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ABSTRACT OF THE DISSERTATION
Topics on Hessian type equations
By
Yi-Lin Tsai
Doctor of Philosophy in Mathematics
University of California, Irvine, 2024

Professor Xiangwen Zhang, Chair

We study some selected topics on Hessian type equations.

In the first chapter, our goal to generalize the quantitative version of the constant rank
theorem by Székelyhidi-Weinkove onto Hermitian manifolds and the complex coordinate
space. As an application, we also study some properties of Ricci tensors based on the

theorem we get.

In the second chapter, we consider C? estimates for complex Hessian equations involving
gradient terms. In particular, we study special cases when the eigenvalues are bounded

below.

In the third chapter, we study the long-time existence and convergence of parabolic complex

Hessian type equations whose second order operator is not necessarily convex or concave.
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Chapter 1

Constant rank theorem on Hermitian

manifolds

1.1 Introduction

Constant rank theorem (or microscopic convexity principle) was first studied by Caffarelli-

Friedman [6] for convex solutions of the following semilinear elliptic equations,
Au = f(Vu,u,r) on 2 C R?.

Yau [20] has a similar result at about the same time. Later, it was further studied by
Korevaar-Lewis [16], Caffarelli-Guan-Ma [7], Bian-Guan [3, 4], and many other mathemati-
cians under different settings. For related generalization to complex cases, it was studied by
Li, Guan and Zhang [17, 13]. The theorem is a useful tool in the study of the existence of

convex solutions of PDEs [14] and geometric properties of the solutions. In the paper [3],



Bian-Guan consider the convex solutions of
F (D2u, Du,u,x) =0

under some structural conditions on F'. The original proof of constant rank theorems consider

test functions of the form o, + :i, where oy, is the elementary symmetric function on the
eigenvalues of D?*u. Székelyhidi-Weinkove [21] later provided a new proof by considering the

following test function.
Ao+ 20621 + o + kA,

where 0 < \; < ... <\, are eigenvalues of D?u. The key point is that A\ +2\,_1 + ... + k\;
is semi-concave, so it is twice differentiable almost everywhere. Motivated by Brendle-Choi-
Daskalopoulos [5], they compute the derivatives of eigenvalues directly and give a quantitative
version of the constant rank theorem by the weak Harnack inequality in [22]. We would like
to apply their methods to Hermitian manifolds and general cases on complex coordinate

spaces. We will describe the setting below.

Let W;; be a (1,1) smooth Hermitian tensor on a Hermitian manifold (M, g). Define A =

Wa,;g’_“b. Suppose A is semi-positive definite, we consider the following C? real function on

(M, g).
F(Az)=f(A(A),z) =0, where f is a symmetric function of eigenvalues.
Fix a coordinate ball B, we require F' to be elliptic with the elliptic constant A (B).

AN (B) €] < F™¢,& < A(B) €[



Also, we require F' to satisfy the following conjugate condition.

- - — _ OF - ;
Fab = pb [ijrs — AT and Fabie = Feb® where @gkb = . (1.1.1)

This condition is used when we do term-by-term calculations. The conjugate condition
ensures that the terms we study are real. Next, we need certain positivity conditions and
constraints on the tensor. We first recall the conditions that is required for the constant

rank theorem on the Riemannian manifolds [7][3].

F (A", z) is locally convex in (A, z). (1.1.2)

Wik is symmetric in 4, j and k.

Our main challenge is to find suitable conditions on Hermitian manifolds. Furthermore, our
conditions should be consistent with the ones studied by Li, Guan and Zhang [17, 13] in the

complex setting. We will discuss these two questions below.

Question 1: What is a suitable positivity condition on F?

In [2], Andrews uses inverse concavity to describe (1.1.2).
f is inverse-concave if f (A, ..., \n) = f (A\Th, ., A1) is a convex function. (1.1.3)

The inverse concavity of f is the same as F' (A™!) being locally convex in A when f is defined
on the positive cone I',,. Motivated by the definition of inverse-concave, we say a function h

is exponential-convex if
h* (A, .. \n) = h (e’\l, ey e’\") is a convex function. (1.1.4)

In fact, the exponential-convexity is our desired condition. We will discuss this condition in



section 1.2.3 in details. We first state our condition precisely. Define f* (A, z) = f (e>‘, z),

where e} = (e’\l, - e’\”). And p is a 2n dimensional vector.

e =g, 1 <k<n. ppp=2 1 <k<n.

When \; > 0, for all 7, we require the following condition.

82 f*
O 0p;

> 0. (1.1.5)

Note that since Ay are real, u; = g for 1 < k < n.

Question 2: What is a suitable condition on W ¢

Similar to the symmetry condition on Riemannian manifolds, the condition people usually

impose on the Kahler manifolds is the following symmetry condition.

We can require the same symmetry condition on the Hermitian manifolds as well. But based
on calculations, we believe that W being closed should be a more suitable condition. And
on Kahler manifolds, the conditions that W being closed coincides with Wiz, = W5, We

have the following theorem.

Theorem 1.1.1. Suppose F (A,z2) = f(A(A),2) being C* and elliptic satisfies the conju-
gate condition (1.1.1) and the positivity condition (1.1.5). Let 0 < A\ < --- < X, be the

eigenvalues of Ab. If either one of the following condition holds,

1. W is closed and the orthogonal bisectional curvature R,zz5 > 0

2. Wiz = Wi and R,ps5 > 0,



then for any given coordinate chart Bi(p) on M, there ezist positive constants Cy, q depending

onn, p, W, F, M and g such that for eachl =1,...,n,

[Aillza(s,,0) < Co ;nf A\l

1/2

In particular, A% has constant rank in By(p). Suppose that furthermore the smallest eigen-
value of A% is 0 at one point and the curvature tensor (Roapp or Rappa) is strictly positive

at some point in By, then A® = 0.

Besides on the Hermitian manifold, we also have the following version for the complex
coordinate space. We consider the following function on C".

F (uij,uk,u,;,u, z) =0 on By, (1.1.6)
where (u;) > 0, w € C* and F is a C* uniformly elliptic functions. Also we require F

to satisfy similar conjugate conditions and positivity conditions like before. For the exact

conditions, please see section 1.4.3. We have the following theorem.

Theorem 1.1.2. Suppose F (uij,uk,u,;,u,z) satisfies the conjugate condition (1.4.6) and
the positivity condition (1.4.7) or (1.4.8). Let 0 < Ay < --- < Ay, be the eigenvalues of w;.
There exist positive constants Cy,q depending on n, ||ullqs, [|[F|lc2 and elliptic constants

such that for each l =1,...,n,

||/\ZHL‘1(B1/2) < Cy inf A;.
By

We now describe the outline of this chapter. In section 2, we first recall some definitions for

Hermitian manifolds and semi-concavity. And we discuss the positivity conditions in details.



In section 3, our goal is to prove a key differential inequality similar to [22, Lemma 3.1].

n l
FQas < C1Q +C2 Y > [Aaal + Co, (1.1.7)

a=1 a=1

where Q = 32! 5™ A,. The first half of this section is devoted to studying the sec-
ond derivatives of eigenvalues on Hermitian manifolds, and the second part is to get above

inequality from term-by-term calculations.

In section 4, we finish the proof for theorem 1.1.1, study the special case and give an outline

for the proof of theorem 1.1.2.

In section 5, we consider the Ricci curvature tensor as an example. In the first half, we
consider the case when the Ricci tensor is closed. We study the condition for it to be closed,
and pick up a function satisfying the structural conditions and get corollary 1.5.2. In the
second half, we consider the case when the Ricci tensor satisfies R;j5, = Ry;;. Motivated by
Kéhler-like [24] manifolds and CAS [18] manifolds, we consider a special type of Hermitian

manifold and obtain corollary 1.5.5 by applying theorem 1.1.1.

1.2 Preliminary

1.2.1 Basic notations for Hermitian manifolds

We follow the notation of [11]. For a quick introduction to the background materials for
Hermitian manifolds, we refer to the first chapter of [19]. Let (M™, g) be a Hermitian

manifold. V will always denote the Chern connection in this note. In local coordinate



o 0 _ -
gi; =9 (@, %) and [gzﬁ] 1 _ [gz]] .

The Christoffel symbols, torsion tensors and curvature tensors in local coordinates are defined

as follows.
0 ;0 I
Vi o2k FJ”“@ = 970Gk

Tz]; = Ffj - F?i = g" (aigjl_ - ajgil_) .

Ry = — gm0 = —0i059u + gpqaigkqajgp['
In particular,

I _pl . oml _ oo _ -
ij = Fji?; - 0 Gmi; and R = R

A Hermitian manifold is said to have nonnegative orthogonal bisectional curvature if for any
orthonormal basis {e.}, R,s53 > 0 for any a # (. Also, we have Bianchi identities for

curvature tensors.

Rigir — Bt = 9miViTri = Vil (1.2.1)

Vo Ry — ViR 50 = T R (1.2.2)



1.2.2 Concavity of eigenvalues

A real-valued function f on a bounded convex set B is semi-concave if there exists a constant

M such that
f(z) ;‘ f(y) _f <;1;—21-y) < M|z — y|27 for all z,y € B. (1.2.3)

Observe that all C? functions are semi-concave. By Alexandrov’s theorem, a semi-concave
function is twice differentiable almost everywhere (it means that there is a second order
Taylor expansion almost everywhere.) For more details, we refer to [8]. We have the following

well-known proposition.

Proposition 1.2.1. Let A\ () < M (z) < ... < N\, (x) be eigenvalues of g7'W. On a

coordinate ball By (0), the map By (0) — R given by

= A () + A (2) + o+ A ()

18 semi-concave for each k = 1,...,n. In particular, \; is twice differentiable almost every-

where for all © on the coordinate ball.

Proof. The proof is similar to the proof for real case [22, Proposition 2.1]. Let o (A) =
A1 (A)+As (A)+...4+ XAk (A) be a function defined on Hermitian matrices. Then o is increasing,
concave and Lipschitz continuous with Lipschitz constant depending only on n and k (see

[22]). Write

A=g'W =X +1Y,

where X and Y are real symmetric n by n matrices. Denote the (a,b) component of A as Agy.

Note that all the components of X and Y are C? functions, so X, and Y, are semi-concave.



For z and y in B (0), we have

‘A ();Aab Aab(“y)‘

2
g ()|

§M1|I—?J| .

Now the absolute value of every entry for the matrix w —A (’”T“’) is bounded. By

Gershgorin circle theorem, all the eigenvalues are hence bounded. Therefore, there exists a

constant M, such that

A A (2t
2 2

) < My |z —y|’ Id.

Since o is increasing, concave and Lipschitz continuous, we have

"L AW) (4 (247))

)
S"(A<I;y>+Mz|x—yFId) —a<A(f’f;y)>

< Clz—yl*.




1.2.3 Positivity condition

To study the positivity condition, let’s simplify our function to be F'(A). For the real case,

when we study the constant rank theorem [7], we require the following condition.

A€ Sym) (R) — F (A™") islocally convex. (1.2.4)
Diagonalize A and write in terms of index, it becomes

FOrs X oy X + FPA" X Xy + FPA X, X, >0, X € M, (R). (1.2.5)

In the real case, we can actually require X,;, to be symmetric during our computation. For

example,
if A= D?u, X = Uga. o is a given direction.

And both terms F®A™ X, X, + F®A™X,,X,, can be combined in the computation once
X is symmetric. However, in complex case, the above scenario doesn’t hold. If we require

a similar condition like (1.2.4), equation (1.2.5) becomes
FO5X X+ FPA" X Xy 4+ FPATX,5X,2 >0, X € M, (C).

In the complex case, we cannot require X ; to be Hermitian. For example,
if A= (ulg) , X = Ugpo- 18 a given direction.

Therefore, these the two terms F “BAWXMX_M + F“EAWXN;XN—L cannot be combined since

X5 = Ugg, 1s not Hermitian, which will cause troubles during the computation. We can only

deal with one term, and therefore, the possible positivity condition we can impose becomes

10



(see also [13])
FrsX X oo+ FPA7" X, X > 0, X € M, (C). (1.2.6)

If F(A) = f(A(A))isin fact a symmetric function of the eigenvalues, we have an alternative
viewpoint to understand the condition (1.2.6). Motivated by Andrews’ work [2], in which he

describes (1.2.5) by using inverse concavity (1.1.3), we have the following proposition.

Proposition 1.2.2. Let f(A(A)) be a symmetric function of eigenvalues defining on the

positive cone I';, = {\ € R"|\; > 0 for all i}. The following are equivalent.
1. f is exponential-convex (1.1.4).
2. fij + %&j 15 positive semidefinite.
]
o figo it ; ; Ja 4 fa—fq
3. fij + Y 0i; is positive semidefinite and ot /\a_;; >0 fora+#q.
4. F‘“_”’@Xa,;X_s?:jL Fab AT X X, > 0, X € M,,(C) and A™™ is the inverse matriz of A.

Remark 1.2.3. Tt is well-known that quite a few functions satisfy condition 2 in proposition

1.2.2. For example,
f=logor(\) or f =0y (N for any p >0, (1.2.7)
where

ok (A, oy An) = > Ay Aiy o Aiys k> 1

1< <2<, < <n

Proof. We first show (3) and (4) are equivalent. Let A be diagonalized. Since F' is a

symmetric function of the eigenvalues, it is known that (see Andrews [1], Gerhardt [10])

11



Fr3X 5 X = [ Xa X7 +ZA _A | Xugl® - (1.2.9)
a#q
Therefore,
Fal_),réxaEX_SF_'_ FaEAeran_bf
XaX5 Ja X, fa X
= fij v aal” +Z S _A | Xoql*- (1.2.10)

a#q

By choosing suitable X, it is clear that (3) and (4) are equivalent from (1.2.10).

Define f* (X) = f (&), where e* = (e, ...,e*). We next show that (1) and (2) are equiva-

lent.

an*
NN,

fis

J

> 0 on R" if and only if (fzj > >0onI,. (1.2.11)

Indeed, suppose f is exponential convex,

o’ 0 (of 9eM\ 9 f deMoer  Of 0%
8)\18)\3 N O\ Oeli 8)\3 N DeliDeli 8)\J 8)\1 Oeli 8/\18/\]
o*f af
:W J€Z+—€ 1(5@20
Substituting A\; = log u1; into above equation and multiplying the equation with u;l p; ! give

the result. Reversing above procedures proves the other direction.

Our last goal is to prove (1) implies (3). First we observe that the following two conditions

are equivalent.

2w 8fA if A > A (1.2.12)

f fa fq > 0 if and only if N, o,

)\ )\—)\

12



By restriction to the variables (\;, A;), it suffices to prove (1.2.12) when there are only two

variables (see also [9, Lemma 2]). In other words, we will show

0 0 )
xoa—gfc (xoyyo) > yoa—Jyp (x()a yo) if o > yo. (1~2~13)

Consider the following staight line 7 (¢) orthogonal to the diagonal {x = y} through (g, 5o).

v (t) = (g — t, fo + 1) and g > fo.

Since f* is convex and symmetric, f*|, attains minimum at ¢ = 3 (ap — o). At t =0, 7 (?)
moves toward the diagonal when ¢ increases. Therefore, % f* <0 when t =0.
df*| _of 8ex+8f oeY
dt """ ev Ot ' Dev Ot
=—f (eao’ 650) e fy (eao’ 650) ePo

Plug in ag = logzg and Sy = logyy. (1.2.13) is proved. Therefore, (1) implies (3), and the

proof is complete. n

For F' (A,z) = f (A (A), z), we have similar results as above proposition. One can show that

the following are equivalent.

Corollary 1.2.4. Let f(A(A),z) € C*(T,, M). The following positivity conditions are

equivalent.

1. f is exponential-convex (1.1.5).

fz’jQ‘C_j + fi\! ‘Ci‘2 + ffﬁfz'% + ff&ﬂaa + +fF* 0,15 > 0, (1.2.14)

13



where n and ¢ € C".
3. f satisfies equation (1.2.14) and {—‘; + /{Z—:f\z >0 fora+#q.

4.
FoX X+ FPA™ X X + F% X 5 + Fb, X + Fo%m, 75 > 0,

where X € M, (C) and n € C".

1.3 A differential inequality

1.3.1 Derivatives of eigenvalues

Based on the approach of Székelyhidi-Weinkove [22] and Brendle-Choi-Daskalopoulos [5], we

try to compute the derivatives of eigenvalue on Hermitian manifolds.

Fix an zy at which the \; are twice differentiable. We choose a local coordinate so that

at the point x¢, g;; = d;;, and W is diagonal. In particular, we may assume \; = W at x.
M= =Xy <Ay = = Ay < Ay = - = Ay = M-

Define 1y = 0 so that the multiplicities of the eigenvalues of A at xy are p; — pg, o —
M1, iy — pn—1. We are using covariant derivatives with respect to Chern connection

below.

14



Lemma 1.3.1. For each j =1,2,..., N we have at x,

Vi (Wi) = Vi(Aigp; 1) 0m (1.3.1)

Vi Wir) = V(A iy, )0kt (1.3.2)
for 14+ pi <kl <pjandi=1,2,... n.
Proof. We will prove by induction. First show j =1

Vi(Wig) = VilAigpy,_ )0w, for 1 <k 1<y, 1<i<n. (1.3.3)
Consider the following function in a neighborhood U of x.

h= AV — Mgy ViV!
= VVkl‘VkW - Algkl_vkwa
where V' = Vi% is a vector field defined on U, and \; is the first eigenvalue of A. Since h
is a scalar function, it is invariant under coordinate transformation. At each point y € U,

we may pick a coordinate such that g;; (y) = and \; will become the first eigenvalue of

(7R
W, (y) in this particular coordinate. Hence h > 0 in U. We set V¥ = 0 for k > ;. It

follows that at xg, h (z9) = 0, and V;h = V;h = 0. Observe that at zg,
Wi (ViVF) V= \igyr (ViVF) VI

= Wi (VVF) VE =M\ (ViVF) VE =0,

k<pi

15



Similarly, W;V* <V1W> — MguVE <V1W> = 0. Therefore,

0=V;h+V;h

= (VWi + ViW) VIV — (Vi dy + Vo) gV FVL

Observe that V,Wy; + V:Wir — (ViA1 + Vi) gii is a (g X 1) Hermitian matrix. Since

V*(xq) can be arbitrary for k < py, we have
VWi + VW= (Vidi + Vi) gup, 1 < k1< ppand 1 <i <n.

Similarly, v/—1(V:h —V;h) = 0 and V=1 (V:W,; — VW) — V=1 (Vidi — Vi) g4 1s a

(1 X p1) Hermitian matrix. We have
(VTWIJ_ Vlwk[) = (Vf)\l — Vi)‘l)gkfa 1 S k‘,l S M1 and 1 S 1 S n.

Therefore, (1.3.3) holds.

Assume (1.3.1) and (1.3.2) holds for 1 < j < p. Let V4,...,Vi4,, be orthonormal vector
fields in U. Also let Vi (x),...,V,, (xo) be the constant vectors in the 0/0z,...,0/0z2,,

directions. In other words,

h

V; (z0) = (0, ...1,...,0) , only nonzero in i"* component. 1 <i < pu,

Let Vi, (zo) be the unit vector in the span of the directions 9/0z14,,, . ..,9/0%,,.,. Denote

X - ‘/1"'”1)'

Recall that A1y, , has multiplicity (; — ;1)

16



T+pp p
h = Z AZVO{CVZO‘ - (Z — Hj-1 )‘1+M3 1> - )‘1+Mp

Jj=1
T+pp

= Z Wlele Z Z /\1+uj—1gkfvoicvolz - )\H‘Mp

J=1 1+p; 1<a<u;

= Z Z (Wit = Aty G VA VE+ Wi XFXT = Ay

J=1 1+pj1<a<p;

h(zg) = 0 and h(z) > 0 for z near z,. By induction hypothesis and the same reasoning as

above, we have

= Y (VW + VW) XEXT — (Vidiay, + Vidig,, ) guX X0

14pp <k I<pip41

Observe that (V; Wy + VW) — (Vidigp, + Vidigy, ) g can be viewed as a (g1 — 1) X
(ftp+1 — pp) Hermitian matrix. Since X¥(xg) can be arbitrary for 1+ p, < k < p,iq, we

obtain
(Vi+ Vi) Wig = (Vi+ Vo) My, ity L+ ptp < k1 < prpyg and 1 <d <.

Same as the case for j = 1, by considering (V; — V;) h as well, we proved (1.3.1) and (1.3.2)

for j = p+ 1. By induction, equation (1.3.1) and (1.3.2) are true.

At the same x(, we fix m between 1 and n. Define p € {m,m +1,...,n} to be the largest

integer such that A\, = A, at x¢, so that

OS)\lgS/\m:>\m+1::>\p<)\p+1§§>\n

17



Lemma 1.3.2. As a Hermitian n X n matrices we have at xg,

> (M) < Z waah T Z > ( aaa V. szq"_miq ) (1.3.4)

a=1 a=1 ¢>p

Proof. Let Vi, ...,V,, be smooth holomorphic vector fields defined in a neighborhood of z,
and these vector fields are mutually orthonormal to each other. We assume V,(z) is the
unit vector in the 9/9z, direction. In particular, writing V,, = V! ad” we have VI = §,, at

Zg-

We consider the quantity

h(z) = AVIVE =3 AaguViVe

a=1

WyVEVE - ZAagkl_ Vi,

M

|
||M3

which has h(x¢) = 0 and h(z) > 0 for x near z,. In particular, h achieves its local minimum
at xp, and moreover, h is twice differentiable at xy. We prescribe the first and second
derivatives of the V,, at zq as follows (see lemma 1.6.1 for the existence). For 1 < a < m,

and 1 < a <n,

( (
0, q < p. 0, q =< p.
VoV (30) = VaVa (z0) =
WOAja ana
L Aa—Ag’ q>p. L Aa—Ag’ q>p-
( (
Vo Vi (xg) = VaVi (x0) =
Wq&a, Woaja
da—ng' 47 P [ e q > p.
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Forl1 <a,8 <mand 1l <a,b<n, we define

1 WaQanﬂ_l_; 1 Wmil_:wqﬁa
VIV ) = 5 2 s ) 22 D= A <

- Eaﬁaagaﬁ + 585977138&9&771'
Similarly, we can define V3V, V2 by the following relation.

ViV V2 (20) = VoV Vi + 9,77

= Vdvbv_aﬁ + al_;aagaﬁ - al;gmﬁaagaﬁl-

We check that these prescribed values are consistent with the V,, being orthonormal vectors.

At xg, for a, 6 =1,...,m,

Vo (9aV2VE) =V (Z vsv_g) = D_(VaVaVi + 3 ViV Vi = 0.

q q q

Note that VI =0 if ¢ > m and V,V and vav_g vanish when ¢ < m. And

ViVa (gkiVak 7&)

= (VVO(VV + ) (ViV(VaVE) + ViVaV, + ViV Vs

q>p q>p

. aga Bb ab Ba
Z/\ = A@j Z/\ ) AﬁiA

Z Waanq B Z WaquqBa
(>‘ —A )()‘ﬁ - )‘q> >p (Aa - Aq)()‘ﬁ - )‘q)

q>p

=0

as required.

19



Since h has a minimum at xy, the complex Hessian is positive definite at z.

0 < hab - Z aaab —
+ Wi, (vgvm + vaﬂ) + Wi (VaVAVE+ VIV

Wiy (v,—,vavjﬁ + VL VEVVL 4 VVEV, VT 4+ vjvgvi;) .

For « fixed
Wi (VoVEVE+ VEVVE) = > W Woar_yyyPaat_
kla bVa Va a VbVa qaa/\ _)\ aqa/\a_>\q
7>p
Wi (WV’“W + VkVaW) Z b Woge 7b Woa
a’a a a — qa )\ _)\ aq A — \

W (VaVa VAV + V VAV 4+ VVEY, VT + vjvgvaﬁ)

= Waa (ViVaVit + ViVaVE) + Wog (VVIVVE + V3Vav,VE)

WeagaWoah W,aWaa
_ )\a aqa V'V qab i agb’’ qaa
< ; ()‘ —A )()‘a - )‘q) ;p (/\a - /\q)()‘oz - )‘q)

Wa@a Wq&b Wacjl_) qua
EEUD DS et w wis whh Wi by w

ab Wda
- (S )

a>p

Substituting (1.3.6) and (1.3.7) into (1.3.5) gives (1.3.4).

20

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)



1.3.2 The key differential inequality.

Let B; be a coordinate chart. At a point g € B; where the )\; are twice differentiable,
we pick a coordinate such that g;; = d;;, and W;; is diagonal with entries Wj; = Wig™ = \;.
Let

=33

m=1 a=1

Lemma 1.3.3. The following inequality holds at xq.

n l
FQua < C1Q+C2 Y > [Aaal + Co. (1.3.9)

a=1 a=1

When W is closed, the constant Cy < 0 if R > 0. When W5, = W3, the constant Cy < 0

tjj
if Ri5;7 > 0. And all the constants above are independent of any choice of orthonormal basis.

Note that we have the following constants.

C = sup sup { A+ A7V [¢” < P, < e}

2€B7

Cw = sup sup {}VV@,J + ‘VVZE,;| : the basis 21, ...2,, Z1, ..., Zn 1S orthonormal w.r.t. g} .
ZGE

Cr = sup sup { Roaaa : the basis 21, ...2,, 21, ..., Z, is orthonormal w.r.t. g}.
zEE

Cy = sup sup {|| f|| = : the basis z1,...2y, 21, ..., 2, is orthonormal w.r.t. g}

ZEE

Cy, Cw, Cr and Cf are well-defined constants since orthonormal frame at each point is

homeomorphic to the orthogonal group which is compact, and B; is compact as well.

We first consider the case that W is closed. By taking two covariant derivative, at xq, we
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have

0 = F W ana + FO W5 Wyss + FO2W 5 + F7W o 4 e (1.3.10)
Since W is closed, 0, W;; = 0;W);. We have

Wik = Whgi = Tz‘lkVVlj' (1.3.11)

Since W is closed and Hermitian, by direct computation, we have the following formula for

commuting derivatives at zy. (See Lemma 1.6.2.)

Wik — Wikss = BirssWes — RegieWir + 2 Re {TsJkWsjk} - }Tsjk‘ Wji :

By above formula, we have

FW oo (1.3.12)

S FaaWaaa& + C)\a + Faa <_Ra5¢aaWa@ + Tgand& + T.q‘a ogqa |Tga|2 qu) .
Note that
2Re {Toqaz oaja} - |To(41a|2 qu

SC Y Waal + Chaa + D (T8 Waaa + TeaWoga — T2 Wag) (1.3.13)

b<py,b#c qa>p

where p; € {l,l 4+ 1,...,n} is the largest integer such that A\, = A, at zo. Using equation
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(1.3.4), we get

l m
Fa&Qaa _ Z ZF(L&()\

m=1 a=1
l m l m
ad aa [ WeaaWaga | WagaWiaa
<Y Y F'Wosaa+ 3> Y F < e e ) (1.3.14)
m=1 a=1 m=1 a=1 q¢>pm

By equation (1.3.10) and (1.3.12), we have

F " Wagaa < —F® W5 Wisa — F5 W, — FW 55 — Fio% (1.3.15)

+ Fad <_Ra&a6WaEL + Taanqaa + To(cla aqga ‘ aa‘2 qu) + C)\a'
Let’s analyze above equation term by term. First of all,

— PR g, — Fo Wy

— —2Re { PP W, b = —2Re { 05 (W, + Te, W) |

S_Z(Fabzawba anbawbm)+0|xw|+ > Wl +CQ (1.3.16)
b>p; 1<a<n
bSPlJ’?éa

For the following term,

—Febrsyy, baWrsa = E Febrsyy W 5aWisa + remaining terms.

b>py,r>p

There are three cases in the remaining terms. (i)b < p; and r < p;. (i) b > p; and r < p;.
(17i) b < p; and r > p;. Let b = o and 1 < r < n be an arbitrary fixed integer. Consider the

following expression. If (s,r) # (a, «), we have

ad,rs sT,0a
- F ’ Wa&aWTEd - F ’ WsFaWaa&

= —2Re {F*"* (Waaa + ToaWia) Wisa } < C|Aaal + CAa.
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If (s,r) = (a,), we have
—F* %W 50 Waaa < C [ Aaal + CAa-
Let b#Aa,r#a,b<p and r < p. If (s,7) # (a,b), we have
—FOW o Wsa — F Y W Wiaa < C [Waga| + CQ.
If (s,r) = (a,b), we have
— P [Wogal* < C (W] + CQ.
Let b # a, r # a, b > p; and r < p;. We have
—FPISW 5 Wosa — F YW Wiaa < C W] + CQ.
Combine all the cases, we get

FabrsW baWTsa < - Z Fabrs aba rsa"_zc‘)\aaH_ Z O| ba|+OQ‘ (1317)

b>pr,r>p; bi<ab<72
P07

Next, we show that following inequality is true.

-1 m
ai [ WaaaWoqa | WagaWoaa
Yo CWal<CQ+>Y > Y F (Aq_Aa ) (1.3.18)
1<a<n m=1a=1 ;. <4<y,
bSplvb#a

1.3.2.1 Estimate |[W_;,|

For the term ) i1<a<n C'|W,3,|. We separate it into two cases.
bSPlvb7éO‘
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1.3.2.1.1 Case 1. b > o Rewrite b as ¢. By Lemma 1.3.1, it follows that |[Wg,| = 0 if
Ay = Aq since g # a. Therefore, ¢ > p,.

|Waqa|

_ < — It el S,
|Waqa| — CO ()‘q A ) OO (A _)\ )

Cy to be fixed.

l m -1 n
ZZ Z C‘Wo‘qa’ S C Z |Watja| S CZ Z Z|Wa6a‘

m=1 a=1 1<a<n 1<a<n a=1 pa<q<lp; a=1
a<q<p 1<a<q<pz
Fe Waanqaa
<CZ > (a= ) +Z 2 o
a=1 pa<q<p a=1 pa<q<p
-1 m
Fe Waanqaa
<SCQ+Y D> > TR (1.3.19)
m=1a=1 ., <4<p,

where in the second line we have to pick a large constant Cy depending on the elliptic

constant of (F “l_’).
1.3.2.1.2 Case 2. b<a [Wy,|=0if A, = A, since b # a. Therefore, o > py.

Wapal”
’Wal_)a‘ S C’0 ()\a - )\b) + C()|<)\a—b—|)\b>' Co to be fixed.

L -1 n
33 % CWalsC T Wl X3 Ml
m=1

=1 a=11<a<n 1<a<n b=1 pp<a<p; a=1
b<a 1<b<a<pl
kab k
2SS INRENES 3y —“
(Mo — Ap)
b=1 pp<a<p b=1 pp<a<p;
-1
m P Wt Wog

<CQ+Y D> Y g (1.3.20)

m=1 a=1 pm<a<py
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Althogh W is only semi-positive definite, we can still apply the positivity condition (1.2.4)

(see [3, Lemma 3.1]). At xq, our choice of coordinate implies

o _ 1 _ _ o ~
Fab,rsXaBXSF + FGGW‘X&(Y‘X@@ + Fab,zBXaBn—ﬁ_i_ an,banaXal; + an,zﬁnan_ﬁ Z 07
qq

where ¢ > p; and X ; = 0 if b < p;. For each fixed a, we set

Wie ifb>py 1 ifa=a«
X = Ne = . (1.3.21)
0 otherwise, 0 otherwise,

Therefore, we have

Z Fab rs aba g Z (Fab zaW o+ [z baWb ) _an,za < Z Faa Waéan&d'

Aq
b>pi,r>py b>p; qa>p
(1.3.22)
Note that
W WagaWaa
a>py Aq
5 o (Waga + T Wig) (Wasa + TLWog)
— FCLa
a>p Ag
Wa aW aa a Tq a
<Y Fe iy o (Waanga + T Woaa + TjaTganq> . (1.3.23)

q>p;

Combining equation (1.3.13), (1.3.14), (1.3.15), (1.3.16), (1.3.17), (1.3.18), (1.3.22), and
(1.3.23), we get

l m
FG&Q@@ _ ZZF(LE()\ ) ~

m=1 a=1

Z 3 P (= RugaaWaa) + C Al +CQ. (1.3.24)

m=1 a=1

26



The constants C' depending on Cy, Cy, Cr and C are independent of any orthonormal

basis.

Next, we consider the case W5, = W,;. The only difference is how we commute the

derivatives. By direct computation (see Lemma 1.6.2), it follows that
Wik, = Wikt = RigrdWir — Ry Wi
By above formula, we have

FQ&Wada& - FaﬁWanad - Fa(_l (ch&adWan - Raz‘dea&)

< F*Waaaa — F*RogaaWaa + Cha.

By similar reasoning above, we have
!

FaaQa?z S - Z i FaaRa&adWa& + C |)\a,a| + CQ

m=1 a=1

1.4 Proof of the theorem

1.4.1 Eigenvalue inequality

With the key differential inequality, the proof of eigenvalue inequality is the same as the
proof in Székelyhidi-Weinkove [22]. We only outline the key steps below. Let Qr = A\, +
2Xg_1+- -+ kA1, which is semi-concave. From previous section, once the curvature condition

is satisfied, we have almost everywhere

n k
FPQr)ap < CQu + C’Z Z |Aa.a| for C uniformly bounded. (1.4.1)

a=1 a=1
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For e > 0 and a fixed [ € {1,2,...,n}, we consider

l
R= ZQk—l-Sl/Q
k=1

Following [22], R is semi-concave with a constant of semi-concavity depending on €. At a

twice differentiable point g, we pick a coordinate such that g; = d;; and W;;

;7 1s diagonal.

We have

! P
SCR+CY(Qu+e) 2 Y IDhal —e Y (Qu+e) 2 [DQI*.

k=1 a=1 k=1

for uniform constants C, ¢ > 0. The rest computation is the same as [22, (4.1)]. We get at

Zo,
F®R; = F*R,, < CR. (1.4.2)

Note that the constant (1.4.2) depends only on n,Cy, Cw, Cr and Cy. Furthermore, since
equation (1.4.2) is a scalar equation, it is independent of choice of the basis. In particular,
we have F “BRag < C'R almost everywhere in a coordinate ball. Since R is semi-concave, the

weak Harnack inequality [22, Proposition 2.3] implies that for a uniform ¢ > 0 and C,

HRHL‘I(BUQ) < C inf R, (1.4.3)
By 2
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where the constant C' is independent of €. Hence we can let ¢ — 0 and get
[Aullzarz(s, ) < C inf Ar. (1.4.4)
By

This completes the proof of the eigenvalue estimate.

1.4.2 Special case in theorem 1.1.1

With the eigenvalue estimate (1.4.4) in, it follows that A% = W,z¢* has constant rank in a

coordinate ball. Indeed, since eigenvalues are continuous,
{z € By|rank (A) > k} is open in B;.

For any x € By, we apply the eigenvalue estimate (1.4.4) on B, (z) C B; for some small .

{z € By|rank (A) < k} is open in B;.

Therefore {x € By|rank (A) =k} is open and closed in B;. A has constant rank. Let’s
consider the special case when the smallest eigenvalue is zero at some point, and R,545 > 0
at some point. Since A has constant rank, it follows that Ay = 0 in B;. Substitute QQ = )\,

into equation (1.3.24), we have

)\1 aa < Z Faa Rllaa aa) + C |)‘1 a| + C/\l

a>1

< Z Faa Rllaa ) :

a>1
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At the point Ryi,; > 0, for above inequality to hold, W,; has to be 0 for all @ > 1. And once
Wz is zero at one point, by the property of constant rank, it is zero everywhere. Therefore,

all the eigenvalues are zero in Bj.

1.4.3 (" case

We consider
F (A, p,q,u,z) € C? (Hermitian, (C) x C* x C" x R x By (0)).

F is uniformly elliptic. For simplicity, we assume u € C* (B;) and (u23) > 0 is a solution to
F (u

g, ug, U, 2) = 0. (1.4.5)

ij9

Similar to case on Hermitian manifolds, we require a conjugate condition and positivity

condition.

1. Conjugate condition.

FAo = pAo = phs pAobr = pAsbe and FAeBr = phAob- = phebr, (1.4.6)

Here Ay, B, € {ul;,F

5> Wi, Uj, U, Uk, 28, 25}. For example, if Ay = u,; and B, = U,

above condition means

FigsT = [igust — Flijtst — [T — (F”’ST> is Hermitian.
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In particular, for any complex-valued vector X,;, we have

FTX Xy = FP X 3 X, € R

2. Positivity condition. We will consider two cases.

(a) Fisin fact a function of eigenvalues. F (A, p,q,u,z) = f (A(A),p,q,u,z). Let u

be a complex vector in C*"!. We define p as follows.

i = A, 1 <1 <n. Ptk =P, 1 <k <n.

Monsp =28, 1 < B <n. pzne = u.

Define f* (X, p,q,u,z) = f (e*,p,q,u,z), where e* = (e, ..., ). When ); > 0,

Vi, for each ¢ € C", we require

A (1.4.7)

OOt
Note that since A\, are real, u, = g for 1 < k < n.

(b) The general case. Let w be a complex vector in C***+27+1 We define w as follows.

Win—1)it; = A, 1 < 6,5 <. wpag, = p, 1 <k <.

When A is positive definite, for each ¢ € C", we require

0’F

ViV + FPPA™ X 5 Xy > 0, (1.4.8)

where V' is an arbitrary vector in CrH+D* with Vin-1)i+; = X;j. In our current
setting, A;; = w;5, pr = ux and g, = ug. Note that when F' is a function of eigen-

values, these two conditions are equivalent by the same reasoning as proposition
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1.2.2.

Observe that in condition (1.4.8), we only need to consider derivatives with respect to uy,
and don’t have to consider derivatives with respect to uj since ug, = A\oro. With these two
conditions, the rest of computation is essentially the same as the Hermitian manifold case

once we set W;; = u;;. We outline the steps below, and leave the details to the reader.

Step 1. Differentiate equation (1.4.5) twice, pair conjugate terms together, and analyze each

term separately like how we do for W;;. We have the following inequality.

Fal;ual_;a& S C)\Ot + C |)\o¢,a| + Z ¢ ‘ual_)a‘ - Z Fal;,rgual_)aure%? (149)
1<a<n b>py,r>p;
b<p1,b#a

— g (%) — F'% % upauzg — F" " upaug — F" "% ugugy — F % ugq

b>py

Zas Uk o, — u,U U, Z, Za, U ZasZ
— FPtug, — F%"uqug — F%u, — F*%ug — FF%
where
b,ug b, b,z
(*) =2Re {Fa ukual;aufﬂ& + F* uual;auo_t + F zauaga} '

Step 2. Apply the positivity condition (1.4.8) to cancel the extra terms in equation (1.4.9).

We have
F e < Cha+C Dol + > Cluggal + > FPu g0t (1.4.10)
1<a<n q>p
b<pi,b#a

Step 3. Eliminate |u,3,| in equation (1.4.9) by the following negative terms from equation
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- Ugaalags  Uagaleas
X (Eesest)

Step 4. Eliminate F“Buqquaqaqua in equation (1.4.9) by the following negative terms from equa-

tion (1.3.4).

l m

F UggaUoba
STS Y et

m=1 a=1 q¢>p;

Therefore, we obtain the same inequality as equation (1.4.1). Once we obtain this

inequality, the rest of the proof is the same.

1.5 Application and Discussion

In this section, we will discuss some examples of W. Motivated by Guan-Li-Zhang [13], we
would like to consider the curvature tensor R;j; on M in the local coordinate. By taking

the trace, we can define the following Ricci curvatures.
Ry = 9" Ry and R = g" Ry
Also, we can define the scalar curvature.
R = g7g" Ry
We say a tensor is quasi-positive [15][23] if it is nonnegative everywhere and strictly positive

at some point.
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1.5.1 Wj; is closed

Lemma 1.5.1.

1. Ry and Rg) are Hermitian.
2. Rg) is closed.

3. Ry is closed when (divT) ; = V'T};

ijk

=0.

Proof. (1) is straightforward, and (2) follows from the fact that Rg) = —0,0;log det (g;7) -

For (3), by Bianchi identity R = Rygip + VT and Vi, Rysi — Vi Rz = Ty R, we

have

vaz’ij = VmRkﬁ[ + Vi V5T

ViRijmi = ViRy5i0+ ViViLur
Therefore,

ViR — ViR = Ty Rogit + Vi VT — Vi VT
VR — ViRys = 97T}, (Rt + ViT,1) — g7 Vi V5T + g7 ViVl

=T (Rt + V1) = ViV Tyg + ViV
It is clear that R, is closed from above equation when div 7T = 0. ]

From above lemma, by finding functions F (g~ 'W, 2) satisfying the structural conditions, we

have the following corollaries.

Corollary 1.5.2. Let (M, g) be a connected Hermitian manifold with nonnegative orthogonal

bisectional curvature and Ricci curvature. Then we have
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1. If divT = 0 and —log (R + 1) is plurisubharmonic, R,; has constant rank.

2. If —log (R + 1) is plurisubharmonic, Rg) has constant rank.

Remark 1.5.3. We add 1 to avoid R (z) = 0 at some point. It can be any positive constant.

Proof. The proof is immediate. Let’s prove (2). Let W;; = Rg.) and A be the eigenvalues of

W with respect to g. We have the following equation.

f(A\z)=log(o; (A\)+1)—log(R+1)=0. (1.5.1)
To apply the theorem, we require the following condition.

Fi GG+ FANTIGE + F76T5 + fonaG+ f %475 = 0, (1.5.2)

where ¢ and 7 are arbitrary complex-valued vector. From (1.2.7), we know that g (A, z) =
log o1 () satisfies these structure conditions. By direct computation, it follows that i (), z) =

log (071 (A\) 4+ 1) also satisfies

hijGiG + hid 'GP > 0 for any ¢ € C". (1.5.3)

Therefore, if —log (R(2) + 1) is plurisubharmonic, (1.5.2) is satisfied. Then we can apply

theorem 1.1.1. The proof for (1) is the same. O

It is also natural to consider the condition W3, = W, on Hermitian manifolds. It is an
interesting question to find a manifold such that the Ricci curvature tensors satisfy these

conditions. Let’s first consider the following two special types of Hermitian manifolds.
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1. A Hermitian manifold is Chern-Kdhler-like [24] if Riz; = Ry

2. A Hermitian manifold is a CAS manifold [18] if the Chern connection has parallel

torsion and curvature.

We remark that a CAS manifold must be Kéahler-like, and for a Kéahler-like manifold,

Obviously a CAS manifold will have R, = Ryj since the curvature tensor is parallel.
However, the condition seems to be very strong. Observe that the Kahler-like condition is

the same as the first Bianchi identity (1.2.1) being zero.

R — Rygir = 95Vl = 0.

Motivated by the definition of being Kahler-like, we say a manifold is special Kahler-like if
the first Bianchi identity and second Bianchi identity (1.2.2) are both zero. Then the special

Kéhler-like manifold will have R;;;, = Ry;j;. Note that we have the following relations.
CAS C special Kahler-like C Kahler-like.

Remark 1.5.4. We can also consider the case that only the second Bianchi identity is zero.
The second Bianchi identity being zero already implies Rg; = R/(fj)z But it feels more natural

to have both Bianchi identities equal to zero.

Motivated by Guan-Li-Zhang’s result [13], we have the following corollary on compact special

Kahler-like manifold.

Corollary 1.5.5. Let (M, g) be a compact special Kihler-like manifold with quasi-positive

orthogonal bisectional curvature and nonnegative Ricci curvature. Suppose that there exists
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F satisfying the structural conditions in theorem 1.1.1 such that F (97! Ric,z) = 0. Then it

is either Kahler-FEinstein or Ricci-flat.

Proof. First of all, observe that the condition in theorem 1.1.1 has reduced to R,;z5 being

quasi-positive due to the Kahler-like condition.

Suppose it is not Kdahler. We diagonalize R;; at a fixed point. Since the manifold is Kahler-

like, we have

VR — ViR =T}, Ry = 0.

Since some torsion component is not zero, it follows that R;; must be zero for some compo-
nent. Since the orthogonal bisectional curvature is quasi-positive and the smallest eigenvalue

of (Rij) is zero, by theorem 1.1.1, the Ricci curvature must be zero.

Now suppose it is Kdhler and a is the smallest eigenvalue of R;; with respect to the metric.

Let’s consider W;; = R;; — ag;;, and A be the eigenvalues of W with respect to g. Then

F (g’lRic, z) =F (g’1W +al, z) =G (g’ll/V, z) =0,

where G (A) = F (A + al,z). Then G still satisfies the structural condition in theorem 1.1.1
since a is nonnegative. Since the orthogonal bisectional curvature is quasi-positive and the

smallest eigenvalue of (WZ*) is zero, by theorem 1.1.1, (WZ*) must be zero. Therefore, it’s

Kahler-Einstein. O
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1.6 Miscellaneous lemmas

Lemma 1.6.1. Let (M",g) be a Hermitian manifold. Fix a coordinate chart, for m <
n, there exist mutually orthonormal vector fields Vi, ..., Vi, around 0 with prescribed V; (0),
VV;(0) and VVV; (0) as long as the prescribed values are consistent with the orthonormal

conditions. In other words,

VgV = bap, V(V2gVs) = VV (V2gVs) =0 at the origin, (1.6.1)

where we write V,, as a column vector and g as a n X n matrix.

Proof. We will assume the lemma is true on C" with the standard metric. For the case of
C", above lemma can be proved by using Taylor series expansions. We leave the details to

the reader.

First observe that prescribe covariant derivatives at the origin is the same as prescribed
partial derivatives in the coordinate chart since the metric is given. We will assume we have
a set of prescribed values V; (0), 9V; (0) and 99V; (0) that satisfy the orthonormal condition

(1.6.1).

Since ¢ is positive definite, we have a positive definite matrix B such that ¢ = B*B. We
claim that there exist mutually orthonormal vector fields Uy, ..., U, around 0 in C" with the

following prescribed values at 0.

U; (0) = B (0)V; (0), 9U; (0) = (9B) V; (0) + B (3V; (0)).

80U, (0) = (00B) V; (0) + (0B) 9V (0) + 9B (8V; (0)) + B (90V; (0)) .

Since we assume the lemma is true on C”, it suffices to check that above prescribed values
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are consistent with being orthonormal in C".

UsU, (0) = Vi B*BV, (0) = V; gVi (0) = das.

0 (UsUs) = V5 B*[(0B) V, (0) + B (9V,, (0))]
+ [0V; (0) B* +V; (0) 0B*] BV,

— 0 (V;B*BV,) = 0.

Similarly, 00 (UEUQ) =00 (v;gvﬁ) = 0. Therefore, Uy, ..., Uy, exists, and U3U, (2) = dap in

a neighborhood of 0.

We define V, (z) = B~ (2) Uy (2). Then VigVs(2) = UiU, (2) = 0ap around 0. Therefore

171, .oey Vi are mutually orthonormal vector fields w.r.t. ¢g. Furthurmore, Ve (2) has the

desired prescribed values at z = 0.

V. (0) = B~'U, (0) = B~'BV, (0) = V, (0).
oV, (0) = 9 (B~'U,) (0)
= [(8B™Y) B+ B (0B)] Vi, (0) + B ' B (8V,, (0))

= 9V, (0).

ooV, (0) satisfies the prescribed values as well by similar calculation. Therefore, we construct
a set of mutually orthonormal vector fields ‘N/a with desired prescribed values at 0. Lastly, we

remark that taking the square root of g and finding the inverse of B are both smooth. [

Lemma 1.6.2. Fiz a coordinate such that g;; = 6;; and W;; is diagonal at xo. Then at xo,

the following holds.
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1. If W is closed, then
Weskk — Wikss = BiissWss — RosnitWir + 2 Re {Tngsjk} - ‘Tsjk‘ Vvﬁ :

Wik — Wirir = RigeWir — RigriWiek-

proof for 1. First consider the case that W is closed. Then we have
VVijk - ijz' = TZng-
To exchange derivatives, we consider
Wiak = Wikie = Wiak — Wiaik) + Wik — Wiaks) + Wik — W) + Wi — Wieaa)- (1.6.2)
First we will show that
Wz’jkl_ - Wijl‘k = Rkl_ij (Wjj - Wz‘z) . (1-6-3)
Since W, = Wikﬂ it suffices to compute Wz, and take conjugates.

Wit = OWije — T5:Wia
= (O Wi5 — TiW,5) — Tf Wik
= 3[3kWi3 - @Tiin; - Fii(Wpﬂ + F_Z'Wpﬁ) - F_Z'Wicik
= 010uWi5 + Ry W5

— I}, W50 = T Wig — T,TT W (1.6.4)

pJ 7
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By equation (1.6.4), (1.6.3) is true. Substitute (1.6.3) into (1.6.2), we have

M/ﬁkl} - szl}ﬁ
= Vi(ThWi) + Rigrs Wi — W) + vi(T_ilkaT)
= ViTi Wi + T Wi + Rir (Wir — Wi) + ViTE Wi + TL Wi

= 5 (Ui — T) Wi + T Wi — 95Thy, (War — Wig) + 0, (F_fk - FTE) Wi + Th Wi
Note that R = —gll—@f‘?l and R = R = —gll-ﬁjf‘_ék. So we have

VVﬁklE - Wkl’m
= — (Wi + Th Wi + 05 Wi + T_z'lkal_i

= RiziWir — RigaWir + T Wik + T_zlk (Wil_k - Elkwfll_) .

proof for 2. From equation (1.6.2), we have
Wik = Wizt = Wik — Wiart) + Wi — Waeran)
First compute Wiz — Wiig-

Wik = OWia — Dy Wi = O (0Wyy — THWop) — T7 Wi

Wik = OWer — F;leWpl_k =0, (aEWkl' - F_lekﬁ> - kame
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Therefore, we obtain

Wik — Wik
= ORI} Wy — T8, W,p — Ty Wi + O, Wi + Thdi Wiy + T Wiz,
= _aErgk Wi — F?kr_zl;lwpﬁ + F_Zlf?kWpﬁ + alr_lllekfc

Next compute Wiz — Wi

Wiin = OWigr — Ty W = O (%szz - F_ﬂWkﬁ> — I Wi

Witi = OWiw — D0 Wi = 0 (O Wi, — Th W) — T Wi,
It follows that

Wkl%l’l - kacli
= — Tk Wi — T0.0Wip — T Wi -+ O E Wi, + 0.0 Wi + T Wi

= O}, Wiz + O Wiz
Therefore,

Wik — Wik
= R Wi + O, Wi — Ok Wi + 0T Wiz
= RipiWii — RiraWik + RiigeWii — Rie Wk

= RypiWir — RyjriWoi-
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Chapter 2

C? estimates on complex Hessian

equations

2.1 Introduction

Let (M,w) be a compact Kéhler manifold of complex dimension n. In any local coordinate
chart, we write w = g i 9i5d2" AdZ’. In this chapter, we study the C? estimates of the

following form of elliptic equations, for n > k > 1

o (g” (985 + uk;)) = (u, Du, 2). (2.1.1)
where and oy, (y) = (Z) % is the k-th elementary symmetric function for the eigenvalues

of x with respect to w.

When v in equation 2.1.1 is independent of Du, it has been studied extensively. The most
well-known complex Hessian equations should be the complex Monge-Ampere equations

o, (g) = ap solved by Yau [19] on compact Kéhler manifolds for the Calabi conjecture.
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Later, it is also solved on compact Hermitian manifolds by Tosatti and Weinkove [16]. For
general complex Hessian equation oy = ao, it is studied by Dinew and Kolodziej [4] and

Hou-Ma-Wu [9] on compact Kéhler manifolds.

When 1 in equation 2.1.1 depends on Du, the C? estimates are much harder and less stuided.
For the real Hessian equation, Guan-Ren-Wang [8] solves it completely when k& = 2. For
general Hessian equations, they solve it when the admissible solution is in the I'y,; cone,
and Lu [10] extends their results to the semi-convex setting. When k = n—1 and n—2, Ren-
Wang [13, 14] solve it completely by extremely complicated computation, and Spruck-Xiao

[15] provide a simple proof for k = 2.

As for the complex Hessian equation, an important example with ¢ depending on Du is
studied by Fu-Yau [5, 6]. They study a Monge-Ampere type equation in two dimensions
related to a Strominger system. Later Phong-Picard-Zhang [11] study the Fu-Yau (o)
equation in higher dimensions. For complex Hessian equations, Phong-Picard-Zhang [12]
solve it in the I'y;; cone, and Chu-Huang-Zhu [3] solve the complex o5 equation by really

involved calculation, which is hard to verify.

Motivated by Lu’s [10] semi-convex assumption, we want to solve the complex Hessian equa-

tions in the semi-convex setting first. Here is our main result.

Theorem 2.1.1. Let (M,w) be a compact Kdihler manifold. k =2 orn— 1. Suppose u is a

solution to the following equation
Ok (gik (gﬂc + Uﬂ%)) = f(z,u, Du)

with eigenvalues in the T'y, cone and bounded below by a constant K, then we have second

order derivative estimates.

‘Dﬁu}w <,
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where C' is a constant depending on n, k, K, w, M, ||ul/o, and || f]| -

2.2 Preliminary

Let 0(X) denote the k-th elementary symmetric polynomial of A € R",

oA = ) N (2.2.1)

1<i1 <<, <n

Also we denote

Ok—1;i = Ok—1|);=0.

Ok—2;pq = 0k;—2|Ap:,\q:0.

The k — 1-positive cone in R" is defined as
I'v1={ANeR"o; >0, 02>0,..., 0,1 >0}

In particular, for A € I'y, suppose A\; > Ay > ... > )\, we have

M0oj—1.1 > C(n, k) o, and

Ok—1;n > > Ok—1;1 > 0.

For more properties for oy, we refer the reader to Wang [18]. A (ulg) denotes the Hermitian

matrix with entries A% = gt (9;r + ujz), and X (u;7) are the eigenvalues of A. We write

F(A(D*u)) = f(X) =logoy (N) = (u, Du, ).
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If F(A) = f(\q,...,\,) is a symmetric function of the eigenvalues, then at a diagonal matrix

A, we have the following well-known results (e.g. see Gerhardt [7]).

Fij = 5ijfi7 and

Ji— fj 5:1)61a0

Fij,rs - ir(;i'(srs 11— -
f J + Az _ )\j( J

(2.2.2)
Next, we state the concavity lemma due to Guan-Ren-Wang [8]. Note that the format of the
following version is similar to the version of Chu [2]. We can obtain the following inequality

by modifying [2, (3.26)].

Lemma 2.2.1. Suppose XA € I'y, and 0,1 > —e\oj—1,1. Fore, 0 € (O, %) and 1 <1 <k-—1,
there exists a constant §' depending on €, §, n, k, inf f and || f|| o1 such that if \y > 0\ and

)\l+1 S (5’)\1, then

2
P Z Ok—1:pUppl
Ok—1;p |Uppl P ;pUpp
‘U111|2 S _Uk_z;pqup;ﬁluqqi + Z p)\| 179 |
1
p>1

Ok—1;1

(1—3e¢)

Ok

2.3 Key Lemma for k=2

2.3.1 Inequality for oy equations.

Let )\1 = ... = )\m > /\m+1 > .. > >\n

Lemma 2.3.1. Suppose that k =2 and §, = 0 for 1 < p < m, then there exists 0 depending

on € and n such that when Ay < 01, the following inequality holds.

Ok—1;1

A

Ok—1;p0k—1:45pEq — OkOk—2:pgSp&q + Tk Z /\f%i |fp|2 —(1—¢)oy |51|2 > 0. (2.3.1)
p

p>m
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Note that

O1;p

A=A,

> 1 and 0j_2,py = 1 when p # q.

We define three matrices A = (a,,), B = (b,,), and C' = (¢,,) as follows.

(pg = Ok—1;p0k—1q-

byp = oy, for all p and b,, = —oy if p # q.

Ok—1;1

cu= —(1—¢)oy — o and ¢y = 0 for all (p,q) # (1,1).

1

To prove inequality (2.3.1), it suffices to prove A + B + C'is positive definite. Observe that
A+ B is a positive definite matrix and —C' is a rank 1 matrix. Therefore, there is at most
one negative eigenvalue. Therefore, it suffices to show that det (A + B + C') > 0. We have

the following lemma.

Lemma 2.3.2. Denote a = 1%5

det (A+ B+ C)

. 271—30.3*10.1;1 [(QTL — 2) (O, — 1) )\% + (2 —2n + cm) )\10’1;1 + (2 — 77/) <01;1)2:|
N a)\1 '

The proof of Lemma 2.3.2 is quite lengthy and tedious. We outline some key steps below

and leave the details to the readers.

Step 1 We first compute the determinant of the matrix D = (d,,).

dy1 = ayay, for all p, dyp = x forall p>1

dip=—xforallp>1 d,,=—-xifp#¢q p>1andq>1.
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By row operations, we obtain
det (D) = 2" 2a12" ' [(3 —n) a1 + az + ... + a,) . (2.3.2)
In particular, equation (2.3.2) implies

det (B) = — (n — 2)2" 12", (2.3.3)

Step 2 Compute the det (A + B). We set a, = 04_1,, and © = o;,. Apply row operations,

equation (2.3.2) and (2.3.3), we have

det (A + B) = 2" 2"t Z —n)a;+2) —2)2" 1" (2.3.4)

k=1 1<J

Next, by computing every term carefully, we obtain

Y B=n)ap=0B-n)(n-1)70f-2(3-n)) _aa;. (2.3.5)

k=1 i<j
Zaiaj— (n—2) n—lZ)\z +(n—2)(n—3)os+n(n—1)09
i<j
(2.3.6)
Combining equation (2.3.4), (2.3.5) and (2.3.6), we obtain
det (A + B) =2"205" ' (n—1) 0} (2.3.7)

Step 3 Let M be the (n — 1) x (n — 1) submatrix obtained by deleting the first row and

first column of A + B. Applying equation (2.3.4) once again, we compute each term
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separately. It follows that

n

E (4—n)ai=4—-n)[(n—2)o1 + ]+ (2n — E a;a;. (2.3.8)
k=2 1<J
ij>1
1 2 :
n— n—
E'aiaj—x:)\lal;l(ng_4n+3)—l—( 9 )/\%—I—( 9 )(E /\k)
1<J k>1
ij>1
(2.3.9)

Denote A; = u and 01,1 = v. Combining equation (2.3.4), (2.3.8) and (2.3.9), we obtain

(4—n)[(n—Du+n—-2)v+mn-1)(n—-2)(n—3)u’

det (M) = 2" 3052
+2uv (n—3)*(n—1) +0v? (n —3)* (n — 2)

(2.3.10)

Step 4 By properties of determinant, it follows that

det (A+ B+ C) =det (A+ B) — oy, <1+(1—5) 3 )det(M)

1

By equation (2.3.7) and (2.3.10), we finish the proof for Lemma 2.3.2. Lastly, observe
that det (A+ B+ C) > 0 when 01,1 < dpA; for some small J, depending on €. In

particular, when Ay < %)\, det (A+ B+ C) > 0. We finish the proof for Lemma

2.3.1.

2.4 Key Lemma for k=n—1

Lemma 2.4.1. Suppose that \, and A\, are both nonzero,

1
Tk—1p0k—1;¢ — OkOk—2ipq = 3 (OkipOhiq — Okipg) when p # q.
p\g
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Proof.

Ok = ApOk—13p + Okyp
= MpAgOk—2pg T ApOk—13pq + Okip

= MpAqOk—2pg + Okyg = Okipg + Okip-

Therefore,
1
Ok—1;p = )\— (Uk — Ok;p) s and (241)
p
1
Tk=2pg = 3 (0% = Okip = Okig + Okipg) - (24.2)
pq
Combining equation (2.4.1) and (2.4.2) gives the desired result. O

Lemma 2.4.2. Let A € I',,_1, n > 4. Suppose the multiplicity of Ay ism, and {, =0 for1 <
p < m. There exists & depending on &y such that when A\,—1 < oA\ and —o,_1.1 > €gA\10p—2.1,

we have

— — On—10n_2; On—10n—2;
Un—2;p0n—2;q§p§q_Un—lan—3;pq§z7§q+Z /\1%/\21) |§p|2_(1 —¢) % |51|2 > 0. (2.4.3)
p

p>m

Proof. Denote the LHS of equation (2.4.3) as ﬁaqupf_q. When A\, = A\, & = 0. By
deleting the rows and columns where & = 0, we obtain an (n—m+1) x (n —m+ 1)
submatrix of (a,,). We want to show this submatrix of (a,,) is positive definite. By Lemma

T

2.4.1, we can rewrite (a,,) as the sum of a rank 1 matrix s* s and a diagonal matrix D =

diag(dy,ds, ..., dy_my1), where

s = [On—1;17 On—1;2; -+ Un—l;n] )
dy = /\% (Cfn—2;1)2 - (Un—1;1)2 - (1 - 5) /\10n—2;10n—1; and
0 A

A=A

Op—10n—2, for all p > 1.
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Suppose —o,, = a\10,_1, we have

A A
On—1p = —a—lan_l and A\pop_9p =0p_1 | 1+ all ).
7 Ap 7 Ap
Note that a is bounded below by ¢ since
—0p = = M0On-11 > A1 (E0MOn—21) > €0M10n-1.

Therefore,

di = 01 (—On-11 + EMOn-21) = 0a_y (a+e(1+a)).
A1y A A A
dp = 0Op—1 (_Un—lp )\1 : 2 Un—?;p) - 0-721_1 <a)\_l + )\1 : )\ (]. + ar;)) .

Since 0,_1,, < 0 for all p # n and 0,_1,, > 0, it follows that the only negative entry in the

diagonal matrix D is d,,. Note that

det (D + s"s) = det (D) det (Iy—pms1 + D~ 's"s) = det (D) (1 +sD~'s")

— det (D) (1 +) 2—1%) . (2.4.4)

Therefore,
1+ZS—Z—1+a_—a +3 202 (01 — )
d, a+e(l+a) = 2), (2aM + (1 —a) Ap)
1 "/ A (2aA + (1—a) ) (14 a) A
<1 -
=t 1+5+Z(2)\p(2a/\1+(1—a))\p) 2 (2an 1 (1—a) A
[ 1 )\10'71 1 1+a >\1
:1 —
o T+c ( 2, Z 2 (2a) + 1—a))\))]
L

2

1+CL )\1
1+s_2p: 2(2a\ + (1 —a) \,)
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Since \,_1 < 01, it follows that 0 > A, > —dA;. Picking § < ¢¢, we have

(1+a))\ (1+a)

— < —(1- d 2.4.
2(2a\ + (1 —a)N,) — (1==) 40 " (245)
(1+a)) (1+a)
- < —(1- 2.4.
2Q2aM + (1 —a) 1) — (1=e) 4a (2.4.6)
where g1 = C'(g¢) § since a is bounded below by gy. Also
_ (1+a)/\1 :_1 (247)
2(2aM 4+ (1 —a)\) 2 o
(Case 1) When a < 1.
B (14+a)X\ - _ (1+a)) _ 1 (2.4.8)
2(2@)\1+(1—a) )\2) - 2(2@)\14‘(1-@) )\1) 2 o
By equation (2.4.5), (2.4.6), (2.4.7) and (2.4.8), we have
2
1 _r
+) 0
p
1 1 (14+a)\
_§+CL 1+8 ;2(2(1/\14‘(1—&))\1,)]
1 1 1 1 (1+a)
- B
—2+a[1+g 2 2 ' 2a ]
1 1 €1 €0
< 1=+ <0owh =
<a 112 2+€0]< Wen51<2
(Case 2) When a > 1.
(14+a))\ (1+a)
— < — . 4.
2(2a\ + (1 —a) o) — 4a (24.9)
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By equation (2.4.5), (2.4.6), (2.4.7) and (2.4.9), we have

5
1+Zd—p
p

1 1 (1+a))\
R Zp:z(zaAlJr(l—a)Ap)]
L 1 I (+ag 1 1 (l+a)
— a _——_——_——_— - — —_— — — —_—
2 1+ 2 da 2 2 ' 2
1 11 (1+a)
<a|— —Z_Z_ 1-2
—a{1+g 373 (=2 4a}
1 1
_G|:1+8—§—§ < 0 when g1 < —.

By picking 0 small enough, £; becomes small. Equation (2.4.4) implies det (D + sTs) > 0.
Since D only has only one negative eigenvalue and s's is nonnegative, D + s''s is positive

definite. The proof is complete.

Remark 2.4.3. Alternatively, we can use Weyl’s inequality, 0 < A\,_,, (D) + Ap_mi1 (STS) <

An—m (D + STS), which implies D + s’'s has at most 1 negative eigenvalue.

2.5 Proof of the theorem

We will compute the second derivative for the following test function
Q =1log (M + K) +h (|Vul*) + g (u),

where —K is the lower bound of A,. At the maximum point, we pick a normal coordinate

and diagonalize (uzg) such that w1 > w93 > ... > u,5. In particular, \y = 1 4+ uy7. By direct
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computation, we obtain

meQmﬁl
i ) . m)\ 2 ~ _

> pron A i Vil o | 2P 4 e 2,
M+ K (M + K)

+9/me)\m . g/Zme +g//me |Um|2

Note that above inequality is in viscosity sense (see Brendle-Choi-Daskalopoulos [1, Lemma

5]). By taking the second derivatives of the equation. We have
F™ U1 + Fij'kluzjlukﬁ = 1.
By commuting the covariant derivatives, we have

- — _ a
Uijy = Ugj — Uadly g3,

- — _ _pa b
Utm = Umij + Uaj B 1 — Wi R; 1

By applying Tosatti-Weinkove’s formula [17, Lemma 3.2] on the second derivative of eigen-

values, we have the following inequalities.

| 2

" ij UpTs —|— Uiz
£ <)\1) d >w1 o . uljlukll—i_F ( uﬂ’Lm mmu—i_F“Z’ pli ‘ Pl

p>m

Also, by direct computation, we have

i1 > —C = C Y (Jural* + [ugil®) + ) (o ans + thutigzr + ot Riig) -
k l
P |2, > Z Yo Vi [Vul? + b, V7 | Vul?) (1 + ZF”””")

+ Zme (’uam‘Q + |uam’2> .
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Lastly, when k& = 2, we may always assume Lemma 2.3.1 holds. Otherwise, we have Ay > d\;.
When k£ = n — 1, we may always assume either Lemma 2.2.1 or 2.4.2 holds. Otherwise, we

have )\n—l 2 (5)\1

O 2 )\1)\k — C(n) )\1...)\],3_1K
Z Al'-')\kfl ()\k - C (n) K)
Z )\1...)\]9,1 (5)\1 — C(n) K)

which implies A; is bounded above.

2.5.1 Third order terms

We first consider third order terms in F™™ ()\;), _. We only care about the terms that has

U1, OF Upp for some p. By equation (2.2.2), third order terms in F™™ (\,), . are

‘ 2

2
i7 Kl i7 u ii‘ + |upﬁ
_ F”‘klu-- W + 7 ‘ p
151 Ykl

p>m )\1 o )\p
f Ui U Z Jp  Jq fq |U | —|—f Z |uplz‘ + |upii‘2
ip Uil Uppl — )\ pql 7 )\ _)\
p#q p>m
f Ui U _|_ fll ‘ +f Z UPU‘ Zf plp‘
ipLirl ppl pll 1p>m )\ p)\ _ )\
> — [iptamtppi + [p A\ ITL + Z fp ‘U’ppl‘ =1. (2.5.1)
p>m

mm ‘VmA1|
The terms in —F STk are

1 mm
Rt Ve AP = Y +Kf1| wip | % +K2fp\ ugy|” = I1. (2.5.2)

p>m
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where we use the fact that if \; = A,, then w,;, = 0 for p # 1 [17, Lemma 3.2] and

u,ir, = Ugi,- Combining the third order terms in (2.5.1) and (2.5.2), we obtain

I+11

2
|tpp1 | 1

M—X MK

fi \U111’2

> — fipin Uppt + Z o

p>m
S Y 5 I
ip Wizl Uppl p)\l — )\p )\1 +K 1|%111
p>m
2 2
_ 0% 1pUpp1 | Ok—2;pqUppl Ugql i Ok—1p |Uppi| 1 op-1n I |2
= - E - 111
0,% o o Ok M= MK
Ok—1;1 2
|U111’

> 7
=00+ K)oy

by Lemma 2.3.1, 2.2.1 or 2.4.2.

2.5.2 (? estimates
Note that by critical equations, we have

1
mwululil + h/wulvl ‘VU|2 = _wulg/ul > Cg/’

Also

£ 2
m lugty|” < 2e (W) V1 |VU|2‘ +2e(g) Jui ]
1
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F™™ (log (A + K) + h (|Vul?) + g (u)

2
i [VmAdl” _—C(1+H) (1 +y me>

mm( 1)mﬁz _

- )\1+K ()\1+K)

2
1
-+ )\1 I K {—C - C Ek (’uk1‘2 —+ ’ukﬂQ) —+ E (wulum + wululll_)}

l

+ 1 {Z (¢ Vi IVul® + 0, Vi Vul®) + 3 F™ (Jugm|? + |uam|2)}

l
+ h//Fmﬁz ‘Vm |VU|2‘ +glme)\m o g/Zme -l—g”me |um|2

C / / / / mm
> - = WC+Cy +(C-NWC—g)) F

1
C _
— /\—1 (Z (]uk1\2 + |Uk1|2)> + h/Zme (]uam\2 + |uam|2)
k a

+ <h” — 2 (h’)2> F™™ |V, ]Vu|2|2 + (g” —2¢ (g’)2> F™ |
Note that h has to satisfy the following two equations.

W' —2e (W) >0 (2.5.3)

C ]
- > fural? + YD F ug|® > 0 (2.5.4)
1
k a

In particular, the most troubled term in equation (2.5.4) is uy;. Since F'1 > %1, we have to

satisfy
C -
. /\_ |U11|2 + h/Fll |U,11|2
1

> ¢ + h/ﬁ lug|> >0 (2.5.5)
At At
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Let h (z) = —1log (M — ), where M = sup |Vu|? + 1. Then

1 1 1 1
W) =~ dn' (z) = ——.
(@) =y W) = S

Pick « small such that

C C; 1
—— = >
)\1+ AN
Next, let g (z) = —%log (x — N), where N = infu — 1. Then
1 1 1 1
"(z)=—= and ¢" (z) = =

Pick £ small such that

(C—WC—g)> F™ >0.
Lastly, we fix € small such that

W' —2¢(W)* >0 and ¢" — 2¢ (¢')* > 0.
Therefore,

0> F™ (log (A + K) +h (|Vul]?) + g (w)

C L,
> = il
= )\1 C (Oé,ﬂ) + )\1 |U11’

It follows that A\; is bounded above.
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Chapter 3

Parabolic complex Hessian equations

3.1 Introduction

We consider the following parabolic flow on compact Kahler manifolds (M, a). x is a given
smooth closed real (1, 1) form, whose eigenvalues with respect to « belong to I'y. cone in R™.

In local coordinates, we have

v—l1 ; ; V-1 : ,
a(z) = Tai;dzl AdZ and x (z) = TXidel Adi.

We write g;; = x;; + u;5, and denote the eigenvalues of alg by X (a~tg). We consider the

following flow.

up = F (0 (A (a'g))) — ¢ (2), where F' >0 (3.1.1)

u(z,0) = ug

Here oy () = Zl§i1<“_<ik§n Aiy -+ A, - Equation (3.1.1) arises naturally from geometry.

The most well-known one should be the Kahler-Ricci flow. By using Kahler-Ricci flow, Cao

64



[4] reproduces the celebrated results of Yau [20]. When F is concave, a general theory of
fully nonlinear elliptic and parabolic equations are well-developed by Caffarelli- Nirenberg-
Spruck [3]. In [14], Picard-Zhang study parabolic complex Monge-Ampere equations without
concavity due to their related works to the anomaly flow [13]. Motivated by their works, our
goal is to study similar problems on complex Hessian equations. Following Székelyhidi [16]

and Phong-T6 [12], we require y to satisfy the following C-subsolution condition.

(A (a™'x(2)) +T,) N O™ is bounded, where 'V = {\|F (0}, (\)) > o} Q)

v =1 (2) if sup [F (o (¢ 'x)) =¥ ()] <0 (3.1.2)

= S}\l/[p [F (o4 (a7'x)) —¢] + 9 (2) otherwise.

The C-subsolution conditions here is slightly different from Phong-T6 [12]. Nonetheless,
our condition is satisfied by other flows as well. For example, Sun considers the following

equation in [15].

n

g
=log——— —1 3.1.3
Uy og gnik A Oék ng ( )

He fixes v = 1 (2). By studying J-functional, he imposes the following condition in order to

do the uniform estimate.

n

X

=y < (3.1.4)

Above condition is the same as saying

n

X
log ———— —1 <0
sup<og = og@/)) <0,

which is the first case in our condition (3.1.2).
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By taking derivatives with respect to ¢, we have the following linear heat equation for w,.

80k

o/EVjV,; (u¢), where Aj» = (oflg)i

J

(3.1.5)
Then maximum principle implies

mj\}n w (2,0) <y (t,-) < A (2,0) (3.1.6)
To ensure the flow stays in I', cone, we also require that

mj\}n u (2,0) + mj\/ilnz/z (z) > lim F(x) ()

z—0+t
We will always assume condition (¢) and (4) hold below.

Remark: From our proof below, it is clear that we can replace (3.1.2) with the following

condition.

v =1 (z) if supu; <0 (3.1.7)

= supu; + ¢ (2) otherwise.
M

If we use this condition instead, when u; = 0, it reduces to the same C- subsolution
condition for elliptic equations from [16]. However, this condition depends on the initial
data due to the term sup,; u;. Phong-T6 also study the equation (3.1.3), and the condition

[12, (4.43)] they impose by J-functional is the same as requiring sup u; < 0.

By adding a constant to v (z), we may assume F' is strictly positive or negative. We solve

the flow if one of the following condition holds.

Condition 3.1.1. F' is near to a concave operator in the following sense.
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Let G (ox (a7 'g)) be a concave operator on (oflg); with G’ > 0. We say F' (oy) is near to

F\*/F" G"\ n 1

Condition 3.1.2. The given data uy and v (z) has small oscillations.

20, — 1

5 (logsup |F| — loginf |F|) < 7. (3.1.9)

Note that F' is bounded by constants depending on ug and v (z) by the maximum principle.

1
Observe that in equation (3.1.8), if F' = o} and G = o/, then M; doesn’t depend on oy.

We can find p such that the inequality holds. The following theorem is our main result.

Theorem 3.1.3. Suppose that either (3.1.8) or (3.1.9) holds, then the flow admits a smooth

solution u (z,t) on [0,00), and the normalized solution u = u — % [y ua™ converges in

vol

C® to a function v satisfying

F (ak (aij (a5 + vk;))) =9 (2) +C
for some constant C.

This chapter is organized as follows. In section 2, we study the C° estimate. We adapt an
approach due to Blocki [1] and Székelyhidi [16]. However the Alexandroff-Bakelman-Pucci
maximum principle [19] may be dependent on time ¢. To overcome this, we carefully analyze

the C-subsolution condition (3.1.2) and apply Hamilton’s estimate [9, Lemma 3.5].

In section 3, we modify the techniques from Székelyhidi [16] and Hou-Ma-Wu [11] to study
the C? estimate. To overcome the loss of concavity, we carefully use the ODE comparison

theorem to construct the test function. In section 4, we apply the blow up argument of
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Dinew and Kolodziej [5]. In section 5, we obtain the C*“ estimates by techniques from
Phong-Picard-Zhang [13] and Tsai [18]. In the last section, the convergence follows from
Gill’s result [8].

3.2 (Y estimate

First Observe that
(A (a7'x(2)) +T',) N O is bounded
implies
plglgoF (ok (A + pe;)) > 7, where A = A (a'x (2))

Since M is compact, there exists uniform positive constants d and & such that
Fog(AN+&e; —8I) >~v+6, Vze M (3.2.1)
Therefore, if
Fop(Aa))<b,a+dl €T, and b <~vy+9, (3.2.2)
(3.2.1) implies that |a| < &, and b is bounded below by a uniform constant.
b>F(op,(ANa)) > iAI}IfF(ak()\—él')) =&

Lemma 3.2.1. Suppose u (z,t) is an admissible solution to the flow (3.1.1) on time interval
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[0,T), then there exists a constant C independent of T such that

oscyu (1) < C(M,n, F,x,a,6, ||ul| ;) for allt €[0,T)

We will use an argument similar to Székelyhidi’s [16], Picard-Zhang [14], and Phong-T6 [12].

Their method is based on Blocki’s [1] approach to the complex Monge-Ampeére equation.

Proof: Since u; is bounded by equation (3.1.6), on a small time interval [0, €o], v is uniformly

bounded. Let

w(z,t) = (supu) (t) — u(z,1)

M

Fix T < T, suppose

sup w (I‘, t) =w (]}'0, tO) = L7
Mx[0,T"]

We would like to show that L is independent of T”. We may assume tq > o and L > 0. If
to < €g, L is determined by initial data. If L < 0, w is bounded above by 0. At the time
slice T' = ty, fix a coordinate ball By (0) centered at zy. We consider the following function.

Here € < €2 is a small constant to be fixed.
v(z,t) =w(x,t)—clz]—(t—t) —L+e
In the cylinder @ = By (0) X (tg — v/, to]

supv =¢, supv < 0,and sup v <0
Q 0B t=to—+/e
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We can then apply Krylov-Tso ABP estimate [19]. We have

supv < C'(n) </+( ) |ve det (D%)’)Hl7
I't(v

Q

where
't (v) = {(x,t) € Qv (z,t) >0, v(y,s) <wv(z,t)+ Dv(z,t) - (y—xz), Yy € B (0), s <t}
Apply Blocki’s adaptation of ABP estimate [1], we get

et < C(")/ |or | det Uij}Q,
I+ (v)

On I't (v), we have
D?*v <0 and 90 >0 a.e

(sup,, u) (t) is Lipschitz, by Hamilton’s estimate [9, Lemma 3.5], when (sup,, u) (¢) is differ-

entiable, we have,

% (Skbp“) (t) < sup{%u (v,t) 1w € X(t)}7 where X (1) = {wr (SEPU) (1) = U(fm}'

For z € X (t,), u is a local maximum at t = t,. Therefore,

u = F (Uk (Oﬁ (xi7 +UU)>> — ¢ (x) < F(ox (a7x)) =¥ (2), Vo € X (¢)
O = % <s]1\14p u) (t) —us —2(t —to) <sup [F (o (")) —¢] —ue+2ve  (3.2.3)

It follows that v; is bounded above by a constant independent of 7" almost everywhere.

On the other hand, D?*v (z,¢) < 0 implies w;; (x,t) > —ed;;. With ¢ chosen, we may fix e
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small, such that at (z,t) € I'",

A (oﬁ (xi5 + u,;)) =) (o/ﬂ?xi;) _ I+ T,
From the equation, we have

F (ak (akj (xi + u15)>) = () + uy (3.2.4)
Since (z,t) € T'", by (3.2.3), 0 < vy < sup [F (0% (7x)) — ¥] — uy + 24/€. This implies

¥ () + up < sup [F (O’k (a_lx)) — @Zz] + 1 (x) +2v/ < v+ & when ¢ is small.

Now equation (3.2.4) can be viewed as a special case of (3.2.2), we then have

‘)\ (0/“3 (Xij + uZ;)) - A (o/%g;)

<£
Therefore,
‘det viﬂ = ‘det (—ug — 55¢j)| <C
And we have a lower bound on the volume of the contact set.

g™t < C|I'* (v)], C is independent of T’

Let v=v+L—e. OnT" (v),0>L —e.

1 B B to _
Lol < ey et < c/ P dedt <C [ 5 () dt (3:25)

to—+/€
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YV t* € (tg — vz, to)

+ Ce
Lr(By)

[0 (2, 1) | 1o (5,) <

supu (t*) — u (x,t")
M

Since A (ozk3 (Xz'} + uzg)) e Ty, o (ij + ukj) > 0. Denote (sup,;u — u (z,t*)) as u. Then
u satisfies the following elliptic equation.
ozkjﬂkj < ozijkj

Apply the weak Harnack inequality [7, Theorem 9.22] and a covering argument (e.g. see
[14]), we have

[ (@, ) o ary < € (M, @, X p)

With the L? bound, equation (3.2.5) implies L is bounded above independent of T".

With the oscillation bound, we also have a bound on the normalized solution.

< C, C is independent of T.

Lo (M x[0,T))

. _ 1 n
HUHLOO(MX[O,T)) = Hu o V/ua

3.3 (C?estimate

Since u; is bounded by a uniform constant, it follows that

C'<og.<Cand —C<F<C
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Therefore, there exists a constant Cj such that either inf (F + Cp) > 0 or sup (F + Cp) < 0.
Let G = G (0 ('g)) be a concave operator on (a‘lg); with G’ > 0 and H = F + Cj. Both

GG and H are functions of 0. Define

H\*(H" G"\ n
Moo=\ ) \ 77~ @ ) ko

Lemma 3.3.1. Suppose u (z,t) is an admissible solution to the flow (3.1.1) on time interval

) . (3.3.1)

if one of the following conditions hold, (i)**239= (logsup |H| — loginf |H|) < 7 (ii))M; < &

[0,T), then there exists a constant C independent of T such that

auiu;

‘05u| < C(n, o, F, x, 9, 0scau, ||ue|| poo » Mo, Co) | 1+ sup
M x[0,T)

Diagonalize g and o at maximum point of the test function, and take a normal coordinate.

We assume g¢;7 is the largest eigenvalue, and consider the following test function motivated

by [11] and [14].
log (g11) + f (F) + ¢ (F) + ¢ (|Vul*) + h (a)

f, g, ¢, and h will be stated below. We have the linearized operator
L=Foy1sVsiVs=aisVsVs

Apply the linearized operator to the equation, we obtain

/
Ut = F VlO'k - 1/11 = Qs59s51 — 2/)1

Ut = Qs5Ys5t
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We will denote
S = Z ass, K = sup |[Vu|” + 1 and R as the curvature bound

Also
Z asE)\s =F Z )\sa-k—l;s
= F/]{ZO'k

Below, we state the key estimate for concave functions from Székelyhidi [16, Proposition 5]
(see also Phong-T6 [12, Lemma 3|). The statement we give below is slightly different, but

they are essentially the same.

Lemma 3.3.2. Let f () be a strictly increasing concave function of X\ € 'y, p € R"™ and

I'7 = {A|f(N\) > c}. Suppose there exists § and R > 0 such that
Q= (u—0614T,)NAr°" c Bg(0)

Then there ezists a constant k (n,d,) > 0 such that if A € OT'7~7 and |\| > R, then either
zn:fi (A) (i = Ni) =7 > ’fzn:fz‘ (A)
i—1 i=1

or

fi(A) > Hzn:f, (N\) for alli
i=1

1 k 1
Observe that F'(oy (A\)) is a quasiconcave function. Rewrite it as F ((U,ﬁ ()\)) ) of is

a concave function of X\ € I'y. ¥ and F (z) are increasing functions on R*. So 6 ()) is a
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quasiconcave function. The proof of above lemma in [16] only relies on the fact that I'”
is convex. So above lemma also works for quasiconcave functions. By definition of
C-subsolution, for z € M, (A (a"'x (2)) + ['y) N OT¥*) are bounded. Since M is compact,

there exists  and R > 0 such that
(A(a™x) =61 +T,) NOT¥E* C BR(0), Vz € M

Let = X(a~tx), 7= —us, A = A(a"'g(2)). By above lemma, at any z € M, there exists

constant  such that if |\ (a"'g(2))| > R, we have either

or

n
Qsz > mZasg for all s

s=1

Below, we will use C' to denote a uniform constant. C' may vary from line to line.

3.3.1 Computing (0, — L) ¢ <|VU\2>

(0 — L) (IVul?)
= 0, |Vl — ays [90" IV, IVulP|* + ¢'V5V, |Vu|2]

— & (0, — L) |Vul® = ¢"ass |0, |Vul*[”
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(0r — L) (aPPupup)

2 2
= UtpUp + UpUtp — Ass (Upssup + UpUpss + g ‘U/ps| + E |Up§’ )

p p

Note that

Upss = Ussp + uquQSE

Upss = Ussp
Therefore, the evolution equation will be

(8, — L) |[Vul?

= up (Utp — Asslssp — sstigRpgss) + Up (Uip — Qsslissp) — s (Z |up5\2 + ’UpsF)
p

< Uy (AssXssp — Vp) + Up (@ssXssp — Vp) — Qsstplig Rpgss — s (Z |ups|2 + |Us§|2>

p

< C|Vul+ C|Vul S+ R|Vul* S — a5 (A — Ys5)°

1 1
§A§ - \ngﬁ) <CK+CKS — éasg/\i

< C'|Vu +C|W|S+R|Vu|25—as§(
Suppose ¢’ > 0

(0 = L) ¢ (IVul’)

1
<y (CK +CKS — §ass)\§> — ¢"as }83 |Vu|2‘2
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3.3.2 Computing (0, — L) h (1)
Here @ is the normalization of u. Suppose A’ <0

Uy = am
1
~ n
Ut = Ut — — Utx
\%4
We have

(0r — L) h (@)
= Wiy — ags [P s]” + W]

< hWu, — h'ags |u5|2 — hagugs + W C

3.3.3 Computing (0, — L) f (F)

(at - L) F = Ft - asEFsg = Uy — Qg3 (uts§ + wsg) - _as§ws§
It follows that

(O = L) [ (F) = f'Fy — ass [f" |FL)* + f'Fus]

= _f,asﬂz)sE - f”as§ |Fs|2

3.3.4 Evolution equation for test function

U1 = F" |V10'k|2 + F Z Ok—1;59s511 1 Z Ok—2;i5 (gjjlgﬁi - giﬁgﬁi) — P17
s i#]

=F" \Vlak\Q + as59s517 + F/Uk72;ij (...) — Yn1 = assgsm1 + (%) — Y1,
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where (%) are all the third order terms. Note that

E (5595311 — As5911s3

S
= CLSERHSE <g35 - gli)
< —Rag; (9ss — 911)

= —RF'koj, + Rg11S
Applying results from previous subsections, we obtain

(9, — L) [log ( i)+ f (F) +9(F)+ ¢ (IVul’) + (@)
1 2
= Egllt - Z Qss (gllss - E |glis| >

(0= L) [f(F)+g(F)+¢ (|w?) h(@)]

1
S 9 (asggsﬂi + (*) - ¢ ) assgllss + § ass ‘glls|
11

— fags ]Fs]2 —q¢"ags \FSIQ + ¢ <CK +CKS — (zss)\z) — ¢"ass |8S \Vu\2}2

- f/as§¢s§ - g,as§,¢)s§ + h/u - h//a's§ |U5|2 - h,asgusg + hlc

< ——RF kO'k — _wll + CQOIK + hlut + h C
J11 g11

/ ! / 1
+ S(R+ YOK +[f ! 1Wllez + 191 lle=) = 5

+ Zass |glls| - f,/as§ |F’s|2 - g//as§ |Fjs|2 - SO//(ISE ‘as |vu|2’2

/ 2 " 2 /
O'assAs — h'ags |us|” — W assugs

911

Below following the method of Hou-Ma-Wu, we separate it into two cases. We set

ot =—bus (- )
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We have

1 1
" "2 /
14 3(¢)" an 6K_('0_9K

Let L =sup|u|+1

Ay w2

2L — — 3L
1 2

h/l _h/
il

A is a large constant to be fixed. f and g to be determined. Also, we require

3(f'+g')2§g" and fHZO

3.3.4.1 )\, > -0\
0 is a constant to be fixed.
I = {$|0k—1;s > 5_1Uk—1;1}

For s ¢ I, a;s < 0 'a;;. From critical equation, we have

1
g_gﬁs + f/Fs + g/Fs + 90/85 |vu’2 + hlus =0
11

2

1
<3(f + ) IRL +3(0) 00 [Vul’l + 3 (W) Juf?

—J11s
11
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2

E CLSS

91ls
sl
< 3Zas§ (F+ gV IR +33 aw (@) |0 Vul] +33" ag (1) Ju|?
s¢l s¢l s¢l
<3 g IFP + Y a0 (Va4 8(1)? 6 0y K
s¢l s¢l

We may assume 3 (h)* 6 a1 K < saz1iA;. Otherwise we are done.

1
— 5@l X+ 3 (W) 0 an K

1
= —IS—KCLH/\% + %—Kan/\%

Therefore, we have

(0, — L) [log (g11) + f (F) + g (F) + ¢ (|Vul*) + h ()]
<hu+hWC+C(f,g)S— ! ——ap A\ —

h/asgusg - h//as§ |'LL3|2

36K
- f”asg |F|”
2
+ Zass |glls - Zg”asé ’Fs|2 - Z QOHGSE ‘as |Vu|2’
911 sel sel sel
Note that

4]

|a—|—b|226|a\2—m

b
From critical equation

1 2
-3 |90las |vu|2‘2 =-3 ;glis + f/Fs + g/Fs + h/us
11

1 30

< _35W ]9118|2 + 1—_5 ‘f,Fs + g'Fs + h/’U«s’Q
11
1 30

<=3 gl 7 (2076 IR 20 ]
11
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We hope

1
_hl/_|_ 16_65 (h/)2 S 0 and hl/ _ Z (h/)2
1

>0
6A+1 "~

=

Therefore,

- h,/asg |us|2 - f//as§ |-Fs|2

+ Zass |glls - ZQHGSE ’Fs|2 - Z QONGSE ‘as |Vu|2’2

911 sl sel sel
1 1
< g |BL + — (9 + (1= 30) Y ass— o[’
911 <= (o11)

Now, we state Hou-Ma-Wu’s key inequality (also Székelyhidi) to deal with the remaining

terms.

Let H = G (01, (x 'g)) be a concave operator on (Xflg); with G’ > 0. If A\, > =\, we

have

ij 1—30 55
Hj’klgijlgkﬁ + —( - ) E H |glis’2 <0
(911) sel

Let |V10k|2 =X, Zi;ﬁj Ok—2;ij (gjjlgz‘ﬂ - gijlgjﬂ) =Y and 2561 Ok—1;s |9113|2 = Z. Then

we have
]_ —
G'X+GY + ﬂG’Z <0
(911)
= {F’G X+FY] + (1_3;5)17'2 <0
g11 G’ (911)
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1 1
- f”as§ |Fs|2 + E (*) + (1 - 35) Zaséﬁ |glis|2

scl (911)

1 1
< —f"(F'Y op1n X + — (F"X + F'Y) +
Ji1 (911

We hope

1 G//
_f/l(F/) Op 11X+_F//X<_F/
911 911
F/I G//
oo = < f(F ) 9110k—1;1

This will be true if

k
— =< f (F,)Q ﬁak < f" (F/)z J1i0k-1;1

s (EY (B _Gn n
-\ F F’ G' ) koy,

The right hand side is a bounded function once o}, is bounded. We multiply £ to make the
right hand side a constant when F' = o}. Now, instead of considering f and g as a function
of I', we consider it as a function of x = F' 4+ (Cy. Here we fix a constant Cy such that

inf (F + Cy) > 0 (or sup (F + Cpy) < 0). Therefore, we have to solve the following equation

for f(x) and g (x)

F// G// n
"2 > I R
flx My = Maz {O sup <F’> (F’ G’) k‘ak}

3(f +4¢) <"

Suppose 0 < m; < x = F + Cy < M;. Let’s consider two cases based on the value of Mj.

The case for x < 0 is similar.
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3.3.4.1.1 Case 1: If M, < % We have We have the following solution for arbitrary m;

and M;

f(x) = —Mylogz

g (x) = (My — ap) log

where «y is the larger root of 322 — x + My = 0.

3.3.4.1.2 Case 2: If My > &

f”chZMo
3(f'+9) <d"
Let z(x) = ¢
3(f +2)7 <
Let y (z) =z + [
W<y —f<y-—

Therefore

M,
y >3y + =
x

M,
u':3u2—|——2O
T

We can solve u
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1 VIZM, — 1
u= o [ 12M, — 1tan (TO
xXr

log x + ﬂo) — 1} for some constant .

Suppose there exists y satisfing the ode inequality from m; < x < M;. Let’s denote
MaX,,, <z<n, Y () = Mo, and y (my) = yo. If there exists u with u (m1) = yo, but u () > My
for some x € [my, M;]. Then this contradicts to comparison principle. Since tan (z) can be

arbitrary large, there is no solution if

VI2M, — 1 1o M
2

— >
my

When —”22M°_1

It follows that it is not solvable for arbitrary m, and M;. log %—i < m, we can

solve the ode with

f(z) = —Mylogx

g(:z:):/;1 [u(t)ﬁ-%] dt

Here we fix the constant 8 such that

12M, — 1 VI12My — 1
—g<+10gm1+5§+10g1\/[1+5<g

From above two cases, it follows that

(0, — L) [log (g11) + f (F) + g (F) + ¢ (|Vul*) + h (@)

1
<hWug+hWC+C(f,g)S— %—Kall)\? — hagsugs

By the concave lemma 3.3.2, we have two cases.
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3.3.4.1.3 Casel If> "  as(—us)+u >k>..  ass=rS. Once we fix f and g

(0, — L) [log (g17) + f (F) + g (F) + ¢ (IVul*) + h ()]

< hu+NWC+C(f,9)5 -

2 /
all)\l - h As5Uss

1
36K
1
S h/C + C (f, g) S — 36—KCL11>\% + h/KZS

Since % > —h' > %, we may pick A large such that C'(f,g) + 'k < —1

1
OSC—S—%—KCLH)\?

It follows that S is bounded above, so oj_; is bounded above. By Lemma 2.2 from Hou-Ma-

Wu [11], this implies aq; is bounded below. So A\ < CK.

3.3.4.1.4 Case2 Ifaj>kr)..  as=kKS

(8 — L) [log (¢11) + f (F) + g (F) + o (IVul*) + h (a)]

<C (h/> +C(f,9)S — %LKS)\% — Nags (Xss + Uss) + h assxss
<CW)+C(f,9)S — —2_SX\2 — W F'koy + CH'S
36K
" sx<c4CS
36Kt~

Since S is bounded below, so A\; < CK.
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3.3.4.2 )\, < -0\

From the evolution equation, we have

(0 — L) [log (g17) + f (ur) + g (ue) + ¢ (|Vul*) + b ()]

1
<CM)+C(f,g9)S— §<p/as§>\§ — h'ag |u$|2 — hagsugs

1 1 2
+ - (*) + Za5§—2 |glis|2 - f”as§ |F8|2 - g”asg |F1s|2 - SOHCLSE ‘as |VU|2‘ .
q11 . (911)

By critical equations,

1 2
G| = 3(f + ) |F +3 () 00 [Vul’[” +3 (1) fud)”.
11

Now that f, g and h are fixed, by the same reasoning as before, all the third order terms

will be canceled. Applying critical equations, the remaining terms are

1
0<CY+C(f,g9)S— 54,0'%5/\3 — h'ag;s |u5|2 — hagzugs + 3 (h')2 Qs |u5|2

<C+(CK)S — lgo’anﬁ)\i

2
SinceanﬁZ“;q
1S,
— ZX<
18KnAn_C+(CK)S

By our assumption A\, < —d\y, it implies A2 > §2)\2

/\% < 18nK

< g [0+ (€S

Since S is bounded below, it follows that A < CK.
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3.4 C! estimate

Lemma 3.4.1. There is a uniform constant C > 0 depending on oscarxjo,r)t, ||Ue]| e, X

and constant C' in equation (3.3.1) such that

sup |Vul* < C. (3.4.1)

Mx[0,T)

Proof : We follow the argument of Dinew and Kolodziej [5]. Below, we will use @ to denote
the normalized solution. Suppose that the gradient estimate (3.4.1) does not hold. Then
there exists a sequence (2, t,,) € M x[0,T) with t,,, — T such that lim,, . |VU(2n, tm)| —
oo and [Vu(zm,tm)| = Supprxjos,., VUl We set R, = [Vu(zm,t,)|. By passing to a
subsequence, we assume that z,, = 2z € M. At z, we pick a normal coordinate centered at z
such that a(0) = 8 := Y, dz* Adz". We may assume that the normal neighborhood contains

Bj1(0). On the ball Bg, (0) in C", we define

G (2) 1= T (Ri + 2, tk) (3.4.2)

Since |Vi,,| < 1, by previous C? estimate,

[@nle2(pg,, 0 < €

By passing to a subsequence, we assume that ,, is C1® convergent to v € C**(C"), and
|V (0)] = 1. To apply Liouville theorem due to Dinew and Kolodziej, it suffices to prove

that @ is a maximal £ — sh function. From the equation, we have,

Y
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(})o nart = (7wt ) o (3:43)

Therefore, we have

(Z> R [O (RL) ' (Rim ' Z’“) Yoo, (zﬂ r {a (Rim + k)}k

(el b))

Since wu; + v is bounded, by equation (¢), F~! (u; + 1) is also bounded. Also, a(z) =
£+ 0O (|z|2) near zero and limy_,o 2, = 0. Therefore,

k

V=1 _
[Taaa(z)] ABR =0, (3.4.6)
which is in the pluripotential sense. A similar argument and the fact that our solution is in
I’y cone implies that for any 1 < j < k,

[Fl

Taaa(z)y A B> 0. (3.4.7)

Due to Blocki’s [2] result, equation (3.4.6) and (3.4.7) imply that @ is a maximal k — sh

function in C". Then the Liouville theorem in [5] implies @ is a constant, which contradicts

Vi (0)] = 1.
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3.5 (22 estimate

First observe that miny u; (2,0) + miny ¢ (z) > lim, o+ F' (z) implies oy (A) is bounded
below by a positive constant, so the eigenvalue A cannot touch 0l'y. Together with the bound
in ‘uﬁ’ implies the eigenvalues are contained in a compact set. Therefore F' is uniformly

elliptic. With uniform ellipticity, we have the following lemma.

Lemma 3.5.1. Let u(z,t) be an admissible solution to the flow (3.1.1) on time interval

[0,¢). Suppose

Nall oo (arxpo.ryy + 19etll oo (arsciory) + HiaéuHLw(Mx[O,T)) <A

Let By be a unit coordinate ball on M. ) = B% X [%,5). Then there exists 0 < a < 1 and

C such that

HatuHC&aa/Q(Q) + HuﬁHCa,a/z(Q) < C (57 n, A> a, F> w)

Proof: We follow the proof from Phong-Picard-Zhang [13]. The proof has two parts. For the
spatial part, it comes from Krylov-Safanov Harnack inequality. For the time part, it follows

by a difference quotients argument from Tsai [18].

Spatial part. Differentiate the equation in time, we have
at (Ut) =L (U,t)
By Krylov-Safanov theory, we have

||atu||0a,a/2(Q) S C (n, A, E)
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Since 1 is smooth, above equation also implies |[F[[¢a.a/2q < C. Denote alg(z,t) as

n (x,t). By mean value theorem,

L IF (o (n (@ 8)) = F (o0 (g )] _ low (n@.1) = 0 (9. )|
O (le—gl+1e=s?) (lr =l + 1= s%)

where 6 is between oy, (1 (z,t)) and o (7 (y, s)). Since oy, is bounded, we have
||o-k||CQ’O¢/2(Q) <C
Covering M with cooridnate balls, it follows that
lown (D)l oy O, 5 <t <e.
By Tosatti-Wang-Weinkove-Yang’s [17] result, we get the estimate for the spatial part.

Juig GO coary SC-0<B<1, 5 <t<e.

DO | ™

Time part. Fix ¢y € (£,¢). Let 0 < h < e —to, and z € B;. Denote a'g (z,1) as n (z, ).
We have

o (x,tg) — oxn (z,to + h) = /0 %ak (sn(x,to) + (L —s)n(x,to+ h))ds (3.5.1)

! 80’k

=), ox a*ds [ujz (2, to) — ujz (2, to + h)]

where A% = sn! (x,t0) + (1 — s) 1} (x,to + k). And

Oor _ Do,
ds OA’

Tz (z,to) — uyg (x,to + h)] , 2,3 are canceled.

Since I'y cone is convex, the eigenvalues of A; are in 'y cone, and the eigenvalues lie in

a compact set independent of x, s, h and ty. Also each entry of Aj- is Holder continuous
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dog,
? BA;.

in z with bounded Holder norm independent of s, h and ty. Therefore is also Holder

continuous in z since it is just the product and sum of Hélder continuous functions. Denote

! aO'k
0 Al

a*ds = aff (x,to)

It follows that there is a{f is uniformly elliptic with elliptic constant independent of x, h and

to. And

< C, C is independent of h and tg.
ChA(Bn)

af (-, to)’

Divide equation (3.5.1) by K%, we have
af dpdu = o,

where

oEn (.T,to) — 0N (.T,to + h)
B
4

u (&, to) — u(x, o+ h) and o} (v, ty) =

ul T, ty) =
( 0) hg 3

By direct computation [13, Lemma 6],

HUZ ("to)Hcﬁ/‘l(Bl) < C, C is independent of h and .

H“h (-, tO)HLoo(Bl) < (' since uy is uniformly bounded.

By Schauder estimate, we have

By
3z

H“h("to)HCQ( ) =¢ (HUZ(vto)”cM(Bl) + [l ("tO)HLM(Bl)> = ¢
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Therefore, for all x € B 1

‘uﬁ (z,t0) — usj (z,t0 + h)‘
B
|hl*

< (), C is independent of z, h and t.

Combine the estimate of the spatial part and the time part, we have

HuﬁHCﬁ/QaBM(Q) S C

3.6 Long time existence and convergence

Now that F' is uniformly elliptic, and we have all the estimates up to C*“. Long time
existence and convergence follows from some general theory. We only briefly mention here.
For the details, we refer to Cao [4], Gill [8], and Picard-Zhang [14]. First of all, higher order

estimates can be done by bootstrap. Differentiate our equation, we get

/ 8ak
A

O (Viu) = F'—=a*V,; Vi (Viu) —

By the estimates we get so far, this is a uniformly parabolic equation with Holder continuous
coefficients. Therefore, by Schauder theory, it follows that ||V u|| c288/2(Q) < C'. Differen-
tiate the equation once again, we get another uniformly parabolic equation with Holder
continuous coefficients. Apply Schauder theory again, we get higher order estimates. It

follows that we have estimated on all derivatives of u by repeating above procedures.

With all the estimates, if the solution only exist in the time interval [0,7"). We may take
a subsequential limit of u, and extend the flow by the short time existence. Therefore, a

smooth solution exists on [0, 00).

Convergence follows by studying the heat equation (3.1.5) of u;. The key step in proving
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the convergence is to apply the Li-Yau Harnack inequality and get the oscillation decay. We
refer to Gill [8, Section 7] for the detailed argument. Therefore, the main theorem 3.1.3
holds.
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