contained in the supplementary material.

Proof sketch of monotonicity

We define ER to be the event where

∣∣r̂kh(s, a)−Rh(s, a)
∣∣ ≤√2r̂kh(s, a)ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

(E.16)

holds for all (s, a, h, k) ∈ S × A× [H]× [K]. We also define EPV to be the event where

∣∣∣(P̂ k
h − Ph)V

∗
h+1(s, a)

∣∣∣ ≤
√

2VP̂k
h
V ∗
h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

(E.17)

and

∣∣∣(P̂ k
h − Ph)V

πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3Nk
h (s, a)

(E.18)

hold for all (s, a, h, k) ∈ S × A× [H]× [K].

Event ER means that the estimations of all reward functions stay in certain neighborhood of the

true values. Event EPV represents that the estimation of the value functions at the next step stay in

some intervals. The following lemma shows ER and EPV hold with high probability. The analysis

will be done assuming the successful event ER ∩ EPV holds in the rest of this section.

Lemma 16. P(ER ∩ EPV) ≥ 1− 3δ.

Lemma 17. Conditioned on event ER ∩ EPV , V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥

Q∗
h(s, a) ≥ Qπk

h (s, a) ≥ Qk

h
(s, a) hold for all (s, a, h, k) ∈ S × A× [H]× [K].

223

Regret analysis

We decompose the regret and analyze the different terms. Set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+√
32

Nk
h (s,a)

+ 46
√
SH4ι

Nk
h (s,a)

, where πk∗ is the optimal policy towards the adversary policy πk with πk∗
h (s) =

argmaxπ C
π,πk,ρ
h (s).

We set

M1 =
K∑
k=1

H∑
h=1

[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)], (E.19)

M2 =
K∑
k=1

H∑
h=1

1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)] (E.20)

M3 =
K∑
k=1

H∑
h=1

[P k
h (V

k

h+1 − V k
h+1)(s

k
h, a

k
h)− (V

k

h+1 − V k
h+1)(s

k
h+1)] (E.21)

M4 =
K∑
k=1

H∑
h=1

[
(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)

]
(E.22)

HereM1 andM2 are the cumulative sample error from the random choices of the adversarial policy

or agent’s policy.M3 is the cumulative sample error from the randomness of Monte Carlo sampling

of the next state.M4 is the cumulative error from the bonus item θ. Lemma 18 shows that the regret

can be bounded by these four terms.

Lemma 18. With probability at least 1− (S + 5)δ,

Regret(K) ≤
K∑
k=1

(V
k

1(s
k
1)− V k

1(s
k
1)) ≤ 21(M1 +M2 +M3 +M4). (E.23)

We now bound each of these four items separately.

Lemma 19. With probability at least 1− δ, |M1| ≤ H
√
2HKι.

Lemma 20. With probability at least 1− δ, |M2| ≤
√
2HKι.

Lemma 21. With probability at least 1− δ, |M3| ≤ H
√
2HKι.

224

Lemma 22. With probability at least 1− 2δ, |M4| ≤ 2S2AH3ι2 + 8
√
SAH2Kι+ 46S

3
2AH3ι2 +

√
24SAH3Kι+ 6

√
SAH5ι.

Putting all together. By Lemmas 18, 19, 20, 21, and 22, we conclude that, with probability

1− (S + 10)δ,

Regret(K) ≤O(
√
SAH3Kι+ S2AH3ι2). (E.24)

By rescaling δ, log(2SAHK
δ/(S+10)

) ≤ cι for some constant c and we finish the proof of regret. As∑K
k=1(V

k

1(s
k
1) − V k

1(s
k
1)) ≤ O(

√
SAH3Kι + S2AH3ι2), we have that V ∗

1 (s1) − V πout

1 (s1) ≤

mink V
k

1(s
k
1)− V k

1(s
k
1) ≤ O(

√
SAH3ι
K

+ S2AH3ι2

K
) and we finish the proof of sample complexity.

E.2.2 Proof of monotonicity

Proof of Lemma 16

When Nk
h (s, a) ≤ 1, (E.17), (E.18) and (E.16) hold trivially by the bound of the rewards and value

functions.

For every h ∈ [H] the empiric Bernstein inequality combined with a union bound argument,

to take into account that Nk
h (s, a) > 1 is a random number, leads to the following inequality w.p.

1− SAHδ (see Theorem 4 in [73])

∣∣∣(P̂ k
h − Ph)V

∗
h+1(s, a)

∣∣∣ ≤
√

2VP̂k
h
V ∗
h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

, (E.25)

and

∣∣∣(P̂ k
h − Ph)V

πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

. (E.26)

225

Similarly, with Azuma’s inequality, w.p. 1− SAHδ

∣∣r̂kh(s, a)−Rh(s, a)
∣∣ ≤√2V ar(rkh(s, a))ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

≤

√
2r̂kh(s, a)ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

, (E.27)

where V ar(rkh(s, a)) is the empirical variance of Rh(s, a) computed by the Nk
h (s, a) samples and

V ar(rkh(s, a)) ≤ r̂kh(s, a) .

Proof of Lemma 17

We first prove that Q
k

h(s, a) ≥ Q∗
h(s, a) for all (s, a, h, k) ∈ S × A × [H] × [K], by backward

induction conditioned on the event ER ∩EPV . Firstly, the conclusion holds for h = H +1 because

V H+1(s) = V H+1(s) = 0 and QH+1(s, a) = Q
H+1

(s, a) = 0 for all s and a. For h ∈ [H],

assuming the conclusion holds for h+ 1, by Algorithm 6.1, we have

r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a)−Q∗

h(s, a)

=r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a)−Rh(s, a)− PhV

∗
h+1(s, a)

=r̂kh(s, a)−Rh(s, a) + P̂ k
h

(
V h+1 − V ∗

h+1

)
(s, a) + (P̂ k

h − Ph)V
∗
h+1(s, a) + θkh(s, a)

≥(P̂ k
h − Ph)V

∗
h+1(s, a) +

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

≥

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

−

√
2VP̂k

h
V ∗
h+1(s, a)ι

Nk
h (s, a)

,

(E.28)

226

where the first inequality comes from event ER, V h+1(s) ≥ V ∗
h+1(s) and the definition of θkh(s, a)

and the last inequality from event EPV . By the relation of V -values in the step (h+ 1),

∣∣∣∣∣VP̂k
h

(
V

k

h+1 + V k
h+1

2

)
(s, a)−VP̂k

h
V ∗
h+1(s, a)

∣∣∣∣∣
≤
∣∣∣[P̂ k

h (V
k

h+1 + V k
h+1)/2]

2 − (P̂ k
hV

∗
h+1)

2
∣∣∣ (s, a) + ∣∣∣P̂ k

h [(V
k

h+1 + V k
h+1)/2]

2 − P̂ k
h (V

∗
h+1)

2
∣∣∣ (s, a)

≤4HP̂ k
h

∣∣∣(V k

h+1 + V k
h+1)/2− V ∗

h+1

∣∣∣ (s, a)
≤2HP̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

(E.29)

and √
2VP̂k

h
V ∗
h+1(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι+ 4HP̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+

√√√√4HP̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

.

(E.30)

Plugging (E.30) back into (E.28), we have r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a) ≥ Q∗

h(s, a). Thus,

Q
k

h(s, a) = min{H − h+ 1, r̂kh(s, a) + P̂ k
hV

k

h+1(s, a) + θkh(s, a)} ≥ Q∗
h(s, a).

From the definition of V
k

h(s) and πk
h, we have

V
k

h(s) =(1− ρ)Qk

h(s, π
k
h(s)) + ρQ

k

h(s, π
k
h(s))

≥(1− ρ)Qk

h(s, π
∗
h(s)) + ρQ∗

h(s, π
k
h(s))

≥(1− ρ)Q∗
h(s, π

∗
h(s)) + ρmin

a∈A
Q∗

h(s, a) = V ∗
h (s).

(E.31)

227

Similarly, we can prove that Qk

h
(s, a) ≤ Qπk

h (s, a) and V k
h(s) ≤ V πk

h (s).

r̂kh(s, a) + P̂ k
hV h+1(s, a)− θkh(s, a)−Qπk

h (s, a)

=r̂kh(s, a) + P̂ k
hV h+1(s, a)− θkh(s, a)−Rh(s, a)− PhV

πk

h+1(s, a)

=r̂kh(s, a)−Rh(s, a) + P̂ k
h

(
V h+1 − V πk

h+1

)
(s, a) + (P̂ k

h − Ph)V
πk

h+1(s, a)− θkh(s, a)

≤(P̂ k
h − Ph)V

πk

h+1(s, a)−

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

−

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤ 0,

(E.32)

and

V k
h(s) =(1− ρ)Qk

h
(s, πk

h(s)) + ρQk

h
(s, πk

h(s))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qk

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQk

h
(s, argmin

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qπk

h (s, a) = V πk

h (s).

(E.33)

E.2.3 Regret Analysis

Proof of Lemma 18

We consider the event ER∩EPV . The following analysis will be done assuming the successful event

ER ∩ EPV holds. By Lemma 17, the regret can be bounded by Regret(K) :=
∑K

k=1(V
∗
1 (s

k
1) −

V πk

1 (sk1)) ≤
∑K

k=1(V
k

1(s
k
1)− V k

1(s
k
1)).

228

By the update steps in Algorithm 6.1, we have

V
k

h(s
k
h)− V k

h(s
k
h)

=(1− ρ)Q
k

h(s
k
h, π

k
h(s

k
h)) + ρQ

k

h(s
k
h, π

k
h(s

k
h))− (1− ρ)Qk

h
(skh, π

k
h(s

k
h))− ρQk

h
(skh, π

k
h(s

k
h))

≤[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h) + 2Dπ̃k

h
θh(s

k
h)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h) + 2Dπ̃k

h
θh(s

k
h) + [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h) + 2Dπ̃k

h
θh(s

k
h)

+ [P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ [P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ 2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))/H +

2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρP̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))/H +

2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

=(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1 + 1/H)[P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)︸ ︷︷ ︸

(a)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))︸ ︷︷ ︸

(b1)

+2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))︸ ︷︷ ︸

(b2)

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

.

(E.34)

229

Bound of the error of the empirical probability estimator (a) By Bennett’s inequality, we

have that w.p. 1− Sδ

|P̂ k
h (s

′|s, a)− Ph(s
′|s, a)| ≤

√
2Ph(s′|s, a)ι
Nk

h (s, a)
+

ι

3Nk
h (s, a)

(E.35)

holds for all s, a, h, k, s′.

Thus, we have that

(P̂ k
h − Ph)(V

k

h+1 − V k
h+1)(s, a)

=
∑
s′

(P̂ k
h (s

′|s, a)− Ph(s
′|s, a))(V k

h+1(s
′)− V k

h+1(s
′))

≤
∑
s′

√
2Ph(s′|s, a)ι
Nk

h (s, a)
(V

k

h+1(s
′)− V k

h+1(s
′)) +

SHι

3Nk
h (s, a)

≤
∑
s′

(
Ph(s

′|s, a)ι
H

+
H

2Nk
h (s, a)

)(
V

k

h+1(s
′)− V k

h+1(s
′)
)
+

SHι

3Nk
h (s, a)

≤Ph(V
k

h+1 − V k
h+1)(s, a)/H +

SH2

2Nk
h (s, a)

+
SHι

3Nk
h (s, a)

≤Ph(V
k

h+1 − V k
h+1)(s, a)/H +

SH2ι

Nk
h (s, a)

,

(E.36)

where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (b1) & (b2) Here, we bound

VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, a

k
h).

Recall that Cπ,π′,ρ
h (s) = E

[∑H
h′=hRh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
in Appendix E.1. Set

πk∗ here is the optimal policy towards the adversary policy πk with πk∗
h (s) = argmaxπ C

π,πk,ρ
h (s).

Similar to the proof in Appendix E.2.2, we can show that V
k

h(s) ≥ Cπk∗,πk,ρ
h (s). We also have

that Cπk∗,πk,ρ
h (s) = maxπ C

π,πk,ρ
h (s) ≥ Cπk,πk,ρ

h (s) ≥ V πk

h (s) ≥ V k
h(s) . For any (s, a, h, k) ∈

230

S ×A× [H]× [K], under event ER ∩ EPV ,

VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)−VPh

Cπk∗,πk,ρ
h+1 (s, a)

=P̂ k
h [(V

k

h+1 + V k
h+1)/2]

2(s, a)− [P̂ k
h (V

k

h+1 + V k
h+1)/2]

2(s, a)

− Ph(C
πk∗,πk,ρ
h+1)2(s, a) + (PhC

πk∗,πk,ρ
h+1)2(s, a)

≤[P̂ k
h (V

k

h+1)
2 − (P̂ k

hV
k
h+1)

2 − Ph(V
k
h+1)

2 + (PhV
k

h+1)
2](s, a)

≤|(P̂ k
h − Ph)(V

k

h+1)
2|(s, a) + |(PhV

k
h+1)

2 − (P̂ k
hV

k
h+1)

2|(s, a)

+ Ph|(V
k

h+1)
2 − (V k

h+1)
2|(s, a) + |(PhV

k

h+1)
2 − (PhV

k
h+1)

2|(s, a),

(E.37)

where the first inequality is due V
k

h(s) ≥ Cπk∗,πk,ρ
h (s) ≥ V k

h(s). The result of [105] combined

with a union bound on Nk
h (s, a) ∈ [K] implies w.p 1− δ

∥P̂ k
h (·|s, a)− Ph(·|s, a)∥1 ≤

√
2Sι

Nk
h (s, a)

(E.38)

holds for all s, a, h, k.

These terms can be bounded separately by

|(P̂ k
h − Ph)(V

k

h+1)
2|(s, a) ≤ H2

√
2Sι

Nk
h (s, a)

,

|(PhV
k
h+1)

2 − (P̂ k
hV

k
h+1)

2|(s, a) ≤ 2H|(Ph − P̂ k
h)V

k
h+1| ≤ 2H2

√
2Sι

Nk
h (s, a)

,

Ph|(V
k

h+1)
2 − (V k

h+1)
2|(s, a) ≤ 2HPh(V

k

h+1 − V k
h+1)(s, a),

|(PhV
k

h+1)
2 − (PhV

k
h+1)

2|(s, a) ≤ 2HPh(V
k

h+1 − V k
h+1)(s, a),

(E.39)

where the first two inequality is due to (E.38). In addition, 3H2
√

2Sι
Nk

h (s,a)
≤ 1 + 9SH4ι

2Nk
h (s,a)

. Thus, we

231

have

(1− ρ)

√√√√VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤(1− ρ)

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
4HPh(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
4HPh(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

≤(1− ρ)

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

(
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

2
√
2H

+
2
√
2H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

)

+ ρ

(
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

2
√
2H

+
2
√
2H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

)

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√

9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

=(1− ρ)

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)

2
√
2H

+
2
√
2(1− ρ)H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2
√
2ρH2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√

9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

,

(E.40)

where the second inequality is due to AM-GM inequality.

232

Recursing on h Plugging (E.36) and (E.40) into (E.34)and setting c1 = 1 + 1/H and c2 =

(1 + 1/H)3 , we have

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ (1− ρ)

√
8VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
8VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)

H
+

8(1− ρ)H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
8ρH2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
8

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
8

Nk
h (s

k
h, π

k
h(s

k
h))

+
6(1− ρ)

√
SH4ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
6ρ
√
SH4ι

Nk
h (s

k
h, π

k
h(s

k
h))

.

(E.41)

We set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+
√

32
Nk

h (s,a)
+ 46

√
SH4ι

Nk
h (s,a)

. Since rkh(s, a) ≤ 1, by organizing

233

the items, we have that

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

H
+Dπ̃k

h
Θk

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ (1 + 3/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ c2(V
k

h+1 − V k
h+1)(s

k
h+1) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ c2Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ c2(V
k

h+1 − V k
h+1)(s

k
h+1) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h).

(E.42)

By induction of (E.34) on h = 1, · · · , H and V
k

h+1 = V k
h+1 = 0, we have that

Regret(K) ≤ 21
K∑
k=1

H∑
h=1

(Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− (V

k

h+1 − V k
h+1)(s

k
h+1)

+
(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)).

(E.43)

234

Here we use (1 + 1/H)3H < 21.

Proof of Lemma 19

Recall that M1 =
∑K

k=1

∑H
h=1[Dπ̃k

h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)].

Since Eakh∼Dπ̃k
h

[P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, a

k
h)] = Dπ̃k

h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h), we have that

Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h) − P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h) is a martingale difference sequence. By

the Azuma-Hoeffding inequality, with probability 1− δ, we have

∣∣∣∣∣
K∑
k=1

H∑
h=1

[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)]

∣∣∣∣∣ ≤ H
√
2HKι. (E.44)

Proof of Lemma 20

Recall that M2 =
∑K

k=1

∑H
h=1

1
H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)].

Since Eakh∼Dπ̃k
h

[Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)] = Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h), we have that

Dπ̃k
h
Ph(V

k

h+1−V k
h+1)(s

k
h)−Ph(V

k

h+1−V k
h+1)(s

k
h, a

k
h) is a martingale difference sequence. By the

Azuma-Hoeffding inequality, with probability 1− δ, we have

∣∣∣∣∣
K∑
k=1

H∑
h=1

[Dπ̃k
h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

∣∣∣∣∣ ≤ H
√
2HKι. (E.45)

Proof of Lemma 21

Recall that M3 =
∑K

k=1

∑H
h=1(P

k
h (V

k

h+1 − V k
h+1)(s

k
h, a

k
h)− (V

k

h+1 − V k
h+1)(s

k
h+1)).

Let the one-hot vector 1̂kh(·|skh, akh) to satisfy that 1̂kh(s
k
h+1|skh, akh) = 1 and 1̂kh(s|skh, akh) = 0 for

s ̸= skh+1. Thus, [(P k
h − 1̂kh)(V

k

h+1 − V k
h+1)](s

k
h, a

k
h) is a martingale difference sequence. By the

Azuma-Hoeffding inequality, with probability 1− δ, we have

∣∣∣∣∣
K∑
k=1

H∑
h=1

[(P k
h − 1̂kh)(V

k

h+1 − V k
h+1)](s

k
h, a

k
h)

∣∣∣∣∣ ≤ H
√
2HKι. (E.46)

235

Proof of Lemma 22

We bounded M4 =
∑K

k=1

∑H
h=1[

(SH+SH2)ι

Nk
h (s

k
h,a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)] by separately bounding the four items.

Bound
∑K

k=1

∑H
h=1

(SH+SH2)ι

Nk
h (s

k
h,a

k
h)

We regroup the summands in a different way.

K∑
k=1

H∑
h=1

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

= (SH + SH2)ι
H∑

h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1

n
≤ (SH + SH2)SAHι2. (E.47)

Recall that Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+
√

32
Nk

h (s,a)
+ 46

√
SH4ι

Nk
h (s,a)

.

Bound
∑K

k=1

∑H
h=1[(1 − ρ)

√
32ι

Nk
h (s

k
h,π

k
h(s

k
h))

+ ρ
√

32ι
Nk

h (s
k
h,π

k
h(s

k
h))

] We regroup the summands in a

different way. For any policy π, we have

K∑
k=1

H∑
h=1

√
32ι

Nk
h (s

k
h, π(s

k
h))

=
H∑

h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

√
32ι

n
≤ 8H

√
SAKι. (E.48)

Bound
∑K

k=1

∑H
h=1[(1−ρ)

46SH2ι
Nk

h (s
k
h,π

k
h(s

k
h))

+ρ 46SH2ι
Nk

h (s
k
h,π

k
h(s

k
h))

] We regroup the summands in a different

way. For any policy π, we have

K∑
k=1

H∑
h=1

46
√
SH4ι

Nk
h (s

k
h, π(s

k
h))

= 46
√
SH4ι

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1

n
≤ 46S

3
2AH3ι2. (E.49)

236

Bound
∑K

k=1

∑H
h=1

[
(1− ρ)

√
8VPh

C
πk∗,πk,ρ
h+1 (skh,π

k
h(s

k
h))ι

Nk
h (s

k
h,π

k
h(s

k
h))

+ ρ

√
8VPh

C
πk∗,πk,ρ
h+1 (skh,π

k
h(s

k
h))ι

Nk
h (s

k
h,π

k
h(s

k
h))

]
By Cauchy-Schwarz

inequality,

K∑
k=1

H∑
h=1

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√ K∑
k=1

H∑
h=1

VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)) ·

K∑
k=1

H∑
h=1

ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√SAHι2
K∑
k=1

H∑
h=1

VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)).

(E.50)

Similarly,

K∑
k=1

H∑
h=1

√
VPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√SAHι2
K∑
k=1

H∑
h=1

VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)).

(E.51)

By (1− ρ)a2 + ρb2 ≥ ((1− ρ)a+ ρb)2,

(1− ρ)

√√√√ K∑
k=1

H∑
h=1

VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)) + ρ

√√√√ K∑
k=1

H∑
h=1

VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h))

≤

√√√√ K∑
k=1

H∑
h=1

[(1− ρ)VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)) + ρVPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))].

(E.52)

Now we bound the total variance. LetDπ̃k
h
Ph(s

′|s) = (1− ρ)Ph(s
′|s, πk

h(s)+ ρPh(s
′|s, πk

h(s)),

[Dπ̃k
h
PhVh+1](s) =

∑
s′

[(1− ρ)Ph(s
′|s, πk

h(s)) + ρPh(s
′|s, πk

h(s))]Vh+1(s
′), (E.53)

237

and

V[D
π̃k
h
Ph]Vh+1(s) =

∑
s′

[(1− ρ)Ph(s
′|s, πk

h(s)) + ρPh(s
′|s, πk

h(s))][Vh+1(s
′)]2

− [
∑
s′

(
(1− ρ)Ph(s

′|s, πk
h(s)) + ρPh(s

′|s, πk
h(s))

)
Vh+1(s

′)]2.

(E.54)

We have that

V[D
π̃k
h
Ph]C

πk∗,πk,ρ
h+1 (skh)

=
∑
s′

[(1− ρ)Ph(s
′|skh, πk

h(s
k
h)) + ρPh(s

′|skh, πk
h(s

k
h))][C

πk∗,πk,ρ
h+1 (s′)]2

− [
∑
s′

(
(1− ρ)Ph(s

′|skh, πk
h(s

k
h)) + ρPh(s

′|skh, πk
h(s

k
h))
)
Cπk∗,πk,ρ

h+1 (s′)]2

≥(1− ρ)VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)) + ρVPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))

+ (1− ρ)[PhC
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))]

2 + ρPh[C
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))]

2

− [
∑
s′

(1− ρ)Ph(s
′|skh, πk

h(s
k
h))C

πk∗,πk,ρ
h+1 (s′) + ρPh(s

′|skh, πk
h(s

k
h))C

πk∗,πk,ρ
h+1 (s′)]2

≥(1− ρ)VPh
Cπk∗,πk,ρ

h+1 (skh, π
k
h(s

k
h)) + ρVPh

Cπk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)),

(E.55)

where the last inequality is due to (1− ρ)a2 + ρb2 ≥ ((1− ρ)a+ ρb)2.

238

With probability 1− 2δ, we also have that

K∑
k=1

H∑
h=1

V[D
π̃k
h
Ph]C

πk∗,πk,ρ
h+1 (skh)

=
K∑
k=1

H∑
h=1

(
[Dπ̃k

h
Ph(C

πk∗,πk,ρ
h+1)2](skh)−

(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)

=
K∑
k=1

H∑
h=1

(
[Dπ̃k

h
Ph(C

πk∗,πk,ρ
h+1)2](skh)−

(
Cπk∗,πk,ρ

h+1 (skh+1)
)2)

+
K∑
k=1

H∑
h=1

((
Cπk∗,πk,ρ

h+1 (skh+1)
)2
−
(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)

≤H2
√
2HKι+

K∑
k=1

H∑
h=1

(
(Cπk∗,πk,ρ

h (skh))
2 −

(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)
−

K∑
k=1

(Cπk∗,πk,ρ
1 (sk1))

2

≤H2
√
2HKι+ 2H

K∑
k=1

H∑
h=1

|Cπk∗,πk,ρ
h (skh)−Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 (skh)|

≤H2
√
2HKι+ 2H

K∑
k=1

(
Cπk∗,πk,ρ

1 (sk1) +
H∑

h=1

(
Cπk∗,πk,ρ

h+1 (skh+1)−Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 (skh, a

k
h)
))

≤H2
√
2HKι+ 2H2K + 2H2

√
2HKι

≤3H2K + 9H3ι/2,

(E.56)

where the first inequality holds with probability 1 − δ by Azuma-Hoeffding inequality, the

second inequality is due to the bound of V-values, the third inequality is due to Lemma 17 so

that Cπk∗,πk,ρ
h (skh) ≥ Dπ̃k

h
Dπk∗,πk,ρ

h (skh) ≥ Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 (skh), the fourth inequality holds with

probability 1− δ by Azuma-Hoeffding inequality, and the last inequality holds with 2ab ≤ a2+ b2.

In summary, with probability at least 1− δ, we have
∑K

k=1

∑H
h=1VPh

V πk

h+1(s
k
h, a

k
h) ≤ (H2K +

H3ι).

239

In summary,

K∑
k=1

H∑
h=1

Dπ̃k
h
Θk

h(s
k
h) ≤ 8

√
SAH2Kι+ 46S

3
2AH3ι2 +

√
24SAH3Kι2 + 36SAH5ι2

≤ 8
√
SAH2Kι+ 46S

3
2AH3ι2 +

√
24SAH3Kι+ 6

√
SAH5ι.

(E.57)

E.3 Proof for model-free algorithm

In this section, we prove Theorem 21. Recall that we use Q
k

h,V
k

h,Qk

h
,V k

h and Nk
h to denote the

values of Qh,V h,Q
h
,V h and max{Nh, 1} at the beginning of the k-th episode.

Property of Learning Rate αt We refer the readers to the setting of the learning rate αt :=
H+1
H+t

and the Lemma 4.1 in [41]. For notational convenience, define α0
t :=

∏t
j=1(1 − αt) and αi

t :=

αi

∏t
j=i+1(1− αt). Here, we introduce some useful properties of αi

t which were proved in [41]:

(1)
∑t

i=1 α
i
t = 1 and α0

t = 0 for t ≥ 1;

(2)
∑t

i=1 α
i
t = 0 and α0

t = 1 for t = 0;

(3) 1√
t
≤
∑t

i=1
αi
t√
t
≤ 2√

t
for every t ≥ 1;

(4)
∑t

i=1(α
i
t)

2 ≤ 2H
t

for every t ≥ 1;

(5)
∑∞

t=i α
i
t ≤ (1 + 1

H
) for every i ≥ 1.

Recursion on Q As shown in [41], at any (s, a, h, k) ∈ S ×A× [H]× [K], let t = Nk
h (s, a) and

suppose (s, a) was previously taken by the agent at step h of episodes k1, k2, . . . , kt < k. By the

update equations in Algorithm 6.2 and the definition of αi
t, we have

Q
k

h(s, a) = α0
t (H − h+ 1) +

t∑
i=1

αi
t

(
rkih + V

ki
h+1(s

ki
h+1) + bi

)
;

Qk

h
(s, a) =

t∑
i=1

αi
t

(
rkih + V ki

h+1(s
ki
h+1)− bi

)
.

(E.58)

240

Thus,

(Q
k

h −Q∗
h)(s, a) =α

0
t (H − h+ 1) +

t∑
i=1

αi
t

(
rkih + V

ki
h+1(s

ki
h+1) + bi

)
−

(
α0
tQ

∗
h(s, a) +

t∑
i=1

αi
t

(
Rh(s, a) + PhV

∗
h+1(s, a)

))

=α0
t (H − h+ 1−Q∗

h(s, a)) +
t∑

i=1

αi
t

(
(V

ki
h+1 − V ∗

h+1)(s
ki
h+1)

)
+

t∑
i=1

αi
t

(
(rkih −Rh(s, a)) + V ∗

h+1(s
ki
h+1)− PhV

∗
h+1(s, a) + bi

)
,

(E.59)

and similarly

(Qk

h
−Qπk

h)(s, a) =
t∑

i=1

αi
t

(
rkih + V ki

h+1(s
ki
h+1)− bi

)
−

(
α0
tQ

πk

h (s, a) +
t∑

i=1

αi
t

(
Rh(s, a) + PhV

πk

h+1(s, a)
))

=− α0
tQ

πk

h (s, a) +
t∑

i=1

αi
t

(
[Ph(V

ki
h+1 − V

πk

h+1)](s, a)
)

+
t∑

i=1

αi
t

(
(rkih −Rh(s, a)) + V ki

h+1(s
ki
h+1)− PhV

ki
h+1(s, a)− bi

)
.

(E.60)

In addition, for any k′ ≤ k, let t′ = Nk′

h (s, a). Thus, (s, a) was previously taken by the agent

at step h of episodes k1, k2, . . . , kt′ < k′. We have

(Qk′

h
−Qπk

h)(s, a) =− α0
tQ

πk

h (s, a) +
t′∑
i=1

αi
t′

(
[Ph(V

ki
h+1 − V

πk

h+1)](s, a)
)

+
t′∑
i=1

αi
t′

(
(rkih −Rh(s, a)) + V ki

h+1(s
ki
h+1)− PhV

ki
h+1(s, a)− bi

)
.

(E.61)

241

Confidence Bounds By the Azuma-Hoeffding inequality, with probability 1 − δ, we have that

for all s, a, h and t ≤ K,

∣∣∣∣∣
t∑

i=1

αi
t

(
(rkih −Rh(s, a)) + V ki

h+1(s
ki
h+1)− PhV

ki
h+1(s, a)

)∣∣∣∣∣ ≤ H

√√√√ t∑
i=1

(αi
t)

2ι/2 ≤
√
H3ι/t.

(E.62)

At the same time, with probability 1− δ, we have that for all s, a, h and t ≤ K,

∣∣∣∣∣
t∑

i=1

αi
t

(
(rkih −Rh(s, a)) + V ∗

h+1(s
ki
h+1)− PhV

∗
h+1(s, a)

)∣∣∣∣∣ ≤√H3ι/t. (E.63)

In addition, we have
√
H3ι/t ≤

∑t
i=1 α

i
tbi ≤ 2

√
H3ι/t.

Monotonicity Now we prove that V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥

Q∗
h(s, a) ≥ Qπk

h (s, a) ≥ Qk

h
(s, a) for all (s, a, h, k) ∈ S × A× [H]× [K].

At step H + 1, we have V
k

H+1(s) = V ∗
H+1(s) = V πk

H+1(s) = V k
H+1(s) = 0 and Q

k

H+1(s, a) =

Q∗
H+1(s, a) = Qπk

H+1(s, a) = Qk

H+1
(s, a) = 0 for all (s, a, k) ∈ S × A× [K].

Consider any step h ∈ [H] in any episode k ∈ [K], and suppose that the monotonicity is

satisfied for all previous episodes as well as all steps h′ ≥ h+ 1 in the current episode, which is

V
k′

h′(s) ≥ V ∗
h′(s) ≥ V πk′

h′ (s) ≥ V k′

h′(s) ∀(k′, h′, s) ∈ [k − 1]× [H + 1]× S,

Q
k′

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk′

h′ (s, a) ≥ Qk′

h′(s, a) ∀(k′, h′, s, a) ∈ [k − 1]× [H + 1]× S ×A,

V
k

h′(s) ≥ V ∗
h′(s) ≥ V πk

h′ (s) ≥ V k
h′(s) ∀h′ ≥ h+ 1 and s ∈ S,

Q
k

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk

h′ (s, a) ≥ Qk

h′(s, a) ∀h′ ≥ h+ 1 and (s, a) ∈ S ×A.

(E.64)

We first show the monotonicity of Q values. We have

(Q
k

h −Q∗
h)(s, a) ≥ α0

t (H − h+ 1−Q∗
h(s, a)) +

t∑
i=1

αi
t

(
(V

ki
h+1 − V ∗

h+1)(s
ki
h+1)

)
≥ 0, (E.65)

242

and, by to the update rule of V values (line 13) in Algorithm 6.2,

(Qk

h
−Qπk

h)(s, a) ≤− α0
tQ

πk

h (s, a) +
t∑

i=1

αi
t

(
[Ph(V

ki
h+1 − V

πk

h+1)](s, a)
)

≤− α0
tQ

πk

h (s, a) +
t∑

i=1

αi
t

(
[Ph(V

k
h+1 − V πk

h+1)](s, a)
)
≤ 0.

(E.66)

In addition, for any k′ ≤ k,

(Qk′

h
−Qπk

h)(s, a) ≤− α0
tQ

πk

h (s, a) +
t′∑
i=1

αi
t′

(
[Ph(V

ki
h+1 − V

πk

h+1)](s, a)
)

≤− α0
tQ

πk

h (s, a) +
t′∑
i=1

αi
t′

(
[Ph(V

k
h+1 − V πk

h+1)](s, a)
)
≤ 0.

(E.67)

Then, we show the monotonicity of V values. We have that

(1− ρ)max
a
Q

k

h(s, a) + ρQ
k

h(s, argmin
a

Qk

h
(s, a))

≥(1− ρ)max
a
Q

k

h(s, a) + ρQ∗
h(s, argmin

a
Qk

h
(s, a))

≥(1− ρ)Qk

h(s, π
∗
h(s)) + ρmin

a∈A
Q∗

h(s, a)

≥(1− ρ)Q∗
h(s, π

∗
h(s)) + ρmin

a∈A
Q∗

h(s, a) = V ∗
h (s).

(E.68)

By the update rule of V values (line 12) in Algorithm 6.2,

V
k

h(s) = min{V k−1

h (s), (1− ρ)max
a
Q

k

h(s, a) + ρQ
k

h(s, argmin
a

Qk

h
(s, a))} ≥ V ∗

h (s). (E.69)

Here, we need use the update rule of policy π (line 11-16) in Algorithm 6.2. Define τ(k, h, s) :=

max{k′ : k′ < k and V k′+1
h (s) = (1 − ρ)Qk′+1

h
(s, argmaxaQ

k′+1

h (s, a)) + ρminaQ
k′+1

h
(s, a)},

which denotes the last episode (before the beginning of the episode k), in which the π and V was

updated at (h, s). For notational simplicity, we use τ to denote τ(k, h, s) here. After the end of

episode τ and before the beginning of the episode k, the agent policy π was not updated and V was

243

not updated at (h, s), i.e. V k
h(s) = V τ+1

h (s) = (1 − ρ)Qτ+1

h
(s, πτ+1

h (s)) + ρminaQ
τ+1

h
(s, a) and

πk
h(s) = πτ+1

h (s) = argmaxaQ
τ+1

h (s, a)). Thus,

V k
h(s) =(1− ρ)Qτ+1

h
(s, πτ+1

h (s)) + ρmin
a
Qτ+1

h
(s, a)

≤(1− ρ)Qπk

h (s, πτ+1
h (s)) + ρmin

a
Qτ+1

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQτ+1

h
(s, argmin

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qπk

h (s, a) = V πk

h (s).

(E.70)

By induction from h = H + 1 to 1 and k = 1 to K, we can conclude that V
k

h(s) ≥ V ∗
h (s) ≥

V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥ Q∗
h(s, a) ≥ Qπk

h (s, a) ≥ Qk

h
(s, a) for all (s, a, h, k) ∈ S × A ×

[H]× [K].

Regret Analysis According to the monotonicity, the regret can be bounded by

Regret(K) :=
K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)) ≤
K∑
k=1

(V
k

1(s
k
1)− V k

1(s
k
1)). (E.71)

By the update rules in Algorithm 6.2, we have

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1− ρ)Qk

h(s
k
h, argmax

a
Q

k

h(s
k
h, a)) + ρQ

k

h(s
k
h, argmin

a
Qk

h
(skh, a))

− (1− ρ)Qk

h
(skh, argmax

a
Q

k

h(s
k
h, a)) + ρQk

h
(skh, argmin

a
Qk

h
(skh, a))

=(1− ρ)[Qk

h −Qk

h
](skh, a

k
h) + ρ[Q

k

h −Qk

h
](skh, a

k
h)

=[Q
k

h −Qk

h
](skh, a

k
h) + [Dπ̃k

h
(Q

k

h −Qk

h
)](skh)− [Q

k

h −Qk

h
](skh, a

k
h).

(E.72)

Set nk
h = Nk

h (s
k
h, a

k
h) and where ki(skh, a

k
h) is the episode in which (skh, a

k
h) was taken at step h

for the i-th time. For notational simplicity, we set ϕk
h = V

k

h(s
k
h) − V k

h(s
k
h) and ξkh = [Dπ̃k

h
(Q

k

h −

244

Qk

h
)](skh)− [Q

k

h −Qk

h
](skh, a

k
h). According to the update rules,

ϕk
h =V

k

h(s
k
h)− V k

h(s
k
h)

≤α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h

(
V

ki(s
k
h,a

k
h)

h+1 (s
ki(s

k
h,a

k
h)

h+1)− V ki(s
k
h,a

k
h)

h+1 (s
ki(s

k
h,a

k
h)

h+1) + 2bi

)
+ [Dπ̃k

h
(Q

k

h −Qk

h
)](skh)− [Q

k

h −Qk

h
](skh, a

k
h)

=α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h
(ϕ

ki(s
k
h,a

k
h)

h+1 + 2bi) + ξkh

≤α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h
ϕ
ki(s

k
h,a

k
h)

h+1 + ξkh + 4
√
H3ι/nk

h.

(E.73)

We add V
k

h(s
k
h) − V k

h(s
k
h) over k and regroup the summands in a different way. Note that for

any episode k, the term
∑nk

h
i=1 α

i
nk
h
ϕ
ki(s

k
h,a

k
h)

h+1 takes all the prior episodes ki < k where (skh, a
k
h) was

taken into account. In other words, for any episode k′, the term ϕk′

h+1 appears in the summands at all

posterior episodes k > k′ where (sk′h , a
k′

h) was taken. The first time it appears we have nk
h = nk′

h +1,

and the second time it appears we have nk
h = nk′

h + 2, and so on. Thus, we have

K∑
k=1

(V
k

h(s
k
h)− V k

h(s
k
h))

≤
K∑
k=1

α0
nk
h
(H − h+ 1) +

K∑
k=1

nk
h∑

i=1

αi
nk
h
ϕ
ki(s

k
h,a

k
h)

h+1 +
K∑
k=1

ξkh +
K∑
k=1

4
√
H3ι/nk

h

=
K∑
k=1

α0
nk
h
(H − h+ 1) +

K∑
k′=1

ϕk′

h+1

nK
h∑

t=nk′
h +1

α
nk′
h

t +
K∑
k=1

ξkh +
K∑
k=1

4
√
H3ι/nk

h

≤
K∑
k=1

α0
nk
h
(H − h+ 1) + (1 + 1/H)

K∑
k=1

ϕk
h+1 +

K∑
k=1

ξkh +
K∑
k=1

4
√
H3ι/nk

h

(E.74)

where the final inequality uses the property
∑∞

t=i α
i
t ≤ (1 + 1

H
) for every i ≥ 1.

245

Taking the induction from h = 1 to H , we have

K∑
k=1

(V
k

1(s
k
1)− V k

1(s
k
1))

≤3
H∑

h=1

K∑
k=1

α0
nk
h
(H − h+ 1) + 3

H∑
h=1

K∑
k=1

ξkh +
H∑

h=1

K∑
k=1

12
√
H3ι/nk

h

(E.75)

where we use the fact that (1 + 1/H)H < 3 and ϕk
H+1 = 0 for all k.

We bound the three items separately.

(1) We have
∑H

h=1

∑K
k=1 α

0
nk
h
(H − h+ 1) =

∑H
h=1

∑K
k=1 1[n

k
h = 0](H − h+ 1) ≤ SAH2.

(2) Similar to Lemma 19, by the Azuma-Hoeffding inequality, with probability 1− δ, we have∑H
h=1

∑K
k=1 ξ

k
h ≤ H

√
2HKι.

(3) We have
∑H

h=1

∑K
k=1 12

√
H3ι/nk

h =
∑H

h=1

∑
(s,a)

∑NK
h (s,a)

n=1

√
H3ι/n ≤ H

√
2H3SAKι.

In summary,

Regret(K) =
K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH5Kι+ SAH2)

and

V ∗
1 (s1)− V πout

1 (s1) ≤V
K+1

1 (s1)− V K+1
1 (s1)

= min
k∈[K+1]

(V
k

1(s
k
1)− V k

1(s
k
1))

≤O

(√
SAH5ι

K
+
SAH2

K

)
.

(E.76)

246

Bibliography

[1] Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, volume 24,

pages 2312–2320, Granada, Spain, Dec. 2011.

[2] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear

payoffs. In Proc. of International Conference on Machine Learning, volume 28, pages

127–135, Atlanta, GA, Jun. 2013.

[3] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth,

and Pushmeet Kohli. Are labels required for improving adversarial robustness? In Advances

in Neural Information Processing Systems, volume 32, pages 12214–12223, Vancouver,

Canada, Dec. 2019.

[4] S. Alfeld, X. Zhu, and P. Barford. Data poisoning attacks against autoregressive models. In

Proc. of AAAI Conference on Artificial Intelligence, pages 1452–1458, Phoenix, AZ, Feb.

2016.

[5] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds

for reinforcement learning. In Proc. of International Conference on Machine Learning,

volume 70, pages 263–272, Sydney, Australia, Aug. 2017.

[6] Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning.

In Proc. of International Conference on Machine Learning, volume 119, pages 551–560,

Jul. 2020.

247

[7] Kiarash Banihashem, Adish Singla, and Goran Radanovic. Defense against reward

poisoning attacks in reinforcement learning. Transactions on Machine Learning Research,

2023.

[8] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy

induction attacks. In International Conference on Machine Learning and Data Mining in

Pattern Recognition, pages 262–275, New York, NY, Jul. 2017.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector

machines. In Proc. of International Conference on Machine Learning, pages 1467–1474,

Edinburgh, Scotland, Jun, 2012.

[10] Ilija Bogunovic, Arpan Losalka, Andreas Krause, and Jonathan Scarlett. Stochastic linear

bandits robust to adversarial attacks. In Proc. of International Conference on Artificial

Intelligence and Statistics, volume 130, page 991–999, Apr 2021.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[12] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and

nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learn-

ing, 5(1):1–122, 2012.

[13] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang.

Unlabeled data improves adversarial robustness. In Advances in Neural Information Pro-

cessing Systems, volume 32, page 11192–11203, Vancouver, Canada, Dec. 2019.

[14] Yifang Chen, Simon Du, and Kevin Jamieson. Improved corruption robust algorithms for

episodic reinforcement learning. In Proc. of International Conference on Machine Learning,

volume 139, pages 1561–1570, Jul. 2021.

248

[15] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for

non-stationary markov decision processes: The blessing of (more) optimism. In Proc. of

International Conference on Machine Learning, volume 119, pages 1843–1854, Jul. 2020.

[16] Ferdinando Cicalese, Eduardo Laber, Marco Molinaro, et al. Teaching with limited

information on the learner’s behaviour. In Proc. of International Conference on Machine

Learning, volume 119, pages 2016–2026, Jul. 2020.

[17] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via

randomized smoothing. In Proc. of International Conference on Machine Learning,

volume 97, pages 1310–1320, Long Beach, CA, Jun. 2019.

[18] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac

bounds for episodic reinforcement learning. In Advances in Neural Information Processing

Systems, volume 30, page 5717–5727, Long Beach, CA, Dec. 2017.

[19] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards

accountable reinforcement learning. In Proc. of International Conference on Machine

Learning, volume 97, pages 1507–1516, Long Beach, CA, Jun. 2019.

[20] Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, and Xiaojin Zhu. Teaching a black-box

learner. In Proc. of International Conference on Machine Learning, volume 97, pages

1547–1555, Long Beach, CA, Jun. 2019.

[21] Qin Ding, Cho-Jui Hsieh, and James Sharpnack. Robust stochastic linear contextual bandits

under adversarial attacks. In Proc. of International Conference on Artificial Intelligence and

Statistics, volume 151, pages 7111–7123, Mar. 2022.

[22] Elvis Dohmatob. Generalized no free lunch theorem for adversarial robustness. In Proc. of

International Conference on Machine Learning, volume 97, pages 1646–1654, Long Beach,

CA, Jun. 2019.

249

[23] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy

optimization in non-stationary environments. In Advances in Neural Information Processing

Systems, volume 33, pages 6743–6754, Dec. 2020.

[24] Zhe Feng, David Parkes, and Haifeng Xu. The intrinsic robustness of stochastic bandits to

strategic manipulation. In Proc. of International Conference on Machine Learning, volume

119, pages 3092–3101, Jul. 2020.

[25] David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages

100–118, 1975.

[26] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,

Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits. In

Advances in Neural Information Processing Systems, pages 14362–14373, Dec. 2020.

[27] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.

Adversarial policies: Attacking deep reinforcement learning. In International Conference

on Learning Representations, Apr. 2020.

[28] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant

time collaborative filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

[29] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In International Conference on Learning Representations, San Diego,

CA, May 2015.

[30] Z. Guan, K. Ji, D. Bucci, T. Hu, J. Palombo, M. Liston, and Y. Liang. Robust stochastic

bandit algorithms under probabilistic unbounded adversarial attack. In Proc. of the AAAI

Conference on Artificial Intelligence, volume 34, pages 4036–4043, New York City, NY,

Feb. 2020.

250

[31] Kaiyang Guo, Shao Yunfeng, and Yanhui Geng. Model-based offline reinforcement learning

with pessimism-modulated dynamics belief. In Advances in Neural Information Processing

Systems, volume 35, pages 449–461, New Orleans, LA, Dec. 2022.

[32] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adversarial policy learning in

two-player competitive games. In Proc. of International Conference on Machine Learn-

ing, volume 139, pages 3910–3919, Jul. 2021.

[33] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits

with adversarial corruptions. In Proc. of Conference on Learning Theory, volume 99, pages

1562–1578, Phoenix, AZ, Jun. 2019.

[34] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context.

Acm Transactions on Interactive Intelligent Systems (TIIS), 5(4):1–19, 2015.

[35] Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning

with linear function approximation. In Proc. of International Conference on Machine Learn-

ing, volume 139, pages 4171–4180, Jul. 2021.

[36] Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement

learning for discounted mdps. Advances in Neural Information Processing Systems,

34:22288–22300, Dec. 2021.

[37] Sandy Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel.

Adversarial attacks on neural network policies. In International Conference on Learning

Representations Workshop Track Proceedings, Toulon, France, Apr. 2017.

[38] Yunhan Huang and Quanyan Zhu. Deceptive reinforcement learning under adversarial

manipulations on cost signals. In International Conference on Decision and Game The-

ory for Security, pages 217–237, Stockholm, Sweden, Oct. 2019.

251

[39] Garud N. Iyengar. Robust dynamic programming. Mathematics of Operations Research,

30(2):257–280, May 2005.

[40] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for

reinforcement learning. Journal of Machine Learning Research, 11:1563–1600, Aug. 2010.

[41] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably

efficient? Advances in Neural Information Processing Systems, 31:4868–4878, Dec. 2018.

[42] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient,

decentralized algorithm for multiagent rl. Mathematics of Operations Research, Nov. 2023.

[43] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic

bandits. In Advances in Neural Information Processing Systems, pages 3644–3653,

Montréal, Canada, Dec. 2018.

[44] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial

time. Machine learning, 49:209–232, 2002.

[45] Richard Klima, Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Robust temporal

difference learning for critical domains. In Proc. of International Conference on Au-

tonomous Agents and MultiAgent Systems, pages 350–358, Montréal, Canada, May 2019.

[46] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at

scale. In International Conference on Learning Representations, Toulon, France, Apr. 2017.

[47] Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes,

a worst-case approach using model-based reinforcement learning. In Advances in Neural

Information Processing Systems, volume 32, pages 7216–7225, Vancouver, Canada, Dec.

2019.

[48] Xian Yeow Lee, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde, and Soumik Sarkar.

Spatiotemporally constrained action space attacks on deep reinforcement learning agents.

252

In Proc. of the AAAI Conference on Artificial Intelligence, pages 4577–4584, New York

City, NY, Feb. 2020.

[49] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik. Data poisoning attacks on factorization-based

collaborative filtering. In Advances in Neural Information Processing Systems, pages

1885–1893, Barcelona Spain, Dec. 2016.

[50] Fuwei Li, Lifeng Lai, and Shuguang Cui. On the adversarial robustness of LASSO based

feature selection. IEEE Transactions on Signal Processing, 69:5555–5567, 2021.

[51] Fuwei Li, Lifeng Lai, and Shuguang Cui. Optimal feature manipulation attacks against

linear regression. IEEE Transactions on Signal Processing, 69:5580–5594, 2021.

[52] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Sample complexity of

asynchronous q-learning: Sharper analysis and variance reduction. In Advances in Neural

Information Processing Systems, volume 33, pages 7031–7043, Dec. 2020.

[53] L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-bandit approach to personalized

news article recommendation. In Proc. of International Conference on World Wide Web,

pages 661–670, Raleigh, NC, Apr. 2010.

[54] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized

linear contextual bandits. In Proc. of International Conference on Machine Learning, pages

2071–2080, Sydney, Australia, Aug. 2017.

[55] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min

Sun. Tactics of adversarial attack on deep reinforcement learning agents. In Proc. of Inter-

national Joint Conference on Artificial Intelligence, page 3756–3762, Melbourne, Australia,

Aug. 2017.

253

[56] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In Proc. of In-

ternational Conference on Machine Learning, pages 4042–4050, Long Beach, CA, Aug.

2019.

[57] Guanin Liu, Zhihan Zhou, Han Liu, and Lifeng Lai. Efficient action robust reinforcement

learning with probabilistic policy execution uncertainty. arXiv preprint arXiv:2307.07666,

2023.

[58] Guanlin Liu and Lifeng Lai. Action-manipulation attacks against stochastic bandits: Attacks

and defense. IEEE Transactions on Signal Processing, 68:5152–5165, 2020.

[59] Guanlin Liu and Lifeng Lai. Action-manipulation attacks on stochastic bandits. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

3112–3116, May 2020.

[60] Guanlin Liu and Lifeng Lai. Provably efficient black-box action poisoning attacks against

reinforcement learning. In Advances in Neural Information Processing Systems, volume 34,

pages 12400–12410, Dec. 2021.

[61] Guanlin Liu and Lifeng Lai. Action poisoning attacks on linear contextual bandits. Trans-

actions on Machine Learning Research, 2022.

[62] Guanlin Liu and Lifeng Lai. Efficient adversarial attacks on online multi-agent

reinforcement learning. In Advances in Neural Information Processing Systems, volume 36,

New Orleans, LA, Dec. 2023.

[63] Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based

reinforcement learning with self-play. In Proc. of International Conference on Machine

Learning, pages 7001–7010, Aug. 2021.

254

[64] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao,

and Christina Dan Wang. Finrl: A deep reinforcement learning library for automated stock

trading in quantitative finance. Deep RL Workshop, NeurIPS 2020, Dec. 2020.

[65] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to

adversarial corruptions. In Proc. of Annual ACM SIGACT Symposium on Theory of Com-

puting, pages 114–122, Los Angeles, CA, Jun. 2018.

[66] Thodoris Lykouris, Max Simchowitz, Alex Slivkins, and Wen Sun. Corruption-robust

exploration in episodic reinforcement learning. In Conference on Learning Theory, pages

3242–3245, Boulder, CO, Aug. 2021.

[67] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. Data poisoning attacks in

contextual bandits. In International Conference on Decision and Game Theory for Security,

pages 186–204, Seattle, WA, Oct. 2018.

[68] Yuzhe Ma, Young Wu, and Xiaojin Zhu. Game redesign in no-regret game playing. In

Proc. of International Joint Conference on Artificial Intelligence, pages 3321–3327, Vienna,

Austria, Jul. 2022.

[69] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch

reinforcement learning and control. In Advances in Neural Information Processing Systems,

volume 32, Vancouver, Canada, Dec. 2019.

[70] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. In International

Conference on Learning Representations, Vancouver, Canada, Apr. 2018.

[71] Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized

general-sum markov games. Dynamic Games and Applications, pages 1–22, 2022.

255

[72] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar.

Near-optimal model-free reinforcement learning in non-stationary episodic mdps. In Proc.

of International Conference on Machine Learning, volume 139, pages 7447–7458, Jul.

2021.

[73] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance

penalization. In Annual Conference Computational Learning Theory, Montréal, Canada,

Jun. 2009.

[74] S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks on

machine learners. In Proc. of AAAI Conference on Artificial Intelligence, pages 2871–2877,

Austin, TX, Jan. 2015.

[75] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

Universal adversarial perturbations. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1765–1773, Honolulu, HI, Jul. 2017.

[76] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac.

Reinforcement learning for solving the vehicle routing problem. In Advances in Neural

Information Processing Systems, volume 31, Montréal, Canada, Dec. 2018.

[77] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with

uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

[78] Matthew O’ Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C Duchi.

Scalable end-to-end autonomous vehicle testing via rare-event simulation. In Advances in

Neural Information Processing Systems, volume 31, Montréal, Canada, Dec. 2018.

[79] Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning

with a generative model. In Proc. of International Conference on Artificial Intelligence and

Statistics, pages 9582–9602, Mar. 2022.

256

[80] Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cedric

Gouy-Pailler, and Jamal Atif. Theoretical evidence for adversarial robustness through

randomization. In Advances in Neural Information Processing Systems, volume 32,

Vancouver, Canada, Dec. 2019.

[81] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial

reinforcement learning. In Proc.of International Conference on Machine Learning, pages

2817–2826, Sydney, Australia, Aug. 2017.

[82] Doina Precup. Eligibility traces for off-policy policy evaluation. In Proc. of International

Conference on Machine Learning, page 759–766, San Francisco, CA, Jun. 2000.

[83] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy

teaching via environment poisoning: Training-time adversarial attacks against reinforcement

learning. In Proc. of International Conference on Machine Learning, pages 7974–7984, Jul.

2020.

[84] Amin Rakhsha, Xuezhou Zhang, Xiaojin Zhu, and Adish Singla. Reward poisoning in

reinforcement learning: Attacks against unknown learners in unknown environments. arXiv

preprint arXiv:2102.08492, 2021.

[85] Anshuka Rangi, Haifeng Xu, Long Tran-Thanh, and Massimo Franceschetti. Understanding

the limits of poisoning attacks in episodic reinforcement learning. In Proc. of International

Joint Conference on Artificial Intelligence, pages 3394–3400, Vienna, Austria, Jul. 2022.

[86] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences,

39(10):1095–1100, 1953.

[87] C. Shen. Universal best arm identification. IEEE Transactions on Signal Processing,

67(17):4464–4478, Sep. 2019.

257

[88] Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning

with near-optimal sample complexity. arXiv preprint arXiv:2208.05767, 2022.

[89] Aaron Sidford, Mengdi Wang, Lin Yang, and Yinyu Ye. Solving discounted stochastic

two-player games with near-optimal time and sample complexity. In Proc. of International

Conference on Artificial Intelligence and Statistics, pages 2992–3002, Aug. 2020.

[90] Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds

for tabular mdps. In Advances in Neural Information Processing Systems, volume 32,

Vancouver, Canada, Dec. 2019.

[91] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.

Pac model-free reinforcement learning. In Proc. of International Conference on Machine

Learning, pages 881–888, Pittsburgh, PA, Jun. 2006.

[92] Yanchao Sun, Da Huo, and Furong Huang. Vulnerability-aware poisoning mechanism for

online rl with unknown dynamics. In International Conference on Learning Representa-

tions, Vienna, Austria, May 2021.

[93] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who is the strongest

enemy? towards optimal and efficient evasion attacks in deep RL. In International Confer-

ence on Learning Representations, Apr. 2022.

[94] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[95] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International

Conference on Learning Representations, Banff, Canada, Apr. 2014.

258

[96] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust mdps using function

approximation. In Proc. of International Conference on Machine Learning, volume 32,

pages 181–189, Beijing, China, Jun. 2014.

[97] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning

and applications in continuous control. In Proc. of International Conference on Machine

Learning, pages 6215–6224, Atlanta, GA, Jun. 2019.

[98] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence

off-policy evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 29, Austin, TX, Jan. 2015.

[99] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based

control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

5026–5033, Vilamoura, Portugal, Oct. 2012.

[100] Joel Tropp et al. Freedman’s inequality for matrix martingales. Electronic Communications

in Probability, 16:262–270, 2011.

[101] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On

the convergence and robustness of adversarial training. In Proc. of International Conference

on Machine Learning, volume 97, pages 6586–6595, Long Beach, CA, Jun. 2019.

[102] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest

neighbors to adversarial examples. In Proc. of International Conference on Machine Learn-

ing, pages 5133–5142, Stockholm Sweden, Jul. 2018.

[103] Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty.

In Advances in Neural Information Processing Systems, volume 34, pages 7193–7206, Dec.

2021.

259

[104] Chen-Yu Wei, Christoph Dann, and Julian Zimmert. A model selection approach for

corruption robust reinforcement learning. In International Conference on Algorithmic

Learning Theory, pages 1043–1096, Mar. 2022.

[105] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J

Weinberger. Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard

Labs, Tech. Rep, 2003.

[106] Tianhao Wu, Yunchang Yang, Simon Du, and Liwei Wang. On reinforcement learning with

adversarial corruption and its application to block mdp. In Proc. of International Conference

on Machine Learning, pages 11296–11306. PMLR, Jul. 2021.

[107] Young Wu, Jeremy McMahan, Xiaojin Zhu, and Qiaomin Xie. Reward-poisoning attacks

on offline multi-agent reinforcement learning. In Proc. of AAAI Conference on Artificial

Intelligence, volume 37, pages 10426–10434, Washington DC, Jun. 2023.

[108] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection secure

against training data poisoning? In Proc. of International Conference on Machine Learning,

volume 37, pages 1689–1698, Lille, France, July 2015.

[109] Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning

zero-sum simultaneous-move markov games using function approximation and correlated

equilibrium. In Conference on learning theory, pages 3674–3682, Graz, Austria, Jul. 2020.

[110] Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds

for distributionally robust reinforcement learning. In Proc. of International Conference on

Artificial Intelligence and Statistics, pages 9728–9754, Valencia, Spain, Apr. 2023.

[111] Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In Proc. of

International Conference on Artificial Intelligence and Statistics, pages 1576–1584, Apr

2021.

260

[112] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and

Cho-Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on

state observations. In Advances in Neural Information Processing Systems, volume 33,

pages 21024–21037, Dec. 2020.

[113] Kaiqing Zhang, Sham Kakade, Tamer Basar, and Lin Yang. Model-based multi-agent rl

in zero-sum markov games with near-optimal sample complexity. In Advances in Neural

Information Processing Systems, volume 33, pages 1166–1178, Dec. 2020.

[114] Tianyuan Zhang and Zhanxing Zhu. Interpreting adversarially trained convolutional neural

networks. In Proc. of International Conference on Machine Learning, pages 7502–7511,

Long Beach, CA, Jun. 2019.

[115] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Robust policy gradient against

strong data corruption. In Proc. of International Conference on Machine Learning, pages

12391–12401, Jul. 2021.

[116] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning

attacks against reinforcement learning. In Proc. of International Conference on Machine

Learning, volume 119, pages 11225–11234, Jul. 2020.

[117] Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than

bandits? a near-optimal algorithm escaping the curse of horizon. In Conference on Learning

Theory, pages 4528–4531, Boulder, CO, Aug. 2021.

[118] Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement

learningvia reference-advantage decomposition. In Advances in Neural Information Pro-

cessing Systems, volume 33, pages 15198–15207, Dec. 2020.

[119] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep

reinforcement learning for page-wise recommendations. In Proc. of ACM Conference on

Recommender Systems, page 95–103, Vancouver, Canada, Oct. 2018.

261

	Abstract
	Acknowledgement
	Introduction
	Preliminaries
	Attacks on Stochastic Bandits
	Attacks on Contextual Bandits
	Attacks on Reinforcement Learning
	Adversarial Attacks on Multi-Agent RL
	Action Robust Reinforcement Learning

	Action Attacks on Stochastic Bandits
	Model
	Attack on UCB and Cost Analysis
	Attack strategy
	Cost analysis
	Attacks fail when the target arm is the worst arm

	Robust Algorithm and Regret Analysis
	Robust bandit algorithm
	Regret analysis

	Numerical Results
	LCB attack strategy
	MOUCB bandit algorithm

	Conclusion

	Action Attacks on Contextual Bandits
	Problem Setup
	Attack Schemes and Cost Analysis
	Overview of LinUCB
	White-box attack
	Black-box attack

	Generalized Linear Model
	Numerical Experiments
	Conclusion

	Action Attacks on Reinforcement Learning
	Problem Formulation
	Attack Strategy and Analysis
	White-box attack
	Black-box attack
	Black-box attack on UCB-H

	Numerical Experiments
	1D grid world
	2D grid world

	Limitations
	Conclusions

	Adversarial Attacks on Multi-agent Reinforcement Learning
	Problem Setup
	Definitions
	Poisoning attack setting

	White-box Attack Strategy and Analysis
	The limitations of the action poisoning attacks and the reward poisoning attacks
	White-box action poisoning attacks
	White-box reward poisoning attacks

	Gray-box Attack Strategy and Analysis
	Black-box Attack Strategy and Analysis
	Numerical Results
	Conclusion

	Action Robust Reinforcement Learning
	Problem formulation
	Existence of the optimal robust policy
	Model-based algorithm and main results
	Algorithm description
	Theoretical guarantee

	Model-free method
	Simulation results
	Conclusion

	Conclusion
	Appendix of Chapter 2
	Attack Cost Analysis of LCB attack strategy
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1

	Regret Analysis of MOUCB
	Proof of Lemma 5
	Proof of Theorem 3

	Appendix of Chapter 3
	Attack Cost Analysis of White-box Setting
	Proof of Proposition 2
	Proof of Lemma 6
	Proof of Theorem 4

	Attack Cost Analysis of Black-box Setting
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 5

	Proof of Generalized Linear Model
	Proof of Lemma 10
	Proof of Theorem 6
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Theorem 7

	Appendix of Chapter 4
	Proofs for the white-box attack
	Proof of Lemma 1
	Proof of Theorem 8

	Proofs for LCB-H attack
	Proof of Lemma 2
	Proof of Theorem 9

	Proof of LCB-H attacks on UCB-H
	Proof of Lemma 4
	Proof of Theorem 10

	Appendix of Chapter 5
	Notations
	Proof of the insufficiency of action poisoning only attacks and reward poisoning only attacks
	Proof of Theorem 11
	Proof of Theorem 12

	Analysis of the d-portion Attack
	Proof of Theorem 13
	Proof of Theorem 14

	Analysis of the eta-gap attack
	Proof of Theorem 15
	Proof of Theorem 16

	Analysis of the gray-box attacks
	Proof of Theorem 17
	Proof of Theorem 18

	Analysis of the black-box attacks
	Proof of Lemma 14
	Proof of Theorem 19

	Appendix of Chapter 6
	Proof of Proposition 4
	Proof for Action Robust Reinforcement Learning with Certificates
	Proof sketch
	Proof of monotonicity
	Regret Analysis

	Proof for model-free algorithm

