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The Microbiota of the
Extremely Preterm Infant
Mark A. Underwood, MD, MAS*, Kristin Sohn, MD
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KEY POINTS

� The intestinal microbiota of the extremely preterm infant differs dramatically from that of
term infants, children, and adults with decreased diversity and high numbers of g-proteo-
bacteria and Firmicutes and low numbers of common commensal microbes.

� Alterations in the intestinal microbiota of the preterm infant precede the onset of necro-
tizing enterocolitis and sepsis.

� Altering the intestinal microbiota with diet, antibiotics, and prebiotic and probiotic supple-
ments may be less effective in extremely preterm infants, prompting the need for novel
approaches to dysbiosis in this population.
INTRODUCTION

Colonization of the fetal skin and intestinal tract begins in utero and is influenced by
maternal microbial communities (particularly those that inhabit the distal intestinal
tract, the mouth, the vagina, and the skin), timing of rupture of membranes, maternal
genetic factors, medications and supplements. Colonization is further influenced by
mode of delivery and postpartum environmental exposures and medical procedures,
infant genetic factors, medications and supplements, enteral feeding, and maturity of
the infant innate and adaptive immune systems. Breakthroughs in recent decades in
the analysis of complex communities of bacteria and viruses and studies in germ-
free and gnotobiotic animals have vastly expanded our understanding of the impor-
tance of interactions between host and microbe. The composition of the microbial
community of the intestinal tract and skin impacts inflammatory pathways and is
thus important in the pathogenesis of a wide variety of disease processes (Box 1).
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Box 1

Diseases and conditions in which the microbiota plays a role in pathogenesis

Antibiotic-associated diarrhea Traveler’s diarrhea
Necrotizing enterocolitis Infectious diarrheas
Preterm birth Sepsis
Infant colic Clostridium difficile colitis
Inflammatory bowel disease Food and environmental allergies
Irritable bowel syndrome Celiac disease
Obesity Diabetes mellitus (types 1 and 2)
Atherosclerosis Cancer
Atopic eczema Psoriasis
Seborrhea Rheumatoid arthritis
Alzheimer and other neurodegenerative

diseases
Mood disorders, schizophrenia, and autism
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Novel mechanisms by which the microbiota influences host immunity and inflamma-
tion have recently been described.1–3

The importance of the intestinal microbiota in extremely preterm infants is most
clearly evident in considering the risks of developing necrotizing enterocolitis (NEC)
and sepsis. The roles of the skin microbiota in sepsis risk and the oral microbiota in
pneumonia risk are less clear. Perhaps most compelling is the role of colonizing
microbes in shaping and influencing the developing innate and adaptive immune re-
sponses in extremely preterm infants and the long-term impact of these host-
microbe interactions. An additional layer of complexity is emerging with the realization
that nutrients (eg, human milk, infant formulas and fortifiers, vitamins and minerals) are
consumed by both host and bacterial cells, often with keen competition and overlap-
ping effects. Host-microbe-nutrient interactions are likely to be particularly important
in such processes as growth, brain development, immune development, and disease
risk for the most preterm infants. In this article, we use the terms microbiota to refer to
the composition of bacteria in a given anatomic niche and dysbiosis to mean an alter-
ation in the microbiota associated with disease. There is evidence of significant colo-
nization of the extremely preterm infant with yeasts, bacteriophages, and other
viruses,4 but discussion of these microbes is beyond the scope of this article.

DEVELOPMENT OF THE INFANT MICROBIOTA
In Utero

The development of tools to characterize the microbiota based on identification of
bacterial DNA rather than relying on cultures has expanded understanding of the initial
colonization of the neonate tremendously. Table 1 summarizes the primary bacterial
taxa that colonize the preterm infant. It has long been believed that the fetus grows
in a sterile environment and that colonization begins at the time of rupture of the fetal
membranes. More recent careful studies have shown that the amniotic fluid is not ster-
ile, suggesting that colonization of the fetal skin and gut begins in utero.5 The role of
microbes in triggering preterm labor is perhaps the most clinically relevant observation
related to this observation. Chorioamnionitis has long been recognized as a trigger of
preterm labor and neonatal infection (particularly in preterm infants). The preponder-
ance of evidence suggests a causal relationship between maternal periodontal dis-
ease and preterm labor.6 For instance, the presence of specific bacteria (eg,
Peptostreptococcus micros or Campylobacter rectus) in maternal gingival plaque
was associated with increased risk of preterm delivery.7 Treatment of periodontal



Table 1
Key bacterial taxa in the preterm infant

Phylum Class Order Family Genus

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus
Lactobacillales Streptococcaceae Streptococcus

Enterococcaceae Enterococcus
Lactobacillaceae Lactobacillus

Clostridia Clostridiales Clostridiaceae Clostridium
Negativicutes Selenomonadales Veillonellaceae Veillonella
Mollicutes Mycoplasmatales Mycoplasmataceae Ureaplasma

Proteobacteria g-Proteobacteria Enterobacteriales Enterobacteriaceae Klebsiella
Escherichia
Proteus
Serratia
Enterobacter
Cronobacter

Pseudomonadales Pseudomonadaceae Pseudomonas
Moraxellaceae Acinetobacter

Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
Propionibacteriales Propionibacteriaceae Propionibacterium
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disease during pregnancy is associated with decreased risk of preterm labor.8 The
demonstration of the same microbes in the amniotic fluid and periodontal plaques
in women delivering preterm,9 the observation that the most common bacterium iden-
tified in amniotic fluid from women delivering preterm is Fusobacterium nucleatum (a
common oral microbe in adults),10 and the observation that dental infection with Por-
phyromonas gingivalis (a common bacterium in periodontal disease) causes preterm
birth, low birth weight, and colonization of the placenta in mice11 suggests actual colo-
nization of the placenta and fetus.
Detailed studies of the microbiota of the placenta have shed some light on early

colonization of the fetus. The placenta has a low bacterial load and is easily contam-
inated during vaginal delivery. Analysis of placentas obtained at term cesarean deliv-
ery without rupture of the fetal membranes showed similarities among the microbiota
of the placenta, the amniotic fluid, and meconium, suggesting in utero gut colonization
with changes in the infant fecal samples in the first 3 to 4 days after birth reflecting the
acquisition of microbes in colostrum.12 Colonization of the placenta with Ureaplasma
species increases the risks of preterm labor and intraventricular hemorrhage in
extremely preterm infants13 and of chorioamnionitis in moderate and late preterm
infants.14

Shortly after birth, the neonatal microbiota in the term infant is heavily influenced by
mode of delivery with vaginally delivered infants colonized with organisms from the
maternal vagina and infants delivered by cesarean colonized with organisms from
the maternal skin and no real differences in neonatal microbial communities among
the mouth, nasopharynx, skin, and meconium.15 In preterm infants, the microbiota
of the skin diverges from that of the stool and saliva by day 8 of life, and the microbiota
of the saliva and stool diverge by day 15.16 In a study of the microbiota of meconium in
preterm infants, Staphylococcus was the dominant genus and Staphylococcus epi-
dermidis the most common species. Among those infants with gestational age less
than 28 weeks, S epidermidis was present in meconium of 3 of the 4 infants delivered
by cesarean and 1 of the 3 delivered vaginally.17
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Fecal Microbiota

Changes in the fecal microbiota of the extremely preterm infant over the first weeks of
life have been characterized.4,17–22 The following patterns are consistent across mul-
tiple studies: (1) bacterial diversity is low in meconium and increases over time; (2) an
early dominance of Firmicutes (predominantly staphylococci, enterococci, and in
some studies streptococci) changes to a dominance of Proteobacteria (predominantly
Enterobacteriaceae); (3) Clostridium and Veillonella species appear late compared
with term infants, with Veillonella least common in infants born at <27 weeks; (4)
diet and antibiotic exposure have a lesser impact on the fecal microbiota in extremely
preterm infants than is seen in term infants (eg, the human milk oligosaccharide
[HMO]-consuming organisms, bifidobacteria and Bacteroides, are uncommon even
in exclusively human milk–fed preterm infants); and (5) postmenstrual age significantly
influences the fecal microbiota. These observations suggest that environmental fac-
tors andmaturation of the host immune response are the primary shapers of the devel-
oping gut microbiota in preterm infants. It is worth noting how strikingly the fecal
microbiota of the preterm infant differs from that of the healthy term infant with the
former often containing 1 to 2 orders of magnitude higher levels of g-Proteobacteria
and the latter commonly dominated by bifidobacteria and Bacteroides.

Gastric Microbiota

Gastric aspirates have recently been studied using bacterial DNA techniques. Analysis
of 22 neonates with an average gestational age of 27.7 weeks (�2.8) demonstrated a
relative paucity of species in the stomach, with Bacteroides spp predominant in the
first 4 weeks of life and Bifidobacterium colonization significantly higher in infants
receiving human milk. These results differ dramatically from studies of the fecal micro-
biota and raise the possibility that, although rare in the feces of preterm infants, the 2
genera of bacteria capable of consuming HMOsmay be present in their small bowel.23

In this study, Helicobacter pylori and Ureaplasma were not identified; however, a
different study of 12 neonates with an average gestational age of 27 weeks (�0.5)
found the predominant species in the first week of life to be Ureaplasma, with a pre-
dominance of S epidermidis in subsequent weeks. By the fourth week, Proteobacteria
and Firmicutes each accounted for 50% of the total gastric organisms.24 The reasons
for this disparity are unclear, but may represent differences in technique (denaturing
gradient gel electrophoresis in the first study and direct sequencing of polymerase
chain reaction [PCR]-amplified clones in the second), differences in population (both
studies were performed in the United States, but diversity in maternal colonization
with Ureaplasma may have played a role), or the relatively small numbers of infants
analyzed.

Oral Microbiota

Investigations of the development of the oral microbiota in extremely preterm infants
are limited. The largest study to date included 110 preterm infants with birth weight
less than 1000 g with weekly oral swabs for the first 6 weeks of life, but used culture
techniques rather than bacterial DNA-based approaches. At birth the oral swabs did
not show significant growth of culturable bacteria, but by week one, 21 infants were
colonized with methicillin-resistant Staphylococcus aureus (MRSA), 6 infants had
other pathogenic bacteria (S aureus, Enterobacteriaceae, Escherichia coli), 56 infants
were colonized with “nonpathogenic bacteria” (S epidermidis was most common fol-
lowed by Corynebacterium, Lactobacillus, and Streptococcus), and 22 infants still
showed no significant growth of culturable bacteria. By 6 weeks, 60 of the infants
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were colonized with MRSA. It is noteworthy that MRSA sepsis cases were less com-
mon in those infants with early oral colonization with the “nonpathogenic” mi-
crobes.25 Smaller studies of preterm infants using culture-only technology have
shown colonization of the mouth in the first 10 days of life with coagulase-negative
staphylococci, enterococci, Enterobacteriaceae, Pseudomonas, and Candida.26 A
study using bacterial DNA-based technology included 1 infant with gestational age
24 weeks; the saliva microbiota differed from the other 4 preterm infants analyzed
(gestational age 30–31 weeks) in that there were Enterobacteriaceae at days 8 and
10 and Pseudomonas and Mycoplasma at days 15, 18, and 21 that were not seen
in the older preterm infants.16 We analyzed the oral microbiota of 7 preterm infants
(gestational age 25–27 weeks) with bacterial DNA techniques at 3 time points in
the first 5 days of life and found a predominance of Mycoplasmataceae and Morax-
ellaceae in the first 36 hours of life and Staphylococcaceae and Planococcaceae by
day of life 5.27

Skin Microbiota

The skin of the extremely preterm infant changes dramatically in the first weeks of life.
The stratum corneum, which functions as the epidermal barrier, is nearly absent at
23 weeks’ gestation, has a few cornified layers at 26 weeks, and is not fully mature un-
til approximately 34 weeks’ gestation.28 When infants are born preterm, the epidermis
matures fairly rapidly, and even the most immature neonate has functionally and his-
tologically mature epidermis by approximately 2 weeks postnatal age.29 Studies of the
skin microbiota of the extremely preterm infant are limited. Several studies have
demonstrated that pathogens commonly colonize the skin of preterm infants (mostly
staphylococci, enterococci, Enterobacteriaceae, Pseudomonadales, and Candida)
and that MRSA colonization is more common in the preterm infant; however, these
studies were not designed to analyze the broader skin microbiota.30–32 The previously
noted study comparing changes over time in the saliva, skin, and feces included 1 in-
fant with gestational age 24 weeks. The skin of this infant was dominated by staphy-
lococci during the time of testing (day 8 to day 21) and did not differ from the older
preterm infants.16 Environmental factors that influence the skin microbiota include
parental skin, feeding type, environmental surfaces and caregiving equipment, health
care provider skin, and antibiotic use.33
THE MICROBIOTA AND DISEASE RISK IN EXTREMELY PRETERM INFANTS
The Fecal Microbiota and Necrotizing Enterocolitis and Sepsis

The incidences of NEC and sepsis are highest in the most preterm infants, likely due to
immaturity of intestinal and skin barriers and immaturity of immune responses. Cases
and outbreaks of NEC have been associated with a striking variety of organisms
(Table 2), suggesting that there is not a single organism responsible. The evidence
that the early or colonizing microbiota of the intestine influences the risk for subse-
quent development of NEC and/or sepsis has become quite compelling. The observa-
tion that NEC is most common in infants born at less than 28 weeks gestation and
most commonly occurs at 30 to 32 weeks corrected gestational age34 suggests
that maturation of the host immune response and/or maturation of the intestinal micro-
biota are important in NEC pathogenesis. The Paneth cells of the small intestine pro-
duce large quantities of antimicrobial peptides that shape the intestinal microbiota.35 It
is not likely coincidental that Paneth cells increase in numbers and become immune-
competent at 29 weeks corrected gestational age.36,37 Lower fecal bacterial diversity
and/or richness is common in extremely preterm infants and has been demonstrated



Table 2
Microbes associated with cases or outbreaks of necrotizing enterocolitis

Gram-Positive Bacteria Gram-Negative Bacteria Fungi Viruses

Enterococcus faecalis
Clostridium perfringens
Clostridium butyricum
Clostridium neonatale
Clostridium difficile
Staphylococcus aureus
Staphylococcus

epidermidis

Klebsiella pneumoniae
Escherichia coli
Pseudomonas aeruginosa
Enterobacter cloacae
Cronobacter sakazakii
Cronobacter muytjensii
Shigella
Salmonella

Candida albicans
Candida parapsilosis
Candida glabrata
Aspergillus
Mucoraceae

Coronavirus
Coxsackie B2 virus
Rotavirus
Adenovirus
Torovirus
Astrovirus
Echovirus 22
Norovirus
Cytomegalovirus
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in some studies of infants with NEC compared with matched controls,22,38–40 although
this is not universal.41,42 Studies investigating the fecal microbiota before the onset of
NEC compared with matched controls are summarized in Table 3.40,41,43–54 These
studies demonstrate the following: (1) colonization patterns differ between preterm in-
fants who subsequently develop NEC and those who do not; (2) these differences are
heavily influenced by maturation, NICU location, antibiotic exposure, and perhaps
feeding type; (3) it remains unclear whether NEC risk is associated with the absence
of potentially protective microbes (eg, Propionibacterium, Bifidobacterium, Bacter-
oides, or Veillonella species) or the dominance of potentially pathogenic microbes
(eg, Enterobacteriaceae or Clostridium species); and (4) it remains unclear whether
dysbiosis is the cause of NEC or a marker of alterations in host genetics or immune
development. Two observations support the hypothesis that Enterobacteriaceae are
important in the pathogenesis of NEC: (1) recognition of lipopolysaccharide in the
cell wall of Gram-negative Enterobacteriaceae by Toll-like receptor 4 triggers a proin-
flammatory response and an influx of lymphocytes that in animal models is essential to
the development of NEC,55 and (2) Enterobacteriaceae have unique metabolic path-
ways by which they both trigger inflammation and use the products of the host inflam-
matory response as an energy source allowing them to outcompete other gut
microbes.56

Many of the organisms responsible for late-onset sepsis (LOS), including staphylo-
cocci, in extremely preterm infants originate in the intestinal tract.57 Several studies
have demonstrated organisms in the feces before or concurrent with the onset of
LOS caused by the identical organism in extremely preterm infants.58–60 Decreased
bacterial diversity and a predominance of staphylococci in early fecal specimens
were associated with later sepsis in one small study of infants with gestational age
24 to 27 weeks.61

The Skin Microbiota and Sepsis

Efforts to decrease LOS with emphasis on the skin microbiota (eg, hand washing, pro-
tocols for line placement and care, early removal of central lines) have been partially
successful, suggesting that a portion of these infections originate in the skin. Studies
correlating skin colonization with LOS have relied on culture-based approaches and
therefore likely give a limited view of the microbiota.62

The Oral and Gastric Microbiota and Pneumonia

In critically ill adults and children, attention to oral care has been shown to decrease
the risk of ventilator-associated pneumonia, suggesting that aspirated oral microbes
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may play a role in pathogenesis. No studies to date have demonstrated similar de-
creases in ventilated preterm infants. Tracheal pepsin has been proposed as a
marker of aspiration of gastric contents and appears to be common in preterm in-
fants.63 Bacterial DNA techniques have demonstrated an association between the
gastric microbiota and chronic lung disease, with Ureaplasma the most common
genus.64

The Tracheal Microbiota and Chronic Lung Disease

The lower airway is not sterile in the preterm infant. Tracheal aspirates from very pre-
term intubated infants have predominantly been studied with culture-based tech-
niques.65 A study of 25 preterm infants using bacterial DNA techniques
demonstrated a predominance of Actinobacteria, which decreased over time in in-
fants who subsequently developed chronic lung disease (gestational age
26.2� 1.9 weeks) but remained stable over time in the infants who did not (gestational
age 28.9 � 1.4 weeks). In the former group, Staphylococcus increased over time and
bacterial diversity was lower.66 A study of 10 infants with birth weight 500 to 1250 g
who were intubated for more than 21 days demonstrated a predominance of Staphy-
lococcus, Ureaplasma, Pseudomonas, Enterococcus, and Escherichia.67 In both
culture-based and DNA-based studies there appear to be differences in the tracheal
microbiota between infants who subsequently develop chronic lung disease and
those who do not; however, distinguishing between colonization of the airway and
infection remains challenging.

Environmental Microbes and Disease Risk

The impact of the NICU environment on colonization, immune responses, and risk for
nosocomial infection in the extremely preterm infant has not been fully characterized.
The composition of the surface and airborne microbiota is influenced by building
design and utilization with hospital surfaces more likely to contain human pathogens
than other office settings.68 Two studies of NICU surfaces using bacterial DNA tech-
niques, found significant diversity between NICUs and demonstrated common
neonatal pathogens (eg, Enterobacter, Pseudomonas, Streptococcus, Staphylo-
coccus, Escherichia, Enterococcus, Acinetobacter, and Candida albicans) on NICU
surfaces.69,70 Intensive cleaning has been shown to significantly reduce the total mi-
crobial load and reshape the diversity toward nonpathogenic organisms. Interestingly,
many of the common NICU enteric genera (Enterococcus, Klebsiella, Escherichia, and
Pseudomonas) were not significantly altered by an intensive cleaning regimen, and
routine cleaning of environmental surfaces with antibacterial wipes may be just as
effective to reduce potentially pathogenic bacteria.70

Examples of environmental studies of NICU infectious outbreaks are abundant. In
one NICU, during high-risk respiratory syncytial virus season, 4% of clothing swabs,
and 9% of environmental “high-touch” surface swabs (beds, side tables, countertops,
chairs, tables, and computers) tested positive for the virus by PCR.71 Using DNA
sequencing, a sink drain was shown to be the source of a Pseudomonas aeruginosa
outbreak and replacing the sink and plumbing appeared to eradicate the outbreak.72

A Burkholderia cepacia outbreak, in which 12 neonates developed clinical and/or lab-
oratory evidence of sepsis was traced to contaminated intravenous solution and water
for humidification of ventilator circuits.73 A cluster of Bacillus cereus colitis cases,74 an
extended-spectrum beta-lactamase E coli outbreak,75 and case reports of Group B
Streptococcus septicemia in preterm infants76 have all been attributed to contami-
nated breast milk. Cronobacter species have been identified as a contaminant of
powdered milk formulas, with sporadic outbreaks linked to NEC, bacteremia, and



Table 3
Studies of the fecal microbiota before the onset of NEC (only studies that included infants with gestational age <28 weeks are included)

Gestational
Age at Birtha NEC Controls Meconium Early Stools Just Before NEC Onset

De la Cochetiere
et al,43 2004

24–29 3 9 Clostridium perfringens [

Mai et al,41 2011 23–29 9 9 Firmicutes [
Actinobacteria Y
Bacteroidetes Y

Proteobacteria [

Stewart et al,44 2012 24–28 7 21 Coagulase-negative staphylococci [
Enterococci Y

Smith et al,45 2012 23–30 15 128 No differences at 3 time points: 0–5 d, day 10, and day 30

Morrow et al,40 2013 25.5 (1.8) 11 21 Propionibacterium Y Staphylococci [
Enterococci [
Enterobacteriaceae [

Normann et al,46 2013 22–25 10 16 Trends: Enterobacteriaceae [
Bacillales [
Enterococci Y

Torrazza et al,47 2013 27.4 (2.6) 18 35 Klebsiella-like sp [ Proteobacteria [
Actinobacteria [
Bifidobacteria Y
Bacteroidetes Y

Jenke et al,48 2013 24–27 12 56 Lactobacilli [
Escherichia coli Y

E coli [

McMurtry et al,49 2015 27.2 (2.8) 21 74 Actinobacteria Y
Clostridia Y
Veillonella Y
Streptococci Y
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Sim et al,50 2015 25–28 12 36 Klebsiella [ Klebsiella [
Clostridia [

Zhou et al,39 2015 24–31 12 26 Clostridia [
Staphylococci Y

Heida et al,51 2016 24–29 11 22 C perfringens [
Bacteroides dorei [

C perfringens [
Staphylococci Y

Warner et al,22 2016b 26.0
(24.7–27.9)

46 120 g-Proteobacteria [
Negativicutes Y
Clostridia Y

Ward et al,52 2016 26 (23–28) 7 37 No differences in samples from days 3–16.
Days 17–22:

Uropathogenic E coli [
Veillonella Y

Twin studies

Stewart et al, 201353 26–30 5 5 Escherichia [

Claud et al,54 2013 1 1 Proteobacteria [
Veillonella Y

Arrows represent significant differences in NEC compared with control specimens.
Abbreviation: NEC, necrotizing enterocolitis.
a Range or mean (SD) or median (interquartile range).
b The associations were most strong for infants with gestational age at birth <27 weeks with strong time-by-NEC interactions.
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meningitis.77,78 Bacteria also can colonize unlikely sources. B cepacia and Entero-
bacter cloacae have the ability to hydrolyze, render inactive, and proliferate in para-
bens, which are esters of para-hydroxybenzoic acid that are usually antimicrobial
and used as preservatives in ultrasound gel (implicated in a B cepacia outbreak in a
NICU).79,80 Serratia marcescens outbreaks in NICUs have been linked to stored water
and incubator surfaces,81 the exit port of a high-frequency oscillatory ventilator,82

contaminated parenteral nutrition,83 soap dispensers,84 and baby shampoo.85
MANIPULATING THE MICROBIOTA OF THE EXTREMELY PRETERM INFANT
Diet

Breast-fed term infants generally become colonized in the first weeks after birth with
gut microbes that are able to consume HMOs and other human milk glycans (bifido-
bacteria andBacteroides), whereas formula-fed infants tend to become colonized with
a more diverse mixture of microbes. As noted previously, in the extremely preterm in-
fant, the provision of human milk does not have a marked influence on the fecal micro-
biota with “human milk–consuming” microbes consistently either absent or present in
low abundance across multiple studies. In a small study, neither the addition of a
mixture rich in HMOs to preterm infant formula nor the “all-human diet” (human milk
fortified with a fortifier made from donor human milk) led to a significant change in
the fecal microbiota.86 Nevertheless, careful analysis of the composition of HMOs in
ingested milk and undigested HMOs in feces in preterm infants showed that different
HMO structures are differentially consumed in the preterm gut with increased fucosy-
lated HMOs in milk associated with a decrease in Proteobacteria in the infant feces.87

Probiotics

To date, a total of 41 randomized placebo-controlled trials of probiotics in preterm
infants have been published in English; 37 of these trials included NEC, sepsis,
and/or death as an outcome. In spite of differences in probiotic choice and dose
administered, several meta-analyses have reached the same conclusion: probiotics
decrease the risk of NEC, death, and sepsis in preterm infants and decrease the
time to full enteral feeding in preterm infants receiving human milk.88–90 In addition,
there have been 11 cohort studies published in English comparing periods of no
probiotic to periods of universal probiotic administration in preterm infants with a
meta-analysis of these studies demonstrating a decrease in NEC and mortality
with probiotic administration.91 Table 4 summarizes the nonweighted results of the
randomized controlled trials and the cohort studies.92–96 In spite of this astounding
level of evidence and the relative lack of risk, routine probiotic administration is
not recommended in the United States due to concerns from the Food and Drug
Administration and other experts regarding the lack of commercial probiotic prod-
ucts that meet high standards of purity and viability. Whether these recommenda-
tions are justifiable given the incidence, cost, and severity of NEC and the relative
paucity of evidence of harm associated with probiotic administration is hotly
debated. In addition, it has been widely reported that although probiotic products
appear to be beneficial for preterm infants with birth weight greater than 1000 g,
data supporting a benefit for extremely low birth weight infants are lacking.21

Tables 5 and 6 summarize the data available from the randomized controlled trials
and the cohort studies for the smallest preterm infants, including unweighted totals
and percentages.96–114 Although the level of support is not as compelling as that
for larger preterm infants, these data suggest potential benefit and certainly no
convincing evidence of harm for this population.



Table 4
Unweighted summary of probiotic studies in preterm infants

Number Enrolled
NEC Cases
Stage 2 or 3

Culture-Positive
Sepsis Deaths

Probiotic Control Probiotic Control Probiotic Control Probiotic Control

7 randomized placebo-controlled trials with 200 or more preterm infants in each arm

2520 2554 98 151 236 244 129 169

% of those reporting
the outcome

3.9 5.9 10 11 5.1 6.6

7 cohort studies with 200 or more preterm infants in each group

6779 5099 201 299 648 530 498 434

% of those reporting
the outcome

3.0 5.9 11 13 7.3 8.5

37 randomized placebo-controlled trials (includes the infants in the 7 larger trials above)

4710 4675 153 283 475 548 224 315

% of those reporting
the outcome

3.3 6.2 12 14 5.1 7.2

11 cohort studies (includes the infants in the 7 larger studies above)

7742 7592 224 408 737 667 556 493

% of those reporting
the outcome

2.9 5.3 12 14 7.7 9.0

Details of 33 of the randomized controlled trials and 10 of the cohort studies are presented in
Tables 1 and 2 of Ref.90 with the additional studies in Refs.91–94,108
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Antibiotics

Five clinical trials of oral administration of antibiotics that are unlikely to be absorbed
systemically (gentamicin, kanamycin, or vancomycin) demonstrated a decrease in the
incidence of NEC.115 Although this approach has been adopted in some NICUs, the
concerns of emergence of resistant organisms have precluded widespread adoption.
A recent report of the emergence of colistin-resistant extended-spectrum beta-lacta-
mase–producing Enterobacteriaceae following oral administration to preterm infants
for NEC prophylaxis underscores the validity of these concerns.116

Buccal Colostrum

Administration of colostrum directly into the buccal pouch has been proposed as oral
hygiene to decrease the risk of ventilator-associated pneumonia in intubated neo-
nates. To date, studies have shown an impact on the oropharyngeal lymphatic tis-
sues117 and the oral microbiota,27 a decrease in clinical sepsis,117 but no clear
decrease in pneumonia. A multicenter trial of this intervention is under way.118

Cleaning Agents

Early studies of the value of environmental disinfection as a strategy to decrease
hospital-acquired infections were limited and disappointing.119 More recent studies
suggest that novel interventions may be helpful in interrupting and preventing infec-
tious hospital outbreaks.120 Demonstrations that chlorhexidine bathing is associated
with decreased risk of hospital-acquired infections compared with soap and water121

have prompted widespread adoption of this practice for children and adults. For
similar reasons, frequent use of hand-sanitizing gels and foams among health care
providers has become widespread. Unfortunately, we have no data about the



Table 5
Randomized controlled trials evaluating probiotics published in English and specifically evaluating infants <1 kg

Author Country Probiotic Species

n <1 kg

NEC
Cases ‡
stage 2

Culture
D Sepsis Deaths

Pro Pla Pro Pla Pro Pla Pro Pla

Costeloe et al,98 2016 UK Bifidobacterium breve 317 327 50 53 63 61 46 53

Kanic et al,93 2015a Slovenia Lactobacillus acidophilus 1 Enterococcus faecium 1

Bifidobacterium infantum
13 17 0 5 8 6 3 3

Van Niekirk et al,99 2015a South Africa Bifidobacterium infantis 1 Lactobacillus rhamnosus 43 49 0 4 – – 5 5

Sangtawesin et al,97 2014a Thailand L acidophilus 1 Bifidobacterium bifida 3 4 1 1 2 1 0 0

Tewari et al,100 2015a India Bacillus clausii 23 22 0 0 6 8 8 9

Oncel et al,101 2014 Turkey Lactobacillus reuteri 93 103 5 9 6 19 11 17

Patole et al,102 2014a Australia B breve 28 29 – – 11 6 0 0

Totsu et al,103 2014a,b Japan Bifidobacterium bifidum 76 66 0 0 5 10 2 0

Jacobs et al,104 2013c Australia 1 NZ B infantis 1 Streptococcus thermophilus 1 Bifidobacterium lactis 235 239 10 14 53 58 – –

Al-Hosni et al,105 2012 US B infantis 1 L rhamnosus 50 51 2 2 13 16 3 4

Mihatsch et al,106 2010d Germany B lactis 91 89 2 4 28 29 2 1

Rouge et al,107 2009 France Bifidobacterium longum 1 L rhamnosus 16 22 – – 12 14 – –

Underwood et al,96 2009 US L rhamnosus OR combination (L acidophilus 1 B infantis
1 B longum 1 B bifidum)

9 7 1 0 4 0 0 0

Lin et al,108 2008e Taiwan L acidophilus 1 B bifidum 102 79 4 7 28 14 0 6

Wang et al,109 2007a Japan B breve 11 11 0 0 – – – –

Bin-Nun et al,110 2005a Israel B infantis 1 S thermophilus 1 B lactis 25 17 2 6 4 10 6 9

Total 1140 1137 77 106 248 254 86 107

Percentage of those reporting the outcome – – 6.8 9.5 23 24 9.8 12

Abbreviations: NEC, necrotizing enterocolitis; Pla, placebo; Pro, probiotic.
a Personal communication from the author.
b Culture-positive sepsis at greater than 7 days of life.
c In regression model, reduction of NEC significant in subgroup analysis of less than 1 kg infants (RR [relative risk] 0.73).
d These infants were less than 29 weeks (birth weight <1.16 kg).
e Death and NEC were significantly lower in the probiotic group for infants 500 to 750 g (P 5 .02).
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Table 6
Cohort studies evaluating probiotics published in English and specifically evaluating infants
<1 kg

Author Country Probiotic Species

n <1 kg

NEC
Cases ‡
Stage 2

Culture
D Sepsis Deaths

Pro Con Pro Con Pro Con Pro Con

Guthman
et al,111

2016

Switzerland Lactobacillus
acidophilus 1
Bifidobacterium
infantis

238 250 6 16 – – 16 26

Janvier
et al,112

2014

Canada Bifidobacterium
bifidum 1

Bifidobacterium
breve 1 B infantis 1
B longum 1

Lactobacillus
rhamnosus

98 109 10 18 30 38 14 27

Hunter
et al,113

2012

US Lactobacillus reuteri 79 232 2 35 18 72 – –

Luoto
et al,114

2010

Finland L rhamnosus 218 879 17 45 – – – –

Total 633 1470 35 114 48 110 30 53

% of those reporting the outcome – – 5.5 7.8 27 32 8.9 15

Abbreviations: Con, control; NEC, necrotizing enterocolitis; Pro, probiotic.
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long-term impact of these interventions on the skin microbiota or systemic absorption
of these products for either the health care provider or the patient (particularly for high-
ly vulnerable patients like the extremely preterm infant).

Emollients

Topical application of ointments, oils, or other emollients to the skin of the preterm in-
fant has not demonstrated any significant decrease in rates of invasive infection or
death.122 Studies of the impact of this approach on the skin microbiota are limited
to culture studies, with 1 study showing no differences123 and 2 studies showing
nonspecific changes.30,124

Functionalized Surfaces

Creation of novel surfaces that are resistant to colonization with potentially pathogenic
microbes is a promising approach. Although this field is still in its infancy, the most
promising result may be decreased surface contamination with viruses.125 Isolettes
with pathogen-resistant surfaces and medical devices coated with commensal or pro-
biotic organisms may someday be commonplace.

SUMMARY

The study of microbes that colonize extremely preterm infants and the devices and
surfaces with which they come in contact holds great promise for decreasing the
high morbidity and mortality in this evolutionarily new population. Understanding
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and preventing dysbiosis may be crucial to the prevention of common and devastating
processes such as NEC, chronic lung disease, and sepsis, but also may impact
growth, development, immune function, and risk for a broad variety of chronic dis-
eases and conditions.
Best Practices

What is the current practice?

� The American Academy of Pediatrics recommends mother’s ownmilk for preterm infants and
pasteurized donor human milk if the mother is unable to provide sufficient milk

� In many countries, prophylactic probiotic supplements are routine for preterm infants

What changes in current practice are likely to improve outcomes?

� Increased utilization of probiotics that reach high standards of purity and viability will
decrease NEC in infants with birth weight greater than 1000 g (Centre for Evidence-Based
Medicine, Oxford, 1a)

� Increased utilization of probiotics may decrease NEC and sepsis in smaller preterm infants
(Centre for Evidence-Based Medicine, Oxford, 1b) and may decrease risk of childhood and
adult onset diseases (Centre for Evidence-Based Medicine, Oxford, 5)

� Development of targeted approaches to decrease dysbiosis of the mouth, stomach,
intestines, skin, and trachea may decrease diseases of extremely preterm infants associated
with acute or chronic inflammation (Centre for Evidence-Based Medicine, Oxford, 5)

Data from Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009).
Centre for Evidence Based Medicine. Available at: http://www.cebm.net/oxford-centre-
evidence-based-medicine-levels-evidence-march-2009/. Accessed March 6, 2017.
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