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ABSTRACT OF THE DISSERTATION 
 

Developing Spatialomics Platforms  
to Profile Biomarkers 

 

By 

Joshua Gu 

 

Doctor of Philosophy in Biological Chemistry 

University of California, Irvine, 2022 

 

Professor Weian Zhao, Chair 

Multiplexed mRNA and protein profiling in the spatial context provides important 

new information enabling basic research and clinical applications. Unfortunately, most 

existing spatial transcriptomics and proteomics methods are limited due to either low 

multiplexing or assay complexity. Here, we introduce a new spatialomics technology, 

termed Multi Omic Single-scan Assay with Integrated Combinatorial Analysis 

(MOSAICA), that integrates in situ labeling of mRNA and protein markers in cells or 

tissues with combinatorial fluorescence spectral and lifetime encoded probes, spectral 

and time-resolved fluorescence imaging, and machine learning-based target decoding. 

This technology is the first application combining the biophotonic techniques, Spectral 

and Fluorescence Lifetime Imaging and Microscopy (FLIM), to the field of spatial 

transcriptomics and proteomics. By integrating the time dimension with conventional 

spectrum-based measurements, MOSAICA enables direct and highly multiplexed in situ 

spatial biomarker profiling in a single round of staining and imaging while providing error 

correction removal of background autofluorescence. We demonstrated MOSAICA’s 

capabilities in cell culture and Formalin-Fixed Paraffin-Embedded (FFPE) tissues while 

obtaining a strong correlation with sequencing data (Pearson’s r = 0.96). We then 

demonstrate simultaneous co-detection of protein and mRNA in colorectal cancer cells. 

To answer biological questions with a simple 3-4 plex immunofluorescence panel, we 

developed a low-cost Tissue Imager for under $9,000 and achieved a performance on 
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par with commercial fluorescence microscopes that cost ~20x more.  Additionally, another 

tool we developed to study the tissue microenvironment was cell-based mechanosensors 

to quantitively and dynamically assess the tissue mechanics. We have already used 

MOSAICA to study colon cancer heterogeneity, profile neurological mRNA panels in brain 

tissue, and profile immuno-oncology panels for skin tissue. MOSAICA represents a 

simple, versatile, and scalable tool for targeted spatial transcriptomics and proteomics 

analysis that can find broad utility in constructing human cell atlases, elucidating biological 

and disease processes in the spatial context, and serving as companion diagnostics for 

stratified patient care.
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CHAPTER 1 
 

INTRODUCTION 
 

Spatialomics is a powerful in vitro method that permits the topographical analysis 

of RNA transcripts and/or protein expression within each cell, tissue, and/or organ. 

Understanding cells in their morphological context allows us to better understand their 

functions. Transcripts or proteins are labeled with fluorescent reporter molecules and 

imaged to reveal their locations, identities, counts, distributions, and interactions in their 

native environment. This critical technology has garnered increased interest in the 

biological and clinical field as advances in DNA and RNA sequencing have enabled 

researchers and clinicians to access an unprecedented amount of genomic, epigenomic, 

and transcriptomic information (Figure 1.1). An effective analytical pipeline to map out 

each cell and its function within the body from the molecular to system level resolution is 

a fundamental requirement for advancing our understanding of developmental biology, 

computational biology, cancer biology, as well as accelerating the development of 

precision diagnostics and therapeutics1-3. Of critical importance are the enabling 

technologies which permit the spatial analysis of multi-omics markers, e.g. mRNA and 

proteins, by revealing their presence, counts, locations, dynamics, and interactions within 

each tissue and organ. These technologies are key to elucidating the myriad of functional 

states, cellular processes, and cell-cell interactions which occurs in an integrated 3D 

spatial context4-6. 
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Figure 1.1 Single cell multi-omics 
Cell-cell and cell-niche interactions in the tissue microenvironment are tightly regulated in space and time. 
Spatial analysis provides the precise spatial location and clustering information that NGS cannot. The long-
term goal is the generate human atlases using spatialomics data.  

 
Unfortunately, a critical barrier to the enabling of this pipeline is the lack of tools 

that can rapidly profile multi-omics in space and time that scales from the molecular level 

to the tissue or organ level in heterogeneous samples7-11.  Conventional tools for in situ 

analysis including fluorescence in situ hybridization (FISH) for DNA or RNA analysis and 

immunohistochemistry (IHC) for protein detection suffer from drawbacks including poor 

robustness, reproducibility, sensitivity, and the need to screen and empirically test large 

libraries of potential epitopes and genetic targets against different tissues12-19. Moreover, 

these traditional approaches provide only low throughput and multiplexing capabilities 

because of the limited number of spectrally available channels20-22. Recent single-cell 

sequencing methods (e.g. Single-cell RNA sequencing (scRNA-seq)) lack the critical 

spatial context needed to understand complex heterogeneous samples such as tumors23-
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25. Spatial transcriptomic methods that are based on sequential labeling, stripping, and 

imaging (e.g. seqFISH, MERFISH), branched amplification (e.g. RNAscope®, SABER), 

or barcoded labeling with down-stream sequencing (e.g. Slide-seq) are too complicated, 

time-consuming, laborious and costly to scale up and often are limited to few specialized 

laboratories (Table 1)26-30. Spatial proteomic methods including Imaging Mass Cytometry 

(IMC) and CODEX can offer higher multiplexing than conventional immunohistochemistry 

but suffer from decreased sensitivity, throughput, accessibility and/or high cost31-33.  

We developed a spatial multi-omics technology, that integrates a) in situ labeling of 

molecular markers (e.g. mRNA, proteins) in cells or tissues with combinatorial 

fluorescence spectral and lifetime encoded probes, and b) spectra and time-resolved 

fluorescence imaging and analysis to enable rapid, high-throughput spatial profiling of 

multi-omics biomarkers. Fluorescence lifetime is a measure of the time a fluorophore 

spends in the excited state before returning to the ground state and is an inherent 

Table 1: Expected quantitative advances of the proposed MOSAICA technology over state-of-the-art 
technology. 
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characteristic of the fluorophore and its surrounding environment34. By utilizing both time 

and intensity domains for labeling and imaging, we can discriminate a vast repertoire of 

lifetime and spectral components simultaneously within the same pixel or image of a 

sample to enable highly increased multiplexing capabilities with standard optical systems. 

As summarized in Table 1, several key capabilities and advantages of our 

proposed technology for spatial omics compared to existing technologies are expected, 

including a) direct, in situ spatial profiling of all labeled biomarkers in a single round of 

hybridization and imaging in contrast to existing approaches where many iterations of 

sample re-labeling, imaging, indexing, and image registration are often required, b) 

elimination of sample autofluorescence (by choosing probes with lifetimes different from 

autofluorescent moieties) and therefore improved detection sensitivity, signal-to-noise 

ratio (SNR), and detection efficiency as well as elimination of additional complicated, 

harsh, and time laborious processing steps, c) high multiplexing. We anticipate the ability 

to achieve simultaneous detection of 10s to 100s of target molecules via one labeling and 

imaging round with our MOSAICA approach, d) multi-scale analysis from molecules to 

systems. Our technology can uniquely achieve both high resolution (subcellular features 

or single molecules) and high imaging throughput, two key parameters which are often 

trade-offs of each other in existing methods. This feature is enabled by our ability to label 

and encode biomarkers with unique spectral or lifetime signatures combined with our real-

time multicomponent analysis (below), e) multi-omics analysis. As we use standard in situ 

fluorescence staining reagents and protocols which are compatible across different target 

molecular species, our platform can simultaneously profile multi-omics (e.g. genome, 

epigenome, proteome, transcriptome, epigenome, and metabolome) in the same sample. 
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Integrated multi-omics analysis can be critical to provide greater insights in how molecular 

information translates to functions in biology and disease, and f) high scalability and 

generalizability. Most existing spatial technologies are unfortunately employed only by a 

few laboratories due to their laborious procedures and the need for highly specialized 

equipment. By contrast, our technology uses standard labeling reagents and protocols 

and requires only a fluorescence microscope that is either integrated with or equipped with 

a low-cost lifetime imaging unit which is offered by numerous microscope manufacturers 

(e.g. Leica, Olympus, Nikon, Zeiss and ISS). Fluorescence imaging remains the most 

familiar and widely used technique in biological research. Therefore, we believe our 

technology, once fully developed, will be quickly and broadly adopted in the scientific 

community to address many unsolved biological questions at an affordable cost. 

1.1 In situ Hybridization 
 

In situ hybridization (ISH) is a technique used to detect either DNA or RNA using 

a probe, typically made with DNA or RNA, within cells and tissue, allowing temporal and 

spatial information about gene expression to be obtained. During hybridization, the single-

stranded probes bind in situ to the expressed mRNA or DNA in the sample that it is 

designed to target. While some probes are designed with a chemical or radioactive moiety 

for detection, other probes have readout regions for secondary probes with fluorophores 

to bind to. This allows scientists to detect target expressions in a 3D space.  

The two most common ways to visualize the DNA and RNA targets are 

fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH). 

While both methods use labeled, target-specific probes that hybridize to the sample, the 

visualization method is different for each. With DNA-FISH and RNA-FISH, fluorescence 
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microscopy can be used for visualization of multiple targets in the same sample to obtain 

gene expression/presence and temporal and spatial localization. For CISH, brightfield 

microscopy is used to visualize the CISH signal and tissue morphology simultaneously 

for molecular pathology diagnostics. Typically, FISH applications use spectrally distinct 

fluorophore labels for each different hybridization probe to resolve multiple targets.  

There are various single molecule FISH (smFISH) methods, as seen in Figure 1.2, 

which decorates each mRNA transcript with multiple fluorescent oligonucleotide probes 

and allows users to visualize and detect labeled transcripts using fluorescent microscopy. 

For smFISH, multiple probes (10 – 50 per transcript) are required to attain a sufficient 

signal-to-noise ratios to differentiate specific decorated signals from the nonspecific 

signals that bind within the sample (Figure 1.2A)1. 
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Figure 1.2 Variants of single molecule FISH methods. 
(A) Conventional single molecule FISH (smFISH). (B) Single molecule indirect FISH. Nonfluorescent 
primary probes are first conjugated to mRNA and then subsequently bound to fluorescent secondary 
probes (C) FISH with Sequential Tethered and Intertwined ODN Complexes (FISH-STICS) utilizes an 
additional round of labeling to grow out probe tree. (D) Branched DNA (bDNA) utilizes contiguous pairs 
(ZZ pairs) of oligonucleotides to facilitate specific binding. E) Hybridization chain reaction (HCR) utilizes 
metastable hairpins to amplify and laterally grow out oligonucleotide labels. F) Padlock probes forms a 
closed loop upon binding to the transcript and amplifies read out sequences with circle amplification 
(RCA). Pichon et al. Molecular Cell. 20191 

As seen in Figure 1.2B, smiFISH uses indirect labeling schemes where 

nonfluorescent primary probes are first hybridized to mRNA and then fluorescent 

secondary probes are hybridized to the primary probe. Since unconjugated 

oligonucleotide probes can be easily designed to target any complementary regions on 

the RNA transcript, designing an inexpensive library of probes towards many different 

genes become highly scalable and cost-effective. The secondary conjugated 

fluorophores, which are more expensive, can then be designed to hybridize to a “readout” 
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region on the primary probes and used as a common/shared set to save costs. 

Furthermore, this indirect labeling method can be further modified to decorate mRNA 

transcripts with more complex and creative labeling schemes (Figures 1.2B–1E). For this 

project, we utilize the labeling scheme depicted in Figure 1B to demonstrate how 

combinatorial labeling with a common panel of fluorophores can be integrated with 

MOSAICA microscopy to achieve greater multiplexed detection and error-correction. 

However, our method is not only restricted to this labeling technique and should be 

compatible with any of the labeling techniques, opening many possibilities for future work 

on this project. 

To rapidly design primary FISH probes for each transcript, the python platform 

Oligominer was modified. The input sequence is either the mRNA or coding sequence 

(CDS) FASTA file. The first script is blockParse.py, which screens the input sequence file 

with the user selected parameters to control for: length, GC content, melting temperature 

(Tm), spacing, and prohibited sequences like “4GC, 5 AT”, which are important to keep 

consistent for efficient hybridization. A list of candidate probes is then generated into a 

FASTQ file, which is then aligned to the genome using an NGS aligner, Bowtie2, to 

determine the specificity of each candidate probe. Those that are specific are placed into 

a SAM file and run through the outputClean.py script to keep the unique candidates in a 

BED file. A seqAligner.py script was developed to align the oligo probes to sequencing 

data to filter for probes that bind to high expression regions or regions that have higher 

read counts based on the bigwig histogram. The probeRC.py script performs reverse 

complement for the probes that require it.  
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The primary probes comprise of a complementary sequence of 20-35 nucleotides 

towards the target transcript, preferably within the CDS region which is the most 

conserved region compared to the untranslated region (UTR). The primary probe has 2 

“read-out” regions for the secondary fluorophore probes to hybridize to with “TTT” spacer 

sequences between the target region – read-out region 1 and read-out region 1 – read-

out region 2. Either Oligominer or Sigma Oligoevaluator were then used to screen for 

secondary structures and primer dimers that would be removed.  

1.2 Spectral and Fluorescence Lifetime Microscopy 
 

Fluorescence imaging is an imaging technique used to visualize fluorescent dyes 

or proteins that label molecular processes or structures. Fluorescence is produced when 

a process where molecules, such as fluorophores, fluorochromes, or fluorescent dyes, 

absorb light. After absorbing light, these molecules are raised to a higher energy level 

(excited state), then emit fluorescent light as they return to their original energy level 

(ground state) (Figure 1.3). This imaging technique enables a wide range of experimental 

investigations including the location and dynamics of gene expression, protein 

expression, and molecular interactions in cells and tissues. However, intensity is only one 

of the dimensions of fluorescence. Another dimension of each fluorophore is its 

fluorescence lifetime, which is a measure of how long a fluorophore remains in its excited 

state before returning to the ground state while emitting a fluorescence photon (Figure 

1.3A-B).  
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Figure 1.3: Principle of fluorescence lifetime detection.  
(A)  MOSAICA harnessing the power of the time dimension to multiplex in a single image and detecting 
multiple targets in the same spectral channel. (B) Fluorescence mechanism demonstrated with Jablonski 
diagram. (C) Photon distribution in the spectral and temporal dimension. 

To measure a fluorophore’s lifetime, specialized software and hardware are 

required. A typical Fluorescence Lifetime Imaging Microscopy (FLIM) setup is shown in 

Figure 1.4. A pulsed/modulated light source is used to illuminate the sample for digital 

frequency domain (DFD) lifetime measurement. Instead of modulating the detector by 

time gating or gain modulation, the entire signal is collected. A time gate is then applied 

digitally by splitting the detected signal into several (typically 4, 8 or 16) windows, each 

covering a specific portion of the excitation pulse period. By applying a slight, incremental 

phase shift to the position of those windows with respect to the excitation pulse, the 

fluorescence decay of the dye molecules can be recovered with high (~10 ps) resolution. 
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Using this data, the position of the lifetime phase and modulation can be calculated and 

presented as a position on the phasor plot, a 2D histogram of all pixel lifetimes. The 

phasor method draws from the digital frequency domain hardware and software that 

permits the use of all photons detected from a sample35. Additionally, the representation 

of the decay data using polar coordinates allows the precise measurement of many 

lifetime components simultaneously without performing fits of the decay data. This allows 

automatic detection of a plurality of molecular species in the same field of view. 

 

Figure 1.4: Generalized MOSAICA Microscopy setup. 
 A pulsed/modulated light source is used to illuminate the sample and the fluorescence of the sample is 
collected by a spectral detector (current resolution around 10 nm). The repetition rate can either be supplied 
by or delivered to the laser which is used by the electronics in the digital frequency domain to obtain a 
single photon arrival time using the heterodyne principle (current resolution around 50 ps).                     

Fluorescence lifetime imaging microscopy (FLIM) is a powerful method that utilizes 

the time dimension to supplement intensity-based measurements. Fluorophores that 

have the same excitation and emission spectra but different lifetimes can be separated 

with FLIM, opening new possibilities for multiplexing capabilities. Table 2 provides a small 

list of commonly used fluorophores which can be separated by spectral or lifetime 
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properties. Many multiplexing capabilities are possible with these fluorophores, but this 

has not been applied to the spatial multiomics field. 

Table 2: List of Commonly Used Fluorophores Differing in Spectra or FLIM Characteristics 
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In addition, autofluorescent moieties/artifacts in cells and tissue have characteristic 

lifetime signatures which occupy different positions that are distinguishable via lifetime 

(Table 3). Using just intensity measurements, these moieties are inseparable from each 

other or from a labeled fluorophore. However, by including FLIM measurements, these 

moieties can be easily corrected or removed out from analysis via the phasor approach.   

Table 3: List of spectral characteristics and lifetimes of endogenous fluorophores36.  

 

1.3 Spatialomics in Cancer Research 
 

Our high throughput and high-plex spatial profiling technology will broadly enable 

scientists and clinicians to better study cancer biology and to develop precision 

diagnostics and treatments for cancer. Cancer biologists have started to realize, only 



 14 

recently, how heterogeneous gene (and protein) expression is and how many different 

cell identities/states there are in tumors. In other words, the dynamic cell fate is defined 

spatiotemporally by the expression of multiple (rather than a single) genes. Therefore, to 

fully characterize cells in situ we need to be able to assess multiple transcripts (and 

proteins) within the same cell, which can be readily addressed by our unique technology 

through direct, highly multiplexing, in situ biomarker profiling in a single round of staining 

and imaging. Three applications requiring high-plex in situ analysis that are broadly 

representative in both basic cancer biology and clinical companion diagnostics (CDx) for 

stratified care, include: 1) Examining within-cell correlations and location in gene 

expression sampled among heterogeneous cells will inform gene regulatory mechanisms, 

which we cannot get from bulk measurements. 2) Single-cell RNA sequencing (scRNA-

seq) returns cell identities in the form of rather long “differentially expressed gene lists” 

that “define” cell types. However, the clustering process loses spatial information and is 

subjective, variable and error prone. The only way to validate whether a pattern of gene 

expression really defines a cell type, or conflates multiple cell types, is through multiplex 

spatial transcriptomics. 3) Patient derived materials are often available in limiting quantity 

and generating hundreds of sections to test for many markers is tedious and non-feasible. 

Hence, multiplexing is the only efficient way of doing this.  

In cancer diagnosis, prognosis, and patient stratification for combination therapy, 

especially in immunotherapy, physicians would now want to analyze tumor biopsies for a 

large number (typically 16-64) of biomarkers of specific tumor cells, infiltrating immune 

cells, stromal components, and other drug targets37-39. Biological and clinical models to 

develop and validate our technology in the context of these three cancer applications 
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include colorectal cancer (CRC), melanoma carcinogenesis, and tumor infiltrating 

lymphocytes.  

We collaborated with Dr. Marian Waterman who recently established a 

xenografted CRC model that exhibits patterns of heterogeneity of Wnt signaling in various 

cancer cell subtypes in the spatial context40,41, therefore ideal for developing spatialomics 

technology. We used accompanying scRNAseq data that confirmed heterogeneity at the 

transcriptome level and specifically identified a small population expressing markers of 

cancer stemness (“CSC”, e.g. ROBO, SOX2, BMP4, PROX1). This model allows us to 

develop and validate MOSAICA and evaluate its utility in inferring gene regulatory 

pathways using quantitative single-molecule in situ RNA analysis, and as a tool for in situ 

validation of scRNAseq data. Human SW480 CRC line that expresses CSC markers and 

its lentiviral transduction or shRNA knockdown counterpart control with impaired Wnt 

signaling, which would result in distinctly different spatial heterogeneity in the xenografted 

model were used. Xenograft tissue sections (5 µm) were prepared with formalin fixed 

paraffin embedded (FFPE) preservation due to their wide use in research. For our initial 

16-plex panel, we focused on genes in Wnt signaling and implicated in cancer stemness 

together with housekeeping genes (e.g. POLR2A and mTOR). For 32- and 64-plex, we 

will expand to other key signaling pathways including FGF, BMP, and TGF-b signaling 

and to markers that can identify other key constituents of tumors and stroma including 

subtypes of vessels, fibroblasts, and immune cells. 

Simultaneous detection of protein and transcript levels within the same sample will 

reveal the genotypic and phenotypic heterogeneity and provide enriched information for 

biology and disease diagnosis. Few technologies can do this due to limitations of detection 
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and/or sample processing42,43. To develop and validate an immuno-oncology marker 

panel for cancer tissue biopsy analysis for cancer diagnosis, prognosis and treatment 

stratification applications37,44, we examined clinical melanoma tissues and characterize 

tumor infiltrating lymphocytes. Melanoma is chosen as a model because it represents one 

of the most established tumor types for immune checkpoint inhibitors45-49. For this model, 

we worked with Dr. Anand Ganesan (MD, PhD) who specializes in melanoma 

carcinogenesis and patient treatment with immunotherapeutics.  

Protein targets were chosen based on their immuno-oncology applications and an 

initial panel comprised of markers for tumor cells (epithelial Pan-cytokeratins, melanoma 

antigen SOX10), immune cell subsets: T cells (CD3, CD4 and CD8), B cells (CD20), 

macrophages (CD68), and Tregs (FOXP3), myeloid-derived suppressor cells (CD11b), 

and immune exhaustion (PD-L1, TIGIT, LAG3). As we increase our multiplex capability, 

we will expand to markers that cover additional tumor, immune and stromal cell subtypes 

and checkpoint proteins. For mRNA, corresponding mRNAs for protein markers 

mentioned above, along with melanoma markers (e.g. PMEL) and housekeeping genes 

(e.g. POLR2A) were used.  

1.4 Spatialomics in Inflammatory Neurodegeneration Disease 
Research 
 

Alzheimer disease (AD) is the leading cause of age-related dementia. 

Unfortunately, current therapies are palliative, and several drug candidates have failed in 

late-stage trials. Hence, there is an urgent need to improve our understanding of the 

mechanisms that drive the development of AD. Recent studies have identified numerous 

AD risk genes and highlighted the importance of inflammation in AD and have implicated 

microglia, the primary immune cell of the brain50,51. Yet the precise function of these genes 
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and proteins, the specific subsets of microglia that express them, and how expression 

changes with disease progression to influence pathogenesis, remains poorly understood. 

Multiple sclerosis (MS) is a chronic, autoimmune disease of the central nervous system 

(CNS) without a cure. Deficits in neurological function result from widespread 

demyelination and axonal loss caused by infiltrating immune cells52. 

Profiling transcriptome and proteome in space and time at single-cell level at both 

cellular and tissue level is critical to (a) elucidate stem cell and development biology 

processes, disease pathophysiology, mechanisms of action of transplanted stem cells, 

and (b) enable drug discovery, patient diagnosis and prognosis, and stratification for 

regenerative medicine5,53. In inflammatory CNS neurodegenerative diseases including 

AD and MS, our understanding of the immune system’s key role in mediating (a) disease 

pathophysiology, and (b) immunomodulatory and regenerative mechanisms following 

stem cell treatments has been hindered by the lack of cost-effective and user-friendly 

tools that can rapidly perform in situ, high-plex profiling of mRNA and protein markers of 

the immune components. 

Our understanding of underlying mechanisms in neurodegenerative diseases has 

been hindered by the lack of in situ spatial analysis for target markers to determine their 

presence, numbers, locations, dynamics, and interactions to reveal key cellular states 

and processes, cell-cell and cell-niche communications on the community- and tissue-

scale in heterogeneous samples. Existing tools for in situ analysis including fluorescence 

in situ hybridization (FISH) and immunohistochemistry are often confounded by inherent 

age-related accumulation of autofluorescent lipids. Moreover, these traditional 

approaches only provide low throughput because of limited separation of spectral 
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channels. Recent single-cell sequencing methods54,55 lack the critical spatial context 

needed to understand complex heterogeneous samples (i.e. brain).  

For a collaboration with Dr. Xiangmin Xu, we are working on a neurological mRNA 

panel to analyze spatial transcriptomics in brain tissues, including neural markers (e.g., 

APOE, AQP4, BDNF, C1QA, CUX2). In parallel, the panel is run on brain tissue samples 

through their MERFISH platform, multiplexed error-robust fluorescence in situ 

hybridization, a commercial platform currently available. We will benchmark the cost-

effective MOSAICA platform with MERFISH and run neurological mRNA panels of 15-30 

markers on MOSAICA routinely to study neurological diseases and regenerative 

strategies.  

In Dr. Mathew Blurton-Jones’s lab, they have established an approach to examine 

the response of human microglia to AD pathology in vivo by generating chimeric AD 

transgenic mice that exhibit robust forebrain engraftment of human microglia56,57. 

Informed by scRNAseq work identifying human disease-associated microglial (DAM) 

transcripts in chimeric mice56 and other recent sequencing studies58, we examine a panel 

of 60 genes (including: HLA-DRB1, TREM2, CD9, MAFB, LGALS3, APOE, LPL, SALL1). 

Human xenotransplanted microglia56 that expresses numerous microglial markers and 

exhibit an ex vivo-like human microglia transcriptome will be used to validate probe 

designs. Tissues were derived from our chimeric human microglial model of AD. This 

allows us to gain significant insight into the gene expression patterns of human microglia 

and how these patterns change with disease progression, proximity to AD pathology, and 

genetic risk. 
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For future work with the MS model in collaboration with Dr. Craig Walsh, the 

MOSAICA platform could profile T cell and APC subsets and interacting T cells including 

Teff: CD45, CD3, CD8; Th1: CD45, CD3, CD4, Tbet, IFNg; Th17: CD45, CD3, CD4, IL-

17; Tregs: CD45, CD4, CD25, FoxP3; B cells: CD45, CD19, CD20; Dendric cells (DCs): 

CD11b, CD11c; Macrophages/ Microglia: CD45, CD11b; NK cells: CD45, CD49, NK1.1; 

and NK T cells: CD45, CD3. Furthermore, to identify the phenotype of these immune cells 

(e.g., activated, presenting antigens, naïve, memory, etc.) the MOSAICA platform can co-

detect protein markers with antibodies against immune cell profiling markers (CD44, 

CD127, CD69, MHCI, MHCII, CD80/86, PD-1, and CTLA-4). Other CNS cells indicative 

of demyelination and regeneration would also be profiled including neurons (bIII Tubulin), 

astrocytes (GFAP), and Oligodendrocytes (Olig2, PLP). This could delineate the 

interactions of regulatory T cells and other immune cell types during MS disease and 

following hNSC transplantation. 
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2.1 Abstract 

Multiplexed mRNA profiling in the spatial context provides new information 

enabling basic research and clinical applications. Unfortunately, existing spatial 

transcriptomics methods are limited due to either low multiplexing or complexity. Here, 

we introduce a spatialomics technology, termed Multi Omic Single-scan Assay with 

Integrated Combinatorial Analysis (MOSAICA), that integrates in situ labeling of mRNA 

and protein markers in cells or tissues with combinatorial fluorescence spectral and 

lifetime encoded probes, spectral and time- resolved fluorescence imaging, and machine 

learning-based decoding. We demonstrate MOSAICA’s multiplexing scalability in 

detecting 10-plex targets in fixed colorectal cancer cells using combinatorial labeling of 

five fluorophores with facile error-detection and removal of autofluorescence. MOSAICA’s 

analysis is strongly correlated with sequencing data (Pearson’s r = 0.96) and was further 

benchmarked using RNAscopeTM and LGC StellarisTM. We further apply MOSAICA for 

multiplexed analysis of clinical melanoma Formalin-Fixed Paraffin-Embedded (FFPE) 

tissues. We finally demonstrate simultaneous co-detection of protein and mRNA in cancer 

cells.  

2.2 Introduction 

Cell fate and cell-cell, cell-niche interactions are tightly regulated in space at both 

genetic and tissue and system level to mediate organ development, tissue homeostasis 

and repair, and disease appearance and progression. Therefore, spatial transcriptomics 

that profile gene expression landscape at the single-cell level in tissues in a 3D spatial 

context as shown in this work represents a frontier in biological research and precision 

medicine1–8. For instance, spatial transcriptomics techniques can (a) help realize the 
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vision of the human cell atlas in generating “high-resolution and comprehensive, three-

dimensional reference maps of all human cells in the body”, (b) determine molecular 

mechanisms that govern cell fate, state, lineage and cell cooperation in tissue formation 

in developmental biology and regenerative medicine, (c) investigate the biological 

changes associated with different diseases in a spatial-dynamic fashion and to uncover 

disease molecular mechanisms and discover disease biomarkers, and (d) characterize 

the complexities of tissue biopsy (e.g., tumor) in clinical pathology to inform personalized 

disease diagnosis and therapeutic intervention in the era of precision medicine. Spatial 

transcriptomics tools need to be able to assess multiple transcripts within the same cell 

and sample in a highly multiplexed fashion due to the heterogeneous gene expression 

and many different cell identities/states exist in a particular tissue. Furthermore, patient 

derived materials are often available in limited quantity and generating many sections to 

test for different markers separately is tedious and non-feasible.  

A major bottleneck in spatial transcriptomics is the lack of tools that can be both 

easy-of-use and highly multiplexing7–13. Conventional tools for in situ analysis including 

fluorescence in situ hybridization (FISH) (e.g., LGC StellarisTM) can only detect 3–4 

targets at a time because of the limited number of spectral channels in fluorescence 

microscopes12–14. Conventional methods for in situ profiling of transcripts are further 

confounded by the autofluorescent moieties in tissue preparations including clinical 

biopsies. Recent single-cell RNA sequencing methods provide information on the 

presence and identity of transcripts in single cells but lack the critical spatial context 

needed to understand complex heterogeneous tissue15–17. Imaging- and FISH- based 

spatial transcriptomic methods that employ sequential labeling, stripping, and imaging 
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(e.g., seqFISH, MERFISH) or branched amplification (e.g., RNAscopeTM, SABER) are 

often complicated, error-prone, time-consuming, laborious and/or costly to scale up18–

22. Furthermore, repeated processing of the same sample can in some cases affect 

tissue structural integrity and target molecules and may not always be amenable for 

clinical applications such as profiling patient biopsies. Spatial transcriptomics using in situ 

sequencing (e.g., ISS, FISSEQ, starMAP and ExSeq) or in situ barcoding coupled with 

ex situ sequencing (e.g., GeoMx, slide-seq, and DBiT-seq) can drastically improve 

multiplexing but suffer from reduced spatial resolution and detection efficiency especially 

for low-abundance targets22–25.  

In this work, we report a fluorescence imaging-based spatialomics technology 

termed MOSAICA (Multi Omic Single-scan Assay with Integrated Combinatorial Analysis) 

that enables direct, highly multiplexed biomarker profiling in the 3D spatial context in a 

single round of staining and imaging. MOSAICA employs in situ staining with 

combinatorial fluorescence spectral and lifetime encoded probes, spectral- and time-

resolved fluorescence imaging, and AI-based target decoding pipeline (Fig. 2.1). 

Fluorescence lifetime is a measure of the time a fluorophore spends in the excited state 

before returning to the ground state and is an inherent characteristic of the fluorophore 

and its surrounding environment26,27. By utilizing both time and spectral domains for 

labeling and imaging, we were able to discriminate a repertoire of 10 different fluorescent 

signatures against autofluorescent moieties and nonspecific binding events within the 

same sample in this study and expect to scale up to at least 60-plex in the future to enable 

increased multiplexing capabilities with standard optical systems.  
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In this study, we describe the MOSAICA pipeline, including automated probe 

design algorithm, probe hybridization optimization, and validation, combinatorial spectral 

and lifetime labeling and analysis for target encoding and decoding. Particularly, we 

developed an automated machine learning-powered spectral and lifetime phasor 

segmentation software that has been developed to spatially reveal and visualize the 

presence, identity, expression level, location, distribution, and heterogeneity of each 

target mRNA in the 3D context. We showcased MOSAICA in analyzing a 10-plex gene 

expression panel in colorectal SW480 cells based on combinatorial spectral and lifetime 

barcoding of only five generic commercial fluorophores. Using this model, we illustrated 

the multiplexing scalability and MOSAICA’s ability to correct for stochastic nonbinding 

artifacts present within the sample. We further demonstrated MOSAICA’s utility in 

improved multiplexing, error-detection, and autofluorescence removal in highly scattering 

and autofluorescent clinical melanoma FFPE tissues, demonstrating its potential use in 

tissue for cancer diagnosis and prognosis. To further reveal the potential of MOSAICA, 

we demonstrated its multiomics capability with simultaneous co-detection of protein and 

mRNA in colorectal SW480 cells. MOSAICA is rapid, cost-effective, and easy-to-use and 

can fill a critical gap between conventional FISH and sequential- and sequencing-based 

techniques for targeted and multiplexed spatial transcriptomics.  

2.3 Results  
2.3.1 MOSAICA workflow 

In a typical MOSAICA workflow (Fig. 2.1), primary oligonucleotide probes designed 

to specifically bind to mRNA targets with a complementary target region (25–30 base 

long) are incubated with fixed cell or tissue samples (Fig. 2.1a, b). These primary probes 



 28 

also contain an adjacent adaptor region consisting of two readout sequences for modular 

secondary probe binding. In this study, double-ended secondary probes with fluorophores 

on each end are hybridized to the readout region on the primary probes (Fig. 2.1c). 

Through combinatorial labeling, each target is encoded with a dye with a distinct spectrum 

and lifetime signature. The labeled samples are then imaged using a custom built or 

commercial microscope (e.g., the Leica SP8 Falcon used in this study) equipped with 

spectral and lifetime imaging capabilities (Fig. 2.1d). Both spectral and fluorescence 

lifetime data will be captured, and then analyzed using phasor plots (Fig. 2.1e). Our 

automated machine learning algorithm and a codebook finally reveal the locations, 

identities, counts, and distributions of the present mRNA targets in a 3D context (Fig. 

2.1f).

 

Figure 2.1 Schematic of the MOSAICA approach for labeling and analysis of spectral and time-
resolved components. 
a) Sample(s) can be fixed cells or tissues. RNA transcripts from genes of interest are targeted for detection. 
Protein targets can be stained too in mRNA and protein codetection.  b) Primary labeling probes are 
designed to include two functional regions: a target region which is complementary and can bind to the 
mRNA target and an adjacent readout region which can subsequently bind to fluorescently labeled 
oligonucleotides. c) Secondary fluorescent probes are added to bind to the primary probes to form different 
combinations (combinatorial labeling) through a “readout” domain. d) Labeled targets are measured under 
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a fluorescent microscope to interrogate the spectral and lifetime characteristics of the labeled moieties. e) 
Phasor analysis is used to identify which fluorophore labels are present in each pixel and puncta. f) Labeled 
targets eliciting the encoded intensity-based and time-based signature are decoded to reveal the locations, 
identities, counts, and distributions of the present mRNA targets in a multiplexed fashion. 

2.3.2 Probe design pipeline 

To rapidly design oligonucleotide probes for the transcript of each gene, we 

modified the python platform, OligoMiner28, a validated pipeline for rapid design of 

oligonucleotide FISH probes. Briefly, as shown in Supplementary Fig. 1a, using the 

mRNA or coding sequence file of the target gene, the blockParse.py script will screen the 

input sequence and output a file with candidate probes while allowing us to maintain 

consistent and customized length, GC, melting temperature, spacing, and prohibited 

sequences. Using Bowtie2, the candidate probes are rapidly aligned to the genome to 

provide specificity information that is used by the outputClean.py script to generate a file 

of unique candidates only. The primary probes comprise complementary sequence of 

typically 27–30 nucleotides and are designed mostly within the coding sequence region, 

which has fewer variation than the untranslated region20. We wrote a script, 

seqAnalyzer.py, to automate the alignment of primary probes to sequencing data 

(Supplementary Fig. 1b) so that probes that aligned to regions of lower read counts would 

be discarded. Furthermore, primary probe “readout” domains and secondary probes 

(typically 15–20 nucleotides long) are designed to be orthogonal to each other to avoid 

off-target binding. Libraries and databases of over 200,000 orthogonal sequences are 

available online and we have simply used those that have been previously validated29. 

Fluorophores exhibiting distinct spectrum (typically with excitation/emission spectra in the 

400–700 nm range) and lifetimes (typically in the 0.3–10 ns range) can be conjugated to 

oligos which were obtained through commercial vendors (see Methods).  
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2.3.3 Probe labeling validation and optimization 

We first investigated the specificity of our labeling condition using a simple cell 

mixture model comprising wild-type human embryonic kidney (HEK293T-X) cells and 

HEK293T-X cells engineered with mNeonGreen (Supplementary Fig. 2a) by detecting 

mNeonGreen mRNA as the gene expression target. The HEK293T-X cells were 

engineered to express mNeonGreen, an artificial construct inserted that resulted in the 

cells with the construct to express a green fluorescence. The HEK293T-X cells were 

transfected with an engineered mNeonGreen plasmid, which contained puromycin and 

zeocin resistant genes. Three days post transfection, the cells were selected using 

0.2ug/ml to 2ug/ml of puromycin and zeocin. The concentration was increased by 

0.2ug/ml every 4-6 days. The engineered mNeonGreen HEK293T-X cells were then 

sorted with FACS, collecting the cells positive for mNeonGreen. The positive cells were 

then cultured with 2ug/ml of puromycin and zeocin for 2 weeks. The mNeonGreen 

HEK293T-X cells were then mixed at a 50/50 ratio with wild-type (WT) HEK293T-X cells. 

The model system was used along with 14 primary probes that targeted the mNeonGreen 

construct, which is only present in the mNeonGreen cells, but not the WT cells. The 

secondary probe was the Alexa 647 probe. Puncta in the 647nm channel only present in 

the cells that expressed a green fluorescence were the probes targeting the mNeonGreen 

sequence. Since only fluorescent mNeonGreen positive cells can express the 

corresponding mRNA transcripts, this cell mixture model provides a straightforward tool 

to assess the specificity and nonspecific binding. Using a Nikon epifluorescence 

microscope to image the samples following staining with primary and secondary probes 

(all probe sequences used in this study are provided in Supplementary Data 1), we 
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detected on average 43.5 puncta per mNeonGreen positive cell (n = 76 cells) and 0.25 

puncta per wild-type cell (n = 164) (Supplementary Fig. 2b, c), indicating minimal 

nonspecific binding with our probe labeling strategy. To further validate the baseline level 

of nonspecific binding, we included a negative control with the primary probe designed 

toward dopachrome tautomerase, a gene in the mouse genome that is not expressed in 

our HEK293T-X model system, along with a condition with secondary probes only. 

Similarly, an average of 43.5 puncta per cell was detected for the mNeonGreen cells while 

the wild type and negative controls a mean of 2.5 puncta per cell was detected with a 

lower signal-to-noise. We next optimized labeling efficiency by testing the number of 

primary probes and incubation times of primary probes and secondary probes 

(Supplementary Fig. 3). We determined our optimal condition to comprise a minimal of at 

least 12 primary probes for each target mRNA (in practice, we always maximize the 

number of primary probes per mRNA depending on the size of mRNA). Indeed, 40 

primary probes per channel per mRNA were subsequently used in this study, with 

incubation time of 16 h for primary probe hybridization and 1h for secondary probe 

hybridization, respectively, which were used in subsequent experiments.  

2.3.4 Imaging and phasor analysis 

Lifetime imaging is a tool that measures the spatial distribution of probes with 

different fluorescence lifetime. Samples are stimulated with modulated or pulsed lasers 

at a particular frequency, typically around the 40–80 MHz, which allows the fluorescence 

to decay within the stimulated period, typically in the ns range. After acquiring for sufficient 

time, i.e., after enough laser pulses or periods, one can construct a histogram of photon 

arrival times at each pixel. The shape of this histogram has a rapid rise, followed by a 
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faster or slower decay which is characteristic of the fluorescent molecule(s) present in the 

pixel. To model this decay data, an exponential decay model can be fitted or alternatively 

one can make use of the fit-free phasor approach30,31. We used this second approach 

because it requires no a priori knowledge of an underlying model (i.e. number of 

fluorescent species at the pixel) and it is computationally inexpensive in virtue of the Fast 

Fourier Transform algorithm. The phasor transform extracts two values from the decay 

curve that characterize the shape (and importantly not the size, so that the transform is 

independent of the amount of photons) and these two values, namely S and G, 

correspond to the two coordinates of the pixel on the phasor plot (see equations in 

Supplementary Note 1). The values are obtained by an integral of the product of the decay 

of the two trigonometric functions, sine and cosine, fit in the stimulation period, and they 

correspond to the first-order terms of the Fourier Series decomposition of the decay 

curve.  

Similarly, if one uses a spectral detector, i.e., a separate detector for different 

spectral bands, then for each pixel, one can obtain another histogram, in this case with 

the number of photons arriving in each channel, i.e., at each wavelength. This curve can 

also be transformed to an analogous spectral phasor space to map the recorded spectra 

at each pixel onto the 2D spectral phasor space32,33. Combining the lifetime 

measurement with a spectral detector, one effectively has a 5-dimensional space in which 

to characterize each pixel. On top of the spatio-temporal coordinates (x,y,z,t), each pixel 

now carries information in five additional coordinates: its intensity value (however many 

photons arrived at that pixel), the two phasor coordinates for the lifetime phasor transform, 

and the two phasor coordinates for the spectral phasor transform34. A typical image, on 
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the order of 106 pixels, obtained with this method provides 106 points in this 5D space34. 

If the sample presents different populations of fluorescent molecules at different locations, 

the pixel phasor data at these different locations map to different positions in this phasor 

space and a clustering technique can be used to resolve each population35.  

There is a direct analogy between the phasor transform in spectral and lifetime 

fluorescence microscopy (Fig. 2.2). As an example, in this figure, we use a hypothetical 

experiment where transcripts from 4 different target genes are targeted with 4 fluorescent 

species. Of the 4 species, we construct the example so that two fluorescent species emit 

in one color and the other two in another color. At the same time, within each color, one 

has a short lifetime and the other has a long lifetime. This hypothetical sample is excited, 

and the individual photons are detected at each pixel (Fig. 2.2a). In each pixel, we 

accumulate enough photons to build a spectral histogram and a lifetime histogram (Fig. 

2.2b). These curves are phasor-transformed to reveal two distinct populations in the 

phasor space, corresponding to the two colors and the two lifetimes. By means of our 

previously published automatic clustering using machine learning35, we identify these 

populations and return to the image space to label each pixel depending on the group it 

belongs to in the phasor space (Fig. 2.2c). By combining the spectral and lifetime 

information, we have automatically segmented the image into regions, i.e., identified the 

pixels that belong to the different species (Fig. 2.2d). Again, note that in this example in 

Fig. 2.2, we have chosen the probes to be the most convoluted case possible; one couple 

shares a similar spectrum and the other couple shares another spectrum. At the same 

time, one of the members of either couple share a similar lifetime and the other two 

members of either couple share another lifetime. This is the reason why even if there are 
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four distinct fluorescent probes, only two spectral populations are detected both in the 

spectral and lifetime phasor space, and the combinations of these two populations yield 

to the four distinct groups. The four probes cannot be resolved unless both the lifetime 

and spectral information are accessed. 

  

Figure 2.2 Image and phasor analysis with spectrum and lifetime analysis in MOSAICA.  
a) As an example, four different probes are used to target four different genes. The fluorescence is collected 
using the spectral and FLIM instrument to form images where each pixel carries information of the spectra 
and lifetime. b) At each pixel we compute the photon distribution in the spectral and temporal dimension. 
The phasor transform maps these distributions in each pixel to a position on the phasor space. c) The 
phasor plots reveal the presence of different populations. These populations are identified and then mapped 
back to the original image. d) We color code the pixels based on the combination of the two properties. 
This allows us to separate by lifetime probes that were emitting with similar spectra and vice-versa, separate 
by spectra probes that fluoresce with similar lifetimes. 

2.3.5 Combinatorial target spectral and lifetime encoding and 
decoding 

In the previous section, we showed how by combining the time dimension with the 

spectral dimension, we can increase the number of possibilities and therefore enhance 

the multiplexing capabilities squaring the number of targets that can be resolved. To 

further increase multiplexing and improve detection efficiency, we employ combinatorial 

labeling, a method in which targets are labeled with two or more unique fluorophores, to 

greatly increase the base number of targets we can label with a given number of 

fluorophores/probes. To illustrate this concept, here we demonstrate a minimal exemplary 

working example of combinatorial labeling where two probes are used to label three 

targets. In this situation, each probe labels one target and the third target is labeled with 
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both probes simultaneously. Figure 2.3 shows a real case with such configuration, both 

for spectra and for lifetime. The cartoon represents the case of using two probes with 

distinct spectra. When imaging this sample, we can use two spectral channels, Fig. 2.3b, 

c, where some targets appear in only one channel, other targets appear in only the other 

channel and the target that is labeled with both probes appears in both channels. All 

targets are then detected and color-coded depending on their presence in one channel, 

the other or the two simultaneously (Fig. 2.3d) and the overall counts of each combination 

in the field of view can be provided (Fig. 2.3e).  

 

Figure 2.3 Working example of combinatorial labelling of three mRNA targets with two probes. 
a) Three different target genes are tagged using two probes with different spectra. Targets 1 and 3 are 
tagged each with one probe, Target 2 is tagged with both simultaneously. b,c) The fluorescence is collected 
in the two expected spectral channels for the known emission of the two probes. s) The maximum projection 
of the two channels is shown and pseudocolored depending on the presence in the respective channels 
(as an inset within the whole field of view. e) The actual counts of each target within the whole field of view. 
f) As a parallel example, three different target genes are tagged using two probes with different lifetime. 
Targets 1 and 3 are tagged each with one probe, Target 2 is tagged with both simultaneously. g) The 
phasor plot presents three populations, corresponding to the pixels with the three combinations; the two 
components by themselves plus the linear combination falling in the middle. h) Machine learning clustering 
technique is used to identify the groups (Gaussian mixture model). i) The multicomponent method is used 
to extract the fraction of one of the components in each detected puncta. j) The same inset is shown with 
the pseudocoloring now depending on the lifetime clustering. k) The counts for each lifetime cluster in the 
whole field of view. L) The combination of the information in both the spectral and the lifetime dimension 
yields a final 6-plex. m) The overall counts for the 6-plex detection including POLR2A (Alexa647 & 
ATTO565), MTOR (ATTO647 & ATTO565), KI67 (Alexa647 & ATTO647), BRCA1 (Alexa647), NCOA2 
(ATTO647), NCOA3 (ATTO565) with the appropriate genes that correspond to each combination. 
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Experiments were conducted with cultures of mNeon green cells. Scale bar 10µm in large image and 2µm 
in insets. 

Similarly, we show a case in which the targets are now labeled with two probes 

that have similar spectra but different lifetimes (Fig. 2.3f). In this case, we also introduce 

the use of the phasor approach to reveal the three expected populations, the pixels that 

contain both probes appear in the midpoint between the phasor positions of the pixels 

that contain only one of the probes. Figure 2.3g shows the phasor distribution obtained 

from the same field of view as in the spectral example, in which we also show the 

theoretical locations of the probes (corresponding to Alexa647 and ATTO647 with 

respective lifetimes of 1 ns and 3.5 ns). As is expected in real experimental conditions, 

there are additional fluorescent components in the sample. We broadly refer to the bulk 

of these additional components as autofluorescence, which pulls the data away from the 

expected positions and converges to the mean phasor position of the autofluorescent 

components. We have previously shown that the Gaussian Mixture Models is the most 

optimal machine learning clustering algorithm to model phasor data35, and we use this 

machine learning technique to infer the phasor locations of the probe combinations (Fig. 

2.3h). We can now successfully classify each pixel of the original image into one of the 

clusters and obtain a probability of belonging to each, i.e., the posterior probability of the 

model. This allows us to color code the transcripts depending on their assignment to one 

of the three clusters (Fig. 2.3j) and obtain the counts of the three- lifetime components 

(Fig. 2.3k). Additionally, we apply our lifetime multicomponent analysis technique36 in 

which for each detected puncta, we estimate the presence of one of the lifetime 

components, in this case lifetime1 (Alexa647, purple in the figure), to obtain the expected 
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result; that there are clearly three populations with respective fractions centered around 

[0, 1⁄2, and 1] (Fig. 2.3i).  

In the general case, we combine the lifetime and spectral dimensions, and we 

perform the clustering of the data in a 4D spectral/lifetime phasor space. The clustering 

technique has the power to not only identify which puncta belong to each cluster but also 

to assign a probability of belonging to that cluster, which can be used to quantify the 

certainty of the labeling. For example, in the inset in Fig. 2.3j, we show two cases of 

puncta that have relatively low confidence in the cluster assignment; they are depicted 

with blended colors because they fall in the regions of the phasor space where the two 

clusters are merging.  

In this combinatorial example in Fig. 2.3, the three clusters in the lifetime domain 

multiplexed with the channel-based in the spectral domain yield a 6-plex image using only 

3 probes (Fig. 2.3l, m). The specific transcripts for genes targeted for this experiment with 

the combined probes were POLR2A (Alexa647 & ATTO565), MTOR (ATTO647 & 

ATTO565), KI67 (Alexa647 & ATTO 647), BRCA1 (Alexa647), NCOA2 (ATTO647), 

NCOA3 (ATTO565). In the general combinatorial experiment using couples of N probes 

the total number of possible target genes grows quadratically:  
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2.3.6 Simultaneous 10-plex mRNA detection in fixed colorectal cancer 
SW480 cells using MOSAICA 

We next applied MOSAICA to a 10-plex panel of mRNA targets in colorectal cancer 

SW480 cell culture samples. This cell line was chosen because its xenograft model 

exhibits spatial patterns of heterogeneity in WNT signaling37, which will allow us to study 
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tumorigenesis in the spatial context and potentially identify cancer stem cell populations 

in colorectal cancer in future studies. Here, we selected this model as a validation platform 

to demonstrate the multiplexing scalability and error-detection capabilities of our 

approach. We began by first identifying a set of 10 genes with known expression levels 

from our bulk sequencing data. Using the aforementioned probe design pipeline, we 

designed 80 probes (two pairs of 40 probes) for the transcript of each gene: BRCA1, 

BRCA2, CENPF, CKAP5, POLR2A, KI67, MTOR, NCOA1, NCOA2, and NCOA3. These 

genes were chosen due to their housekeeping status or involvement in tumorigenesis in 

colorectal cancer. By encoding the transcript of each gene with a distinct combination of 

two fluorophores, we generated a codebook of 10 labelling combinations from only five 

fluorophores following Eq. 1: !52$ = 10 (Fig. 2.4a) (see Supplementary Table 1 and 

Supplementary Table 2 for the fluorophores and probes, respectively, used for each 

target). To assess the baseline nonspecific binding events of our assay, we included a 

negative probe control sample, which was labelled with primary probes not targeting any 

specific sequence in the human genome or transcriptome but still containing readout 

regions for secondary fluorescent probes hybridization (Fig. 2.4a, right). Matching 

numbers and concentrations of primary and secondary probes that were used in the 10-

plex panel were used in this sample.  
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Figure 2.4 Simultaneous 10-plex detection of genes in colorectal cancer SW480 cells in a single 
round of labeling and imaging. 
a) 10 different gene transcripts are labeled with primary probes followed by respective and complementary 
fluorescent secondary probes. Each gene is labeled with a combination of 2 out of 5 fluorophores for 10 
combinations. Negative control probes (mNeonGreen, DCT, TYRP1, and PAX3) targeting transcripts not 
present in the sample were used with their respective secondary fluorophore probes. b) Spectral image 
(max-projection in z) of a field of view of the labeled 10-plex sample (5-channel pseudo coloring). c) Lifetime 
image (max-projection in z) of a field of view of the labeled 10-plex sample (phasor projection on universal 
circle pseudo coloring). d) Spectral image of the labeled negative control probe sample. e) Lifetime image 
of the labeled negative control probe sample. f) Final puncta detection after being processed in our analysis 
software showing highlighted example puncta of each target (insets, right). g) 3D representation of the field 
of view for the 10-plex sample. h) Number of puncta detected for each gene target expression in each cell 
for the labeled 10-plex samples. i) Mean puncta counts per cell for each gene in the 10-plex samples (left, 
n=3 experimental replicates, 364 total cells profiled) and negative control probe samples (right, n=3 
experimental replicates, 189 total cells profiled). j) Correlation of detected puncta (mRNA puncta count) vs. 
RNA-bulk sequencing (normalized counts) is shown for each target yielding a correlation (Pearson r) of 
0.96. Scale bar 20µm in large images and 1µm in insets. 
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An example field of view is shown in Fig. 2.4; first the spectral image overlay (five 

fluorescent channels including DAPI) of the labeled 10-plex SW480 sample (Fig. 2.4b) 

and additionally, in the same measurement, the orthogonal lifetime information attained 

by interrogating each pixel for their lifetime components (Fig. 2.4c). These pixels were 

phasor-transformed and pseudo-colored based on their projected phasor coordinates on 

the universal circle. In doing so, both dimensions of data can now be simultaneously 

accessed to determine which cluster of pixels meet the appropriate and stringent criteria 

for puncta classification. Similarly, the composite spectral and lifetime images of the 

corresponding negative control probe sample are shown (Fig. 2.4d, e). Figure 2.4f depicts 

the now detected pseudo-colored clusters which were successfully classified as one of 

the RNA markers. A representative inset image for each marker and its targeted detection 

is provided on the right. Because these are image stacks, the segmentation provides a 

3D spatial distribution of the field of view, which can be rendered to visualize the spatial 

analysis in a 3D context (Fig. 2.4g).  

MOSAICA employs an error-detection strategy that gates for specific and pre-

encoded fluorophore combinations and rejects any fluorescent signatures which do not 

meet these criteria. For instance, of the total detected puncta (n = 65,562), we observed 

a considerable fraction of puncta, n = 25,053 (38%), which was rejected based on their 

fluorescence emission of only a single channel (Supplementary Fig. 2.4c). We 

characterize this group as the “undetermined group” because each event can belong to: 

1) the nonspecific binding of probes, 2) autofluorescent moieties, or 3) mRNA transcripts, 

which were not fully labeled with both dyes. For the first case, as previously characterized 

by several groups, nonspecific binding events is a common inherent issue with single-
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molecule FISH techniques which arises from the stochastic binding of DNA probes 

towards cellular components such as proteins, lipids, or nonspecific regions of RNA and 

follow a random distribution14,20. When combined with events which may be 

autofluorescence moieties (e.g., porphyrins, flavins), which can exist as isolated 

diffraction-limited structures and emit strong fluorescence in any particular single 

channel38 or mRNA transcripts which were labeled with only one set of fluorophores, 

these groups represent a confounding issue for standard intensity- based measurements 

and analysis because they share similar SNR and intensities to real labeled puncta and 

cannot be differentiated without additional lengthy or complex techniques such as sample 

clearing or iterative-based labeling and imaging error correction39. Therefore, the main 

benefit of implementing the combinatorial encoded criteria is to ensure target detection 

fidelity by rejecting stochastic and nonspecific binding labeling events, as well as any 

event eliciting a lifetime signature that deviated from the utilized fluorophores. Finally, we 

also observed a relatively small group of puncta emitting fluorescent signal across more 

than two spectral channels but still eliciting the same spectral and lifetime signatures as 

the utilized fluorophores; n=2,439. To characterize this population, we performed a 

simulation running 20,000 iterations of various puncta densities and fitted the 

corresponding exponential model that characterizes the probability of puncta overlap 

(described in Methods section and Supplementary Fig. 2.4a,b). We attained an interval 

for the fraction of lost puncta due to optical crowding ranging from 2.0 to 6.6%, which 

accounts for the 2,439 puncta (3.7% of the total detected puncta). We name this group 

the overlapping in Supplementary Fig. 2.4c.  
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The number of puncta detected of transcripts for each gene in each cell for the 

labeled 10-plex samples was plotted (Fig. 2.4h) and the mean number of detected puncta 

per cell split into the different genes classified using MOSAICA phasor analysis with 

combinatorial labeling. In comparison, we also show the MOSAICA pipeline results with 

the negative control sample obtaining counts of less than five per thousand mainly due to 

noise in the images (Fig. 2.4i). To validate these puncta count, we compared them to 

matching RNA-seq data from the same cell type with n=3 experimental replicates (see 

replicate comparison in Supplementary Fig. 2.5). Shown in Fig. 2.4j is a scatter plot of the 

average mRNA puncta count for each cell plotted against the normalized counts from 

DESeq2 of our bulk RNA-sequencing data for each expressed gene. We obtained a 

Pearson correlation coefficient of r = 0.96, indicating a significant positive association 

between the two methods. Furthermore, to assess the rate of false positives and 

determine if one bright mRNA target could potentially be misidentified as another target, 

we repeated our experiment by leaving out probes for some expressed genes and then 

compared the detection rate of remaining targets with the 10-plex data. Specifically, we 

performed two additional experiments with an 8-plex, as well as two additional 

experiments with a 2-plex panel to compare the detected transcript abundance values 

and correlation coefficients against the 10-plex sample (Supplementary Fig. 2.6). We 

observed that there were no significant differences between these panel sizes in terms of 

target detection rate, indicating that target misidentification was not an issue for these 

panel sizes.  

To further evaluate the detection efficiency, we performed benchmarking tests with 

our method against LGC StellarisTM and RNAscopeTM which are commercial gold 
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standard FISH methods (Supplementary Fig. 2.7). Using the transcript of the 

housekeeping gene, POLR2A, as an exemplary target, we found a significant association 

between the number of detected puncta by our method and LGC StellarisTM (t test p value 

= 0.4). When compared to RNASCOPETM, we observed that for this cell type and target, 

both our assays and LGC StellarisTM did not correlate significantly (p = 7.8 × 10−4 and p 

= 3.4 × 10−4), indicating a discrepancy in detection efficiency between the two methods. 

We attribute this difference to MOSAICA and LGC StellarisTM utilizing a direct labeling 

and amplification-free method while RNAscopeTM utilizes a tyramide signal amplification 

reaction which generates thousands of fluorophore substrate per transcript and can lead 

to overlapping puncta or undercounting of detected puncta. Together, these data show 

MOSAICA can robustly detect target mRNAs of the broad dynamic range of expression 

levels from single digit to hundreds of copies per cell.  

2.3.7 Multiplexed mRNA analysis in clinical melanoma skin FFPE 
tissues 

We next investigated whether MOSAICA can provide multiplexed mRNA detection 

and phasor-based background correction and error detection to clinically relevant and 

challenging sample matrices. Assaying biomarkers in situ in tissue biopsies has great 

clinical values in disease diagnosis, prognosis, and stratification, including in oncology40–

42. Specifically, we applied a mRNA panel consisting of KI67 (indicative of cell 

proliferation), POLR2A, BRCA1, MTOR, NCOA2, and NCOA3 to highly scattering and 

autofluorescent human melanoma skin biopsy FFPE tissues obtained from and 

characterized by the UCI Dermatopathology Center. Using the same probe design 
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pipeline, primary probes were encoded with a combination of two fluorophores for the 

transcript of each gene to exhibit a unique fluorescent signature.  

 

Figure 2.5 Multiplexed mRNA detection in epidermis region of human skin melanoma FFPE tissue. 

 a) 6 different types of gene transcripts were labeled with primary probes followed by respective and 
complementary fluorescent secondary probes. Each gene was labeled with a combination of 2 different 
fluorophores for 6 combinations. Negative control probes targeting transcripts not present in the sample 
were used with their respective secondary fluorophore probes. b) Spectral image (max-projection in z) of a 
field of view of the labeled 6-plex sample (3 channel pseudo coloring). c) Lifetime image (max-projection in 
z) of a field of view of the labeled 6-plex sample (phasor projection on universal circle pseudo coloring). d) 
Spectral image of the labeled negative control probe sample is depicted. e) Lifetime image of the labeled 
negative control probe sample. f) Final puncta detection of the 6-plex field of view after being processed in 
our analysis software showing highlighted example puncta of each target (insets, right). g) Mean puncta 
counts per cell of each gene in the 6-plex sample (n=2 experimental replicates, 174 cells). h) Puncta count 
for the negative control probe sample (n=2 experimental replicates, 375 cells). i) Correlation of detected 
puncta (mRNA puncta count) vs. bulk sequencing (fragments per kilobase per million) is shown for each 
target. j) Transcript density in the field of view for each of the genes reveals clustering of specific genes, as 
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an example KI67 appears highly expressed in three cells, one of them marked with a dotted ellipse that 
corresponds to location in f). Scale bars 10 µm in large images and 1 µm in insets. 
 

Figure 2.5b depicts a spectral image overlay (four fluorescent channels including 

DAPI) of the epidermis region of a labeled 6-plex skin tissue sample. Similarly, as in the 

previous section, the orthogonal lifetime image was attained after using phasor analysis 

to create the image depicted in Fig. 2.5c–e depicts the merged composite spectral and 

lifetime images of the corresponding negative probe sample also in the epidermis region. 

Figure 2.5f depicts the pseudo-colored puncta which were successfully classified and 

identified as their assigned mRNA markers. A representative inset image for each marker 

and its targeted detection is provided on the right. We observed that a population of 

puncta consisting of nonspecific, autofluorescent, or unknown sample artifacts rejected 

from analysis, (1,100) or 37.5% of the total detected puncta (2,934). In addition to this 

group, MOSAICA rejected a small group of puncta that emitted fluorescence in multiple 

spectral channels (62). This fraction (2.1%) is in concordance with the optical crowding 

range (2.0–6.6%) that our simulations and models predict (Supplementary Fig. 4). With 

conventional intensity-based measurements and analysis, both contaminating groups are 

inherent image artifacts that compromise the integrity of puncta detection unless 

complicated quenching steps or additional rounds of stripping, hybridization, and imaging 

are utilized14,43. With MOSAICA, these contaminating artifacts can be accounted for 

with the integration of spectral, lifetime, and shape- fitting algorithms.  

Figure 2.5g, h plots the total number of detected puncta for the labeled 6-plex 

sample and the negative control probe sample to highlight the final counts obtained using 

MOSAICA. To validate these puncta counts and their relative expressions, we examined 

the relationship between the decodified puncta with matching bulk RNA-sequencing 
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obtained from The Cancer Genome Atlas (TCGA) database (see Methods section). 

Shown in Fig. 2.5i is a scatter plot of MOSAICA puncta count plotted against fragments 

per kilobase per million. We obtained a Pearson correlation of r=0.97 for this 6-plex 

sample, indicating a significant positive association between the two methods. We 

acknowledge that this strong correlation is particularly dependent on the presence of the 

highly abundant POLR2A expressed gene. The correlation for the other lower expressed 

targets excluding POLR2A is r=0.44 which, although still positive, is weaker. We attribute 

this discrepancy to preanalytical variables typically associated with FFPE sample 

preservation and pretreatment. For instance, there have been multiple studies, which 

documented increased variability in quantifying lowly expressed genes in FFPE tissues 

due to RNA degradation or cross-linking of proteins with nucleic acids44–46. Last, the 

density map of the detected transcripts provides a visual method to identify spatial 

localization of clusters of genes, such as KI67 (indicative of proliferating tumor cells) being 

more prevalent in the dermis region while POLR2A is dispersed throughout the region 

(Fig. 2.5j). Overall, in situ profiling biomarkers, such as KI67 and their spatial clustering 

can have diagnostic and prognostic values in malignant diseases and MOSAICA provides 

a robust platform to profile these markers47.  

2.3.8 Simultaneous co-detection of protein and mRNA  

Spatial multiomics analysis including especially simultaneous detection of protein 

and transcript within the same sample can reveal the genotypic and phenotypic 

heterogeneity and provide enriched information for biology and disease diagnosis. As a 

pilot experiment to demonstrate MOSAICA’s potential for multiomics profiling, we utilized 

MOSAICA to detect 2 protein targets, Tubulin and Vimentin, and 2 mRNA targets, 



 47 

POLR2A and MTOR in colorectal cancer SW480 cell culture samples (Fig. 2.6). After 

staining the sample with the primary antibodies, secondary antibodies were added to 

fluorescently label the protein targets. After protein labeling, we utilized the same probe 

design pipeline and labeling strategy for mRNA detection, primary probes were generated 

and hybridized to the sample after antibody staining. Corresponding secondary probes 

were hybridized. Figure 2.6a–f depict the individual channels of the sample with Fig. 2.6g 

showing the merged channels of the 4-plex panel. As both POLR2A and MTOR are 

assigned to the 647 nm channel and cannot be separated spectrally (Fig. 2.6d), lifetime 

analysis is used to separate POLR2A (Fig. 2.6e) and MTOR (Fig. 2.6f). Signal-to-noise 

ratio measured as intensity of the detected puncta over intensity of the surrounding pixels 

was measured for the two mRNA targets (Fig. 2.6h). In summary, we have demonstrated 

MOSAICA as a potential spatial multiomics tool, which harmonizes sample treatment 

between both labeling processes. MOSAICA utilizes staining protocols with efficient 

target retrieval, blocking, and pretreatment steps where the viability and labeling of both 

target RNA sequence and protein markers were not compromised after each assay.  

 
Figure 2.6 Simultaneous 4-plex co-detection of protein and mRNA in colorectal cancer SW480 
cells 
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a) Intensity imaging showing nuclei labeled with DAPI. b) Intensity image showing Tubulin protein labeled 
with Alexa488. c) Intensity image showing Vimentin protein labeled with TRITC. d) Intensity image at 
647nm showing mRNA targets, POLR2A and MTOR, which were further resolved by lifetime. e) Unmixed 
lifetime image showing POLR2A puncta labeled with Alexa647. f) Unmixed lifetime image showing mTOR 
puncta labeled with ATTO647. g) Merged image of all channels. Scale bar is 10 µm. h) Signal-to noise and 
puncta count analysis for the mRNA targets.  

2.4 Discussion  

MOSAICA can fill a gap in the spatialomics field by offering both simplicity and 

multiplexing through direct in situ spatial analysis of a large number of biomarkers in a 

single round of staining and imaging (Supplementary Fig. 2.8). By contrast, conventional 

direct labeling approaches (e.g., RNAscopeTM, LGC StellarisTM, etc.) are limited to 3 or 4 

targets. Other emerging spatial transcriptomics technologies such as seqFISH can offer 

greater multiplexing capabilities but requires many rounds of sample re-labeling, imaging, 

indexing, and error-prone image registration. The MOSAICA integrates both the spectral 

and lifetime dimensions and employs combinatorial target encoding, and phasor- and 

machine learning-based deconvolution to achieve high-plex analysis without sacrificing 

assay throughput. MOSAICA’s error-detection feature can correct for stochastic 

nonspecific binding artifacts and autofluorescent moieties, inherent challenges 

associated with current intensity-based methods. MOSAICA’s simple workflow can be 

particularly important in clinical settings where biopsy samples are limited in quantity and 

often not amenable for repeated processing. With respect to cost, MOSAICA uses 

inexpensive DNA primary probes and fluorescently labeled secondary probes which can 

be shared among many different targets, reducing costs to several dollars per assay. 

Particularly compared to indirect spatial transcriptomic technologies that interrogate 

barcoded regions of interest (ROIs) with separate sequencing steps (e.g., 10x Genomics 

Visium, GeoMx® Digital Spatial Profiler), our direct, imaging-based approach can provide 



 49 

higher spatial resolution (single molecules or subcellular features), lower cost, simpler 

workflow, and potentially higher throughput (number of samples analyzed per time unit). 

Furthermore, our platform uses standard fluorescent probes and fluorescence 

microscopy and fluorescence imaging remains the most widely used technique in 

biological research. Several commercial instruments that can acquire both spectral and 

lifetime information are available including ISS FastFLIM, PicoQuant rapidFLIM, Leica 

SP8 FALCON, etc., and already exist in numerous shared facilities in industry and 

academia. Therefore, its minimal requirements of MOSAICA will permit quick and broad 

adoption in the scientific community.  

MOSAICA holds great potential to broadly enable scientists and clinicians to better 

elucidate biological processes, and to develop precision diagnostics and therapies. Given 

that gene expression is heterogeneous and many different cell states can exist, one would 

need to assess multiple expressed genes within the same cell in situ. Therefore, it is 

anticipated that MOSAICA can enable spatiotemporal mapping in the attempt to construct 

3D tissue cell atlas. In addition, MOSAICA can serve as a tool for targeted in situ 

validation of single-cell RNA sequencing data which reveal cell identities based on 

“differentially expressed genes” but are subjective, variable and error-prone. 

Furthermore, we aim to develop MOSAICA as a clinical companion diagnostic tool for 

stratified care. In particular, insights of the spatial organization and interactions between 

tumor cells, immune cells, and stromal components in tumor tissues can inform cancer 

diagnosis, prognosis, and patient stratification48,49.  

One common challenge in imaging-based spatialomics analysis is optical crowding 

which can limit both the number of molecules that can be detected and the detection 
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efficiency and accuracy. For instance, as we scale up multiplexing capabilities by labeling 

more mRNA and proteins with additional fluorophores, more labeled targets and their 

fluorescent combinations will begin occupying the same voxel, leading to challenges in 

determining both how many targets there are as well as which type of targets are present 

within each voxel. We have modeled this phenomenon in Eq. 2 (Methods section) and 

plotted the results in Supplementary Fig. 2.4. Based on our estimates and in our current 

transcript density conditions, overlapping accounts for only around 6% of the detected 

puncta. We currently do not further resolve these cases and, instead, categorize them 

into the over- lapping group, which do not contribute to total counts. In addition, we intend 

to further address these cases in the future using our multicomponent approach36 to 

unmix spectral/lifetime components within a single voxel by means of higher harmonics 

of the phasor transform.  

With respect to the crowding issue, the phasor analysis method has an additional 

limitation related to the use of the combinatorial technique. Even if the isolated fluorescent 

dyes are very far apart on the phasor space, their combinations fall inside the polygon as 

determined by the positions of the individual dyes. As one increases the number of dyes, 

the combinations start to overlap creating an ambiguity. For this reason, as we increase 

our multiplexed panel, our strategy is not only to employ labels which are distinctly 

separated by both spectral and lifetime properties but importantly to also use more 

combinations of different labels rather the same labels. The tradeoff between these two 

counteracting parameters is an exciting endeavor which we look forward to exploring as 

we progressively build up our repertoire of fluorophores.  
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Regarding the phasor population overlap, given the imaging settings we have used 

for the experiments in this paper, the signal-to-noise ratio produces gaussian phasor 

distributions with 99.7% of the pixels within 0.01 phasor units (6σ). Although the 

distributions tend to converge due to background autofluorescence, their small 

covariance matrices guarantee a high level of confidence in assigning each pixel to the 

correct cluster. As an example, the three gaussian distributions in Fig. 2.3h, have  

covariance matrices of (coordinate S first, G second)  Σ! = %12 −5
−5 89+ × 10

"#,  Σ$ =

% 6 −8
−8 51+ × 10

"# and  Σ% = %12 −8
−8 50+ × 10

"# and mean coordinates of .! = %0.260.40+,  

.$ = %0.250.49+ and  .% = %0.230.57+. With these values, the distance between the leftmost and 

right most cluster is of 0.17 phasor units, with the mean standard deviation from the 

covariance matrices being 400 times smaller at 3.65 × 10−4. With numbers like these, we 

anticipate that our clustering technique can easily resolve even more challenging 

scenarios such as 6 lifetime phasor clusters and 10 spectral phasor clusters. As a result, 

our next immediate goal is to scale our multiplexing capability by detecting around 60 

mRNA targets simultaneously with 12 different fluorophore species within the same 

sample. We aim to use seven spectrally distinct fluorophores and an additional five with 

overlapping spectra but are resolvable by lifetime. A combinatorial scheme of 12 choose 

two would yield 66 combinations. We could resolve these combinations using a seven-

spectral channel instrument where five of the channels would present three populations 

in the lifetime phasor plot (one for each of the two probes with overlapping spectra in that 

channel plus the third being the combination of the two). Looking another step ahead, by 

implementing our recently developed 32-channel spectral-FLIM detector34 which can 
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provide 32 independent spectral sources with six lifetime clusters per channel, 192 

different fluorophore species can be accessed to provide significantly higher plex 

detection capabilities.  

In the future, we consider expanding our codebook by implementing a Förster 

resonance energy transfer (FRET)-based barcoding strategy50 where different FRET 

fluorophore pairs and various distances between fluorophore donor and acceptor can be 

used to tune the combinatorial spectrum and lifetime readout. The FRET phenomena can 

also be used as an additional error-correction mechanism at the nanometer scale to 

potentially resolve multiple targets in the same voxel. Moreover, the current scanning 

confocal microscope implemented in MOSAICA can achieve high spatial resolution and 

z-sectioning but is limited by a relatively longer imaging time. As an example, each z-slice 

of our MOSAICA images (Fig. 2.4 and Fig. 2.5) took around 1.5 min (1024 × 1024 images 

at 16 μs pixel dwell time, accumulating an average of 6 frames). However, we anticipate 

that this approach is compatible with any wide-field imaging technique as long as 

sufficient image pixel sizes, axial resolution, and photon counts are met. This can be 

accomplished with our recently developed camera-based light sheet imaging system51 

or a spinning disc confocal system equipped with a FLIM camera to greatly improve 

imaging throughput52. Indeed, MOSAICA is amenable for further integration with other 

imaging modalities, including expansion microscope, super-resolution, and multiphoton 

imaging53–55 to improve subcellular resolution and allow imaging large, scattering 

tissues. In addition, we will develop user-friendly image analysis software with capabilities 

enabling classification of single-cell phenotypes, spatial organization and neighborhood 

relationship among different cell types. Our puncta detection and classifier algorithm can 
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be improved using convolutional neural networks with clinical training sets to optimize 

biomarker detection accuracy and efficiency. Finally, we will develop high-plex protein 

detection component in our multiomics analysis using antibody- DNA conjugates where 

our combinatorial labeling and barcoding strategy can be used to scale up multiplexing.  

2.5 Methods 
Primary probe design 

A set of primary probes were designed for the transcript of each gene. A python 

code was used to rapidly design the primary probes while controlling various aspects of 

the probes such as GC content, length, spacing, melting temp, and prohibited sequences. 

To begin, probes are designed using exons within the coding sequence region. However, 

if that region does not provide over 40 probes, the exons from the coding and untranslated 

regions are used. The candidate probes are then aligned to the genome using Bowtie2, 

an NGS aligner, to determine if these probes are specific. Probes that are determined 

specific are then aligned to the RNA sequencing data on the UCSC Genome Browser, 

further eliminating probes that do not align to regions with an adequate number of reads. 

While mapping the probes to the genome on the UCSC Genome Browser, the probes are 

aligned with BLAT (BLAST-like alignment tool). A local BLAST query was run on the 

probes for the expressed genes in the panel to eliminate off-target hits. For this 

experiment, each expressed gene had the maximum number of probes that could be 

designed with our pipeline and requirements. The final primary probe design included two 

assigned readout sequences of the secondary probe with a “TTT” connector in between, 

another connector, then one of the probes specific for the transcript of that gene. The 

primary probes were ordered from Sigma Aldrich and pooled together for the transcript of 
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each gene. The sequences of all probes used in this study are listed in Supplementary 

Data 1.  

Secondary probe design 

Secondary probe structures were based on the design from the Zhuang group56. 

In short, the 20-nt, three-letter readout sequences were designed by generating a random 

set of sequences with the per-base probability of 25% for A, 25% for T, and 50% for G. 

Sequences generated in this fashion can vary in their nucleotide content. To eliminate 

outlier sequences, only sequences with a GC content between 40% and 50% were kept. 

In addition, sequences with internal stretches of G longer than 3 nucleotides were 

removed to eliminate the presence of G-quadruplets, which can form secondary 

structures that inhibit synthesis and binding. To remove the possibility of significant cross-

binding between these readout sequences, algorithms from previous reports were used 

to identify a subset of these sequences with no cross-homology regions longer than 11 

contiguous bases56. Probes were then checked with BLAST to identify and eliminate 

sequences with contiguous homology regions longer than 11 nucleotides to the human 

transcriptome. From the readout sequences satisfying the above requirements, 16 were 

selected.  

Cell culture  

Human embryonic kidney (HEK293T) cells (632180; Takara) were cultured in 

DMEM (10-013-CV; Corning) supplemented with 10% FBS (1500-500; Seradigm) and 

1% penicillin (25–512; GenClone). Human colorectal adenocarci- noma (SW480) cells 

were cultured in DMEM with high glucose (SH30081.02; HyClone) supplemented with 

10% FBS (1500-500; Seradigm), 1x L-Glutamine (25–509; GenClone), and 1% penicillin 
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(25–512; GenClone). SW480 cells were FACS-sorted based on surface marker ROBO-

1, and ROBO + and ROBO- cells were used in Fig. 2.4 and Fig. 2.6, respectively. The 

cells were plated into 8-well chambers and then fixed. The eight-well plates (155409; 

Thermo Scientific) for HEK293-T and SW480 cells were coated with fibronectin bovine 

plasma (F1141- 2MG; Sigma Aldrich) before seeding cells onto the 8-well plates. All 

cultures were grown at 37 °C with 5% CO2.  

mNeonGreen cell engineering  

A mNeonGreen construct was transfected into HEK293T-X cells with FuGENE HD 

Transfection Reagent (E2311; Promega). The cells were then selected with puromycin 

(NC9138068; Invivogen) and Zeocin (AAJ67140XF; Alfa Aesar) 3 days after transfection.  

Preparation of fixed cells in cell chambers. When the cells reached 70% con- fluency, 

cells were fixed for 30 min using 4% paraformaldehyde (15710; Electron Microscopy 

Science), then washed with PBS 3 times. The cells were then incubated with sodium 

borohydride (102894; MP Biomedicals) for 5 min and washed with PBS 3 times. 0.5% 

Triton X-100 (T8787-100ML; Sigma-Aldrich) in PBS was incubated in each well for 5 min 

and cells were washed with 2x SSCT (2x SSC with 0.1% TWEEN® 20 (P9416-100ML; 

Sigma-Aldrich). For storage, cells were left in 70% ethanol at 4 °C.  

Preparation of FFPE tissues 

The University of California, Irvine Institutional Review Board (IRB) approved this 

study for IRB exemption under protocol number HS# 2019–5054. All human melanoma 

cases were de-identified samples to the research team at all points and therefore 

considered exempt for participation consent by the IRB. Fully characterized human 

patient skin melanoma FFPE tissues with an immune cell score of brisk were obtained 



 56 

from the UCI dermatopathology center then sectioned to 5 μm slices using a rotary 

microtome, collected in a water bath at 35 °C, and mounted to positively charged Fisher 

super frost coated slides. The tissue sections were then baked at 60 °C for 1 h. For 

antigen unmasking, slides were deparaffinized, rehydrated then followed by target 

retrieval (with citrate buffer).  

Primary probe hybridization 

Blocking buffer containing 100 mg/ml Dextran sulfate sodium salt (D8906-100G; 

Sigma-Aldrich), 1 mg/ml Deoxyribonucleic acid from herring sperm (D3159-100G; Sigma-

Aldrich), 0.01% Sodium Azide (S2002- 100G; Sigma-Aldrich), 0.01% tween, and 15% 

ethylene carbonate (AC118410010; Fisher Scientific) in 2x sodium saline citrate (SSC) 

was added to the fixed cells or tissues and incubated at 60 °C for 8 min and then at 37 

°C for 7 min. Following this preblock step, primary probes with 5 nM of each probe in 

blocking buffer were added to the samples and incubated at 60 °C for 30 min and then 

overnight at 37 °C.  

Secondary probe hybridization 

Once the primary probe solution is removed, the sample is washed with 2x Saline-

Sodium Citrate Tween (SSCT) twice. Wash buffer (2xSSCT with 10% ethylene 

carbonate) is used for 3 washes and incubated in 60 °C for 5 min each time. Blocking 

buffer is added and incubated at room temperature for 5 min. The sample is then 

incubated in a solution with 5 nM of the secondary probes in blocking buffer at 37 °C for 

an hour. The sample is washed with 2x SSCT twice before using wash buffer to wash 3 

times and incubated in 42 °C for 5 min each time. For the first wash, 10 mg/mL Hoechst 
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(H3570; Invitrogen) is diluted 1:1000 in PBS and added to cells. Later, the wash buffer is 

then removed and replaced with glycerol mounting media and ready for imaging.  

Codetection of protein and mRNA 

Prior to mRNA labeling, fixed SW480 cells were blocked with 1% Bovine Serum 

Albumin (RLBSA50; VWR), 0.1% TWEEN® 20, 1:1,000 Sodium Azide, 0.2 U/ml Protector 

RNase inhibitor (3335399001; Sigma-Aldrich), and 1 mM DTT in RNAse-free PBS 

(AM9625; Life Technologies) for 30 min at room temperature. These cells were then 

washed 3 times with 0.1% TWEEN® 20 in RNAse-free PBS for 5 min each wash at room 

temperature. Antibody solutions containing 1:1,000 Mouse anti-Tubulin (3873BF; Cell 

Signaling) and 1:200 Rabbit anti-Vimentin (5741BF; Cell Signaling) in the same blocking 

buffer were subsequently added to the samples and incubated overnight at 4 °C. 

Following 3 additional washes with 0.1% TWEEN® 20 in RNAse-free PBS for 5 min each 

at room temperature, antibody solutions containing fluorescently labeled 1:200 Donkey 

anti-Mouse Alexa-488 (R37114; Fisher Scientific) and 1:200 Donkey anti-Rabbit TRITC 

(711-025-152; Jackson Laboratories) in the same blocking buffer were added at room 

temperature for 1 h. After 3 washes with RNAse-free PBS with 0.1% TWEEN® 20 for 10 

min each wash at room temperature, 4% PFA in PBS was added for 15 min at room 

temperature. These cells were then washed 3 times with 0.1% TWEEN® 20 in PBS at 

room temperature for 5 min. For mRNA labeling, the previously described methods 

regarding primary and secondary probe hybridization were utilized.  

LGC StellarisTM 

LGC StellarisTM RNA FISH probes (Biosearch Technologies, CA, USA) were used, 

with 48 × 20 mer fluorophore-conjugated oligos tiling the length of the target transcript. 
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The POLR2A probe set were supplied as predesigned controls conjugated to Quasar 570 

fluorophores. Labeling/staining was carried out as described in the LGC StellarisTM 

protocol for adherent mammalian cells. The POLR2A probe sets were used at 50 nM.  

RNAscopeTM 

The FFPE tissue sections were deparaffinized before endogenous peroxidase 

activity was quenched with hydrogen peroxide. Target retrieval was then performed, 

followed by protease plus treatment. The fixed cells pretreatment included treatment with 

hydrogen peroxide and protease 3. The RNAscopeTM assay was then performed using 

the RNAscopeTM Multiplex Fluorescent V2 kit and Akoya Cy5 TSA fluorophore. The 

positive control (POLR2A) and negative control (dapB) were in C1.  

Microscopy Imaging 

Our samples can be imaged with any instrument provided that it has spectral and 

lifetime acquisition capabilities. Our measurements were taken on three separate 

instruments, a wide-field and two confocal microscopes. A generic MOSAICA scanning 

confocal instrument setup is depicted in Supplementary Fig. 9.  

For validation of fluorophores and their spectral and lifetime signatures, 

measurements were taken on a 2-channel ISS Alba5 STED platform. This system is 

equipped with a pulsed white laser (NKT SuperK EXTREME) system where the excitation 

wavelength(s) can be selected with an acousto-optic tunable filter (NKT SuperK 

SELECT). Single photons were detected with avalanche photodiode detectors (Excelitas 

Technologies) and their arrival times with respect to the stimulating frequency (78 MHz) 

were measured with a FPGA-based electronic board (ISS FastFLIM). Imaging was 
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achieved by fast beam scanning with galvo mirrors and 3D stacks of images were 

acquired with a z-piezo mount on the objective.  

For measurements of multiplexed/combinatorial labeling and detection 

experiments (Fig. 2.4 and Fig. 2.5), we utilized a Leica SP8 with the Falcon module. This 

platform employs a white light laser and an acoustic optic beam splitter dichroic, and the 

Leica hybrid detectors with excitation band selectable by means of a prism. 3D 

measurements of cells and tissue samples were taken with a 100x plan apochromat oil 

objective with a numerical aperture of 1.40, yielding images with an x-y resolution of 100 

nm and z-spacing of 500 nm.  

For epifluorescence measurements (Supplementary Fig. 2 and Supplementary 

Fig. 3), images of labeled mRNA transcripts were taken on an inverted Ti-E using a 100× 

plan apochromat oil objective with a numerical aperture of 1.40. Samples were illuminated 

with a Spectra-X (Lumencor) LED light source at the 395 nm, 470 nm, 555 nm and/or 640 

nm excitation wavelengths. Images were acquired with an Andor Zyla 4.2 sCMOS camera 

at 4 K resolution with 6.5 μm pixels.  

Image Processing 

A custom set of scripts were written in MATLAB to process the acquired image 

stacks, identify individual transcripts and assign each of them to each gene expression 

target. After reconstructing the images out of the digital list of photons, the analysis runs 

in parallel a 3D blob detection pipeline on the intensity image stacks to identify each 

transcript and on the other a clustering pipeline on the phasor-transformed 

lifetime/spectral phasor data to detect distinct spectral/ lifetime populations. A classifier 
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then assigns pixels as belonging to a particular expressed gene. The whole pipeline is 

depicted in Supplementary Fig. 10.  

Briefly, the intensity 3D stacks are run through a blob detection algorithm that was 

developed in order to identify each transcript. The images can be seen as a 3D space 

where the transcripts appear as spherically symmetric locations with a radial increase in 

intensity, namely puncta. The algorithm first computes the low- frequency background 

noise by means of a median filter with a kernel 10 times the size of the expected puncta 

(the diffraction limit of the instrument, in our case around 250 nm). This low-frequency 

background is subtracted from the high-pass filtered data obtained by convolving by a 

gaussian filter of the expected size of the puncta. This on one hand enhances the puncta 

in the image by giving a prominence value at each pixel with respect to the surrounding 

regions and on the other suppresses noise in the images. A search for local maxima is 

performed by finding the locations where the gradient goes to zero and the divergence of 

the gradient is negative. Once the centers in the 3D coordinate space are obtained the 

size, absolute brightness and prominence of each puncta is measured.  

In parallel, the raw photon counts are used to construct the photon arrival time 

histogram and photon spectral histogram at each pixel. Phasor transforms are applied to 

each pixel in each image of the 3D stack in order to construct the stacks’ phasor plot. This 

phasor data is in general a 4-dimensional, each pixel in the intensity image has four 

additional coordinates; two for the spectral phasor transform plus two for the lifetime 

phasor transform. The phasor coordinates are clustered using Gaussian Mixture 

Models57. We used an initial experiment tagging the transcripts of housekeeping genes 

in order to guarantee that all expected populations were present and we trained the 
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Gaussian Mixture Model using this initial experiment. This pretrained model is then 

applied to the new sets of data in order to classify each pixel into one of the clusters 

allowing for the presence of empty clusters. The number of clusters N intuitively should 

be the number of distinct fluorescent probes or different combinations of probes used to 

tag the sample, but one must allow for additional populations in the sample, e.g., 

autofluorescent species. For this reason, in the training of the Gaussian Mixture Models 

we allowed for one additional cluster to account for autofluorescence and noise.  

Finally, by computing the mean phasor coordinates of the pixels within each 

detected puncta, we can compute the phasor position of each puncta and assign a gene 

expression label to it by a priori knowing the expected positions of each combination of 

probes depending on the spectra and lifetime of the probes.  

To obtain the number of counts per cell, DAPI image stacks are segmented by means of 

simple thresholding, estimating the threshold value by hard-splitting of the histogram of 

photon counts in the channel. The 3D segmented nuclei are then iteratively grown by 

convolution by a minimal 3x3x3 kernel. This convolution is applied at each pixel of the 

edge of the segmented volume until no available space is left between the segmented 

volumes. This yields a division of the imaged volume into polyhedra where each face is 

exactly the plane bisecting the two closest nuclei edges. This process is analogous to a 

Voronoi tessellation using the surface of the nuclei instead of points.  

In the cell culture experiments, to normalize by cell volume, we used a normalized 

mean cell volume of 3000 μm3 since a cell marker was not utilized and the imaged volume 

thickness (5 μm) was less than the actual cell thickness. To obtain mean counts per cell, 

total detected puncta counts was divided into the total imaged cellular volume and then 
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multiplied by an estimated mean cell volume of 3000 μm3. The total cellular volume was 

obtained by an intensity threshold segmentation of the background cellular 

autofluorescence over the gaps between cells.  

Simulations 

In order to test the detection and classification pipeline, we wrote a set of scripts 

to simulate spectral/lifetime data which provided a ground truth towards detection and 

accurate classification debugging. This data generation script allows randomly 

distributing N diffraction-limited transcripts in an arbitrarily big 3-dimensional space, each 

with a gaussian intensity profile. We simulated our transcript gaussian profile with a X-Y 

standard deviation of 200 nm and a Z standard deviation of 500 nm, a peak intensity of 1 

± 0.3 (the intensity becomes relevant when simulating background noise). In the 

simulation run that we used to test the crowding limitations of the system we simulated 

tagging the transcripts of genes with couples out of a total of 12 fluorescent probes; 4 

distinct spectral probes and 3 distinct lifetimes in each, yielding a total of %122 + = 66 

possible expressed genes. 

We generated the simulated images in a cubic space of 10 × 10 × 10 μm,  

discretized as an image stack of 33 images of 1000 × 1000 pixels (yielding a voxel 

resolution of 100 × 100 × 300 nm). This volume was generated containing increasing 

densities of transcripts, ranging from a single transcript of each gene (66 transcripts) up 

to 2000 transcripts of each gene (132k transcripts) and for each possible value of density 

a total of 10 iterations each time. These 20k simulated image stack sets were individually 

processed by our image processing pipeline and the transcript position and labelling 

obtained by the pipeline was compared to the known ground truth of the generated data. 
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This simulation provided a benchmark of the density limitations of the method but at the 

same time giving an idea of the underestimation of the number of transcripts as a function 

of local density. The simulations allowed us to model the estimated number of overlapping 

transcripts as a function of density.  

A similar set of simulations was run by emulating the conditions in the 10-plex 

experiment (Fig. 2.4) where the transcripts of genes are tagged with combinations of two 

out of five probes. The 20k iterations for different densities allowed to plot the density of 

the classification obtained after detection compared to the real number of transcripts in 

the simulations. This simulation was fit to the probabilistic model obtained from calculating 

the number of transcripts that are not overlapped in space (see next section), from which 

the true number of puncta was extracted (see Supplementary Fig. 2.4).  

Overlapping probability 

The fraction of puncta that do not overlap with any other puncta depends on the 

total number of puncta present in the volume of study and the relative proportion between 

said total volume and the volume of each individual puncta. The following expression is 

obtained as the product of N-1 times the fraction of available space having removed the 

volume occupied by one transcript:  

*
" = +1 − -"

.#
/
$%&

 (2) 

where n is the number of isolated puncta, N is the total number of puncta, vi is the volume 

of each puncta and VT is the total volume (simulated or scanned). The real number of 

transcripts N cannot be analytically isolated from the previous equation, but one can 

graphically obtain it. Due to the fact that the transcripts are sub- diffraction limit, the value 

of vi is simply the volume of the point spread function of the instrument. Using the detected 
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number of counts in an experiment n=13.5k and the estimated total imaged cellular 

volume of 68 kμm3, both obtained from two image stacks shown in Fig. 2.4, we proceeded 

to estimate the real number of transcripts present in the sample using the previous 

expression. Assuming an interval of possible volumes for the transcripts (instrument PSF) 

between 0.1 and 0.3 μm3 we obtained an estimated percentage of overlapping puncta in 

the interval [2.0, 6.6]%. This range of values is in agreement with the number of puncta 

that we detected in more than two channels in the 10-plex experiments (3.7%) and in the 

tissue experiments (2.1%). See Supplementary Fig. 2.4 for additional details such as 

expression (2) plotted as a function of the density of transcripts.  

Sequencing Data 

Colorectal cancer SW480 cell bulk RNA sequencing (unpublished data) was 

analyzed with DESeq2. Average expression is then obtained for comparison to the 

MOSAICA puncta count for each expressed gene. For the human skin melanoma FFPE 

tissue, the patient sample did not have corresponding sequencing data. RNA sequencing 

data were obtained from publicly available data from The Cancer Genome Atlas (TCGA), 

available on the National Cancer Institute (NCI) Genomic Data Commons (GDC) data 

portal, from 5 human skin melanoma FFPE biopsy thigh punch samples [Entity ID: TCGA-

EE-A2GO-06A- 11R-A18S-07, TCGA-EE-A20C-06A-11R-A18S-07, TCGA-YG-AA3N-

01A-11R- A38C-07, TCGA-DA-A95Z-06A-11R-A37K-07, TCGA-GN-A26C-01A-11R- 

A18T-07]. The sequencing data were analyzed with HTseq and normalized for 

sequencing depth and gene length using Fragments Per Kilobase Million. The average 

of the 5 patient samples for each transcript were used for correlation graphs with 

MOSAICA puncta count.  
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Experimental replicates and reproducibility 

Figure 2.3 is a conceptual figure and a single experiment was used as an example 

without replicates. For the 10-plex cell culture experiments (Fig. 2.4), we ran 3 

experimental replicates from which we imaged 6 fields of view (100 × 100 × 5 μm each), 

with 364 cells in total. In these image stacks, a total of 65,562 puncta were detected where 

38,056 were assigned and 27,506 were unassigned to a target. The unassigned counts 

were further categorized based on assumed overlapping errors (2439) or as 

undetermined counts (25,053). In the associated negative controls, a total of three 

experiments were performed, of which we imaged 4 fields of view containing 189 cells 

total. In these experiments, a total of 2034 puncta were detected, of which 61 were 

classified as targeted expressed genes due to the expected spectral and lifetime 

signature and 1959 were classified as undetermined.  

The tissue experiments with a 6-plex gene expression panel were replicated a total 

of 2 times yielding 2 fields of view of 130 × 130 × 3 μm each, together containing 174 

cells (Fig. 2.5). A total of 2934 puncta were detected of which 1770 were assigned to a 

target and 1164 were unassigned, the latter group divided into 62 puncta unassigned due 

to overlap and 1100 labelled as undetermined. In the associated negative controls, we 

ran a total of 3 experiments yielding 3 fields of view and 375 cells. In these fields of view, 

390 puncta were detected, of which 43 were assigned to the transcripts of targeted genes. 

Of the other 347, only 4 were assigned to overlap and 339 to undetermined. The protein-

mRNA codetection experiment in Fig. 2.6 is a pilot experiment for demonstration purpose 

and there is no replicate for it. Additional 8-plex and 2-plex experiments were performed 

on cell cultures, two replicates each, yielding a total of 143 and 130 profiled cells, 
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respectively. Quantification of the experimental replicates by means of cross correlation 

is presented in Supplementary Fig. 2.5 and Supplementary Fig. 2.6.  

Statistical Analysis 

When comparing distributions of puncta counts, signal-to-noise ratios, and 

intensity values, Student (two-sided) t-tests were performed against the probability that 

the measured distributions belong to distributions with equal means. The reported 

probability values in the figures are symbolized with (* for p<0.05, ** for p<0.01, *** for 

p<10−3, and **** for p<10−4). Pearson correlation coefficient was computed to determine 

the correlation between the average expression level to the puncta count of each 

transcript and to compare within replicates of same experiments. For comparison of 2-

plex gene expression counts, we implemented a binomial test where we used the 

obtained proportion of counts from the 10-plex experiments as the reference probability 

(Supplementary Fig. 2.6).  
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2.8 Supplemental Material 

Supplementary Tables 
 
Table 4. S1 List of Fluorophores Used 

 
 
 
Table 5. S2 List of Genes Used and their Assigned Fluorophore Combination 

 
 
Table S3. List of Sequences Used 
(see link in published paper for file) 
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Phasor Transform Expressions 

The first-order phasor transform of the lifetime intensity photon histogram %(') is defined as: 

 

) = ∫ %(') sin(/')0'!
"
∫ %(')0'!
"

 (1) 

1 = ∫ 	%(') cos(/')	0'!
"

∫ 	%(')	0'!
"

 (2) 

Where 5 is the period between excitation pulses (or modulation period) and / = #$
!  is the pulsation 

frequency such that the period of the trigonometric functions matches the excitation period 5. 

 

The first-order phasor transform of the spectral intensity photon histogram %(6) is defined as: 
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Where 6" and 6& are the limits of the spectral band of the detector and / = #$
%!'%"

 is the pulsation frequency 

such that the period of the trigonometric functions matches the spectral bandwidth [6"	6&]. 
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Supplementary Figures 
 

 
Figure 2.7 S1 Schematic overview of probe design process  
a) A modified version of Oligominer was used to design primary probes. b) In the seqAligner.py script, the 
probes (labeled “seq#”) go through BLAT and are aligned to the RNA sequencing data, as seen on the 
UCSC Genome Browser. The BigWig browser track shows a histogram of the read counts and probes are 
aligned and compared to the read counts of the region they overlap with. Probes that overlapped with more 
than 5% of the highest read count were used (green) and those that aligned with regions considered as 
“low read count” (5% or less) were removed from the final probe list (red).  
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Figure 2.8 S2 Validation of probe hybridization in mNeonGreen cells 
a) Schematic of engineering of mNeonGreen HEK293T-X cells. Engineered mNeonGreen plasmids were 
transfected into HEK293T-X cells with FuGENE HD Transfection Reagent. Three days after transfection, 
the cells were then selected with Puromycin and Zeocin. b) Schematic and representative images of each 
condition. The primary probes were designed to be complementary to mNeonGreen transcripts. A 
dopachrome tautomerase (DCT) primary probe negative control, which uses primary probes targeting 
sequences not present in the mNeonGreen HEK-293T-X cells but can still bind to secondary fluorescent 
oligonucleotides, was used to indicate any nonspecific binding which can occur with primary probe labeling. 
A negative control where only secondary probes were added but no primary probes were added was used 
as a reference for nonspecific binding from secondary probes alone. For each condition, the concentration 
of each primary probe (14 in total) was 1 nM and the secondary probe was 5 nM. Scale bar = 10 µm. c) 
Plots to quantify the detected puncta per cell and signal-to-noise (SNR) ratio under different conditions. 
Left, scatter plot showing puncta number per cell (n=755 cells). Right, signal-to-noise ratio (SNR). 
SNR=each signal intensity/the mean of background noise (n=3,860 puncta). 
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Figure 2.9 S3 Optimization parameters of in situ hybridization conditions. 
a) Representative images of mNeonGreen cells with different numbers of primary probes. Conditions 
included 2, 4, 6, 8, 10, 12, and 14 mNeonGreen primary probes to the HEK293T-X mNeonGreen and WT 
model. The concentration of each primary probe is constant (5 nM). Scale bars are 10 µm. b) Intensity 
distribution of detected puncta shows the effects of the number of primary probes on signal intensity (total 
n ≈ 64k puncta). c) Representative images of mNeonGreen cells with different incubation time of probes. 
The primary probes hybridization incubation times consisted of 4, 8, and 16 hours. For secondary 
fluorophore probes, incubation times tested were 1, 2, and 4 hours. Scale bars are 10 µm. d) Intensity 
distribution of detected puncta as a function of incubation time. Top, primary probe incubation time (total n 
≈ 26k puncta). Bottom, secondary probe incubation time (total n ≈ 20k puncta). Pairwise t-test resulted in 
p-values <104 for conditions marked with ****. 
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Figure 2.10 S4 Overlapping and inconsistent signal simulations. 
Simulations are run at different densities to generate 3D image stacks and puncta are detected using 
MOSAICA image processing pipeline. a) Recovered density from the simulations as a function of the true 
density (top trend for 1plex bottom trend for 10-plex) in blue the computed limits considering the specified 
puncta volumes. b) Same data plotted as a percentage of recovered puncta. For the 1plex, there cannot 
be inconsistent signal due to overlap, the underestimated percentage is solely due to undercounts in the 
segmentation (top trend). For the 10-plex simulation (bottom trend) the recovered loss is also due to 
inconsistent signal. Again, in blue, the theoretical limits considering extremal puncta volumes. Green 
vertical line marks the approximate measured density in the experiments and provides an estimation of the 
loss due to overlap. c, d) Number of puncta assigned to a particular gene, undetermined puncta and 
overlapped puncta for the 10-plex experiment (Fig. 4 in the paper) and 6-plex experiment (Fig. 5 in the 
paper). 

 
 
Figure 2.11 S5 Replicates of the experiments. 
A total of 5 cell culture sample replicates for the 10-plex detection of genes in colorectal cancer SW480 
cells and a total of 2 experimental replicates for the 6-plex melanoma skin FFPE tissues were imaged. a) 
Each of the cell replicates is compared to our RNA sequencing counts. b) Cross comparison against each 
other for the cell culture replicates. c) The averaged values are compared to RNA sequencing in cell culture 
experiments. d) Cross comparison against each other for the tissue replicates. e) Averaged values 
compared to RNA sequencing in tissue experiments. Pearson correlation coefficient is reported in each 
case. 
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Figure 2.12 S6 Assessing detection rates of genes in the 10-plex experiments with 8-plex and 2-
plex experiments. 
For these experiments, the 8-plex panel comprises POLR2A, MTOR, BRCA1, BRCA2, NCOA1, NCOA2, 
CENPF, and CKAP5. The 2-plex panel comprises POLR2A and MTOR. a) Mean puncta counts per cell for 
each gene in the 10-plex, 8-plex and 2-plex experiments against RNA sequencing data. A Pearson 
correlation of 0.97 and 0.96 for the 10-plex and 8-plex to RNA sequencing data are shown, respectively. b) 
Mean puncta counts of the 8-plex experiments were correlated with the 10-plex experiments, Pearson r = 
0.98. c) Plotted mean puncta counts per cells for each gene obtained from the 10-plex, 8-plex and 2-plex 
experiments for comparison. d) Detail of the two genes tagged in all three sets of experiments. Binomial 
test between the counts of the 2-plex and expected proportion from the 10-plex gives p=0.0796. 

 
Figure 2.13 S7 Benchmarking MOSAICA against RNAscopeTM and LGC StellarisTM  

a) POLR2A gene expression on colorectal cancer SW480 cells following RNAscopeTM, LGC StellarisTM and 
MOSAICA protocols. Scale bars are 10µm. b) Puncta counts per cell volume between three platforms. 
MOSAICA exhibited comparable puncta per cell count compared to benchmark LGC StellarisTM, whereas 
RNAscopeTM was undercount. Pairwise t-test against null hypothesis that values belong to distributions of 
equal means were p = 0.4 (LGC StellarisTM vs MOSAICA), p = 3.4x10-4 (LGC StellarisTM vs RNAscopeTM 
and p = 7.8x10-4 (MOSAICA vs RNAscopeTM). A sliding volume of 3000µm3 was used throughout the image 
stacks and the number of puncta counts per volume was obtained. This number was then divided into the 
average number of cells per volume depending on the 3D segmentation of DAPI nuclei. Scale bars are 
10µm in large images and 2µm in insets. 
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Figure 2.14 S8 Spatialomics field 
Multiplexed spatial transcriptomics with MOSAICA, which is rapid, cost-effective, and easy-to-use, can fill 
a critical gap between conventional FISH and sequential- and sequencing-based techniques.     

 
 
 

 
Figure 2.15 S9 Generalized spectral-FLIM Microscopy setup 
A pulsed/modulated light source is used to illuminate the sample and the fluorescence of the sample is 
collected by a spectral detector (current resolution around 10 nm). The repetition rate can either be supplied 
by or delivered to the laser which is used by the electronics in the digital frequency domain to obtain a 
single photon arrival time using the heterodyne principle (current resolution around 50 ps) 
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Figure 2.16 S10 Automated pipeline of the processing and analysis 
Raw data consists of a list of detected photons with their times of arrivals. Using the acquisition parameters, 
dwell time, number of pixels, number of repetitions per image etc. the image stacks are reconstructed. 
Knowing the laser frequency, a photon histogram for each voxel is built and the phasor transform is applied. 
The two custom made algorithms work in parallel, one identifying clusters in the phasor space, the other 
identifying puncta in the intensity space. The two then recombine to result in each transcript being identified, 
assigned to a particular gene and its morphological properties measured. 
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3.1 Abstract 

 To image 4-plex immunofluorescence-stained tissue samples at a low-cost with 

cellular level resolution and sensitivity and dynamic range required to detect lowly and 

highly abundant targets, here we describe a robust, inexpensive (<$9,000), 3-D printable 

portable imaging device (Tissue Imager) that can immediately be deployed on benchtops 

for in situ protein detection in tissue samples. Applications for this device are broad, 

ranging from answering basic biological questions to clinical pathology where 

immunofluorescence can detect a larger number of markers than the standard H&E or 

immunohistochemistry (IHC) staining, while the low price point also allows usage in 

classrooms. After characterizing our platform’s specificity and sensitivity we demonstrate 

imaging of a 4-plex immunology panel in human cutaneous T-cell lymphoma (CTCL) 

FFPE tissue samples. From those images, positive cells were detected using CellProfiler, 

a popular open-source software package, for tumor marker profiling. We achieved a 

performance on par with commercial epifluorescence microscopes that are ~20 times 

more expensive than our Tissue Imager. This device enables rapid immunofluorescence 

detection in tissue sections at a low-cost for scientists and clinicians and can provide 

students a hands-on experience to understand engineering and instrumentation.  
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3.2 Introduction 

Current cancer diagnosis methods are comprised of clinical examination, 

radiological imaging, and histopathological analysis of tissue biopsies and surgical 

resections, which provide insight into a patient’s type and stage of cancer[1, 2]. 

Physicians have depended upon histopathology, which is the “gold standard” for 

visualization and pathological interpretation of tissue biopsies. Pathological analyses of 

tumor biopsies have broad utility in cancer diagnosis, prognosis, and treatment 

stratification. Hematoxylin and eosin (H&E) stained histologic sections are considered the 

standard of care by pathologists and can be used for a variety of applications, such as 

identifying malignant tumors, segmentation of glands in the prostate, grading of breast 

cancer pathology, and classification of early pancreatic cancer[3]. The 

immunohistochemistry (IHC) method, chromogenic immunohistochemistry (CIH), is used 

to complement H&E staining, which stains the tissue morphology, to detect the presence 

of specific protein markers for accurate tumor classification and diagnosis. While H&E 

and CIH stains provide enough information for some applications, there are many cases, 

such as tumor differentiation and tumor immune microenvironment (TIME) profiling, 

where more data is needed. In addition, conventional CIH is limited to few markers per 

tissue section and chromogenic systems used for the staining saturate easily, restricting 

quantitative analysis[4, 5]. In these cases, labeling the cells with antibodies for 

immunofluorescence imaging can allow multiplexing, increase the sensitivity and dynamic 

range, and provide additional information for further characterization[3, 6, 7]. Even though 

immunofluorescence provides clinical value, it currently requires expensive imaging 
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hardware (~$100,000-$500,000) and the acquisition of a large field of views to generate 

sufficient data can be very time intensive. 

The ability to multiplex immunofluorescence markers enables studies that 

investigate cellular co-expression[8, 9], cellular spatial relationships[10], and tissue 

heterogeneity[11], to name a few. In the field of immunotherapy, understanding the 

cellular composition and spatial distribution within the sample, which is referred to as 

spatial biology, has become important[5, 12, 13]. By profiling immune checkpoint 

inhibitors, which reduce T-cell inhibition and allows them to fight cancer cells, cancer 

treatments have benefited[14-19]. 

Cutaneous T cell lymphoma (CTCL) is a type of cancer that starts in white blood 

cells called T cells (T lymphocytes), which typically help fight pathogens in the immune 

system[20]. In CTCL, T cells develop abnormalities, causing them to attack the skin and 

cause rash-like skin erythema, patches of raised or scaly skin, and sometimes skin 

tumors[21]. Unfortunately, the exact cause of CTCL is still unknown. As CTCL tissue 

samples contain high levels of T cells, they are a good positive control for T cell markers 

such as CD3, CD8, and CD14[22]. Hence, we selected CTCL tissue samples to be our 

model system to demonstrate detection of these T cell markers, which vary from low to 

high abundance to demonstrate the sensitivity of our imaging platform. 

To take full advantage of the clinical value of immunofluorescence, a robust, 

inexpensive, high-throughput imaging platform that can be deployed immediately to any 

laboratory or clinic including those in low-resource settings to image clinical tissue 

samples with immunofluorescence is highly desired. To address this need, we have 

developed a robust, inexpensive (<$9,000), and portable imaging platform for tissue 
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samples, the Tissue Imager, that can be placed on the benchtop of any basic laboratory. 

Our Tissue Imager uses a 3D printable design and widely available components to excite 

fluorescence of fluorophore-conjugated secondary antibodies that are detected with an 

inexpensive 20-megapixel CMOS camera module coupled with a long working distance, 

10x objective, with sufficient spatial resolution to provide cellular resolution and sensitivity 

to detect a wide range of protein abundance levels. We demonstrate that, with clinical 

patient samples, this imaging platform can obtain image resolutions or par with a 

commercial epifluorescence microscope that is ~20 times more expensive while, at the 

same time, providing a larger field of view to increase imaging throughput. Our low cost, 

high throughput, and portable platform can immediately benefit the healthcare and 

scientific community.  

3.3 Results 

3.3.1 Tissue Imager design 

While existing low-cost microscopy platforms designed for biological fluorescence 

utilize the camera of cellphones with various illumination schemes such as on-axis epi-

illumination[23, 24], off-axis inclined illuminations[25], butt-coupling[26], and total internal 

reflection[27], there have been limitations regarding spatial resolution, field of view, and 

the maximum number of spectral channels. To obtain sub-cellular spatial resolution (~1 

μm) and multiplexed fluorescence images for clinical tissue biopsy samples on glass 

microscope slides (25 mm x 75 mm x 1 mm), a device would need to feature an objective 

lens of reasonably high numerical aperture (~0.3) as well as multiple spectral windows 

for illumination and detection of several different fluorophores. For the imager to be 

inexpensive and able to image samples in a high throughput manner, it should be 
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portable, low cost, and easy to use by technicians with minimal training. Our Tissue 

Imager meets all these requirements to image tissue samples with multiplexed 

immunofluorescence staining as illustrated in Figure 3.1A-C. The tissue samples are first 

stained with antibodies, then imaged with the Tissue Imager, followed by analysis. The 

overall design of the Tissue Imager can be seen in Figure 3.1D. Clinical tissue sample 

sections from pathology centers are typically also placed on glass microscope slides that 

are the same size, hence our Tissue Imager was designed to accommodate this on the 

sample stage. The images obtained with a 20-megapixel CMOS camera (3648 x 5472 

pixels) correspond to a 1.8 x 2.6 mm2 field-of-view (FOV) with a pixel size at the sample 

of 0.48 μm (Supp. Fig 1), sufficiently large enough to image a typical human biopsy 

section such as skin tissue. To validate and benchmark our Tissue Imager, we acquired 

reference images with a Nikon Ti-1000E widefield microscope using a 10x objective with 

a sample pixel size of 0.65 μm.  
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Figure 3.1 Workflow/design schematic  
A) Tissue samples are processed, and the protein markers are stained with antibodies. After blocking (e.g., 
typically with 10% BSA in this study),, the primary antibody cocktail is placed onto the sample, followed by 
incubation with secondary labeled antibodies. B) The sample is then imaged with the Tissue Imager. C) 
The images are saved into a folder automatically and the images are then exported into ImageJ and/or 
CellProfiler for processing and quantification. D) Tissue Imager CAD design with 20-megapixel CMOS 
camera, motorized filter wheel, 10x objective, 5 LEDs, and sample stage holder.  
 

Tissue sample images were acquired from the top with a 10x Mitutoyo Plan 

Apochromat Objective (0.28 NA), followed by a 6-position motorized filter wheel (5 

bandpass filters currently used with center wavelengths 460 nm, 530 nm, 577 nm, 645 
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nm, and 690 nm) to spectrally select the fluorescence emission from each fluorophore 

type on the sample. The fluorescence was then imaged with a tube lens (f = 100 mm) 

onto the chip of a 20-megapixel CMOS camera and read out via an USB 3 interface 

compatible with most computers and operating systems. Fluorescence excitation was 

achieved using a ring above the sample that held 5 LEDs, each coupled to a condenser 

lens (f = 20 mm) and cleanup filter (center wavelengths 365 nm, 460 nm, 520 nm, 585 

nm, and 630 nm). The sample was placed below onto an xyz sample stage allowing for 

field of view position and focus adjustments. The entire setup was enclosed in a box made 

from black ¼”-thick laser-cut acrylic boards. This light-tight enclosure prevented external 

light from contaminating the resulting images. All components including the optics, 

camera, LEDs, and structural supports were integrated into a CAD model that could be 

manufactured on a larger scale at a low cost. To adjust and evaluate the illumination 

homogeneity, images of a reference microscope glass slide were taken for each channel. 

Remaining variations could be easily corrected through software (Supp. Figure 2). In 

addition to fluorescence imaging, our device also allowed for the acquisition of brightfield 

images as required for IHC or H&E-stained samples. For this purpose, separate images 

with red (630 nm), green (520 nm), yellow (577 nm) and blue (460 nm) illumination were 

taken and reconstructed into a final RGYB color image.  

3.3.2 Evaluation of specificity and sensitivity 

 To evaluate the performance of the Tissue Imager, we imaged fluorescence beads 

of various emission/detection ranges to validate all 5 spectral channels. After vortexing 

and diluting each 1 µm FluoSpheres™ Polystyrene Microspheres (blue/green, 

yellow/green, orange, red, and crimson) sample 1:2000 in PBS, 10 µl of sample solution 
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was pipetted into Countess™ Cell Counting Chamber Slides (Invitrogen, C10228). As 

shown in Figure 3.2, each microsphere population was detected in the expected spectral 

channel. To evaluate potential spectral crosstalk between channels, each microsphere 

population was imaged in all channels. We found the fluorescence to be specific to the 

respective channels demonstrating the specificity of the Tissue Imager and its ability to 

resolve beads as small as 1 µm in diameter (Supp. Figure 3). 

 

Figure 3.2 Validation of each spectral channel and the specificity of the Tissue Imager 
Using 1 µm fluorescent beads at a 1:2000 dilution, each spectral channel was calibrated. A)  Blue-Green 
fluorescence beads with excitation/emission peaks at 430 nm and 465 nm illuminated at 365 nm and 
detected at 460 nm. B)  Yellow-Green fluorescence beads with excitation/emission peaks at 505 nm and 
515 nm, illuminated at 460 nm and detected at 530 nm. C)  Orange fluorescence beads with 
excitation/emission peaks at 540 nm and 560 nm, illuminated at 520 nm and detected at 577 nm. D)  Red 
fluorescence beads with excitation/emission peaks at 580 nm and 605 nm, illuminated at 585 nm and 
detected at 645 nm. E)  Crimson fluorescence beads with excitation/emission peaks at 625 nm and 645 
nm, illuminated at 630 nm and detected at 690 nm. F)  Composite image of all channels. G) Inset of 
composite image F. Scale bar is 100 µm. 

 
 To determine the sensitivity of the Tissue Imager, the Dragon Green Intensity 

Standard beads (Bangs Laboratories, DG06M) of 5 different intensities were used. This 

standard bead kit is typically used for fluorescence microscopy and flow cytometry 
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calibrations. The standard beads were vortexed and diluted 1:10 in PBS-T (0.025% 

Tween20), then 10 µl of sample solution was pipetted into Countess™ Cell Counting 

Chamber Slides (Invitrogen, C10228) for imaging. As shown in Figure 3.3A, the Dragon 

Green (DG) beads DG1-DG5 were excited with the 460 nm LED and detected in the 530 

nm channel with fluorescence intensities increasing from DG 1 to DG 5 as expected. In 

Figure 3.3B, the fluorescence intensity for each bead intensity was quantified using 

ImageJ and plotted to characterize the sensitivity and wide dynamic range (0.24%-100% 

intensity).  
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Figure 3.3 Quantifying sensitivity  
A) Image of the Dragon Green Intensity Standard beads of ~8 µm polystyrene-based microspheres dyed 
with increasing amounts of the Dragon Green fluorophore to quantify the sensitivity of the Tissue Imager. 
100 µm scale bar. B) Average intensity values of each bead population are plotted. Scatter plot was plotted 
with the mean and standard deviation. 

3.3.3 Evaluation of an immune panel on CTCL tissue samples 

 The next step was to profile immune markers in clinical tissue samples to 

demonstrate rapid imaging for a 4-plex protein detection panel. Using our CTCL model, 

we profiled CD3e, CD8, and CD14 using antibodies. CD3e and CD8 are T-cell markers 

while CD14 has been used as a marker for monocytes and macrophages[22, 28, 29]. The 

nucleus was stained with DAPI. The images obtained from the Tissue Imager were 

compared to H&E and CD3e and CD8 IHC stains from serial sections of the same FFPE 

block. The CD3e and CD8 from the same section imaged on the Tissue Imager were also 

imaged on a Nikon Ti-1000E microscope with a 10x objective as a benchmark for 

immunofluorescence imaging (Figure 3.4). CD14 was not imaged on the Nikon 

microscope due to the absence of a suitable spectral channel. As confirmed by the IHC 

staining from the UCI Dermatology Center, CD3e is highly abundant while CD8 is less 

abundant. This allowed us to demonstrate the Tissue Imager’s ability to detect protein 

markers of various abundance levels. The DAPI (405 nm), CD3e (488 nm), CD14 (594 

nm), and CD8 (647 nm) stained CTCL tissue section was imaged within 4 seconds on the 

Tissue Imager. As negative control, tissues were stained with the secondary antibody 

only (Supp. Fig 4).   
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Figure 3.4 A 4-plex immune panel on CTCL with comparison to IHC and Nikon microscope 
Immunofluorescence staining of DAPI, CD3e, CD8, and CD14 on Cutaneous T-cell Lymphoma (CTCL) 
FFPE tissue sections imaged with the Tissue Imager and Nikon. Images were compared to H&E staining, 
CD3 IHC, and CD8 IHC of serial sections. A) Tissue Imager 10x images cropped for channels (DAPI, 488 
nm-CD3e, 647 nm-CD8, 594 nm-CD14) and merged. B) Nikon Ti-1000E 10x images for channels (DAPI, 
488-CD3e, 647nm-CD8) and merged. C) 10x and 20x images of H&E, CD3 IHC, and CD8 IHC staining on 
serial sections of CTCL FFPE tissue sections. Brown staining is positive signal. Scale bars are 200 µm for 
large images and 50 µm for insets. 

 After acquisition, the images were processed using ImageJ and analyzed using a 

CellProfiler[30] image analysis pipeline (Figure 3.5A). The CellProfiler pipeline was 

validated by manually counting six 700 x 700-pixel regions that were randomly selected 

throughout the tissue section. The manual counting was used to obtain the percentage of 

cells positive for each marker and compared to the counts detected in the CellProfiler 

pipeline. As shown in Supplementary Figure 5, there were no significant differences 
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between the manual counts and CellProfiler counts for all 3 markers (CD3e, CD8, and 

CD14). By detecting the DAPI-stained nuclei 8,238 cells were found in this image (Figure 

3.5B). The cells positive for each marker were then detected and quantified, with 51.0% 

cells expressing CD3e, 16.1% cells expressing CD8, and 17.7% cells expressing CD14 

(Figure 3.5C). The percentages of cells positive for each marker was then plotted for all 

images (n = 7), resulting in an average of 48.6%, 14.9%, and 12.4% cells positive for 

CD3e, CD8, and CD14 respectively (Figure 3.5D). The CellProfiler pipeline also detected 

cells that co-expressed both CD3e and CD8. On average, 9.3% of cells were CD3e/CD8-

positive, 39.6% of cells were CD3e-positive/CD8-negative, and 5.7% of cells were CD3e-

negative/CD8-positive (Figure 3.5E). The ability to detect co-expression of multiple 

protein markers on the same cell at single-cell level is of interest in clinical pathology such 

as profiling both the presence of T cells and the abundance of immune checkpoint 

proteins for patient stratification. 
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Figure 3.5 CellProfiler quantification of images and cell segmentation 
A) The fluorescence images obtained from the Tissue Imager (DAPI, CD3e, CD8, CD14). B) The cell 
segmentation outline from the CellProfiler pipeline. C) Cells identified as positive for the staining for each 
marker were outlined and the cells positive percentage were calculated (n=7). D) Percentage of cells 
positive for each marker with the average of 48.64%, 14.98%, and 12.44% for CD3e, CD8, CD14 
respectively. E) Percentage of cells CD3e+/CD8+, CD3e+/CD8-, CD3e-/CD8+ were on average 9.31%, 
39.64%, and 5.67% respectively. Outline of cells CD3e+/CD8+. Scatter plots were plotted with the mean 
and standard deviation. 
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3.4 Conclusion/discussion 

In summary, the Tissue Imager described here represents a low-cost instrument 

(<$9,000) which is a simple yet sensitive and highly versatile (5 fluorescence channels + 

RYGB brightfield) design that could be produced easily, thus being a useful tool in settings 

such as academic laboratories. This device provides a low-cost platform for scientists to 

rapidly image clinical samples on lab benchtops or any location with little space available 

as well as an opportunity for students to gain the knowledge and experience in 

engineering, instrumentation, and software development. This device could also be used 

for other applications such as tissue microarray imaging with minimal modifications to 

enable high-throughput batch sample analysis. In the future, additional features could be 

incorporated such as different and/or additional spectral channels and potentially 

hyperspectral detection, a motorized/automated sample stage, and possibly even 

fluorescence lifetime detection with time-of-flight-resolving consumer cameras. 

Additionally, the light path could be modified to include a broadband light source and 

(phase) masks to enable dark-field and phase-contrast imaging. Fluorescence quenchers 

such as TrueBlack could be used to quench tissue autofluorescence thus increasing 

sensitivity, and novel computational tools could be leveraged to maximize the information 

obtained from the images[31]. Basic analysis modules are also available on ImageJ, 

providing users the opportunity to learn about these algorithms and create their own 

Tissue Imager workflows.  

 

 

 



 94 

3.5 Materials and Methods 

Tissue Imager design 

The sample slides were illuminated with five different 5 W LEDs (365 nm, 460 nm, 

520 nm, 585 nm, 630 nm, 120° angle of emission) using a custom designed 5 channel 

LED ring mounted above the sample stage. After collimation with aspherical lenses of 20 

mm focal length (Thorlabs, Newton, NJ), the LED emissions were spectrally cleaned with 

bandpass filters (365/10 nm, 460/30 nm, 520/20 nm, 585/20 nm, 630/20 nm) (Chroma, 

Bellows Falls, VT). LEDs were driven by individual DC-DC driver circuits to adjust the 

current (max 1,000 mA each). Fluorescence was collected with a long working distance 

(WD 34 mm) 10x Mitutoyo Plan Apochromat Objective (Thorlabs, Newton, NJ) coupled 

to a 1” diameter achromatic tube lens of 100 mm focal length (Thorlabs, Newton, NJ). 

The custom 6-position filter wheel was actuated with a servo motor controlled with an 

Arduino Nano microcontroller, that was also used to control the LED drivers. Before 

imaging with a 20 MP monochrome CMOS camera (FLIR Blackfly, FLIR Systems, Goleta, 

CA), bandpass filters were used to block scattered excitation light (450/50 nm, 530/30 

nm, 577/25 nm, 645/30 nm, 690/50 nm) (Chroma, Bellows Falls, VT). All electronics were 

powered by a 5 V, 3.5 A power supply. After 3D printing of the model (Ender-3 pro, 

Creality3D, Hong Kong and Ultimaker S5, Ultimaker B.V., Netherlands), all relevant 

optical components were inserted and attached.  

Resolution measurements 

A 10-mm ruler (R1L3S1P, Thorlabs) was imaged with RGB settings for a brightfield 

image. The image was then quantified using ImageJ by measuring the distance in pixels 
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between 1 division (50 µm) or 2 divisions (100 µm). The µm/pixel value was then 

calculated, and the average value was obtained (Supplementary Fig. 1). 

Fluorescent beads 

1 µm FluoSpheres™ Polystyrene Microspheres of various colors (Invitrogen, 

F13080, F13081, F13082, F13083, F8816) were vortexed and diluted at 1:2000 with PBS 

before being pipetted into a Countess™ Cell Counting Chamber Slide (Invitrogen, 

C10228). The Dragon Green Intensity Standard Kit with 5 Intensities (Bangs Laboratories, 

DG06M) (DM1-5) around 8 µm were vortexed, diluted 1:10 in PBS-T (0.025% Tween20), 

and pipetted into a Countess™ Cell Counting Chamber Slide (Invitrogen, C10228). 

Preparation of FFPE tissues  

The University of California Irvine IRB approved this study for IRB exemption under 

protocol number HS# 2019-5054. All human cutaneous T-cell lymphoma (CTCL) cases 

were de-identified samples to the research team at all points and therefore considered 

exempt for participation consent by the IRB. Fully characterized human patient skin CTCL 

FFPE tissues were obtained from the UCI Dermatopathology Center, then sectioned to 5 

µm thick slices using a rotary microtome, collected in a water bath at 35°C, and mounted 

to positively charged Fisher super frost coated slides (Fisher Scientific, 12-550-15). The 

tissue sections were then baked at 60°C for 1 hour. For antigen unmasking, slides were 

deparaffinized, rehydrated then followed by target retrieval (with citrate buffer). 

Antibody staining 

The samples were blocked with 10% BSA in PBS for 2 hours at room temperature. 

Antibody solutions containing Rabbit anti-Human CD3e (Abcam, ab52959), Mouse anti-

Human CD8 (Abcam, ab75129), and Goat anti-Human CD14 (LifeSpan, LS-B3012-50) 
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antibodies and 1% BSA in PBS were subsequently added to the samples and incubated 

overnight at 4℃. Following a PBS wash, antibody solutions containing fluorescently 

labeled Donkey anti-Rabbit Alexa 488 (ThermoFisher, A-21206), Donkey anti-Mouse 

Alexa 647 (ThermoFisher, A-31571), and Donkey anti-Goat Alexa 594 (ThermoFisher, 

A32758) antibodies in 5% secondary raised serum and 1% BSA in PBS were added at 

room temperature for 1 hour. Three 5-minute washes at room temperature with RNAse-

free PBS were then performed, with the second wash containing 1:1000 Hoechst stain.  

Image acquisition and data transfer 

1 µm fluorescence beads were imaged with a camera exposure time of 1,000 ms 

at 365/460 nm excitation/emission and a camera exposure time of 100 ms was used for 

all remaining channels. The Dragon Green Intensity Standard Kit (Bangs Laboratories, 

DG06M) was imaged with an exposure time of 1,000 ms in the 460/530 nm channel 

(excitation/emission). Tissue sections were imaged with an exposure time of 300 ms for 

DAPI staining (excitation 365 nm, detection 460 nm), 1,500 ms for the 488 nm (excitation 

460 nm, detection 530 nm) and 647 nm (excitation 630 nm, detection 690 nm) channels, 

and 2,000 ms for the 594 nm (excitation 585 nm, detection 645 nm) channel. For all 

images taken, the camera gain was set to 26 dB. Images were saved in 16-bit TIFF format 

for further processing. For analysis, the tissue images were cropped 2,300 x 2,300 pixels.  

Validation images were acquired with an inverted Nikon Ti-1000E epifluorescence 

microscope using a 10x plan apochromat oil objective with a numerical aperture of 0.45. 

Samples were excited with a Spectra-X (Lumencor) LED light source at 395 nm, 470 nm, 

and/or 640 nm. Images were acquired with an Andor Zyla 4.2 sCMOS camera. The H&E 
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image in Supplementary Figure 2 was taken on a Nikon Eclipse E400 with the Nikon Plan 

Fluor 10x/0.30 DIC objective and a QImaging MicroPublisher 6 camera.   

Immunofluorescence quantification 

CellProfiler 

Fluorescence signal intensity was quantified using the open-source software 

CellProfiler. Raw .nd2 images from Nikon and composite Tissue Imager images created 

with another open-source software, ImageJ, were fed into a CellProfiler pipeline. In the 

pipeline, the nuclei were identified using the IdentifyPrimaryObjects module then 

expanded to represent the cell bodies. Protein fluorescence was also identified with the 

IdentifyPrimaryObjects module. Raw channel images were rescaled with the 

RescaleIntensity module for accurate protein and background intensity measurements 

that were obtained using the MeasureObjectIntensity and MeasureImageIntensity 

modules, respectively. Positive cell determination was done using the RelateObjects 

module.  

The SNR (Signal-to-Noise Ratio) was calculated by dividing the intensity value of 

the protein by that of the background. Protein and background intensity values were 

averaged for each FOV (Field of View). The percentage of positive cells was calculated 

by dividing the number of cells positive for the protein of interest by the total number of 

cells detected in the FOV. All values used in the data were taken from the CellProfiler 

pipeline.  

Manual counting  

To validate the CellProfiler pipeline, positive cells were manually counted with the 

Cell Counter plugin on the open-source software ImageJ. Tissue Imager imagers were 
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cropped to 700 x 700 pixels with a total of 6 field-of-views in various regions of the sample. 

The DAPI channel and the fluorescent channel labeling the protein of interest were 

merged using ImageJ. Any cell with the fluorescent signal indicative of the presence of 

the protein was manually marked as a positive cell with a single dot in the image and 

counted by the Cell Counter. The percentage of cells positive obtained via manual 

counting was then compared to the percentage of cells positive from the CellProfiler 

pipeline.  

Statistical Analysis 

Student (two-sided) t-tests were performed for the comparison between manual 

counts and CellProfiler counts. For Figure 3.3, each fluorescent bead population had 13 

beads selected randomly throughout the image for quantification on ImageJ. For 

Supplementary Figure 5, the P values for the student t-test between counting methods 

were 0.76, 0.83, and 0.22 for CD3e, CD8, and CD14 respectively.  
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3.8 Supplementary Material 

 

Figure 3.6 Supplementary Figure 1: Resolution calibration for Tissue Imager 
A) Image of the Thorlabs 10mm ruler with 50µm spacing between the divisions B) Measurements plotted 
with an average manual measurement (n=7) of 0.48µm/pixel on the Thorlabs 10mm ruler. Scatter plot was 
plotted with the mean and standard deviation.  
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Figure 3.7 Supplementary Figure 2: Brightfield image on Tissue Imager with RGYB imaging 
H&E staining on human CTCL skin FFPE tissue. A) Imaged on Nikon Eclipse E400 microscope. B) RGYB 
imaging on Tissue Imager.  

 

Figure 3.8 Supplementary Figure 3: Fluorescence bead and spectral channel calibration for Tissue 
Imager  
Each 1 µm fluorescent bead population (column) was imaged in each spectral channel on the Tissue Imager 
(row) to validate the absence of crosstalk. The beads were Blue-Green (E430nm/D465nm), Yellow-Green 
(E505nm/D515nm), Orange (E540nm/D560nm), Red (E580nm/D605nm), and Crimson (E625nm/D645nm) 
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Figure 3.9 Supplementary Figure 4: 4-plex panel with corresponding controls 
A) The 4-plex detection of DAPI, CD3e, CD8, CD14 in human CTCL skin FFPE tissue imaged on the Tissue 
Imager. B) The negative control of secondary fluorophore antibody staining only on imaged on the Tissue 
Imager. C) The 4-plex detection of DAPI, CD3e, CD8, CD14 in human CTCL skin FFPE tissue imaged on 
the Nikon microscope. B) The negative control of secondary fluorophore antibody staining only on imaged 
on the Nikon microscope. Scale bar is 200 µm.  
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Figure 3.10 Supplementary Figure 5: Manual counting to validate CellProfiler detection 
A) Cropped 700 x 700 pixel merged image of 4-plex (DAPI, CD3e, CD8, CD14) on human skin cutaneous 
T-cell lymphoma FFPE tissue. B) CellProfiler outline of detected cells with DAPI, CD3e, CD8, and CD14. 
C) Plot comparing manual counts to CellProfiler counts of CD3e, CD8, and CD14 in cropped images (n=6). 
The mean was plotted as a line. Pairwise T-test between manual counting and CellProfiler counting for 
each marker was not significant (P=0.7549, 0.8246, 0.2237 for CD3e, CD8, CD14 respectively).  
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CHAPTER 4 

TISSUE OPTIMIZATION 

Contribution: J.G. designed and performed the experiments for this chapter.  
 
4.1 Introduction 

 With transcriptomic studies becoming more common in the fields of biological 

sciences and clinical research, the success of all transcriptomic studies on tissue samples 

depends on proper tissue preservation and processing. If the tissue samples are not 

properly processed or stored, the integrity of the RNA within the sample will degrade and 

impact the results of the transcriptomic detection [1]. For many years, formalin-fixed, 

paraffin-embedded (FFPE) tissue samples have been standard in the field of histology 

and immunostaining. Another common method is optimal cutting temperature (OCT). The 

goal of both methods is to preserve the tissue sample. However, many factors, such as 

aim of study, storage conditions, available equipment, preparation time, and more, should 

be considered prior to deciding which method to use. Table 6 compares these 2 methods.  
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Table 6 Tissue preservation methods comparison 

 FFPE OCT 
Tissue 

preservation 
Fixation through perfusion or 
immersion in 4% paraformaldehyde 
(PFA) or 10% neutral buffer formalin 
(NBF) 

Snap freezing 

Equipment Microtome and tissue cassettes Cryostat microtome 
Preparation time ~2 days; dehydration in ethanol, 

clearing in xylene or histoclear, 
paraffin wax infiltration 

<1 day; freeze in OCT media on dry ice, 
acclimate in cryostat before sectioning 

Standard section 
thickness 

4-7 µm 1-100 µm 

Storage Dry on glass microscope slide at 
room temperature with desiccate or 
4°C 

Fresh in -80°C freezer  
 

Antigen masking Medium Low 
Pros Easy storage and versatile Doesn’t require fixing and low antigen 

masking 
Cons Harder to produce thinner sections Delicate sections and requires cold 

temperature 
 
 The RNA integrity of tissue samples can be impacted by many factors during the 

tissue processing steps, including the fixation process, embedding, and storage over long 

periods of time [2-6]. During the fixation process, fragmentation of nucleic acid, 

modification by chemical reactions between formaldehyde and nucleic acids, and 

crosslinking with proteins and biomolecules are some of the factors that can impact the 

RNA integrity [2].  Cellular processes and tissue autolysis can cause the degradation of 

RNA. High temperatures during the embedding process and extended storage of 

embedded samples can lead to increased fragmentation. Prolonged storage of sectioned 

tissue can lead to oxidation of RNA on the exposed surface as well.  

4.2 Colon cancer SW480 xenograft optimization 

In collaboration with Dr. Marian Waterman, we investigated the heterogeneity of 

Wnt signaling within colon cancer SW480 cells. The RNA-seq data from Dr. Waterman’s 

lab indicated that there were 2 populations, one positive for the gene ROBO1 and one 

negative for ROBO1. A panel of markers were then identified to be highly expressed in 
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either the ROBO1+ or ROBO1- population. We worked on developing an mRNA panel 

using MOSAICA to spatially profile gene expression and detect the patterns of 

heterogeneity.  

 The Waterman lab developed a SW480 xenograft model that would be used for 

this heterogeneity study. For the MOSAICA platform to accurately detect mRNA 

transcripts in the xenograft FFPE model, the xenograft tissue processing required 

optimization. In addition to using POLR2A and UBC housekeeping genes and a negative 

control probe with our MOSAICA platform, RNAscope was also used to benchmark and 

assess RNA integrity of the tissue sample. Preliminary data showed certain regions of the 

negative control sample having clusters of bright signals brighter than the positive control, 

indicating that optimization in the fixation process, tissue processing, target retrieval, and 

protease treatment. The goal was to obtain good signal of target probes and decrease 

non-specific binding.  

 To optimize the fixation and tissue processing steps, various time points for each 

step were tested with the batch of subcutaneous SW480 xenograft tumors harvested. 

With 4 mice harvested for the 26- and 30-day post-injection timepoints and 2 (1 with only 

1 tumor) mice harvested at the 33-day post-injection timepoint and 2 tumors per mice, a 

total of 19 tumors were harvested (Figure 4.1a-c). Tumors were fixed in 10% NBF for 

16.5hrs, 21hrs, 24hrs, 27.5hrs, or 28.5hrs. Each condition has 2 tumors as replicates. 

Tissue samples were then embedded into the tissue cassette and sectioned with a 

microtome. The tumors were measured and weighed when they were harvested, and the 

volume and mass were calculated. As seen in Figure 4.1d-f, the tumors were similar in 

mass and volume.  
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Figure 4.1 Harvesting subcutaneous colon cancer SW480 xenografts for FFPE processing 
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 Using POLR2A as the positive control and dapB as the negative control on the 

RNAscope platform, the 21hour fixation time was determined to be the most optimal in 

terms of signal-to-noise (SNR) ratio (Figure 4.2). However, the SNR was lower than the 

SNR obtained on previous FFPE tissue samples from the pathology center. This indicated 

that further optimization would be needed downstream, including target retrieval and 

protease treatment (Figure 4.3). Using Table 7, the images were analyzed to optimize the 

target retrieval and protease treatment based on the morphology and background signals. 

After performing various combinations of target retrieval and protease treatment times 

(Figure 4.4), the optimal condition of 10 minutes target retrieval and 15 minutes protease 

treatment was selected for the colon cancer xenografts.  

 
Figure 4.2 Fixation optimization results signal-to-noise analysis 
A) Images of POLR2A (positive control) and dapB (negative control) on the RNAscope platform for the 21-
hour samples in 133x 133 µm FOV. B) Signal-to-noise ratio (SNR) of 21-hour sample compared to 28.5-
hour samples with student-t test analysis (P<0.0001).  

 
Figure 4.3 Tissue processing workflow  
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Table 7 Tissue processing optimization guidelines 

 

Figure 4.4 Target retrieval and protease treatment optimization 
A-C) Various target retrieval and protease treatment times were tested with POLR2A (positive control) 
and dapB (negative control) on the RNAscope platform. D) The conditions that were tested. 
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4.3 Colon cancer SW480 xenograft EGFR staining demonstrating 

heterogeneity 

 The colon cancer SW480 xenografts were known to express both ROBO+ and 

ROBO- cell types. To spatially visualize the heterogeneity of these 2 populations, an 

EGFR staining was performed using antibodies. Based on the sequencing data, the 

ROBO- population was known to express EGFR whereas the ROBO+ population did not. 

This was confirmed with the colon cancer SW480 xenograft staining of EGFR in the FFPE 

tissue fixed for 21 hours (Figure 4.5). For future work, the ROBO+ population will also be 

stained at the same time with FGFR4, with is specific to the ROBO+ population based on 

sequencing data.  

 
Figure 4.5 EGFR staining in colon cancer SW480 xenograft FFPE tissue 
The top row with the EGFR antibody staining paired with donkey anti-rabbit 647 and bottom row with the 
negative control of secondary antibody only.  
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4.4 Reducing autofluorescence in tissue samples 

 Autofluorescence, a common issue when performing immunofluorescence in 

tissue samples, is caused by sources such as aldehyde fixatives, tissues components 

with endogenous fluorescence (ECM proteins, red blood cells, macrophages), and 

lipofuscins (autofluorescent granules of oxidized proteins and lipids that build up in 

lysosomes of cells with age). The autofluorescence is typically most abundant in the blue 

and green wavelengths, masking the fluorescence signals from the antibodies stained. 

Tissue fixation can be a major factor that causes autofluorescence if the process is not 

optimized. Hence optimizing the fixation process can reduce a significant amount of 

autofluorescence. To further reduce autofluorescence, autofluorescence quenchers are 

typically used. While there are several methods to reduce autofluorescence in tissue 

samples, most methods like autofluorescence quenchers introduces non-specific 

background fluorescence in the red and far-red channels.  For example, Sudan Black B, 

a lipophilic dye, masks autofluorescence from lipofuscins, but also introduces significant 

background fluorescence in the red and far-red channels. An alternative is TrueBlack, a 

commercial autofluorescence quencher that does not introduce as much background 

fluorescence in the red and far-red channels.  

 As autofluorescence has its own unique lifetime characteristics, it can be detected 

on the phasor plot. To determine if fluorescence lifetime imaging microscopy (FLIM) could 

help reduce the autofluorescence in the image after processing, human cutaneous T-cell 

lymphoma (CTCL) skin FFPE tissue, known to have significant autofluorescence in the 

stratum corneum was stained with antibodies, with and without TrueBlack, and processed 

with and without lifetime analysis (Figure 4.6A-D). As seen in Figure 4.6A and C, 
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TrueBlack reduces autofluorescence. However, removing autofluorescence with lifetime 

analysis removed more autofluorescence (Figure 4.6B and C). The populations of each 

fluorophore and autofluorescence could be detected on the phasor plot with the 

fluorophore populations near the expected lifetime (Figure 4.6 E-G). Interestingly, 

TrueBlack separated the fluorescence and autofluorescence populations on the phasor 

plot more, making lifetime analysis easier.  

 

Figure 4.6 Removing autofluoresence in tissue samples with TrueBlack and FLIM 
Human Cutaneous T-cell Lymphoma (CTCL) FFPE tissues were stained with Ki-67, CD3e, and PD-1 
antibodies and DAPI staining. Images were taken on the Leica SP8 Falcon microscope with FLIM 
capabilities. The images were taken contain a view of the stratum corneum, epidermis, and dermis layer. 
A) A 4-plex detection without TrueBlack or FLIM analysis. B) A 4-plex detection without TrueBlack, with 
FLIM analysis to remove autofluorescence. C) A 4-plex detection with TrueBlack, without FLIM analysis. 
D) A 4-plex detection with TrueBlack and FLIM analysis to remove autofluorescence. E) Phasor plot of A/B 
with each population labeled (black circles = autofluorescence). F) Expected lifetime of each fluorophore in 
solution. G) Phasor plot of C/D with each population labeled (black circles = autofluorescence). 

 
4.5 Methods 

FFPE tissue fixation 

 The harvested tumor xenograft tissues were measured and weighed, placed into 

a pre-labeled tissue cassette, then submerged in 100mL of 10% neutral buffered formalin 

(NBF). Parafilm was used to wrap and seal the opening of the container with NBF to 
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prevent excess oxygen reactions. Once the fixation time was complete, the sample was 

immediately transferred to the tissue processor with the program below.  

Tissue processing with Leica TP1020 automated processor (has 12 bins only):  
Step Reagent Time (min) Temp 

1 70% EtOH 30 25°C 

2 80% EtOH 30 25°C 

3 90% EtOH 30 25°C 

4 95% EtOH 30 25°C 

5 100% EtOH 30 25°C 

6 100% EtOH 30 25°C 

7 100% EtOH 30 25°C 

8 Histoclear 30 25°C 

9 Histoclear 30 25°C 

10 Histoclear 30 25°C 

11 Paraffin 45 60°C 

12 Paraffin 45 60°C 

13 Paraffin 45 60°C 

 

FFPE tissue processing 

The FFPE tissues were sectioned to 5 μm slices using a rotary microtome, 

collected in a water bath at 35 °C, and mounted to positively charged Fisher super frost 

coated slides. The tissue sections were then baked at 60 °C for 1 hr 10 mins. For antigen 

unmasking, slides were deparaffinized, rehydrated then followed by target retrieval (with 

citrate buffer).  
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RNAscopeTM 

The fixed tissue pretreatment included treatment with hydrogen peroxide and 

protease plus. The RNAscopeTM assay was then performed using the RNAscopeTM 

Multiplex Fluorescent V2 kit and Akoya Cy5 TSA fluorophore. The positive control 

(POLR2A) and negative control (dapB) were in C1.  

Protein staining 

 The sample was blocked in 10% BSA for 2 hours at room temperature, incubated 

with the EGFR antibody (Clone D38B1) for 16 hours at 4 °C at a concentration of 

0.2μg/ml, then incubated with the donkey anti-rabbit 647 secondary antibody for 1 hour 

at room temperature at a concentration of 10μg/ml.  

Imaging 

Images were acquired with an inverted Nikon Ti-1000E using a 10x plan 

apochromat oil objective with a numerical aperture of 0.45. Samples were illuminated with 

a Spectra-X (Lumencor) LED light source at the 395 nm, 470 nm, and/or 640 nm 

excitation wavelengths. Images were acquired with an Andor Zyla 4.2 sCMOS camera.  

Image analysis 

 The images obtained from the Nikon microscope were then analyzed in CellProfiler 

to detect the puncta and quantifying the intensity of each while also obtaining the 

background intensity. The signal-to-noise ratio (SNR) was calculated with the values of 

fluorescence intensity from each puncta and the background.   
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CHAPTER 5 

DEVELOPING A CELL-BASED MECHANOSENSOR TO 
DYNAMICALLY AND QUANTITATIVELY ASSESS THE TISSUE 

MECHANICS 
 
Contribution: J.G. designed and performed the experiments for this chapter.  
 
5.1 Introduction 

Physicians have long used physical palpation to detect cancer nodules [1], but we 

now know that this stiffness difference is primarily due to collagen density, crosslinking, 

and fiber linearization within the tumor microenvironment (TME) [2-4]. Increased tissue 

stiffness facilitates tumor growth, invasion, and metastasis and can affect treatment 

efficacy and resistance [1, 5]. However, the mechanisms that underlie how tumor cells 

interact reciprocally with their mechanical environment during cancer progression remain 

incompletely understood [6, 7]. One critical barrier to further understanding stiffness-

mediated tumor progression lies in the limitations of current technologies to characterize 

physical properties of tissues at a cellular resolution in their native environment. Imaging 

modalities such as ultrasound and elastography are capable of longitudinal 

measurements in vivo but have limitations in spatial resolution and feature size [8]. 

Conversely, AFM, microrheology, and traction force microscopy have high spatial 

resolution but cannot be used in vivo and only provide surface measurements [9, 10].  

Techniques such as FRET-based molecular sensors, magnetic tweezers and optical 

traps tend to interrogate molecular pathways but fail to characterize mechanobiology at 

a tissue level [11-14]. Importantly, most existing technologies measure substrate 

mechanics but cannot directly interrogate cell responses.  
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Cells constantly sense their biochemical and biophysical surroundings with 

unparalleled spatiotemporal resolution and precision and can rapidly transduce that 

information to regulate downstream gene expression through transcriptional programs. 

For instance, the transcriptional factor YAP(Yes-associated protein)/TAZ(transcriptional 

co-activator with PDZ-binding motif) preferentially translocates to the nucleus to trigger 

downstream gene expression in a stiffness-dependent manner [15]. Leveraging cell’s 

innate mechanosensing mechanisms, we developed cell-based mechanosensors that 

can dynamically and quantitatively assess tumor tissue mechanics in their native 

environment in vivo. Using CRISPR/Cas9-mediated site-specific genomic integration of 

modular genetic circuits, we will repurpose known mechano-sensitive transcriptional 

regulators such as YAP/TAZ to drive downstream expression of reporter fluorescent 

proteins (Figure 5.1). These fluorescent sensors will be dynamic and reversible and can 

quantitatively interrogate a wide range of distinct biologically relevant stiffness in a 

multiplex and continuous fashion.  
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Figure 5.1 Overview schematic of cell-based mechanosensors 
A) Examples of mechano forces that cells sense. B) Transcription factor activation in soft and stiff 
microenvironment. C) Varying number of TFBS repeats to construct singleplex sensors with different 
stiffness response, D) Long-pass filter multiplex sensor design with inhibition by protease cleavage. P1, P2, 
P3, proteases for fluorescent proteins; BFP, GFP, YFP, and RFP: blue, green, yellow and red fluorescent 
proteins, respectively.  

A cell-based mechanosensor will reveal what cells actually “feel” in their TME and 

represent a paradigm-shifting method of dynamically interrogating tumor mechanics 

during disease progression or treatment over time at a cellular resolution in vivo. With 

these new capabilities offered by our technology, we can potentially answer outstanding 

questions in cancer biology and treatment that were previously not possible or difficult to 

address due to lack of tools. For instance, the cell-based mechanosensor will allow us to 

construct an ongoing “stiffness map” of the heterogeneous and evolving TME as cancer 

progresses and to reveal how the dynamic cell-ECM interactions affect the timing and 

evolution of physiological events such as growth, invasion, and metastasis. New insights 

of cancer mechanobiology provided by this cell-based mechanosensor will therefore have 

far reaching clinical significance in 1) using the aberrant tumor mechanical properties 

(“mechanophenotype”) as a diagnostic and prognosis marker to detect small metastases 

and pre-metastatic legions and to predict cancer invasiveness, respectively, and 2) in 

improving efficacy and reducing resistance of current drugs by normalizing the tumor 

niche as well as in developing new drugs that directly target pathological stiffening. In 

fact, our cell-based mechanosensor may allow functional screening for drugs that perturb 

ECM mechanics or cancer cell mechanosensing[16] directly in vivo. 

Our approach to study cancer mechanobiology shifts the paradigm from 

characterizing ECM mechanics as most existing techniques due to equipping cancer cells 

with mechanosensors to reveal how they sense and respond to TME cues. Incorporating 
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mechanosensors with transcriptional programs allows us to examine how cells integrate 

mechanical and other cues together and translate that information into functional 

readouts. To our knowledge, our cell-based mechanosensors, for the first time, will allow 

one to interrogate dynamic cell-ECM interactions in the native, 3D TME in vivo in 

longitudinal studies. It also enables dissection of cellular level variability and survey of the 

biomechanical landscape across the entire tumor tissue through multiscale, temporal and 

spatial analysis. 

This project integrates several innovative tools from synthetic biology, cell 

engineering, biomaterials, and noninvasive optical imaging to address important and 

complex questions in cancer mechanobiology. First, we will adapt emerging tools from 

mammalian synthetic biology to construct multi-transcriptional unit vectors [17, 18], which 

will be integrated into specific sites in the genome via CRISPR/Cas9. Genetic circuits 

composed of multi-transcriptional units allow us to incorporate a series of fluorescent 

reporters into the same cell where each sensor activates under distinct levels of stiffness. 

By changing the number of repeats for transcription factor binding sites (TFBS) in each 

transcriptional unit, we can readily modulate their cooperative interactions with 

transcription factors and tune their signal amplitude and stiffness sensitivity. Furthermore, 

proteolytic elements that specifically degrade reporter proteins can be incorporated into 

the circuit, which allows us to fine-tune the stiffness sensor’s dynamics and resolution. 

Second, our stiffness-tunable hydrogel system enables precise manipulation of 

mechanical stimuli within the natural TME, which allows us to deconvolute the roles of 

biophysical cues from other signals in cancer progression. Third, state-of-the-art 

techniques including noninvasive intravital imaging (longitudinal measurements in vivo), 
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second-harmonic generation imaging (SHG) (characterizing ECM structure) and 

combined AFM–fluorescence microscopy (analyzing stiffness and sensor signal of tumor 

tissue ex vivo) uniquely enable us to evaluate, calibrate and optimize our 

mechanosensors. 

The Zhao lab previously demonstrated mesenchymal stem cells (MSC) 

engineered with YAP/TAZ synthetic promoter can drive expression of downstream 

reporters or therapeutics, in a stiffness-dependent manner on tunable hydrogels in vitro 

and in breast tumor niche in vivo [19]. Dr. Adam Engler and his colleagues demonstrated, 

in a landmark paper, that tissue and matrix stiffness alone is sufficient to direct cell fate 

[20]. Recently, Dr. Engler’s laboratory has developed tunable and reversible hydrogels 

both in vitro and in vivo to study how matrix stiffness drives epithelial–mesenchymal 

transition and metastasis in breast cancer [21]. Our understanding of transcription factors 

(e.g. YAP/TAZ, MRTFα and TWIST) in mechanotransduction pathways especially in 

breast cancer, which is the focus of this application, has greatly improved through multiple 

recently studies [6, 15, 21], allowing us to harness them for transcription-level sensor 

design. The modular multi-transcriptional unit vector design along with CRISPR-mediated 

genome insertion, both coming to fruition in synthetic biology, allow us to incorporate a 

series of fluorescent reporters into the same cell with great control and precision for 

multiplex sensing.  

Our stiffness-inducible synthetic promoters are typically comprised of a specific 

number of repeat TFBS upstream of a minimal promoter (e.g. YB-TATA). By varying 

TFBS consensus sequences, number of binding site repeats, and repeat spacing we can 

control the dynamics and long-term or steady-state expression level of our sensors. TFBS 
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sequences were identified using a custom computational algorithm that uses widely 

available ChIP-Seq data to pad the consensus sequence. Each variant will induce 

nuclear-localized GFP expression and will be assembled using landing pads and 

integrated using CRISPR/Cas9 to the safe harbor locus, AAVS1 [17]. This precise 

chromosomal integration of genetic payloads ensures copy number consistency of our 

sensors [17, 18]. 

5.2 Results 

Our sensors are constructed by repurposing the cell’s innate mechanosensing 

machinery. Triggered by mechanical stimuli (e.g., increased ECM stiffness), mechano-

sensitive transcription factors (e.g. YAP/TAZ) translocate to the nucleus and bind to 

synthetic promoters to drive downstream expression of reporter fluorescent proteins 

(Figure 5.1). Therefore, individual sensors function by changing the expression level of 

reporters (fluorescence intensity) in response to different nuclear concentrations of the 

mechano-sensitive transcription factors (i.e. dosage of mechanical stimuli). Using 

modular genetic circuits, we will engineer cells with multiple transcriptional units, each 

with distinct number of repeats for transcription factor binding sites (TFBS). This design 

augments transcription factor-TFBS interactions in a cooperative fashion and allows our 

mechanosensors to quantitatively sense distinct stiffness in a multiplex assay. Stiffness 

reporter specificity and resolution can be improved using a band-pass filter where 

reporters of high-stiffness will also co-express protease that specifically degrades 

reporters of lower stiffness. 

Using human breast cancer MDA-MB-231 cells and MSCs as model systems, they 

were each transfected with cloned YAP/TAZ sensors that contained 2x, 4x, or 8x repeats 
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of the TFBS (Figure 5.2A). The differences in green fluorescence intensities of cells 

between the different constructs were quantified (Figure 5.2B). As seen in Figure 5.2 A, 

B, increasing YAP/TAZ TFBSs in the MBA-MB-231 model system led to higher sensitivity. 

The 8x YAP/TAZ sensors in MDA-MB-231 cells were tested on 1kPa and 42kPa MeHA 

hydrogels (Figure 5.2 C,D), resulting in the 8x YAP/TAZ sensor being significantly brighter 

on the stiffer substrate (42kPa). This indicated that the 8x YAP/TAZ sensor was a good 

candidate for detecting stiff substrate. Figure 5.2 E further demonstrates the 8x YAP/TAZ 

in MBA-MB-231 being sensitive for the 40kPa region, but not in the 1-20kPa region.  

 
Figure 5.2 Validation of YAP/TAZ mechanosensor 
A) Fluorescence images of MDA-MB-231 cells with 2x, 4x, and 8x TFBSs on a 6 well plate (plastic). B) 
Quantification of 2,4,8x YAP/TAZ sensors on stiff plastic. C) Fluorescence images of MDA-MB-231 cells 
with 8x YAP/TAZ 1 and 42 kPa MeHa hydrogel. D) Quantification of the 8x YAP/TAZ MDA-MB-231 cells 
on MeHA hydrogels of 1 and 42 kPA stiffness. E) MDA-MB-231 cells with 8x YAP/TAZ on 1, 10, 20, 40 kPa 
PA hydrogel stiffnesses. (n>100 for all images) Student t-test P<0.0001 
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The PEST domain, a sequence rich in proline, glutamic acid, serine, and threonine, 

was used to act as a signal peptide for protein degradation to prevent oversaturation of 

the sensor quantification. While the PEST domain was useful in the MBA-MB-231 model 

system, it caused the fluorescence signal to degrade rapidly in the MSC model system. 

The fluorescence intensity of cells with and without the PEST domain were compared. 

The constructs in the MSCs required the removal of the PEST domain as the signal was 

diminished by the time imaging was performed (Figure 5.3). Based on FACS data, the 8x 

YAP/TAZ construct in MSCs without the PEST domain (Figure 5.3A) has higher GFP 

signal than the 8x YAP/TAZ contract in MSCs with PEST domain (Figure 5.3B). Based 

on quantification of fluorescence microscopy images, the 8x MRTFα construct in MSCs 

without PEST domain had a significantly higher fluorescence intensity than constructs 

with PEST domain. To study the fluctuations of the GFP signal in the MSCs with 8x 

MRTFα construct, a live cell imaging study was performed (Figure 5.4). The live cell study 

demonstrated that the no PEST construct had more fluctuations during the 23-hour time 

frame and had an overall increase in signal. The construct with the PEST domain 

remained significantly lower and had smaller and fewer fluctuations.  
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Figure 5.3 Impact of PEST domain on fluorescence intensity in MSCs 
A) The 8x YAP/TAZ without PEST domain construct in MSCs FACs data B) The 8x YAP/TAZ with PEST 
domain construct in MSCs FACs data C) Fluorescence intensity quantification of 8x MRTFα constructs with 
and without PEST domain in MSCs.  

 

Figure 5.4 MSC 8x MRTFα live cell study on GFP signal fluctuation 
The green line was the GFP signal of the 8x MRTFα without PEST and the blue line was the GFP signal 
of the 8x MRTFα with PEST. The x-axis is the time in hours.  

 
Mechanosensors with 2x, 4x, and 8x of YAP/TAZ, MRTFα, and TWIST were 

engineered into the MBA-MB-231 model system using nucleofection. For the MSC model, 

the constructs will be put into lentiviral vectors. If we encounter expression or response 

heterogeneity, we will purify sensors or create clonal sensor cell lines using fluorescence-

activated cell sorter (FACS). Further bioinformatic analyses can be performed to identify 

transcriptional stiffness response elements that are uniquely and specifically responsive 

to stiffness but not to nonspecific factors (e.g., hypoxia and inflammation). If our stiffness 

sensitive promoters do not provide sufficient coverage of biologically relevant stiffness 

(Young’s modulus of 0.1 to >40 kPa), we will change TFBS consensus sequence or 
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choose other mechanotransductive transcription factors that inherently sense different 

range of stiffness, e.g. TWIST1 which is sensitive between 0.5 and 2 kPa [21]. Moreover, 

we will also consider other clonal cell lines to harness different mechanotransduction 

mechanisms to target a distinct stiffness. 

 
5.3 Methods 

Cell engineering 

 The plasmids, as seen in Supplementary Figure 1, were cloned using Gibson 

assemblies. After the CAG promoter are a puromycin resistant gene, TEAD binding sites, 

UNS promoter, TATA box, mNeonGreen, PEST domain, and zeocin resistant gene. 

These plasmids were nucleofected into the cell lines. After transfection, cells that 

successfully integrated the plasmids were selected by adding puromycin and zeocin 

antibiotics into the cell culture media.  

Cell culture 

 Triple negative breast cancer MDA-MB-231 cells were cultured in Leibovitz L-15 

medium (L-15; Corning) containing 10% Fetal Bovine Serum (FBS; Seradigm) with 1% 

Penicillin and Streptomycin (GenClone) and incubated at 37 °C. Each transfection was 

performed using 2 µg of DNA (1 µg of the engineered plasmid, 0.33 µg of Cas9 plasmid, 

and 0.66 µg of gRNA plasmid.  The cells were selected with puromycin (Invitrogen) and 

zeocin (Alfa Aesar) at a concentration of 2 µg/mL each and increased to 20 µg/mL.  

FACS 

Sorting was performed through the UCI Institute for Immunology Flow Core Facility 

using the BD FACSAria Fusion Sorter with a 70 µm nozzle. After 2 weeks of antibiotic 

selection, 100,000-1,000,000 cells were collected for sorting. The cells were sorted based 
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on their expression of mNeonGreen gated at 103 au. Data was analyzed using FCS 

Express 7. 

Imaging 

Images were acquired with an inverted Nikon Ti-1000E using a 10x plan 

apochromat oil objective with a numerical aperture of 0.45. Samples were illuminated with 

a Spectra-X (Lumencor) LED light source at the 395 nm, 470 nm, and/or 640 nm 

excitation wavelengths. Images were acquired with an Andor Zyla 4.2 sCMOS camera. 

Live cell imaging was acquired with the samples inside a stage top incubator (WKSM 

series) to maintain the temperature at 37°C and 5% CO2 during the time study.  

Image analysis 

 The images obtained from the Nikon microscope were then analyzed in CellProfiler 

to detect the puncta and quantifying the intensity of each while also obtaining the 

background intensity. The signal-to-noise ratio (SNR) was calculated with the values of 

fluorescence intensity from each puncta and the background.   
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5.4 Supplementary information 

 
Figure 5.5 S1 YAP/TAZ plasmids altering TFBS 2x-8x 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 
 
Contribution: J.G. designed, prototyped, and optimized the sideSPIM chamber. 
 
6.1 Conclusion 

With the field of spatialomics becoming a hot topic in the last few years, the 

potential for the MOSAICA platform to help elucidate biological questions in a spatial 

context is promising. MOSAICA can provide a holistic view of the tissue microenvironment 

at a low-cost and single round of labeling and imaging. The goal of this thesis was to 

develop a multi-omics spatial technology that could fill in the gap in the field and be able 

to detect RNA and protein targets in the range of 6-50 plex within a single round of labeling 

and imaging. Using combinatorial labeling to multiplex higher with fewer fluorophores and 

error correction. We validated our MOSAICA platform in our mNeonGreen HEK293T 

model system and benchmarked MOSAICA with RNAscope and LGC Stellaris. We then 

did a 10-plex demonstration in colon cancer SW480 cells with 5 fluorophores and 

correlated with puncta/cell count with sequencing data, obtaining a Pearson r of 0.96. A 

panel was then demonstrated in human melanoma FFPE skin tissue with a Pearson r of 

0.97. We also demonstrated multi-omics detection with a simultaneous co-detection of 

RNA and protein in colon cancer SW480 cells. By utilizing the spectral and lifetime data 

along with combinatorial labeling, MOSAICA harnesses the power of lifetime to provide a 

new approach to the field of spatialomics.  

 Another platform that was developed for my thesis was the low-cost tissue imager 

that was built using 3D printed parts, acrylic boards, and commercial parts easily available 

for under $9,000 total. The tissue imager obtained similar image resolution as our 
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$400,000 Nikon epi-fluorescence microscope and image an entire skin biopsy tissue 

sample in a single field-of-view with 3-4 plex immunofluorescence staining.  

 As both the MOSAICA platform and tissue imager were recently developed, there 

are still aspects that can be improved or further development that can be done. To 

increase imaging throughput, we have investigated several possibilities such as two-

photon microscopy, light-sheet microscopy (SPIM), and sequential staining and imaging. 

Regardless, our hope is that these new technologies can be easily adopted and benefit 

scientists or clinicians to expand the scientific frontier.  

6.2 Future directions 

 There are many exiting directions for this project and the spatialomics field that are 

currently being developed not only for this project, but also the academic and industry 

setting as well. With all the groups working towards increasing multiplexing abilities, 

increasing imaging throughput, lowering cost, improving detection efficiency, improving 

image analysis methods and throughput, detecting DNA, RNA, and protein 

simultaneously, and more, there is great promise for the spatialomics field.  

 To tackle the issue of imaging throughput, both two-photon and light-sheet 

microscopy methods were tested for the MOSAICA platform. Selective plane illumination 

microscopy (SPIM) is a fast and gentle imaging technique that combines the speed of 

widefield imaging with quality optical sectioning and low photobleaching as only a thin 

section of the sample is illuminated at any given time (Figure 6.1A). Previous chambers 

designed for the sideSPIM by Dr. Per Niklas Hedde from the LFD at UCI used acrylic for 

the backbone of the chamber and coverslip glass glued with silicone to the bottom and 

side. This design was used for live cells embedded in collagen. However, for culturing 
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cells in an incubator, fixing the cells, running the MOSAICA FISH labeling protocol, and 

imaging, this design had issues such as toxicity from the acrylic, leaking wells, collagen 

embedding prevented hybridization of probes, and a material was needed to raise the 

sample from the bottom coverslip glass to avoid the distortion of the light sheet. To 

overcome these issues, the acrylic backbone was replaced with a PDMS material formed 

in a mold that was then bonded to the coverslips in a plasma chamber (Figure 6.1B). 

There were 2 different prototypes for the well size (large Figure 6.1B left and small Figure 

6.1B right). The mold was made using a laser cut acrylic. Pre-cured 0.5mm layer of PEG 

(BIO-133 RI=1.33) was then cured to the bottom of the wells to seal the gaps and raise 

the sample from the bottom. After coating the wells with fibronectin, colon cancer SW480 

cells were plated and fixed 2 days later. Preliminary data was generated with detection of 

POLR2A and UBC using the MOSAICA platform (Figure 6.1C).  

 

Figure 6.1 Selective plane illumination microscopy application for MOSAICA 

 With sideSPIM image acquisition being 50-100x faster than confocal, this was a 

potential method to increase imaging throughput. A 5 µm Z-stack image with 1 µm 
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spacing for 100 µm by 100 µm field-of-view was acquired in seconds. However, a 

challenge with this method was the custom sample chamber required and the image 

resolution. The numerical aperture (NA) of the excitation lens and 60x detection objective 

was 0.16 and 1.1 respectively. Increasing the NA of the detection objective and further 

modifying the custom chamber are possible ways to improve the image resolution.  

 As for protein detection, a large panel of over 30 primary antibodies have been 

validated and can be conjugated to oligos to bypass the species limit and multiplex the 

protein detection capabilities of MOSAICA. Using commercial kits such as SoluLINK has 

produced promising preliminary data for the antibody oligo conjugation. Once the 

antibody oligo conjugations are successfully validated and amplification is added for 

transcript detection, multiomics panels can be expanded on the MOSAICA platform. 

 To further expand the multiplexing abilities of MOSAICA, some issues that would 

need to overcome include further fluorophore discovery, optical crowding, and reducing 

non-specific binding. A possible solution would be to have each adopt the sequential 

method but have 6-16 plex in each round instead of 3-plex. This could significantly 

increase the speed of the sequential process while preventing optical crowding.  

However, the goal would be to develop an instrument that could automate the 

labeling/hybridization process, imaging, and analysis in a single device. This would not 

only eliminate a lot of the human error in the assay process, but also ensure that the 

sample remains at the same location for sequential labeling/imaging to avoid the 

difficulties of image registration. There is potential for MOSAICA to be a disruption in the 

spatialomics field even though there are numerous technologies being developed. By 

harnessing the power of fluorescence lifetime, MOSAICA leverages it to multiplex higher 
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in a single round and clean up the image. Compared to sequencing data, spatial analysis 

provides another layer of information, spatial location and clustering. Spatialomics tools 

like MOSAICA can be adopted easily help provide scientist and pathologists a holistic 

view of their sample.  

  

 




