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Site-wise manipulations and Mott insulator-superfluid transition of interacting
photons using superconducting circuit simulators

Xiuhao Deng,1 Chunjing Jia,2, 3 and Chih-Chun Chien1, ∗

1School of Natural Sciences, University of California Merced, Merced, California 95343, USA
2Department of Applied Physics, Stanford University, California 94305, USA

3Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, USA

(Dated: October 31, 2014)

The Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-
body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling.
Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a
superconducting transmission line resonator supporting microwave photons is coupled to a charge
qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To
obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime
where the excitations remain photon-like. Standard perturbation theory is implemented to locate
the parameter range where the MI-SF transition may be simulated. This simulator allows single-
site manipulations and we illustrate this feature by considering two scenarios where a single-site
manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses,
and the exact diagonalization was implemented to provide accurate results. The variance of the
photon density and the fidelity metric clearly show signatures of the transition. Experimental
realizations and other possible applications of this simulator are also discussed.

PACS numbers: 42.50.Pq. 05.30.Jp, 74.81.Fa, 02.70.-c

I. INTRODUCTION

Intense research has been focused on simulating com-
plex matter using well-controlled quantum systems in or-
der to better understand their behavior and create useful
analogues1–5,10. Successful examples include cold atoms
trapped in optical potentials2, trapped ions1,4, spins in
defects in diamonds5, photonic arrays3, etc. Recently,
another class of quantum simulators based on supercon-
ducting circuits opens more opportunities6–9,13, which
is made possible due to progresses in fabricating well-
designed circuits on chips. In those superconducting cir-
cuits, dissipation and decoherence have been suppressed
significantly13,45. Moreover, interacting superconducting
qubits or resonators can be fabricated on a chip, where
quantum error-correction encoding and high fidelity op-
erations have been realized16,17. Various designs of cou-
plers for connecting different qubits or resonators with
wide tuning ranges have also been demonstrated49,50,52.
Those progresses in superconducting circuits provide a
promising perspective of scalable superconducting cir-
cuits as quantum simulators for many-body systems,
which may be bosonic6,18,32,40 or fermionic37,38 in nature.

The Bose-Hubbard Model (BHM) has been a paradigm
in many-body theories, and the Mott insulator-superfluid
(MI-SF) phase transition associated with the BHM has
been of broad interest2,19. This transition was observed
unambiguously in cold atoms trapped in optical lattices
and can be probed with single-atom resolutions23,24. On
the other hand, a theoretical framework for obtaining
the BHM using the Jaynes-Cummings Hubbard Model
has been established27,28. Simulating this general model
in cavity arrays has been proposed22,25–27. One may en-

vision that introducing inhomogeneity into the BHM pa-
rameters can lead to richer physics, some of which has
been explored in Refs. 33,82. Simulating those phenom-
ena requires tunability of single-site parameters, which
could be hard in current available simulators1,2,4,5,10.

As a candidate of quantum simulators, superconduct-
ing circuit has the following additional features6,10,11: (I)
The circuit can be manipulated by applying voltages, cur-
rents and/or magnetic flux. Hence useful classical circuit
techniques can be introduced in similar ways. (II) Cir-
cuit manipulations can be implemented locally to a sin-
gle site/unit or globally to the whole system. (III) The
circuit can be tailored to certain characteristic frequency,
interaction strength, etc., and the circuit geometry can be
fabricated in desired patterns. Furthermore, according to
recent reports the decoherence time of superconducting
qubits based on different superconducting circuits is ap-
proaching 0.1ms44,46,60,61. The Q factor of an on-chip
transmission line resonator43 can even go beyond 105.
A 3D superconducting resonator45,46 can have a quality
factor up to 109, which implies that the life time of pho-
tons in superconducting resonators may approach 10ms.
This is good enough to allow one to consider the photon
number as a conserved quantity in the circuit if compared
to the operation frequency in the circuit typically in the
range of 100MHz−10GHz11–14.

Having those features of superconducting circuit in
mind, we propose a scheme to simulate the BHM with
controllable inhomogeneous parameters. To demonstrate
some interesting features, we consider how the phase
transition between the delocalized SF and localized Mott
insulator can be induced by manipulating the parameters
of one single site. In conventional setups, global param-
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eters such as the density or interaction drive the sys-
tem across this transition, and here we propose that in
superconducting-circuit simulators, one may observe this
transition with a single-site manipulation. The details of
our proposed scheme are verified by the exact diagonal-
ization method64, which already shows signatures of this
transition in moderate-size systems. Thus this proposed
scheme should be feasible in experiments.

Here the simulator is based on an array of supercon-
ducting transmission line resonators (TLRs). The goal is
to simulate the BHM19

H = −
∑
i

µini+
∑
i

Ui
2
ni(ni−1)−

∑
i

ti(b
†
i bi+1 +bib

†
i+1).

(1)
Here µi is the on-site energy and it usually plays the role
of the chemical potential, Ui is the on-site interaction,
and ti is the nearest-neighbor hopping coefficient. In cold
atoms one can control the filling and motion of a single
atom23, but manipulations of the energy and interaction
on each site remain a challenge.

A superconducting TLR with a length in the range of
centimeters can support a microwave resonant frequency
corresponding to the oscillations of the electric poten-
tial and magnetic flux from the standing waves of the
Cooper pair density. Those microwaves are referred to as
the photons in the TLR30. The quantum electrodynam-
ics (QED) framework can then be applied to the TLR-
qubit system to get the so-called circuit QED30. A single
site of the system is modeled by the Jaynes-Cummings
(JC) model20 while an array of circuit QED systems, as
schematically shown in Figure 1, can be described by the
Jaynes-Cumming Hubbard model21

H =
∑
n

[~ωcna†nan + ~ωqσzn + gn(anσ
+
n + a†nσ

−
n )]

+
∑
n

Jn(a†nan+1 + ana
†
n+1), (2)

where the parameters are ωcn as the cavity frequency, ωq

as the qubit frequency, gn as the coupling strength be-
tween the cavity and qubit, and Jn as the hopping coef-
ficient between cavities.

When the qubit is close to resonance with the cavity,
they are co-excited and the excitation on a single site
has the form of a polariton. Simulating polaritonic many
body behavior has been studied recently based on vari-
ous physical systems32,39,41. Here we consider a different
regime in the parameter space to take advantage of the
tunability of superconducting quantum circuits. We fo-
cus on the dispersive regime28, where the excitation is
limited in the TLR while the qubit stays in its ground
state. Hence the on-site excitation becomes photonic. In
this regime, a perturbation calculation shows that the
system can simulate the BHM. To make connections to
experiments, feasible controlling and probing methods of
the quantum phase transition between localized and de-
localized states will be discussed. The exact diagonaliza-

tion (ED)64 method is used to numerically demonstrate
the details of the phase transition.

II. ARCHITECTURE OF THE SIMULATOR

As illustrated in Figure 1, the proposed simulator is a
one dimensional (1D) array of superconducting circuit el-
ements. One site is formed by a TLR capacitively coupled
to a superconducting charge qubit11–14, which is labeled
as SQUID-B, and the qubit energy is tunable. The TLRs
on different sites are connected via the SQUID-B, which
leads to tunable couplings between nearest neighbor sites.
Here a derivation of how the Bose-Hubbard Hamiltonian
(1) can be simulated by the superconducting circuit will
be presented. In order to simplify the derivation, we will
use Hz×2π as the unit of energy and set ~ ≡ 1.

φ
e

B

φ
e

A

FIG. 1: Schematic plot of the 1D TLR array. SQUID-A as a
tunable charge qubit is capacitively coupled to the center of a
TLR. Nearest neighbor sites are connected by SQUID-B. The
external magnetic flux φA

e and φB
e through SQUID A and B

can be used to tune their Josephson energies.

A. TLR as a lattice element

The qubit-TLR system is an analogue of an atom-
cavity system. In quantum optics the dynamics of the
latter system can be modeled by the Janes-Cummings
Hamiltonian30. Our superconducting circuit Hamilto-
nian can be derived following the work of circuit-QED
in Refs.29–31. The Hamiltonian of a single lattice site is

Hsite = HTLR +Hqubit. (3)

The TLR with length D could be treated as a cavity with
a single mode of the first harmonic. Thus

HTLR =
(2e)2

2Cc
N2 +

1

2Lc(2e)2
(φc)2

=
1

2
EccN

2 +
1

2
EcL(φc)2

= ωca†a, (4)

where the cavity frequency ωc = 2π√
CcLc

= 2π
√
EccE

c
L,

the net capacitance of the TLR is Cc, the charge energy
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of the cavity Ecc = (2e)2

Cc , the net inductance of the TLR
is Lc and after second quantization, the inductive energy
of the cavity is EcL = 1

Lc(2e)2 . The node charge number

and node flux at the maximum points become{
N =

√
ωc/Ecc(a

† + a)

φc = −i
√
ωc/EcL(a† − a)

. (5)

For the first harmonic, the spatial distribution30 of N
is cos( πDx), x ∈ [−D2 ,

D
2 ], so the maximum points are

x = −D2 , 0,
D
2 corresponding to the center and two ends

of the TLR. Since the qubit consists of two Josephson
junctions in a superconducting loop, the qubit Hamilto-
nian includes the capacitive energy and inductive energy
as

Hqubit = EAc (n− ng)2 + 2EAJ cos(
φAe
2

)(1− cosφ). (6)

Here n = CAΣVJ/2e is the number of Cooper pairs on
the island and ng = CAg Vg/2e is the number of Cooper

pairs on the gate, which has a capacitance CAg between

the qubit and TLR. EAc = (2e)2

2CAΣ
with CAΣ being the total

effective capacitance in the qubit. The Josephson tunnel-
ing energy is EAJ and the phase φ displaces the number of
Cooper pairs. Casting the Hamiltonian in Fock space and

dropping the constant term 2EAJ cos(
φAe
2 ), one obtains

Hqubit =
∑
n

[EAc (n− ng)2 |n〉 〈n|

+ 2EAJ cos(
φAe
2

)(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)]. (7)

Because of the giant Kerr effect due to the Josephson
junction, the energy difference between the lowest two
levels is separated from the other energies. Therefore
the SQUID-A can be considered as a superconducting
qubit11, where the Pauli matrices are

σ̃x = |0〉 〈1|+ |1〉 〈0| (8)

σ̃z = − |0〉 〈0|+ |1〉 〈1| . (9)

Then we obtain

Hqubit = EAc
1− 2ng

2
σ̃z + 2EAJ cos(

φAe
2

)σ̃x. (10)

Here we have made use of∑
n

(n− ng)2 |n〉 〈n| = n2
g |0〉 〈0|+ (1− 2ng + n2

g) |1〉 〈1|

=
1− 2ng

2
σ̃z (11)

by dropping the constant term (n2
g +

1−2ng
2 )(|0〉 〈0| +

|1〉 〈1|). Hence the qubit Hamiltonian becomes a 2 × 2
matrix. The gate voltage Vg is the electric potential at
the point of the TLR where the qubit couples to. This

includes the DC gate voltage on the qubit and a quantum
mode of the TLR:

Vg = V dc + V̂ ac. (12)

As Figure 1 shows, the qubit is coupled to the center of
the TLR so the quantum mode of the voltage is

V̂ ac =
2eN√
2Cc

= Vrms(a
† + a) (13)

for the fundamental mode, where Vrms =
√
ωc/2Cc is

the root-mean-square value of the ground state voltage
at the center of the TLR. Hence

ng = ndc + CAg
√
ωc/Ecc(a

† + a). (14)

For the DC gate voltage bias at the degeneracy point
ndc = 1

2 ,

Hqubit = EAc C
A
g

√
ωc/Ecc(a

† + a)σ̃z + 2EAJ cos(
φAe
2

)σ̃x.

(15)
Using the qubit representation, we obtain

σx = |↑〉 〈↓|+ |↓〉 〈↑| (16)

σz = − |↓〉 〈↓|+ |↑〉 〈↑| (17)

While biased at the degeneracy point, the eigenbasis of
the qubit Hamiltonian is given by |↑〉 = (|0〉 + |1〉)/

√
2

and |↓〉 = (|0〉 − |1〉)/
√

2. The combined system for one
site now has the following form

Hsite = 2e
CAg
CAΣ

√
ωcCc(a† + a)σx +

ωq

2
σz + ωca†a

= ωca†a+
ωq

2
σz + gqσx(a† + a), (18)

where ωq = 4EAJ cos(
φAe
2 ).

The magnitudes of the qubit frequency and cavity fre-
quency are in the same range of about 10GHz, so it is nat-
ural to apply the rotating wave approximation (RWA).
Let ∆ = ωc−ωq denote the detuning between the cavity
and qubit frequencies. Then ∆ = ωc − ωq � ωc + ωq.
Moving into the interaction picture and rotating frame
one gets the Jaynes-Cummings interaction

Hrot
int = gq(σ+e

iωqt + σ−e
−iωqt)(a†eiω

ct + ae−iω
ct)

RWA
≈ gq(σ−a

†ei∆t + σ+ae
−i∆t), (19)

where the fast oscillation terms with the phase ei(ω
c+ωq)t

and e−i(ω
c+ωq)t are neglected in the RWA. Moving back

to the non-rotating frame we get the JC Hamiltonian

Hsite = ωca†a+
ωq

2
σz + gq(σ−a

† + σ+a) (20)

= H0 + V,

where the diagonal term is H0 = ωc(a†a+σz) and the in-
teraction term is V = ∆σz/2 + gq(σ−a

†+σ+a). Here we
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consider the dispersive regime28,62 so ∆� gq and there is
no excitation from |g〉 to |e〉. Moreover, gq(σ−a† + σ+a)
becomes a perturbation term. In order to get higher-
order effective interactions we apply the standard per-
turbation theory to the fourth order and obtain

E(0)
g = 0, E(0)

e = ∆, Vgg = Vee = 0, Vge = gqa† = V †ge.

Hence we only consider the correction terms for E
(0)
g .

E(1)
g = Vgg = 0, (21)

E(2)
g = −g

q2

∆
aa†, (22)

E(3)
g =

VgeVeeVeg
∆2

= 0, (23)

E(4)
g = (

gq

∆
)3gqa†aa†a. (24)

Then

V = −g
q2

∆
aa† + (

gq

∆
)3gqa†aa†a. (25)

Here the Kerr term ( g
q

∆ )3gqa†aa†a gives rise to an effec-
tive on-site interaction. Going back to the Schrodinger
picture, the single-site Hamiltonian becomes

Hsite = (ωc − gq2

∆
+ (

gq

∆
)3gq)a†a (26)

+
ωq

2
σz + (

gq

∆
)3gqa†a(a†a− 1).

The charge qubit could be either a single Cooper-pair
transistor (SCT) or a transmon11,12,14,59 whose qubit fre-
quency can be tuned by changing the magnetic flux bias
through a SQUID loop in the qubit circuit. The detuning

∆ is a controllable parameter. ωc,eff = ωc− gq2

∆ +( g
q

∆ )3gq

is the effective cavity frequency and U = 2( g
q

∆ )3gq be-
comes the effective on-site interaction energy of the pho-
tons. Both of them are functions of ∆. Assuming gq =
120MHz×2π13,14, ∆ ≥ 0.9GHz×2π so

(
ωc − ωc,eff

)
∈

[−0.1, 0.1]GHz×2π. We remark that the case ∆ ∼ gq,
where the excitations are polaritons rather than photons,
has been discussed in the literature39.

B. Tunable TLR array

Tunable couplings between different sites are necessary
in simulating the BHM. Different architectures for imple-
menting a tunable coupler between two superconducting
TLRs have been realized and discussed in Refs. 47,48,50–
53,58. Here we present a basic design as shown in Figure
1 to demonstrate our quantum simulator. SQUID B with
different size and energy from those of SQUID A is used
to couple the TLRs. The coupling term is from SQUID
B and

HB =
∑

i=upp,low

[
CBJ
2

(
φ̇jji

)2

+ EBJ (1− cosφjji )], (27)

where φjji=upp,low are the phase differences across the up-

per and lower Josephson junctions of SQUID B (see

Fig. 1). By changing of variables φBe = φjjupp + φjjlow,

where φBe is the external magnetic flux bias through

SQUID B, φ̇jjupp + φ̇jjlow = φ̇Be = 0. Let the node phases
on the two ends that connect to TLR 1 and 2 be φc1
and φc2. According to the geometry of the SQUIDs,

φc1−φc2 = 1
2 ( φjjupp−φ

jj
low) so φ̇jjupp−φ̇

jj
low = 2(φ̇c1−φ̇c2). Af-

ter some algebra, one gets
(
φ̇jjupp

)2

+
(
φ̇jjlow

)2

= 2(φ̇c1)2−
4φ̇c1φ̇

c
2 + 2(φ̇c2)2. Here we define N1,2 as the number of

Cooper pairs on the node connected to TLR 1 or 2,

so
CBJ
2

(
φ̇c1,2

)2

= 1
2

(2e)2

CBJ
N2

1,2 = EBc N
2
1,2. Therefore the

charge energy becomes (i = upp, low)

∑
i

CBJ
2

(
φ̇jji

)2

= CBJ (
·
φ
c

1)2 − 2CBJ
·
φ
c

1

·
φ
c

2 + CBJ (
·
φ
c

2)2

= 2EBc N
2
1 − 4EBJ N1N2 + 2EBc N

2
2 . (28)

We also assume that the two Josephson junctions in
SQUID B are uniform. By neglecting some constant
terms, the Josephson energy becomes (i = upp, low)

∑
i

EBJ (1− cosφjji ) = −2EBJ cos(
φBe
2

) cos(
φjjupp − φ

jj
low

2
)

= −2EBJ cos(
φBe
2

) cos(φc1 − φc2).

(29)

It will be shown that 2EBJ cos(
φBe
2 ) can be tuned to the

same order of magnitude as the on-site interaction term

( g
q

∆ )3gq in Eq. (26), which is needed to place the system
near the MI-SF phase transition. Moreover, the phase

difference
(
φjjupp − φ

jj
low

)
can initially be set to zero by

shorting both sides. Expanding cos(
φjjupp−φ

jj
low

2 ) to the
second order, one obtains (i = upp, low)

∑
i

EBJ (1−cosφjji ) ' EBJ cos(
φBe
2

)[(φc1)2−2φc1φ
c
2 +(φc2)2].

(30)

Combining Eqs. (28) and (30), one gets the Hamilto-
nian for SQUID B

HB =
∑
i=1,2

[2EBc N
2
i + EBJ cos(

φBe
2

)(φci )
2]

− [4EBJ N1N2 + 2EBJ cos(
φBe
2

)φc1φ
c
2] (31)

= HTLR′

1,2 +Hcoup. (32)

Here the simple harmonic terms HTLR′

1,2 give additional
frequency shift to the TLR Hamiltonian in Eq. (4). Since



5

the net TLR Hamiltonian is

HTLR
net,i =

1

2
(Ecc + 4EBc )N

2

i +
1

2
[EcL + 2EBJ cos(

φBe
2

)](φci )
2

=
1

2
Ec∗c N

2
i +

1

2
Ec∗L (φci )

2, (33)

the dressed cavity frequency becomes

ωc∗ = 2π
√
Ec∗c E

c∗
L . (34)

Once the TLRs are connected into an array with those
SQUID Bs, the fundamental cavity frequency changes
from ωc to ωc∗. Moreover, TLR 1 and 2 are coupled by

Hcoup = −[4EBJ N1N2 + 2EBJ cos(
φBe
2

)φc1φ
c
2]

= −gcap(a†1 + a1)(a†2 + a2) (35)

+ gind(a†1 − a1)(a†2 − a2). (36)

Here the coupling constants are gcap =
ωcEBc
Ec∗c

gind =
ωc4EBJ cos(

φBe
2 )

Ec∗L

. (37)

A similar coupling Hamiltonian can be found in Ref. 48,
which is supported by experiments49. By considering two
identical resonators ωc∗1 = ωc∗2 and applying the RWA
and conservation of the photon number, one obtains

Hcoup ' −(gcap + gind)(a†1a2 + a1a
†
2) = g(a†1a2 + a1a

†
2).

The TLR-SQUID-TLR (TST) system has the Hamilto-
nian

HTST =
∑
i=1,2

~ωc∗i a
†
iai − g(a†1a2 + a1a

†
2). (38)

We consider typical values13,14 of EBc = 300MHz×2π,
EBJ = 500MHz×2π, Ec∗c = 10GHz×2π, Ec∗L =
10GHz×2π. Note that φBe can be tuned within [0, 2π],
so gind ∈ [2,−2]GHz×2π. The net coupling strength is
g = −(gcap + gind) ∈ [−2.3, 1.7]GHz×2π. Since the per-
turbation approach is applied to the on-site Hamiltonian,
in order to keep Hcoup with the same order of magni-
tude as the highest order term in Eq. (26), the coupling
strength g has to fulfill the condition g < gq. By biasing
the system in the range φBe around π, one should be able
to get a smaller range of g ∈ [−30, 30]MHz×2π.

C. Superconducting-circuit simulator of the BHM

Combining the on-site Hamiltonian and couplings be-
tween nearest neighbor sites, we obtain a many-body

Jaynes-Cumming Hubbard Hamiltonian:

HJCHM =

N∑
i=1

[~ωc∗i −
gq2i
∆

+ (
gqi
∆

)3gqi ]a
†
iai +

N∑
i=1

~ωqi σ
z
i

+

N∑
i=1

(
gqi
∆

)3gqi a
†
iai(a

†
iai − 1)

−
N−1∑
i=1

(gcapi + gindi )(a†iai+1 + aia
†
i+1) (39)

In the dispersive regime, where our perturbation ap-
proach is applicable, the qubit does not get excitations
and stays in its ground state. Therefore the qubit term
N∑
i=1

ωqi σ
z
i does not contribute to the many-body energy.

In this case, the Jaynes-Cummings lattice model can be
mapped to the Bose Hubbard model28 by neglecting the
qubit term from Eq. (39) and treating the photons in the
TLR as interacting bosons.

When compared to Eq. (1), the on-site energy, on-site
interaction, and hopping terms are

µi = −[ωc∗i − (
gqi
∆i

)gqi + (
gqi
∆i

)3gqi ] (40)

Ui
2

= (
gqi
∆i

)3gqi (41)

ti = (gcapi + gindi ) = gi. (42)

As discussed previously, ∆i and gi can be tuned by a
magnetic flux bias, so they are the independent vari-
ables in this model. One may recall that |t| = |g| ∈
[0, 30]MHz×2π from previous discussions. In the dis-
persive regime |∆| ∈ [0.9, 1.2]GHz×2π should give rea-
sonable values13,14 of gq = 120MHz×2π. Thus gq/t ∈
[4,+∞), |∆/t| ∈ [30,+∞). In terms of the BHM,
U/t ∈ (0,+∞), which implies that the range of U/t that
can be simulated by this simulator should cover the MI-
SF transition. To avoid going beyond the valid range
of our approximation, the parameters are chosen in the
range |∆/t| ∈ [30, 103].

In this simulation scheme one may notice that the on-
site energy µi, interaction strength Ui, and hopping coef-
ficient ti can be explicitly made site-dependent. There-
fore, this superconducting TLR array can be a versa-
tile simulator of the BHM, especially if phenomena due
to spatial inhomogeneity are of interest. Furthermore,
compared to ultracold atoms in optical lattices, this su-
perconducting circuit simulator has some additional fea-
tures. As we already emphasized, all parameters can be
tuned individually and this makes it possible to study
problems in various geometries. Moreover, the interact-
ing bosons in the simulator is confined inside the TLRs
so there is no need for background trapping potentials,
which is common in cold-atom systems. Moreover, open
boundary conditions (OBCs) with hard walls can be
introduced by terminating the coupling SQUID at the
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ends of the superconducting TLR array. Even though
weak capacitive couplings to the leads at the two ends
of the array may be present, a high Q factor can still
be maintained43. On the other hand, periodic boundary
conditions (PBCs) can be realized by fabricating a 1D
array into a loop structure. Hence bulk properties can
be studied with a small number of sites with minimal
boundary effects. The examples given in the following
sections illustrates those features of the superconducting
circuit simulator.

III. SINGLE-SITE MANIPULATIONS OF THE
MI-SF TRANSITION

Here we present one interesting application of this su-
perconducting circuit simulator, where the MI-SF transi-
tion of the BHM can be induced by single-site manipula-
tions. Other possible applications will be discussed later.
To concentrate on the underlying physics, we consider a
1D array of N sites. For simplicity, the parameters of a
selected site (called site 1) is tuned by external magnetic
flux through the charge qubit coupled to the TLR of this
site. One may consider, for site 1, a shift of the onsite
energy by δ and a shift of the onsite coupling constant
by η. The choice of which site should be manipulated is
not important since the conclusions remain the same for
the case with PBC. From the BHM (1), the Hamiltonian
of this 1D array is rewritten in the form

H = δn1 + ηn1(n1 − 1)− µ
N∑
i=1

ni

+
U

2

N∑
i=1

ni(ni − 1)− t
N ′∑
i

(b†i bi+1 + b†i+1bi), (43)

where δ = −g2
q ( 1

∆1
− 1

∆i
) + g4

q

[
( 1

∆1
)3 − ( 1

∆i
)3
]

η = g4
q

[
( 1

∆1
)3 − ( 1

∆i
)3
] . (44)

Here ∆1 is the detuning energy between the qubit and
TLR on the site 1 while ∆i is the detuning of the other
sites. A diagram of δ and η as a function of ∆1 is shown
in Figure 2, which gives an estimation of the BHM pa-
rameters in the presence of a single-site manipulation.

In the upper limit of the summation, N ′ = N−1 is for
the OBC whileN ′ = N is for the PBC. We keep ti = t the
same in the whole lattice because it does not depend on
∆1. We vary ∆1/t as an independent variable. The unit
of energy will be t. The advantages of this protocol are:
(1) The qubit energy is intact away from the manipulated
site. (2) Particles are conserved in the whole system.
We define the particle density ρ as the ratio between
the photon number and site number. In the following
we consider the phase transition due to this single-site

FIG. 2: δ (solid lines) and η (dashed lines) as functions of
∆1 for U/t = 1, 5, 8, 10 and gq = 120MHz×2π. As Eq. (43)
shows, δ and η are the displacements of the on-site energy
and on-site interaction of the first site.

manipulation when ρ < 1 and ρ = 1. For ρ = (N − 1)/N
the system is a delocalized SF state in the absence of
manipulations and a single-site push leads to a localized
MI state, which is shown schematically in Fig. 3(a)(b).
The second case with ρ = 1 is illustrated by Fig. 3(c)(d),
where the system is in an MI state without manipulations
and becomes an SF after a single-site push.

To characterize those single-site manipulated transi-
tions and to identify where the transitions take place, we
analyze a useful quantity called the fidelity metric, which
has been shown to capture quantum phase transitions or
sharp quantum crossovers in fermion Hubbard model57,87

and other model Hamiltonians56,88. Given a Hamilto-
nian of the form H(λ) = H0 +λH1, the fidelity is defined
as the overlap between two (renormalized) ground states
obtained with a small change δλ in the parameter λ:

F (λ, δλ) = 〈Φ0(λ)|Φ0(λ+ δλ)〉. (45)

However, the fidelity has been shown to be an extensive
quantity that scales with the system size86,88. Therefore,
the fidelity metric is induced as85,87,88

g(λ, δλ) = (2/N)(1− F (λ, δλ))/δλ2, (46)

whose limit as δλ → 0 is well defined away from the
critical points and standard perturbation theories apply.
More precisely,

lim
δλ→0

g(λ, δλ) =
1

N

∑
α 6=0

|〈Φα(λ)|H1|Φ0(λ)〉|2

[E0(λ)− Eα(λ)]2
. (47)

The fidelity metric measures how significantly the
ground-state wave function changes as the parameter λ
changes. A dramatic increase of the fidelity metric as a
function of the varying parameter indicates a quantum
phase transition or sharp quantum crossover56.



7

FIG. 3: (a) and (b) illustrate the Mott insulator to superfluid
transition for N − 1 bosons with strong repulsion in N sites.
(a) The on-site energy of site-1 is increased and this pushes
the system into a localized Mott insulator phase. The dashed
circle means the first site is virtually empty due to its large on-
site energy. (b) The system becomes a delocalized superfluid
state when the on-site energy is about the same as that of
the other sites. (c) and (d) illustrate the transition for N
bosons with strong repulsion in N sites. (c) When the array
is uniform, the bosons are in a localized Mott insulator phase.
(d) By increasing the on-site energy of site 1, photons are
pushed into the bulk and form a delocalized superfluid.

A. Case 1: ρ < 1

When there are (N−1) photons in an array of N sites,
the ground state should be delocalized due to the incom-
mensurate filling if all the sites have the same on-site
energy and interaction energy. As will be shown in Fig-
ure 4 and Figure 5, non-uniform distributions of ni and
stronger fluctuations of the on-site photon density, quan-

tified by the variance σi =
〈〈
n2
i

〉
− 〈ni〉2

〉
, in the small

∆1 regime indicates delocalization of the photons with
interactions up to U = 10t. By increasing the on-site en-
ergy of site 1, which can be performed by increasing ∆1,
a transition to a localized MI state of the remaining N−1
sites occurs. The setup is summarized in Figure 3(a)(b).
Based on current experimental technology6–8,42, the size
of the lattice in our exact diagonalization are chosen as
N = 4, 8, 12. An estimation of the phase transition point
can be obtained from a mean-field approximation.

For a homogeneous 1D array of N sites, the (N − 1)
photons are not localized if the hopping coefficient is fi-
nite. By increasing the on-site energy of the first site,
it becomes unfavorable if any particle hops into it. If
the repulsive interactions between the bosons exceed the
critical value of the MI-SF transition (Uc/t ≈ 3.28 in
1D54,55), the ground state for the rest N−1 sites becomes

n
i

σ
i

(h)

(i)

n
i

σ
i

(e)

(f )

n
i

σ
i

(b)

(c)

(g)(d)(a)

t
t

FIG. 4: Exact diagonalization results of the density ni and
its variance σi as a functions of ∆1 for Case-1 with OBC. Site
2 to N are uniform and U = 10t. (a)-(c) show the results for
a 4-site array with 3 photons. In (a) the dashed line and solid
line on the first site correspond to the two schemes shown
in Fig. 3. (d)-(f) correspond to the case of 8 sites with 7
photons. (g)-(i) correspond to 12 sites with 11 photons.

a Mott insulator with a wavefunction in Fock space as

|ϕ1〉 = |0, 1, 1, ..., 1〉 . (48)

By applying this ground state to the Hamiltonian (43),
one gets the ground state energy

E1 = 〈ϕ1|H |ϕ1〉 = −µ(N − 1). (49)

Then we estimate the ground state of a SF and com-
pare the two ground state energies to determine where
the transition occurs when ∆1 is varied. In our mean-
field approximation, we consider a simplified trial ground
state with no double occupancy, which is appropriate for
the case U � t. In Fock space, states like |0, 2, 0, 1, ..., 1〉
are neglected. Thus the trial ground state is

|ϕ2〉 =
1√
N

(|0, 1, 1, ..., 1〉+ |1, 0, 1, ..., 1〉

+ |1, 1, 0, ..., 1〉+ ...+ |1, 1, 1, ..., 0〉). (50)

The ground state energy is

E2 = 〈ϕ2|H |ϕ2〉

=
1

N
[−2t(N − 1)− µN(N − 1) + (δ + η)(N − 1)]

≈ δ + η − 2t− µ(N − 1). (51)

The energy difference between the two ground states is

∆E = E1 − E2 ≈ 2t− (δ + η). (52)

A phase transition occurs at the crossing point ∆E =
0, or (δ+ η) = 2t. Thus the system forms a Mott insula-
tor by emptying the first site. From Eq. (44) we obtain



8

n
i

σ
i

U = 10t,  PBC

t
t

n
i

σ
i

U = 5t,  OBC

(a)

(b)

(c)

(d)

n
i

σ
i

U = t,  OBC

(e)

(f )

FIG. 5: Photon density profiles and its variance for selected values of U and boundary conditions. (a) and (b): U/t = 10 and
PBC. In this case, the photons in site 2 and N can both tunnel to site 1. Hence the photon density on site 2 and N are different
from the bulk value due to boundary effects. (c) and (d): U/t = 5 and OBC. (e) and (f): U/t = 1 and OBC. The non-uniform
density and its significant variance of the last case indicate that there is no Mott insulator in this setting. Here N = 12 with
11 photons.

t

t

t

t

t

t

t,

(b)

(a)

FIG. 6: (a) Energy gap for different values of U and N . The
inset shows a regime when U = t, in yellow, for N = 12
with OBC compared to U = 5t from the main figure. (b) The
peaks of Fidelity metric illustrate the critical points. When N
varies, the location of the critical point remains intact. How-
ever, varying the on-site interaction U changes the location
of the critical point, which is consistent with the analysis in
Sec. III.

an estimation of the phase transition point at ∆1 ≈ 390t
for U = 10t. To check this prediction and provide more
accurate estimations, we implement the ED method for
several moderate-size systems. Figures 4 and 5 show
ground state properties including ni and σi on different
sites as ∆1 varies. The energy gap of the first excited
state, shown in Figure 5(a), verifies the existence of the

(a)

(b)

FIG. 7: (a) Fidelity metric as a function of ∆1 for different
values of U for N = 8 and 7 photons. (b) Peak position of
Fidelity metric as a function of U/t. The full width at half
maximum (FWHM) is shown as the bar spanning across each
point.

SF (gapless) and MI (gapped) states.

The fidelity metric shown in Figures 5(b) and 6 cap-
tures and locates the critical regime when the on-site
energy of site 1 is manipulated. In Figure 4, above
∆1/t ≈ 365, the density is uniform away from site 1.
The variance σi is also suppressed in the bulk. Thus
the system is in the MI regime. Below ∆1/t ≈ 365, the
photons tend to congregate at the two ends of the array,
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but the variance is small. At the center of the array, the
photon density is smaller with a larger variance. This
corresponds to a delocalized state. The density ni thus
captures the main conclusion of our mean-field analysis,
and shows corrections from finite-size effects.

The critical values in the numerical results are close
to the mean-field estimations. The location of the crit-
ical point does not change much as N changes, but the
MI features become more prominent when N increases.
Due to finite-size and boundary effects, the edge of the
Mott insulator is distorted but the bulk indeed exhibits
features such as an integer filling and suppressed fluctu-
ations σi. Boundary effects can also be observed on the
neighbors of the manipulated site as their values of ni
deviate from the bulk. Those observations are also valid
in Figure 5(a)(b), where site 1 is connected to site 2 and
site 12 due to PBC.

For small U/t, as shown in Figure 5 and the insets of
Figure 6, the SF state dominates the whole parameter
space explored in our ED calculations, which confirms
that no artifact is induced if the system is in the SF
regime. In the insets of Figure 6, the results of a broader
range of ∆1 for the case of U = t is shown and the small
smooth gap through out the range of ∆1 is consistent
with a SF state of the case U = t in Figure 5(e)(f).

Figure 6 shows another signature of the phase transi-
tion as ∆1/t ≈ 365 for U = 10t when N = 4, 8, and 10, as
indicated by a minimum in the energy gap followed by a
rapid rise. For different values of U/t, ∆i in the bulk are
different according to Eq. (41). Hence the critical point
shifts in the ∆1/t axis according to Eqs. (44) and (52)
and this is consistent with the results shown in Figure 6.

B. Case 2: ρ = 1

As illustrated in Figure 3(c)(d), here we consider N
photons placed in an N -site array. If U/t is large, the
system is in a Mott insulator state. As the on-site en-
ergy of site 1 increases, the boson in that site is expected
to be pushed to the bulk and this should lead to a de-
localized state because of the extra boson. Following a
similar procedure, we estimate the critical value of ∆1

that controls δ and η for this case.
The localized MI ground state can be written as

|ϕ1〉 = |1, 1, 1, ..., 1〉 , (53)

with the ground state energy

E1 = 〈ϕ1|H |ϕ1〉 = δ −Nµ.

We consider a delocalized trial ground state

|ϕ2〉 =
1√
N − 1

(|0, 2, 1, ..., 1〉+ |0, 1, 2, ..., 1〉

+ ...+ |0, 1, 1, ..., 2〉), (54)

F
id

. M
.  

   
  E

 G
a

p
 /

 t

n
i

(a) σ
i

(b)

(c)

(d)

x10-4

FIG. 8: Exact diagonalization results for Case 2 with N = 8
and 8 photons. Here U = 10t. (a) and (b) show the density
profile in the array and the density variance. The energy gap
(E Gap) and fidelity metric (Fid. M.) in (c) and (d) clearly
exhibit signatures of the MI-SF transition.

whose ground state energy is

E2 = 〈ϕ2|H |ϕ2〉

= − (N − 1)N

N − 1
µ+

N − 1

N − 1

U

2
− N − 2

N − 1
2t

≈ −Nµ+
U

2
− 2t (55)

Thus the energy difference is

∆E = E1 − E2 ≈ δ −
U

2
+ 2t.

The MI-SF phase transition occurs when ∆E = 0, and
one may notice that the critical point depends explicitly
on U , which is in contrast to the U -independent critical
point in the mean-field analysis of case 1. For case 2 we
obtain that the critical points are δ = 3t,∆1 ≈ 469t for
U/t = 10 and δ = 0.5t,∆1 ≈ 470t for U/t = 5.

Numerical results from the ED method for this case are
shown in Figure 8. As shown in panels (a) and (b), below
the critical point ∆1 ∼ 470t, the system is an MI with one
photon per site and above ∆1 ∼ 470t the system becomes
an SF with significant σi in the bulk. The fidelity metric
shown in panel (d) verifies that the critical point is close
to the estimation from our mean-field analysis. These
results verify the feasibility of inducing and observing
those transitions in moderate-sized systems.

IV. IMPLICATIONS FOR EXPERIMENTAL
REALIZATION

State Preparation: In the MI regime, the particle den-
sity on each site is an integer. One may prepare an ar-
bitrary n-photon state in each site, including n = 0, 1
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that are of interest, by adiabatically swapping the qubit
state to the TLR68,69. This single site preparation can be
performed simultaneously on all the sites. Then starting
from the MI regime, one can transform it to the many-
body ground state for different cases. For example, in
case 1 in Sec.III, the ground state in the MI regime is
|0, 1, 1, 1, ...〉. Recent work also proposes a scheme of a
N photon state preparation in a superconducting TLR
array supported by numerical results41.

Cooling: Solid state simulators based on superconduct-
ing circuits including the one we propose here contain
many degrees of freedom, which not only provide great
tunability but also introduce relatively strong couplings
to external fields. To experimentally implement the sim-
ulator proposed here, cooling such a complex system can
be a great challenge. We suggest the following three
stages. In stage 1, the whole system is kept in the super-
conducting phase and thermal excitations in the super-
conducting circuits and Josephson junctions should be
suppressed11–15. They are also associated with suppres-
sion of dissipation and decoherence. As mentioned in the
introduction, the life time of the photons at this stage
is already much longer than the operation time of the
superconducting circuit by a factor about 107.

In stage 2, cooling of the TLR-qubit single site sys-
tem should be performed before connecting the whole
array. This is associated with the state preparation of
the TLR array and a different degree of freedom from
that of stage 1 needs to be dealt with. The quantum
computation community has been making significant pro-
gresses related to the cooling at this stage15. Inspired by
ideas from optical systems, Sisyphus cooling and side-
band cooling of superconducting systems have success-
fully cooled a qubit to its ground state65–67.

In stage 3, once a multi-site array is connected by turn-
ing on the hopping between adjacent sites, the desired
many-body Hamiltonian follows. In order to simulate
and observe the quantum phase transition discussed here,
one needs to constantly cool the system and keep the
number of photons conserved during the operation. This
is more challenging than cooling just a single site, es-
pecially inhomogeneity of the on-site energies is present.
Applying a bias or other manipulations of the parame-
ters can cause excitations as well and need to be per-
formed with care. Moreover, to take out the heat from
the multi-site system when operating near the critical
regime leads to yet another issue. Advanced schemes for
cooling a single site have been available while cooling a
multi-site array like the one studied here has not been re-
ported so far. Development of such technologies is impor-
tant for realizing the proposed simulator. Based on cur-
rent ground-state preparations and state-manipulation
technologies developed in coupled superconducting cav-
ity systems89,90, it is promising that photon-number-
conserving ground-state cooling processes may be real-
ized by scaling up the cooling methods for those coupled
systems.

Detection of phase transition: Since the single-site

!"#$%&'

!"#$%&(

)*+,

-./

!"#$%&0

123456,#7.8

+29:,;<8

FIG. 9: Measuring the photons in the simulator: Each site
of the simulator is connected to a memory unit formed by
another qubit-TLR system via a tunable SQUID (labeled as
SQUID C) acting as a switch. Measurements of the photon
number in the memory unit can be applied76–78. This memory
unit can also serve as a circuit for preparing the initial state
by manipulating SQUID-C and SQUID-B.

manipulations of the MI-SF transition exhibit strong sig-
natures in the density distribution, we discuss a direct
measurement of the photon numbers and number fluctu-
ations on each site. Interestingly, the measurement can
be turned on and off when needed. As shown in Figure
9, each site can be coupled to a memory TLR via the ad-
ditional circuit. The central SQUID-C is used to switch
the coupling between the on-site unit and the measure-
ment unit79 for controlling the memorizing window. This
is possible by changing the bias flux through SQUID-C
(labeled on Figure 9), φm. A fast photon state SWAP
between the two TLRs can be applied with four-wave
mixing62 to get |non−site0measure〉 → |0on−sitenmeasure〉,
so that the photons in the TLR of the simulator are trans-
ferred and stored into the measurement TLR. Single pho-
ton state fast measurements can be applied to measure
photon numbers in the memory TLR with technologies
developed in circuit QED recently70,72,73,76–78. By re-
peating the measurement one gets the average photon
number 〈ni〉 and variation 〈σi〉 as depicted in Figure 4
for detecting different quantum phases in the TLR array.

To summarize, a promising way to realize this simula-
tion is: (1) Tune the parameters in the MI regime and
prepare the array in the ground state with an integer
number of photons. (2) Adiabatically adjust the param-
eters to the desired values and cool the photons down
to their ground state within the photon relaxation time.
(3) Measure the photon number in each single site. Then
repeat (1) to (3) to obtain the average photon number
and number fluctuations.
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V. CONCLUSION

A versatile quantum simulator of interacting bosons
based on a tunable superconducting TLR-SQUID array
has been presented. The BHM with tunable parameters
on each site can be studied using the photons in this
simulator. We have demonstrated the feasibility of in-
ducing the MI-SF transition by manipulating only one
single site. Our results are further supported by the ex-
act diagnolization method, and details of the transition
with realistic parameters are presented. The fidelity met-
ric, energy gap, and on-site photon number show signa-
tures of the phase transition. We also discussed possible
schemes for state preparation, cooling, and detection of
the phase transition for this proposed simulator.

Besides the manipulations of the phase transition dis-
cussed here, this quantum simulator is also capable of
demonstrating topological properties in the BHM with
superlattice structures and should exhibit the topologi-
cal properties, edge states, and topological phase tran-
sitions studied in Refs. 33,34,82. Moreover, quantum
quenches83,84 and their associated dynamics may also be

simulated by this superconducting circuit simulator as
well. For example, similar to Ref. 91 one can separate
the TLR array into two sections by turning off the hop-
ping between the two sections. Then different photon
numbers are prepared in the two sections. By switching
on the hopping between the two sections, photons are
expected to slosh back and forth between the two sec-
tions, which should be detectable with similar measure-
ment methods. Thus the superconducting circuit simu-
lator adds more excitement to the physics of interacting
bosons and complements other available simulators.
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J. M. Chow, A. D. Córcoles, J. A. Smolin, S. T. Merkel,
J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen
and M. Steffen, Phys. Rev. B 86, 100506(R) (2012).

47 J.-Q. Liao, J.-F. Huang, Y.-X. Liu, L.-M. Kuang and C.-P.
Sun, Phys. Rev. A 80, 014301 (2009).

48 B. Peropadre, D. Zueco, F. Wulschner, F. Deppe, A. Marx,
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