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ABSTRACT OF THE DISSERTATION

Computational approach to characterize gene dynamics using bulk and single-nucleus RNA
sequencing to study Alzheimer’s disease

By

Narges Rezaie

Doctor of Philosophy in Mathematical, Computational and Systems Biology (MCSB)

University of California, Irvine, 2024

Ali Mortazavi, Chair

The brain is a complex organ that controls thought, memory, emotion, touch, motor skills, vi-

sion, breathing, temperature, hunger, and many processes that regulate our body1. Alzheimer’s

disease (AD) is a neurodegenerative disease that is characterized by memory loss and im-

paired cognitive function2. It is associated with the accumulation of plaques and tangles in

the brain3. The cortex and hippocampus are critical brain regions for learning because of

their tasks of neural integration and memory respectively4–6. Therefore, these regions have

been characterized exhaustively under different conditions and models to understand the cell

subtypes involved7–9. Changes in gene expression and isoforms during development, aging,

and disease are controlled by multiple, overlapping programs10. The gene expression profiles

of distinct cell types arise reflect from complex genomic interactions among multiple simulta-

neous biological processes within each cell that can be altered by disease progression. Gene

functionality is closely connected to its expression specificity across tissue and cell types.

These functions can be inferred by the abundance and activity of co-expression networks us-

ing bulk RNA-seq11. Short-read single-cell RNA-seq is a widely-used method to characterize

cellular heterogeneity in complex tissues based on gene expression12. A critical step in the

analysis of large genome-wide gene expression datasets is the use of module detection meth-

ods to identify which genes vary in an informative manner and determine how these genes

xiii



organize into modules. Because of the limitations of classical clustering methods/detecting

modules, numerous alternative module detection methods have been proposed, which im-

prove upon clustering by handling co-expression in only a subset of samples, modeling the

regulatory network, and/or allowing overlap between modules.

Here, I describe my work on characterizing the transcriptome of mouse cortex and hippocam-

pus using bulk RNA-seq in conjunction with single-cell/nucleus RNA-seq to characterize

changes during normal development and aging by comparing several mouse models of AD

against control mice to study genes associated with neurodegeneration. First, I describe

the PyWGCNA package to analyze gene expression and to infer meaningful modules of co-

expressed genes that respond to different conditions such as age in different mouse models

of AD using bulk RNA-seq. Then, I describe my novel reproducible grade of membership

model called Topyfic, which is designed to derive topic models that correspond to cellular

programs. I then apply Topyfic to distinct brain RNA-seq datasets from MODEL-AD and

ENCODE and detect major changes in microglia, astrocytes, and oligodendrocytes that vary

based on genotype and sex. Finally, I investigate possible ways to deconvolve modules into

topics and make a connection between them. Together, these new computational methods

provide novel insights into cellular programs in health and disease.
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Chapter 1

Introduction

1.1 Abstract

Genetic variation, disease progression, and cell type/state-specific cellular programs impact

gene functionality and expression. RNA sequencing (RNA-seq) characterizes the hetero-

geneity and complexity of RNA transcripts within individual samples ranging from cells

to organized tissues, whole organs, and organisms. Changes in gene expression, alterna-

tive splicing, and chromatin profiles have been described as indicators of many pathologies.

Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder that is characterized by

distinctive plaques and tangles in affected brain areas. Mouse models of human Alzheimer’s

disease are a valuable approach for studying the underlying pathogenic mechanisms and

assessing the efficacy of interventions as well as therapeutic strategies. Analysis of transcrip-

tional changes was conducted using RNA-seq from the cortex and hippocampus of mouse

models as a function of aging along with human clinical data to identify genes involved in

disease progression. Genes that are expressed in the same subset of cells represent a module

that may be co-regulated by shared cis-regulatory elements and a specific set of transcription

1



factors. Identifying such units is an important entry point to characterizing transcriptionally

distinct subpopulations, including those associated with pathology or known regulators of

myelination, inflammation, and neuronal survival. Here, I describe my work on characteriz-

ing the transcriptome of mouse cortex and hippocampus using bulk RNA-seq in conjunction

with single-cell/nucleus RNA-seq to characterize changes during normal development and

aging by comparing several mouse models of AD against control mice to study genes asso-

ciated with neurodegeneration. First, I describe the PyWGCNA package to analyze gene

expression and to infer meaningful modules of co-expressed genes that respond to different

conditions such as age in different mouse models of AD using bulk RNA-seq. Then, I describe

my novel reproducible grade of membership model called Topyfic, which is designed to derive

topic models that correspond to cellular programs. I then apply Topyfic to distinct brain

RNA-seq datasets from MODEL-AD and ENCODE and detect major changes in microglia,

astrocytes, and oligodendrocytes that vary based on genotype and sex. Finally, I investi-

gate possible ways to deconvolve modules into topics and make a connection between them.

Together, these new computational methods provide novel insights into cellular programs in

health and disease.

1.2 Introduction

1.2.1 Cell types and lineages in the brain

The brain is the most complex organ in the human body. It is the command center of

the nervous system and plays a crucial role in controlling various physiological and cogni-

tive functions, including perception, memory, emotion, and motor coordination. The brain

includes at least 47 molecular distinct subclasses of cells13, with several key cell types hav-

ing distinct structures and functions. The two primary categories of cells are neurons and

2



glial cells14. Neurons are the main signaling units of the brain, communicating with each

other via synapses to transmit information. Oligodendrocytes, microglia, and astrocytes are

the main glial cell types. They provide structural support, insulation, and nourishment for

neurons15,16. They also contribute to the maintenance of the brain’s extracellular environ-

ment17,18.

Neurons generate electrical impulses, known as action potentials, and release neurotrans-

mitters to communicate with other neurons and cells. The two main subclasses of neurons

are the GABAergic neurons and Glutamatergic Neurons19. GABAergic neuron (GABA)

is a type of neuron that uses gamma-aminobutyric acid as its primary neurotransmitter20.

GABA is an inhibitory neurotransmitter, meaning it tends to inhibit or reduce the activity

of the neurons it acts upon. GABAergic neurons play a crucial role in regulating the balance

between excitation and inhibition in the nervous system. Glutamatergic neuron (GLUT) is

another type of neuron that predominantly uses glutamate as its primary neurotransmit-

ter21. Glutamate is an excitatory neurotransmitter, which tends to enhance or promote the

activity of the neurons it interacts with22. Glutamatergic neurons are involved in conveying

excitatory signals in neural circuits and play a central role in various cognitive functions,

including learning and memory. Neurons integrate the signals that they receive in their

dendrites and will fire an action potential along their axons when the input signal crosses a

neuron-specific threshold.

Microglia are the primary resident immune cells of the brain and spinal cord. They originate

from myeloid precursor cells during embryonic development23 and act as the primary immune

defense cells in the central nervous system (CNS). Microglia become activated whenever there

is an injury or infection in the CNS. Activated microglia migrate to the site of issue to engulf

and to digest cellular debris, pathogens, and dead neurons, helping to clear away damaged

or harmful substances24. Microglia can release signaling molecules that either promote or

suppress inflammation, depending on the context, and are vital in maintaining a balance
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between protective and potentially harmful immune responses in the CNS25–29. Microglia are

involved in multiple neurodevelopmental processes, including the formation and refinement of

neural circuits30. They contribute to synaptic pruning, eliminating excess or non-functional

synapses during brain development. Dysregulation of microglial activity is implicated in

various neurological disorders, including neurodegenerative diseases such as Alzheimer’s,

Parkinson’s, and multiple sclerosis31. Overactivation of microglia may contribute to chronic

inflammation, potentially exacerbating neurodegenerative processes32.

Astrocytes are the most abundant glial cells and play a crucial role in supporting the structure

and function of neurons33. They are essential for forming and maintaining the blood-brain

barrier (BBB), providing structural support, supplying nutrients, maintaining homeostasis,

promoting neuronal growth, and recycling neurotransmitters34. Astrocytes are integral to

the overall health and function of the nervous system, and their diverse functions highlight

the complexity of neural networks in the brain35. Dysregulation of astrocyte function is

associated with various neurological disorders, including neurodegenerative diseases, epilepsy,

and brain injuries. In some cases, reactive astrogliosis, which is an exaggerated response of

astrocytes to injury or disease, can contribute to the progression of neurological conditions36.

Oligodendrocytes play a crucial role in supporting and insulating neurons by producing

myelin, which is a fatty substance that wraps around axons37. Oligodendrocytes play a

role in maintaining ion homeostasis around axons by regulating the concentration of ions

in the extracellular space38. Their role in myelination is critical for efficient communication

between neurons and is essential for proper neurological function39. Disorders affecting

oligodendrocytes and myelin, such as demyelinating diseases, can lead to impaired nerve

conduction and neurological symptoms.
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1.2.2 Alzheimer’s disease

Alzheimer’s disease is a progressive neurological disorder that primarily affects the brain,

leading to cognitive decline and memory loss40. Over 90% of people who develop Alzheimer’s

dementia are age 65 or older41. Late-onset Alzheimer’s Disease (LOAD) is the most common

cause of dementia among older adults with about 1 in 9 people (10.8%) age 65 and older

having Alzheimer’s dementia42. In 2023, an estimated 7.2 million Americans aged 65 and

older were living with Alzheimer’s dementia and an estimated 13.8 million people will have

dementia by 2060 in the USA43. The greatest risk factors for LOAD are older age and a

family history of dementia. The latter implies the involvement of genetics, and the ϵ4 form

of the apolipoprotein E (APOE) gene is known to substantially increase the risk of LOAD44.

Over 25 genes have been implicated in LOAD on the basis of GWAS studies, such as Trem2,

Clu, Abca7, Epha1, and Spi145. Together, they are thought to account for 15-25% of the

risk of developing LOAD46,47. There are also additional environmental risk factors that can

be changed or modified to reduce the risk of cognitive decline and dementia such as physical

activity, smoking, education, staying socially and mentally active, blood pressure, and diet42.

There is currently no cure for Alzheimer’s disease. However, there is medicine available that

can temporarily reduce the symptoms and slow disease progression48.

AD is characterized by memory loss and impaired cognitive function associated with the

accumulation of plaques and tangles in the brain49 that disrupt communication between

neurons and contribute to their degeneration. This neuronal loss, along with the structural

changes in the hippocampus and cortex ultimately leads to the characteristic cognitive and

functional deficits observed in AD. The hippocampus is a vital region for memory and learn-

ing processes that plays a crucial role in the formation of new memories and the conversion of

short-term memories into long-term memories. In the early stages of AD, the hippocampus

is often one of the first areas to be affected. The accumulation of beta-Amyloid (β-Amyloid)

plaques and tau tangles disrupts the normal functioning of nerve cells in the hippocampus.
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As the disease progresses, the hippocampus atrophies, which contributes to memory loss and

difficulties in forming and retrieving memories50,51. Individuals with AD often experience

challenges in remembering recent events and struggle with spatial navigation. The cortex

is the outer layer of the brain responsible for higher cognitive functions, including thinking,

reasoning, language, and sensory perception. AD progression affects various areas of the

cortex, leading to widespread cortical atrophy that contributes to cognitive decline52. As

a result, individuals with AD may experience difficulties with language, problem-solving,

decision-making, and overall cognitive function.

The specific trigger for AD is not yet fully understood however multiple theories such as

abnormal protein accumulation53, genetic, cholinergic hypothesis54, oxidative stress55, and

hormonal variations56 have been proposed to explain the underlying causes. Among them,

abnormal protein accumulation is a key feature of several neurodegenerative diseases, in-

cluding AD57. In AD, two primary types of abnormal protein deposits, β-Amyloid plaques,

and tau tangles play a central role. β-Amyloid is a protein fragment derived from the larger

amyloid precursor protein (APP). In the normal course of cellular processing, APP is cleaved

into smaller fragments, including β-Amyloid. However, in AD, there is an abnormal accu-

mulation of β-Amyloid, leading to the formation of plaques58. Several genes are associated

with an increased risk of developing Alzheimer’s disease, and some of them are directly re-

lated to the processing of β-Amyloid. Mutations in presenilin 1 (PSEN1 ) and presenilin

2 (PSEN2 ) genes are associated with early-onset familial AD (FAD)59. These mutations

can influence the processing of APP, leading to an increase in β-Amyloid production and,

indirectly, affecting tau pathology. The major risk factor for LOAD is specific alleles of

the APOE gene. The APOE gene comes in different forms or alleles: APOE ϵ2, APOE

ϵ3, and APOE ϵ4. The APOE ϵ4 allele is a well-established genetic risk factor for AD.

Individuals carrying one copy of APOE ϵ4 have a 2-3 fold increased risk, and those with

two copies have 10-15 fold higher risk of developing AD during their lifetime60. The APOE

ϵ4 allele is associated with higher β-Amyloid accumulation and an increased likelihood of
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developing Alzheimer’s61. However, having the APOE ϵ4 allele does not guarantee that an

individual will develop AD62. Tau is a protein encoded by the MAPT gene that normally

stabilizes microtubules in neurons. In AD, hyperphosphorylation of tau isoforms causes it

to form twisted tangles inside neurons, known as neurofibrillary tangles63,64. Mutations in

specific genes can influence tau metabolism and contribute to the development of neurofib-

rillary tangles65. Mutations in MAPT can lead to abnormal tau protein and are associated

with certain forms of frontotemporal dementia, which shares some pathological features with

AD66,67. The intricate relationship between these abnormal protein accumulations, genetic

factors, and the overall pathology of Alzheimer’s disease is an active area of research. Other

genetic and environmental factors may also contribute to the complex interplay that leads to

the development and progression of AD. Identifying these factors is crucial for understanding

the underlying mechanisms of the disease and developing potential therapeutic interventions.

1.2.3 The role of glial cells during neurodegeneration

In AD, glial cells undergo dynamic changes throughout the progression of the disease and play

both protective and detrimental roles68,69. Microglia are in a surveillance state during the

early stages of AD, constantly monitoring the brain for signs of damage or pathology70. In

the intermediate stages, as β-Amyloid plaques accumulate, microglia become activated70.

This activation involves changes in morphology, increased expression of immune-related

genes, and an attempt to clear the plaques through phagocytosis71. Activated microglia

release pro-inflammatory cytokines, contributing to neuroinflammation72. However, the in-

flammatory response may not be sufficient to completely clear the accumulating β-Amyloid,

resulting in chronic inflammation and prolonged microglial activity73,74. Persistent activa-

tion of microglia and sustained neuroinflammation characterize advanced stages of AD32,75.

In addition to β-Amyloid, the presence of tau tangles becomes more prominent in advanced

stages and microglia start to respond to tau pathology76,77. In late stages, chronic activated
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microglia may become dysfunctional, contributing to a toxic environment that negatively

affects neuronal health25. The chronic inflammatory state, along with the accumulation of

tau tangles, can lead to widespread neuronal damage and cognitive decline78.

Microglia can adopt a specialized activation state known as Disease-Associated Microglia

(DAM), which is associated with a specific transcriptional profile8. DAM is involved in the

response to neurodegenerative pathology such as AD, attempting to clear abnormal protein

aggregates. DAMs are associated with the expression LOAD50 GWAS candidate genes l such

as apolipoprotein E (APOE ), TREM2, CLU and TYROBP upregulated in DAM, whereas

CD33, BIN1, PICALM and PLCG2 are downregulated8.

Astrocytes undergo reactive gliosis as AD progresses, exhibiting changes in morphology and

gene expression in response to neuroinflammation and β-Amyloid accumulation79,80. In

response to the presence of β-Amyloid plaques and other pathological changes, astrocytes

become activated and release inflammatory molecules, such as cytokines and chemokines (C5,

CCL5, CCL3, and IL1B)81, as part of the brain’s immune response82. Dysfunction in the

ability of astrocytes to clear β-Amyloid may contribute to the accumulation of plaques in AD.

In addition to β-Amyloid, astrocytes may contribute to the clearance of tau aggregates83.

The activation of astrocytes, as indicated by increased GFAP expression, is part of the

brain’s attempt to respond to the presence of β-Amyloid and associated neurodegenerative

changes84. In summary, as the disease progresses, astrocytes may become less effective in

maintaining a homeostatic environment.

Several studies suggest that myelin abnormalities may be present in the brains of individuals

with AD85? ,86. Changes in myelin integrity and composition, possibly related to alterations

in oligodendrocyte function, have been observed in post-mortem brain tissue of individuals

with Alzheimer’s86. White matter, which consists of axons and myelin, can show structural

changes in individuals with AD. Disruptions in white matter integrity, including changes in

myelin, may contribute to cognitive decline in AD87. Other factors such as inflammation
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and oxidative stress associated with AD pathology could also potentially impact the health

and function of oligodendrocytes88.

The collective impact of glial responses in neurodegenerative diseases is complex. While glial

cells attempt to mitigate damage and clear pathological substances, chronic or dysregulated

glial activation can contribute to a neurotoxic environment and exacerbate neuronal damage.

Understanding the role of glial cells at different stages of AD is crucial for developing tar-

geted therapeutic approaches aimed at modulating these responses to slow or to halt disease

progression.

1.2.4 Mouse models of AD

The study of animal models in disease research is integral to our understanding of disease

mechanisms, developing effective therapies, and exploring the influence of genetic and en-

vironmental factors89,90. Researchers can model various diseases, providing insights into

pathophysiological processes by employing animals that share physiological and genetic sim-

ilarities with humans. Mouse models are widely utilized due to their practical advantages

and genetic similarities with humans for AD research91,92. Mice share conserved biological

pathways and exhibit pathological changes akin to those seen in AD, such as the accumula-

tion of β-Amyloid plaques and neurofibrillary tangles93. The relatively short lifespan of mice

allows researchers to observe disease progression and test interventions within a manageable

timeframe. Genetic engineering techniques such as transgenic and knockout technologies en-

able the manipulation of specific genes associated with AD, facilitating the study of genetic

factors influencing the disease. Moreover, mice are more cost-effective and reproduce quickly

compared to larger mammals. They also have a well-characterized genome which make them

valuable for high-throughput experiments. The use of mouse models in Alzheimer’s research

provides a controlled and efficient platform for investigating disease mechanisms, testing
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potential therapeutics, and advancing our understanding of the intricate interplay between

genetics and environmental factors in neurodegenerative diseases.

The development and characterization of new mouse models of LOAD are critical for un-

derstanding the progression of the pathology and as a platform for the evaluation of new

drugs94. The goal is to recapitulate three essential features: (1) plaques, (2) tangles, and (3)

degeneration in the cortex as well as the hippocampus. There are at least 200 mouse models

of AD (alzforum.org) that have been developed to mimic different aspects of AD95. Among

them, the 5xFAD mouse model96 is the commonly used transgenic mouse model developed in

201296. This model contains five different familial AD mutations including three mutations

in APP (APP KM670/671NL (Swedish), APP I716V (Florida), APP V717I (London)) and

two mutations in PSEN1 (PSEN1 M146L, PSEN1 L286V), under the control of a THY1

mini-gene97,98, which directs expression to forebrain neurons. These mutations are known

to promote the overproduction and accumulation of β-Amyloid, so 5xFAD mice will develop

robust amyloid pathologies, with plaques appearing in the brain from 2–4 months of age96,

triggering robust microgliosis and inflammatory processes as well as synaptic and neuronal

loss96,99. Even though tau tangles are absent, the 5xFAD model is designed to accelerate the

development of β-Amyloid plaques, allowing researchers to study the early and rapid onset

of Alzheimer’s pathology.

The 3xTgAD mouse model100 is another transgenic mouse model frequently used in AD

research developed in 2003101. It is unique in that it combines both β-Amyloid plaques

and neurofibrillary tangles, two of the major pathological features of AD but it does not

display neuronal loss101. It contains three key genetic mutations (APP Swedish, PSEN1

M146V, and tau P301L) associated with familial AD. APP Swedish mutation is associated

with the Swedish variant of APP, leading to increased production of β-Amyloid plaques102.

PSEN1 M146V mutation involves a familial Alzheimer’s disease-associated mutation in the

PSEN1 gene, contributing to β-Amyloid accumulation103. MAPT P301L mutation involves a
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mutated form of the human tau protein, leading to the formation of neurofibrillary tangles,

another hallmark of AD104. This model has been widely used to study the interactions

between β-Amyloid and tau pathology, as well as their combined effects on cognitive function

and neurodegeneration105–107.

Both of these transgenic mouse models along with over 200 other mouse models have been

generated to study this progressive neurodegenerative disorder, and in many instances, these

mice have yielded insights into the underlying pathogenic mechanisms108,109. However, many

therapeutic approaches that have been demonstrated to be successful in these familial AD

models have failed when evaluated in human clinical trials involving participants with late-

onset AD (LOAD)110–112. The causative mutations in APP, PSEN1, or PSEN2 for AD

have been identified only in early-onset or familial cases, which account for < 1%of all AD

cases. In contrast, LOAD accounts for > 95% of all AD cases and there is a pressing need

to develop new animal models that better recapitulate the underlying molecular pathways

leading to LOAD111–113. The NIA-funded UCI MODEL-AD project is developing better

mouse models to analyze the causes of LOAD. Numerous susceptibility genes have recently

been identified by GWAS and genomic sequencing114,115,115,116, albeit at much smaller hazard

ratios compared to that of APOE117. The UCI MODEL-AD project uses CRISPR and

genome replacement to model and validate eight GWAS-identified LOAD risk loci (Abca7,

Abi3, Bin1, Clu, Epha1, Picalm, Spi1, and Trem2 118) and characterized mice with each of

these both on a wild-type (C57BL/6J) and 5xFAD background to determine their effects on

plaque generation and damage exerted on the brain in response to pathology.

1.2.5 Infer modules from bulk RNA-seq

Bulk RNA-seq is a powerful tool for studying global gene expression patterns, identifying

novel transcripts, and understanding the molecular mechanisms underlying various biologi-
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cal processes, including development, disease, and responses to external stimuli119,120. Bulk

RNA-seq allows researchers to identify differentially expressed genes associated with con-

ditions such as Alzheimer’s disease, Parkinson’s disease, and autism spectrum disorders120.

Moreover, bulk RNA-seq enables the exploration of gene expression changes during cru-

cial stages, shedding light on the molecular mechanisms underlying neural differentiation,

synaptogenesis, and maturation in neurodevelopment.

One method to infer gene function and gene–disease associations from bulk RNA-seq is

weighted gene co-expression network analysis (WGCNA)121, an approach that identifies

modules of genes with similar expression patterns. It constructs networks of genes with a

tendency to co-activate across a group of samples and subsequently interrogates and ana-

lyzes this network. The gene modules can be used to associate genes of unknown function

with biological processes, to prioritize candidate disease genes, or to discern transcriptional

regulatory programs. The network and modules can be interrogated to identify regulators,

co-regulated pathways, biological processes, and hub genes.

Computational approaches to infer cell identity from single-cell and single-nucleus

RNA-seq studies

Tissues consist of diverse cell types, each with highly specialized functions in multicellular

organisms. Single-cell (sc) and single-nucleus (sn) RNA-seq is a relatively young technology

that enables researchers to profile gene expression in individual cells/nuclei. This technolog-

ical advancement facilitates the study of the heterogeneous cellular composition of complex

tissues in various contexts such as development, aging, health, and disease13,122.

In scRNA-seq workflows123,124, whole cells are isolated, allowing for the capture and analysis

of RNA from the entire cell, including both cytoplasmic and nuclear RNA. The quality

of scRNA-seq data relies on the successful dissociation of tissues into viable single cells,

presenting a significant challenge in highly interconnected tissues such as the brain125. On the
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other hand, snRNA-seq126 exclusively requires the removal of nuclei, focusing on capturing

and analyzing RNA within the nucleus, while excluding cytoplasmic RNA. snRNA-seq has

proven effective in analyzing diverse hard-to-dissociate tissues and cell types, including the

brain125, heart127, adipocytes128, and myofibers129.

In most tissues, snRNA-seq excels in recovering attached cell types, whereas scRNA-seq ex-

hibits a bias toward immune cell types130. For instance, snRNA-seq analyses of human brain

samples have failed to capture a microglial activation signature in AD131. The integration

of scRNA-seq and snRNA-seq data will enable more comprehensive transcriptome profiling

and enhanced cell-type annotation in tissues.

In the analysis of sc/snRNA-seq data, cell clustering and cell type annotation are both critical

steps. While these processes can be manually executed with adequate expertise, they are

labor-intensive and time-consuming. Identifying genes with significant expression variability

across individual cells is a common preprocessing step in the analysis of sc/snRNA-seq data.

Focusing on highly variable genes (HVGs) allows researchers to prioritize genes that carry

essential biological information, contributing to the observed diversity and heterogeneity in

the dataset. The selection of HVGs is recommended for enhancing downstream analyses,

including dimensionality reduction techniques and cell clustering algorithms. Validation and

sensitivity analysis of different HVG selection methods132–134 which may yield varying sets

of genes, become essential to ensure the robustness of downstream results.

In cell clustering, cells are grouped based on their gene expression patterns, facilitating

downstream tasks such as cell function recognition and cell-type annotation. Numerous

cell clustering methods have been developed, with many stemming from generic clustering

algorithms. For instance, pcaReduce135 employs an iterative strategy relying on principal

component analysis (PCA) and hierarchical clustering. SC3136 was developed using k-means

and PCA methods, while RaceID137 enhances k-means by incorporating outlier detection to

identify rare cell types. Beyond generic clustering algorithms, community detection-based
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methods have been developed and widely employed. PhenoGraph138, for example, utilizes

shared nearest-neighbor graphs and Louvain139 community detection to reduce clustering

time costs for large-scale datasets140. Leiden algorithm is an improvement of the Louvain

algorithm, which guarantees that communities are well connected139.

Seurat141 and Scanpy142 are two popular scRNA-seq analysis packages that integrate HVGs,

PCA, Louvain, Leiden, and various other methods. However, high dimensionality, inherent

noise, and the rapid growth of scRNA-seq data pose challenges in cell clustering. While

state-of-the-art methods have addressed issues related to high dimensionality and large cell

numbers, mitigating noise associated with data sparsity remains a significant challenge.

The biological interpretation of cell clustering results, i.e. cell annotation, is crucial in

scRNA-seq data analysis. Many scRNA-seq data analysis methods, due to the inclusion of

PCA-based dimensionality reduction, often overlook biological significance during the clus-

tering process. In cell annotation, genes play a pivotal role in annotating and interpreting cell

clusters. Automatic cell annotation methods fall into two categories. The first category uses

supervised methods such as SingleCellNet143, SingleR144, scmap145, and Azimuth146. These

methods require a labeled reference dataset, and the gene expression patterns of cell clusters

are compared to this reference dataset. Clusters exhibiting similar expression patterns to a

particular cell group in the reference dataset are assigned their label144. However, accurate

annotated reference data is often not available. The second category prioritizes genes for cells

or cell clusters. The gene markers are considered informative for revealing cellular diversity

and indicating cell functions147. Methods such as SCINA148 and CellAssign149 assign cell

types based on known marker genes but may be prone to biases associated with the markers

used. Additionally, there are deep learning-based tools, such as scDHA150 and scBalance151,

which also require reference data. In some cases, annotation tools come with a cell marker

database such as scCATCH152 built a reference database “CellMatch” combining multiple

databases.

14



The accuracy of annotation strongly relies on the informativeness and comprehensiveness of

the marker gene database. However, existing databases may not provide extensive coverage

across tissue types and cell types with good specificity. These challenges can be particularly

daunting for investigators new to the scRNA-seq field or those with limited background

knowledge of the involved tissue and cell types.

In Chapter 3, I use a Grade of Membership model (GoM)153 known as latent Dirichlet al-

location (LDA) to annotate cells. These models generalize cluster models, allowing each

sample to have membership in multiple clusters. They are employed to uncover latent and

complex gene expression patterns, revealing biologically meaningful topics. LDA is a prob-

abilistic topic model using unsupervised learning initially proposed for text mining.154 It

assumes that the observed set of words in a document is influenced by latent attributes

(topics) within the document155. As a nonlinear method, LDA excels in handling com-

plex, sparse, and noisy datasets156. Furthermore, LDA is considered interpretable as its

parameters directly associate input features with latent factors or target outcomes. In bioin-

formatics, LDA has found application in single-cell analysis153,157,158, novel cancer mutation

signature discovery102, microbiome composition analysis159,160, substructure exploration in

metabolomics161, and pathway–drug relationships162.

1.3 Conclusions (Theme of thesis)

In summary, genetics and the control of gene regulation are likely heavily intertwined in AD.

The MODEL-AD project is developing LOAD mouse models based on human GWAS data

with each model evaluated by performing a comparative network analysis of hippocampal

transcriptomes to relate changes in expression to other phenotypic changes through the com-

bined use of bulk and single-cell/nucleus RNA-seq. By learning weighted gene co-expression

networks impacted by AD-risk-enhancing genes, we will obtain insights that facilitate the
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continued improvement of mouse models and will be able to suggest the genetic perturba-

tions that would be useful for matching a particular AD subtype. As different subsets of

GWAS-associated genes are known to be expressed in neurons, microglia, and astrocytes,

we must then characterize gene expression at a regional, as well at the single-cell level, to

identify the key factors that account for desired expression levels at the right time and place.

My projects aim to characterize the transcriptome of mouse cortex and hippocampus using

bulk, sn, and sc RNA-seq to describe the cell-specific changes during normal development

and AD using several mouse models of AD produced by MODEL-AD.

In Chapter 2, I introduce PyWGCNA, which is a Python package that I developed for

weighted correlation network analysis (WGCNA)121. This library offers a faster implemen-

tation compared to the R version of WGCNA and includes several additional downstream

analysis modules. PyWGCNA facilitates the comparison of multiple co-expression modules

to each other and external gene lists, such as marker genes from single-cell analyses. I show-

case the capabilities of PyWGCNA on brain bulk RNA-seq datasets from the 5xFAD and

3xTgAD mouse models provided by the MODEL-AD consortium. We applied PyWGCNA

to identify modules associated with genotypes in these datasets and compared resulting mod-

ules to find shared co-expression signatures with significant overlap across the datasets. The

PyWGCNA manuscript was published in Bioinformatics in 2023.

In Chapter 3, I describe my work on identifying robust cellular programs using Topyfic, which

is a Python package that I developed for applying reproducible Latent Dirichlet Allocation

(rLDA) to single-cell/bulk RNA-seq data. This approach aims to recover meaningful topics

involving key genes, such as transcription factors, associated with different cellular processes.

Topyfic is applied to brain single-cell and single-nucleus datasets from 5xFAD mice crossed

with either C57BL6/J (BL6) or CAST/EiJ (Cast) mice. Our goal is to identify shared and

distinct cell types and states, particularly focusing on microglia. The results reveal that

8-month 5xFAD/Cast F1 males exhibit a higher level of microglial activation compared to
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matching 5xFAD/BL6 F1 males, while female mice show similar levels of microglial activa-

tion. Notably, using regulatory genes such as transcription factors, microRNA host genes,

and chromatin regulatory genes is sufficient to effectively capture cell types and states. This

study emphasizes how Grade of Membership models with a specific vocabulary of regulatory

genes can successfully identify gene expression programs in single-cell data. This approach

proves valuable for quantifying both similar and divergent cell states in distinct genotypes.

This work was posted as a BioRχiv preprint in Feb 2024 and is currently in revision.

In Chapter 4, I investigate the relationship between gene modules resulting from PyWGCNA

and gene topics using Topyfic. I analyze bulk RNA-seq datasets developed by the MODEL-

AD consortium with PyWGCNA and compare them to the gene topics identified in Chapter

3. Here, a gene module is defined as a gene module membership vector (kME) representing

genes exhibiting a correlation between the expression profile of the gene and the module

eigengene, while a gene topic consists of a set of genes with weights indicating their contri-

bution to the topic. Analyzing these modules and topics simplifies the system’s complexity,

accelerates novel discoveries, and reveals new functionalities. To explore the relationship

between gene modules and topics, I calculate the cosine similarity, quantifying the degree of

similarity or dissimilarity between vectors based on the cosine of the angle between them.

Visualizing these vectors in geometric space aids in discerning patterns, relationships, and

potential trends that might not be apparent through numerical analysis alone. This approach

facilitates the identification of upstream regulators, signaling hubs, and potential resistance

pathways in diseases like Alzheimer’s (AD) and cancer.

In Chapter 5, I conclude by discussing other sequencing technology assays such as long-

read RNA-seq to improve the generation and evaluation of novel mouse models of AD.

Additionally, I discuss other sequencing technology assays such as perturb-seq to improve

our knowledge in understanding biological aspects underlying development, evolution, and

disease.
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Chapter 2

PyWGCNA: a Python package for

weighted gene co-expression network

analysis

Note: Parts of this chapter was published in Bioinformatics in 2023. It has been revised

with additional text and data to reflect updates made to the software since then.

2.1 Abstract

Weighted Gene Co-expression Network Analysis (WGCNA) is frequently used to identify

modules of genes that are co-expressed across multiple RNA-seq samples. However, the cur-

rent R implementation is slow, is not designed to compare modules across different WGCNA

networks, and produces results that can be challenging to interpret and visualize. We intro-

duce the PyWGCNA Python package, which is designed to identify co-expression modules

from large RNA-seq datasets. PyWGCNA has a faster implementation than the R version

18



of WGCNA and includes several additional downstream analysis features that can be used

within/across modules. These features include functional enrichment analysis using Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), REACTOME, and

inter-module analysis of protein–protein interactions, as well as comparison of multiple co-

expression modules to each other and external gene lists, such as marker genes from single

cells. We apply PyWGCNA to two distinct bulk RNA-seq datasets of brain tissue collected

by MODEL-AD to identify modules associated with genotypes. Comparing the resulting

modules enables us to discover shared co-expression signatures in the form of modules with

significant overlap across the datasets.

The PyWGCNA library for Python 3 is available on PyPi and on GitHub.

2.2 Introduction

Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used method for

characterizing gene correlation patterns across extensive sample sets163. It identifies mod-

ules of highly correlated genes, summarizes these modules, correlates them with external

traits, and calculates module membership. Correlation networks facilitate network-based

gene screening methods that can be used to identify candidate biomarkers or therapeutic

targets. These methods have been successfully applied in various biological contexts, such

as cancer, mouse genetics, and analysis of human data. The WGCNA package163 is imple-

mented in the popular R language. As sequencing datasets grow larger and more complex,

having a scalable implementation of WGCNA becomes increasingly important.

We introduce PyWGCNA, designed to do WGCNA and downstream analytical tasks na-

tively in Python (Fig. 2.1.A). PyWGCNA supports co-expression network analysis for large,

high-dimensional gene or transcript expression datasets, addressing the time or memory in-
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efficiency that is often encountered in R. Additionally, this package can directly perform

functional enrichment analysis, including GO164, KEGG165, and REACTOME166, on co-

expression modules to characterize the functional activity of each module. PyWGCNA also

supports the addition or removal of data, allowing for iterative improvement in network

construction as new samples become available or need to be excluded. Finally, PyWGCNA

can compare co-expression modules from multiple PyWGCNA networks with each other to

assess module reproducibility or with marker genes from scRNA-seq clusters to evaluate

the functional activity or cell-type specificity of each module (Fig. 2.1.B). We demonstrate

PyWGCNA’s utility by identifying co-expression modules associated with genotype in bulk

RNA-seq from MODEL-AD using 5xFAD and 3xTgAD mouse models of Alzheimer’s disease

(AD) and matching wild-type (WT) mice.

2.3 Materials and methods

2.3.1 Identifying co-expression modules

Input and initialization of the PyWGCNA object

The PyWGCNA object stores user-specified network parameters, such as the network type,

and major outputs, such as the adjacency matrix. PyWGCNA can be initialized from

expression data, gene metadata, and sample metadata, which can be passed to PyWGCNA

all together in an AnnData167 format or separately as a series of CSV or TSV matrices (Fig.

2.2.1). The expression data should be formatted such that the rows correspond to samples

and the columns correspond to genes.
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Data preprocessing

One crucial step in identifying gene co-expression modules involves calculating the correlation

between genes. Excessive missing values can significantly impact the results. PyWGCNA ad-

dresses this issue by offering the capability to eliminate excessively sparse genes/transcripts

or samples, as well as lowly expressed genes/transcripts. Moreover, PyWGCNA can iden-

tify and remove genes or samples with too many missing values, and it can detect outlier

samples through hierarchical clustering and user-defined thresholds. While PyWGCNA can

handle the removal of outlier genes or samples, we recommend preliminary preprocessing and

normalization of input gene or transcript expression data, including any necessary batch cor-

rection.

Finding co-expression modules

PyWGCNA follows an identical approach to the reference WGCNA R package, differing only

in default parameter choices, such as the type of network. Initially, PyWGCNA constructs

a co-expression matrix by calculating the correlation between each pair of genes/transcripts

from the preprocessed expression data and stores the results in an adjacency matrix. Subse-

quently, it builds a co-expression network through soft power thresholding of the correlation

matrix, followed by the computation of the topological overlap matrix to generate the fi-

nal network. Finally, PyWGCNA identifies co-expressed modules of genes/transcripts by

hierarchically clustering the network and applying a dynamic tree cut.

Downstream analysis and visualization of co-expression modules

PyWGCNA offers several options for downstream analysis and visualization of co-expression

modules. It can calculate module-trait correlation, compute and summarize module eigen-
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gene expression across sample metadata categories, detect hub genes in each module, and

perform functional enrichment analysis using databases like GO164, KEGG165, and REAC-

TOME166 via GSEApy168 and BioMart169. Additionally, PyWGCNA can recover known and

predicted protein–protein interactions within each module using the STRING database170.

Each analysis option comes with user-friendly plotting tools to visualize the results, includ-

ing interactive module network visualization with options to select genes for display in each

module.

2.3.2 Assessing co-expression module overlap between PyWGCNA

objects or to single-cell data

PyWGCNA can compare co-expression modules from multiple PyWGCNA objects by com-

puting the Jaccard similarity coefficient and the proportion of common genes for each pair

of modules between the objects. The statistical significance of the overlap is evaluated us-

ing Fisher’s exact test. Employing the same approach, PyWGCNA can identify overlaps

between co-expression modules and various gene lists, such as marker genes from single-cell

RNA-seq. This analysis unveils the cell-type specificity of each co-expression module. In

both cases, the results from these tests can be easily visualized using PyWGCNA.

2.4 Results

To assess the performance of PyWGCNA compared to the R reference of WGCNA, we uti-

lized expression data from both gene-level (bulk short-read RNA-seq) and transcript-level

(bulk long-read RNA-seq) datasets, each consisting of 100 samples from the ENCODE por-

tal. We generated 15 subset datasets with a reduced number of genes or transcripts to

analyze how runtime changes as the number of features increases. For each subset, we ran
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PyWGCNA and R WGCNA three times on the same hardware configuration (32 cores,

300 GB memory). Both packages exhibited similar performance up to 16,000 genes, but Py-

WGCNA demonstrated twice the speed on larger datasets. Notably, PyWGCNA successfully

identified modules for 96,000 transcripts, whereas we encountered memory constraints pre-

venting the computation of a co-expression network with the same dataset using R WGCNA

(Fig. 2.4).

2.4.1 Analysis of bulk RNA-seq of 5xFAD and 3xTgAD mouse

model

We applied PyWGCNA to analyze 192 bulk RNA-seq samples from the cortex and hippocam-

pus of the 5xFAD mouse model, along with matching C57BL/6J mice at four different ages

(4, 8, 12, and 18 months) in both sexes (Table. 2.1)120. PyWGCNA successfully identified

17 gene co-expression modules associated with age, genotype, tissue, and sex (Fig. 2.5.A).

The 5xFAD coral module is strongly correlated with age progression in the 5xFAD genotype

(P − value < 0.05), as illustrated by the module eigengene expression (Fig. 2.5.B). Con-

versely, the 5xFAD white module showed a significant correlation with the hippocampus in

both genotypes (Fig. 2.5.C). The 5xFAD coral module, comprising 1335 genes, demonstrated

significant enrichment for GO terms related to immune response and neutrophil activation

(Fig. 2.5.D). Notably, this module included well-known microglial activation genes such as

Cst7, Tyrobp, and Trem2. In contrast, the 5xFAD white module (435 genes) exhibited en-

richment in GO terms related to cilium movement, organization, and assembly (Fig. 2.5.E).

We further applied PyWGCNA to analyze 38 bulk RNA-seq hippocampal female samples

from the 3xTgAD mouse model, along with matching WT (B6129SF1/J) mice at three

different ages (4, 12, and 18 months) (Table. 2.2)100. This analysis yielded 17 modules

correlated with age or genotype (Fig. 2.6.A). The 3xTgAD dark gray module, consisting of
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380 genes, shows a strong correlation with both the 3xTgAD genotype in mice and the 18

month time point (Fig. 2.6.B). GO analysis reveals significant enrichment for genes related

to neutrophil degranulation and immune response, featuring key genes such as Csf1, Tyrobp,

and Trem2 (Fig. 2.6.C).

To assess the similarity between modules found in the 5xFAD and 3xTgAD experiments, we

performed module overlap tests using PyWGCNA. Our analysis revealed several modules

with significant overlap, enriched for similar functions (Fig. 2.7). As expected, based on

their functional enrichment, the 5xFAD coral module and the 3xTgAD dark gray module

significantly overlap one another, suggesting that the co-expression network within these

modules is conserved across the two familial AD mouse models (Fig. 2.7.A). Additionally,

the 3xTgAD white module (434 genes), which strongly correlated with 18-month samples

and enriched in cilium movement, significantly overlapped with the 5xFAD white module

(Fig. 2.7.B).

2.4.2 Analysis of bulk RNA-seq of GWAS mouse models

The MODEL-AD consortium is aiming to develop mouse models that better replicate human

AD. Investigating the impact of disease-associated single nucleotide polymorphisms (SNPs)

on brain function and aging is crucial for building testable models to understand the mech-

anisms underlying AD. The UCI MODEL-AD teams build several bulk RNA-seq datasets

of mouse models of AD based on eight GWAS-identified LOAD risk loci (Abca7, Abi3, Bin1,

Clu, Epha1, Picalm, Spi1, and Trem2 ) on a wild-type (C57BL/6J) and 5xFAD background

to explore changes in gene expression patterns and enhance our understanding of aging and

AD.

Trem2 R47H mouse model
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The TREM2 R47H variant is one of the strongest genetic risk factors for LOAD. Unraveling

coding sequence changes in TREM2 is crucial for gaining insights into both TREM2 function

and the role of microglia, which predominantly express TREM2 in the brain171,172. Initial

studies involving Trem2 knockout (KO) mice revealed the essential role of TREM2 in the

microglial response to plaques and their transition to a DAM phenotype, characterized by

the specific expression of genes such as Cst7, Clec7a, Itgax, and Apoe 91. Furthermore, the

absence of TREM2, leading to a lack of microglial reaction to plaques, paradoxically seemed

to exacerbate disease progression173–175.

To shed light on the relevance of AD, the MODEL-AD project conducted a study by crossing

Trem2R47H NSS mice with the 5xFAD mouse model, which is characterized by amyloido-

sis. The assessment included an evaluation of gene expression at 4 and 12 months of age.

Bulk RNA-seq libraries were constructed from 3 to 5 mice per genotype, sex, and tissue

(hippocampus) across both time points118. This comprehensive approach aimed to provide

a deeper understanding of the impact of the Trem2R47H variant in the context of gene

expression patterns.

To investigate gene expression changes, PyWGCNA was applied to analyze a quantile-

normalized TPM matrix comprising 93 bulk RNA-seq samples. This analysis identified

55 modules associated with age, genotype, and sex. Notably, the PyWGCNA recovered

the inflammatory darkgrey module (Fig. 2.8.A). While there are no significant changes in

eigengene values at 4 months in both 5xFAD and 5xFAD/Trem2R47H mice, an increases in

the inflammation module’s eigengene values are observed by 12 months, with the presence of

Trem2*R47H including an even higher increase 2.8.B). The Darkgrey inflammatory module

significantly enriched in GO terms related to the immune response and cytokine signaling

modules 2.8.B).

The eigengene values of the Lightgrey module reveal a significant decrease in this module

in 12-month-old 5xFAD/Trem2R47H compared to 5xFAD mice (Fig. 2.9.A). The Light-
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grey module contains 513 genes enriched in go terms related to neuronal systems such as

neurotransmitter secretion (GO:0007269) (Fig. 2.9.B). The Snow module with 183 genes re-

veals a clear effect of Trem2R47H in 12-month-old mice, regardless of 5xFAD genotype (Fig.

2.10.A). It is also significantly enriched in myelination and differentiation related go terms

(Fig. 2.10.B). These findings suggest that the R47H variant confers age- and disease-specific

effects on glial cells. Importantly, similar results have been observed in human AD tissue

from TREM2 variant carriers, supporting and validating the relevance of these findings176.

ABCA7 V1613M mouse model

GWAS of AD and control individuals have identified variants associated with the ABCA7

locus, indicating an increased risk of developing LOAD114,177. Exome sequencing of ABCA7

has further revealed nonsense and missense coding variants that are predicted to affect

protein structure and function. Many of these variants are thought to result in loss-of-

function mutations and have been found to be enriched in individuals with AD116,178–180.

Expression studies have supported these findings, showing that AD brains with low levels

of ABCA7 tend to develop AD at a younger age compared to those with higher ABCA7

expression. On the other hand, individuals expressing ABCA7 at similar levels to healthy

controls tend to develop AD at a very late age181,182 suggesting that reduced function of

ABCA7 may play a crucial role as a risk factor in the development of AD.

The V1599M coding variant of ABCA7 (rs117187003) was identified by exome sequencing

and predicted to be deleterious, suggesting it may confer an increased risk of developing

LOAD116,179. The MODEL-AD consortium evaluated the V1599M variant (V1613M in mice)

for potential inclusion in new LOAD models and also crossed it with 5xFAD mice to give

relevance to AD. This decision was based on its location within a relatively well-conserved

region of homology between the mouse and human ABCA7.

To identify changes in gene expression associated with homozygosity for the Abca7V1613M

26



variant in 5xFAD mice, bulk tissue RNA-seq was conducted on hippocampi resulting 4

different mouse models (5xFAD/Abca7V1613M, Abca7V1613M, 5xFAD, and WT control

mice). The analysis utilized PyWGCNA on 73 bulk RNA-seq samples at two different

timepoints (4 months and 12 months old) in the hippocampus for both sexes, using genes

with more than 1 TPM. After removing one sample based on hierarchical clustering at the

sample level, a soft threshold of 19 was selected.

Among the 6 modules identified by PyWGCNA, the black module contains inflamma-

tion/cytokine related genes that are highly upregulated in 5xFAD mice but significantly

reduced in 5xFAD/Abca7V1613M mice (Fig. 2.11.A). Eigengene values of these inflamma-

tion modules for all groups revealed a reduction in 5xFAD/Abca7V1613M mice compared to

5xFAD at both 4 and 12 months of age (Fig. 2.11.B-C). Collectively, these data indicate that

5xFAD/Abca7V1613M mice exhibit reduced microgliosis and inflammation, which is likely

due to lower Aβ plaque burden compared to 5xFAD controls rather than distinct changes

to microglial gene expression and function.

BIN1 K358R mouse model

GWAS has identified bridging integrator 1 (BIN1 ) as a key risk locus for LOAD115,183,184.

The BIN1 locus is associated with the second-highest risk for developing LOAD after

APOE 115,183,184. Subsequent targeted exome sequencing of LOAD patients and controls

revealed that the rare BIN1 coding variant rs138047593 (K358R) is associated with an in-

creased risk of LOAD116,185. Research on the role of BIN1 in AD has yielded conflicting

results regarding its impact. In AD, BIN1 levels have been reported as both increased and

decreased186,187. BIN1 has been suggested to regulate the processing of Aβ, a key protein

associated with AD pathology. However, reducing BIN1 in mice did not significantly al-

ter Aβ production or deposition188. Despite this, BIN1 has been observed to accumulate

around amyloid plaques in both humans and mice189. Notably, BIN1 directly binds to tau

and phosphorylation of tau in and around the proline-rich domain weakens its interaction
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with the SH3 domain of BIN1 190,191.

Bin1K358R is a CRISPR/Cas9-generated mutant of Bin1 gene carrying the K426R mutation

that corresponds to the human K358R SNP and has been generated by UCI MODEL-AD

teams. To investigate the interaction between the BIN1 K358R variant and AD pathol-

ogy, UCI MODEL-AD teams crossed BIN1 K358R mice with the 5xFAD mouse model,

which is characterized by aggressive amyloidosis. The impacts of this crossbreeding were as-

sessed on normal brain function and its interaction with amyloidosis. Therefore, 4 different

mouse genotypes were generated: 5xFAD/BIN1K358R (hemizygous 5xFAD/homozygous

BIN1K358R), BIN1K358R (homozygous BIN1K358R), 5xFAD (hemizygous 5xFAD), and

wild-type (WT) control mice. These mice were aged until 4 and 12 months, representing

stages of initial plaque production and advanced plaque load, respectively.

75 bulk RNA-seq datasets were built using hippocampus tissue from 4-5 mice per genotype

and sex across both time points. PyWGCNA was employed to identify 38 co-expressed gene

modules (Fig. 2.12.A). The module-trait relationship heatmap showed a high correlation

with 12-month 5xFAD mice in the lightcoral module (Fig. 2.12.A). However, this correlation

was significantly reduced in 12-month 5xFAD/BIN1K358R mice compared to 5xFAD mice

(Fig. 2.12.A). Eigengene values of the lightcoral module for all groups confirmed a reduction

in 5xFAD/BIN1K358R mice compared to 5xFAD at 12 months of age, indicating that the

K358R BIN1 variant induces gene expression changes (Fig. 2.12.B). The lightcoral module

contains 1,249 genes while most of them are associated with inflammation/cytokine-related

terms based on GO analysis (Fig. 2.12.C). Given that BIN1 is predominantly expressed

in oligodendrocytes192, the results suggest a dampened activation of both microglia193 and

oligodendrocytes at the gene level.

Clu-h2kbKI mouse model

The clusterin (CLU ) gene, also known as apolipoprotein J (ApoJ )194, is a significant ge-
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netic factor associated with an increased risk of LOAD in multiple GWAS183,184,195. CLU

expression is known to be upregulated in degenerative conditions, including AD196,197, due

to cellular and oxidative stress or dysregulation of specific signaling pathways198–201. How-

ever, conflicting results exist in the literature regarding whether CLU expression improves

or exacerbates cellular stress202–207.

In AD, CLU levels are increased in the brain208. It has been found to bind to Aβ and

play a role in Aβ deposition and clearance209–211. CLU is present in Aβ plaques, vessels of

cerebral amyloid angiopathy (CAA), and associated with neurofibrillary tangles212,213. It also

interacts with modified tau species in human AD brain tissue214. Importantly, different single

nucleotide polymorphisms (SNPs) in the CLU gene may exert their effects in combination

with other genetic risk factors such as APOE4 215, TREM2 216, and BIN1 214. Additionally,

different mRNA isoforms are produced from the CLU gene, and variations in the CLU gene

may lead to alterations in the ratios of isoforms, influencing the outcome of the disease and

playing a role in the development and progression of AD217,218.

The UCI MODEL-AD team created Clu-h2kbKI mice contains a 2kb region of human DNA

sequence that spans from intron 7 to exon 9, including a human LOAD CLU risk SNP

rs2279590. To investigate the function of CLU in AD, we also crossed it with the 5xFAD

mouse model. We then collected 12 month cortex along with the 4 and 12 month hip-

pocampus of these mice and performed bulk RNA-seq in order to explore the changes at

the gene expression level. PyWGCNA was applied to 114 bulk RNA-seq samples of cortex

and hippocampus together while 4 month cortex samples were not collected. Among the

27 modules (Fig. 2.13.A), the darkgrey module contains 607 genes primarily expressed in

cortex tissue (Fig. 2.13.B) while enriched in GO terms related to neuronal systems such as

neurotransmitter secretion and transport (Fig. 2.13.C).

Epha1 P461L mouse model
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Epha1 is another gene that was linked to LOAD through GWAS. EphA1 is a receptor tyro-

sine kinase and a member of the Eph receptor family219. Common variants of EphA1 have

been linked to LOAD in various studies114,177,220. Particularly, in GWAS of Caribbean His-

panic families, a P460L coding mutation in EphA1 loci showed a significant association with

LOAD177. EphA1, along with other Eph receptors, plays a role in various cellular processes,

including cell adhesion, migration, and axon guidance during developmental morphogenesis,

organogenesis, pattern formation, and cell fate determination221,222. Eph receptors interact

with ephrin ligands, participating in bidirectional signaling219,223. Disruption of Eph/ephrin

signaling has been associated with oncogenesis224 and immune dysregulation225, suggesting

a potential role in regulating the neuroinflammatory process and influencing the progres-

sion of AD226,227. Understanding the involvement of EphA1 and related pathways in AD

could provide insights into the underlying mechanisms of the disease and potential targets

for therapeutic interventions.

A rare coding variant of EphA1, rs202178565, was identified through targeted sequencing. To

investigate the impact of this variant, the UCI MODEL-AD teams made Epha1P461L mouse

model which was created using CRISPR/Cas9 technology to introduce a missense mutation

(P461L in mice) corresponding to the human SNP rs202178565 found in the EPHA1 gene.

To assess the effects of the Epha1 variant in the context of AD, the researchers crossed this

Epha1P461L mouse model with the 5xFAD mouse model. Hippocampal samples were col-

lected from four different mouse genotypes (5xFAD/Epha1P461L, Epha1P461L, 5xFAD, and

wild-type) at 12 months for PyWGCNA analysis. 39 modules were identified by applying Py-

WGCNA to 38 bulk RNA-seq samples (Fig. 2.14.A). Eigengene values of genes in burlywood

modules are highly upregulated in 5xFAD mice but significantly reduced in 5xFAD/EPHA1

mice (Fig. 2.14.B). Burlywood module contains 1,644 genes including microglia marker genes

such as Itgax, Trem2, which significantly enriched in inflammation/cytokine responses (Fig.

2.14.C).
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PicalmH465R mouse model

The PICALM (Phosphatidylinositol-binding clathrin assembly protein) gene has been iden-

tified as a genetic risk factor for LOAD through GWAS228. PICALM is involved in the

internalization and trafficking of APP which is a necessary protein that forms plaques in the

brains of individuals with AD229,230. Additionally, PICALM plays a role in the regulation

of β-Amyloid blood-brain barrier transcytosis and transferrin receptor endocytosis in ery-

throblasts231,232. Sequencing of the PICALM gene revealed 16 variants231, and one of them,

the H465R variant, is a nonsynonymous missense change associated with an increased risk

of AD.

To investigate the role of the PICALM H465R variant in AD, the MODEL-AD UCI teams

created the PicalmH465R allele. CRISPR/Cas9 endonuclease-mediated genome editing was

employed to introduce the H465R mutation. Subsequently, these PicalmH465R mice were

crossed with the 5xFAD mouse model of AD, resulting in four experimental groups: WT,

PICALMH458R, 5xFAD, and 5xFAD/PICALMH458R. Bulk RNA-seq analyses were con-

ducted on hippocampal samples collected from these mice at both 4, 12, and 18 months to

explore changes in gene expression, with a specific focus on PICALM.

17 co-expressed gene modules were identified by applying PyWGCNA to 108 bulk RNA-seq

samples. Gainsboro module (587 genes) is significantly correlated with older mice, more

specifically 5xFAD mice (Fig. 2.15.A). Eigengene values of genes in gainsboro modules are

increasing during time in 5xFAD mice this value is decreasing in 5xFAD/PICALMH458R

mice during aging (Fig. 2.15.B). There is no significant changes in eigengene values in WT

and PICALMH458R mice (Fig. 2.15.B). GO terms related to microglia cell activation and

cytokines are enriched in this module (Fig. 2.15.C). In summary, the results suggest a

dampened activation of glial cells in mice with H465R mutation at the gene level.

Spi1 rs1377416 mouse model
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SPI1, also known as PU.1 (transcription factor PU.1), is a gene that encodes a transcription

factor involved in the regulation of hematopoiesis and immune system function, including

microglial proliferation and activation associated with AD and other neurodegenerative con-

ditions involving an inflammatory response233,234. The study confirmed that AD-associated

SNP rs1377416 increases in vitro enhancer activity in murine BV-2 microglia cells235. To

create the Spi1*rs1377416 allele, CRISPR/Cas9 endonuclease-mediated genome editing was

used to introduce a C to T missense mutation in the non-coding region of Spi1. To investi-

gate the effect of AD, MODEL-AD UCI teams crossed this mouse model with 5xFAD and

then aged them until 4 and 12 months.

Bulk RNA-seq was performed to explore the changes in SPI1 activity and its impact on

the expression of genes associated with AD pathology. PyWGCNA was applied to 77 bulk

RNA-seq samples which identified 39 modules (Fig. 2.16.A). White module has a significant

correlation with 12 month 5xFAD and 5xFAD/Spi1 mice. The eigengene profile of this

module shows no significant changes between 5xFAD and 5xFAD/Spi1 mice (Fig. 2.16.B).

GO terms related to inflammation and cytokines enriched in this module, as well (Fig.

2.16.C). Collectively, there is no significant difference 5xFAD and 5xFAD/Spi1 mice.

ABI3 S209F mouse model

ABI3 (Abelson-interactor family member 3) is a gene that has been identified as a risk gene

for AD through GWAS and genetic analyses236,237. ABI3 is primarily expressed by microglia

in the human brain. Overexpression of ABI3 has been implicated in microglial activation,

leading to inflammation, which in turn may contribute to the formation of neurofibrillary

tangles and neuronal death, ultimately correlating with dementia238–241. Among the single-

nucleotide polymorphisms (SNPs) associated with AD risk, two SNPs within the ABI3 gene

have been implicated242–244: a rare missense SNP (rs616338) within ABI3 exon 5 and a com-

mon SNP (rs28394864) located 150,000 base pairs downstream of ABI3. To investigate the

function of the ABI3 gene, the Abi3S209F allele was created. CRISPR/Cas9 endonuclease-
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mediated genome editing was employed to introduce an S212F mutation into the Abi3 gene.

This mutant allele models an SNP (rs616338) found in human ABI3 that encodes a missense

mutation associated with an increased risk of sporadic AD.

The Abi3S209F mouse model was then crossed with the 5xFAD mouse model to explore

the functional implications of the ABI3 gene in the context of AD. Bulk RNA-seq samples

were collected from 4 and 12 months, representing different stages of disease progression,

from four different mouse models: WT, Abi3S209F, 5xFAD, and 5xFAD/Abi3S209F. Then,

PyWGCNA was applied resulting 12 co-expression gene modules (Fig. 2.17.A). Calculating

the correlation between each module and different traits such as age, sex, and genotype

reveals the white module that contains 2,393 genes and has a significant correlation with

older 5xFAD and 5xFAD/Abi3S209F mice (Fig. 2.17.A). Eigengene value of the white

module in 5xFAD mice is increasing over time, especially in female mice supporting the

idea that biological sex is a risk factor for developing dementia including AD (Fig. 2.17.B).

GO terms related to cytokines enriched in this module suggest the role of cytokines in the

inflammatory response in the body, and inflammation is increasingly recognized as a factor

in the development and progression of AD (Fig. 2.17.C).

Comparison of co-expressed modules from GWAS mouse models

In assessing the concordance among modules identified in the GWAS mouse models, we

employed PyWGCNA to calculate the Jaccard index for each pair of modules derived from

the analysis of individual mouse models. Our analysis recovered multiple modules exhibit-

ing substantial overlap, indicative of shared functions. We identified 4 groups of modules

with Jaccard index > 0.23 and annotated them based on the biological functions they were

enriched with. Notably, modules enriched for biological functions such as inflammation,

cytokine signaling, and immune response, previously annotated in individual analysis, ex-

hibited significant (P-value < 0.01) similarity to one another (denoted as M4 of Fig. 2.18).

Furthermore, the eigengene profiles of these modules demonstrated a consistent pattern, with
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values showing a significant increase in mice with a 5xFAD background over time, while no

significant changes were observed in mice with a WT background. This convergence of

module similarity and eigengene profile dynamics suggests a shared regulatory landscape

underlying the genetic architecture in these mouse models, mainly in the progression of AD.

The M1 meta-module, comprising one module from each GWAS analysis, consists of genes

related to tauopathy, such as Mapt consistently present across all these modules suggesting

the existence of an underlying pathway associated with excitability in neuronal networks

(denoted as M1 of Fig. 2.18)245. Furthermore, our investigation has successfully delineated

distinct groups of modules, denoted as M2, associated with myelination and derived from the

TREM2, ABCA7, and EPHA1 datasets. This finding implies the involvement of complex

processes related to myelin in glial development, particularly emphasizing the intricate inter-

action between glial cells and neurons (Fig. 2.18). Additionally, modules enriched in cilium

development exhibit significant overlap (M3 in Fig. 2.18), reinforcing the confirmed role

of cilia in mediating Sonic Hedgehog signaling (Shh) and thereby regulating hippocampal

neurogenesis246. These collective findings shed additional light on the molecular intricacies

associated with tauopathy, myelination, and cilium development, providing valuable insights

into potential therapeutic targets for neurodegenerative disorders.

2.5 Discussion

We have developed a Python package based on the original R implementation of WGCNA.

PyWGCNA is capable of handling larger datasets and provides an expanded set of well-

documented functions, including additional downstream analyses and visualization tools

such as functional enrichment and protein–protein interactions. Notable features include

multi-way comparisons between multiple PyWGCNA networks and/or other gene lists. For

example, the PyWGCNA Jaccard similarity-based gene list overlap test allows for associating
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specific cell types to individual modules for further interpretation of the possible functions

of these modules. As the number of datasets continues to grow exponentially, we anticipate

that such comparative analyses will become increasingly valuable. We hope that PyWGCNA

will contribute to filling a gap in the Python bioinformatics community.

Several GWAS have found over 25 genes associated with LOAD in humans. As part of the

first phase of MODEL-AD, we introduced nine GWAS-identified LOAD risk loci (Abca7,

Abi3, Bin1, Clu, Epha1, Picalm, Spi1, and Trem2) into C57BL/6J mice using CRISPR/Cas9

followed by breeding with the 5xFAD mouse model, which provides a valuable platform for

studying the impact of these variants on normal brain function and their interactions with

aggressive amyloidosis.

The mRNA expression profiles of these mouse models as well as matching controls at different

ages can then be used to identify modules of genes whose expression is impacted by ages

and the specific GWAS variants in a model of amyloidosis using PyWGCNA. PyWGCNA

results would help us to improve our understanding of how each variant has age- and disease-

dependent effects on glial cells and neuropathology on AD progression.

Using PyWGCNA, we were able to identify gene co-expressed modules that were associated

with age and/or genotypes. Variants such as Trem2R47H appear to confer age and disease-

specific effects on microglia that also have been shown in human AD individuals that carry

TREM2 variant, in which microglial responses to pathology are suppressed in newly formed

pathological areas but exacerbated in more advanced pathological brain areas118. On the

other hand, some variants such as BIN1K358R and Abca7V1613M show a reduction of

eigenegene values in the inflammatory module, which raises the interesting possibility that

these variants might be protective instead of increasing the risk of LOAD. There is a last

group of variants such as Spi1*rs1377416 where we did not detect major changes at gene

expression level that have been associated with AD pathologies stating the limitations of

bulk RNA-seq.
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The complexity of AD pathogenesis, involving various cell types and their interactions, neces-

sitates advanced techniques such as single-cell for a more precise characterization. Generally,

it is difficult to evaluate the complete role of glial cells in AD using only bulk RNA-seq but

this will help us to prioritize the list of variants and genes that need to be explored deeply.

2.6 Supplementary methods

2.6.1 co-expression network construction

Determining the soft power threshold

To construct the network, correlation values are corrected based on a soft power threshold.

This threshold is crucial as it enhances the distinction between strong and weak correlations,

effectively bringing weak values closer to zero. This threshold also determines the sensitivity

and specificity of pairwise correlation strengths. The chosen power value must result in a

network that exhibits characteristics similar to a scale-free network which is based on the

idea that the likelihood of a node (gene) being connected to k other nodes (genes) diminishes

following a power law (p(k) ∼ k−γ).

To determine this parameter, we adopted the same strategy as the original WGCNA. We

try to maximize a model fit (R2 > 0.9) under a scale-free topology model while minimiz-

ing the number of connections lost (mean(connectivity) <= 100) when fitting the model

(maintaining a high mean number of connections) (Fig.2.3).
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Adjacency: Pairwise gene co-expression correlation

To calculate the adjacency matrix, it is essential to determine the type of network, specifically

how pairs of nodes with strong negative correlations should be treated. One option is to

consider them connected, as would be the case if the correlation was positive, and creating an

’unsigned’ network where the sign doesn’t matter (cor = |cor(a, b)|). Conversely, strongly

negatively correlated nodes can be considered unconnected in a ’signed’ network, where

the sign of a strong correlation dictates the connection status (cor = (cor(a,b)+1)
2

). Another

option is a ’signed hybrid’ network, combining hard and soft thresholding. It involves a hard

threshold at 0 (cor = 0 for |cor(a, b)| ≤ 0) and soft thresholding above zero (cor = |cor(a, b)|

for |cor(a, b)| > 0).

Once a network type is chosen, the correlations are calculated, raised to the normalization

power factor, and then stored in an adjacency matrix.

Topological overlap matrix (TOM)

To construct modules, meaningful relationships are extracted from the adjacency matrix.

This process begins by transforming the adjacency matrix into measures of gene dissimilarity

(distance of a gene from every other gene in the system) known as Topological Overlap Matrix

(TOM). Subsequently, the corresponding dissimilarity is calculated.

Identify modules

Using the Dissimilarity Matrix, genes with more similar expression patterns are grouped

into clusters using hierarchical/agglomerative clustering, and a dendrogram (cluster tree) of

genes is constructed to identify modules. Since some modules may exhibit high similarity,

they can be merged into a single cluster based on a user-defined cut-off.
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2.7 Materials and data availability

RNA sequencing was performed as described120. Sequences were aligned to the mouse

genome (mm10) and annotation was done using GENCODE v21. Reads were mapped with

STAR v.2.7.3a and RSEM (v.1.3.3) was used for quantification of gene expression. Raw

fastqs for each model are available in Synapse.
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Figure 2.1: Overview of PyWGCNA workflow. A) Workflow of identifying
co-expression modules. B) Workflow of comparing multiple PyWGCNA object(s) with/out
gene marker list.
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Figure 2.2: Depth-in PyWGCNA workflow. 1) Input of PyWGCNA (gene expression
data in AnnData format) 2) Preprocessing steps 3) Finding co-expression modules 4)
Downstream analysis and visualization of co-expression modules 5) Assessing co-expression
module overlap between PyWGCNA objects or to single-cell data
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A B

Figure 2.3: Determining soft power threshold. A) Scale independence value (R2) at
different soft thresholds (powers) B) Mean connectivity at different soft thresholds (powers)
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on their correlation: red is a strong positive correlation, while blue is a strong negative
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Figure 2.8: Trem2 modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) The darkgrey module eigengene expression profile from the Trem2 mouse
model is summarized by genotype. Above, the top two rows display the sex and age of each
sample. Below, the bar plot represents module eigengene expression by genotype for each
dataset with individual sample module eigengene expression shown as points. C) GO
analysis of the genes in darkgrey modules.
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Figure 2.9: Trem2 neuronal module during the progression of the AD A) The
lightgrey module eigengene expression profile from the Trem2 mouse model is summarized
by genotype. Above, the top two rows display the sex and age of each sample. Below, the
bar plot represents module eigengene expression by genotype for each dataset with
individual sample module eigengene expression shown as points. B) GO analysis of the
genes in lightgrey modules.
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Figure 2.11: ABCA7 modules during the progression of the AD A) Matrix with
the Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
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Figure 2.12: Bin1 modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) The lightcoral module eigengene expression profile is summarized by
genotype. Above, the top two rows display the sex and age of each sample. Below, the bar
plot represents module eigengene expression by genotype for each dataset with individual
sample module eigengene expression shown as points. C) GO analysis of the genes in
lightcoral modules.
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Figure 2.13: CLU modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) The darkgrey module eigengene expression profile is summarized by
genotype. Above, the top two rows display the sex and age of each sample. Below, the bar
plot represents module eigengene expression by genotype for each dataset with individual
sample module eigengene expression shown as points. C) GO analysis of the genes in
darkgrey modules.
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Figure 2.14: Epha modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) the burlywood module eigengene expression profile summarized by
genotype. Above, the top two rows display sex and age for each sample. Below, the bar
plot represents module eigengene expression by genotype for each dataset with individual
sample module eigengene expression shown as points. C) GO analysis of the genes in
burlywood modules.
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Figure 2.15: PicalmH465R modules during the progression of the AD A) Matrix
with the Module-Trait Relationships (MTRs) and corresponding p-values between the
detected modules on the y-axis and selected AD traits on the x-axis. The MTRs are
colored based on their correlation: red is a strong positive correlation, while blue is a
strong negative correlation. B) The gainsboro module eigengene expression profile is
summarized by genotype. Above, the top two rows display the sex and age of each sample.
Below, the bar plot represents module eigengene expression by genotype for each dataset
with individual sample module eigengene expression shown as points. C) GO analysis of
the genes in gainsboro modules.
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Figure 2.16: Spi1 modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) The white module eigengene expression profile is summarized by genotype.
Above, the top two rows display the sex and age of each sample. Below, the bar plot
represents module eigengene expression by genotype for each dataset with individual
sample module eigengene expression shown as points. C) GO analysis of the genes in white
modules.

54



B

A corr.

C

Sex
F
M

Gene ontology in white module

Genotype
5xFAD
5xFAD/ABI3HO
WT
ABI3HO

Fi
re

br
ic

k(
43

7)

W
hi

te
(2

39
3)

B
ro

w
n(

12
2)

Sn
ow

(8
02

)

D
im

gr
ey

(8
7)

Sa
lm

on
(1

28
)

D
ar

kr
ed

(1
08

)

Si
lv

er
(1

20
6)

In
di

an
re

d(
23

83
)

M
is

ty
ro

se
(1

54
)

B
la

ck
(5

71
2)

D
ar

kg
re

y(
87

44
)

Time point

Sex

5xFAD

5xFAD/ABI3HO

WT

ABI3HO

-0.02
(0.818)

0.35
(0.0)

0.17
(0.078)

-0.25
(0.008)

-0.02
(0.864)

-0.03
(0.776)

-0.21
(0.027)

-0.17
(0.087)

-0.14
(0.153)

-0.22
(0.023)

-0.5
(0.0)

-0.71
(0.0)

-0.25
(0.009)

-0.21
(0.033)

-0.16
(0.1)

-0.05
(0.639)

0.1
(0.301)

-0.12
(0.235)

-0.1
(0.321)

0.07
(0.443)

-0.13
(0.186)

0.09
(0.367)

0.1
(0.296)

0.01
(0.929)

0.41
(0.0)

0.5
(0.0)

0.03
(0.771)

-0.03
(0.789)

-0.06
(0.546)

-0.04
(0.651)

-0.05
(0.612)

0.02
(0.877)

-0.07
(0.463)

-0.07
(0.466)

-0.12
(0.214)

-0.13
(0.19)

0.19
(0.052)

0.29
(0.003)

-0.17
(0.076)

0.04
(0.647)

-0.05
(0.612)

-0.05
(0.583)

-0.06
(0.532)

0.03
(0.794)

0.16
(0.11)

-0.04
(0.684)

-0.03
(0.769)

0.0
(0.996)

-0.28
(0.003)

-0.34
(0.0)

0.26
(0.006)

0.01
(0.883)

-0.04
(0.686)

-0.01
(0.89)

-0.05
(0.579)

-0.12
(0.225)

-0.06
(0.567)

0.18
(0.059)

-0.05
(0.625)

-0.03
(0.782)

-0.32
(0.001)

-0.44
(0.0)

-0.11
(0.249)

-0.03
(0.748)

0.15
(0.135)

0.11
(0.261)

0.16
(0.097)

0.07
(0.45)

-0.03
(0.79)

-0.07
(0.498)

0.2
(0.044)

0.15
(0.115)

0 2 4 6
Macrophage Activation

Response To Lipopolysaccharide
Cytokine-Mediated Signaling Pathway

Regulation Of Phagocytosis
Positive Regulation Of Intracellular Signal Transduction

Phagocytosis
Cellular Response To Molecule Of Bacterial Origin

Cellular Response To Lipopolysaccharide
Positive Regulation Of Interleukin-8 Production

Cellular Response To Low-Density Lipoprotein Particle Stimulus
Toll-Like Receptor Signaling Pathway

Cytoplasmic Translation
Pattern Recognition Receptor Signaling Pathway

Positive Regulation Of Interleukin-6 Production
Regulation Of Interleukin-8 Production

Positive Regulation Of Tumor Necrosis Factor Production
Regulation Of Interleukin-6 Production

Regulation Of Tumor Necrosis Factor Production
Positive Regulation Of Tumor Necrosis Factor Superfamily Cytokine Production

Positive Regulation Of Cytokine Production

Module Eigengene for white

log    (Adjusted p-value)10

Figure 2.17: ABI3 modules during the progression of the AD A) Matrix with the
Module-Trait Relationships (MTRs) and corresponding p-values between the detected
modules on the y-axis and selected AD traits on the x-axis. The MTRs are colored based
on their correlation: red is a strong positive correlation, while blue is a strong negative
correlation. B) The white module eigengene expression profile is summarized by genotype.
Above, the top two rows display the sex and age of each sample. Below, the bar plot
represents module eigengene expression by genotype for each dataset with individual
sample module eigengene expression shown as points. C) GO analysis of the genes in white
modules.
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Figure 2.18: Comparison of modules obtains from GWAS mouse models of AD.
Comparison graph of GWAS mouse model filtered by Jaccard similarity ¿ 0.15. The color
of each dot shows the origin of modules and the thickness of the lines shows the Jaccard
index value.
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Age Tissue Sex Genotype samples

4mon Cortex Female 5xFADHEMI 5
4mon Cortex Female C57BL/6J 5
4mon Cortex Male 5xFADHEMI 5
4mon Cortex Male C57BL/6J 5
4mon Hippocampus Female 5xFADHEMI 5
4mon Hippocampus Female C57BL/6J 5
4mon Hippocampus Male 5xFADHEMI 5
4mon Hippocampus Male C57BL/6J 5
8mon Cortex Female 5xFADHEMI 5
8mon Cortex Female C57BL/6J 5
8mon Cortex Male 5xFADHEMI 4
8mon Cortex Male C57BL/6J 6
8mon Hippocampus Female 5xFADHEMI 5
8mon Hippocampus Female C57BL/6J 5
8mon Hippocampus Male 5xFADHEMI 4
8mon Hippocampus Male C57BL/6J 6

12mon Cortex Female 5xFADHEMI 5
12mon Cortex Female C57BL/6J 5
12mon Cortex Male 5xFADHEMI 4
12mon Cortex Male C57BL/6J 6
12mon Hippocampus Female 5xFADHEMI 5
12mon Hippocampus Female C57BL/6J 5
12mon Hippocampus Male 5xFADHEMI 4
12mon Hippocampus Male C57BL/6J 6
18mon Cortex Female 5xFADHEMI 6
18mon Cortex Female C57BL/6J 15
18mon Cortex Male 5xFADHEMI 10
18mon Cortex Male C57BL/6J 5
18mon Hippocampus Female 5xFADHEMI 6
18mon Hippocampus Female C57BL/6J 15
18mon Hippocampus Male 5xFADHEMI 10
18mon Hippocampus Male C57BL/6J 5

Table 2.1: 5xFAD mouse model and matching C57BL/6J mice samples.

57



Age Tissue Sex Genotype samples

4mon Hippocampus Female 3xTgAD 5
4mon Hippocampus Female B6129SF1/J 5

12mon Hippocampus Female 3xTgAD 5
12mon Hippocampus Female B6129SF1/J 5
18mon Hippocampus Female 3xTgAD 9
18mon Hippocampus Female B6129SF1/J 9

Table 2.2: 3xTgAD mouse model and matching B6129SF1/J mice samples.
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Chapter 3

Identification of robust cellular

programs using reproducible LDA

that impact sex-specific disease

progression in different genotypes of a

mouse model of AD

3.1 Abstract

The gene expression profiles of distinct cell types reflect complex genomic interactions among

multiple simultaneous biological processes within each cell that can be altered by disease

progression as well as genetic background. The Identification of these active cellular programs

is an open challenge in the analysis of single-cell RNA-seq data. Latent Dirichlet Allocation

(LDA) is a generative method used to identify recurring patterns in counts data, commonly
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referred to as topics that can be used to interpret the state of each cell. However, LDA’s

interpretability is hindered by hyperparameter selection of the number of topics as well as

the variability in topic definitions due to random initialization. We developed Topyfic, a

Reproducible LDA (rLDA) package, to accurately infer the identity and activity of cellular

programs in single-cell data, providing insights into the relative contributions of each program

in individual cells. We apply Topyfic to brain single-cell and single-nucleus datasets of two

5xFAD mouse models of Alzheimer’s disease crossed with C57BL6/J or CAST/EiJ mice to

identify distinct cell types and states in cell types such as microglia. We find that 8-month

5xFAD/Cast F1 males show higher level of microglial activation than matching 5xFAD/BL6

F1 males, whereas female mice show similar levels of microglial activation. We show that

regulatory genes such as TFs, microRNA host genes, and chromatin regulatory genes alone

capture cell types and cell states. Our study highlights how topic modeling with a limited

vocabulary of regulatory genes can identify gene expression programs in single-cell data to

quantify similar and divergent cell states in distinct genotypes.

3.2 Introduction

The different cell types constituting a tissue work together to carry out the functions of that

tissue in response to various developmental and environmental cues by activating specific

cellular programs. Single-cell and single-nucleus RNA sequencing enable the identification

of cell types, subtypes, and cell states through their single-cell transcriptomes, enhancing our

understanding of cellular phenotype heterogeneity and composition within complex tissues

such as the brain124,247,248. A common approach for cell type annotation relies primarily

on unsupervised clustering methods249, which partition cells based on the similarity of their

gene expression patterns. This is followed by manual cell type assignment for each cluster

based on differentially expressed markers from literature. The overall accuracy of this ap-
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proach depends on both the clustering accuracy250 and the prior knowledge of marker gene

expression levels251. For example, marker genes could be expressed in more than one cell

type, complicating the annotation process. More importantly, this cluster-based approach

assumes that cells can only be part of a single cluster, thereby averaging the cell-to-cell

variability within that cluster.

Here, we focus on a key challenge of inferring complex cellular states and identities that are

encoded by patterns of gene expression. We assume that each cell or nucleus engages in a

limited number of cellular programs, and its observed transcriptome is determined by the

sum of these active programs. To represent this, we leverage grade of membership (GoM)

models153,252, allowing each cell to have partial membership in multiple cellular programs.

One such model is Latent Dirichlet Allocation (LDA)253, a probabilistic algorithm capable

of inferring recurring combinations referred to as topics. LDA starts by randomly assigning

topics to each word in a document, which in our case are cells153. Due to this random

initialization, different topic assignments and, consequently, different topic representations

for each document may arise in repeated runs. As a result, the topics discovered by LDA

can vary across different runs of the algorithm. To address this issue of topic variability, one

common approach is to use a fixed random seed before running LDA, ensuring consistent

random initialization across different runs. However, there is no guarantee that this fixed

seed will produce the best topics, as some randomly defined topics might be stuck in local

optima that lack biological significance.

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory

loss1. Microglia are the resident macrophages of the brain that mediate brain homeostasis by

regulating immune function and promoting neuronal homeostasis and neuroprotection. To

maintain homeostasis, microglia damage or kill neurons with abnormal profiles254,255. How-

ever, not all the microglia in the brain behave identically. Single-cell RNA-seq studies have

identified new microglial subtypes with unique transcriptional and functional characteristics,
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termed “disease-associated microglia” (DAM) in animal models of AD8. DAMs are charac-

terized by the upregulation of genes associated with late-onset AD, such as apolipoprotein

E (Apoe), Itgax, Csf1r, and Tyrobp, whereas Tmem119, Cd33, and Maf are downregulated.

However, in cluster-level analyses, these cells are typically treated either as part of distinct

clusters or positioned on a pseudo time continuum between homeostasis and activation.

Here, we develop Topyfic, a Python package that (a) runs LDA multiple times with different

random seeds, (b) aggregates similar topics across runs to compute reproducible topics,

and (c) filters out low-participation topics. Using this strategy, we find reproducible topics

and filter out noisy, irreproducible topics. We apply Topyfic to single-nucleus and single-

cell datasets generated by the ENCODE and MODEL-AD consortiums from mice with

and without the 5xFAD transgene in either a C57BL/6J (MODEL-AD) or a C57BL/6J x

CAST/EiJ background (ENCODE) to identify topics that are (a) detected in both genotypes

with and without the transgene, and (b) microglia-specific. We then train additional topics

with a subset of regulatory genes such as transcription factors and show that these regulatory

topics that we recover also capture cell activation using regulatory genes alone.

3.3 Results

3.3.1 Reproducible LDA topics using Topyfic

Topyfic estimates the most likely number of topics as well as maximizes the number of mean-

ingful topics. The core idea of Topyfic is that topics that are found repeatedly across multiple

LDA runs are more reliable than topics found in any single run, which could be suboptimal as

the results of poor random initialization (Fig. 3.1.A). Starting from a cell-by-gene expression

matrix in h5ad format, Topyfic first trains a Latent Dirichlet Allocation (LDA) model on the

provided dataset using different random seeds (see methods for a detailed technical descrip-
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tion of Topyfic parameter settings). Topyfic uses Leiden clustering139 in gene-weight space

to combine similar topics across individual runs to construct a consensus set of topics called

the TopModel. Finally, Topyfic calculates cell-topic participation based on the TopModel

and filters out any topic with user-defined low participation. Topyfic also includes several

helper functions to analyze and visualize topics and topic participation in the training and

testing datasets.

Determining the number of topics is a challenging step for the application of LDA. We

use two diagnostic metrics and visualizations to help guide this decision. First, we train our

TopModels using a different starting number of topics, followed by pruning low-participation

topics. In general, applying our consensus models to repeated runs with a smaller number

of topics (K) than the optimal number will lead us to discover more clusters of topics (N).

As we increase K, we expect N to stay relatively stable until higher Ks result in fewer N.

We therefore select our parameter K to be when K=N. Alternatively, we can also calculate

the perplexity. A lower perplexity score is an indication of a better model. We observe that

perplexity tends to decrease rapidly and then flattens out. In this approach, we choose the

smallest value of K that is able to explain the data: i.e. the value of K at the point in which

the perplexity flattens out (Fig. 3.5.A).

We evaluated the sensitivity of the resulting topics to important parameters. First, we inves-

tigated the effect of the number of cells on the number of reproducible topics. As expected,

increasing the number of cells led to the identification of rarer and diverse gene expression

programs with more topics (Fig. 3.5.B). In the final steps of building our TopModels, we

filter topics with low cell participation. Increasing the minimum cell participation threshold

enabled us to retain topics with stronger signals in each cell (Fig. 3.5.C). As a default cri-

terion, we focused on topics that represent at least 1% of the gene expression in cells. We

then use Leiden clustering to form our consensus topics, therefore all the inputs related to

clustering can also be altered such as the resolution, which is a value controlling the coarse-
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ness of the clustering. We can recover more topics by increasing this value, but we found

the defaults adequate for our analyses below (Fig. 3.5.D).

3.3.2 Comparing a mouse model of AD across two genetic back-

grounds

We first analyzed the overall characteristics of two related mouse brain datasets for the

5xFAD mouse model of AD120 and matching controls for 8 month old mice before applying

Topyfic. The genetic background of the 5xFAD mouse model of AD is C57BL/6J (“BL6”)

and it is normally studied as a hemizygote, i.e. with only one copy of the transgene on

an otherwise regular BL6 background. The first dataset consists of single-nucleus RNA-seq

from the cortex and hippocampus of 2 male and 2 female 5xFAD x CAST/EiJ F1 hybrid

mice and matching BL6 x CAST/EiJ controls from the ENCODE consortium, while the

second dataset consists of 2 male and 2 female cortex and hippocampus snRNA-seq as well

as microglia single-cell RNA-seq of 5xFAD hemizygotes and matching BL6 controls from

the MODEL-AD consortium (Fig. 3.1.B-C). As all mice from ENCODE have the BL6 x

CAST/EiJ F1 background, and all MODEL-AD mice have the BL6 background, we will

use the consortium names and genotypes interchangeably. All experiments were performed

as previously described (refs) using the Parse Biosciences split-pool method13,256, which

we refer to as Split-seq. Separate Split-seq experiments were performed for the ENCODE

and MODEL-AD mice and were deposited in their respective online repositories. For each

dataset, demultiplexing and alignment were carried out using Parse Biosciences’ split-pipe

software and STARSolo257. Scrublet258 was employed to identify doublets in each dataset,

followed by quality control (QC) using Seurat146 (Methods). The filtering successfully re-

covered a combined total of 110,907 nuclei and 5,546 microglia cells (Fig. 3.1.C), which were

annotated using marker genes and label transfer with external reference data from the Allen

Brain Institute dataset259 (Fig. 3.6-3.7 and Methods).

64



Glial cells such as microglia, astrocytes, and oligodendrocytes constitute a substantial frac-

tion of the mammalian brain, representing 27.5% of the nuclei in our snRNA-seq datasets.

The proportion of glial cells is influenced by several factors, including genotype, sex, and

brain region. We examined the variation of glial cells by genotype and sex in each tis-

sue separately. As expected, we found a higher portion of microglial cells in 5xFAD mice

regardless of genetic background. Despite recovering more nuclei from BL6 mice, we ob-

served a higher proportion of glial nuclei in the BL6/CAST genotype, highlighting how

genetic diversity contributes to substantial differences in glial cell abundance. Interestingly,

there is more variation between sexes in mice with the BL6 background compared to mice

with the BL6/CAST background. In particular, 5xFAD/CAST males have similar num-

bers of microglia in the hippocampus when compared to 5xFAD/CAST females, which is

substantially higher than 5xFAD males (Fig. 3.1.D-E). Expression levels of marker genes

for disease-associated microglia (DAM), astrocytes, and oligodendrocytes in pseudo bulk for

each mouse showed higher expression in 5xFAD versus WT and more uniformity between

replicates and sexes in 5xFAD/CAST than 5xFAD in both hippocampus and cortex (Fig.

3.1.F). Principal component analysis (PCA) confirmed that genotype contributes to major

transcriptomic differences across the dataset, with PC2 (8.54%) corresponding to genotype

and PC3 (6.14%) corresponding to brain region (Fig. 3.1.G and Methods). Comparison of

the median number of UMIs across cells in each cell type in AD and WT samples reveals

reproducible patterns across both genotypes, such as neurons generally having more UMIs

compared to glial cell types (Fig. 3.1.H-I). Interestingly, we do not detect differences in the

number of UMI between microglia whether using nuclei or whole cells (Fig. 3.1.H). In gen-

eral, we observe a higher number of UMIs per nuclei in BL6/CAST genotype even though

both consortia used similar sequencing depths. These results indicate that the differences are

more likely associated with the genetic identity of mice, such as genotype, rather than tech-

nical procedures such as sequencing depth. In summary, 5xFAD/CAST males at 8 months

show a higher proportion of DAM microglia that matches their female counterparts, unlike
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regular 5xFAD males at 8 months, which have lower proportion of DAM microglia than their

female counterparts.

3.3.3 Identifying topics related to cell type and cell state

We trained Topyfic using (a) 1 male replicate and 1 female replicate of WT mice from both

genotypes (4 mice) and (b) 1 male replicate and 1 female replicate of 5xFAD transgene-

carrying mice from both genotypes (4 mice) separately using all genes (Fig. 3.2.A) with

varying numbers of topics, ranging from K = 5 to 50. This iterative process allowed us to

evaluate different K values and identify the final number of topics (N) that best captured the

underlying structure in our data, which was at K=15 (Fig. 3.2.B, methods). The TopModels

for each genotype were aggregated to form our final TopModel with 28 topics that passed

our low participation filter on the second replicates. For comparison with subsequent topics

derived from different gene sets and cell types, we label these topics as asn1 through 28,

where ‘asn’ stands for ‘all genes, single-nucleus’.

We assessed the distribution of cell-topic participation, focusing on whether a topic was

the predominant topic in a cell. We also performed a topic-trait relationships analysis to

capture correlations between each topic and major cell types, cell states, genotype (BL6,

BL6/CAST), and transgene presence (5xFAD and WT) (Fig. 3.2.C). Topics exhibiting

high cell participation consistently showed enrichment for specific cell types. Conversely,

topics with low participation were generally not associated with any particular cell type.

We identified topics asn4, asn17, and asn26 as corresponding to microglia, each displaying

varying levels of cell-topic participation. Notably, asn17 exhibited the highest participation,

while asn26 showed the lowest (Fig. 3.2.C). Our snRNA-seq dataset includes 2,440 microglia,

77% of which are from mice with the 5xFAD transgene. The structure plot of microglia

nuclei displays cell-topic participation as a stacked bar plot for each nucleus, grouped by
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genotype, sex, and tissue (Fig 2D, methods). While both asn4 and asn17 are correlated with

presence of the transgene, asn programs in microglia shows that asn17 dominates in the

transgenic mice. In mice without the transgene, microglia have a predominant mixture of

cellular programs consisting of 50% asn4, 20% asn17, 7% asn26, and 23% from the remaining

topics. By contrast, transgenic mice show two distinct cellular program patterns, suggesting

the presence of two distinct cellular states in the mice. A minority of cells show program

combinations that resemble the WT samples, which indicate a population of homeostatic

microglia. The majority of microglia in transgenic mice show a significantly higher (∼65%)

participation of asn17, which represents the heightened activation state of these microglia

(Fig. 3.2.E). Thus, Topyfic recovers topics representing different cell states and cell types

for minor cell types such as microglia across both genotypes.

The importance of a gene’s expression to a given topic is called the gene weight. To gain

insights into the differences between the two major microglia topics, we compared the weights

of genes in asn4 and asn17 that have weights greater than 1. We found 120 genes specific to

asn4 and 585 genes specific to asn17, as well as 1,659 genes shared between the two topics

(Fig. 3.2.F). Key genes associated with homeostatic microglia, such as Tmem119, exhibited

significantly higher weights in asn4 compared to asn17. In contrast, genes linked to disease-

associated microglia (DAM) such as Csf1r, Itgax, and Apoe, were exclusively represented in

asn17 (Fig. 3.2.F). By using an MA plot to compare topics, we found a total of 138 genes

with differential weights (modified z-score > 2) in asn4, including 120 of with large absolute

log ratios (M) value (> 6.5). Conversely, asn17 displayed differential weights in 835 genes

(modified z-score < -2), of which 585 had absolute log ratio (M) values > 7.5. In particular,

genes overexpressed in stage 2 DAMs, such as Apoe, Itgax, Csf1r, Lpl, and Axl13 were among

the differentially higher weighted genes in asn17 (Fig. 3.2.G). Genes related to microglial

cell identity, such as Tgfbr1 and Hexb 260, shared similar ranks in both topics, even though

they had higher weights in asn17. In contrast, genes primarily expressed in homeostatic

microglia such as Tmem119 and Slc2s5 were exclusively represented in asn4, whereas DAM
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genes Apoe, Itgax, and Csf1r only had significant weights in asn17 (Fig. 3.2.H). Thus, genes

with shared or have specific weights in a topic can be correlated to the known underlying

biology, as demonstrated in this case by the microglial neuroinflammatory signatures in mice

with the 5xFAD transgene.

3.3.4 Recovering topics for different activation levels in microglia

scRNA-seq

Having demonstrated its performance and utility on snRNA-seq from tissues, we applied

Topyfic to our complete microglia single-cell data from 5xFAD and matching BL6. After

training the TopModel with multiple values of K, we selected K=5, yielding 6 topics labeled

sc1-sc6 (Methods). Each topic is the top participating topic in a subset of microglia (Fig.

3.3.A). While calculating the correlation between each topic and sex did not reveal any

sex-specific topics (Fig. 3.3.B), analyzing the contribution of each topic in each genotype

uncovered differences in activity between the genotypes (Fig. 3.3.C). The structure plot

illustrates three distinct cellular programs. The first combination of programs is high in

sc6 with high levels of Csf1, and is more prevalent in 5xFAD than in BL6. The second

combination of programs contains a relatively consistent proportion of sc2, sc3, and sc5 in

both genotypes, suggesting a closer association with homeostatic microglia. A subset of these

homeostatic cells also have participation of sc6 and low levels of sc1. The third combination

of programs is more pronounced in 5xFAD mice and is primarily composed of sc1, with

significantly lower participation of sc3 and sc5 compared to the previous program, indicating

a stronger association with activated microglia (Fig. 3.3.D).

Comparison of genes with weights > 1 between sc1 and sc2 revealed differential weights

in 1,794 genes, with only 24 genes in sc2, including the miR-155 host gene (Fig. 3.3.E).

MicroRNAs (miRNAs) play a role in modulating inflammatory responses in microglia, and
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their profiles are altered in Alzheimer’s disease (AD). Notably, the pro-inflammatory miRNA,

miR-155, shows increased expression in the AD brain261. We found disease-associated mi-

croglia (DAM) genes such as Trem2, Apoe, Itgax, Clec7a, Axl, and Lpl, alongside typical

microglia gene markers such as Tmem119, Olfml3, and Cd68 with higher weights in sc1

(Fig. 3.3.E). A comparison between sc1 and sc3 reveals 562 genes with higher weights in

sc1 (modified z-score > 2) and 247 genes with higher weights in sc3 (modified z-score <

-2) (Fig. 3.3.F). Primed microglia have the potential to induce the production of amyloid

β (Aβ), tau pathology, neuroinflammation, and reduce the release of neurotrophic factors.

This can lead to the loss of normal neurons in both quantity and function, a phenomenon

strongly associated with AD. Genes such as Cst7 and Slc2a5, part of the primed microglia

pathway262, were upregulated in sc1. Comparison between sc1 and sc5 reveals 465 genes

with weights higher in sc1 (modified z-score > 2) and 280 genes with weights higher in sc5

(modified z-score < -2) (Fig. 3.3.G). In all three comparisons, genes associated with disease

associated microglia are higher in sc1 compared to the three homeostatic programs.

Weights and ranks of homeostatic and DAM genes across microglial cells and microglial

nuclei are similar between topics sc1 and asn17. Genes such as Lpl, Apoe, and Trem2

exhibit higher gene weights and lower ranks in sc1 and asn17 compared to the rest of the

single-cell topics, including microglial topic asn4 (Fig 3H). Lipoprotein lipase (Lpl), the

rate-limiting enzyme in lipoprotein hydrolysis, is predominantly expressed in microglia such

as phagocytic disease-associated microglia thought to be protective in AD263. Increased

expression of genes such as ApoE, Trem2, and Lpl in microglia during development, damage,

and disease suggests that increased lipid metabolism is needed to fuel protective cellular

functions such as phagocytosis264. Thus, Topyfic recovered an activated microglial state topic

using either single-cell and single-nucleus RNA-seq, with the main difference corresponding

to how scRNA-seq topics capture multiple subtypes of homeostatic microglial programs.
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3.3.5 Topics derived from regulatory genes are sufficient to define

cell types and cell states

While numerous genes are used as markers for distinct cell types and states, we hypothesized

that cellular programs are fundamentally constructed from a core set of regulatory genes.

Therefore, we explored identifying cellular programs using a restricted LDA vocabulary of

regulatory genes. Transcription factors and other genes based on Gene Ontology (GO) term

annotations were chosen based on their impact on transcriptional regulation, including known

regulatory genes such as the Id family (inhibitors of DNA binding and cell differentiation,

despite lacking a DNA binding domain themselves)265 (Methods). Overall, TFs constitute

approximately 50% of the 2,701 genes included in our regulatory gene list (Fig. 3.4.A). This

approach aims to elucidate impactful cellular programs using a curated vocabulary.

We trained Topyfic models on 52,685 nuclei across 2,701 regulatory genes using various K

values as described previously, and once again combined models with K = 15 to obtain

27 reproducible topics labeled as rsn (regulatory single nucleus). Analysis of topic-trait

relationships showed that individual topics are highly correlated to specific cell types, 5xFAD

transgene presence, or genotype. For instance, both rsn1 and rsn22 correspond to microglia

while rsn1 also correlated to the transgene presence, rsn3 and rsn15 to astrocytes, rsn2 and

rsn14 to oligodendrocytes, and a dozen topics correspond to different neuronal subtypes

(Fig. 3.4.B). Similarly to the results using all genes, topics with the highest maximum cell

participation are consistently enriched for specific cell types or cell states. By contrast, topics

with low maximum cell participation are typically not associated with any particular cell

type (Fig. 3.4.B). At our chosen resolution, all cell types with > 350 nuclei (0.32%) are

associated with at least one topic. In summary, our topics demonstrate a striking alignment

with our annotated cell types.

The structure plot of microglia nuclei shows that as cells activate, rsn22 is gradually replaced
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by rsn1 while minor topics remain constant (Fig. 3.4.C). Comparing the gene weights of

the two microglia topics reveals remarkably similar topic compositions, aligning with our

expectations (Fig. 3.4.D). Only a few genes exhibit an absolute modified z-score value > 2

(93 in rsn1, 15 in rsn22) (Fig. 3.4.D). Among the 93 genes upregulated in rsn1, microglia

gene markers such as Ank, Hif1a, Arid5b, Creb3l2, and Srpk2 show the highest modified

z-scores. The expression of serine/threonine-protein kinase 2 (Srpk2) is associated with the

production of proinflammatory cytokines and M1 polarization of microglial cells, suggesting

a potential connection to the cognitive decline observed in the AD mice model266. Ank is a

membrane-phosphate transporter that has a microRNA, Mir7117, embedded in its intron.

Ank exhibits the highest absolute log ratio (M) value (10.8) and is also up-regulated in laser-

captured microglia in the brains of individuals with AD267. In summary, regulatory genes

alone can differentiate between homeostatic and disease-associated microglial states.

We evaluated the similarity between topics learned using all genes (asn) and regulatory genes

(rsn) using cosine similarity (methods). Using a similarity threshold of > 0.9, we identified

14 clusters of highly correlated topics that matched asn topics to rsn topics (Fig. 3.4.E).

As anticipated, topics representing common cell types were found to cluster together with

at least one topic from each method type. At the selected threshold, activated microglia

topic rsn1 only matches topic asn17, whereas homeostatic microglia rsn22 only matches the

corresponding asn4. We further clustered the nine microglia topics (2 asn, 6 sc, 2 rsn) and

found higher correlation of activated microglia topic sc1 with asn17 and rsn1 than with the

other asn and rsn topics (Fig. 3.4.F). Thus, the expression patterns of regulatory genes alone

are adequate to define cell types in the brain and states of microglial activation.
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3.4 Discussion

We developed a grade of membership (GoM) model using Latent Dirichlet allocation (LDA)

called Topyfic and applied it to mouse single cell and single nucleus RNA-seq brain datasets

to infer topics that capture cell types, subtypes, and cell states. Current implementations of

LDA for analyzing single cell RNA-seq data do not consider the stability and consistency of

the model157,268–270. A robust LDA model should be less sensitive to variation in the initial

conditions, such as different random seeds. To achieve this, we implemented reproducible

LDA (rLDA) in Topyfic, which automatically runs LDA multiple times and aggregates similar

topics. In particular, our strategy identifies the optimal number of topics at the given

resolution. We then score topic participation in the whole dataset, which enables us to

anchor each topic to a specific cell type, guiding the subsequent inference of the global topic

distributions over genes to prioritize genes differentially weighted in each topic.

We applied Topyfic to mouse brain tissues and microglia cells in control and AD mouse

models such as 5xFAD to validate our strategy, considering its thorough examination in prior

studies. We recovered topics that reflect different cell types, including glia with different

levels of activation. Interestingly, our findings indicate increased DAM microglia in male

5xFAD/CAST F1s compared to male 5xFAD/BL6 mice. While we recover the expected sex-

specific difference in the higher amount of detected DAM microglia in female 5xFAD/BL6

mice compared to male 5xFAD/BL6 mice as previously reported120, this pattern is not seen

in 5xFAD/CAST F1s, where both sexes show an equal proportion of DAM microglia. This

suggests that genetic variation affects disease progression in the different sexes in mouse

models of AD. While previous studies have compared APP/PS1 transgene expression in

inbred wild-derived strains such as CAST also at 8 months of age and found similar levels

of microglia activation in transgenic CAST and transgenic BL6, the study only analyzed

females271. Whether it is 5xFAD/CAST F1 males that are atypical because of their increased

activation or alternatively 5xFAD/BL6 inbred males that are atypical because of their lower
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activation remains to be determined.

We have shown that Topyfic recovers topics related to cell types or activities, including

multiple topics relating to distinct activation states in microglia. We also show that using

regulatory genes is enough to identify cell types or cell states by limiting our dictionary of

genes to those that are the most likely to be directly involved in transcriptional and post-

transcriptional regulation. For example, the top differential gene in topic rsn1 was Ank1,

which has a 4-fold upregulation in AD microglia267. While Ank1 is a structural protein, it is

also the host gene of Mir7117, which suggests that the microRNA could be playing a role in

AD. This potential role for Ank1 as a microRNA host gene in topic-based cellular programs

would have been missed in traditional protein-coding gene marker analysis.

Cellular programs defined using topic modeling have two major benefits over traditional

cluster-based approaches to single-cell analysis. First, each gene can contribute more than

one topic with different weights, which is more reflective of the pleiotropic nature of gene ac-

tivity. The second substantial benefit is that each nucleus can have a unique linear combina-

tion of topic membership, rather than force it to be only part of a homogeneous cluster142,146.

This approach infers a higher and more abstract level of transcriptional activity, represented

as topics. The latent topic structure is biologically interpretable, as cells carry out their

functions by engaging simultaneously in multiple cellular programs related to cell identity,

activation state, cell cycle, or circadian rhythm. Each pathway relies on different amounts

of a gene’s product, and the overall gene expression reflects the combined requirements

across all topics. This GoM representation of cell-topic participation can be interpreted

as a dimensionally-reduced portrayal of a cell’s distinct transcriptional activities, which is

what we are truly interested in elucidating when applying single-cell techniques to study

already well-surveyed samples that have been previously characterized by bulk techniques.

The sooner the field moves from individual gene marker-based analyses to cellular-program

based approaches, the more likely we are to obtain useful biological insights to match our
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wants and needs.
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3.5 Materials

3.5.1 Mice and tissue collection

All mice were housed following the guidelines outlined in the Guide for Care and Use of

Laboratory Animals. Approval for all experimental procedures was obtained from UCI’s In-

stitutional Animal Care and Use Committee (IACUC), adhering to both institutional and na-

tional guidelines. Model-AD samples were obtained from 5xFAD/BL6 mice (Tg(APPSwFlLon,

PSEN1*M146L*L286V) 6799Vas/Mmjax, RRID: MMRRC–034840-JAX) covered under the

IACUC protocol #AUP-21-100 and bred by the Transgenic Mouse Facility at UCI. Left cor-

tex and left hippocampus tissues from 8 month old mice were snap frozen in liquid nitrogen

at UCI and stored at -80◦C. ENCODE samples were obtained from 5xFAD x CAST/EiJ

(RRID: IMSR–JAX:000928) F1 hybrids covered by IACUC protocol #IA21-1647 and bred

by Jackson Laboratories (JAX). Left cortex and left hippocampus tissues from 8 month old

mice were snap frozen in liquid nitrogen at JAX and shipped to UCI on dry ice.

3.5.2 Single-nucleus isolation and fixation

All single-nucleus samples regardless of genotype or tissue were processed identically. On ice,

tissues from each mouse were transferred to a chilled gentleMACS C Tube (Miltenyi Biotec

cat. #130-093-237) with 2 mL Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-024)

supplemented with 0.2 U/µL RNase Inhibitor (NEB cat. #M0314L). A gentleMACS Octo

Dissociator (Miltenyi Biotec cat. #130-095-937) was used to dissociate nuclei from whole

tissues. The resulting suspensions underwent rounds of filtering through mesh strainers (70

µm, Miltenyi Biotec cat. #130-110-916, then 30 µm, #130-098-458). Finally, nuclei were

resuspended in PBS + 7.5% BSA (Life Technologies cat. #15260037) and 0.2 U/µL RNase

inhibitor and kept on ice. Manual counting was performed using a hemocytometer and DAPI
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stain (Thermo cat. #R37606). After counting, nuclei were fixed using Parse Biosciences’

Nuclei Fixation Kit v1 (Parse Biosciences cat. #WN100), following the manufacturer’s

protocol. Between 1 and 4 million nuclei per sample were incubated in fixation solution

for 10 minutes on ice, followed by permeabilization for 3 minutes on ice. The reaction

was quenched and nuclei were centrifuged and resuspended in 300 µL Nuclei Buffer (Parse

Biosciences cat. #WN101) and DMSO (Parse Biosciences cat. #WN105). The fixed samples

were assessed under a microscope and manually counted as previously described. Aliquots

of fixed nuclei were slow-frozen in a Mr. Frosty (Thermo cat. #5100-0001) and stored at

-80◦C.

3.5.3 Microglia single-cell isolation and fixation

Freshly prepared tissues were used for microglia isolation. Perfused right cortex and hip-

pocampus were dissociated together using the Adult Brain dissociation kit (Miltenyi Biotec

cat. #130-107-677) and gentleMACS Octo Dissociator (Miltenyi Biotec cat. #130-095-

937) with heating. The resulting suspension was filtered with a 70µm mesh strainer (Mil-

tenyi Biotec cat. #130-110-916). Debris were removed using the debris removal solution

from the dissociation kit. Myelin were removed from the single-cell suspensions using neg-

ative selection with Myelin Removal Beads II (Miltenyi Biotec cat. #130-096-733) and LS

columns (Miltenyi Biotec cat. #130-042-401). The resulting cells were enriched for microglia

with magnetic labeling and positive selection using CD11b MicroBeads (Miltenyi Biotec cat.

#130-093-634) and LS columns. Isolated microglia eluted in 1.8mL of bead buffer (0.5%

BSA in DPBS) from the LS columns were centrifuged at 550 xg for 10 min at 4◦C. Cell

pellet with 10-15uL bead buffer was resuspended in 730µL of Cell buffer (Parse Biosciences

cat. #WF101) from the Parse Biosciences kit (V1.3.0) with 0.5% BSA (Life Technologies

cat. #15260037), and counted (1:4 dilution) with TC20 Automated Cell Counter (Bio-rad

cat. #1450102). Cells were fixed using Parse Biosciences’ Nuclei Fixation Kit v1 (Parse
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Biosciences cat. #WF102), following the manufacturer’s protocol. Between 150000 - 800000

cells per sample were incubated in fixation solution for 10 minutes on ice, followed by perme-

abilization for 3 minutes on ice. The reaction was quenched and nuclei were centrifuged and

resuspended in 150 µL Cell Buffer. The fixed samples were counted using TC20 automated

cell counter. DMSO (Parse Biosciences cat. #WF105) was added to the fixed cells and cells

were slow-frozen in a Mr. Frosty (Thermo cat. #5100-0001) and stored at -80◦C.

3.6 Methods

3.6.1 Datasets

One microglia single-cell RNA-seq dataset of cortex and hippocampus at 8 months on 5xFAD

mouse model99 and matching wild type (C57BL/6J) were used to demonstrate Topyfic be-

havior on microglia cells. We also combined two single-nucleus RNA-seq datasets of cor-

tex and hippocampus from the 5xFAD mouse model of AD in two different genetic back-

grounds (B6J and B6CASTF1/J) from the Model-AD and ENCODE consortiums, respec-

tively. The Model-AD snRNA-seq was performed in 8 month old 5xFAD and matching

wild type (C57BL/6J) mice, and ENCODE snRNA-seq was performed in 8 month old

5xFAD/CAST and matching WT (B6CASTF1/J) hybrid mice.

3.6.2 Preprocessing scRNA-seq and snRNA-seq data

Raw fastq files were processed using Parse Bioscience’s split-pipe software (v1.0.3p) to as-

sign reads to single cells and nuclei. In order to provide sample-level fastqs to the ENCODE

portal, all data was demultiplexed using the sample-level barcode (barcode 1) from the

output of split-pipe to be aligned and quantified with the ENCODE uniform processing

77



pipeline (https://www.encodeproject.org/pipelines/ENCPL257SYI/). We use STARSolo

with GeneFull–Ex50pAS settings and the GENCODE vM21 annotation to generate UMI

count matrices, annotated using GENCODE vM21. We removed low-quality cells using a

UMI cutoff of 500 based on our knee plots (Fig. S2A, Fig. 2B), then performed Scrublet258

doublet detection. Cells and nuclei < 500 or > 30, 000 UMIs, more than 500 genes, and a

doublet score > 0.2 were removed in downstream analysis. In addition, nuclei were required

to have a mitochondrial gene expression score of < 0.5%, while cells had a more lenient

threshold of < 5%. Seurat V4146 was used to perform normalization, UMAP dimensional-

ity reduction, and clustering. Each dataset (Model-AD 5xFAD and B6J WT snRNA-seq,

ENCODE 5xFAD/CAST snRNA-seq, and Model-AD scRNA-seq microglia) were prepro-

cessed and clustered separately, with 50, 40, and 15 clusters, respectively, after removal of

2 doublet-high clusters from the Model-AD snRNA-seq dataset and 3 doublet-high clusters

from the ENCODE dataset.

To facilitate cell type annotation, a downsampled version of the 1M whole cortex and hip-

pocampus 10x atlas from 8 week old mice available on the Allen data portal was used to

transfer subtype-level annotations using “FindTransferAnchors” in Seurat. Each cluster was

then manually annotated using the resulting Allen atlas labels and marker gene expression.

Overall, this process identified 13 major cell types and 34 subtypes in the snRNA-seq data,

and 5 celltypes (75% of which are microglia) in the scRNA-seq data. After defining annota-

tions for each dataset, we extracted the raw gene count matrices along with gene and sample

information from Seurat objects and embedded all information into the Anndata167 file for-

mat where gene information is ’var’ and cell information is ’obs.’ Then we applied depth

normalization272 individually to each dataset to prepare them for the rest of the analysis

(Fig1A).
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3.6.3 Parse Biosciences Split-seq Experiments

The Model-AD and ENCODE libraries were prepared in two separate experiments using

Parse Biosciences’ Evercode WT Kit v1 (cat. #EC-W01030), one kit per experiment, fol-

lowing the manufacturer’s protocol. Fixed samples were thawed and added to the Round

1 barcoding plate at 15,000 nuclei/cells per well when possible across 48 wells. For mi-

croglia samples with low numbers, the entire sample was added. Each tissue sample from

one individual was loaded into a single well. RNA was reverse transcribed in the fixed nu-

clei/cells using oligodT and random hexamer primers and the first barcode was annealed.

After RT, samples were pooled and randomly distributed across 96 wells of the Round 2

ligation barcoding plate for in situ barcode ligation. After Round 2, samples were pooled

and randomly redistributed into 96 wells of the Round 3 ligation barcoding plate for lig-

ation of the third cell barcode and Illumina adapters. Finally, samples were counted with

a hemocytometer and distributed into 6 subpools of 15,000 nuclei for a target of around

75,000 nominal nuclei/cells per tissue. To prepare libraries, the nuclei/cells in each subpool

were lysed and the barcoded cDNA was amplified. The cDNA was purified with AMPure

XP beads (Beckman Coulter cat. #A63881) and quality checked with the Qubit dsDNA

HS Assay Kit (Thermo cat. #Q32854) and Bioanalyzer 2100 (Agilent cat. #G2939A) High

Sensitivity DNA Kit (Agilent cat. #5067-4626). Subpool cDNA (100 ng) was fragmented

and Illumina P5/P7 adapters were ligated during the last amplification, followed by size

selection and quality check with the Bioanalyzer and Qubit. An Illumina NextSeq 2000 and

P3 200 cycles kits (Illumina cat. #20040560) were used to sequence libraries with 5% PhiX

spike-in with as paired-end, single-index reads (115/86/6/0) to an average depth of 187 M

reads per Model-AD library, and 183 M reads per ENCODE library.
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3.6.4 Isolation of RNA for bulk assays

For ENCODE3 and ENCODE 4 bulk RNA-seq and microRNA-seq experiments in mouse

tissues, total RNA was extracted from flash-frozen mouse tissues at Caltech using the Norgen

Animal Tissue RNA Purification Kit (Norgen Biotek cat. #25700). Briefly, the tissue was

lysed using Buffer RL, followed by protein removal with proteinase K. DNaseI treatment on

the column removed genomic DNA contamination. The resulting purified total RNA encom-

passes a broad spectrum of RNA sizes, including large mRNAs, lncRNAs, and microRNAs.

To assess RNA concentrations, the Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854)

was used, while RIN values were determined using the Bioanalyzer Pico RNA kit (Agilent

cat. #5067-1513).

3.6.5 Bulk RNA-seq from mouse tissues

Each cDNA library was built from 300 ng total RNA with ERCC spike-ins (Thermo cat.

#4456740) using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB

cat. #E7760), specifically the protocol for use with NEBNext Poly(A) mRNA Magnetic

Isolation Module (NEB cat. #E7490). Ribosomal RNA was depleted from total input RNA

using the NEBNext rRNA Depletion Kit (NEB cat. #E6310). Briefly, rRNA-depleted RNA

was carried through first and second strand synthesis, cDNA end prep, adapter ligation,

and finally PCR amplification of the resulting libraries. The bulk RNA-seq libraries were

quantified using the Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) and sequenced

on an Illumina HiSeq 2500 as 100 bp single-end reads to 50 M raw read depth per library.

Submission to the ENCODE portal required at least 30 M aligned reads and Spearman

replicate correlation > 0.9.
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3.6.6 Bulk microRNA-seq from mouse tissues

MicroRNA-seq libraries were built from 400 ng of total RNA. Adapters were ligated to the

5’ and 3’ ends of small RNA using its 5’ phosphate and 3’ hydroxyl groups, then the ligation

product was reverse transcribed using SuperScript II Reverse Transcriptase (Invitrogen cat.

#18064-071). The 5’ adapter adds a 6-nucleotide barcode from a one of 7 sets of 4 distinct

barcodes used in downstream demultiplexing. The cDNA was amplified using Phusion PCR

master mix (NEB cat. #M0531S) with 58 bp reverse and 55 bp forward primers containing

additional 6-nucleotide barcodes added to the 3’ end. The 140 bp product containing mature

microRNA (21-25 nucleotides) was size-selected using 10% TBE-Urea gel (BioRad cat. #456-

6033). Libraries were isolated from the gel by agitated incubation at 70◦C, 1000 RPM for 2

hours in a buffer containing 0.5 M ammonium acetate (Ambion cat. #AM9070G), 0.1% SDS

(Sigma cat. #L6026-50G), and 0.1 uM EDTA (Ambion cat. #AM9261), then precipitated

overnight in 50% isopropanol. Resulting microRNA-seq libraries were quantified using the

Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) and sequenced on an Illumina NextSeq

2000 with P2 100 cycle kits (Illumina cat. #20046811) as 75 bp single-end reads to around

10 M raw read depth per library. Submission to the ENCODE portal required >5M aligned

reads, >300 microRNAs detected at >2 CPM, and a Spearman replicate correlation > 0.85.

3.6.7 Bulk read mapping and quantification

Bulk RNA-seq data from ENCODE3 and ENCODE4 mouse tissues were processed through

ENCODE uniform processing pipelines using the mm10 genome with GENCODE vM21 an-

notations. The bulk RNA-seq data were aligned using STAR v. 2.5.1b273 and quantified us-

ing RSEM, which provides FPKM, TPM, and raw counts (https://www.encodeproject.org/pipelines/ENCPL862USL/).

After trimming adapters with cutadapt v. 3.4274, microRNA-seq data were aligned using

STAR v. 2.5.1b273 to generate raw counts for 2,207 mature microRNAs included in GEN-
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CODE vM21 (https://www.encodeproject.org/pipelines/ENCPL280YDY/).

3.6.8 Bulk RNA-seq and microRNA-seq integrated analysis

Normalized counts were concatenated using the TPM column across all bulk RNA-seq gene

quantifications. Raw, unstranded counts were concatenated across all microRNA-seq quan-

tifications, then converted to CPM. Of the bulk RNA-seq and microRNA-seq datasets, 289

were built from matching RNA biosamples across a wide variety of postnatal mouse tissues

from this study and prenatal mouse tissues from ENCODE3. There were 151 datasets in

common using total RNA-seq, and 138 in common using polyA plus RNA-seq. MicroRNA

host genes were determined by intersecting their coordinates with gene coordinates in Gen-

code vM21. Of the 2,207 unique microRNA coordinates, 1,180 overlapped 980 host genes,

while 1,027 did not. Spearman correlations were calculated between microRNA expression in

CPM and their corresponding host gene expression in TPM across all 289 samples. Around

8%, or 170 Gencode vM21 microRNAs correlated with 174 unique host genes by a Spearman

correlation >= 0.3, and another 9 are annotated microRNA host genes (e.g. Mir133a-1hg,

Mir124a-1hg) and were included in the regulatory gene set used for topics modeling.

3.6.9 Selection of regulatory genes

Regulatory genes were determined by microRNA-host gene correlations, annotated transcrip-

tion factors, and genes annotated with Gene Ontology (GO) terms based on their impact on

transcriptional and chromatin regulation. GO term-derived genes were collapsed into 5 cate-

gories: histone modifiers, from GO terms related to histone acetyltransferases (GO: 0004402),

histone deacetylases (GO: 0004407), histone methyltransferases (GO: 0042054), and histone

demethylases (GO: 0032452); TBP-associated factors and members of the Mediator complex

(TAF-MED, GO: 0016592 and GO: 0006352), chromatin binding (GO: 0003682), chromatin
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organizers (GO: 0006325 and GO: 0030527), and transcription regulators (GO: 0140110).

The final list of 2,701 expressed regulatory genes has 7 biotype categories including mi-

croRNA host genes and transcription factors.

3.6.10 Input data to Topyfic

Topyfic accepts input in the form of a preprocessed expression matrix embedded within the

Anndata format167. This format contains gene information as ’var’ and cell information as

’obs.’ Users can generate this input format from the output of popular single-cell tools like

Scanpy142 or Seurat146. For topics modeling using the regulatory gene set, the expression

matrix was subset for the genes of interest, then normalized and formatted. It’s important

to note that Topyfic leaves the choice of performing normalizations to the user’s discretion.

However, it is strongly recommended, especially when dealing with data originating from

different technologies. Without normalization, there is a heightened risk of detecting topics

influenced by batch differences, even when they don’t represent meaningful biological signals.

To mitigate this issue, we apply depth normalization272 individually to each dataset. This

approach effectively implements depth normalization and variance stabilization, enabling

the accurate identification of recurring patterns while minimizing the impact of technical

variations.

3.6.11 Topic modeling using Latent Dirichlet Allocation (LDA)

Topic modeling is a type of statistical model that uses unsupervised machine learning to iden-

tify groups of similar words in each document. LDA is a generative probabilistic Bayesian

model that operates on the assumption that documents can be represented as random mix-

tures over latent topics, where each topic is characterized by a distribution over a set word

vocabulary. In simpler terms, each document is a mixture of topics, and each topic is a
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mixture of words, where words can be repeated in different topics with different weights.

In the context of single cell/nucleus RNA-seq data, cells correspond to documents, genes

to words, and counts are equivalent to word frequencies. We hypothesize that there are

recurring latent patterns or “topics” in count data such as large gene expression matrices.

Topics are composed of genes with distinct weights that can together recreate underlying

patterns of gene expression profiles for each individual cell.

3.6.12 LDA Model Training

We employed scikit-learn’s LDA implementation (v1.3)275 with options to allow users to

change default parameters including batch size and learning method based on their data (de-

fault: learning method=online variational Bayes method, batch size=1000, max iter=10).

Due to the random initialization of LDA algorithms, topic definitions can vary substantially

each time that the algorithm is rerun, which hinders their interpretability. Therefore, we

train the LDA model with several distinct random seeds (default 100 times) to capture

all possible topics. After training all LDA models, we built our gene-topic weight matrix

using all the obtained models. Even though learning each LDA model is not overly time-

consuming, learning it 100 times can be time-intensive and will increase by increasing the

number of input data(cells/nuclei). To reduce run time, we have added another feature to

train each LDA model separately and then combine all of them to make the final LDA train

object.

3.6.13 TopModel Construction

We assume topics that are independent of the random seeds should have a similar gene

weight profile. Leveraging this hypothesis, we employ the Leiden algorithm to cluster all

topics with similar gene weight profiles. In cases where batch effects may be present, we
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incorporate Harmony276 for batch correction, ensuring that the topics remain consistent

across different datasets. Once the clusters are defined, Topyfic calculates the topic centroid

(mean of gene weights) for each cluster to create a new gene weight matrix. Then it will

trim the matrix by calculating 90% of the cumulative sum of gene weight and reassign the

rest to a pseudocount (1 divided by the total number of topics), creating a new reproducible

LDA model (TopModel). To enhance the quality of topics, we implemented a filtering step

that discards small clusters of topics based on cell-topic participation, with the default

threshold set at less than 1% of cells. If any topic is eliminated in this step, Topyfic will

redo the trimming and reassign the rest to the new pseudocount. This filtering step aids

in eliminating topics that may have emerged due to random seed fluctuations, focusing our

analysis on the more stable and biologically meaningful topics.

3.6.14 Topic object

A topic is essentially a collection of genes, each assigned a weight denoting its contribution

to that specific topic. It’s important to note that a single gene can appear in multiple topics

with a different weights. Topyfic offers different functional enrichment analyses for each topic,

enhancing its utility and our understanding of each topic. These analyses encompass Gene

Ontology (GO) analysis, Gene Set Enrichment Analysis (GSEA)277, and pathway analysis

using the REACTOME database278. Furthermore, Topyfic supports the comparison of the

two topics. This is achieved by transforming the data onto two scales: M (log ratio) and A

(mean average). These scales facilitate the calculation of a modified z-score based on the M

value, allowing for meaningful comparisons between topics in terms of their gene weights.
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3.6.15 Analysis object

The Analysis object is a pivotal component in the post-processing phase of Topyfic, aiding

in biological interpretation of the topics and data following training of the TopModel. After

successfully training of the TopModel, analysis of the TopModel itself commences. This

analysis includes the calculation of ’cell-topic participation,’ which quantifies the extent to

which each topic contributes to each cell. In essence, it represents probability distributions

for each row, ensuring that the sum of topic participation for each cell equals one. To

facilitate a comprehensive understanding of the topics and their relationships, Topyfic offers

several visualization tools.

Using grade-of-membership models helps us estimate membership proportions for each cell/nucleus

in each topic, visualized as a structure plot279,280. The structure plot displays the estimated

membership proportions of each cell/nucleus as a stacked bar plot, with different colors

representing different reproducible topics. To enhance the visualization of inferred cellular

programs from the data, cells are sorted within selected traits in a given order. Within each

trait group, cells are further ordered based on their similarity in estimated membership pro-

portions, employing Ward’s linkage281. A pie chart summarizes the structure plot, providing

a representation of the overall the contribution of each topic of all the cells/nuclei in a trait

group. A topic-trait relationship heatmap visualizes the Spearman correlation coefficients

between each trait and topic as a heatmap. These visualizations serve as valuable aids in

interpreting the topics and their associations with other relevant traits or characteristics.

3.6.16 Comparing Topics

An advantage of employing LDA to discover topics lies in the representation of gene weights

as probability distributions within each topic, ensuring that the sum of gene weights in any

topic equals one. Leveraging this property, Topyfic offers a valuable feature for compar-
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ing topics based on their gene membership profiles. To facilitate this comparison, Topyfic

normalizes the gene weights and assesses the similarity between any pair of topics in the

gene membership space. This similarity evaluation can be performed using various meth-

ods, including Pearson correlation, Spearman correlation, cosine similarity and information-

theoretic metrics like the Jensen–Shannon divergence. Once these comparisons are com-

pleted, the results can be visualized as a graph or heatmap through Topyfic. This visualiza-

tion allows for a clearer understanding of the relationships between different topics based on

their gene memberships.

3.6.17 LDA parameter settings

In addition to determining the final number of topics, other parameters may require tuning

based on the input data. We suggest using ‘online’ as a learning method, which uses an

online variational Bayes method. This method updates the gene weight in each topic during

each EM update using a mini-batch of training data. We can also tune learning decay which

controls learning rate in the online learning method. Besides these, other possible search pa-

rameters could be batch size (number of cells to use in each EM iteration; default=1000) and

max iter (the maximum number of passes over the training data, aka epochs; default=10).

Given enough computing resources, it might be worthwhile to experiment with these param-

eters.

3.6.18 Pseudobulk calculation

A pseudobulk sample is formed by aggregating the expression values that pass QC from

groups of nuclei originating from the same individual, which represents the experimental

unit of replication.
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3.6.19 Principal component analysis (PCA)

Principal component analysis was performed through scikit-learn on the pseudobulk matrix,

where 27 components explained the 95% of the variance in the single nucleus data.

3.6.20 Topyfic analysis of single-nucleus RNA-seq data

The normalized gene-count matrix was divided based on samples with and without the

5xFAD transgene for training the TopModel through Topyfic. Initial TopModel training was

performed on the first replicate of the 5xFAD and WT samples separately, employing default

parameters except minimum cell participation which was 0.5% of the total number of nuclei

(120.7 for the 5xFAD dataset and 142.725 for the WT dataset) using different numbers of

topics (K) ranging from 5 until 50. K=15 was chosen for further analysis. Subsequently,

Topyfic was used to combine TopModels and remove topics with cell participation lower than

0.5% of the total number of nuclei in both datasets (321.11) to obtain the final reproducible

topics. To demonstrate that the TopModel learned meaningful topics that could be used to

analyze other related datasets, we applied the trained TopModel to the second replicate of

the single-nucleus data.

3.6.21 Topyfic analysis of single-cell RNA-seq data

A processed gene-count matrix containing only microglia cells was passed as input to Topy-

fic. The TopModel was trained with all default parameters, except for the minimum cell

participation which was set to 0.5% of the total number of nuclei (27.73) across different

numbers of topics (K).
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Figure 3.1: Overview of Topyfic and datasets. A. Overview of Topyfic workflow, as
described in the text. B. Diagram of experimental design of single cell and single nucleus
RNA-seq using Split-seq. C. Number of recovered nuclei/cells from each genotype after
filtering. D-E. Proportion of glial cells recovered from a single nucleus dataset in each
genotype in D. the hippocampus and E. cortex. F. Hierarchical clustering of gene
expression markers for microglia, astrocytes, and Alzheimer’s disease (AD) marker genes in
each pseudobulked sample. G. PCA plot of pseudobulked samples. H-I. Comparison of
the median of UMI counts in cell types in AD mice vs. WT H. in MODEL-AD and I. in
ENCODE datasets. Dot size reflects the number of nuclei in each cell type.

89



B

D

C

E

F

C
or

re
la

tio
n

−1

0

1

Microglia Microglia (2,440 nuclei)

0.0

0.2

0.4

0.6

0.8

1.0

To
pi

c 
pr

op
or

tio
n

Tissue
Cortex
Hippocampus

Sex
Female
Male

Genotype
5xFAD/BL6

BL6
5xFAD/CAST

BL6/CAST

H

1.0

0.8

0.2

0.4

0.6

ce
ll-

m
ax

_t
op

ic
pa

rti
ci

pa
tio

n

0 10 20 30 40 50
K (#topics in each LDA run)

0

10

20

30

40

50

N
 (#

rL
D

A 
to

pi
cs

)

single nucleus RNA-seq data 
using All genes

Genotype
BL6, BL6/CAST
5xFAD/BL6, 5xFAD/CAST

To
pi

c 
pa

rti
ci

pa
tio

n 
(%

)

Genotype

Tissue

Sex

abs(mod_Zscore)
< 2.0
> 2.0

M

4 6 8 10 12
A

−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5 #topics GW >= 1

5
10
15

20
25

G

gene rank within topic

10
−1

10
0

10
1

10
2

10
3

10
4

asn17

10
−1

10
0

10
1

10
2

10
3

as
n4

Ptprc
P2ry12

Csf1

Tgfbr1

Tmem119
Cd9

ApoeAxl

Cd33
Siglech

Picalm

Itgax
Lpl

Cx3cr1 Hexb

Cd86

Csf1r

Gpr34

gene weight
(log2 scale)

−4

0

4

8

12

A

All

Train TopModel

Find the best k

Analyse the TopModel 
on rep2

BL6
BL6/CAST

rep1

5xFADHEMI
5xFAD/CAST

rep1

Combine the TopModels

asn1
asn2

asn3
asn4

asn5
asn6

asn7
asn8

asn9
asn10

asn11
asn12

asn13
asn14

asn15
asn16

asn17
asn18

asn19
asn20

asn21
asn22

asn23
asn24

asn25
asn26

asn27
asn28

Strain
Transgene

Astrocyte
CHOR

Endothelial
Ependymal

GABA
GLUT

Microglia
OEC
OPC

Oligodendrocyte
Pericyte

VLMC
VSMCA

Tgfbr1
Hexb

Cx3cr1Csf1r

Siglech

Picalm
Ptprc

P2ry12

Plcg2Cd86
Sall1Cd33

Cd9
Trem2

ApoeAxl
Csf1Lpl

Itgax

Tmem119
Slc2a5

Mrc1 Upregulated in asn4

Upregulated in asn17

2

5xFAD/BL6

(743 nuclei)

5xFAD/CAST

(1,084 nuclei) BL6

(338 nuclei)
BL6/CAST

(275 nuclei)

0%

20%

40%

60%

80%

100%

53.2%

16%
6.2%

67.5%

13.2%
7.4%

21.2%

34.6%

5.7%

23.8%

53.1%

9.4%

asn17

asn4
asn22

asn17

asn4

asn22

as
n4

as
n1

7

Tgfbr1
Hexb
Csf1r

Cx3cr1
Ptprc

Picalm
Siglech
P2ry12

Bin1
Plcg2
Apoe
Cd9

Fcrls
Cd86

Axl
Sall1
Csf1

Trem2
Cd33

Gpr34
Lpl

Itgax
Tmem119

Mrc1
Slc2a5

8 8
17 15
56 63
44 72
183 76
139 111
68 130
81 193
119 206
201 278

336
1200 337
223 458
366 479

537
405 677

770
1081 887
348 909
911 952

1015
1116

862
1559
1131

Figure 3.2: Topic modeling in single nuclei from 5xFAD/BL6 and 5xFAD/CAST
cortex and hippocampus. A. Topics were called in 5xFAD transgenic mice and control
mice separately using the first biological replicate for each mouse pair. After finding the
best k to describe each training set separately, resulting topics were combined into a single
TopModel, which was applied to the second technical replicate. B. The number of starting
topics (K) versus the number of final topics (N) on the separate runs, and the combined
models. Choosing K=15 for the individual runs led to a final set of 28 combined topics
after filtering. C. Topic-trait relationship of the Spearman correlation between traits such
as major cell type, strain, and transgene, across all topics. “Strain” indicates the
background of mice, either BL6 (red) or BL6/CAST (blue). “Transgene” shows if the mice
have the 5xFAD transgene (red) or not (blue). The violin plots show the distribution of
cell topic participation whenever the topic is top ranked topic in a cell. D. Overall topic
participation in microglia nuclei by genotype. Three major microglia topics were
annotated. E. Structure plot of topic participation for each nucleus sorted by hierarchical
clustering in each group (same genotype, sex, and tissue). F. Gene weights of the main two
microglia topics asn4 and asn17 in log-log plot. G. MA plot comparing asn4 and asn17,
where the X-axis (A) represents the average weight of the gene between both topics in the
comparison, and Y-axis (M) represents log base 2 of the fold change of gene weight
between topics. The color of each dot shows the number of topics (out of 28) where each
gene has a weight above one. Modified z-score also indicated genes that were significantly
differentially weighted between both topics in the comparison. H. Gene weights and the
rank of each gene within the topic shown for asn4 and asn17. Color represents the weights
of genes in the log2 scale.
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Figure 3.3: Topic modeling in scRNA-seq of microglia. A. Distribution of maximum
cell-topic participation in each cell in each topic. B. Topic-trait correlation between sex or
transgene and each topic. C. Topic participation broken down by genotype. D. Structure
plot of microglia cells sorted by genotype and sex show topic participation in each cell.
E-G. Comparison of gene weights for sc1 (activated microglia topic) E. versus sc2, F.
versus sc3, and G. versus sc5. Color represents the weights of genes in the log2 scale. H.
Gene weights of genes in interest in log2 scale with their rank.
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Figure 3.4: Topic modeling using regulatory genes. A. Breakdown of regulatory gene
categories in mouse. B. Distribution of cell-topic participation in single-nucleus datasets.
Topics rsn1 and rsn22 are enriched in microglia, with rsn1 also enriched in transgenic mice.
C. Structure plot for microglia nuclei sorted by genotype and sex. rsn1 mostly contributes
to the AD mice, whereas rsn22 is primarily found in WT mice. D. MA plot comparison of
gene weights between rsn1 and rsn22. The color of the dots represents the number of topics
with the gene weight higher than the pseudocount, and the style of each dot indicates if the
difference between gene weights is significant (circle) or not (square) based on a modified
z-score of M values. E. Topic cosine similarity > 0.9 between topic pairs using all genes
and regulatory topics. F. Topic cosine similarity > 0.9 between microglia topics from single
nucleus (asn), regulatory genes (rsn) and microglia single-cell (sc).
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Figure 3.5: Impact of various data and Topyfic parameters on the number of
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topics (K). Higher number of nuclei/cells results in a greater number of topics (K). C.
Impact of increasing minimum cell-topic participation on the removal of smaller topics,
leading to a reduction in the number of topics (K). D. The effect of increasing resolution
on generating more clusters, subsequently increasing the number of topics (K).
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Figure 3.6: Overview of MODEL-AD dataset. A. Breakdown of nuclei, cell type,
subtype, genotype, sex, and tissue across 52 clusters. B. Expression of marker genes.
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Figure 3.7: Overview of ENCODE dataset. A. Breakdown of nuclei, cell type,
subtype, genotype, sex, and tissue across 43 clusters. B. Expression of marker genes.
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Chapter 4

Unraveling gene expression dynamics

in mouse models through PyWGCNA

and Topyfic integration

4.1 Abstract

RNA sequencing (RNA-seq) has emerged as a pivotal tool for profiling transcriptomic vari-

ations in diverse conditions, including disease states. While conventional bulk RNA-seq

provides an overview of average gene expression across a population of cells within a tissue,

single-cell RNA sequencing (scRNA-seq) allows for a granular examination of transcriptomic

profiles at the individual cell level. The Weighted Gene Co-expression Network Analysis

(WGCNA) applied to bulk RNA-seq facilitates the identification of co-expressed gene mod-

ules. Conversely, the Grade of Membership (Gom) models such as LDA offer an unsupervised

approach for analyzing scRNA-seq data, unveiling cellular programs. A comparative analysis

between these two methodologies provides valuable insights into the underlying interactions
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among genes. This chapter introduces a novel approach to compare gene modules to gene

topics based on their similarities. By incorporating cellular programs as gene-topic weights

to modules derived from PyWGCNA using a geometric approach, we aim to compare and

contrast the two techniques. To validate our methodology, we conducted a comparative

analysis using bulk RNA-seq datasets from various mouse models of Alzheimer’s disease

(AD) obtained from the UCI MODEL-AD consortium and explored topics identified in two

5xFAD mouse models of AD, crossed with either C57BL6/J or CAST/EiJ mice (Chapter

3). This analysis sheds light on how gene expression modules and cellular programs are

complimentary in studying gene expression changes in health and disease.

4.2 Introduction

Bulk RNA-seq is the most widely used for studying the transcriptional landscape and elu-

cidating molecular pathway alterations in human cancers. However, it presents a limitation

by furnishing only the average gene expression profiles across various cell clusters, failing

to capture the transcriptional heterogeneity inherent in cell populations282. One method to

analyze bulk RNA-seq data is weighted gene co-expression network analysis which can be

done through PyWGCNA283. Genes are systematically grouped into co-expression modules

by PyWGCNA based on their similarities in expression profiles across samples. The pri-

mary objective is to pinpoint sets of genes displaying coordinated expression patterns and

identify hub genes associated with specific biological functions. Particularly well-suited for

studies with large sample sizes, methods such as PyWGCNA offers valuable insights into

global expression patterns. It distinguishes itself from methods allowing genes to belong to

multiple clusters with associated weights, as PyWGCNA uniquely assigns each gene to a

single module.

In contrast to bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) offers high-throughput
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and high-resolution transcriptome profiling at the individual cell level. However, this ad-

vancement comes at the cost of increased data noise and variability12. ScRNA-seq allows

for a granular understanding of cellular states and functions by capturing transcripts on

a per-cell basis284. A popular analytical approach applied to scRNA-seq data is topic

modeling, a method originally derived from natural language processing and adapted for

single-cell/nucleus RNA-seq studies. Methods such as Topyfic285 leverage topic modeling

to uncover hidden latent themes (topics) within the heterogeneous landscape of individual

cells. By assigning weights to genes for each topic, topic modeling can identify quantitative

relationships between genes the underlying biological processes contributing to observed cel-

lular diversity. Unlike PyWGCNA, topic modeling furthermore allows each gene to be part

of multiple topics with possibly distinct weights, which matches the biological pleiotropy of

genes.

While topic modeling presents a flexible and unsupervised approach, yielding valuable in-

sights into cellular functions, it should be noted that its computational demands may pose

challenges. Additionally, interpreting topics in a biological context can be intricate, thereby

requiring careful consideration during analysis.

This study introduces an approach aimed at elucidating the intricate relationships between

co-expression network modules derived from PyWGCNA and gene weights obtained through

Topyfic using a geometric framework. The overarching objective is to characterize each topic

as a linear combination of modules, where each topic is a vector of genes that can be projected

into a subspace of the genes within a module. This integrated approach provides a distinc-

tive perspective on the modular organization of gene expression, unveiling the connections

between co-expression modules and latent topics.

To validate our approach, we first aggregate all bulk RNA-seq datasets generated by the

MODEL-AD consortium (as detailed in Chapter 2). Subsequently, we explore gene expres-

sion changes using PyWGCNA283. These modules are then compared to topics in two
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distinct 5xFAD mouse models of Alzheimer’s disease (AD) crossed with either C57BL6/J or

CAST/EiJ mice285. This comprehensive analysis aims to unravel the intricate interplay be-

tween co-expression modules and latent topics, offering valuable insights into the regulatory

landscape of gene expression in the context of AD.

4.3 Results

4.3.1 Analysis of Bulk RNA-seq

Expression levels of marker genes for disease-associated microglia (DAM), astrocytes, and

oligodendrocytes in pseudo-bulk for each mouse showed higher expression in older mice with

a 5xFAD background versus WT in both the hippocampus and cortex (Fig. 4.1). We applied

PyWGCNA to 1047 bulk RNA-seq datasets and identified 11 co-expressed modules associ-

ated with age, genotype, tissue, and sex (Fig. 4.2). The dark red module, comprising 703

genes, is significantly correlated with older mice with a 5xFAD background (Fig. 4.2). This

module is enriched in GO terms related to the inflammatory response, cytokine signaling,

and microglia cell activation (Fig. 4.4). Additionally, it is enriched in pathways related to

the immune system, such as neutrophil degranulation. The eigengene profile of this module is

significantly higher in aged mice with a 5xFAD background (Fig. 4.3). The brown module is

the neuronal development module which is mainly expressed in the hippocampus in younger

mice. Go terms related to neuronal systems such as generation of neurons (GO:0048699)

significantly (p-value ¡ 0.05) enriched in this module as well.
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4.3.2 Comparison of bulk and single-nucleus RNA-seq datasets

To evaluate the similarity between bulk and single-nucleus RNA-seq datasets, we compared

PyWGCNA modules and gene markers at both the cluster and cell type levels using a module

overlap test in PyWGCNA. Notably, the dark red module, which is enriched in microglia cell

activation, exhibits a significant overlap with cluster 12, which is identified as a microglial

cluster (Fig. 4.5, Fig. 4.6)285. Additionally, the brown module significantly overlaps with

neuronal clusters (GABA and GLUT), which matches the biological functions enriched in

this module (Fig. 4.5, Fig. 4.6).

In PyWGCNA and, more broadly, WGCNA, each gene is associated with only one module,

contrasting with other clustering139,286 and GoM methods153,287 where genes may belong

to multiple clusters with associated weights. In this context, we utilized Gene Module

Membership (kME) and compared them to the normalized gene-topic weights obtained from

Chapter 3 (refer to the Methods section for details). Examining the distribution of cosine

similarities, we define 0.12 as a significant level based on the null hypothesis (Fig. 4.7).

The inflammatory darkred module exhibits a significant cosine similarity with our microglia

topics (asn4 and asn17), confirming the biological functions. While the darkred module could

not tell a difference between activated and homeostatic microglia, Topyfic would provide

more information related to the different states of cells suggesting the major benefit of GoM

methods over WGCNA analysis.

As expected, the brown module shows greater similarity to topics associated with GLUT and

GABA cell types (Fig. 4.8). Topyfic analysis recovers 6 topics associated with GABA and

7 topics were significantly enriched in GLUT, while we only are able to identify one module

associated with neuron cell types through PyWGCNA, suggesting gene expression variability

within a cell type. This heterogeneity in gene expression is crucial for understanding the

complexity of biological systems, as it underlies the diverse responses of seemingly identical
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cells to external signals, contributing to the intricacies of development, tissue homeostasis,

and disease.

4.4 Discussion

In this study, we employed a framework to investigate the intricacies of gene expression dy-

namics. PyWGCNA, utilizing a network-based approach, allowed us to categorize genes with

shared expression patterns into modules while each genes can only be present in one module.

The modules identified by PyWGCNA hold potential for therapeutic target exploration, and

the unraveling of regulatory networks. Simultaneously, Topyfic offered a single-cell resolu-

tion perspective, helping us uncover latent biological programs within individual cells where

a gene can participate in multiple topics with different weights. This approach was crucial

in revealing cellular heterogeneity, distinct cell states, and developmental trajectories within

complex biological systems.

Applying PyWGCNA to the MODEL-AD consortium’s bulk RNA-seq datasets led to the

identification of a darkred module that is enriched in genes involved in inflammatory response

with an increase over time in mice with a 5xFAD background. This finding aligns with the

expected dynamic nature of inflammatory processes in AD disease progression. To gain more

insight into these modules, we describe them with cellular programs defined by Topyfic. This

revealed that the darkred module comprised two main cell states – homeostatic and activated

microglia. Topyfic’s ability to identify cellular heterogeneity and explore gene expression

patterns in cellular trajectories demonstrated its superiority in capturing cell type/state-

specific insights compared to the broader information provided by PyWGCNA modules.

Building on these findings, our study proposes an approach to compare PyWGCNA modules

with Topyfic topics. This integration aims to leverage the strengths of both methodologies,
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providing a more comprehensive understanding of gene expression dynamics across different

assay types. By harmonizing the insights from these two analytical approaches, our study

seeks to contribute to understanding the molecular landscape within complex biological

systems. This comparative analysis lays the groundwork for future investigations into disease

mechanisms and therapeutic interventions.

4.5 Methods

Bulk RNA-seq datasts

As part of the MODEL-AD consortium, we sequenced bulk RNA-seq of the cortex and hip-

pocampus of 5xFAD mice and matching wild-type (C57BL/6J) of both sexes in four different

ages (4 months, 8 months, 12 months, and 18 months)120. We also produced a RNA-seq

time course (4 months, 12 months, and 18 months) in the 3xTg-AD mouse and match-

ing wild-type (B6129SF1/J) using the cortex and hippocampus100,288. We also produced

mRNA profiles of eight GWAS (TREM2R47H, ABCA7v1613M, BIN1k358R, CLUh2kbKI,

EPHA1P461L, PICALMH465R, SPI1rs1377416, and ABI3S209F) mouse models of AD and

crossed them with 5xFAD mice as well as bulk RNA-seq data of Trem2R47H NSS mice

treated with the demyelinating agent cuprizone (Table. 4.1). They also collected bulk RNA-

seq data of 8-month-old WT and homozygous Abca7V1613M mice of both sexes that were

injected intraperitoneally with either 0.3mg/kg LPS or 1X PBS (saline). At 6 or 24 h post

administration, mice were euthanized via CO2 inhalation and transcardially perfused with

ice-cold 1X PBS (Table. 4.2). In total, we are analyzing 1047 bulk RNA-seq datasets.

single-cell and single-nucleus RNA-seq dataset

All single-nucleus RNA-seq data were meticulously produced and preprocessed as outlined

in Chapter 3, ensuring a standardized and comprehensive approach.
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PyWGCNA analysis

Weighted Gene Correlation Network Analysis (WGCNA) was conducted using PyWGCNA283

on a bulk RNA-seq with default parameters. Protein-coding genes with expression greater

than 2 TPM in at least 2 samples were used as input for PyWGCNA. No samples were iden-

tified and removed based on hierarchical clustering (Fig. 4.9). According to our datasets,

the power that resulted in a higher similarity with a scale-free network was 11 (Fig. 4.10).

For each co-expression module identified by PyWGCNA, the module eigengene was obtained

as the first principal component of the standardized expression profiles of all genes within

the module. PyWGCNA also calculates, for each gene in the dataset, the Pearson correla-

tion coefficient between the expression profile of the gene and the module eigengene of each

module, referred to as Gene Module Membership (kME). This value indicates the member-

ship strength of the gene in each module. Positive kME values suggest a positive correlation

between the gene’s expression profile and the module eigengene, indicating membership in

the module. Conversely, negative kME values imply a negative correlation, indicating an

inverse relationship with the module eigengene. A kME value close to zero suggests weak or

no correlation with the module eigengene.

Topyfic analysis

Topics, derived from Chapter 3 using single-nucleus RNA-seq data all genes (asn), were used

for the analysis. Gene weights were normalized to ensure comparability for further analysis,

with the sum of gene weights in any topic equalling one.

Geometric space integration of PyWGCNA modules and Topyfic topics

To establish a connection between PyWGCNA modules and Topyfic topics, we computed

the cosine similarity values between the kME vector of genes within the module and the

normalized gene weight vector of each topic. The cosine similarity between the kME vector
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of genes (u) and the normalized gene weight vector (v) is defined as u·v
||u||2·||v||2 .

The cosine similarity is a measurement to define each gene’s module membership within

the geometric space as a linear model of gene weight topics. Cosine similarity values serve

as slopes, reflecting the alignment of a gene’s expression profile with the module eigengene

obtained from PyWGCNA and the gene weight vector obtained from Topyfic. A high cosine

similarity indicates a strong association, underscoring the significance of the associated topic

in characterizing the gene’s expression pattern within the defined module.
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Figure 4.3: Darkred module eigengene expression The darkred module eigengene
expression profile is summarized by genotype. Above, the top three rows display the
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Figure 4.8: Heatmap of cosine similarities between PywGCNA modules and
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Figure 4.9: Clustering dendrogram of samples based on TPM values.
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mouse model Tissue Age Genotype Group Sex # Samples
cuprizon brain 12mon BL6 Cuprizon M 8
cuprizon brain 12mon BL6 Control M 8
cuprizon brain 12mon TREM2em1Adiuj:IUJTREM2R47H Cuprizon M 4
cuprizon brain 12mon TREM2em1Adiuj:IUJTREM2R47H Control M 4
cuprizon brain 12mon TREM2em1Aduci Cuprizon M 4
cuprizon brain 12mon TREM2em1Aduci Control M 4
cuprizon brain 12mon TREM2em2Adiuj:TREM2KO Cuprizon M 4
cuprizon brain 12mon TREM2em2Adiuj:TREM2KO Control M 4

Table 4.1: Discriotion of cuprizone cohort of bulk RNA-seq data

115



mouse model Tissue Age Genotype Group Sex # Samples
LPS brain 8mon ABI3HO LPS(6h) F 2
LPS brain 8mon ABI3HO LPS(6h) M 2
LPS brain 8mon ABCA7HO LPS(6h) F 2
LPS brain 8mon ABCA7HO LPS(6h) M 2
LPS brain 8mon BL6 LPS(6h) F 2
LPS brain 8mon BL6 LPS(6h) M 2
LPS brain 8mon ABI3HO Saline(6h) M 3
LPS brain 8mon ABCA7HO Saline(6h) M 3
LPS brain 8mon BL6 Saline(6h) F 2
LPS brain 8mon BL6 Saline(6h) M 1
LPS brain 8mon ABI3HO LPS(24h) F 2
LPS brain 8mon ABI3HO LPS(24h) M 2
LPS brain 8mon ABCA7HO LPS(24h) F 2
LPS brain 8mon ABCA7HO LPS(24h) M 2
LPS brain 8mon BL6 LPS(24h) F 2
LPS brain 8mon BL6 LPS(24h) M 2
LPS brain 8mon ABI3HO Saline(24h) F 1
LPS brain 8mon ABI3HO Saline(24h) M 2
LPS brain 8mon ABCA7HO Saline(24h) F 1
LPS brain 8mon ABCA7HO Saline(24h) M 2
LPS brain 8mon BL6 Saline(24h) F 1
LPS brain 8mon BL6 Saline(24h) M 2

Table 4.2: Discriotion of LPS bulk RNA-seq data
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Chapter 5

Future directions

Leveraging genomics data to design better mouse models of AD

While current mouse models have played a crucial role in understanding certain aspects of

Alzheimer’s disease (AD) pathology, their limitations are evident. These models often over-

simplify the complex genetic landscape of AD by relying on singular mutations or transgenes

that fail to capture the polygenic nature observed in individuals with AD289. Additionally,

the factors initiating AD are not yet known, and the field has primarily relied on models

of the familial forms of the disease, linked to dominant genetic mutations. While these

models have provided invaluable insights into disease pathogenesis, they have significant

shortcomings. Current AD models are based on mutations found in familial cohorts of early-

onset Alzheimer’s disease (EOAD) despite EOAD only accounting for 2% of overall cases290.

Consequently, there is a critical need for mouse models that more faithfully recapitulate the

diverse genetic factors contributing to AD.

One promising path to enhance mouse models of AD involves humanizing specific genes

to better replicate human AD pathology. Replacement of mouse genes with their human

homologs, such as Mapt 291, has been attempted. However, despite successful gene replace-
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ment, the subsequent cross with an APP knock-in showed no evidence of tauopathies such

as neurofibrillary tangles (NFT) or neurodegeneration291. The integration of risk variants

is a crucial aspect, but it alone does not guarantee a successful mouse model. For example,

a knock-in of human variants should avoid causing aberrant splicing events not observed in

humans, as was seen in several mouse models of the Trem2 R47H variant292. Although this

particular variant is identified as an AD risk factor in humans, the mouse model exhibited

a decrease in Trem2 expression due to aberrant splicing events292,293. Expression levels and

distribution of the protein products should not change in comparison to wild-type in oth-

erwise normal mice. Furthermore, when exploring GWAS hits, it is paramount to consider

that AD shares certain pathology traits with other forms of dementia. Therefore, evaluating

the specificity of identified variants in comparison to other dementias becomes crucial in

refining the accuracy and relevance of mouse models in AD research.

In AD research, the use of both laboratory (lab)294 and wild-derived mouse strains295,296,

along with Collaborative Cross (CC) lines297, contributes to a comprehensive understand-

ing of the genetic basis and disease mechanisms. Lab strains often inbred and genetically

homogeneous, provide controlled environments for studying specific genetic factors and ex-

perimental interventions. They are valuable for assessing the effects of targeted genetic

manipulations and investigating the molecular pathways involved in AD. On the other hand,

wild-derived strains offer increased genetic diversity, capturing a broader range of natural

genetic variations and environmental influences. These strains are instrumental in model-

ing the complex, polygenic nature of AD and understanding gene-environment interactions.

Integrating lab, wild-derived, and CC lines allows researchers to bridge the gap between

controlled experimental settings and the complexity observed in human populations. Lab

strains facilitate precise genetic manipulations and mechanistic studies, while wild-derived

strains and CC lines provide platforms for exploring the diverse genetic factors and phe-

notypic variations associated with AD. This combined approach enhances the translational

relevance of preclinical studies, aiding in the identification of key genetic contributors, po-
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tential therapeutic targets, and personalized treatment strategies for AD across a spectrum

of genetic backgrounds.

In the past decade, long-read sequencing technologies have rapidly progressed298,299. They

can be used to validate mouse models of AD and help us resolve complex genomic structures,

detect structural variations, and capture full-length transcripts300. Long-read sequencing

will allow researchers to inspect the precise nucleotide changes made during gene editing

genome-wise, which is crucial for confirming the accuracy of the intended edits in mouse

models designed to replicate specific mutations associated with AD. By analyzing the full-

length transcripts of the mouse model using long RNA-seq, we have been able to assess how

well the modified genes are expressed, spliced, and processed118. Long RNA-seq facilitates

the capture of alternative splicing events in genes, providing valuable insights into mouse

models where alternative splicing may contribute to disease progression301. By comparing

splicing patterns in the model to those in wild-type mice, researchers can gain a clearer

understanding of the model’s accuracy. Collectively, the integration of long-read RNA-seq

in these approaches allows researchers to acquire a deeper and more precise understanding of

the genomic and transcriptomic landscapes of mouse models and ensures that mouse models

faithfully recapitulate the genetic and molecular features associated with AD.

The successful generation of a new mouse model of AD that would mirror human pathology

in terms of histology, aging, AD onset, gene expression patterns, and other relevant features

would be transformative. Aligning the pathophysiological traits of this mouse model with

human clinical data would facilitate the discovery of robust biomarkers as well as the pre-

clinical testing of new treatments for Alzheimer’s disease.

CRISPRi-Perturb-seq in Mouse Models of Alzheimer’s Disease

Another promising path for exploring the function of genes involved in AD involves functional

perturbations. The combination of CRISPR interference (CRISPRi) with single-cell RNA
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sequencing (scRNA-seq), known as CRISPRi-Perturb-seq302,303, has emerged as a robust

method for unraveling the functional genomics of AD within mouse models. This technique

enables large-scale functional genomics screening by systematically perturbing specific genes

associated with AD pathology such as Apoe. Through targeted gene repression, researchers

can identify key players in the disease process, contributing to a deeper understanding of

AD molecular mechanisms.

Cell identity is encoded by gene regulatory networks (GRNs) that consist of directional links

indicating regulatory connections, with the edge’s source being the regulator gene and the

sink being the target gene. GRNs are frequently employed to delineate how the expression

of transcription factors influences the expression of target genes. CRISPRi-Perturb-seq also

provides a unique advantage in uncovering regulatory networks and pathways affected by

gene perturbations. This information is instrumental in elucidating the intricate molecular

processes that contribute to AD progression. By perturbing genes linked to AD, researchers

can discern how these alterations cascade through the regulatory machinery, influencing

downstream signaling pathways and molecular processes. This holistic understanding of

gene regulatory networks offers a comprehensive view of the interconnected cellular events

that contribute to AD pathology.

Moreover, CRISPRi-Perturb-seq serves as a valuable tool for the validation of candidate

genes previously identified through various approaches, such as genetics or transcriptomics.

This aids in confirming the functional relevance of specific genes in the context of AD.

Finally, by systematically perturbing genes associated with AD, CRISPRi-Perturb-seq assists

in the identification of potential drug targets, contributing to the development of targeted

therapeutic interventions for neurodegenerative diseases. In essence, CRISPRi-Perturb-seq

stands as a comprehensive approach, advancing our understanding and potential treatment

strategies for mouse models of AD.
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29(5):305–309, 2014.

[70] Jifei Miao, Haixia Ma, Yang Yang, Yuanpin Liao, Cui Lin, Juanxia Zheng, Muli Yu,
and Jiao Lan. Microglia in alzheimer’s disease: pathogenesis, mechanisms, and thera-
peutic potentials. Frontiers in Aging Neuroscience, 15:1201982, 2023.

[71] David V Hansen, Jesse E Hanson, and Morgan Sheng. Microglia in alzheimer’s disease.
Journal of Cell Biology, 217(2):459–472, 2018.

[72] Joshua A Smith, Arabinda Das, Swapan K Ray, and Naren L Banik. Role of pro-
inflammatory cytokines released from microglia in neurodegenerative diseases. Brain
research bulletin, 87(1):10–20, 2012.

[73] Jenny U Johansson, Nathaniel S Woodling, Ju Shi, and Katrin I Andreasson. Inflam-
matory cyclooxygenase activity and pge2 signaling in models of alzheimer’s disease.
Current immunology reviews, 11(2):125–131, 2015.

[74] Dawling A Dionisio-Santos, John A Olschowka, and M Kerry O’Banion. Exploiting
microglial and peripheral immune cell crosstalk to treat alzheimer’s disease. Journal
of neuroinflammation, 16(1):1–13, 2019.

[75] Yongle Cai, Jingliu Liu, Bin Wang, Miao Sun, and Hao Yang. Microglia in the neu-
roinflammatory pathogenesis of alzheimer’s disease and related therapeutic targets.
Frontiers in immunology, 13:856376, 2022.

[76] Thomas Vogels, Adriana-Natalia Murgoci, and Tomáš Hromádka. Intersection of
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