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Abstract

In this paper we present a new utility model that serves as the basis for modeling dis-

crete/continuous consumer choices with a general corner solution. The new model involves

a more �exible representation of preferences than what has been used in the previous lit-

erature and, unlike most of this literature, it is not additively separable. This functional

form can handle richer substitution patterns such as complementarity as well as substitution

among goods. We focus in part on the Quadratic Box-Cox utility function and examine its

properties from both theoretical and empirical perspectives. We identify the signi�cance of

the various parameters of the utility function, and demonstrate an estimation strategy that

can be applied to demand systems involving both a small and large number of commodities.

1 Introduction

Consumer behavior generally involves two types of decisions. On one hand, people decide which

goods to purchase or not purchase (the goods actually purchased are typically only a small subset

of all goods available in the market); on the other, people decide what quantity (how many units)

to purchase of the commodities they have chosen to acquire. In principle, researchers would like

to explain these two decisions using a uni�ed utility model.

Researchers explain the �rst decision using a discrete choice model such as the multinomial

logit, the nested logit model (McFadden, 1979), and recently the mixed logit model (Train, 1998,
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2003). For the second decision, one can use a set of demand equations with either a continuous

or discrete distribution depending on how much one is concerned about the integer nature of

the quantities consumed. Some attempts to linked these two decisions include the applications

by Bockstael et al. (1987), Hausmann et al. (1995), Parson and Kealy (1995) and Feather et al.

(1995). They use a two-step estimation procedure that in the �rst step estimates a repeated logit

model and stemming from this step, proxy variables for price and quality of the good are built

and incorporated as exogenous variables in the estimation of a demand function that explains

the total demand. Unfortunately, their procedure fails to integrate both decisions in a uni�ed

model of consumer utility maximization.

A uni�ed model of consumer choice should account for other important characteristics of

consumer behavior. First, consumer demand is a¤ected by other attributes of the goods besides

prices and income. We use the generic term of quality to represent these other atributes. Mar-

keting applications have shown that brand selection and the quantity purchased of goods such

as computers or soft drinks depend on the objective and subjective attributes of the di¤erent

brands (Hendell, 1999; Chan, 2002; Dubé, 2004). In the context of outdoor recreation, envi-

ronmental quality at di¤erent sites is an important variable explaining site visitation behavior

(Herriges and Kling, 1999; Phaneuf and Smith, 2004).

Quality has been incorporated in demand models through a transformation of either the

demand functions or the utility function (Bockstael et al., 1984). However, incorporating quality

into the demand functions directly is not always recommended, especially with large demand

systems, because the integrability of these systems is complex and there may sometimes not be a

closed form solution for the implied indirect utility function. By contrast, the transformation of

the utility function provides a clear relationship between preferences and the resulting demand

functions with quality attributes.1

A second and very important feature of individual consumer choice behavior is the prevalence

of corner solutions, wherein consumers are observed not to purchase any quantity of certain

commodities. This stands in contrast to an interior solution, where the consumer consumes

some positive quantity of every available commodity. It turns out that a corner solution has a

relatively simple analytical structure if the consumer purchases a positive quantity of at most

one or two commodities (including the numeraire good); Hanemann (1984) referred to this as

an extreme corner solution. In a general corner solution, however, that condition does not

1There are at least three ways to incorporate quality into utility functions. First, each good in the utility
function can be multiplied by its own quality index (scaling). Second, the quality index could be added to each
good of the utility function (translating). Finally, the product of the quality index and the quantity can be
incorporated into the utility function through the numeraire good (cross repackaging approach). All of these
alternatives di¤er in terms of the implicit relationship between welfare and quality, demand and quality and
empirical tractability. A comprehensive analysis of them can be found in Hanemann, (1982; 1984) and Bockstael
et al. (1984).
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hold: the consumer purchases positive quantities of more than two commodities but not of all

commodities.

Analyzing demand functions for general corner solutions turns out to be rather complex.

Since the work by Hanemann (1978, 1984), Wales and Woodland (1983) and Bockstael, Hane-

mann and Strand (1984), the approach used to formulate a likelihood function for maximum

likelihood estimation of a demand system with a general corner solution has been based on the

Kuhn-Tucker (KT) conditions for the solution to the consumer�s utility maximization problem.

The KT approach starts with the formulation of a utility function whose arguments include the

level of consumption of each commodity over a period of time and also the quality or other

attributes of some or all of the commodities, possibly represented in the form of a sub function

that serves as overall index of quality for each relevant commodity. The maximization of this

utility function subject to the budget and nonnegativity constraints generates the �rst order

conditions (Karush-Kuhn-Tucker conditions) governing whether a positive or zero quantity of

each good is consumed and, if the former, how large a quantity. Adding a random term to the

utility function makes it possible to generate probability statements for the consumption bundle

observed vector which serve as the building blocks for maximum likelihood estimation of the

parameters of the utility function.

Any stochastic speci�cation can be used for the error term. However, the choice of this

speci�cation determines the tractability of the likelihood function and therefore the number of

commodities that can be handled in the estimation. For instance, using a multivariate normal

distribution for the error term makes it hard to apply the model to a demand system with more

than a small number of commodities because of the di¢ culty of evaluating high-dimensional

multivariate normal probability integrals; the integrals have to be calculated numerically making

the estimation process very slow. In contrast, using an extreme value distribution for the error

term produces a simple closed form solution for the probabilities in the likelihood function.

An additional complication arises from the fact that one often wants to use the estimated

utility model to predict commodity demands under di¤erent scenarios (price-attribute combina-

tions) from those observed in the data. Moreover, one may wish to calculate welfare measures

� Hicksian compensating or equivalent variations � for changes in prices or attributes. The

complication here is that, in both of these cases, one need to predict the new general corner

solution that will be chosen with the new combination of prices and attributes. This is com-

plex because, if there are M commodities (including the numeraire) there are 2M�1 alternative

possible solutions to the consumer�s utility maximization (including an interior solution and all

possible corner solutions). Evaluating all of these alternatives in a brute-force determination of

the utility-maximizing optimum is computationally burdensome for large M.2

2Lee and Pitt (1986;1987) subsequently extended this approach to Kuhn-Tucker like conditions that apply
to price-derivatives of the indirect utility function. But this does not reduce the dimensionality of the problem,
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In the last few years there has been renewed interest in the KT model triggered by three

major developments. First, it has proved feasible to apply the KT approach to demand functions

with a signi�cant number of commodities based on a clever use of the extreme value distribution

(which provides a closed form representation of the likelihood function) and faster computers

that permit estimation in a reasonable time (Von Haefen et al. 2004; Bhat, 2007).

Second, the development of simulation techniques allows researchers to avoid the problems

associated with numerical evaluation when integrals in the likelihood function lack a closed

form representation. Any likelihood function lacking a closed form solution can in principle

be approximated using simulation. Furthermore, simulation introduces greater �exibility in the

random structure of the model and facilitates the calculation of welfare measures. This �exibility

can be exploited when researchers have micro level data since the random parameter models can

be used to identify individual heterogeneity and to capture several patterns of substitution (see

for example, Train 2003; Revelt and Train, 1999). This is also true in the context of Bayesian

estimation of the discrete/continuous model such as Kim et al. (2002).

Finally, the use of an additively separable utility function has provided a simple way to

calculate welfare measures without requiring an explicit comparison of all possible solutions to

the utility maximization problem. Von Haefen and Phaneuf (2004) and Von Haefen et al. (2004)

developed a methodology to estimate welfare measures in a KT framework with a large demand

system and an additively separable utility function. This approach has dramatically increased

the number of alternatives that can be handled with this framework from 3 or 4 (Wales et al.,

1978; Lee and Pitt, 1986; Phaneuf et al., 2000) to 12 or 14 (Von Haefen et al. 2004), and even

more than 50 (Von Hae¤en et al., 2004; Mohn and Hanemann, 2005).

Bhat (2007) shows that the KT model with an additively separable utility function and an

extreme value distribution for the error term is the natural extension of the traditional discrete

choice model suggested by McFadden almost four decades ago. Therefore, the random parameter

KT model is the natural extension of the mixed logit model (or random parameter logit model)

suggested among others by Train and McFadden (1998), Train (1998), and Train (2003).

An additively separable utility function is unfortunately a restrictive functional form since

it reduces the �exibility of the utility function in terms of substitution patterns. Nevertheless,

the di¢ culty of �nding an appropriate likelihood function and of calculating welfare measures

with a nonadditively separable utility function has kept researcher from employing more general

models.

In this paper we explore the estimation of a generalized KT model with a nonadditively

separable utility function. Depending on the value of the parameters, this utility function can

take almost any particular functional form used in the literature such as the translog, linear,

both in estimating the likelihood function and in predicting demands or calculating welfare measures for new
price-attribute combinations.
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and quadratic utility functions. We discuss estimation strategies and welfare calculation for

both small and large demand systems. In our application we estimate both additively and

nonadditively separable utility functions and compare welfare measures derived from them.

The next section develops the general KT model and presents a discussion of functional forms

used in the literature with emphasis on Bhat�s suggestion. Section 3 shows the generalization to

a nonadditively separable utility function, its stochastic formulation, and the likelihood function.

Section 4 presents an application of the model to a large demand system.

2 Kuhn-Tucker framework

In this model consumers have a continuously di¤erentiable, strictly increasing, and strictly qua-

siconcave utility function (Hanemann 1978, 1984; Wales and Woodland, 1984; Von Haefen et

al., 2004) denoted by

U = U(x;q;z;�; ");

where x is a M -dimensional vector of consumption levels, q is a Mxk matrix of attributes for

the vector of commodities and z is a Hicksian good. � is a vector of parameters and " is a

vector of unobserved components. Given a vector of prices (p) for the commodities and a level

of income (y) for the individual, the utility maximization problem is

max
x; z

U(x;q;z;�; ") s.t. p0x+ z = y; x � 0: (1)

The �rst order Kuhn-Tucker conditions are

@U

@xk
� @U

@z
pk k = 1; :::;M

xk

�
@U

@xk
� @U
@z
pk

�
= 0 k = 1; :::;M

xk � 0:

Assuming an additive error term in these equations, they can be rewritten as

"k � gk (x;q;p;�) (2)

xk ("k � gk (x;q;p;�)) = 0 (3)

xk � 0 j = 1; :::;M;

where gk (:) is a function that contains only the deterministic component of the FOC. Let x̂n
represent the observed combination of zero and positive consumption of k goods for individual

n; that is x̂nk = (x1; :::xk; 0; :::; 0) ; then the probability of observing an individual consuming
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only the �rst k goods is

f (x̂nk) =

Z gM

�1
:::

Z gk+1

�1
f" (g1; :::gk; "k+1; :::; "M )� jJkj d"k+1:::d"M ; (4)

where f"(:) is the joint density function of the error terms and Jk is the Jacobian of the trans-

formation. For the goods that are consumed we know by equation (3) that "k = gk (x;q;p;�) ;

however for the rest of the goods that are not consumed we only know that "k � gk (x;q;p;�)
by equation (2).

Given a distribution function for the error term and a functional form for the utility func-

tion, it is possible in principle to construct the likelihood function. However, whether or not the

likelihood function is computationally tractable, depends on how we represent the interaction

among commodities in the utility function. This interaction is modeled through the choice of

a functional form or an error structure. The simplest case uses a functional form and an er-

ror structure that does not allow any interaction � i.e., substitution �among the alternatives

commodities. Using a distribution function that allows dependence among error terms creates

a problem for the likelihood function because for many distributions there is not a closed form

solution for the integrals in equation (4) and this severely limits the number of goods that can

be handled in the model. Similarly, more sophisticated functional forms increase the di¢ culties

in the de�nition of the likelihood function and the estimation process when there are many com-

modities. For instance, if we assume the error terms have a joint normal distribution with zero

mean and not a diagonal covariance matrix, then the integrals in the expression f (x̂n) (equation

4) do not have a closed form and have to be calculated numerically. Other error structures, such

as a GEV distribution makes the calculation of the density function complex as the number of

alternatives increases.

These facts seem to explain why the literature has shown combinations of a few number of

goods with a multivariate normal distribution or a large number of goods but with an extreme

value distribution. For example, in this last case the probability of observing an individual

consuming only the �rst k goods is given by

f (x̂nk) = jJkj
MY
k

�
e(�gk(x;q;p;�)=�)=u

�Ixk>0
e(�e

(�gk(x;q;p;�)=�));

whose closed form solution enables us to estimate the model with a large number of goods.

Previous applications of the KT model used a normal distribution and a quadratic utility

function but with only 4 goods (Woodland et al., 1983). The model has been also estimated using

a generalized extreme value distribution, an additively separable utility function and four goods

by Phaneuf et al. (1999). More recently, there have been some applications using an extreme
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value distribution, an additively separable utility function and a larger number of goods (Von

Haefen et al., 2004; Von Haefen and Phaneuf, 2004; Mohn and Hanemann, 2005).

Calculation of welfare measures requires solving a constrained optimization problem. This

fact has constrained the application of KT models with large demand systems to utility functions

that are additively separable. The compensating variation (CV) for a change from (p0;q0) to

(p1;q1) is calculated implicitly using the indirect utility function as

V (p1;q1; y � CV;�; ") = V (p0;q0; y;�; "): (5)

This implicit de�nition of CV does not have a closed form solution, therefore researchers use

a mathematical algorithm to �nd the value of CV that satis�es the equality condition. For the

new vector (p1;q1) we need to �nd the optimal consumption pattern that maximizes utility. For

a small number of alternatives Phaneuf et al. (2000) compare all the 2M possible consumptions

patterns and �nd the alternative that provides the higher level of utility. Given this consumption

pattern and the new utility level they use a numerical bisection routine to �nd the value of CV

in (5). Both procedures perform well if the dimension of the problem is small, however for large

demand system the comparison of all consumption patterns is not possible and the bisection

routine could also be very slow in �nd the value of CV . Von Haefen, Phaneuf and Parson

(2004) suggest an algorithm to �nd the optimal consumption pattern using the properties of the

additively separable utility function and the nonnegativity condition for the numeraire good.

The level of z is the only information needed to determine the consumption of all other goods.

After the optimal quantities have been found, they also use the numerical bisection approach

to �nd the CV . Von Haefen (2004) suggests a more e¢ cient approach to �nd the CV which

uses the expenditure function instead of the indirect utility function. In this case the optimal

quantities are obtained with a similar routine as in Von Haefen et al. but �nding the optimal

quantities that minimize the total expenditure. The welfare measure is calculated as

CV = y � e(p1;q1; U0;�; "); (6)

where the initial level of utility U0 is obtained evaluating the utility function at the initial values

of the explanatory variables using the parameters � given in the estimation process.

2.1 Previous functional forms in the KT model

One of the most commonly used functional forms for the utility function is

U(x;Q; z;�; ") =

MX
k

	j ln (�kxk + �) +
1

�
z�;

7



with

ln	k = �
0s+�"k; ln�k = 


0qk; � = 1� exp(��); ln � = �� and ln� = ��:

xk is the level of consumption of good k; s is a vector of individual characteristics, q is a vector

of attributes of the good and z = y�p0x: "k is an extreme value error term with scale parameter
� and � is a translating parameter. For this functional form the KT conditions are given by

@U

@xk
� @U

@z
pk

	k
(�kxk + �)

�k �
�
y � p0x

���1
pj = 0

"k �
1

�

�
��0s+ ln ( pk

�k
) + ln (�kxk + �) + (�� 1) ln

�
y � p0x

��
= gk:

This functional form is used by Von Haefen et al. (2004) and Herriges et al. (1999). A

slightly di¤erent utility function has been suggested by Phaneuf et al. (2000) and Mohn and

Hanemann (2005), given by

U(x;Q; z;�; ") =

MX
k

	k ln (xk + �) + ln z

and whose FOC are

"k � ln (pk) + ln (xk + �)� ln
�
y � p0x

�
� �0s:

Bhat generalizes these functional forms using a Box-Cox transformation of the quantities

consumed in the model, the utility function is

U =

MX
k=1


k
�k
	k

��
xk

k
+ 1

��k
� 1
�

where the Box-Cox transformation is applied over x�k = (xk=
k + 1) ; i.e., we have that (x
�
k)
(�k) =

((x�k)
�k � 1) =�k: �k; 
k and 	k are parameters to be estimated. Consistency conditions require

	k � 0 and �k � 1: Unlike previous functional forms there is not an outside good in this

formulation.

This model allows corner solutions given the presence of the parameter �k: If �k = 1 the

model reduces to the extreme corner solution discussed by Hanemann (1984) and Chiang and

Lee (1992) with utility function equal to U =
PM
k=1	kxk: When �k = 0 the utility function is

U =
PM
k=1 
k	k ln

�
xk

k
+ 1
�
which is similar to functional forms described above if we de�ne


k	k = 	
�
k , � = 1 and

1

k
= �k.
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Bhat suggests the following interpretation for the parameters; 	k is the baseline marginal

utility since @U
@xk

= 	k

�
xk

k
+ 1
��k�1

, therefore, if xk = 0 then @U
@xk

= 	k: The parameters 
k
and �k are satiation parameters where the former shifts the position of the point at which the

indi¤erence curve hits the positive orthant allowing corner solutions while the latter de�nes the

satiation level of a good.

As in the other cases the stochastic part of the model is included in the de�nition of

	k (sk; "k) = 	(sk)e
"k = exp(�0sk + "k). Following Bhat�s the maximization problem is

max
xk

U =
MX
k=1


k
�k
exp(�0sk + "k)

��
xk

k
+ 1

��k
� 1
�

subject to
MX
k=1

pkxk =

MX
k=1

ek = E

whose FOC are given by

exp(�0sk + "k)

pk

�
ek
pk
k

+ 1

��k�1
� � � 0

this is satis�ed with equality when e�k > 0 and with inequality when e�k = 0: Individuals are

constrained to consume at least one good, therefore the marginal utility of income can be de�ned

as � = exp(�0s1+"1)
p1

�
e1
p1
1

+ 1
��1�1

using good 1 without loss of generality. Replacing it into the

FOC we obtain

exp(�0sk + "k)

pk

�
ek
pk
k

+ 1

��k�1
� exp(�

0z1 + "1)

p1

�
e1
p1
1

+ 1

��1�1
� 0; (7)

this can be reduced to

Vk + "k � V1 + "1

where

Vk = �
0sk + "k � ln pk + (�k � 1) ln

�
ek
pk
k

+ 1

�
With this set up the individual�s contribution to the likelihood function is

li = jJkj
1R

"1=�1

gMR
"M=�1

� � �
gk+1R

"k+1=�1
�f ("1; g2; :::; gk; "k+1; :::; "M ) d"k+1:::d"Md"1

with gi = V1 � Vi + "1: The elements of the Jacobian are

Jih =
@ [V1 � Vi + "1]

@e�h
; i; h = 2; :::; k:
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Additionally, 
k and �k cannot be identi�ed separately so we have to normalize the model with

respect to one of these parameters, then Vk is either Vk = �0sk+"k� ln pk+(�k � 1) ln
�
ek
pk
+ 1
�

or �0sk + "k � ln pk � ln
�

ek
pk
k

+ 1
�
:

Using an extreme value distribution for the error terms, the individual�s contribution to the

likelihood becomes

li = jJ j
"1=1R
"1=�1

KQ
i=2

1

�
�

�
V1 � Vi + "1

�

�
�

MQ
s=K+1

�

�
V1 � Vs + "1

�

�
1

�
�

�
"1
�

�
d"1

where � denotes the standard extreme value density and � denotes the cumulative distribution.

The Jacobian reduces to

jJ j =
�
KQ
i=1
ci

� KX
i=1

1

ci

!
with ci =

1� �i
e�i + 
ipi

and after solving the integral in the likelihood function Bhat�s solution is

li =
1

�K�1

�
KQ
i=1
ci

� KX
i=1

1

ci

! KQ
i=1
evi=�PM

k=1 e
vk=�

(K � 1)!

This elegant formulation collapses to the simple conditional logit model formulation when K=1,

i.e., li = evi=�PK
k=1 e

vk=�
:

3 A non-additively separable utility function

In this section we present a Quadratic Box-Cox functional form, which is the natural extension of

the additively separable linear Box-Cox functional form developed by Bhat (2007). We present

this non-additively separable utility function, discuss the interpretation of the parameters in the

model, and compare our �ndings with Bhat�s results. The utility function is

U =

MX
k=1


k
�k
	k

��
xk

k
+ 1

��k
� 1
�

+
1

2

MX
k=1

MX
m=1

�km

�

k
�k

��
xk

k
+ 1

��k
� 1
���


m
�m

��
xm

m

+ 1

��m
� 1
��

;

Again, xk is the quantity of good k and �k; 
k and 	k are parameters to be estimated in the

model with the same assumptions as before, i.e., 	k � 0 and �k � 1:
This utility function includes as particular cases most of the other utility functions used in
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the KT approach. For instance, if �km = 0 for all k; this utility function becomes the linear

Box-Cox utility function, with the properties discussed above.

If �k ! 0 the utility becomes the translog function

U =
KX
k=1


k	k ln

�
xk

k
+ 1

�
+
1

2

KX
k=1

MX
m=1

�km
k
m ln

�
xk

k
+ 1

�
ln

�
xm

m

+ 1

�
;

and if �k = 1 we obtain the quadratic utility function used by Wales and Woodland (1983).

U =

KX
k=1

	kxk +
1

2

KX
k=1

MX
m=1

�kmxkxm

Now we analyze the role of the parameters 	k; 
k; and �k in the model using this utility

function.

3.1 Interpretation of parameters

3.1.1 Marginal utility: 	k

Taking a derivative with respect to xk produces the marginal utility of consumption

@U

@xk
= 	k

�
xk

k
+ 1

��k�1
+

MX
m=1

�km

�
xk

k
+ 1

��k�1 
m
�m

��
xm

m

+ 1

��m
� 1
�

(8)

at xk = 0 we have

@U

@xk

����
xk=0

= 	k +
MX
m�k

�km

m
�m

��
xm

m

+ 1

��m
� 1
�

then the marginal utility depends on the coe¢ cients �m; �km, 
m, and 	k and the level of

consumption of the other goods. In this case

@2U

@xk@xm
= �km

�
xk

k
+ 1

��k�1�xm

m

+ 1

��m�1
; m 6= k

and the e¤ect depends on the sign of �km: Similarly to Bhat�s linear Box-Cox additively separable

utility function the contribution to the utility is zero when xk = 0, since
��

xk

k
+ 1
��k

� 1
�
= 0;

then all the interactions including xk are eliminated. But, unlike his formulation, the marginal

utility in this general utility function includes the e¤ect of consumption of other goods on

the desirability of xk; for instance, if the good already consumed is complementary with xk;

(�km > 0) then it is more likely that the xk will be consumed. 	k is the baseline utility only if
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all other goods are not consumed, in other words 	k represents the desirability of xk before any

consumption decision has been made.

3.1.2 Corner solution and satiation parameter: 
k:

For our analysis we consider only two goods and assume the following values for the parameters

	1 = 	2 = 1; �1 = �2 = 0:5; 
2 = 1, �11 = �22 = �0:01; �12 = �0:001: The indi¤erence curves
for three di¤erent values of gamma are given in �gure 1.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5
Indiference curves for different values of Gamma.

Consumption of good 1

Co
ns

um
pt

ion
 g

oo
d 

2

   gamma = 1

   gamma= 2

gamma = .25

Figure 1

As in the linear Box-Cox additively separable functional form, 
k shifts the position of the

intersection between the indi¤erence curve and the x-axis, allowing for corner solutions since the

budget line could be tangent to the indi¤erence curve at the point where this curve intersects

the axis. The indi¤erence curves become steeper as the value of 
k increases which can be

interpreted as a stronger preference for good 1. The contribution to the utility function of

consumption of good 1 when �k ! 0 is given by

U = 
1 ln

�
x1

1
+ 1

�
+
�11


2
1

2

�
ln

�
x1

1
+ 1

��2
+�12
1
2 ln

�
x1

1
+ 1

�
ln

�
x2

2
+ 1

�
+
�22


2
2

2

�
ln

�
x2

2
+ 1

��2

12



since

lim
�k!0


k
�k
	k

��
xk

k
+ 1

��k
� 1
�
= 
k	k ln

�
xk

k
+ 1

�
Figure 2 plots the utility contribution for values of 
k equal to 1, 5, and 100.
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According to �gure 2, the parameter 
k also de�nes the satiation points in the model

since it determines the marginal utility of consumption and the level where we have a negative

contribution to utility.

3.1.3 Satiation parameter: �k

Again, interpretation of this parameter is similar to the linear Box-Cox results. �k determines

how fast the marginal utility decreases with increasing consumption of good k: for Example if

�k = 1 8k there is no satiation, the utility function is

U =

MX
k=1

	kxk +
1

2

MX
k=1

MX
m=1

�km

�
xk

k

��
xm

m

�

With Bhat�s utility function only the �rst term in the equation exists. Therefore, unlike the

simple case we do not have perfect substitute goods since there are some substitution given by

the second term of the equation. Figure 3 shows that the higher the alpha the steeper the slope

of the function representing the utility contribution of consumption. In other words, a higher

alpha implies slower satiation in consumption.
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3.2 Likelihood function

With the general utility function the calculation of the Jacobian and the construction of the

likelihood function become more complicated. The maximization problem is

maxU =
MX
k=1


k
�k
	k

��
xk

k
+ 1

��k
� 1
�

+
1

2

MX
k=1

MX
m=1

�km

�

k
�k

��
xk

k
+ 1

��k
� 1
���


m
�m

��
xm

m

+ 1

��m
� 1
��

subject to
MX
k=1

pkxk =

MX
k=1

ek = E

For convenience most of the literature has de�ned the error term inside 	k either by a multi-

plicative approach as 	k = e�
0ske"k (Bhat, 2007; Von Haefen et al. 2004; Hanemann, 1984) or an

additive approach 	k = �0sk+ "k (Wales et al. 1983; Hanemann, 1984) and the assumptions on

"k are either a extreme value distribution or a normal distribution. As we showed above in the

simple case the assumption 	k = e�
0ske"k is convenient since the FOC are reduced to an expres-

sion easily simpli�ed by applying the logarithm operator (see equation 7) and using it directly

in the likelihood function. However, in our new formulation this multiplicative assumption does

not help us simplify the model.
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There are two solutions for this problem. First, we could follow the approach by Wales and

Woodland and de�ne 	 = �0sk + "k: Second, we could keep the de�nition of 	k = e�
0ske"k but

de�ne an outside good which will simplify the calculation of the FOC. We show details of each

alternative below.

3.2.1 Linear stochastic structure

In the �rst case the FOC can be expressed as

0 � �0sk + "k
pk

�
ek
pk
k

+ 1

��k�1
+
1

2

MX
m=1

�km
pk

�
ek
pk
k

+ 1

��k�1 
m
�m

��
em
pm
m

+ 1

��m
� 1
�

��
0s1 + "1
p1

�
e1
p1
1

+ 1

��1�1
� 1
2

MX
m=1

�1m
p1

�
e1
p1
1

+ 1

��1�1 
m
�m

��
em
pm
m

+ 1

��m
� 1
�

with equality if ek > 0 and inequality if ek = 0: The last component in this expression is the

marginal utility of income �:

Lets de�ne ak =
�

ek
pk
k

+ 1
��k�1

and a1 =
�

e1
p1
1

+ 1
��1�1

then the equation is

0 � "k
pk
ak �

"1
p1
a1 +

�0zk
pk

ak +
1

2pk
ak

MX
m=1

�km
m
�m

��
em
pm
m

+ 1

��m
� 1
�
� �

0z1
p1
a1

� 1

2p1
a1

MX
m=1

�1m
m
�m

��
em
pm
m

+ 1

��m
� 1
�

0 � "k
pk
ak �

"1
p1
a1 + Vk � V1 = "k �

pk
p1

a1
ak
"1 +

pk
ak
Vk �

pk
ak
V1

"k <
pk
ak
V1 �

pk
ak
Vk +

pk
p1

a1
ak
"1

"k < a�kV1 � a�kVk + a�ka�1"1 = V �1 � V �k + "�1

this area is given by Z V �1 �V �k +"�1

�1
e�"ke�e

�"kd"k = e
�e�(V

�
1 �V

�
k +"

�
1)

The likelihood function follows a similar patterns as before,

li = jJkj
"1=1R
"1=�1

KQ
i=2

1

�
�

�
V �1 � V �i + "�1

�

�
�

MQ
s=K+1

�

�
V �1 � V �s + "�1

�

�
1

�
�

�
"1
�

�
d"1

Unfortunately there is no simple solution for the Jacobian that can be generalized to any con-
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sumption pattern. Furthermore, the integral in the likelihood function does not have a closed

form solution. Nevertheless, the integral can be calculated numerically or by simulation and,

since there is only a single integral in the likelihood function, this is not burdensome. Because

it is possible to include random parameters in the model the additional e¤ort to calculate this

integral is not signi�cant. For example, if we include a random parameter structure such that

�n = b + ��; where b is the mean e¤ect and � a deviation with respect to this mean, then the

likelihood function is

L(�) =

Z
�

"1=1R
"1=�1

KQ
i=2

1

�
e�(V

�
1 �V �i +"�1)e�e

� 1
� (V

�
1 �V

�
i +"

�
1) MQ
s=K+1

e�e
� 1
� (V

�
1 �V

�
s +"

�
1) 1

�
e�"1e�e

�"1
d"1f(�)d�

which can be calculated using simulation.

3.2.2 Outside good

The alternative way to overcome the di¢ culty in the de�nition of the likelihood function is to

assume the existence of an outside good which does not have an error term. In that case the

utility function will be

U� = U +
1

�
z�

Where U is the Quadratic Box-Cox utility function. With this assumption the FOC are simpler

since we can take advantage of the FOC for z to de�ne the marginal utility of income, i.e.,

@U�

@z
= z��1 � � = 0) z��1 = �

and we can replace this value in the FOC for other goods.

0 � exp(�0sk + "k)

pk

�
ek
pk
k

+ 1

��k�1
+
1

2

MP
m=1

�km

 �
ek
pk
k

+ 1

��k�1!�
m
�m

��
em
pm
m

+ 1

��m
� 1
��

� z��1

and

"k � �0sk + ln
 
�pk
2

�
ek
pk
k

+ 1

��k�1 MX
m=1

�km

�

m
�m

��
em
pm
m

+ 1

��m
� 1
��

+ pkz
��1

!
;

which has the same likelihood function as the simple case except we do not have any integrals

in its de�nition because the outside good does not have an error term. In the simple case of the

linear Box-Cox utility function, Bhat gives two arguments against the outside good formulation.
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First, it is arbitrary to assume one good does not have an error term while all the others are

stochastic variables. Second, in his simple linear formulation the likelihood function does not

reduce to the simple discrete choice model when J = 1. From our perspective these arguments

may be less important than the advantage of having a simple likelihood function which facilitates

the estimation of this more complex model.

3.3 Welfare measures

With this new utility function we face an additional problem in calculating welfare measures. In

this case it is no longer possible to use Von Haefen et al. (2004) algorithm to obtain the optimal

quantities after a change in the vector (p;q) : The optimal quantities depend on all other goods

since from the FOC we cannot separate z from the vector of quantities x. We found that the

use of a constrained optimization routine solve this problem. Using this routine we minimize

the total expenditure needed to reach the initial level of utility U0 at the new price and quality

conditions.

To understand this problem we repeat the relevant part of Von Haefen et al. algorithm for

our estimation and explain where we use the constrained optimization method.

1. In the �rst step Von Haefen et al. simulate the unobserved heterogeneity of the model

that comes from the random parameter assumption and from the traditional error compo-

nent. The process starts taking random draws from the distribution of �t, and accepting

or rejecting these simulated parameters using a Metropolis-Hasting algorithm. Then it

simulates the error terms conditional on the value of the parameters �t given in the

�rst step: Since we have not used random parameters yet no simulation is needed for

�t; (this can be easily incorporated in the model later), so we only need a simulation

for the error terms "t from the conditional distribution f("t j�t; xt ): Following von Hae-
fen et al., for each element of "t we set "tj = gtj(:) if the j-th good is consumed and

"tj = � ln(� ln(exp(� exp(�gjt(:)))�tj)) where �tj is a uniform random draw if the j-th

good is not consumed.

2. For each set of the simulated heterogeneity given in (1) we need to compute the minimum

level of expenditure e(p1;q1; U0;�; ") required to reach the initial utility level U0: Von

Haefen et al. �nd the optimal quantities that minimize the total expenditure using the

following subroutine:

(a) at iteration i the level of z is set at zia =
�
zi�1l + zi�1u

�
=2; where z0l = 0 and z

0
u = y:

(b) with this suggested value for z solve the FOC derived from an expenditure mini-

mization given by @uj(xj)
@xj

� @uz(z)
@z pj ; xj � 0 8j and obtain the new quantities

xi:
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(c) given results in (b) �nd the new value for z equal to zi = y �
P
k pkxk

(d) if zi > zia set z
i�1
l = zia and z

i
u = z

i�1
u : And if zi < zia set z

i
l = z

i�1
l and ziu = z

i
a:

(e) iterate until abs(zil � ziu) < c for c arbitrarily small.

3. The total expenditure given at the last iteration of this subroutine is replaced in equation

(6) to obtain the welfare measure. Finally the average of the simulated welfare measures

is used as an estimate of the E(CV ).

The second part of this algorithm is only appropriate if the utility function is additively

separable. In our case the FOC conditions do not allow us to separate the de�nitions of z from

the other goods. To �nd the optimal bundle of goods we use a constrained optimization routine

that �nds the values of x and z that minimize the total expenditure subject to the nonnegativity

constraints and the initial level of utility. With the value of x and z we calculate the new level

of expenditure needed to reach U0 and replace it into equation (6) to obtain the corresponding

welfare measure.

4 Application

Our application uses a data containing a panel of 1063 Alaskan anglers who took 6815 �shing

trips in the summer of 1986. We have information on the number of trips taken by each angler in

each of the 22 weeks of the season and on the characteristics of each of these trips including date,

duration, destination zone and type of �sh targeted. For each individual n;we have information

on his travel cost (TCnj) to each of the 29 sites included in the sample. This TC was calculated

as the round trip travel cost from the origin zone to the corresponding site i.

We also have information on the quality of �shing (Qjt) at each site on each decision occasion.

This is based on detailed sport�shing advisories published each week by the Alaska Department

of Fish & Game (ADFG) describing �shing conditions at sites around the state. They de�ne the

�shing in qualitative terms using adjectives and descriptors, rather than predicting a speci�c

catch rate per hour of e¤ort. Accordingly, we view this as an ordinal measure of �shing quality.

Based on the advisories, our variable is coded as an eight-level indicator of �shing quality,

starting from 1 (�no �sh are available�) to 8 (�excellent �shing�). The �sh advisories are

speci�c to 11 di¤erent types of �sh. These species are classi�ed into 3 macrospecies (Salmon,

Saltwater, Freshwater) and a no target alternative. For each macrospecies there are a number of

subspecies. In the macrospecies salmon there are four subspecies; King, Red, Silver and Pink.

Freshwater has �ve subspecies; Rainbow Trout, Dolly Varden, Lake Trout, Grayling, and others.

Saltwater has only three subspecies, Halibut, Razor Clams, and others.
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For each subspecies there are several sites at which �shing is available. Our de�nition of a

"site" therefore is a combination of macrospecies/subspecies/site. There are 181 potential goods,

an individual chooses to visit a subset of these combinations. Although there are 29 destination

sites in the sample not all of them are available for each subspecies. The maximum number of

sites available for each subspecies is presented in table 1 in the appendix. Two other variables

describing the sites include a measurement of harvest output in previous year (LogHarv85 ) and

the variable Developed which takes the value 1 when there is some degree of development like

boats and tourist facilities in site i and 0 otherwise.

There are nine variables describing individuals. These variables are Skill, Leisure, Avlong,

Own, Site focus, boatown, trophy, release, cabin and crowding. Skill is an index of the indi-

vidual�s experience in sport �shing which ranges from 1 for a novice to 4 for an expert angler.

Leisure measures the amount of leisure time available for an angler. Avlong is the average length

of all �shing trips taken by the individual in Alaska over the summer. Own is a dummy variable

that takes the value 1 if the individual owns a cabin, a boat or an RV and 0 otherwise. Site

focus is a dummy variable taking the value 1 if the choice of a site was more important to an

individual than the choice of a target species. Boatown takes the value 1 if the individual owns a

boat and 0 otherwise. Trophy takes the value 1 if the individual prefers trophy sport �shing and

0 otherwise. Release takes the value 1 if the individual practices catch and release �shing and

the value 0 otherwise. Cabin is a dummy variable that takes the value 1 when the individual

owns a cabin at site i and 0 otherwise. Crowding is a measure of subjective crowding conditions

at site i and it was computed as the product of an individual�s crowding tolerance (positive if the

individual likes crowded places and negative otherwise) and a measure of crowding conditions at

the site i, that ranges from 0 for not crowded to 2 for very crowded. This is based on information

provided by ADFG. Note crowding and cabin varies for both the individual and the site.

Given the size of the choice set, we estimate the both the additively separable utility function

and a translog utility function including an outside good. The translog utility function is

U(x;Q; z;�; ") =
MX
j

	j ln
�
�jxj + �

�
+
1

2

MX
i

MX
j

�ij ln (�ixi + �) ln
�
�jxj + �

�
+ ln (z) ;

with

ln	j = �
0s+�"j ; ln�j = 


0qj ; ln � = �
� and ln� = ��;

the vector s include the variables varying across individuals while q includes the quality variables
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varying across sites. The interaction parameters �ij can be represented in the matrix

B =

2664
�11 �12 � � � �1M
...

...
. . .

...

�M1 �M2 � � � �MM

3775 ;
which is a symmetric and negative semi de�nite matrix of parameters. The KT conditions are

given by

	j�
�jxj + �

��j + MX
i

�j�ij
�jxj + �

ln (�ixi + �)�
pj

(y � p0x) = 0

"j =
1

�

 
ln

 
pj
�
�jxj + �

�
� �j

�
y � p0x

� MX
i

�ij ln (�ixi + �)

!
� ln�j � ln

�
y � p0x

�
� �0s

!
;

whose Jacobian is

@"j
@xj

=
1

�

 
pj�j
Aj

+
�jpj

PM
i �ij ln (�ixi + �)

Aj
�
�jj�

2
j (y � p0x)�

�jxj + �
�
Aj

+
pj

y � p0x

!
;

@"j
@xi

=
1

�

 
�jpi

PM
i �ij ln (�ixi + �)

Aj
�
�j�i (y � p0x)�ji
(�ixi + �)Aj

+
pi

y � p0x

!
;

and Aj = pj
�
�jxj + �

�
� �j (y � p0x)

PM
i �ij ln (�ixi + �) : To assure the negativity and sym-

metry conditions for the matrix B we make the following adjustment (Wiley et al., 1973)

B = �CC 0

where

C =

266664
a11 0 � � � 0

a12 a22 � � � 0
...

...
. . .

...

a11 + a12 + :::+ a1(M�1) a22 + a23 + :::+ a2(M�1) � � � 0

377775
and we de�ne the parameters aij as a function of observable variables (Dij) common to alter-

natives i and j; that is,

aij = �
0Dij ;

In this application we use a dummy variable to indicate the two alternatives belong to the

same �sh subspecies. This is intended to reduce the number of parameters that we need to

estimate when we have a large demand system, but it is not necessary with a small demand
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system.

4.1 Data and Results

Table 2 present the results of the KT model with the additively separable utility function

while table 3 presents results of the translog utility function. All the covariates varying among

individuals are included in the set s and enter into the utility function through 	 = exp
�
�0s+ "

�
.

Results show that �ve out of nine parameters are signi�cant in the �rst equation. The other

four coe¢ cients on own, site focus, release and crowding are not signi�cant. Crowding is at the

edge of being signi�cant. These parameters suggest an increase in the index of quality or in the

level of harvest makes that site more attractive to anglers. Both coe¢ cients are signi�cant.

In the translog utility function the qualitative results are similar to the previous case, except

that now release becomes signi�cant and Harvest is not signi�cant and has an unexpected sign.

The 13 dummy variables (D1 to D13) represent the 12 di¤erent subspecies and the no target

alternative. In other words, DJ = 1 if the two goods belong to the same �sh group and 0

otherwise. All these coe¢ cients are signi�cant. Other variables describing simultaneously the

two goods under consideration could also be incorporated, for example we could use another

dummy variable to indicate the two goods belong to the same macrospecies.

Finally, Table 4 presents welfare measures for several scenarios. For example, closing site 1

(Gulkana River) for all salmon species (King and Red in this case), for all freshwater species

(Rainbow Trout and Grayling) and for all subspecies. Additionally we include two scenarios for

closing one of the most important �shing sites in Alaska; the Kenai River. The �rst scenario

closes the Kenai River for all species (the four types of salmon in this case) and the second

scenario closes the river only for king salmon. The welfare loss of closing the Kenai River for

king salmon is signi�cantly greater than closing the Gulkana River for this subspecies. This

shows the relevance of the Kenai River in the recreational �shing activities in Alaska due to

better �shing qualities of the river.

The translog formulation produces smaller welfare measures than the welfare measures of the

traditional utility function which can be explained by the substitution patterns allowed in the

translog utility function. Even though the magnitudes of the di¤erence in welfare measures are

not large, the results show that making the e¤ort to estimate more �exible functional form could

help us enrich the substitution patterns of the model and to correctly asses welfare implications

of di¤erent policies.
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5 Conclusions

In this paper we analyze and estimate a more �exible utility function for the Kuhn-Tucker

approach to multiple/discrete continuous choice models. Unlike previous literature our utility

function is not additively separable and it can be applied to estimate parameters of a large

demand system. We estimated this model considering 180 commodities which, to our knowledge,

is the largest amount of goods that have been used in this approach. We think we have overcome

the problem of welfare calculation using a sequential quadratic programming method to �nd

the optimal quantities needed to perform welfare analysis. The paper contributes to model the

multiple discrete continuous choice model, adding greater �exibility to include richer substitution

patterns.
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Table 1: Maximum number of sites available for each subspecies

Species Number of sites Species Number of sites
King 21 Lake Trout 7
Red 17 Arctic Grayling 11
Silver 24 Other Freshwater 9
Pink 11 Halibut 7
Rainbow Trout 19 Razor Clam 2
Dolly Varden 17 Other Saltwater 7

No target 29

total 181

Table 2. ML estimates of KT model
variable estimates s.e. Est./s.e.
Scale µ 0.335 0.016 21.596
Constante δ0 -3.197 0.583 -5.487
Skill δ1 2.835 0.432 6.568
Leisure δ2 -0.052 0.258 -0.203
Avlong δ3 -0.775 0.198 -3.921
own δ4 -0.024 0.072 -0.330
site focus δ5 0.030 0.073 0.417
boatown δ6 1.758 0.108 16.266
trophy δ7 0.646 0.133 4.847
release δ8 -0.082 0.120 -0.681
cabin δ9 2.338 0.153 15.302
Crowding δ10 6.065 3.294 1.841
theta θ 2.452 0.117 20.950
quality γ1 23.675 1.204 19.657
harvest γ2 17.326 1.230 14.090
Devp γ3 0.037 0.044 0.849
rho ρ -3.005 1.089 -2.760
Mean log-likelihood -21.3683
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Table 3. ML estimates of Translog KT model
variable estimates s.e. Est./s.e.
Scale µ -0.5692 0.0125 -45.676
Constante δ0 -8.6695 0.0873 -99.341
Skill δ1 1.0125 0.2427 4.173
Leisure δ2 0.0074 0.0672 0.111
Avlong δ3 -0.6443 0.126 -5.115
own δ4 -0.034 0.0407 -0.835
site focus δ5 -0.0126 0.0447 -0.281
boatown δ6 0.6715 0.0766 8.762
trophy δ7 0.1627 0.0687 2.369
release δ8 0.1658 0.0557 2.975
cabin δ9 0.9502 0.0642 14.795
Crowding δ10 1.8153 1.5288 1.187
theta θ 1.2025 0.0789 15.237
quality γ1 29.4915 1.8626 15.834
harvest γ2 -1.6007 0.8734 -1.833
Devp γ3 -0.0272 0.0518 -0.524
D1 0.0013 0.0001 19.317
D2 0.002 0.0001 16.833
D3 0.0014 0.0001 16.736
D4 0.0045 0.0003 15.631
D5 0.0021 0.0001 18.541
D6 0.0035 0.0003 13.761
D7 0.0057 0.0004 14.867
D8 0.0031 0.0002 16.324
D9 0.0044 0.0003 13.267
D10 0.0028 0.0002 12.020
D11 0.0142 0.0014 10.471
D12 0.0069 0.0006 11.585
D13 0.0011 0.0001 17.421
Mean log-likelihood -20.1912

mean Total
Per choice
occasion mean Total

Per choice
occasion

Gulkana river all Species -8.37 -8898.36 -1.11 -7.51 -7981.35 -0.996
Gulkana river all Salmon -1.85 -1968.59 -0.25 -1.47 -1559.49 -0.19
Gulkana river King salmon -1.14 -1210.81 -0.15 -0.99 -1053.01 -0.13
Gulkana river Red salmon -0.71 -757.70 -0.09 -0.47 -504.19 -0.06
Gulkana river All FW -5.60 -5950.95 -0.74 -7.13 -7576.15 -0.95
Gulkana River Rainbow trout -3.68 -3914.65 -0.49 -4.94 -5247.84 -0.65
Gulkana River Grayling -1.92 -2036.22 -0.25 -1.51 -1600.28 -0.20
Kenai River all species -4.14 -4400.67 -0.55 -3.04 -3233.42 -0.40
Kenai River King -1.64 -1740.26 -0.22 -1.48 -1575.98 -0.20

Table 4. Mean WTP KT model
Separable utility function Translog
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