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ABSTRACT OF THE THESIS 
 

A Preliminary Comparison of Ichthyoplankton Surveys vs. Environmental DNA 

Metabarcoding to Survey a Nearshore Marine Fish Community. 

 

 

by 

 

Michaela Labare 

 

Master of Science in Marine Biology 

University of California San Diego, 2022 

Professor Ronald Burton, Chair 

 
 

Understanding fish diversity patterns is critical for fisheries management amidst 

overfishing and climate change. Fish egg surveys have been used to characterize pelagic 

spawning fish communities, estimate biomass, and track population trends in response to 

perturbations. Environmental DNA (eDNA) metabarcoding has been implemented to rapidly 

and non-invasively survey marine ecosystems. To understand the efficacy of eDNA 

metabarcoding for assessing pelagic spawning fish community composition, concurrent 
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eDNA metabarcoding and fish egg DNA barcoding off Scripps Institution of Oceanography’s 

Pier (La Jolla, CA) were conducted. Both methods revealed seasonal patterns in agreement 

with previous fish and fish egg surveys. Species richness was highest in late spring and 

summer. The presence and spawning of commercially important species and species of 

conservation concern were detected. Both methods showed overlap for pelagic spawning 

fishes for broadcast spawners, schooling fish, and locally abundant species. Some actively 

spawning species were not co-detected with eDNA, likely due to different sampling 

strategies, taxonomic biases, and abiotic/biotic factors influencing eDNA transport, shedding, 

and degradation. We identified key advantages and disadvantages of each method. Fish egg 

barcoding provided information on spawning trends but did not detect taxa with alternate 

reproduction strategies. Metabarcoding eDNA detected species not found in fish egg 

sampling, including demersal and viviparous bony fishes, non-spawning adults, 

Chondrichthyan, and Mammalian species, but missed abundant pelagic fish eggs. This study 

demonstrates that DNA barcoding of fish eggs and eDNA metabarcoding work best in tandem 

as each method identified unique fish taxa and provided complementary ecological and 

biological insight.



1 

 

INTRODUCTION   
 

Effective and accurate methods for monitoring marine biodiversity are essential in the 

face of anthropogenic stressors such as climate change, overfishing, and habitat destruction (Sala 

and Knowlton 2006, Shamshak 2019, FAO 2022). Globally the value of marine and coastal 

resources/industries is estimated to reach $3 trillion U.S. dollars by 2030, and 3.3 billion people 

worldwide rely on wild-caught and farmed seafood as a primary source of protein (OECD 2016, 

FAO 2022). With most U.S. seafood production coming from fully exploited stocks and seafood 

consumption on the rise, it is imperative to actively assess fish communities to provide the most 

comprehensive fishery management strategies. Climate change is most notably causing an 

increase in ocean temperatures leading to species range shifts towards the poles. This can 

introduce new challenges through invasive species and changes in trophic interactions that can 

disrupt ecosystems (Auth 2018, Pinksy 2019, Sorte 2010). If we can determine the composition 

of fish communities and how they change over time, we can better conserve and manage our 

marine resources and biodiversity. We can also make predictions about responses to climate 

change for mitigation efforts (Auth 2018, Bakker 2017, Beng 2020, Miya 2021).  

The waters surrounding Scripps Institution of Oceanography (SIO, La Jolla, CA) have a 

long history of fish diversity assessments, making them an ideal location for assessing the 

detection of a well-documented fish community via eDNA metabarcoding (Craig 2004, Hastings 

2014, Duke 2018). The area contains two marine protected areas (MPAs), the Matlahuayl State 

Marine Reserve (SMR), which is designated as a no-take zone, and the San Diego-Scripps 

Coastal Marine Conservation Area (SMCA,) which allows recreational take of coastal pelagic 

species by hook and line (Hastings 2014). These MPAs and the immediate area surrounding 

them host a diversity of habitats, including pier pilings, eel- and surf-grass stands, sandy beaches, 
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rocky intertidal, rocky reefs, kelp forests, and submarine canyons (Hastings 2014). Extensive 

cataloging of the Marine Vertebrate Collection at SIO by Hastings et al. (2014) via trawl, gill 

net, and diver surveys have identified over 250 different species of fish. Despite comprising only 

7 km of coastline, these MPAs serve as a refuge for nearly half of all species seen in California 

state waters (Allen 2006, Hastings 2014). Regarding economic significance, the MPAs likely 

serve as spawning grounds for commercially important fish species which can stock areas 

outside the MPAs (Angulo-Valdés 2010, Harada 2015). 

Traditional fish survey methods such as hook and line, seine, trawl, and diver-surveys can 

be costly, time intensive, weather dependent, and ecologically invasive (Maiello 2022). 

Additionally, traditional survey methods have biases that can exclude certain species from 

detection and artificially inflate relative abundance (Cristescu 2018, Maiello 2022). These 

methods can fail to detect rarer species, species that can evade capture, seasonal species, and 

those living beyond the survey reaches (He 2022, Suzuki 2022). For example, hook and line 

surveys are subject to interspecific competition for hooks causing a greater proportion of 

aggressive species to be recovered (Kuriyama 2019). Likewise, diver-mediated surveying can be 

biased as cryptic species can be misidentified or species with avoidant behavior are not observed 

(Pais 2018). There are also limitations to when and where traditional methods can be used; for 

example, MPAs can have restrictions prohibiting the take of marine organisms, and other 

environments such as deep-sea habitats are costly to survey and challenging to access (Beng 

2020). 

Researchers have turned to environmental DNA metabarcoding as a potential solution to 

overcome some of the issues with traditional surveying. Environmental DNA is derived from the 

scales, skin cells, fecal matter, saliva, and gametes constantly shed by organisms into the 
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environment (Taberlet 2012). This material contains small DNA fragments that can be collected 

from water, air, sediment, and other sources and sequenced via metabarcoding to obtain the 

species composition (Taberlet 2012). This technology has primarily been used to assess 

terrestrial and freshwater ecosystems but has begun to be implemented for surveying marine 

communities (Taberlet 2012, Garlapati 2019, Senapati 2019, Wang 2021). In the last decade, the 

cost of high-throughput sequencing has declined to the point that eDNA metabarcoding is 

cheaper than traditional surveying (Cristescu 2018). Additionally, collecting water samples can 

be faster and simpler, leading to increased use of this technology in the marine environment 

(Cristescu 2018, Ruppert 2019, Wang, 2021). This technique has also been shown to detect a 

wider array of taxa compared to other methods and may be sensitive to invasive, cryptic, rare, 

and endangered species in marine environments (Lehman 2020, Budd 2021, Fediajevaite 2021, 

Miya 2021, West 2021). Moreover, surveying using environmental DNA (eDNA) has been used 

to work alongside traditional methods to capture the full range of fish diversity (Thomson 2016, 

Leduc 2019, Fraija-Fernández 2020, Fediajevaite 2021, Valdivia-Carrillo 2021, He 2022, Keck 

2022, Maiello 2022). Environmental DNA, like any method, has biases that can influence the 

results. Many factors affect the generation, degradation, dispersal, and consequently detection of 

eDNA. False positives can occur when a species’ DNA is detected, but they are not present 

(Wang 2021). This can happen through contamination during processing or if eDNA is 

transported into an area (Harrison 2019, Wang 2021). False negatives are when a species present 

is not detected (Wang 2021). This could be caused by lower eDNA concentration due to 

degradation or dispersal (Harrison 2019). Organisms have different amplification efficiencies, 

which can be due to varied primer binding affinity or low initial DNA concentration leading to 

PCR bias (Kelly 2019). These studies are also limited by their reference database; a species that 
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lack a reference sequence cannot be detected (Gold and Choi 2020). While eDNA has its own 

biases that can lead to false positives and negatives, it is a promising tool for monitoring marine 

ecosystems quickly and cost-effectively (Garlapati 2019, Fediajevaite 2021).  

Surveys of adult and juvenile fish supply important insight on species composition, 

abundance, habitat use, and anatomical data, but they do not capture early life history stages 

(Harada 2015). Likewise, eDNA metabarcoding can detect DNA from all life history stages but 

cannot determine the life history stage or morphometrics of the target organism(s). 

Ichthyoplankton surveys can capture the egg and larval stages of fish populations which can be 

used as indicators of fish community composition and species-specific spawning trends (Harada 

2015, Duke 2018, Choi 2021, Miranda-Chumacero 2020). Morphological ichthyoplankton 

surveys via microscopy have been regularly conducted off the California coast since 1949 as part 

of the California Cooperative Oceanic Fisheries Investigations surveys (CalCOFI, calcofi.com). 

The surveys have been used to estimate adult fish biomass through egg abundance, distribution, 

and spawning success using fish larvae (MacCall 2016, Sydeman 2020). Results of these surveys 

have aided in fisheries management, such as tracking the collapse and the recent return of the 

Northern anchovy (Engraulis mordax) (MacCall 2016, Sydeman 2020). Furthermore, they have 

suggested that the waters surrounding SIO serve as spawning grounds for commercially 

important fish species, which can ‘seed’ areas outside the MPAs (Angulo-Valdés 2010, Harada 

2015). Earlier work has relied on morphological identification of fish eggs. However, these 

approaches are limited by the lack of distinct morphological characteristics between species 

leading to a low accuracy rate for species identification (Ko 2013). To address this, researchers 

employed DNA barcoding of fish eggs resulting in higher resolution species identification 

(Harada 2015, Duke 2018, de Lima 2020, Choi 2021).  
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Given the success of DNA barcoding, the Burton Lab at Scripps Institution of 

Oceanography has been conducting ongoing weekly plankton tows off Scripps Pier since 2012 to 

assess the diversity and abundance of pelagic spawning fish (Harada 2015, Duke 2018, Choi 

2021). These studies have recorded over 50 species of fish, some of which have not been 

cataloged as adults by the MVC and capture a different community composition compared to the 

California current species detected through the CalCOFI surveys (Harada 2015, Duke 2018, Choi 

2021). This work has also identified seasonal spawning patterns and interannual variation in 

spawning associated with winter SST, magnitude of upwelling, and climate oscillations such as 

the El Nino Southern Oscillation (Harada 2015, Duke 2018, Choi 2021). However, eDNA has 

the potential to capture the same or greater species composition with equivalent species 

resolution using only a few liters of water. This study seeks to compare eDNA metabarcoding to 

fish egg barcoding to determine if eDNA can detect the presence of fishes actively spawning and 

when they are not spawning. If successful, this could be used to quickly and cost-effectively 

assess spawning fish populations more frequently and within areas that are difficult to survey. 

The surveys conducted by the Burton lab provide temporal data on the pelagic spawning fish 

population off Scripps Pier, which can validate the use of environmental DNA metabarcoding for 

these purposes. We also seek to understand the information provided through concomitant 

methods and elucidate biological and ecological patterns in detection. Multiple studies have 

shown that using eDNA metabarcoding with other methods for assessing fish diversity detects 

more species than either method alone (Thomson 2016, Leduc 2019, Fraija-Fernández 2020, 

Fediajevaite 2021, Valdivia-Carrillo 2021, He 2022, Keck 2022, Maiello 2022). Combining 

eDNA and fish egg barcoding could elucidate patterns in presence and spawning to understand 

interannual variation in spawning. For example, determining if a species is present but not 
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spawning or if a species is just not in the study area. Moreover, this data can be used to identify 

seasonal and interannual patterns in the detection and spawning of protected or commercially 

relevant species, which can aid in better management of the species through imposing seasonal 

restrictions and expanding MPAs (de Souza 2016, Lehman 2020, Budd 2021, Troth 2021, 

Suzuki 2022). The two methods can capture all life history stages and be used to estimate 

biomass and larval success (MacCall 2016, Beng 2020). Using eDNA can also detect additional 

taxa that do not spawn in the area or use alternate reproduction strategies such as demersal 

spawning or viviparous reproduction like many elasmobranchs (Bakker 2017, West 2020, 2021). 
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METHODS 
 

Study site 

To compare eDNA metabarcoding and fish egg DNA barcoding, 17 eDNA samples, and 

44 fish egg samples were collected from March to August of 2021 off Ellen Browning Scripps 

Memorial Pier at the Scripps Institution of Oceanography (SIO) in La Jolla, California, USA 

(Figure 1). The marine habitat surrounding the pier is primarily sandy bottom and dotted with 

rocky substrate (Hastings 2014). Metadata including sea surface temperature (SST), salinity, 

current speed, and chlorophyll level for each sample was retrieved from the Scripps Pier 

automated shore station dataset (SCCOOS, https://sccoos.org/) and averaged for the day (Table 

1).  
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Figure 1. Map of the study site and collection location, Ellen Browning Scripps Memorial Pier at the 

Scripps Institution of Oceanography in La Jolla, California, USA (SIO). Dashed lines indicate the two 

surrounding marine protected areas, the Matlahuayl State Marine Reserve (SMR) and the San Diego-

Scripps Coastal Marine Conservation Area (SMCA). The map was generated using ArcGIS Pro version 

3.0.0 (ESRI). 
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Table 1. Sample metadata was collected via the Scripps Pier automated shore station dataset (SCCOOS, 

https://sccoos.org/).  

 

 

Fish egg collection and processing 

Vertical plankton tows were conducted concurrently with eDNA sampling off Scripps 

Pier (Figure 1). An additional 37 fish egg samples were collected during the sampling period to 

assess co-detection between methods by month (Table S1). A plankton net (505 µm) was 

lowered to the seafloor and back out of the water four times to collect the pelagic fish eggs into a 

bottle at the cod end. After the final tow, the net was lowered until the rim touched the surface 

and raised back up to flush any residual eggs in the net into the collection bottle. The sample was 

then transferred into a 1-liter bottle, immediately transported back to the laboratory (Scripps 

Institution of Oceanography) and concentrated by pouring the contents through a mesh screen 

(330 µm). The concentrated plankton sample was placed into 4-6 Petri dishes containing filtered 

seawater and examined under a microscope at 7.5x magnification. Fish eggs were counted and 

removed from the sample using a Pasteur pipet and placed in 1.5 mL microfuge tubes with 95% 

https://sccoos.org/
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ethanol. Two species in the survey have morphologically distinct eggs; the Northern anchovy 

(Engraulis mordax) and the Pacific sardine (Sardinops sagax), which were quantified and stored 

in separate 1.5 mL microfuge tubes. All eggs were stored at -20°C for at least 24 hours until 

further processing. Fish egg DNA extraction, amplification, sequencing, and identification steps 

were performed in accordance with the protocols used by Harada et al. (2015), Duke et al. 

(2018), and Choi et al. (2021). Fish eggs were placed individually in 0.2 mL PCR strip tube 

wells. Ethanol was removed, and each egg was rinsed in 90 µL nuclease-free water to further 

remove residual ethanol and debris. The water was then removed, and 15 µL of a 66% Buffer AE 

solution (Qiagen, Hilden, Germany) was added to each tube. The samples were then incubated at 

95°C for 15 min in a thermal cycler and maintained at a 72°C hold. A new pipette tip was used to 

crush each egg, releasing the DNA into the buffer AE solution. The DNA was stored at -20°C 

until further processing. PCRs were performed on each fish egg DNA sample using the COI 

(cytochrome oxidase I) universal primers from Ivanova et al. (2007). The PCR reaction 

contained 1 µL of DNA, 0.5 µL of each of the 10 µM forward (5’-

TTCTCAACCAACCACAAAGACATTGG-3’) and reverse (5’-

ACTTCYGGGTGRCCRAARAATCA-3’) primers, 10.5 µL of molecular grade water, and 12.5 

µL of GoTaq Green 2X Master Mix (Promega, Madison, WI). Each reaction was vortexed 

briefly to ensure they were mixed, quickly centrifuged, and then placed in a thermal cycler 

following the cycling conditions utilized by Harada et al. (2015), Duke et al. (2018), and Choi et 

al. (2021). The PCR products were then visualized on a 1.5% agarose gel to check for a 710 base 

pair band. Samples that were successfully amplified were purified and sent for Sanger 

sequencing. Another PCR was performed to amplify the 16S rDNA gene on samples that were 

not amplified using COI. The reaction used the same reagents as the COI PCR with the 16S 
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primer set instead (forward: 5’-CGCCTGTTATCAAAAACAT-3’ and reverse: 5’-

CCGGTCTGAACTCAGATCACGT-3’) from Palumbi et al. (1996). Cycling conditions 

remained the same, and products were visualized in the same manner to check for a 570 base pair 

band. Samples that were successfully amplified were purified and sent for Sanger sequencing. 

Purification was performed according to Harada et al. (2015), Duke et al. (2018), and Choi et al. 

(2021) and sent to Retrogen, Inc. (San Diego, CA) for Sanger sequencing in 12 µL reactions with 

10 µL purified PCR product and 2 µL of either the COI or 16S forward primer (depending on 

which primer was used in the PCR). Sequences were then trimmed to remove primers and 

ambiguous bases and assessed for quality. Sequences were then run through BLAST to compare 

the samples to all sequences in GenBank. If the sequences matched a sequence in the database at 

95% similarity or higher, it was classified as the species corresponding to that sequence. Two 

closely related species, the longfin sanddab (Citharichthys xanthostigma) and the Pacific 

sanddab (Citharichthys sordidus) could only be differentiated from one another if the sequences 

matched at greater than 99% similarity. 

An additional analysis was performed using the fish egg survey collection data from 732 

collections from August 2012 to May 2022 to assess trends in spawning of the over-exploited 

Northern anchovy (Engraulis mordax). 

 

Environmental DNA collection and processing 

Water samples were collected off Scripps Pier via crane, rope, and pulley, with a 

weighted bucket sterilized with 10% bleach three times and rinsed with Milli-Q ultrapure water 

three times. The collection bucket and sterile bottles were rinsed with surface ocean water prior 

to sample collection. Surface water samples (3 L) were obtained and immediately transported to 
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the lab for further processing in a Polymerase chain reaction-free room. The outside of the 

bottles was again sterilized with bleach. Two 0.45 µm cellulose filters were used to filter the 3 

liters of water with a vacuum pump. Filters were cut in half and stored in separate sterile 

centrifuge tubes at -80 °C until further processing. One-half of the filter was subjected to DNA 

extraction in a separate PCR-free sterilized area. The remaining halves were archived at -80 °C. 

Each sample consisted of one-half of each of the two filters and were cut into smaller pieces and 

extracted using the Powersoil extraction kit (Qiagen, Hilden, Germany). Extracted DNA 

concentrations were measured using fluorometry (Qubit HS assay kit, Thermofisher Scientific, 

Waltham, MA), and samples were normalized to the same concentration. PCRs were performed 

in triplicate to amplify the fish-specific 196 bp 12S rRNA gene using the 12S MiFish Universal 

Teleost and Elasmobranch primers (Miya 2015). The 0.2 ml reaction tube contained 1 µL sample 

DNA, 12.5 µL of GoTaq Green 2X Master Mix (Promega, Madison, WI), 10.5 µL molecular 

grade water, and 0.5 µL each of the 10 µM 12S MiFish-U forward (5’-

GCCGGTAAAACTCGTGCCAGC-3’) and reverse primer (5’-

CATAGTGGGGTATCTAATCCCAGTTTG-3’) which contained Illumina adapter sequences 

(Illumina, San Diego, CA, Miya 2015). Cycling conditions were an initial denaturation step at 

95°C for 3 minutes followed by 30 cycles of denaturation at 95°C for 1 minute, annealing at 

54°C for 1 minute, elongation at 72°C for 1 minute, and a final elongation step at 72°C for 7 

minutes. PCR products were visualized on a 1.5% agarose gel with SYBR Safe dye (Invitrogen, 

Waltham, MA).  

Triplicate PCRs were pooled and cleaned using SPRI AMPure XP beads (Beckman 

Coulter). This process was repeated under the same conditions using the 12S MiFish-E primers 

(forward 5’-GTTGGTAAATCTCGTGCCAGC-3’ and reverse 5’-
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CATAGTGGGGTATCTAATCCTAGTTTG-3’). A second round of PCR amplification was 

conducted on the cleaned product to add combinatorial dual indices to each sample using the 

Nextera XT Index Kit v2 (Illumina, San Diego, CA). The reaction tube contained 1.25 µL of 

each 10 µM indexing primer (make a table w/index for each sample), 5 µL of the pooled PCR 

product, 5 µL molecular grade water, and 12.5 µL of GoTaq Green 2X Master Mix (Promega, 

Madison, WI). Cycling conditions were an initial denaturation step at 95°C for 3 minutes 

followed by 8 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, 

elongation at 72°C for 30 seconds, and a final elongation step at 72°C for 5 minutes. The indexed 

PCR products were visualized on a 1.5% agarose gel with SYBR safe dye (Invitrogen, Waltham, 

MA) and cleaned using SPRI AMPure XP beads (Beckman Coulter, Indianapolis, IN). Cleaned, 

indexed products were measured for DNA concentration using fluorometry (Qubit HS assay kit, 

Thermofisher Scientific, Waltham, MA), and samples were pooled at equimolar concentrations 

to reach a final concentration of 5 nM. Libraries were then sequenced via 300 bp paired-end 

sequencing at the IGM Genomics Center, University of California, San Diego, La Jolla, CA, 

utilizing an Illumina MiSeq.  

 

Bioinformatics 

Environmental DNA metabarcoding sequences were processed using the Anacapa 

Toolkit (version 1) to perform quality control, parse amplicon sequence variants (ASV), and 

assign taxonomy (Curd 2019). Taxonomic assignment was made using the 12S-fish-specific 

regional reference database curated for the California Current Large Marine Ecosystem (Gold 

2020, 2021). ASVs were then run through NCBI’s Basic Local Alignment Search Tool 

(nucleotide BLAST) to verify taxonomic assignment by comparing the ASV sequence against 
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those in Genbank to resolve ASVs that were not assigned to a taxon or were resolved to a taxa 

level above species. If the ASV sequence matched a sequence at 95% or higher, fit the 

geographic distribution better than the Anacapa results, or was unassigned by Anacapa, the ASV 

was assigned to that species. For example, an ASV assigned to Embiotocidae was resolved 

further to the genus Amphistichus. Two shark ASVs were assigned to species that did not fit the 

region, but BLAST matched them to the species known to inhibit the region. There were also 

three mammalian ASVs not assigned to any taxonomic group which had a >99% identity via 

BLAST, the common dolphin, harbor seal, and California sea lion. ASVs assigned to Sciaenidae 

were placed into three groupings (Sciaenidae 1, 2, and 3) as they differed by more than two base 

pairs. ASVs were then binned by taxonomic assignment and sample.  

 

Data analysis 

To compare the results of the eDNA metabarcoding and fish egg DNA barcoding, we 

looked at total pelagic spawning fish taxa from each method. We classified the ASVs belonging 

to Actinopterygii based on their spawning strategy to only include broadcast spawners, open 

water/substratum egg scatterers, and fish which attach their eggs to floating debris such as 

macroalgae. Additionally, non-pelagic spawning fish taxa detected by eDNA were assessed. 

Venn diagrams were constructed to visualize the overlapping and unique pelagic fish taxa 

detected. An Analysis of Variance (ANOVA) was performed to compare species richness 

between methods using the vegan package (version 2.6-2) in RStudio (version 2021.09.1-372, R 

Core Team 2021) (Oksanen 2022). GraphPad Prism (version 8.0.0) was used to assess method 

detection; the overlap of species using presence-absence data was calculated and performed for 

the pelagic spawning fish for concurrent sampling. The same assessment was repeated on pelagic 
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spawning fish from eDNA metabarcoding, and all fish egg barcoding samples taken during the 

sampling period within a month (additional 27 fish egg samples). A linear regression for species 

richness was calculated using pelagic spawning fish for concurrent samples (Prism). Relative 

abundance of eggs and reads for pelagic spawning fish was calculated and assessed (Prism). We 

compared differences in community composition of pelagic spawning fish from concurrent 

collections by performing a permutational analysis of variance (PERMANOVA) on Jaccard-

binary dissimilarity indices generated using presence/absence data with the vegan (version 2.6-2) 

and phyloseq (version 1.38.0) packages (McMurdie and Holmes 2013, Oksanen 2022). A 

principal components analysis (PCA) was used to visualize differences in sampling method and 

month via the vegan package (Oksanen 2022). A linear regression was performed to assess 

spawning trends from 2012-2022 for the Northern anchovy (Engraulis mordax). Range, 

occurrence, and habitat assessments done by Hastings et al. (2014) were used to examine the fish 

community recovered. Hastings et al. (2014) defined range by determining the range midpoint 

and binning it into the following categories: Northern (range midpoint North of Point 

Conception, California), Southern (range midpoint south of Punta Eugenia, Mexico), and Central 

(range midpoint between Point Conception and Punta Eugenia). If there was no documented 

collection, we referred to fishbase.org and Allen and Horn (2006) to make the determination 

following the criteria set by Hastings et al. (2014).  
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RESULTS 
 

Summary 

Our results reveal that while the methods detect distinct species of pelagic spawning 

fishes, there is substantial overlap in all the pelagic spawning fish species detected between the 

two methods. Concurrent sampling showed that eDNA often failed to co-detect species which 

were abundant in the pelagic fish eggs samples. Environmental DNA metabarcoding detected 

additional taxa with alternate reproductive strategies and non-spawning fishes. Fish egg 

barcoding showed seasonal spawning patterns corresponding to previous surveys. The two 

methods together uncovered biological and ecological patterns in spawning and eDNA detection. 

 

Comparison of concurrent eDNA and fish egg samples 

In the 17 samples collected from March to August, eDNA detected 42 ASVs from 

vertebrate taxa representing three classes, 19 orders, 27 families, 36 genera, and 37 species 

(Table S1). Within the vertebrates, 35 ASVs belonged to the family Actinopterygii, 4 to 

Elasmobranchii, and 3 to Mammalia (Table S1). There were 28 ASVs belonging to pelagic 

spawning fishes, with 24 resolved to the species level and 4 to the family level (1 Labridae, 3 

Sciaenidae). The pelagic spawning ASVs represented 12 orders, 16 families, 23 genera, and 24 

species (Table S1). A total of 655,644 12S reads from the MiSeq run were generated. However, 

only 7,508 belonged to vertebrate taxa, primarily due to the amplification of non-target bacterial 

sequences (Table S2). Of the 1811 eggs collected during concurrent sampling, 1,697 were 

successfully amplified and resolved to the species level (93.7%) using DNA barcoding of either 

the COI or 16S gene (Table S3). We successfully identified 26 species in the fish egg survey, 

representing 7 orders, 11 families, and 21 genera (Table S3). 
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Looking at the pelagic spawning ASVs resolved to the species-level, eDNA captured 

61.5% (16/26) of the species detected in the fish egg tows and 70.6% (24/34) of all the pelagic 

spawning fish species detected by both methods (Figure 2). Environmental DNA failed to detect 

10 species seen in the fish egg survey: the Pacific golden-eyed tilefish (Caulolatilus affinis), 

black croaker (Cheilotrema saturnum), longfin sanddab (Citharichthys xanthostigma), shortfin 

corvina (Cynoscion parvipinnis), rock wrasse (Halichoeres semicinctus), spotted sand bass 

(Paralabrax maculatofasciatus), barred sand bass (Paralabrax nebulifer), c-o sole 

(Pleuronichthys coenosus), spotfin croaker (Roncador stearnsii), and the California sheephead 

(Semicossyphus pulcher). In contrast, eight species were seen only in the eDNA: the striped 

mullet (Mugil cephalus), yellowtail jack (Seriola lalandi), sharpchin flyingfish (Fodiator 

acutus), California needlefish (Strongylura exilis), California lizardfish (Synodus lucioceps), 

opaleye (Girella nigricans), Pacific chub mackerel (Scomber japonicus), and the zebraperch 

(Kyphosus azureus) (Figure 2). 

 

Figure 2. Venn diagram of eDNA and fish egg species detection of pelagic spawning fish from concurrent 

sampling events (including only taxa resolved to the species level). Environmental DNA captured the 

bulk of the pelagic spawners detected between both methods (24/34). However, fish egg barcoding 

captured a greater proportion (26/34) of the total taxa. An additional 4 ASVs detected in the eDNA that 

were resolved only to the family level (Sciaenidae and Labridae), which likely led to the greater 

proportion of species detected by fish egg DNA barcoding.  
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Species richness for eggs and eDNA was calculated for pelagic spawning fishes, 

including ASVs resolved to higher taxonomic classifications. Fish egg and eDNA richness was 

positively correlated (p = 0.0008, R2 = 0.5376) (Figure 3). Environmental DNA had an average 

richness of 6.7 (± standard deviation 3.4, range 3-15), and fish eggs had an average richness of 7 

(± standard deviation 3.2, range 2-15). Both methods combined had an average richness of 6.9 (± 

standard deviation 3.3, range 2-15). Richness did not differ significantly by method (ANOVA, p 

> 0.05) (Table S4). June 18th displayed the highest richness for both eDNA and fish eggs 

(Tables S1 and S2). Average species richness was highest in June for eDNA and August for fish 

eggs and lowest in March and April for both methods (Table S5). Samples taken in the summer 

had the highest average species richness for both eDNA and eggs, followed by the spring, then 

winter (Table S6).  

 

 

Figure 3. Species richness correlation of pelagic spawning fish from concurrent sampling events 

(including only taxa resolved to the family level) for eDNA and fish eggs (p = 0.0008, R2 = 0.5376). 
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Speckled sanddab (Citharichthys stigmaeus) and Pacific sardine (Sardinops sagax) were 

seen at each sampling event, and the Northern anchovy (Engraulis mordax) was detected by both 

methods more often than all other species for a given sampling event (Figure 4). Twelve species 

were seen in both the eDNA and egg survey simultaneously in a day, all of which were broadcast 

spawners belonging to the families: Clupeidae, Haemulidae, Labridae, Paralichthyidae, and 

Sciaenidae (Figure 4). Seasonal patterns in co-detection were seen in species such as the 

Northern Anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), and sargo 

(Anisotremus davidsonii) (Figure 4). 
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Figure 4. Co-detection of pelagic spawning fish by eDNA and fish eggs, including ASVs resolved to the 

family level. 

 

We used the metadata collected to assess what variables contributed to the total variation 

observed among samples (Table S7). Pelagic spawning community composition varied between 

methods and collection months (Figure 5). Samples were separated along axis 1 by method and 

along axis 2 by month (Figure 5). Method explained 32% of the total variance, and collection 

month explained an additional 26% of the total variance (PERMANOVA, p < 0.001) (Table S7).  
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Figure 5. Principal components analysis (PCA) using Jaccard-binary dissimilarities of pelagic spawning 

fish composition from concurrent sampling. Sample species composition varied by method and collection 

month. Method explained 32% of the total variance and collection month explained an additional 26% of 

the total variance (PERMANOVA, p < 0.001). 

 

Northern anchovy (Engraulis mordax) had the greatest total number of eggs at 762, 

followed by speckled sanddab (Citharichthys stigmaeus) with 671, Pacific sanddab 

(Citharichthys sordidus) with 69, rock wrasse (Halichoeres semicinctus) with 45, spotfin croaker 

(Roncador stearnsii) with 35, señorita (Oxyjulis californica) with 28, and longfin sanddab 

(Citharichthys xanthostigma) with 21 (Figure 6 and Table S3). The remaining 19 species each 

had <20 eggs total, with seven species having only one egg recovered in the samples (Figure 6 

and Table S3). There were peaks in egg abundance in March and April primarily due to the 
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Northern anchovy (Engraulis mordax) (Figures 6 and 7). There were also peaks in egg 

abundance in May, June, July, and August, mainly due to the speckled sanddab (Citharichthys 

stigmaeus), which spawned throughout the entire sampling period (Figures 6 and 7). The 

Northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) spawned from 

winter to spring and the c-o sole (Pleuronichthys coenosus) spawned in the spring (Figure 6). 

Seasonal trends in spawning are visible from spring to summer for the spotfin croaker (Roncador 

stearnsii), rock wrasse (Haliochoeres semicinctus), queenfish (Serphius politus), senorita 

(Oxyjulis californica), California corbina (Menticirrhus undulatus), sargo (Anisotremus 

davidsonii), longfin sanddab (Citharichthys xanthostigma), Pacific sanddab (Citharichthys 

sordidus), and California halibut (Paralichthys californicus) (Figure 6). Species seen spawning 

only in the summer were the yellowfin croaker (Umbrina roncador), jack mackerel (Trachurus 

symmetricus), California tonguefish (Symphurus atricaudus), shortfin corvina (Cynoscion 

parvipinnis), salema (Brachygenys californiensis), black croaker (Cheilotrema saturnum), barred 

sand bass (Paralabrax nebulifer), spotted sand bass (Paralabrax maculatofasciatus), kelp bass 

(Paralabrax clathratus), California sheephead (Semicossyphus pulcher), fantail sole (Xystreurys 

liolepis) and the hornyhead turbot (Pleuronichthys verticalis) (Figure 6).  
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Figure 6. Relative abundance of pelagic spawning fish identified in the fish egg survey calculated using 

the proportion of eggs collected each day. Seasonal trends in spawning are visible for the most prevalent 

Northern anchovy (Engraulis mordax) and speckled sanddab (Citharichthys stigmaeus). 
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Figure 7. Total identified fish eggs for each sample in which eDNA was collected concurrently. There 

were 6 peaks in egg abundance primarily due to the spawning of the Northern anchovy (Engraulis 

mordax) and speckled sanddab (Citharichthys stigmaeus). April had the highest number of eggs (n = 

398). 

 

Seasonal trends in detection via relative abundance of reads are visible for the most 

prevalent Northern anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), and jack 

mackerel (Trachurus symmetricus) (Table S1). Organisms detected in the eDNA with the 

greatest relative abundance of reads overall included señorita (Oxyjulis californica), Pacific 

sardine (Sardinops sagax), jack mackerel (Trachurus symmetricus), Northern anchovy 

(Engraulis mordax), topsmelt (Atherinops affinis), Pacific chub mackerel (Scomber japonicus), 

bat ray (Myliobatis californica), speckled sanddab (Citharichthys stigmaeus), sargo (Anisotremus 

davidsonii), yellowfin croaker (Umbrina roncador), and an ASV assigned to drums/croakers 

(Sciaenidae 1) (Table S1). Additional fish taxa detected in the eDNA were the topsmelt 
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(Atherinops affinis), rockpool blenny (Hypsoblennius gilberti), and mussel blenny 

(Hypsoblennius jenkinsi), which are demersal spawners. The surfperch (Amphistichus), dwarf 

perch (Micrometrus minimus), and the black rockfish (Sebastes melanops), which are viviparous 

species, and the California grunion (Leuresthes tenuis), which bury their eggs in the sand, were 

also all detected (Table S1). There were 4 Elasmobranchii taxa detected, thresher shark (Alopias 

vulpinus), California bat ray (Myliobatis californica), spiny dogfish (Squalus suckleyi), and 

round ray (Urobatis halleri) (Table S2). Mammalian taxa detected were the harbor seal (Phoca 

vitulina), California sea lion (Zalophus californianus), and the common bottlenose dolphin 

(Tursiops truncatus) (Table S1). 

 

Comparison of eDNA to include all fish egg collections 

We assessed pelagic spawning fish co-detection within each month using the additional 

fish egg samples (n = 44) (Table S1). There were 4134 eggs collected, and 3812 were resolved to 

the species level (92.2%) (Table S3). These eggs represent 10 orders, 14 families, 26 genera, and 

32 species. The number of co-detections increased when grouped by month. Sixteen species 

were seen in both the egg survey and the eDNA, including the speckled sanddab (Citharichthys 

stigmaeus), Pacific sanddab (Citharichthys sordidus), señorita (Oxyjulis californica), Northern 

anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), salema (Brachygenys 

californiensis), California corbina (Menticirrhus undulatus), kelp bass (Paralabrax clathratus), 

Pacific chub mackerel (Scomber japonicus), sargo (Anisotremus davidsonii), queenfish (Seriphus 

politus), California halibut (Paralichthys californicus), jack mackerel (Trachurus symmetricus), 

yellowfin croaker (Umbrina roncador), fantail sole (Xystreurys liolepis), and the hornyhead 

turbot (Pleuronichthys verticalis) (Figure 8). The month with the most species detected by both 
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methods was June, with 13 species. The species seen in all five months by both methods were 

the Northern anchovy (Engraulis mordax) and señorita (Oxyjulis californica) (Figure 8). 

Additional species seen the most across months in both methods were the Pacific sardine 

(Sardinops sagax), speckled sanddab (Citharichthys stigmaeus), Pacific sanddab (Citharichthys 

sordidus), and sargo (Anisotremus davidsonii) (Figure 8). Environmental DNA detected the 

Pacific sardine (Sardinops sagax) more often than the fish egg survey (Figure 8).  

 

 

 



27 

 

 

Figure 8. Co-detection of pelagic spawning fish by eDNA and fish eggs, including ASVs resolved to the 

family level and all fish eggs collected during the entire sampling period (March-August). 

 

Northern Anchovy 

We performed an additional analysis using fish egg data from 2012-2022 to assess 

spawning trends for the Northern anchovy (Engraulis mordax) as it was the species detected 

most frequently and is commercially important. A linear regression was performed using the 

average number of Northern anchovy eggs per collection each year from 732 fish egg collections 

(Figure 9). We found that the number of anchovy eggs increased significantly (p = 0.0046, R2 = 
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0.6081) (Figure 9). Since the fish egg survey began in 2012 until 2019, the Northern anchovy did 

not have spawning peaks exceeding 100 eggs on a given day. From 2019 forward, there were 

multiple days with over 100 eggs each year. Within our own sampling period, there were four 

collections with >100 eggs, and anchovy eggs were recovered on 29 out of the 44 total 

collections (Table S3). 

 

Figure 9. Average number of Northern anchovy (Engraulis mordax) eggs per collection each year (732 

fish egg collections) from August 2012 to May 2022 (p = 0.0046, R2 = 0.6081). 
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DISCUSSION 

 

Comparison of methods          

Concurrent eDNA metabarcoding and fish egg DNA barcoding found a substantial 

portion of the fish taxa inhabiting the waters surrounding Scripps Pier. The two methods 

obtained different but overlapping community compositions overall and within concurrent 

samples. Each method recovered nearly equivalent species richness overall and when comparing 

concurrent sampling. However, eDNA often failed to detect actively spawning fishes. This may 

indicate that the majority of the eDNA collected was from adults directly under the pier rather 

than fish eggs floating at the surface. These findings agree with a study conducted to detect the 

spawning of bigheaded carps, which found no relationship between eDNA and floating eggs 

(Erickson 2016). This highlights the need for more research on eDNA composition, shedding, 

and detection sensitivity during spawning events. Environmental DNA also showed pelagic 

spawning species present in the area but not actively spawning, which could indicate the fish are 

utilizing the area for habitat, foraging, or refuge from predators. For example, jack mackerel 

(Trachurus symmetricus), Pacific chub mackerel (Scomber japonicus), señorita (Oxyjulis 

californica), rock wrasse (Haliochoeres semicinctus), salema (Brachygenys californiensis), and 

California corbina (Menticirrhus undulatus) were detected in the eDNA prior to a spawning 

event. Because of this, frequent long-term sampling with both methods could be used to identify 

time frames when protected or commercially exploited species migrate to spawn or forage, 

which can lead to better conservation and management. Using these methods together in the 

long-term could also be used to understand documented inter-annual variation in species 

spawning off Scripps pier by determining if the species are present but not spawning or just not 

in the area. 
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Ecology 

The months with the highest species richness across both methods (June, July, and 

August) coincide with the highest species richness found in previous fish egg surveys (Harada 

2015, Duke 2018, Choi 2021). Taken together with prior research findings, this confirms that 

summer months tend to have the highest species richness overall. Additionally, co-detections 

occurred most often in the summer and late spring. This corresponds with the substantial number 

of fish species that migrate to these waters to forage and spawn during this timeframe (Allen 

2006, McClatchie 2016, 2018, de Souza 2016).  

Seasonal peaks in spawning were observed for the Northern anchovy in March and April, 

which are known to spawn in the winter and spring, according to the literature and the previous 

fish-egg surveys (Fishbase, Harada 2015, Duke 2018, Choi 2021). The speckled sanddab 

(Citharichthys stigmaeus) was seen to spawn throughout the sampling period, with peaks in egg 

abundance in May, June, July, and August, which corresponded with their year-round spawning. 

The speckled sanddab also had the greatest number of total fish eggs in the historical fish egg 

surveys and the second highest during our sampling period, as they are in high numbers 

throughout the California coastline (Harada 2015, Duke 2018, Choi 2021). This has been 

attributed to their small size limiting their commercial importance (Harada 2015, Duke 2018, 

Choi 2021). Seasonal trends in spawning are visible from spring to summer for the spotfin 

croaker (Roncador stearnsii), rock wrasse (Haliochoeres semicinctus), queenfish (Serphius 

politus), and California corbina (Menticirrhus undulatus) which again corresponds with their 

documented spawning seasons at SIO (Harada 2015, Duke 2018, Choi 2021).  

Of the species co-detected using concurrent sampling as well as all fish egg samples, the 

majority were found to inhabit soft-bottom areas, followed by hard-bottom and the least utilizing 
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the pelagic zone. These fish are all found in coastal regions, with most in the neritic and/or 

epipelagic zone (Allen 2006, Hastings 2014). Species that were seen more often in the eDNA 

were those that are historically abundant and/or use pier pilings as habitat, such as the señorita 

(Oxyjulis californica), Northern anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), 

and jack mackerel (Trachurus symmetricus). These fish are also known to school (often 

together), which may lead to higher rates of eDNA shedding or greater density of eDNA shed 

due to more physical interaction and greater surface area (Thalinger 2021). The eDNA samples 

detected only a few elasmobranch taxa, which correlates lower amplification efficiencies (Miya 

2015). Of all the pelagic spawning fish species detected from the concurrent samples, most 

species utilized soft-bottom habitats. This corresponded with the immediate habitat surrounding 

the pier being sandy bottom (Hastings 2014). Hard-bottom species were second-most prevalent 

due to the nearby rocky reefs. Species which utilize the pelagic zone are the least prevalent as the 

sampling location is a nearshore environment. This is in line with previous work that has shown 

pelagic species to be the least numerous (Hastings 2014, Allen 2006). Additionally, all the 

species are commonly observed in the area in fish collections and fish egg surveys (Hastings 

2014, Harada 2015, Duke 2018, Choi 2021). This could result from larger populations, as eDNA 

has been associated with fish biomass (Willerslev 2016). As defined by Hastings et al. (2014), 

central range fishes (21) dominated the observed species, followed by Northern (11) and 

Southern (8). Traditional fish surveys have declined in this area since protections were placed on 

the area; therefore, continued surveying via eDNA and fish egg barcoding could fill in for 

monitoring the predicted increase of Southern species due to climate change and detection of 

invasive species (Hastings 2014).  
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Fishes of importance 

Fishes of commercial and ecological importance, such as the Northern anchovy and 

Pacific sardine, were detected via eDNA and in the egg survey throughout the sampling period. 

These fishes are some of the most heavily harvested for human consumption, oil, and fish meal 

for aquaculture and agriculture (Hastings and Walker 2014). Looking specifically at the Northern 

anchovy, the population-specific to our sampling region (Central Stock of Northern Anchovy, 

CSNA)– which ranges from San Francisco to Central Baja California–, collapsed in 2015 

(Sydeman 2020). The historical fish egg survey revealed that the average number of eggs 

increased over the last decade. There were greater total peaks in eggs in a single collection 

starting in 2019 and during our sampling period (Harada 2015, Duke 2018, Choi 2021). Current 

stock assessments also show the same increase. New fishery restrictions were put into place by 

the National Marine Fisheries Service in 2019, establishing new overfishing limits, acceptable 

biological catch limits, and annual catch limits for the CSNA with the intention to conserve and 

manage the stock (Department of Commerce 2019). These results suggest that the 2019 

restrictions correlate with spawning increases in our sampling region. These findings provide 

motivation for frequent and rapid monitoring of the CSNA through ichthyoplankton surveys off 

La Jolla shores to complement the CalCOFI cruises as it is easily accessed and less costly and 

time intensive than the quarterly cruises. Fish eggs laid in this area spend an average of two to 

three days in the water column before hatching. Harada et al. (2015) were able to show with a 

high probability that most eggs collected off the SIO Pier were the result of spawning events 

within the MPA. Further, a surface transport model constructed by Harada et al. (2015) reported 

that the eggs laid within the MPAs drift outside them, displaying the potential for the MPAs to 

“seed” nearby areas and enhance fish stocks. The eDNA metabarcoding detected anchovy on 



33 

 

days without spawning, which may indicate the anchovy are present in the area for reasons 

besides reproduction, such as feeding. Over 70% of the (35/46) unique fish species identified 

were of recreational, commercial, or artisanal importance (Hastings 2014, Allen 2006). There 

were two fish species detected of conservation concern that are listed as vulnerable to extinction 

with declining populations due to commercial and recreational exploitation, the common thresher 

shark (Alopias vulpinus) and the California sheephead (Semicossyphus pulcher) (IUCN 2022). 

These results emphasize the importance of MPAs to serve as a refuge for reproduction, foraging, 

and habitat. 

 

Detection limitations 

Understanding the distribution and sensitivity of eDNA detection requires knowledge of 

how abiotic and biotic factors influence the concentration and distribution of eDNA 

(Andruszkiewicz 2017, Harrison 2019, Beng 2020). There were multiple instances of eDNA 

failing to detect a species found in the fish egg survey in the concurrently collected samples and 

samples within a month. Differences in sampling collection and effort can help explain the 

variance in species composition between methods and failed co-detections. A much larger 

volume of water was filtered during the plankton collections: 64,000-liters compared to the 3-

liters collected for the eDNA (Choi 2021). For comparisons made within a month, failed 

detection in eDNA could be caused primarily by the greater sampling effort for fish egg 

collections (44 fish egg collections, 17 eDNA) as well as collection day and time. Moreover, fish 

egg tows sampled the entire water column while the eDNA was collected from only the surface 

waters, possibly limiting detection. A study on the vertical distribution of eDNA in the 

mesopelagic zone revealed that eDNA was found at depths within tens of meters of the source 
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(Allan 2021). Many flatfish species (Paralichthyidae and Pleuronectidae) found in the eggs were 

not always detected in the eDNA, potentially because they are bottom-dwelling species, limiting 

their eDNA at the surface (Hastings and Walker 2014). Environmental DNA can consist of 

intracellular DNA, including fish eggs and sperm (Harrison 2019). Pelagic fish eggs float to the 

surface slowly over time but have different buoyancy depending on the given species due to 

varied lipid/protein ratios and environmental variables such as vertical mixing and salinity 

(Sundby 2015). If we assume fish eggs are a significant component of the eDNA recovered 

during spawning peaks, it is possible that many of the eggs did not reach the surface or were not 

in a high enough density at the surface to be detected. 

Fishes known to inhabit the waters surrounding SIO pier other than pelagic spawners 

from the fish egg survey were not detected in the eDNA, which could be due to limited sampling 

range. Horizontal dispersal of eDNA can also influence detection. Studies in aquatic 

environments have shown that horizontal distribution of eDNA decreases in concentration at 

>100 m from the organism, which is determined in part by current speed, and thus causes 

detection to be strongly affected by dilution. Distance from the sampling site would also lead to 

failed detection of fishes such as seabasses (Serranidae) which tend to aggregate near rocky reefs 

and historically have lower egg abundance in the fish egg surveys off Scripps Pier (Harada 2015, 

Duke 2018, Choi 2021). Environmental DNA can degrade relatively quickly; studies have shown 

that higher temperatures and UV exposure increase eDNA degradation rates, which are higher 

for extracellular DNA (Andrusakiewicz 2017, Saito 2021). Biotic factors such as microbial 

degradation of DNA and microbial biomass can also impact species detection (Maruyama 2019, 

Sassoubre 2016, Stewart 2019). Those species may primarily live in the nearby rocky reefs, kelp 

forests, eelgrass beds, and submarine canyons (Hastings 2014). Environmental DNA shed by 
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these fishes could have degraded, diluted by the time it reached Scripps Pier, or may not have 

been transported into the immediate vicinity to begin with. Seasonality can influence species 

detection by eDNA (de Souza 2016, Suzuki 2022). The sampling time frame was across six 

months, which would fail to detect species that spawn, migrate, or are generally more active in 

the fall and winter (de Souza 2016). The use of eDNA metabarcoding should be expanded across 

a greater geographical area, collected throughout the water column, and sampled at a higher 

frequency, as it has the potential to reveal seasonal patterns in presence, invasive species, and 

species range shifts due to climate change (Auth 2018, Suzuki 2022, Beng 2020). Overall, eDNA 

shedding rates, transport, dilution, degradation, and seasonality play a key role in species 

detection, so further analysis is needed to understand those variables and how they interplay. 

Genetic marker choice has been shown to play a role in species detection and resolution 

(Polanco 2021). Pelagic spawning species composition differed between methods. This could be 

explained by the fact that we utilized different genetic markers for each method, which can bias 

detection of certain species (Wangensteen 2018, Polanco 2021). Rock wrasse (Halichoeres 

semicinctus) and spotfin croaker (Roncador stearnsii), which were present at high levels in the 

fish eggs, were not seen in the eDNA but may have been the ASVs assigned to Labridae 

(wrasses) and Sciaenidae (drums/croakers). These families have limited differences within their 

mitochondrial genes between species (Gold 2021, Wainwright 2018). Environmental DNA also 

detected fish from a genus of surfperches (Amphisticus) common to the surf zone community. 

The family of surfperches (Embiotocidae) are a recent radiation that lack sufficient genetic 

differentiation to be resolved to lower taxonomic classifications (Gold 2021, Longo 2015). We 

also had low read counts due to the large portion of reads being assigned to bacteria which has 

been reported using the 12S gene, as the primer binding sites are not highly conserved, which 
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can lead to non-specific amplification of nearby regions, such as the 16S gene (Xiao 2022, Gold 

and Choi 2020, Gold 2020). While the two methods utilize different genetic markers for species 

identification, we can be confident in the taxonomic assignments due to the extensive barcoding 

of California Current fish by Gold et al. (2021) and Hastings and Burton et al. (2018). Fish egg 

barcoding was performed on the COI and 16S genes, widely used for fish species identification. 

These regions are longer and exhibit higher levels of differentiation leading to greater taxonomic 

resolution and higher confidence in species assignments. Over 90% of the eggs collected were 

successfully identified; eggs that failed to amplify with either barcode genes or did not pass the 

threshold for identification were likely a result of degraded DNA, failed DNA extraction, or PCR 

inhibition (Harada 2015). Continued efforts to barcode voucher species will lead to the discovery 

of fishes of conservation concern and invasive species in areas they were not previously 

cataloged. 

 

Conclusion and future directions 

This study reveals that eDNA metabarcoding has the potential to detect a wide array of 

fishes but can fail to capture a substantial portion of the actively spawning community. 

Comparisons of pelagic spawning fish species co-detection illuminate that eDNA metabarcoding 

should not be a replacement for fish egg DNA barcoding surveys and instead should be used to 

complement the method. Environmental DNA is likely to detect the adult fish community in the 

immediate area of the collection site. Fish egg monitoring provides essential information on 

reproduction that eDNA alone cannot. Tracking reproductive trends in response to anthropogenic 

stressors such as climate change, pollution, and overfishing is critical for managing fisheries and 

marine resources effectively. Concurrent environmental DNA metabarcoding and fish egg 
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barcoding detected a substantial proportion of a complex marine community identifying species 

of commercial, recreational, and ecological importance. While the eukaryotic eDNA read count 

is low for this study, the data can be used as a preliminary assessment of the combined use of the 

techniques. Future work includes resequencing these samples with modified PCR cycling 

conditions to reduce bacterial amplification. The archived portion of the filters can be extracted 

using alternative methods to increase eukaryotic DNA collection and limit breaking open 

bacterial cells. We can also utilize technical replicates to increase read counts and limit the 

occurrence of non-detections. Additionally, sequencing eDNA samples collected but not 

included in this study can provide more temporal information on species detection. 

Metabarcoding of eDNA should be used cautiously as it has the potential to capture a substantial 

portion of a pelagic spawning fish community but cannot replicate fish egg barcoding results. 

However, these methods can be used concomitantly to rapidly assess short- and long-term 

patterns in species presence and spawning, providing critical information for conservation and 

fisheries management on diversity, habitat use, and local population trends. 
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SUPPLEMENTAL TABLES AND FIGURES 
 

 
Table S1. Environmental DNA read counts per species and sample.  
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Table S1. Environmental DNA read counts per species and sample. Continued. 
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Table S4. Analysis of variance (ANOVA) on species richness of pelagic spawning fish from concurrent 

sampling events (including only taxa resolved to the family level) for eDNA and fish eggs. Species 

richness was not significantly different between methods. 

 

 

Table S5. Species richness by month of pelagic spawning fish from concurrent eDNA metabarcoding and 

fish egg barcoding. 

 

 

Table S6. Species richness by season of pelagic spawning fish from concurrent eDNA metabarcoding and 

fish egg barcoding. 

 

 

Table S7. Permutational analysis of variance (PERMANOVA) on Jaccard-binary dissimilarity indices 

generated using presence/absence data of pelagic spawning fish from concurrent collections. Sample 

community composition was significantly different between methods and months (p < 0.001, 999 

permutations). 
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