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ABSTRACT OF THE DISSERTATION

Exact Diffusion Learning over Networks

by

Kun Yuan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Ali H. Sayed, Chair

In this dissertation, we study optimization, adaptation, and learning problems over connected

networks. In these problems, each agent k collects and learns from its own local data and is

able to communicate with its local neighbors. While each single node in the network may not

be capable of sophisticated behavior on its own, the agents collaborate to solve large-scale

and challenging learning problems.

Different approaches have been proposed in the literature to boost the learning capabili-

ties of networked agents. Among these approaches, the class of diffusion strategies has been

shown to be particularly well-suited due to their enhanced stability range over other methods

and improved performance in adaptive scenarios. However, diffusion implementations suffer

from a small inherent bias in the iterates. When a constant step-size is employed to solve

deterministic optimization problems, the iterates generated by the diffusion strategy will

converge to a small neighborhood around the desired global solution but not to the exact

solution itself. This bias is not due to any gradient noise arising from stochastic approxima-

tion; it is instead due to the update structure in diffusion implementations. The existence of

the bias leads to three questions: (1) What is the origin of this inherent bias? (2) Can it be

eliminated? (3) Does the correction of the bias bring benefits to distributed optimization,

distributed adaptation, or distributed learning?

This dissertation provides affirmative solutions to these questions. Specifically, we design

a new exact diffusion approach that eliminates the inherent bias in diffusion. Exact diffusion
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has almost the same structure as diffusion, with the addition of a “correction” step between

the adaptation and combination steps. Next, this dissertation studies the performance of

exact diffusion for the scenarios of distributed optimization, distributed adaptation, and dis-

tributed learning, respectively. For distributed optimization, exact diffusion is proven to con-

verge exponentially fast to the exact global solution under proper conditions. For distributed

adaptation, exact diffusion is proven to have better steady-state mean-square-error than dif-

fusion, and this superiority is analytically shown to be more evident for sparsely-connected

networks such as line, cycle, grid, and other topologies. In distributed learning, exact dif-

fusion can be integrated with the amortized variance-reduced gradient method (AVRG) so

that it converges exponentially fast to the exact global solution while employing stochastic

gradients per iteration. This dissertation also compares exact diffusion with other state-of-

the-art methods in literature. Intensive numerical simulations are provided to illustrate the

theoretical results derived in the dissertation.
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CHAPTER 1

Introduction

In this dissertation, we study optimization, adaptation, and learning problems over connected

networks. In these problems, each agent k collects and learns from its own local data and is

able to communicate with its local neighbors. While each single node in the network may not

be capable of sophisticated behavior on its own, it is the interaction among the constituents

that leads to a powerful system that is able to solve large-scale and more challenging problems

[1, 4].

Different approaches have been proposed in the literature to boost the learning capabili-

ties of networked agents. Among them, the class of diffusion strategies [5–13] has been shown

to be particularly well-suited due to their improved stability range over other methods and

enhanced performance in adaptive scenarios. In particular, references [1, 4] study diffusion

closely and explain how the diffusion strategy (a) performs distributed optimization over

networks; (b) performs distributed adaptation over networks; (c) and performs distributed

learning over networks. By quantifying the behavior of the algorithm, it is shown that

diffusion will improve the averaged performance across the network.

It is known that diffusion implementations suffer from a small inherent bias [14]. When

employing a constant step-size to solve a deterministic optimization problem, the iterates

generated by the diffusion strategy will converge to a small neighborhood around the desired

global solution but not to the exact solution itself. This inherent bias is not due to any

gradient noise arising from stochastic approximation; it is instead due to the update structure

in diffusion implementations [15, 16]. The existence of the bias in diffusion leads to three

questions:

1. What is the origin of the bias?
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2. Can we eliminate the bias?

3. Does the correction of the bias bring benefits to distributed optimization, distributed

adaptation, or distributed learning?

In the coming chapters, we will present results that allow us to answer the above useful

questions in the affirmative. To be specific, we will propose a new method exact diffusion

that eliminates the inherent bias in Chapter 2. Furthermore, we will show whether, when

and why exact diffusion can outperform diffusion for optimization, adaptation, and learning

scenarios in Chapters 2–5. We will also compare the performance of exact diffusion to other

state-of-the-art algorithms in the literature.

In this chapter, we will briefly discuss the problem formulation in distributed optimiza-

tion, distributed adaptation and online learning, and distributed empirical machine learning,

respectively. Next we will review the diffusion strategy in detail and present its various forms

when solving problems in each of the above scenarios.

1.1 Problem Formulation

Consider a connected and undirected network G = (V , E) where V is the set of all networked

nodes with |V| = K while E is the set of all edges. The optimization problem defined over

this network is to let each agent operate cooperatively to solve a problem of a form

min
w∈RM

J o(w) =
1

K

K∑
k=1

Jk(w), (1.1)

where M is the dimension of the variable, Jk(w) : RM → R is a convex and differentiable cost

function at agent k, and J o(w) : RM → R is the global cost function. We let wo denote the

global minimizer of problem (1.1). While each agent can only access the local cost function

Jk(w), the target of the network is to let all agents collaborate to seek the global solution wo.

Different from the centralized network topology, e.g., the parameter server [17, 18], where

there is a central node connected to all computing agents that is responsible for aggregating

and scattering local variables, the network topology considered in the dissertation can take
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arbitrary form such as line, cycle, grid, or random geometric graphs. There exists no central

node in the considered network topology, and each agent will exchange information with

their directly-connected neighbors rather than with a central agent. An illustration of such

multi-agent network is shown in Fig. 1.1.

There are many advantages to distributed processing. First, the communication in dis-

tributed algorithms is more balanced. With each agent exchanging information with its

neighbors, the communication load is evenly distributed over the edges. This is in contrast

to centralized algorithms that usually induce great traffic jam on the central node. When the

bandwidth around the central server is limited, the performance of centralized algorithms

can be significantly degraded. Second, distributed algorithms are more robust to failure of

agents. Note that each agent in a distributed strategy plays the same role by conducting

the same operations – they update local variables and exchange information with neighbors.

When one agent is down, the other agents can still work normally provided the network re-

mains connected. In comparison, centralized strategies are more sensitive to the collapse of

the central node which coordinates the computation and communication of all agents. Third,

in real-time applications where agents collect data continuously, the repeated exchange of

information back and forth between the agents and the fusion center can be costly especially

when these exchanges occur over wireless links or require nontrivial routing resources. Fi-

nally, in some sensitive applications, agents may be reluctant to share their data with remote

centers for various reasons including privacy and secrecy considerations.

Problem (1.1) is quite general and it covers various important scenarios by choosing

different forms for Jk(w). We next discuss these scenarios and their applications.

1.1.1 Distributed Optimization

When each local cost function Jk(w) is known and its gradient∇Jk(w) can be accessed easily,

we regard (1.1) as a distributed optimization problem. This is a deterministic setting and

no gradient noise exists to pollute ∇Jk(w). Distributed Optimization is the foundation to

distributed adaptation and learning problems, and its study usually provides strong insights
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Figure 1.1: An illustration of the network. The network is connected, and each agent holds a local

cost function Jk(w). The arrow refers to communication. For example, agent k can send/receive

information to/from its immediate neighbors {1, 4, 7}. The yellow shadow indicates the neighboring

set of agent k.

into the latter scenarios. Distributed optimization finds applications in a wide range of areas

in signal processing, control and communication including wireless sensor networks [19–23],

event detection [24,25], spectrum sensing of cognitive radios [26,27], multi-vehicle and multi-

robot control systems [28, 29], cyber-physical systems and smart grid implementations [30–

33], and many others.

1.1.2 Distributed Adaptation and Online Learning

If Jk(w) is defined as the expectation of some loss function, then problem (1.1) falls into

the scenario of distributed adaptation and online learning. To be concrete, distributed

adaptation and online learning consider problems of the form

min
w∈RM

J(w) =
1

K

K∑
k=1

Jk(w), where Jk(w) = E Q(w;xk). (1.2)

The random variable xk represents the streaming data observed by agent k, and Q(w;xk)

is some loss function such as least-squares or the logistic function. Since the distribution of

data xk is generally unknown in advance, we cannot access the cost function Jk(w) and its

gradient ∇Jk(w); instead, we can only access Q(w;xk,i) and ∇Q(w;xk,i) where xk,i is the
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realization of data xk at iteration i. Also, throughout the adaptation setting we assume data

samples xk,i keep streaming in and the underlying distribution may drift with time. Such

drifting distribution may cause a shift in the location of the global minimizer wo, and one

has to design strategies that enable agents to respond in real-time to drifts in data.

Problems of the form (1.2) are prevalent in adaptation and online learning contexts.

Typical applications can be found in distributed estimation [1,4,14,34–36], dictionary learn-

ing [37–39], clustering [40, 41], multi-task learning [42], distributed feature learning [43],

multi-target tracking [44, 45], social learning [46, 47], and multi-agent reinforcement learn-

ing [48–51].

1.1.3 Distributed Empirical Machine Learning

Many machine learning problems can be modeled as the empirical risk minimization

min
w∈RM

1

N

N∑
n=1

Q(w;xn) (1.3)

where xn is the n-th data, N is the size of the dataset, and Q(w;xn) is some loss function

as we discussed in Sec. 1.1.2. When the data size N is very large, it is usually intractable

or inefficient to solve problem (1.3) with a single machine. To relieve this difficulty, one

solution is to divide the N data samples across multiple machines and solve problem (1.3) in

a cooperative manner. To this end, we consider K agents that are connected over the graph

G = (V , E). For each agent k, we assign L = N/K data samples to it, which we denote by

{xk,n}Ln=1. That is, it holds that {xn}Nn=1 = {{x1,n}Ln=1, · · · , {xK,n}Ln=1}. One can verify that

the empirical risk minimization problem (1.3) is equivalent to

min
w∈RM

1

K

K∑
k=1

Jk(w) where Jk(w) =
1

L

L∑
n=1

Q(w;xk,n). (1.4)

We regard problem (1.4) as the distributed empirical machine learning problem because it

deals with finite, non-streaming, data samples. Since the data samples are fixed, the solution

to problem (1.4) is also static.

In large-scale machine learning problems with enormous data to be processed, the number

of computing agents K is usually far less than the sample size N . In this case, the size of
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the local dataset L can still be very large. Note that each Jk(w) in (1.4) is the average

of L local loss functions, and its gradient ∇Jk(w) = 1
L

∑L
n=1∇Q(w;xk,n) is expensive to

calculate especially for large L. Therefore, one usually employs the gradient over a single

data sample ∇Q(w;xk,n), or the gradient over a batch of data samples 1
B

∑B
b=1∇Q(w;xk,b),

to approximate the real gradient ∇Jk(w). This constitutes the major difference between

algorithms in distributed optimization and in distributed empirical machine learning.

Distributed machine learning over the centralized network, i.e., a network with a central

node that is connected to all nodes, is well-studied to speed up training efficiency when large

data samples exist. Many useful algorithms exist such as parallel stochastic gradient descent

(SGD) methods [52, 53], distributed second-order methods [54–56], parallel dual coordinate

methods [57, 58], and distributed alternating direction method of multipliers (ADMM) [59,

60]. However, the information congestion around the central node limits the speedup of

these centralized methods, and this motivates great interest in distributed algorithms. For

example, references [61,62] find distributed algorithms, by eliminating the central node, are

empirically shown to converge faster than centralized counterparts in deep learning when

the network has limited bandwidth or high latency.

Another attractive emerging application for distributed empirical machine learning is fed-

erated learning [63,64]. Federated learning is a distributed training approach which enables

personal devices, e.g., mobile phones, tablets, and the wearables, located at different geo-

graphical positions to collaboratively learn a global machine learning model while keeping all

the private data on the device. Current research mainly employs the centralized approaches

for federated learning, see [63–66]. However, the convergence time for the federated learning

process is significantly slow due to the limited communication bandwidth around the central

server and the long communication latency between server and clients. As a result, dis-

tributed approaches without central server are introduced for federated learning [67–69] to

speed up the convergence with more balanced communication load and short communication

ranges.
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1.2 Diffusion Learning

Research in distributed optimization dates back several decades (see, e.g., [70] and the ref-

erences therein). In recent years, various centralized optimization methods such as (sub-

)gradient descent, proximal gradient descent, (quasi-)Newton method, dual averaging, alter-

nating direction method of multipliers (ADMM), and many other primal-dual methods have

been extended to the distributed setting.

Distributed algorithms that are based on gradient-descent methods are effective and easy

to implement. There are at least two prominent variants under this class: the consensus

strategy [5–13] and the diffusion strategy [1, 4, 34, 36, 71]. There is a subtle but critical

difference in the order in which computations are performed under these two strategies. In

the consensus implementation, each agent runs a gradient-descent type iteration, albeit one

where the starting point for the recursion and the point at which the gradient is approximated

are not identical. This construction introduces an asymmetry into the update relation, which

has some undesirable instability consequences (described, for example, in Secs. 7.2–7.3,

Example 8.4, and also in Theorem 9.3 of [1] and Sec. V.B and Example 20 of [4]). The

diffusion strategy, in comparison, employs a symmetric update where the starting point for

the iteration and the point at which the gradient is approximated coincide. This property

results in a wider stability range for diffusion strategies [1, 4].

In this section we review the diffusion learning algorithm and its recursions in various

problem settings. In particular, we will reveal that diffusion, similar to consensus, suffers

from an inherent limiting bias which may deteriorate its steady-state performance. This

motivates us to study approaches that remove bias.

1.2.1 Diffusion for Distributed Optimization

To proceed, we consider solving problem (1.1) over a connected network of agents. The

standard diffusion strategy [1, 4, 34] is listed in Algorithm 1.1 where the first step (1.5)

conducts local gradient descent with constant step-size µ, and the second step (1.6) conducts

weighted averaging for received information with a`k to scale variables flowing from agent `
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Algorithm 1.1 Diffusion strategy for distributed optimization at agent k

Setting: Initialize wk,−1 arbitrarily.

Repeat for i = 0, 1, 2, · · ·

ψk,i = wk,i−1 − µ∇Jk(wk,i−1), (adaptation) (1.5)

wk,i =
∑
`∈Nk

a`kψ`,i. (combination) (1.6)

to k. The weights {a`k}K`=1,k=1 are nonnegative and they satisfy

a`k


≥ 0 if agents ` and k are connected,

= 0 if agents ` and k are not connected,

a`k = ak`, and
∑
`∈Nk

a`k = 1 (1.7)

With condition (1.7), it follows that the weight matrix A = [a`k] ∈ RK×K is a symmetric

and doubly-stochastic matrix, i.e.,

A = AT and A1K = 1K . (1.8)

Moreover, Nk in (1.6) denotes the set of neighbors of agent k (including agent k itself), and

∇Jk(·) denotes the gradient vector of Jk(·) relative to w. The combination step (1.6) is

illustrated in Fig. 1.2.

Remark 1.1 (Combination matrix) While we consider the symmetric and doubly stochas-

tic combination matrix satisfying condition (1.8) for simplicity in this section, this is not a

requirement for diffusion to converge to preferable solutions. In fact, diffusion can employ

more relaxed left-stochastic combination matrices as explained in [1,4]. We will examine the

combination matrices employed in diffusion more closely in Chapter 2. �

When sufficiently small step-sizes are employed to drive the optimization process, the

diffusion strategy is able to converge exponentially fast when J o(w) is strongly convex,

albeit only to an approximate solution [1, 9]. Specifically, it is proved by Theorem 3 in [14]
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Figure 1.2: An illustration of the combination step (1.6) in diffusion method. Since

Nk = {1, 4, 7, k}, it holds that wk,i =
∑

`∈Nk
a`kψ`,i = a1kψ1,i + a4kψ4,i + a7kψ7,i + akkψk,i.

that iterates wk,i generated through the diffusion recursion (1.5)-(1.6) will approach wo, i.e.,

lim sup
i→∞

‖wo − wk,i‖2 = O(µ2), ∀ k = 1, · · · , K, (1.9)

where wk,i denotes the local iterate at agent k and iteration i. Result (1.9) implies that the

diffusion method will converge to a neighborhood around wo, and that the square-error bias

is small (since µ is usually small) and on the order of O(µ2). Note that this limiting bias

O(µ2) is not due to any gradient noise arising from stochastic approximations; it is instead

due to the inherent structure of the diffusion updates. The existence of the limiting bias can

be justified by the following simple example.

Example 1.1 (Diffusion has inherent bias) We assume all iterates {wk,i−1}Kk=1 are stay-

ing at the global solution wo at current iteration i− 1, and we examine the next iterate wk,i.

Substituting recursions (1.5) into (1.6), we get

wk,i =
∑
`∈Nk

a`k (w`,i−1 − µ∇J`(w`,i−1))

=
∑
`∈Nk

a`k (wo − µ∇J`(wo))
(a)
= wo − µ

∑
`∈Nk

a`k∇J`(wo) 6= w0 (1.10)
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Algorithm 1.2 Diffusion strategy for distributed adaptation and online learning

Setting: Initialize wk,−1 arbitrarily.

.Each agent k will repeat for i = 0, 1, 2, · · ·

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,i), (adaptation) (1.11)

wk,i =
∑
`∈Nk

a`kψ`,i. (combination) (1.12)

where equality (a) holds since
∑

`∈Nk
a`k = 1 and the last inequality holds since∑

`∈Nk

a`k∇J`(wo) 6= 0

in general. This implies that even if all iterates have converged to wo at some iteration, they

will jump away from wo at the next iteration. As a result, exact diffusion cannot converge

to the exact solution wo in the steady-state stage. �

1.2.2 Diffusion for Distributed Adaptation and Online Learning

Now we employ the diffusion strategy to solve the distributed adaptation and online learning

problem (1.2). Since Jk(w) is constructed as the expectation of the random loss Q(w;xk) and

the distribution of xk is unknown in general, the real gradient ∇Jk(w) cannot be accessed.

For this scenario, exact diffusion will employ the stochastic gradient∇Q(w;xk,i) where xk,i is

the realization of xk at iteration i to approximate the real gradient. The recursion of diffusion

for distributed adaptation and online learning is listed in Algorithm 1.2. Comparing (1.11)

with (1.5), it is observed that diffusion employs stochastic gradient descent (SGD) in the

combination step. For adaptation and online learning, we employ a constant step-size µ to

enable continuous adaptation and learning in response to drifts in the location of the global

minimizer due to changes in the statistical properties of the data.

Previous studies have shown that diffusion methods (1.11)–(1.12) are able to solve prob-

lems of the type (1.2) well for sufficiently small step-sizes. In particular, when each Jk(w)
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is smooth with Lipschitz continuous gradient, the global cost function J o(w) is strongly

convex, and the stochastic gradient noise is unbiased with controllable variance, it is proved

in, for example, Lemma 5 in [72] or Theorem 9.1 in [1] that

lim sup
i→∞

E‖wo −wk,i‖2 = O(µσ2 + µ2b2), ∀ k = 1, · · · , K (1.13)

for sufficiently small step-sizes, where σ2 is the magnitude of the gradient noise, and b2 =∑K
k=1 ‖∇Jk(wo)‖2 is a bias constant. Result (1.13) has two important implications:

• When there is no gradient noise, i.e., σ2 = 0, the adaptive diffusion recursions (1.11)–

(1.12) reduce to the deterministic diffusion recursions (1.5)–(1.6). In this scenario,

result (1.13) becomes

lim sup
i→∞

E‖wo −wk,i‖2 = O(µ2b2), ∀ k = 1, · · · , K (1.14)

which is consistent with the convergence property shown in (1.9). The term O(µ2b2)

is exactly the inherent limiting bias suffered by diffusion.

• When step-size is sufficiently small, the O(µσ2) limiting bias will dominate the inherent

bias O(µ2b2). That is,

lim sup
i→∞

E‖wo −wk,i‖2 = O(µσ2), ∀ k = 1, · · · , K. (1.15)

This is a well-known result for the steady-state performance for diffusion. Note that

the O(µσ2) limiting bias arises from the gradient noise.

1.2.3 Diffusion for Distributed Empirical Machine Learning

In this subsection we extend diffusion to solve the empirical machine learning problem (1.4)

in a distributed manner. The diffusion recursion can be easily derived by interpreting (1.4)

as a special form of the adaptation problem (1.2) [73]. Recall that each agent k stores data

samples {xk,n}Ln=1. We introduce a discrete random variable xk having these samples as
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realizations and a uniform probability mass function (pmf) defined by

p(xk) =


1
L
, if xk = xk,1,

...
...

1
L
, if xk = xk,L.

(1.16)

With the uniform pmf in (1.16), it holds that

1

L

L∑
n=1

Q(w;xk,n) = E Q(w;xk) (1.17)

and hence problem (1.4) can be rewritten as

min
w∈RM

1

K

K∑
k=1

Jk(w) where Jk(w) = E Q(w;xk) =
1

L

L∑
n=1

Q(w;xk,n) (1.18)

and the distribution of xk is defined in (1.16). This implies that the distributed empirical

machine learning problem (1.4) is essentially a special form of adaptation and online learning

problem (1.18).

We know from Sec. 1.2.2 that diffusion can solve problem (1.18) with recursions

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,i), (adaptation) (1.19)

wk,i =
∑
`∈Nk

a`kψ`,i. (combination) (1.20)

where the notation xk,i represents the realization of xk that streams in at iteration i. Since

xk,i is selected from {x1, x2, · · · , xN} at iteration i according to the pmf (1.16), we can

rewrite xk,i as xni
and replace (1.19) by

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,ni
). (1.21)

Here, the variable ni is a uniform discrete random variable indicating the index of the sample

that is picked at iteration i. The diffusion strategy for the distributed empirical learning

problem (1.4) can therefore be summarized as Algorithm 1.3.

With equivalence between (1.19) and (1.21), we conclude that the diffusion recursions

(1.22)–(1.24) are essentially the recursion (1.11)–(1.12) applied to problem (1.18). This
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Algorithm 1.3 Diffusion strategy for distributed empirical learning at agent k

Setting: Initialize wk,−1 arbitrarily.

.Repeat for i = 0, 1, 2, · · ·

ni ∼ U [1, L] (uniformly sample integer from 1 to L) (1.22)

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,ni
), (adaptation) (1.23)

wk,i =
∑
`∈Nk

a`kψ`,i. (combination) (1.24)

interpretation is useful because we can now call upon results from Sec.1.2.2 and apply them

to characterize the performance of recursions (1.22)–(1.24). Following this analysis, we can

show that the iterates wk,i generated by (1.22)–(1.24) satisfy

lim sup
i→∞

E‖wo −wk,i‖2 = O(µσ2 + µ2b2), ∀ k = 1, · · · , K (1.25)

for sufficiently small step-sizes µ under the same assumptions as in Sec.1.2.2.

1.3 Objectives and Organization

In future chapters, we will answer the three questions listed in the beginning of Sec.1. To

be concrete, we will identify the origin of the bias suffered by diffusion and develop a new

exact diffusion learning strategy to correct it. We will study its convergence condition and

performance for the scenarios of distributed optimization, distributed adaptation and online

learning, and distributed empirical learning, respectively. Specifically, we will compare the

behavior of diffusion and exact diffusion in each scenario to corroborate the benefits of

removing the inherent bias. Furthermore, we will also compare exact diffusion with other

well-known distributed methods and show its superiority in stability range, convergence rate,

steady-state performance, or memory cost.

The organization of the dissertation is summarized as follows.
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• Chapter 2. In this chapter, we clarify the origin of the O(µ2) inherent bias in the

standard diffusion strategy. It turns out that diffusion relies on reformulating the aggre-

gate optimization problem (1.1) as a penalized problem and resorting to a diagonally-

weighted incremental construction. Since the achieved penalized problem is just an ap-

proximation to problem (1.1), diffusion can only converge to an approximate solution

rather than the desired wo. We next develop the exact diffusion method that directly

solves the real problem (1.1) and thus eliminates the limiting bias. We also show in this

chapter that the exact diffusion method is applicable to locally-balanced left-stochastic

combination matrices which, compared to the conventional doubly-stochastic matrix,

are more general and able to endow the algorithm with faster convergence rate, more

flexible step-size choices and better privacy-preserving properties. In particular, the

simulation shows exact diffusion with a locally-balanced combination matrix converges

much faster than the benchmark method EXTRA [74] using the doubly-stochastic

matrix.

• Chapter 3. In this chapter, we examine the convergence and stability properties of

exact diffusion in detail and establish its linear convergence rate. We also show that

it has a wider stability range than the EXTRA [75] consensus solution even if both

algorithms employ the same symmetric and doubly-stochastic combination matrices,

meaning that it is stable for a wider range of step-sizes and can, therefore, attain

faster convergence rates. Analytical examples and numerical simulations illustrate the

theoretical findings.

• Chapter 4. While the convergence property of exact diffusion is studied when solving

distributed deterministic optimization problems in Chapters 2 and 3, its performance

under adaptation and online learning settings remains unclear. It is still unknown

whether the bias-correction is necessary over adaptive networks. By studying exact

diffusion and examining its steady-state performance under stochastic scenarios, this

chapter provides affirmative results. It is proved that the correction step in exact

diffusion leads to a better steady-state performance than standard diffusion strategies
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under mild conditions. It is also analytically shown the superiority of exact diffusion

becomes more evident over sparse or badly-connected network topologies such as line,

cycle, grid, and many others. This chapter also explores situations where exact diffusion

and diffusion do perform similarly. These conclusions will provide a guideline on how

to employ exact diffusion effectively in various applications.

• Chapter 5. In this chapter we extend exact diffusion to the empirical learning scenario

with finite data samples. The problem considered in this chapter is more general than

(1.4) in which the amount of data observed/collected by the individual agents may

differ drastically, i.e., it is possible that Lk 6= L` for different agents k and `. To

guarantee linear convergence to the exact solution wo, we integrate exact diffusion with

an amortized variance-reduced gradient (AVRG) algorithm developed in [76]. AVRG

is a stochastic variance-reduced method. Its memory cost is trivial compared to SAGA

and it has a balanced gradient computations in comparison to SVRG. These two key

advantages enable AVRG amenable to decentralized implementations. The resulting

diffusion-AVRG algorithm is shown to have linear convergence to the exact solution

which is opposed to the diffusion strategy that just converges to the neighborhood, see

equation (1.25). Diffusion-AVRG is also shown much more memory efficient than the

other alternative algorithms such as DSA [77]. In addition, we propose a mini-batch

strategy to balance the communication and computation efficiency for diffusion-AVRG.

When a proper batch size is selected, it is observed in simulations that diffusion-AVRG

is more computationally efficient than exact diffusion or EXTRA while maintaining

almost the same communication efficiency.

• Chapter 6. This chapter will summarize all derived results in the dissertation and

discuss future work on exact diffusion learning.
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1.4 Notation

Throughout the dissertation we use diag{x1, · · · , xK} to denote a diagonal matrix consisting

of diagonal entries x1, · · · , xR, and use col{x1, · · · , xR} to denote a column vector formed

by stacking x1, · · · , xR. For symmetric matrices X and Y , the notation X ≤ Y or Y ≥ X

denotes Y − X is positive semi-definite. For a vector x, the notation x � 0 denotes that

each element of x is non-negative, while the notation x � 0 denotes that each element of x

is positive. For a matrix X, we let range(X) denote its range space, and null(X) denote its

null space. The notation 1K = col{1, · · · , 1} ∈ RK .
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CHAPTER 2

Exact Diffusion for Distributed Optimization:

Algorithm Development

2.1 Context and Background

This chapter deals with deterministic optimization problems where a collection of K net-

worked agents operate cooperatively to solve an aggregate optimization problem of the form:

w? = arg min
w∈RM

J ?(w) =
K∑
k=1

qkJk(w). (2.1)

In this formulation, each risk function Jk(w) is convex and differentiable, while the aggregate

cost J(w) is strongly-convex. Note that problem (2.1) is more general than the original

problem (1.1). The weights {qk}Kk=1 are given positive constants to scale each local cost

function. When q1 = · · · = qK = 1/K, problem (2.1) is equivalent to (1.1). All agents seek

to determine the unique global minimizer, w?, under the constraint that agents can only

communicate with their neighbors. This distributed approach is robust to failure of links

and/or agents and scalable to the network size. Optimization problems of this type find

applications in a wide range of areas, see the discussion in Sec. 1.1.1.

2.1.1 Related Work

Research in distributed optimization dates back several decades (see, e.g., [70] and the ref-

erences therein). In recent years, various centralized optimization methods such as (sub-

)gradient descent, proximal gradient descent, (quasi-)Newton method, dual averaging, al-

ternating direction method of multipliers (ADMM), and many other primal-dual methods

have been extended to the distributed setting. In this section, we review several classes of
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distributed algorithms that can be used to solve problem (1.1).

2.1.1.1 Distributed Primal Methods

In the primal domain, implementations that are based on gradient-descent methods are

effective and easy to implement. There are at least two prominent variants under this class:

the consensus strategy [5–13] and the diffusion strategy [1,4,34,36,71]. A brief description of

these two primal strategies is given in Appendix 2.A. There is a subtle but critical difference in

the order in which computations are performed under these two strategies. In the consensus

implementation, each agent runs a gradient-descent type iteration, albeit one where the

starting point for the recursion and the point at which the gradient is approximated are

not identical. This construction introduces an asymmetry into the update relation, which

has some undesirable instability consequences (described, for example, in Secs. 7.2–7.3,

Example 8.4, and also in Theorem 9.3 of [1] and Sec. V.B and Example 20 of [4]). The

diffusion strategy, in comparison, employs a symmetric update where the starting point for

the iteration and the point at which the gradient is approximated coincide. This property

results in a wider stability range for diffusion strategies [1, 4]. Still, when sufficiently small

step-sizes are employed to drive the optimization process, both types of strategies (consensus

and diffusion) are able to converge exponentially fast, albeit only to an approximate solution

[1, 9]. Specifically, it is proved in [1, 9, 14] that both the consensus and diffusion iterates

under constant step-size learning converge towards a neighborhood of square-error size O(µ2)

around the true optimizer, w?, i.e., ‖w? − wk,i‖2 = O(µ2) as i → ∞, where µ denotes the

step-size and wk,i denotes the local iterate at agent k and iteration i. This limiting O(µ2)

bias is not due to any gradient noise arising from stochastic approximations; it is instead due

to the inherent structure of the consensus and diffusion updates as clarified in the sequel.

Second-order information such as the Hessian matrix can also be introduced to the pri-

mal methods, see the distributed Newton method [78, 79], Quasi-Newton method [80] and

references therein. While the Hessian matrix helps accelerate the convergence rate, these

second-order algorithms still suffer from the O(µ2) inherent limiting bias. There is another
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type of methods that employ multi-consensus inner loop [81–83] and thus improves the con-

sensus of the variables at each outer iteration. While these two-time scale methods can

reduce the limiting bias, the inner consensus loop incurs more communication rounds be-

tween agents, and hence slows down the processing of new data received in the outer loop.

For this reason, they are not well-suited for the adaptation and online learning problems.

2.1.1.2 Distributed Primal-Dual Methods

Another important class of distributed algorithms are based on the primal dual strategies. A

brief analytical derivation of various popular primal-dual methods is given in Sec. 2.B. A well-

known family of distributed primal dual methods are those based on alternating direction

method of multipliers (ADMM) [74,84–86] and its variants [87–90]. In particular, work [74]

proves that distributed ADMM with constant parameters converges exponentially fast to the

exact global solution w?, which is in contrast to the purely primal methods we discussed in

Sec. 2.1.1.1 that only converge to an approximate solution close to w? with constant step-

sizes. However, distributed ADMM solutions are computationally more expensive since they

necessitate the solution of optimal sub-problems at each iteration. Some useful variations

of distributed ADMM [87–89] may alleviate the computational burden, but their recursions

are still more difficult to implement than consensus or diffusion due to their primal dual

structures.

In more recent work [75,91], a modified implementation of consensus iterations, referred

to as EXTRA, is proposed and shown to converge to the exact minimizer w? rather than to

an O(µ2)−neighborhood around w?. The modification has a similar computational burden as

traditional consensus and is based on adding a step that combines two prior iterates to remove

bias. While EXTRA does not explicitly employ a dual variable, it is essentially a primal dual

saddle point algorithm [77]. Motivated by [75], other variations with similar properties were

proposed in [92–98]. These variations rely instead on combining inexact gradient evaluations

with a gradient tracking technique. The resulting algorithms, compared to EXTRA, have

two information combinations per recursion, which doubles the amount of communication
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variables compared to EXTRA, and can become a burden when communication resources

are limited. Distributed primal-dual second-order methods are also studied in [89, 99] to

reduce communication rounds but they suffer from the expensive construction of the Hessian

matrix. Due to their easy implementations and fast convergences, EXTRA and tracking

methods have been extended to other important scenarios for directed [93, 97, 98, 100, 101]

and asynchronous [102] networks. There is also another family of primal-dual methods that

are related to EXTRA and utilize the network structure to further accelerate the convergence

and reduce the communication rounds [103–105].

When local cost function Jk(w) is not smooth and has the structure Jk(w) = sk(w) +

rk(w) where sk(w) is smooth with Lipschitz continuous gradients and rk(w) is a possibly

non-smooth regularization term, one can integrate the proximal gradient descent with the

above primal-dual methods, see [88,91,106–109]. In particular, [109] proposes a distributed

proximal gradient method that endows with exponential convergence to w? when each agent

shares the same regularization term , i.e., r1(w) = · · · = rK(w) = r(w).

2.1.1.3 Distributed dual methods

A third class of distributed algorithms are purely dual methods, see [110–113]. A short

description on dual methods is provided in Sec.2.C. They first derive the unconstrained

dual problem of problem (2.1) and then solve it by gradient descent. In particular, the

algorithms of [110,111,113] can reach the optimal convergence rate by introducing Nesterov’s

acceleration to their recursions.

2.1.2 Motivation and Contributions

The current chapter is motivated by the following considerations. The result in [75] shows

that the EXTRA technique resolves the bias problem in consensus implementations. How-

ever, it is known that traditional diffusion strategies outperform traditional consensus strate-

gies. Would it be possible then to correct the bias in the diffusion implementation and attain

an algorithm that is superior to EXTRA (e.g., an implementation that is more stable than
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EXTRA)? This is one of the contributions in Chapter 2 and 3. In this chapter, we shall

indeed develop a bias-free diffusion strategy that will be shown in chapter 3 to have a wider

stability range than EXTRA consensus implementations. Achieving these objectives is chal-

lenging for several reasons. First, we need to understand the origin of the bias in diffusion

implementations. Compared to the consensus strategy, the source of this bias is different

and still not well understood. In seeking an answer to this question, we will initially observe

that the diffusion recursion can be framed as an incremental algorithm to solve a penalized

version of (2.1) and not (2.1) directly — see expression (2.71) further ahead. In other words,

the local diffusion estimate wk,i, held by agent k at iteration i, will be shown to approach

the solution of a penalized problem rather than w?, which causes the bias.

We have four main contributions in this chapter and the accompanying chapter 3 relating

to: (a) developing a distributed algorithm (which we refer to as exact diffusion) that ensures

exact convergence based on the diffusion strategy; (b) showing that exact diffusion has wider

stability range and enhanced performance than EXTRA [75]; (c) showing that exact diffusion

works for the larger class of locally balanced (rather than only doubly-stochastic) matrices;

and (d) showing that neither EXTRA nor exact diffusion can be extended to the general

directed network by constructing counter examples, which helps illustrate the significance of

the proposed locally balanced conditions.

More specifically, we will first show in this chapter how to modify the diffusion strategy

such that it solves the real problem (2.1) directly. We shall refer to this variant as exact

diffusion. Interestingly, the structure of exact diffusion will turn out to be very close to the

structure of standard diffusion. The only difference is that there will be an extra “correc-

tion” step added between the usual “adaptation” and “combination” steps of diffusion —

see the listing of Algorithm 1 further ahead. It will become clear that this adapt-correct-

combine (ACC) structure of the exact diffusion algorithm is more symmetric in comparison

to the EXTRA recursions. In addition, the computational cost of the “correction” step is

trivial. Therefore, with essentially the same computational efficiency as standard diffusion,

the exact diffusion algorithm will be able to converge exponentially fast to w? without any

bias. Secondly, we will show in Chapter 3 that exact diffusion has a wider stability range
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than EXTRA. In other words, there will exist a larger range of step-sizes that keeps exact

diffusion stable but not the EXTRA algorithm. This is an important observation because

larger values for µ help accelerate convergence.

Our third contribution is that we will derive the exact diffusion algorithm, and establish

its convergence property for the class of locally balanced combination matrices (see Definition

1). This class does not only include symmetric doubly-stochastic matrices as special cases,

but it also includes a range of widely-used left-stochastic policies as explained further ahead.

First, we recall that left-stochastic matrices are defined as follows. Let a`k denote the weight

that is used to scale the data that flows from agent ` to k. Let A
∆
= [a`k] ∈ RK×K denote

the matrix that collects all these coefficients. The entries on each column of A are assumed

to add up to one so that A is left-stochastic, i.e., it holds that

AT1K = 1K , or
K∑
`=1

a`k = 1, ∀ k = 1, · · · , K. (2.2)

The matrix A will not be required to be symmetric. For example, it may happen that

a`k 6= ak`. Using these coefficients, when an agent k combines the iterates {ψ`,i} it receives

from its neighbors, that combination will correspond to:

wk,i+1 =
K∑
`=1

a`kψ`,i, where
K∑
`=1

a`k = 1. (2.3)

Obviously, wk,i+1 is a convex combination of {ψ`,i}.

It should be emphasized that condition (2.2), which is repeated in (2.3), is different

from all previous algorithms studied in [5, 74, 75, 84, 85, 88, 95, 96], which require A to be

symmetric and doubly stochastic (i.e., each of its columns and rows should add up to one).

For undirected networks, although symmetric doubly-stochastic matrices are commonly used,

balanced left-stochastic policies can have significant practical value — they can speed up con-

vergence, a more relaxed selection of the step-size parameter, reach better mean-square-error

(MSE) performance over adaptive networks, and enjoy better privacy-preserving properties

— see the extended discussions in Sec. 2.2.3.

We also explain in this chapter the significance of the proposed locally balanced condi-

tions. If the combination matrix does not satisfy these conditions, we show that one can
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construct counter examples where both exact diffusion and EXTRA diverge for any given

step-size (see Sec. 2.5). This implies an interesting conclusion: exact diffusion and EXTRA

may not always work for general directed networks (see the discussions in Secs. 2.2.4 and 2.5).

This seems to be a disadvantage in comparison with DIGing-based methods [92–96] which

are designed for directed network. However, for scenarios where the locally balanced condi-

tion is satisfied, exact diffusion is shown in simulations to have a wider range of step-sizes

and is more communication efficient than DIGing methods [92–96] (recall that in DIGing

there are two information combinations per iteration).

In this chapter we derive the exact diffusion algorithm, while in next chapter we establish

its convergence properties and prove its stability superiority over the EXTRA algorithm.

This article is organized as follows. In Sec. 2.2 we review the standard diffusion algorithm,

introduce locally-balanced left-stochastic combination policies, and establish several of their

properties. In Sec. 2.3 we identify the source of bias in standard diffusion implementations.

In Sec. 2.4 we design the exact diffusion algorithm to correct for the bias. In Sec.2.5

we illustrate the necessity of the locally-balanced condition on the combination policies by

showing that divergence can occur if it is not satisfied. Numerical simulations are presented

in Sec. 3.3.

2.2 Diffusion and Combination Policies

2.2.1 Standard Diffusion Strategy

To solve problem (2.1) over a connected network of agents, we consider the standard diffusion

strategy [1, 4, 34]:

ψk,i = wk,i−1 − µk∇Jk(wk,i−1), (2.4)

wk,i =
∑
`∈Nk

a`kψ`,i, (2.5)

where {µk}Kk=1 are positive step-sizes. Compared to the diffusion method we present i Al-

gorithm 1.1, Recursions (2.4)–(2.5) employ different local step-size µk for each agent k.

These step-size setting will enable diffusion to converge towards the optimal solution w? to
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the weighted consensus problem in (2.1). Moreover, in this chapter we will consider using

a more relaxed combination policy in diffusion than the symmetric and doubly-stochastic

matrix used in Sec. 1.2. Specifically, we assume {a`k}K`=1,k=1 are nonnegative combination

weights satisfying ∑
`∈Nk

a`k = 1. (2.6)

It follows from (2.6) that A = [a`k] ∈ RK×K is a left-stochastic matrix, i.e., AT1K = 1K .

Note that we do not assume A is symmetric here. The benefits of left-stochastic combination

matrix over symmetric and doubly stochastic matrix is discussed in Sec. 2.2.3.

It is assumed that the graph is strongly-connected in this chapter, which means that at

least one diagonal entry of A is non-zero [1] (this is a reasonable assumption since it simply

requires that at least one agent in the network has some confidence level in its own data).

In this case, the matrix A will be primitive. This implies, in view of the Perron-Frobenius

theorem [1,114], that there exists an eigenvector p satisfying

Ap = p, 1T
Kp = 1, p � 0. (2.7)

We refer to p as the Perron eigenvector of A. Next, we introduce the vector

q
∆
= col{q1, q2, . . . , qK} ∈ RK , (2.8)

where qk is the weight associated with Jk(w) in (2.1). Let the constant scalar β be chosen

such that

q = β diag{µ1, µ2, · · · , µK}p. (2.9)

where β > 0 is some constant, then it was shown by Theorem 3 in [14] that under (2.9), the

iterates wk,i generated through the diffusion recursion (1.5)-(1.6) will approach w?, i.e.,

lim sup
i→∞

‖w? − wk,i‖2 = O(µ2
max), ∀ k = 1, · · · , K, (2.10)

where µmax = max{µ1, · · · , µK}. Result (2.10) implies that the diffusion algorithm will

converge to a neighborhood around w?, and that the square-error bias is on the order of

O(µ2
max). We discuss a simple example in Sec.2.2 that justifies the existence of the inherent

limiting bias.
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Remark 2.1 (Scaling) Condition (2.9) is not restrictive and can be satisfied for any left-

stochastic matrix A through the choice of the parameter β and the step-sizes. Note that β

should satisfy

β =
qk
pk

1

µk
(2.11)

for all k. To make the expression for β independent of k, we parameterize (select) the

step-sizes as

µk =

(
qk
pk

)
µo (2.12)

for some small µo > 0. Then, β = 1/µo, which is independent of k, and relation (2.9) is

satisfied. �

Remark 2.2 (Perron entries) Expression (2.12) suggests that agent k needs to know the

Perron entry pk in order to run the diffusion strategy (2.4)–(2.5). As we are going to see in

the next section, the Perron entries are actually available beforehand and in closed-form for

several well-known left-stochastic policies (see, e.g., expressions (2.17), (2.21), and (2.26)

further ahead). For other left-stochastic policies for which closed-form expressions for the

Perron entries may not be available, these can be determined iteratively by means of the

power iteration — see, e.g., the explanation leading to future expression (2.37). �

2.2.2 Combination Policy

Result (2.10) is a reassuring conclusion: it ensures that the squared-error is small whenever

µmax is small; moreover, the result holds for any left-stochastic matrix. Moving forward, we

will focus on an important subclass of left-stochastic matrices, namely, those that satisfy a

mild local balance condition (we shall refer to these matrices as balanced left-stochastic poli-

cies) [115]. The balancing condition turns out to have a useful physical interpretation and, in

addition, it will be shown to be satisfied by several widely used left-stochastic combination

policies. The local balance condition will help endow networks with crucial properties to

ensure exact convergence to w? without any bias. In this way, we will be able to propose
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distributed optimization strategies with exact convergence guarantees for this class of left-

stochastic matrices, while EXTRA [75] is limited to (the less practical) doubly-stochastic

policies; balanced left-stochastic matrices have many benefits as explained before, which is

the main motivation for focusing on them in our treatment.

Definition 1 (Locally balanced Policies) Let p denote the Perron eigenvector of a prim-

itive left-stochastic matrix A, with entries {p`}. Let P = diag(p) correspond to the diagonal

matrix constructed from p. The matrix A is said to satisfy a local balance condition if it

holds that

a`k pk = ak` p`, k, ` = 1, · · · , K (2.13)

or, equivalently, in matrix form:

PAT = AP. (2.14)

�

Relations of the form (2.13) are common in the context of Markov chains. They are used there

to model an equilibrium scenario for the probability flux into the Markov states [116, 117],

where the {a`k} represent the transition probabilities from states ` to k and the {p`} denote

the steady-state distribution for the Markov chain.

We provide here an interpretation for (2.13) in the context of multi-agent networks by

considering two generic agents, k and `, from an arbitrary network, as shown in Fig. 2.1.

The coefficient a`k is used by agent k to scale information arriving from agent `. Therefore,

this coefficient reflects the amount of confidence that agent k has in the information arriving

from agent `. Likewise, for ak`. Since the combination policy is not necessarily symmetric,

it will hold in general that a`k 6= ak`. However, agent k can re-scale the incoming weight a`k

by pk, and likewise for agent `, so that the local balance condition (2.13) requires each pair

of rescaled weights to match each other. We can interpret a`k to represent the (fractional)

amount of information flowing from ` to k and pk to represent the price paid by agent k

for that information. Expression (2.13) is then requiring the information-cost benefit to be

equitable across agents.
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Figure 2.1: Illustration of the local balance condition (2.13).

It is worth noting that the local balancing condition (2.13) is satisfied by several important

left-stochastic policies, as illustrated in four examples below. Thus, let τk = µk/µmax for

agent k. Then condition (2.9) becomes

q = βµmax diag{τ1, τ2, · · · , τK}p, (2.15)

where τk ∈ (0, 1].

Policy 1 (Hastings rule) The first policy we consider is the Hastings rule. Given {qk}Nk=1

and {µk}Nk=1, we select a`k as [1, 118]:

a`k =



µk/qk
max{nkµk/qk, n`µ`/q`}

, if ` ∈ Nk\{k},

1−
∑

m∈Nk\{k}

amk, if ` = k,

0, if ` /∈ Nk.

(2.16)

where nk
∆
= |Nk| (the number of neighbors of agent k). It can be verified that A is

left-stochastic, and that the entries of its Perron eigenvector p are given by

pk
∆
=

qk/µk∑K
`=1 q`/µ`

> 0. (2.17)

Let

β =
K∑
`=1

q`/µ` =
1

µmax

K∑
`=1

q`/τ` > 0. (2.18)

With (2.16) and (2.17), it is easy to verify that

a`kpk =
1

βmax{nkµk/qk, n`µ`/q`}
= ak`p`. (2.19)
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If ` = k, it is obvious that (2.13) holds. If ` /∈ Nk, then k /∈ N`. In this case, a`kpk = ak`p` =

0.

Furthermore, we can also verify that when {qk}Nk=1 and {µk}Nk=1 are given, {a`k} are

generated through (2.16), and β is chosen as in (2.18), then condition (2.9) is satisfied.

�

Policy 2 (Averaging rule) The second policy we consider is the popular average combi-

nation rule where a`k is chosen as

a`k =


1/nk, if ` ∈ Nk,

0, otherwise.

(2.20)

The entries of the Perron eigenvector p are given by

pk = nk

(
K∑
m=1

nm

)−1

. (2.21)

With (2.20) and (2.21), it clearly holds that

a`kpk =

(
K∑
m=1

nm

)−1

= ak`p`, (2.22)

which implies (2.13).

We can further verify that when µk is set as

µk =
qk
nk
µo, ∀ k = 1, 2, · · · , N (2.23)

for some positive constant step-size µo and β is set as

β =

(
K∑
m=1

nm

)/
µo > 0, (2.24)

then condition (2.9) will hold. �

Policy 3 (Relative-degree rule) The third policy we consider is the relative-degree com-

bination rule [119] where a`k is chosen as

a`k =


n`
(∑

m∈Nk
nm
)−1

, if ` ∈ Nk,

0, otherwise,

(2.25)
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and the entries of the Perron eigenvector p are given by

pk =
nk
∑

m∈Nk
nm∑K

k=1

(
nk
∑

m∈Nk
nm
) . (2.26)

With (2.25) and (2.26), it clearly holds that

a`kpk =
nkn`∑K

k=1

(
nk
∑

m∈Nk
nm
) = ak`p`, (2.27)

which implies (2.13).

We can further verify that when µk is set as

µk =
qk

nk
∑

m∈Nk
nm

µo, ∀ k = 1, 2, · · · , K, (2.28)

and β is set as

β =
K∑
k=1

(
nk
∑
m∈Nk

nm

)/
µo, (2.29)

then condition (2.9) will hold. �

Policy 4 (Doubly stochastic policy) If matrix A is primitive, symmetric, and doubly

stochastic, its Perron eigenvector is p = 1
K
1K . In this situation, the local balance condition

(2.13) holds automatically.

Furthermore, if we assume each agent employs the step-size µk = qkKµo for some positive

constant step-size µo, it can be verified that condition (2.9) holds with

β = 1/µo. (2.30)

There are various rules to generate a primitive, symmetric and doubly stochastic matrix.

Some common rules are the Laplacian rule, maximum-degree rule, Metropolis rule and other

rules that listed in Table 14.1 in [1]. �

Policy 5 (Other locally-balanced policies) For other left-stochastic-policies for which

closed-form expressions for the Perron entries need not be available, the Perron eigenvector

p can be learned iteratively to ensure that the step-sizes µk end up satisfying (2.12). Before
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we explain how this can be done, we remark that since the combination matrix A is left-

stochastic in our formulation, the power iteration employed in push-sum implementations

cannot be applied since it works for right-stochastic policies. We proceed instead as follows.

Since A is primitive and left-stochastic, it is shown in [1, 120] that

lim
i→∞

Ai = p1T
K . (2.31)

This relation also implies

lim
i→∞

(AT)i = 1Kp
T. (2.32)

Now let ek be the k-th column of the identity matrix IK ∈ RN×K . Furthermore, let each

agent k keep an auxiliary variable zk,i ∈ RN with each zk,−1 initialized to ek. We also

introduce

Zi
∆
= col{z1,i, z2,i, · · · , zN,i} ∈ RN2

, (2.33)

A ∆
= A⊗ IK . (2.34)

By iterating Zi according to

Zi+1 = ATZi, (2.35)

we have

lim
i→∞

Zi = lim
i→∞

(AT)i+1Z−1

= lim
i→∞

[(AT)i+1 ⊗ IK ]Z−1
(2.32)
= (1Kp

T ⊗ IK)Z−1

= [(1K ⊗ IK)(pT ⊗ IK)]Z−1. (2.36)

Since Z−1 = col{e1, · · · .eK}, it can be verified that (pT ⊗ IK)Z−1 = p. Substituting into

(2.36), we have limi→∞ zk,i = p. In summary, it holds that

lim
i→∞

zk,i(k) = pk (2.37)

where zk,i(k) is the k-th entry of the vector zk,i. Therefore, if we set

µk,i =
qkµo
zk,i(k)

, (2.38)
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then it follows that

lim
i→∞

µk,i = qkµo/pk. (2.39)

Finally, to guarantee zk,i(k) > 0 for i = 0, 1, 2, · · · , it is enough to assume akk > 0 for each

agent k = 1, 2, · · · , N , i.e., each agent has to assign positive weight to itself.

�

Figure 2.2: Illustration of the relations among the classes of symmetric doubly-stochastic, balanced left-s-

tochastic, and left-stochastic combination matrices.

We illustrate in Fig. 2.2 the relations among the classes of symmetric doubly-stochastic,

balanced left-stochastic, and left-stochastic combination matrices. It is seen that every sym-

metric doubly-stochastic matrix is both left-stochastic and balanced. We indicated earlier

that the EXTRA algorithm was derived in [75] with exact convergence properties for sym-

metric doubly-stochastic matrices. Here, in the sequel, we shall derive an exact diffusion

strategy with exact convergence guarantees for the larger class of balanced left-stochastic

matrices (which is therefore also applicable to symmetric doubly-stochastic matrices). We

will show in Chapter 3 that the exact diffusion implementation has a wider stability range

than EXTRA consensus; this is a useful property since larger step-sizes can be used to attain

larger convergence rates.

2.2.3 Values of Balanced Left-stochastic Policies

For undirected networks, though it is quite common to employ symmetric and doubly-

stochastic combination policies such as in [5,74,75,84,85,88,95,96], balanced left-stochastic
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policies can still be of great significant value. Some of the key benefits of these policies are

as follows.

First, balanced left-stochastic policies can speed up convergence. For example, in highly

unbalanced networks (e.g., the coauthorship network) where the degrees of neighboring nodes

differ drastically, the averaging rule enables faster convergence than doubly-stochastic poli-

cies (see the discussions in Sec. 2.6.3). The second scenario where balanced left-stochastic

policies help is when the Lipschitz constant associated with each local cost function differs

drastically — the Lipschitz constants δ in some nodes are much larger than the other nodes.

Note that δ` can be regarded as an importance measure of node `, and it is helpful for agent k

to assign more (less) weights to neighboring node ` if δ` is large (small). One such weighting

policy is the Hastings rule

a`k =



1/δk
max{nk/δk, n`/δ`}

, if ` ∈ Nk\{k},

1−
∑

m∈Nk\{k}

amk, if ` = k,

0, if ` /∈ Nk.

(2.40)

which is balanced left-stochastic. The Hastings rule (2.40) performs similar to importance

sampling in the machine learning literature [73, 121, 122] where data samples with larger

magnitude are assigned larger sampling probability. We illustrate the benefit of the Hastings

rule (2.40) in Sec. 2.6.3.

Second, balanced left-stochastic policies enable more flexible step-size choices — each

agent k can choose a different local step-size µk. For example, suppose each agent k sets

a proper local step-size µk, the exact convergence can be guaranteed if the combination

policy is generated according to the Hastings rule (2.16), see the explanation in Policy 1. In

contrast, EXTRA with a doubly-stochastic matrix has to enforce that all agents choose the

same step-size µ. Note that such flexible step-size choices have many benefits. It avoids the

communication costs to coordinate step-sizes. Moreover, each agent can choose step-sizes

purely according to its own local cost functions. If the condition number of Jk(w) is small

(or large), agent k can set a relatively large (or small) step-size, which can speed up the
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converge of the algorithm.

Third, balanced left-stochastic policies can have better privacy-preserving properties than

doubly-stochastic policies. For example, the averaging rule (2.20) can be constructed from

the agent’s own degree, and no neighbors’ degree is required. In contrast, the doubly-

stochastic matrices generated by the maximum-degree rule or Metropolis rule [1] will require

agents to share their degrees with neighbors.

Fourth, it is shown in Chapters 12 and 15 of [1] that the Hastings rule and the relative-

degree rule (see (2.25)) achieve better mean-square-error (MSE) performance over adaptive

networks than doubly-stochastic policies.

2.2.4 Necessity of Locally Balanced Condition

One may wonder whether exact convergence can be guaranteed for general left-stochastic

matrices that are not necessarily balanced (i.e., whether the convergence property can be

extended beyond the middle elliptical area in Fig. 2.2). It turns out that one can provide

examples of combination matrices that are left-stochastic (but not necessarily balanced)

for which exact convergence occurs and others for which exact convergence does not occur

(see, e.g., the examples in Section 2.5 and Figs. 2.9 and 2.10). In other words, exact

convergence is not always guaranteed beyond the balanced class. This conclusion is another

useful contribution of this work; it shows that there is a boundary inside the set of left-

stochastic matrices within which convergence can be always guaranteed (namely, the set of

balanced matrices).

It is worth noting that the recent works [100,123] extend the EXTRA method to the case

of directed networks by employing a push-sum technique. These extensions do not require the

local balancing condition but they establish convergence only if the step-size parameter falls

within an interval (clower, cupper) where clower and cupper are two positive constants. However,

it is not proved in these works whether this interval is feasible, i.e., whether cupper > clower. In

fact, we will construct examples in Section 2.5 for which both exact diffusion and push-sum

EXTRA will diverge for any step-size µ. In other words, both exact diffusion and EXTRA
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methods need not work well for directed networks. This is a disadvantage in comparison

with DIGing-based methods [92–96].

In summary, when locally-balanced policies is employed, exact diffusion is more com-

munication efficient and also more stable than other techniques including DIGing methods

(because the communicated variables required in each iteration of DIGing is twice as much as

that in exact diffusion) and EXTRA. However, just like EXTRA, the exact diffusion strategy

is applicable to undirected (rather than directed) graphs.

2.2.5 Useful Properties

We now establish several useful properties for primitive left-stochastic matrices that satisfy

the local balance condition (2.13). These properties will be used in the sequel.

Lemma 2.1 (Properties of AP − P + IK) When A satisfies the local balance condition

(2.13), it holds that the matrix AP − P + IK is primitive, symmetric, and doubly stochastic.

Proof: With condition (2.13), the symmetry of AP − P + IK is obvious. To check the

primitiveness of AP − P + IK , we need to verify two facts, namely, that: (a) at least one

diagonal entry in AP − P + IK is positive, and (b) there exists at least one path with

nonzero weights between any two agents. It is easy to verify condition (a) because A is

already primitive and P < IK . For condition (b), since A is connected and all diagonal

entries of P are positive, then if there exists a path with nonzero coefficients linking agents k

and ` under A, the same path will continue to exist under AP . Moreover, since all diagonal

entries of −P + IK are positive, then the same path will also exist under AP − P + IK .

Finally, AP − P + IK is doubly stochastic because

1T
K (AP − P + IK) = pT − pT + 1T

K = 1T
K , (2.41)

(AP − P + IK)1K = p− p+ 1K = 1K . (2.42)

�
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Lemma 2.2 (Nullspace of P − AP ) When A satisfies the local balance condition (2.13),

it holds that P − AP is symmetric and positive semi-definite. Moreover, it holds that

null(P − AP ) = span{1K}, (2.43)

where null(·) denotes the null space of its matrix argument.

Proof: Let λk denote the k-th largest eigenvalue of AP − P + IK . Recall from Lemma 2.1

that AP − P + IK is primitive and doubly stochastic. Therefore, according to Lemma F.4

from [1] it holds that

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λK > −1, (2.44)

It follows that the eigenvalues of AP − P are non-positive so that P − AP ≥ 0.

Note further from (2.44) that the matrix AP − P +IK has a single eigenvalue at one with

multiplicity one. Moreover, from (2.42) we know that the vector 1K is a right-eigenvector

associated with this eigenvalue at one. Based on these two facts, we have

(AP − P + IK)x = x⇐⇒ x = c1K (2.45)

for any constant c. Relation (2.45) is equivalent to

(AP − P )x = 0⇐⇒ x = c1K , (2.46)

which confirms (2.43). �

Corollary 2.1 (Nullspace of P −AP) Let P ∆
= P ⊗ IM and A ∆

= A ⊗ IM . When A

satisfies the local balance condition (2.13), it holds that

null(P −AP) = null
(

(P − AP )⊗ IM
)

= span{1K ⊗ IM}. (2.47)

Moreover, for any block vector X = col{x1, x2, · · · , xK} ∈ RMN in the nullspace of P − AP

with entries xk ∈ RM , it holds that

(P −AP)X = 0⇐⇒ x1 = x2 = · · · = xK . (2.48)
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Proof: Since P − AP + IK has a single eigenvalue at 1 with multiplicity one, we conclude

that (P −AP + IK)⊗ IM will have an eigenvalue at 1 with multiplicity M . Next we denote

the columns of the identity matrix by IM = [e1, e2, · · · , eK ] where ek ∈ RM . We can verify

that 1K ⊗ ek is a right-eigenvector associated with the eigenvalue 1 because

[(P − AP + IK)⊗ IM ][1K ⊗ ek]

= [(P − AP + IK)1K ]⊗ ek = 1K ⊗ ek. (2.49)

Now since any two vectors in the set {1K ⊗ ek}Mk=1 are mutually independent, we conclude

that

(P −AP)X = 0⇐⇒ (P −AP + IMN)X = X

⇐⇒ X ∈ span{[1K ⊗ e1, · · · ,1K ⊗ eM ]}

⇐⇒ X ∈ span{1K ⊗ IM}. (2.50)

These equalities establish (2.47). From (2.47) we can also conclude (2.48) because

X ∈ span{1K ⊗ IM}

⇒ X = (1K ⊗ IM) · x = col{x, x, · · · , x} (2.51)

from some x ∈ RM . The direction “⇐” of (2.48) is obvious. �

Lemma 2.3 (Real eigenvalues) When A satisfies the local balance condition (2.13), it

holds that A is diagonalizable with real eigenvalues in the interval (−1, 1], i.e.,

A = Y ΛY −1, (2.52)

where Λ = diag{λ1(A), · · · , λK(A)} ∈ RK×K, and

1 = λ1(A) > λ2(A)≥ λ3(A)≥ · · · ≥ λK(A) >−1. (2.53)

Proof: According to the local balance condition (2.14), PAT is symmetric. Using the fact

that P > 0 is diagonal, it holds that

P−
1
2AP

1
2 = P−

1
2 (AP )P−

1
2 , (2.54)
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which shows that the matrix on the left-hand side is symmetric. Therefore, P−
1
2AP

1
2 can be

decomposed as

P−
1
2AP

1
2 = Y1ΛY T

1 , (2.55)

where Y1 is an orthogonal matrix and Λ is a real diagonal matrix. From (2.55), we further

have that

A = P
1
2Y1ΛY T

1 P
− 1

2 . (2.56)

If we let Y = P
1
2Y1, we reach the decomposition (2.52). Moreover, since A is a primitive

left-stochastic matrix, according to Lemma F.4 in [1], the eigenvalues of A satisfy (2.53).

�

For ease of reference, we collect in Table 2.1 the properties established in Lemmas 2.1

through 2.3 for balanced primitive left-stochastic matrices A.

Properties of balanced primitive left-stochastic matrices A

A is diagonalizable with real eigenvalues in (−1, 1];

A has a single eigenvalue at 1;

AP − P + IK is symmetric, primitive, doubly-stochastic;

P − AP is positive semi-definite;

null(P − AP ) = span(1K);

null(P −AP) = span{1K ⊗ IM}.

Table 2.1: Properties of balanced primitive left-stochastic matrices A

2.3 Penalized Formulation of Diffusion

In this section, we employ the properties derived in the previous section to reformulate the

unconstrained optimization problem (2.1) into the equivalent constrained problem (2.69),
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which will be solved using a penalized formulation. This derivation will help clarify the

origin of the O(µ2
max) bias from (2.10) in the standard diffusion implementation.

2.3.1 Constrained Problem Formulation

To begin with, note that the unconstrained problem (2.1) is equivalent to the following

constrained problem:

min
{wk}

K∑
k=1

qkJk(wk),

s.t. w1 = w2 = · · · = wK . (2.57)

Now we introduce the block vector W
∆
= col{w1, · · · , wK} ∈ RKM and

J ?(W)
∆
=

K∑
k=1

qkJk(wk), (2.58)

With (2.48) and (2.58), problem (2.57) is equivalent to

min
W∈RNM

J ?(W), s.t.
1

2
(P −AP)W = 0. (2.59)

From Lemma 2.2, we know that P −AP is symmetric and positive semi-definite. Therefore,

we can decompose

P − AP
2

= UΣUT, (2.60)

where Σ ∈ RK×K is a non-negative diagonal matrix and U ∈ RK×K is an orthogonal matrix.

If we introduce the symmetric square-root matrix

V
∆
= UΣ1/2UT ∈ RK×K , (2.61)

then it holds that

P − AP
2

= V 2. (2.62)

Let V ∆
= V ⊗ IM so that

P −AP
2

= V2. (2.63)
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Lemma 2.4 (Nullspace of V ) With V defined as in (2.61), it holds that

null(V ) = null(P − AP ) = span{1K}. (2.64)

Proof: To prove null(V ) = null(P − AP ), it is enough to prove

(P − AP )x = 0⇐⇒ V x = 0. (2.65)

Indeed, notice that

(P − AP )x = 0⇒ V 2x = 0⇒ xTV TV x = 0

⇒ ‖V x‖2 = 0⇒ V x = 0. (2.66)

The reverse direction “⇐” in (2.65) is obvious. �

Remark 2.3 (Nullspace of V) Similar to the arguments in (2.47) and (2.48), we have

null(V) = null(P −AP) = span{1K ⊗ IM}, (2.67)

and, hence,

VX = 0⇐⇒ (P −AP)X = 0⇐⇒ x1 = · · · = xK . (2.68)

�

With (2.68), problem (2.59) is equivalent to

min
W∈RNM

J ?(W), s.t. VW = 0. (2.69)

In this way, we have transformed the original problem (2.1) to the equivalent constrained

problem (2.69).

2.3.2 Penalized Formulation

There are many techniques to solve constrained problems of the form (2.69). One useful and

popular technique is to add a penalty term to the cost function and to consider instead a

penalized problem of the form:

min
W∈RNM

J ?(W) +
1

α
‖VW‖2 , (2.70)
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where α > 0 is a penalty parameter. Problem (2.70) is not equivalent to (2.69) but is a useful

approximation. The smaller the value of α is, the closer the solutions of problems (2.69)

and (2.70) become to each other [124–126]. We now verify that the diffusion strategy (2.4)–

(2.5) follows from applying an incremental technique to solving the approximate penalized

problem (2.70), not the real problem (2.69). It will then become clear that the diffusion

estimate wk,i cannot converge to the exact solution w? of problem (2.1) (or (2.69)).

Since (2.63) holds, problem (2.70) is equivalent to

min
w∈RNM

J ?(W) +
1

2α
WT(P −AP)W. (2.71)

This is an unconstrained problem, which we can solve using, for example, a diagonally-

weighted incremental algorithm, namely,
ψi = Wi−1 − αP−1∇J ?(Wi−1),

Wi = ψi − αP−1
( 1

α
(P −AP)ψi

)
,

(2.72)

The above recursion can be simplified as follows. Assume we select

α
∆
= β−1, (2.73)

where β is the same constant used in relation (2.9). Recall from (2.18), (2.24), (2.29) and

(2.30) that β = O(1/µmax) and hence α = O(µmax). Moreover, from the definition of J ?(W)

in (2.58), we have

∇J ?(W) =


q1∇J1(w1)

...

qK∇JK(wK)

 (2.74)

Using (2.9), namely,

qk = βµkpk, (2.75)

we find that

αP−1∇J ?(Wi−1) =


µ1∇J1(w1,i−1)

...

µK∇JK(wK,i−1)

 . (2.76)
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We further introduce the aggregate cost (which is similar to (2.58) but without the weighting

coefficients):

J o(W)
∆
=

K∑
k=1

Jk(wk), (2.77)

and note that

∇J o(W) =


∇J1(w1)

...

∇JK(wK)

 . (2.78)

Let M ∆
= diag{µ1, µ2, · · · , µK} ⊗ IM . Using (2.76) and (2.78), the first recursion in (2.72)

can be rewritten as

ψi = Wi−1 −M∇J o(Wi−1). (2.79)

For the second recursion of (2.72), it can be rewritten as

Wi = ATψi (2.80)

because AP = PAT. Relations (2.79)–(2.80) are equivalent to (2.4)–(2.5). Specifically, if we

collect all iterates from across all agents into block vectors {Wi, ψi}, then (2.4)–(2.5) would

lead to (2.79)–(2.80). From this derivation, we conclude that the diffusion algorithm (2.4)–

(2.5) can be interpreted as performing the diagonally-weighted incremental construction

(2.72) to solve the approximate penalized problem (2.71). Since this construction is not

solving the real problem (2.1), there exists a bias between its fixed point and the real solution

w?. As shown in (2.10), the size of this bias is related to µmax. When µmax is small, the bias

is also small. This same conclusion can be seen by noting that a small µmax corresponds to

a large penalty factor 1/α under which the solutions to problems (2.1) and (2.69) approach

each other.

2.4 Development of Exact Diffusion

We now explain how to adjust the diffusion strategy (2.4)–(2.5) to ensure exact convergence

to w?. Instead of solving the approximate penalized problem (2.71), we apply the primal-dual
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saddle point method to solve the original problem (2.69) directly. We continue to assume

that the combination policy A is primitive and satisfies the local balancing condition (2.13).

To solve (2.69) with saddle point algorithm, we first introduce the augmented Lagrangian

function:

La(W, Y) = J ?(W) +
1

α
YTVW +

1

2α
‖VW‖2

(2.63)
= J ?(W)+

1

α
YTVW+

1

4α
WT(P−PAT)W, (2.81)

where Y = col{y1, · · · , yK} ∈ RNM is the dual variable. The standard primal-dual saddle

point algorithm has recursions
Wi = Wi−1 − α∇WLa(Wi−1, Yi−1),

Yi = Yi−1 + α

(
1

α
VWi

)
= Yi−1 + VWi.

(2.82)

The first recursion in (2.82) is the primal descent while the second recursion is the dual

ascent. Now, instead of performing the descent step directly as shown in the first recursion

in (2.82), we perform it in an incremental manner. Thus, let

D(W)
∆
=

1

4α
WT(P−PAT)W, C(W, Y)

∆
=

1

α
YTVW, (2.83)

so that

La(W, Yi−1) = J ?(W) +D(W) + C(W, Yi−1). (2.84)

The diagonally incremental recursion that corresponds to the first step in (2.82) is then:
θi = Wi−1 − αP−1∇J ?(Wi−1),

φi = θi − αP−1∇D(θi) =
IMN +AT

2
θi = AT

θi,

Wi = φi−αP−1∇WC(φi, Yi−1) = φi−P−1VYi−1,

(2.85)

where in the second recursion of (2.85) we introduced

A ∆
= (IMK +A)/2. (2.86)
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We know from (2.53) that the eigenvalues of A are positive and lie within the interval (0, 1].

In (2.85), if we substitute the first and second recursions into the third one, and also recall

(2.76) that αP−1∇J ?(Wi−1) =M∇J o(Wi−1), then we get

Wi = AT
(
Wi−1−M∇J o(Wi−1)

)
−P−1VYi−1. (2.87)

Replacing the first recursion in (2.82) with (2.87), the previous primal-dual saddle point

recursion (2.82) becomes
Wi = AT

(
Wi−1−M∇J o(Wi−1)

)
−P−1VYi−1

Yi = Yi−1 + VWi

(2.88)

Recursion (2.88) is the primal-dual form of the exact diffusion recursion we are seeking. For

the initialization, we set y−1 = 0 and W−1 to be any value, and hence for i = 0 we have
W0 = AT

(
W−1−M∇J o(W−1)

)
,

Y0 = VW0.

(2.89)

We can rewrite (2.88) in a simpler form by eliminating the dual variable Y from the first

recursion. For i = 1, 2, · · · , from (2.88) we have

Wi − Wi−1 = AT
(
Wi−1−Wi−2−M

(
∇J o(Wi−1)−∇J o(Wi−2)

))
− P−1V(Yi−1 − Yi−2). (2.90)

From the second step in (2.88) we have

P−1V(Yi−1 − Yi−2) = P−1V2Wi−1
(2.63)
= P−1

(
P − PAT

2

)
Wi−1 =

(
IMK −AT

2

)
Wi−1.

(2.91)

Substituting (2.91) into (2.90), we arrive at

Wi=A
T
(
2Wi−1−Wi−2−M

(
∇J o(Wi−1)−∇J o(Wi−2)

))
(2.92)

Recursion (2.92) is the primal version of the exact diffusion.

We can rewrite (2.92) in a distributed form that resembles (2.4)–(2.5) more closely, as

listed below in Algorithm 1, where we denote the entries of A by a`k. It is observed in
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Algorithm 2.1 Exact diffusion strategy for agent k

Setting: Let A = (IK + A)/2, and wk,−1 arbitrary. Set ψk,−1 = wk,−1. Let µk = qkµo/pk

Repeat for i = 0, 1, 2, · · ·

ψk,i = wk,i−1 − µk∇Jk(wk,i−1), (adaptation) (2.93)

φk,i = ψk,i + wk,i−1 − ψk,i−1, (correction) (2.94)

wk,i =
∑
`∈Nk

a`kφ`,i. (combination) (2.95)

Algorithm 1 that the exact diffusion strategy resembles (2.4)–(2.5) to great extent, with

the addition of a “correction” step between the adaptation and combination step. In the

correction step, the intermediate estimate ψk,i is “corrected” by removing from it the dif-

ference between wk,i−1 and ψk,i−1 from the previous iteration. Moreover, it is also observed

that the exact and standard diffusion strategies have essentially the same computational

complexity, apart from 2M (M is the dimension of wk,i) additional additions per agent in

the correction step of the exact implementation. Also, there is one combination step in each

iteration, which reduces the communication cost by about one half in comparison to recent

DIGing-based works [92–96].

One can directly run Algorithm 1 when the Perron entries {pk} are known beforehand,

as explained in Section II-B. When this is not the case, we can blend iteration (2.35) into

the algorithm and modify it as follows.

2.5 Significance of Balanced Policies

The stability and convergence properties of the exact diffusion strategy (2.93)–(2.95) will be

examined in detail in Chapter 3. There we will show that exact diffusion is guaranteed to

converge for all balanced left-stochastic matrices for sufficiently small step-sizes. The local

balancing property turns out to be critical in the sense that convergence may or may not
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Algorithm 2.2 Exact diffusion strategy when p is unknown

Setting: Let A = (IK + A)/2, and wk,−1 arbitrary. Set ψk,−1 = wk,−1 and zk,−1 = ek

Repeat for i = 0, 1, 2, · · ·

zk,i =
∑
`∈Nk

a`kz`,i−1, (power iteration) (2.96)

ψk,i = wk,i−1 −
qkµo
zk,i(k)

∇Jk(wk,i−1), (adaptation) (2.97)

φk,i = ψk,i + wk,i−1 − ψk,i−1, (correction) (2.98)

wk,i =
∑
`∈Nk

a`kφ`,i. (combination) (2.99)

occur if we move beyond the set of balanced policies. We can illustrate these possibilities here

by means of examples. The two examples discussed in the sequel highlight the importance

of having balanced combination policies for exact convergence.

Thus, consider the primal recursion of the exact diffusion algorithm (2.92), where A is

a general left-stochastic matrix. We subtract W? from both sides of (2.92), to get the error

recursion

W̃i = AT (
2W̃i−1 − W̃i−2+M

(
∇J o(Wi−1)−∇J o(Wi−2)

)
, (2.100)

where W̃i = W?−Wi. When ∇Jk(w) is twice-differentiable, we can appeal to the mean-value

theorem from Lemma D.1 in [1], which allows us to express each difference

∇Jk(wk,i−1)−∇Jk(w?) = −
(∫ 1

0

∇2Jk
(
w?−rw̃k,i−1

)
dr

)
w̃k,i−1. (2.101)

If we let

Hk,i−1
∆
=

∫ 1

0

∇2Jk
(
w?−rw̃k,i−1

)
dr ∈ RM×M , (2.102)

and introduce the block diagonal matrix:

Hi−1
∆
= diag{H1,i−1, H2,i−1, · · · , HN,i−1}, (2.103)
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then we can rewrite

∇J o(Wi−1)−∇J o(W?) = −Hi−1W̃i−1. (2.104)

Notice that

∇J o(Wi−1)−∇J o(Wi−2)

= ∇J o(Wi−1)−∇J o(W?)+∇J o(W?)−∇J o(Wi−2)

(2.104)
= Hi−2W̃i−2 −Hi−1W̃i−1. (2.105)

Combining (2.100), (2.105) and the fact W̃i−1 = W̃i−1, we have W̃i

W̃i−1

 = (F−Gi−1)

 W̃i−1

W̃i−2

 , (2.106)

where

F ∆
=

 2AT −AT

IMN 0

 ∈ R2MN×2MN , (2.107)

Gi−1
∆
=

 ATMHi−1 −A
TMHi−2

0 0

 ∈ R2MN×2MN . (2.108)

In the next two examples, we consider the simple case where the dimension M = 1,

qk = 1 for k ∈ {1, · · · , K}, and the step-size M = µP−1, where

P = diag{p1, · · · , pK} ∈ RK×K . (2.109)

In this situation, the matrix F − Gi−1 reduces to

F−Gi−1=

AT
(2IK−µP−1Hi−1) −AT

(IK−µP−1Hi−2)

IK 0

 . (2.110)

Moreover, we also assume Hi is iteration independent, i.e.,

Hi = H, ∀ i = 1, 2, · · · (2.111)
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This assumption holds for quadratic costs Jk(w). Under the above conditions, we have

(F − Gi−1)

 1K

1K

 =

 A
T
1K

1K

 =

 1K

1K

 , (2.112)

which implies that λ1 = 1 is one eigenvalue of F − Gi−1 no matter what the step-size µ is.

However, since W0 is initialized as VY0 and, hence, lies in range(V), the eigenvalue λ1 = 1 will

not influence the convergence of recursion (2.106) (the detailed explanation is spelled out in

Sec.3.1 and 3.2 in Chapter 3). Let {λk}2K
k=2 denote the remaining eigenvalues of F − Gi−1,

and introduce

ρ(F − Gi−1)
∆
= max{|λ2|, |λ3|, · · · , |λ2K |}. (2.113)

It is ρ(F − Gi−1) that determines the convergence of recursion (2.106): the exact diffusion

recursion (2.106) will diverge if ρ(F − Gi−1) > 1, and will converge if ρ(F − Gi−1) < 1.

Example 1 (Diverging case). Consider the following left-stochastic matrix A:

A =


0 0 0 1

0 0.5 0.5 0

1 0 0.5 0

0 0.5 0 0

 . (2.114)

It can be verified that A is primitive, left-stochastic but not balanced. For such A, its Perron

eigenvector p can be calculated in advance, and hence P is also known. Also, Hi−1 is assumed

to satisfy

P−1Hi−1 = diag{20, 1, 1, 1} ∈ R4×4 (2.115)

Substituting the above A and PHi−1 into F − Gi−1 shown in (2.110), it can be verified that

ρ(F − Gi−1) > 1 (2.116)

for any step-size µ > 0. The proof is given in Appendix 2.D by appealing to the Jury test for

stability. In the top plot in Fig. 2.9, we show the spectral radius ρ(F − Gi−1) for step-sizes

µ ∈ [1e−6, 3]. It is observed that ρ(F − Gi−1) > 1.
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By following similar arguments, we can find a counter example such that EXTRA will

also diverge for any step-size µ > 0, even if we assume the Perron eigenvector p is known in

advance. For example, if

A =



0.36 0.99 0 0 0

0 0.01 0 0.6 0

0 0 0.02 0 0.95

0 0 0.98 0.4 0

0.64 0 0 0 0.05


∈ R5×5 (2.117)

and

P−1Hi−1 = diag{20, 1, 1, 1, 1} ∈ R5×5, (2.118)

one can verify that EXTRA will diverge for any µ > 0 by following the arguments in

Appendix 2.D. As a result, the push-sum based algorithms [100,123] that extend EXTRA to

non-symmetric networks cannot always converge. This example indicates that the stability

range (clower, cupper) provided in [100,123] may not always be feasible. �

Example 2 (Converging case). Consider the following left-stochastic matrix A:

A =



0.3 0.6 0.2 0 0

0.2 0.2 0 0.3 0

0.1 0.1 0.5 0.3 0.2

0 0.1 0.3 0.4 0.1

0.4 0 0 0 0.7


. (2.119)

It can be verified that A is primitive and not balanced. Also, Hi−1 is assumed to satisfy

P−1Hi−1 = diag{10, 10, 10, 10, 10} ∈ R5×5. (2.120)

Substituting the above A and P−1Hi−1 into (2.110), it can be verified that ρ(F) = 0.9923.

Therefore, when µ is sufficiently small, F will dominate in F−Gi−1 and ρ(F−Gi−1) < 1. The

simulations in Fig. 2.10 confirm this fact. In particular, it is observed that ρ(F − Gi−1) < 1

when µ < 0.2. As a result, the exact diffusion will converge when µ < 0.2 under this setting.

�
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Figure 2.3: Network topology used in the simulations.

2.6 Numerical Experiments

In this section we illustrate the performance of the proposed exact diffusion algorithm. In

all figures, the y-axis indicates the relative error, i.e., ‖Wi − W?‖2/‖W0 − W?‖2, where Wi =

col{w1,i, · · · , wN,i} ∈ RNM and W? = col{w?, · · · , w?} ∈ RNM .

2.6.1 Distributed Least-squares

In this experiment, we focus on solving the least-squares problem over the network shown in

2.3:

wo = arg min
w∈RM

1

2K

K∑
k=1

‖Ukw − dk‖2. (2.121)

where the network size N = 20 and the dimension M = 30. Each entry in both Uk ∈ R50×30

and dk ∈ R50 is generated from the standard Gaussian distribution N (0, 1).

We compare the convergence behavior of standard diffusion and the exact diffusion algo-

rithm in the simulation. The left-stochastic matrix A is generated through the averaging rule

(see (2.20)), and each agent k employs step-size µk = µo/nk (see (2.23)) where µo is a small

constant step-size. The convergence of both algorithms is shown in Fig. 2.4, where we set
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Figure 2.4: Convergence comparison between standard diffusion and exact diffusion for the distributed

least-squares (2.121).

µo = 0.01. It is observed that the standard diffusion algorithm converges to a neighborhood

of wo on the order O(µ2
o), while the exact diffusion converges exponentially fast to the exact

solution wo. This figure confirms that exact diffusion corrects the bias in standard diffusion.

2.6.2 Distributed Logistic Regression

We next consider a pattern classification scenario. Each agent k holds local data samples

{hk,j, γk,j}Lj=1, where hk,j ∈ RM is a feature vector and γk,j ∈ {−1,+1} is the corresponding

label. Moreover, the value L is the number of local samples at each agent. All agents will

cooperatively solve the regularized logistic regression problem over the network in Fig. 2.3:

wo = arg min
w∈RM

K∑
k=1

[ 1

L

L∑
`=1

ln
(
1+exp(−γk,`hTk,`w)

)
+
ρ

2
‖w‖2

]
. (2.122)

In the experiments, we set N = 20, M = 30, and L = 50. For local data samples

{hk,j, γk,j}Lj=1 at agent k, each hk,j is generated from the standard normal distribution

N (0; 10IM). To generate γk,j, we first generate an auxiliary random vector w0 ∈ RM with
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Figure 2.5: Convergence comparison between standard diffusion and exact diffusion for distributed logistic

regression (2.122).

each entry following N (0, 1). Next, we generate γk,j from a uniform distribution U(0, 1). If

γk,j ≤ 1/[1 + exp(−(hk,j)
Tw0)] then γk,j is set as +1; otherwise γk,j is set as −1. We set

ρ = 0.1.

We still compare the convergence behavior of the standard diffusion and exact diffusion.

The left-stochastic matrix A is generated through the averaging rule, and each agent k

employs step-size µk = µo/nk. The convergence of both algorithms is shown in Fig. 2.5.

The step-size µo = 0.05. It is also observed that the exact diffusion corrects the bias in

standard diffusion.

2.6.3 Benefits of Balanced Left-stochastic Policies

In this subsection we illustrate one of the benefits of balanced left-stochastic combination

matrices — they can speed up the convergence.

In the first experiment, we consider a network with a highly unbalanced topology as

shown in Fig. 2.6. Nodes 1 and 2 are “celebrities” with many neighbors, while the other
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48 nodes just have two neighbors each. Such a network topology is quite common in social

networks.

Interestingly, both the maximum degree rule and the Metropolis rule will generate the

same doubly-stochastic combination matrix for this network. Let L be the Laplacian matrix

associated with that network, then the generated doubly-stochastic combination matrix is

A = I − L/49. (2.123)

This combination matrix A merges information just slightly better than the identity matrix

I because the term L/49 is quite small, which is not efficient. In contrast, the normal agent

k (where 3 ≤ k ≤ 50) will assign 1/3 to incoming information from agents 1 and 2 if the

averaging rule is used, which combines information more efficiently and hence leads to faster

convergence. In Fig. 2.7, we compare exact diffusion and EXTRA methods over the dis-

tributed least-square problem (2.121). The experimental setting is the same as in Sec. 3.3.1

except for the combination rules. Exact diffusion employs the left-stochastic matrix gener-

ated by the averaging rule while EXTRA employs a doubly-stochastic combination matrix

(recall that EXTRA [75] has convergence guarantees only for doubly-stochastic matrices).

The step-sizes are carefully chosen such that each algorithm reaches its fastest convergence.

As expected, it is observed that exact diffusion with the averaging rule is almost three times

faster than EXTRA with doubly-stochastic combination matrices.

In the second experiment, we consider the distributed least-square problem (2.121) and

assume the Lipschitz constants associated with each local cost function differs drastically.

In this experiment, we set N = 20, and the network topology is the same as in Fig. 2.3.

Among all nodes, we assume for 4 random nodes that the local data Uk and dk are gener-

ated from N (0, 100) while in the remaining nodes they are generated from N (0, 1). Under

such setting, each local Lipschitz constant is quite different. We again compare the conver-

gence between exact diffusion and EXTRA where the combination rule for exact diffusion

is generated according to the Hastings rule (2.40) while EXTRA employs the Metropolis

combination matrix, which is doubly stochastic. Fig. 2.8 depicts the convergence for each

algorithm. Again, the step-sizes are carefully chosen such that each algorithm reaches its
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Figure 2.6: A highly unbalanced network topology.

fastest convergence. As expected, it is observed that exact diffusion with Hastings rule is

almost four times faster than EXTRA with the doubly-stochastic matrix.

2.6.4 Exact Diffusion for General Left-Stochastic A

In this subsection we test exact diffusion for the general left-stochastic A shown in Section

2.5. In Fig. 2.9 we test the setting of Example 1 in which A is in the form of (2.114) and

H is (2.115). We introduce ρ = ρ(F − Gi−1). In the top plot, we illustrate how ρ varies

with step-size µ. In this plot, the step-size varies over [10−6, 3], and the interval between

two consecutive µ is 10−6. It is observed that ρ > 1 for any µ ∈ [10−6, 3], which confirms

with our conclusion that exact diffusion will diverge for any step-size µ under the setting in

Example 1. In the bottom plot of Fig. 2.9 we illustrate the standard diffusion converges to

a neighborhood of w? on the order of O(µ2) for µ = 0.01, while the exact diffusion diverges.

In Fig. 2.10 we test the setting of Example 2 in which A is in the form of (2.119) and H is

of (2.120). In the top plot, we illustrate how ρ varies with µ. It is observed that ρ < 1 when

µ < 0.2, which implies that the exact diffusion recursion (2.106) will converge when µ < 0.2.

In the bottom figure, with µ = 0.001 it is observed that exact diffusion will converge exactly

to w?. Figures. 2.9 and 2.10 confirm that general left-stochastic A cannot always guarantee
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Figure 2.7: Convergence comparison between exact diffusion and EXTRA for highly unbalanced network.

Exact diffusion is with the averaging rule while EXTRA is with the doubly stochastic rule.
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Figure 2.8: Convergence comparison between exact diffusion and EXTRA for the scenario in which local

Lipschitz constants differ drastically. Exact diffusion is with the Hastings rule (2.40) while EXTRA is with

the doubly stochastic rule.
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Figure 2.9: Exact diffusion under the setting of Example 1 in Section 2.5. Top: ρ > 1 no matter what

value µ is. Bottom: Convergence comparison between diffusion and exact diffusion when µ = 0.01.
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Figure 2.10: Exact diffusion under the setting of Example 2 in Section 2.5. Top: ρ < 1 when µ < 0.2.

Bottom: Convergence comparison between standard diffusion and exact diffusion when µ = 0.001.

convergence to w?.

2.7 Concluding Remarks

This chapter developed a diffusion optimization strategy with guaranteed exact convergence

for a broad class of combination policies. The strategy is applicable to the locally-balanced

left-stochastic combination matrices which are able to endow the algorithm with faster con-

vergence rate, more flexible step-size choices and better privacy-preserving properties com-

pared to doubly-stochastic combination matrices. Chapter 3 establishes analytically, and

55



by means of examples and simulations, the superior convergence and stability properties of

exact diffusion implementations.

2.A Formulation of Primal Methods

In this section we formulate two prominent primal methods that are based on gradient

descent: consensus [5–13] and diffusion [1,4,34,36,71]. For simplicity, we assume the network

is strongly connected, undirected, and the associated combination matrix A is symmetric

and doubly-stochastic (see equation (1.8)). For such combination matrix A, it holds that

1 = λ1(A) > λ2(A) ≥ · · · ≥ λK(A) > −1 (2.124)

and hence the matrix I − A is positive semi-definite.

We introduce the eigenvalue decomposition (I − A)/2 = UΣU where Σ is a diagonal

matrix with nonnegative diagonal entries. We also define V = UΣ1/2U and note that V T =

V , V 2 = (I − A)/2, and more importantly,

V w = 0⇐⇒ w(1) = w(2) = · · · = w(K) (2.125)

which is established in Lemma 2.4. In the above expression, the notation w(k) refers to the

k-th element in w. If we define

W
∆
= col{w1, · · · , wK} ∈ RKM , (2.126)

A ∆
= A⊗ IM ∈ RKM , (2.127)

V ∆
= V ⊗ IM ∈ RKM , (2.128)

J o(W)
∆
=

1

K

K∑
k=1

Jk(wk), (2.129)

it then follows that V2 = (IKM −A)/2 and

VW = 0⇐⇒ w1 = w2 = · · · = wK . (2.130)
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Using (2.129) and (2.130), we find that problem (1.1) can be rewritten as the constrained

problem

min
W

J o(W),

s.t. VW = 0. (2.131)

One common approach to solve such problems is the penalty method [127, Sec. 4.1, 4.3],

[124][pp. 277 and Ch.6], [128, Ch.9], [126]. We penalize the constraints and transform

(2.131) to the unconstrained problem

min
W

J o(W) +
1

µ
‖VW‖2 (2.132)

where µ > 0 is a constant coefficient. Using V2 = (IKM−A)/2, problem (2.132) is equivalent

to

min
W

J o(W) +
1

2µ
WT(I −A)W (2.133)

2.A.1 Consensus Strategy

If we solve problem (2.133) with gradient descent, we get

Wi+1 = Wi − µ
(
∇J o(Wi) +

1

µ
(I −A)Wi

)
= AWi − µ∇J o(Wi) (2.134)

which is exactly the consensus approach for solving the distributed optimization problem

(1.1).

2.A.2 Diffusion Strategy

If we solve problem (2.133) with incremental gradient descent, we get
φi = Wi − µ∇J o(Wi),

Wi+1 = φi − µ · 1
µ
(I −A)φi = Aφi.

(2.135)
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By substituting the first equation into the second one, we have

Wi+1 = A
(
Wi − µ∇J o(Wi)

)
(2.136)

A more generalized version of diffusion is derived in Sec. 2.3.

2.A.3 Other Primal Methods

There are still approaches that solve the unconstrained problem (2.133) using other primal

methods such as Newton or quasi-Newton methods. Similar to the consensus or diffusion

strategies, the resulting distributed Newton [78,79,129] and Quasi-Newton methods [80] only

have primal variables in their recursions. Since all of these methods focus on solving the

penalized problem (2.133) rather than the real problem (2.131), they cannot converge to the

exact global solution unless a decaying step-size µ is used.

2.B Formulation of Primal-Dual Methods

Different from the above-mentioned primal methods, primal-dual methods aim at solving

the constrained problem (2.131) directly.

2.B.1 EXTRA Method

Several of primal-dual methods are based on the augmented Lagrangian technique [130–

132], [133, Sec.17.4]. Different from the Lagrangian method, which focuses on the standard

Lagrangian function:

L(W, Y) = J o(W) +
1

µ
YT(VW) (2.137)

where Y is the dual variable (also known as the Lagrangian multiplier), the augmented

Lagrangian method introduces an extra quadratic term to the standard Lagrangian function:

La(W, Y) = J o(W) +
1

µ
YT(VW) +

1

µ
‖VW‖2

= J o(W) +
1

µ
YT(VW) +

1

2µ
WT(I −A)W. (2.138)
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The introduction of the quadratic term ‖VW‖2 will impose strong convexity to L(W, Y) (in

terms of W) and hence will ensure a wider stability range and faster convergence.

The primal-descent and dual-ascent approach to determining the saddle-point of the

above augmented Lagrangian function is
Wi+1 = Wi − µ∇J o(Wi)− VYi − (I −A)Wi = AWi − µ∇J o(Wi)− VYi,

Yi+1 = Yi + VWi+1

(2.139)

From the first recursion, we have

Wi+1 − Wi = A(Wi − Wi−1)− µ(∇J o(Wi)−∇J o(Wi−1))− V(Yi − Yi−1) (2.140)

Substituting the second recursion in (2.139) into the above recursion, we reach

Wi+1 = Ā(2Wi − Wi−1)− µ(∇J o(Wi)−∇J o(Wi−1)) (2.141)

where Ā = (I+A)/2. Recursion (2.141) is the EXTRA algorithm proposed in [74]. Different

from consensus or diffusion, EXTRA will converge to the exact global solution with constant

step-size µ. To see it, we observe the fixed point (W∞, Y∞) of recursion (2.139) satisfies the

following condition 
µ∇J o(W∞) + VY∞ = 0,

VW∞ = 0.

(2.142)

which is essentially the optimality condition of problem (1.1) [75, Proposition 2.1].

2.B.2 Exact Diffusion Method

When the first recursion in (2.139) is updated in an incremental manner, we will reach exact

diffusion; see the derivation in Sec. 2.4.
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2.B.3 Tracking Method

The tracking method [92–98] is another variant of primal-dual approach. The DIGing method

(which is one of the tracking approaches) was originally proposed as follows:
Wi = AWi−1 − µX i−1

X i = AX i−1 +∇J o(Wi)−∇J o(Wi−1)

(2.143)

where X i is the auxiliary variable that aims to track the gradient 1
K

(1k ⊗ IM)∇J o(Wi) =

1
K

∑K
k=1∇Jk(wk,i). In fact, the second recursion (2.143) falls into the family of the dynamic

average algorithm [134,135]:

X i = AX i−1 + ri − ri−1 (2.144)

where ri is a dynamic and time-varying signal. When ri converges, it is proved in [134–136]

that Xk,i → 1
K

∑K
k=1 rk,i. Inspired by this result, it holds that Xk,i → 1

K

∑K
k=1∇Jk(wk,i)

as iteration i increases. Next we explain how the tracking method converges to the opti-

mal solution. When the iteration i is large enough, the first recursion in (2.143) can be

approximated by

Wi = AWi−1 − µ1K ⊗
1

K

K∑
k=1

∇Jk(wk,i). (2.145)

Suppose each wk,i generated by the above recursion converges to a fixed point w?, it then

holds that 1
K

∑K
k=1∇Jk(w?) = 0 and, hence, the fixed point w? is the optimal solution to

problem (1.1). A formal proof of convergence for DIGing is presented in [93].

The DIGing method can also be interpreted as a primal-dual algorithm. Note that

problem (1.1) can be reformulated as the following constrained problem

min
W

J o(W)

s.t. (I −A)W = 0 (2.146)

which is equivalent to (2.131) since VW = 0⇐⇒ (I −A)W = 0. The augmented Lagrangian

function associated with the above problem is given by

La(W, Y) = J o(W) +
1

µ
YT(I −A)W +

1

2µ
‖W‖2

I−A2 , (2.147)
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where Y is the dual variable. The primal-descent and dual-ascent approach to solve the

saddle-point of the above Lagrangian function is
Wi+1 = Wi−µ∇J o(Wi)−(I−A)Yi−(I−A2)Wi = A2Wi−µ∇J o(Wi)−(I−A)Yi,

Yi+1 = Yi + (I −A)Wi+1

(2.148)

The above recursion is essentially equivalent to DIGing. To see that, we substitute the

second recursion of (2.148) into the first one and remove the dual variable to reach

Wi+1 = 2AWi −A2Wi−1 − µ
(
∇J o(Wi)−∇J o(Wi−1)

)
. (2.149)

On the other hand, if we substitute the second recursion of the DIGing method (2.143) into

the first one and remove the auxiliary variable X i, we will get the same recursion as in (2.149).

In this sense, the primal-dual recursion (2.148) is equivalent to the DIGing recursion (2.143).

Tracking methods, as reported in [93, 97, 98, 137], work well in time-varying or directed

networks. However, they require twice the amount of communications per iteration than

EXTRA or exact diffusion. Tracking methods also have variants that fall into the adapt-

then-combine (ATC) framework. These variants can also be interpreted as the primal-dual

method as described in [138].

2.B.4 Distributed ADMM

Distributed ADMM is among the first algorithms that were proved to converge linearly to the

global solution under the assumption that each local cost function Jk(w) is strongly convex

with Lipschitz-continuous gradient. Instead of solving the constrained problem (2.131) or

(2.146), distributed ADMM solves an alternative constrained problem

min
W

1

K

K∑
k=1

Jk(wk)

s.t. wk = w` ∀(i, j) ∈ E (2.150)

where E is the set of all edges in the graph. We remark that problem (2.150) is essentially

equivalent to the constrained problem (2.131) and (2.146). However, the ADMM approach
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requires an explicit constraint wi = wj while the formulations in (2.131) and (2.146) just

imply wi = wj and they do not have such constraints explicitly. We introduce an auxiliary

variable zij to decouple wi and wj in the constraints. As a result, problem (2.150) can be

reformulated as

min
W

1

K

K∑
k=1

Jk(wk)

s.t. wk = zk`, w` = zk` ∀(i, j) ∈ E (2.151)

which can be further rewritten as

min
W,Z

J o(W)

s.t. CW + Z = 0 (2.152)

where Z = col{zij}, C = C ⊗ IM , C = [C1;C2] ∈ R2E×K , and C1 and C2 are defined as

[C1]ek


= 1, if e = (k, `),

= 0, otherwise,

[C2]e`


= 1, if e = (k, `),

= 0, otherwise,

(2.153)

Problem (2.152) falls into the framework of Alternating Direction Method of Multipliers

(ADMM). Now we introduce the augmented Lagrangian function associated with problem

(2.152) as

La(W, Z, Y) = J o(W) + YT(CW + Z) +
ρ

2
‖CW + z‖2. (2.154)

Compared with the augmented Lagrangian function used in EXTRA and DIGing method,

the function in (2.154) involves two primal variables W and Z. The ADMM approach to find

the saddle-point of the Lagrangian function (2.154) is
Wi+1 = arg minW L(W, Zi, Yi) = arg minW{J o(W) + YTi (CW) + ρ

2
‖CW + zi‖2},

Zi+1 = arg minZ L(Wi, Z, Yi−1) = arg minZ{YTi Z + ρ
2
‖CWi+1 + z‖2},

Yi+1 = Yi + ρ(CWi+1 + Zi+1).

(2.155)

Note that the second subproblem related to Z is a quadratic problem and it has a closed-

form solution. Substituting the special structure of the matrix C and removing the variable
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Z from the above recursion, we reach a distributed implementation of the recursion (also see

Algorithm 1 in [74]):
find wk,i+1 by solving∇Jk(wk,i+1) + βk,i + 2ρ|Nk|wk,i+1 − ρ

(
|Nk|wk,i +

∑
`∈Nk

w`,i

)
= 0,

βk,i+1 = βk,i + ρ
(
|Nk|wk,i+1 +

∑
`∈Nk

w`,i+1

)
.

(2.156)

2.C Formulation of Dual Methods

The Lagrangian function of problem (2.131) is

L(W, Y) = J o(W) + YTVW. (2.157)

The Lagrangian dual function is

g(Y) = inf
W
{L(W, Y)} = inf

W
{J o(W) + YTVW} = − sup

W
{−(VY)TW − J o(W)}

= −J ∗(−VY) (2.158)

where J ∗(Z) = supW(ZTW−J o(W)) is the conjugate of the function J o(W). In this section,

we only consider the family of problems where J ∗(·) has a closed-from. For example, if

J o(W) is affine, negative logarithm, exponential, strictly convex quadratic, log-determinant,

then the conjugate function J ∗(·) has a closed-form, see [124, Sec. 3.1].

Since problem (2.131) is feasible (with at least the quantity 1K⊗IM as a feasible solution)

and the constraints are all linear equations, the Slater condition [124, Sec. 5.2.3] implies that

strong duality holds for problem (2.131). In other words, it holds that

J o(W?) = g(Y?) = inf
W
{J o(W) + (Y?)TVW} (2.159)

where W? and y? are the optimal primal and dual solution respectively. The first equality

holds because of strong duality and the second equality holds because of the definition of

the Lagrangian dual function in (2.158). Relation (2.159) implies

W? = arg min
W
{J o(W) + (Y?)TVW}. (2.160)
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As a result, one can solve for W? with the following two steps. First, we calculate Y? according

to

Y? = arg max
Y
{g(Y)}. (2.161)

Second, we calculate W? according to (2.160). This approach is named as the dual method

[110,111].

Now we derive a dual method that can solve problem (1.1) in a distributed manner. Note

that since g(Y) = −J ∗(−VY) as derived in (2.158), we can therefore reach Y? by solving

min
Y

J ∗(−VY). (2.162)

There are many approaches to solve the above unconstrained problem. For example, the

gradient descent method is

Yi = Yi−1 + µV∇J ∗(−VYi−1). (2.163)

Multiplying −V to both sides of the above recursion, we reach

−VYi = −VYi−1 − µ
(I −A)

2
∇J ∗(−VYi−1) (2.164)

which is equivalent to

Zi = Zi−1 − µ
(I −A)

2
∇J ∗(Zi−1) (2.165)

where we defined Z = VYi. Note that

J ∗(Z) = sup
W
{ZTW − J o(W)}

= sup
W
{
K∑
k=1

[zTkwk −
1

K
Jk(wk)]}

=
K∑
k=1

J∗k (zk) (2.166)

where we defined J∗k (zk) = supwk
{zTkwk − 1

K
Jk(wk)} and it has a closed-form1. With the

above relation, we have

∇J ∗(Z) = col{∇J∗1 (z1),∇J∗2 (z2), · · · ,∇J∗K(zK)} (2.167)

1Recall that we only consider special form of Jk(w) in this section such that the conjugate J∗k (·) has a
closed-form
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and hence the update in (2.165) can be conducted in a decentralized manner. Finally, once

the optimal dual solution Z? is reached, we can derive the primal optimal solution W? as

W? = arg min
W
{J o(W) + (Z?)TW}

= arg min
W
{
K∑
k=1

[
1

K
Jk(wk) + (z?k)

Twk]} (2.168)

which implies that

w?k = arg min
wk

{Jk(wk) +K(z?k)
Twk} (2.169)

The dual method is summarized in Algorithm 2.3. It is observed that all communication

occurs when solving the dual problem (2.162), see the recursion (2.171). If the gradient de-

scent recursion (2.162) is accelerated, we can reduce the communication cost. An important

observation is that the dual problem (2.162) is unconstrained, which exactly falls into the

Nesterov’s acceleration framework. As a result, the authors in [110] propose to solve the

dual problem (2.162) with Nesterov’s recursion [139]:
X i = Zi−1 − µ (I−A)

2
∇J ∗(Zi−1),

Zi = X i + β(X i − X i−1)

(2.170)

where X i is an auxiliary variable and β is the momentum coefficient. This accelerated dual

method is listed in Algorithm 1 of [110]. According to [110,111], the above accelerated dual

method reaches the theoretical lower communication bound for distributed algorithms, and

is theoretically better than the other accelerated algorithms based on EXTRA and DIGing.

However, one should note that The dual methods usually require the conjugate function

J ∗(Z) to have a closed-form, which significantly limits the application of this family of

methods.

2.D Proof of (2.116)

The characteristic polynomial of F − Gi−1 is given by

Q(λ) = (λ− 1)D(λ), where D(λ) =
7∑

k=0

akλ
k (2.172)
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Algorithm 2.3 Basic dual approach

Setting: Each agent k derives the closed-form of the conjugate function J∗k (zk) =

supwk
{zTkwk − 1

K
Jk(wk)}

Repeat until zk,i → z?k:

zk,i = zk,i−1 −
µ

2

(
∇J∗k (zk,i−1)−

∑
`∈Nk

a`k∇J∗` (z`,i−1)
)

(2.171)

Output: Each agent k derives w∗k according to w?k = arg minwk
{Jk(wk) +K(z?k)

Twk}.

and

a7 = 32, a6 = 384µ− 128, a5 = 682µ2−1512µ+248,

a4 = 429µ3 − 2458µ2 + 2712µ− 288,

a3 = 80µ4 − 1346µ3 + 3672µ2 − 2692µ+ 210, (2.173)

a2 = −240µ4 + 1649µ3 − 2904µ2 + 1593µ− 98,

a1 = 240µ4 − 976µ3 + 1260µ2 − 552µ+ 28,

a0 = −80µ4 + 244µ3 − 252µ2 + 92µ− 4. (2.174)

It is easy to observe from (2.172) that λ = 1 is one eigenvalue of F −Gi−1. As mentioned in

(2.112) and its following paragraph, this eigenvalue λ = 1 does not influence the convergence

of recursion (2.106) because of the initial conditions. It is the roots of D(λ) that decide the

convergence of the exact diffusion recursion (2.106). Now we will prove that there always

exists some root that stays outside the unit-circle no matter what the step-size µ is. In other

words, D(λ) is not stable for any µ.

Since D(λ) is a 7-th order polynomial, its roots are not easy to calculate directly. Instead,

we apply the Jury stability criterion [140] to decide whether D(λ) has roots outside the unit-
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circle. First we construct the Jury table as shown in Fig. 2.11, where

bk =

∣∣∣∣∣∣ a0 a7−k

a7 ak

∣∣∣∣∣∣ = a0ak − a7a7−k, k = 0, · · · , 6 (2.175)

ck =

∣∣∣∣∣∣ b0 b6−k

b6 bk

∣∣∣∣∣∣ = b0bk − b6b6−k, k = 0, · · · , 5 (2.176)

...

fk =

∣∣∣∣∣∣ e0 e3−k

e3 ek

∣∣∣∣∣∣ = e0ek − e3e3−k, k = 0, · · · , 2. (2.177)

According to the Jury stability criterion, D(λ) is stable (i.e., all roots of D(λ) are within

the unit-circle) if, and only if, the following conditions hold:

D(1) > 0, (−1)7D(−1) > 0, |a0| < a7, |b0| > |b6|

|c0| > |c5|, |d0| > |d4|, |e0| > |e3|, |f0| > |f2|. (2.178)

If any one of the above conditions is violated, D(λ) is not stable. Next we check each of the

conditions:

(1) D(1) > 0 is satisfied for any µ > 0 since

D(1) =
7∑

k=0

ak = 25µ > 0. (2.179)

(2) (−1)7D(−1) > 0. To guarantee this condition, we need to require that

(−1)7D(−1)

= 640µ4 − 4644µ3 + 11228µ2 − 9537µ+ 1036 > 0. (2.180)

With the help of Matlab, we can verify that

(−1)7D(−1) > 0 when µ < 0.1265 or µ > 3.0410. (2.181)

(3) |a0| < a7. To guarantee this condition, we need

|−80µ4 + 244µ3 − 252µ2 + 92µ− 4| < 32, (2.182)
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Figure 2.11: The Jury table for the 7-th order system.

which is equivalent to requiring

−0.1884 < µ < 1.6323. (2.183)

With (2.179), (2.181) and (2.183), we conclude that when

0 < µ < 0.1265, (2.184)

conditions (1), (2) and (3) will be satisfied simultaneously. Moreover, with the help of

Matlab, we can also verify that the step-size range (2.184) will also meet conditions (4)

|b0| > |b6|, (5) |c0| > |c5| and (6) |d0| > |d4|. Now we check the last two conditions.

(7) |e0| > |e3|. To guarantee this condition, the step-size µ is required to satisfy

0.0438 < µ < 0.1265. (2.185)

(8) |f0| > |f2|. To guarantee this condition, the step-size µ is required to satisfy

0 < µ < 0.0412. (2.186)

Comparing (2.184), (2.185) and (2.186), it is observed that the intersection of these three

ranges is empty, which implies that there does not exist a value for µ that makes all conditions

(1)–(8) hold. Therefore, we conclude that D(λ) is not stable for any step-size µ.
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CHAPTER 3

Exact Diffusion for Distributed Optimization:

Convergence Analysis

In this chapter, we will establish the linear convergence of exact diffusion using its primal-

dual form (2.88). This is a challenging task due to the coupled dynamics among the agents.

To facilitate the analysis, we first apply a useful coordinate transformation and characterize

the error dynamics in this transformed domain. Then, we show analytically that exact

diffusion is stable, converges linearly, and has a wider stability range than EXTRA consensus

strategy [75]. We also compare the performance of exact diffusion to other existing linearly

convergent algorithms besides EXTRA, such as DIGing [93] and Aug-DGM [95, 96] with

numerical simulations.

3.1 Convergence of Exact Diffusion

The purpose of the analysis in this section is to establish the exact convergence of wk,i to

w?, for all agents in the network, and to show that this convergence attains an exponential

rate.

3.1.1 The Optimality Condition

Lemma 3.1 (Optimality Condition) If condition (2.9) holds and block vectors (W?, Y?)

exist that satisfy:

ATM∇J o(W?) + P−1VY? = 0, (3.1)

VW? = 0. (3.2)
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then it holds that the block entries of W? satisfy:

w?1 = w?2 = · · · = w?K = w? (3.3)

where w? is the unique solution to problem (2.1).

Proof. From (2.67), we have

VW? = 0⇐⇒ w?1 = w?2 = · · · = w?K . (3.4)

Next we check w?k = w?. Since P > 0, condition (3.1) is equivalent to

PATM∇J o(W?) + VY? = 0. (3.5)

Let I = 1K ⊗ IM ∈ RMK×M . Multiplying by IT gives

0 = IT
(
PATM∇J o(W?) + VY?

) (a)
= ITPATM∇J o(W?)

=
K∑
k=1

pkµk∇Jk(w?k)
(2.9)
=

1

β

K∑
k=1

qk∇Jk(w?k), (3.6)

where equality (a) holds because V is symmetric and (2.67). Since β 6= 0, we conclude that∑K
k=1 qk∇Jk(w?k) = 0, which shows that the entries {w?k}, which are identical, must coincide

with the minimizer w? of (2.1) Observe that since J ?(w) is assumed strongly-convex, then

the solution to problem (2.1), w?, is unique, and hence W? is also unique. However, since

V is rank-deficient, there can be multiple solutions Y? satisfying (3.3). Using an argument

similar to [74,75], we can show that among all possible Y?, there is a unique solution Y?o lying

in the column span of V .

Lemma 3.2 (Particular solution pair) When condition (2.9) holds and J o(w) defined

by (1.1) is strongly-convex, there exists a unique pair of variables (W?, Y?o), in which Y?o lies

in the range space of V, that satisfies conditions (3.1)-(3.2).

Proof. First we prove that there always exist some block vectors (W?, Y?) satisfying (3.1)–

(3.2). Indeed, when J o(w) is strongly-convex, the solution to problem (2.1), w?, exists and
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is unique. Let W? = 1K ⊗ w?. We conclude from Lemma 2.4 that condition (3.2) holds.

Next we check whether there exists some Y? such that

P−1VY? = −ATM∇J o(W?), (3.7)

or equivalently,

VY? = −PATM∇J o(W?)

= −APM∇J o(W?) = − 1

β
A∇J ?(W?), (3.8)

where the last equality holds because

PM∇J o(W?) =


µ1p1∇J1(w?)

...

µKpK∇JK(w?)

 (2.9)
=


q1
β
∇J1(w?)

...

qK
β
∇JK(w?)

 (2.74)
=

1

β
∇J ?(W?), (3.9)

To prove the existence of Y?, we need to show that A∇J ?(W?) lies in range(V). Indeed,

observe that

ITA∇J ?(W?) = IT∇J ?(W?)
(a)
=

K∑
k=1

qk∇Jk(w?) = 0 (3.10)

where the equality (a) holds because of equation (2.74). Equality (3.10) implies thatA∇J ?(W?)

is orthogonal to span(I), i.e., span(1K ⊗ IM). With (2.67) we have

A∇J ?(W?) ⊥ null(V)⇔ A∇J ?(W?) ∈ range(VT)

⇔ A∇J ?(W?) ∈ range(V), (3.11)

where the last “⇔” holds because V is symmetric.

We now establish the existence of the unique pair (W?, Y?o). Thus, let (W?, Y?) denote an

arbitrary solution to (3.3). Let further Y?o denote the projection of Y? onto the column span

of V . It follows that V(Y?− Y?o) = 0 and, hence, VY? = VY?o. Therefore, the pair (W?, Y?o) also

satisfies conditions (3.1)-(3.2).

Next we verify the uniqueness of Y?o by contradiction. Suppose there is a different Y?1 lying

in R(V) that also satisfies condition (3.1). We let Y?o = VX?o and Y?1 = VX?1. Substituting Y?o
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and Y?1 into condition (3.1), we have

ATM∇J o(W?) + P−1V2X?o = 0, (3.12)

ATM∇J o(W?) + P−1V2X?1 = 0. (3.13)

Subtracting (3.13) from (3.12) and recall P > 0, we have V2(X?o − X?1) = 0, which leads to

V(X?o − X?1) = 0⇐⇒ Y?o = Y?1. This contradicts the assumption that Y?o 6= Y?1. �

Using the above auxiliary results, we will show that (Wi, Yi) generated through the exact

diffusion (2.88) will converge exponentially fast to (W?, Y?o).

3.1.2 Error Recursion

Let W? = 1K⊗w?, which corresponds to a block vector with w? repeated K times. Introduce

further the error vectors

W̃i = W? − Wi, Ỹi = Y?o − Yi. (3.14)

The first step in the convergence analysis is to examine the evolution of these error quantities.

Multiplying the second recursion of (2.88) by V from the left gives:

VYi = VYi−1 +
1

2
(P − PA)Wi. (3.15)

Substituting (3.15) into the first recursion of (2.88), we have
AT
W̃i =A

T
(
W̃i−1+M∇J o(Wi−1)

)
+P−1VYi,

Ỹi = Ỹi−1 − VWi.

(3.16)

Subtracting optimality conditions (3.1)–(3.2) from (3.16) leads to
AT
W̃i =A

T
(
W̃i−1+M

[
∇J o(Wi−1)−∇J o(W?)

])
−P−1V Ỹi,

Ỹi = Ỹi−1 + VW̃i.

(3.17)

Next we examine the difference ∇J o(Wi−1) −∇J o(W?). To begin with, we get from (2.78)

that

∇J o(Wi−1)−∇J o(W?)=


∇J1(w1,i−1)−∇J1(w?)

...

∇JK(wK,i−1)−∇JK(w?)

 (3.18)
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When ∇Jk(w) is twice-differentiable (see Assumption 3.1), we can appeal to the mean-value

theorem from Lemma D.1 in [1], which allows us to express each difference in (3.18) in the

following integral form in terms of Hessian matrices for any k = 1, 2, . . . , N :

∇Jk(wk,i−1)−∇Jk(w?)=−
(∫ 1

0

∇2Jk
(
w?−rw̃k,i−1

)
dr
)
w̃k,i−1.

If we let

Hk,i−1
∆
=

∫ 1

0

∇2Jk
(
w?−rw̃k,i−1

)
dr ∈ RM×M , (3.19)

and introduce the block diagonal matrix:

Hi−1
∆
= diag{H1,i−1, H2,i−1, · · · , HK,i−1}, (3.20)

then we can rewrite (3.18) in the form:

∇J o(Wi−1)−∇J o(W?) = −Hi−1W̃i−1. (3.21)

Substituting into (3.17) we getA
T
W̃i =A

T
(IMK −MHi−1)W̃i−1 − P−1V Ỹi,

Ỹi = Ỹi−1 + VW̃i.
(3.22)

which is also equivalent to AT P−1V

−V IMK

 W̃i

Ỹi

 =

 AT
(IMK −MHi−1) 0

0 IMK

 W̃i−1

Ỹi−1

 . (3.23)

Using the relations AT
= IMK+AT

2
and V2 = P−PAT

2
, it is easy to verify that AT P−1V

−V IMK

−1

=

 IMK −P−1V

V IMK − VP−1V

 . (3.24)

Substituting into (3.24) gives W̃i

Ỹi

=

 AT
(IMK −MHi−1) −P−1V

VAT
(IMK −MHi−1) IMK − VP−1V

 W̃i−1

Ỹi−1

 . (3.25)
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That is, the error vectors evolve according to: W̃i

Ỹi

 = (B − Ti−1)

 W̃i−1

Ỹi−1

 (3.26)

where

B ∆
=

 AT −P−1V

VAT
IMK − VP−1V

 , (3.27)

Ti
∆
=

 ATMHi 0

VATMHi 0

 . (3.28)

Relation (3.26) is the error dynamics for the exact diffusion algorithm. We next examine its

convergence properties.

3.1.3 Proof of Convergence

We first introduce a common assumption.

Assumption 3.1 (Conditions on cost functions) Each Jk(w) is twice differentiable, and

its Hessian matrix satisfies

∇2Jk(w) ≤ δIM . (3.29)

Moreover, there exists at least one agent ko such that Jko(w) is ν-strongly convex, i.e.

∇2Jko(w) > νIM . (3.30)

Note that when Jk(w) is twice differentiable, condition (3.29) is equivalent to requiring each

∇Jk(w) to be δ-Lipschitz continuous [1]. In addition, condition (3.30) ensures the strong

convexity of J o(w) and J ?(w), and the uniqueness of wo and w?. It follows from (3.29)–

(3.30) and the definition (3.19) that

Hk,i−1 ≤ δIM , ∀k and Hko,i−1 ≥ νIM . (3.31)
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The direct convergence analysis of recursion (3.26) is challenging. To facilitate the anal-

ysis, we identify a convenient change of basis and transform (3.26) into another equivalent

form that is easier to handle. To do that, we first let

B
∆
=

 A
T −P−1V

V A
T

IK − V P−1V

 ∈ R2K×2K . (3.32)

It holds that B = B ⊗ IM . In the following lemma we introduce a decomposition for matrix

B that will be fundamental to the subsequent analysis.

Lemma 3.3 (Fundamental Decomposition) The matrix B admits the following eigen-

decomposition

B = XDX−1, (3.33)

where

D =

 I2 0

0 D1

 (3.34)

and D1 ∈ R(2K−2)×(2K−2) is a diagonal matrix with complex entries. The magnitudes of the

diagonal entries satisfy

|D1(2k−3, 2k−3)| = |D1(2k−2, 2k−2)| =
√
λk(A) < 1,

∀ k = 2, 3, · · ·N. (3.35)

Moreover,

X =
[
R XR

]
, X−1 =

 L

XL

 , (3.36)

where XR ∈ R2K×(2K−2) and XL ∈ R(2K−2)×2K, and R and L are given by

R=

1K 0

0 1K

∈R2K×2, L=

 pT 0

0 1
K
1T
K

 ∈ R2×2K . (3.37)

Proof See Appendix 3.A. �
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Remark 3.1 (Other possible decompositions) The eigendecomposition (3.33) for B is

not unique because we can always scale X and X−1 to achieve different decompositions. In

this paper, we will study the following family of decompositions:

B = X ′D(X ′)−1, (3.38)

where

X ′ =
[
R 1

c
XR

]
, (X ′)−1 =

 L

cXL

 , (3.39)

and c can be set to any nonzero constant value. We will exploit later the choice of c in

identifying the stability range for exact diffusion. �

For convenience, we introduce the vectors:

r1 =

1K
0

 , r2 =

 0

1K

 , `1 =

p
0

 , `2 =

 0

1
K
1K

 , (3.40)

so that

R = [r1 r2], L =

 `T1

`T2

 . (3.41)

Using (3.33)–(3.41), we write

B = (X ′ ⊗ IM)(D ⊗ IM)((X ′)−1 ⊗ IM)
∆
= X ′D(X ′)−1

=
[
R1 R2

1
c
XR

]
IM 0 0

0 IM 0

0 0 D1



LT

1

LT
2

cXL

 , (3.42)

where D1 = D1 ⊗ IM ,

R1 =

 I
0

 ∈ R2KM×M , R2 =

 0

I

 ∈ R2KM×M , (3.43)

L1 =

 P
0

 ∈ R2KM×M , L2 =

 0

1
K
I

 ∈ R2KM×M , (3.44)
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while XR = XR ⊗ IM ∈ R2KM×2(K−1)M and XL = xL ⊗ IM ∈ R2(K−1)M×2KM . Moreover, we

are also introducing

I=1K ⊗ IM ∈ RKM×M , P=p⊗ IM ∈ RKM×M , (3.45)

where the variable P defined above is different from the earlier variable P = P⊗IM ∈KM×NM .

Multiplying both sides of (3.26) by (X ′)−1:

(X ′)−1

 W̃i

Ỹi

=[(X ′)−1(B − Ti−1)X ′](X ′)−1

 W̃i−1

Ỹi−1

 (3.46)

leads to 
X̄ i

X̂ i

X̌ i

=



IM 0 0

0 IM 0

0 0 D1

− Si−1



X̄ i−1

X̂ i−1

X̌ i−1

 , (3.47)

where we defined 
X̄ i

X̂ i

X̌ i

 ∆
= (X ′)−1

 W̃i

Ỹi

 =


LT

1

LT
2

cXL


 W̃i

Ỹi

 , (3.48)

and

Si−1
∆
= (X ′)−1Ti−1X ′=


LT

1 Ti−1R1 LT
1 Ti−1R2

1
c
LT

1 Ti−1XR

LT
2 Ti−1R1 LT

2 Ti−1R2
1
c
LT

2 Ti−1XR

cXLTi−1R1 cXLTi−1R2 XLTi−1XR

 . (3.49)

To evaluate the block entries of Si−1, we partition

XR =

 XR,u
XR,d

 , (3.50)

where XR,u ∈ RKM×2(K−1)M and XR,d ∈ RKM×2(K−1)M . Then, it can be verified that

LT
1 Ti−1R1 = PTMHi−1I, (3.51)

LT
1 Ti−1R2 = 0, (3.52)

1

c
LT

1 Ti−1XR =
1

c
PTMHi−1XR,u. (3.53)
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While

LT
2 Ti−1 =

[
0 1

K
IT
] ATMHi−1 0

VATMHi−1 0

 (2.67)
=
[
0 0

]
, (3.54)

Therefore, it follows that

LT
2 Ti−1R1 = 0, LT

2 Ti−1R2 = 0,
1

c
LT

2 Ti−1XR = 0. (3.55)

Substituting (3.49), (3.51)–(3.53) and (3.55) into (3.47), we have
X̄ i

X̂ i

X̌ i

=


IM−P

TMHi−1I 0 − 1
cP

TMHi−1XR,u
0 IM 0

−cXLTi−1R1 −cXLTi−1R2 D1−XLTi−1XR



X̄ i−1

X̂ i−1

X̌ i−1

 (3.56)

From the second line of (3.56), we get

X̂ i = X̂ i−1. (3.57)

As a result, X̂ i will stay at 0 only if the initial value X̂0 = 0. From the definition of L2 in

(3.40) and (3.48) we have

X̂0 = LT
2

 W̃0

Ỹ0

 =
1

K
ITỸ0

(3.14)
=

1

K
IT(Y?o − Y0)

(2.89)
=

1

K
IT(Y?o − VW0). (3.58)

Recall from Lemma 3.2 that Y?o lies in the range(V), so that Y?o − VW0 also lies in range(V).

From Lemma 2.4 we conclude that X̂0 = 0. Therefore, from (3.57) we have

X̂ i = 0, ∀i ≥ 0 (3.59)

With (3.59), recursion (3.56) is equivalent toX̄ i
X̌ i

=

IM−PTMHi−1I −1
c
PTMHi−1XR,u

−cXLTi−1R1 D1 −XLTi−1XR

X̄ i−1

X̌ i−1

 (3.60)

The convergence of the above recursion is stated as follows.

78



Theorem 3.1 (Linear Convergence) Suppose each cost function Jk(w) satisfies Assump-

tion 3.1, the left-stochastic matrix A satisfies the local balance condition (2.13), and also

condition (2.9) holds. The exact diffusion recursion (2.88) converges exponentially fast to

(W?, Y?o) for step-sizes satisfying

µmax ≤
pkoτkoν(1− λ)

2
√
pmaxαdδ2

, (3.61)

where λ=
√
λ2(A)<1, τko=µko/µmax, pmax=maxk{pk} and

αd
∆
= ‖XL‖‖Td‖‖XR‖, where Td

∆
=

 AT
0

VAT
0

 . (3.62)

The convergence rate for the error variables is given by∥∥∥∥∥∥
 W̃i

Ỹi

∥∥∥∥∥∥
2

≤ Cρi, (3.63)

where C is some constant and ρ = 1−O(µmax), namely,

ρ = max
{

1− pkoτkoνµmax +
2
√
pmaxαdδ

2µ2
max

1− λ
,

λ+

√
pmaxαdδ

2µmax

pkoτkoν
+

2α2
dδ

2µ2
max

1− λ

}
< 1. (3.64)

Proof. See Appendix 3.B. �

With similar arguments shown above, we can also establish the convergence property of

the exact diffusion algorithm 2.2 in Chapter 2. Compared to the above convergence analysis,

the error dynamics for algorithm 1’ will now be perturbed by a mismatch term caused by

the power iteration. Nevertheless, once the analysis is carried out we arrive at a similar

conclusion.

Theorem 3.2 (Linear convergence of Algorithm 2.2) Under the conditions of Theo-

rem 3.1, there exists a positive constant µ̄ > 0 such that for step-sizes satisfying µ < µ̄, the

exact diffusion Algorithm 2.2 will converge exponentially fast to (W?, Y?o).

Proof. See Appendix 3.C. �
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3.2 Stability Comparison with EXTRA

3.2.1 Stability Range of EXTRA

In the case where the combination matrix A is symmetric and doubly-stochastic, and all

agents choose the same step-size µ, the exact diffusion recursion (2.88) reduces to
Wi = A

(
Wi−1−µ∇J o(Wi−1)

)
−P−1VYi−1,

Yi = Yi−1 + VWi.

(3.65)

where P = IMK/K. In comparison, the EXTRA consensus algorithm [75] has the following

form for the same P (recall though that exact diffusion (2.88) was derived and is applicable

to a larger class of balanced left-stochastic matrices and is not limited to symmetric doubly

stochastic matrices; it also allows for heterogeneous step-sizes):W
e
i = AWe

i−1−µ∇J o(We
i−1)−P−1VYei−1,

Yei = Yei−1 + VWe
i ,

(3.66)

where we are using the notation We
i and Yei to refer to the primal and dual iterates in the

EXTRA implementation. Similar to (2.89), the initial condition for (3.66) isW
e
0 = AWe

−1−µ∇J o(We
−1),

Ye0 = VWe
0.

(3.67)

Comparing (3.65) and (3.66) we observe one key difference; the diffusion update in (3.65)

involves a traditional gradient descent step in the form of Wi−1 − µ∇J o(Wi−1). This step

starts from Wi−1 and evaluates the graduate vector at the same location. The result is then

multiplied by the combination policy Ã. The same is not true for exact consensus in (3.66);

we observe an asymmetry in its update: the gradient vector is evaluated at We
i−1 while the

starting point is at a different location given by ÃWe
i−1. This type of asymmetry was shown

in [1,4] to result in instabilities for the traditional consensus implementation in comparison

to the traditional diffusion implementation. It turns out that a similar problem continues to

exist for the EXTRA consensus solution (3.66). In particular, we will show that its stability

range is smaller than exact diffusion (i.e., the latter is stable for a larger range of step-sizes,
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which in turn helps attain faster convergence rates). We will illustrate this behavior in the

simulations in some detail. Here, though, we establish these observations analytically. The

arguments used to examine the stability range of EXTRA consensus are similar to what

we did in Sec. 3.1 for exact diffusion; we shall therefore be brief and highlight only the

differences.

As already noted in [75], the optimality conditions for the EXTRA consensus algorithm

require the existence of block vectors (W?, Y?) such that

µ∇J o(W?) + P−1VY? = 0, (3.68)

VW? = 0. (3.69)

Moreover, as argued in Lemma 3.2, there also exists a unique pair of variables (W?, Y?o), in

which Y?o lies in the range space of V , that satisfies (3.68)–(3.69). Now we introduce the

block error vectors:

W̃
e
i = W? − We

i , Ỹ
e
i = Y?o − Yei , (3.70)

and examine the evolution of these error quantities. Using similar arguments in Section

3.1.2, and recalling the facts that A is symmetric doubly-stochastic, and M = µIMK , we

arrive at the error recursion for EXTRA consensus (see Appendix 3.D): W̃e
i

Ỹ
e
i

=

 A− µHi−1 −P−1V

V(A− µHi−1) IMK − VP−1V

 W̃e
i−1

Ỹ
e
i−1


∆
= (Be − T ei−1)

 W̃e
i−1

Ỹ
e
i−1

 , (3.71)

where

Be ∆
=

 A −P−1V

VA IMK−VP−1V

 , T ei ∆
=

 µHi 0

µVHi 0

 . (3.72)

It is instructive to compare (3.71)–(3.72) with (3.26)–(3.28). These recursions capture the

error dynamics for the exact consensus and diffusion strategies. Observe that Be = B when

A is symmetric andM = µIMK . Therefore, Be has the same eigenvalue decomposition as in
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(3.42)–(3.45). With similar arguments to (3.33)–(3.60), we conclude that the reduced error

recur-sion for EXTRA consensus takes the form (see Appendix 3.E):X̄ei
X̌ei

=

IM−µPTHi−1I −µ
c
PTHi−1XR,u

−cXLT ei−1R1 D1 −XLT ei−1XR

X̄ei−1

X̌ei−1

 . (3.73)

Following the same proof technique as for Theorem 3.1, we can now establish the following

result concerning stability conditions and convergence rate for EXTRA consensus.

Theorem 3.3 (Linear Convergence of EXTRA) Suppose each cost function Jk(w) sat-

isfies Assumption 3.1, and the combination matrix A is primitive, symmetric and doubly-

stochastic. The EXTRA recursion (3.71) converges exponentially fast to (W?, Y?o) for step-

sizes µ satisfying

µ ≤ ν(1− λ)

2
√
Kαeδ2

, (3.74)

where λ =
√
λ2(A) < 1 and

αe = ‖XL‖‖Te‖‖XR‖, where Te =

 IMK 0

V 0

 . (3.75)

The convergence rate for the error variables is given by∥∥∥∥∥∥
 W̃e

i

Ỹ
e
i

∥∥∥∥∥∥
2

≤ Cρi, (3.76)

where C is some constant and ρ = 1−O(µmax), namely,

ρe = max
{

1− ν

K
µmax +

2αeδ
2µ2

max√
K(1− λ)

,

λ+

√
Kαeδ

2µmax

ν
+

2α2
eδ

2µ2
max

1− λ

}
< 1. (3.77)

Proof. See Appendix 3.F. �
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3.2.2 Comparison of Stability Ranges

When A is symmetric andM = µIMK , from Theorem 3.1 we get the stability range of exact

diffusion:

µ ≤ ν(1− λ)

2
√
K‖XL‖‖Td‖‖XR‖δ2

, (3.78)

where

Td =

 A 0

VA 0

 . (3.79)

Comparing (3.78) with (3.74), we observe that the expressions differ by the terms ‖Te‖ and

‖Td‖. We therefore need to compare these two norms.

Notice that

‖Te‖2 = λmax(T T
e Te) = λmax(IMK + V2), (3.80)

‖Td‖2 = λmax(T T
d Td) = λmax

(
A(IMK + V2)A

)
. (3.81)

It is easy to recognize that λmax(IMK + V2) = λmax(IK + V 2). Now, since A is assumed

symmetric doubly-stochastic and P = 1
K
IK , we have

IK + V 2 = IK +
P − PA

2

= IK +
IK − A

2K
=

(2K + 1)IK − A
2K

, (3.82)

Moreover, since A is primitive, symmetric and doubly stochastic, we can decompose it as

A = UΛUT, (3.83)

where U is orthogonal, Λ = diag{λ1(A), · · ·, λK(A)} and

1 = λ1(A) > λ2(A) ≥ · · · ≥ λK(A) > −1. (3.84)

With this decomposition, expression (3.82) can be rewritten as

IK + V 2 = U
(2K + 1)IK − Λ

2K
UT. (3.85)
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from which we conclude that

λmax(IK + V 2) =
(2K + 1)− λK(A)

2K
(3.86)

Similarly, λmax(A(IMK + V2)A) = λmax(A(IK + V 2)A). Using A = IK+A
2

, and equations

(3.83) and (3.85), we have

A(IK + V 2)A

=

(
IK + A

2

)(
(2K + 1)IK − A

2K

)(
IK + A

2

)
(3.87)

= U

(
IK + Λ

2

)(
(2K + 1)IK − Λ

2K

)(
IK + Λ

2

)
UT. (3.88)

Therefore, we have

λmax

(
A(IK + V 2)A

)
= max

k

{(
λk(A) + 1

2

)2(
2K + 1− λk(A)

2K

)}
(a)

≤ max
k

{(
λk(A) + 1

2

)2
}

max
k

{
2K + 1− λk(A)

2K

}
(3.84)
=

2K + 1− λK(A)

2K
. (3.89)

It is worth noting that the “=” sign cannot hold in (a) because

arg max
k

{(
λk(A) + 1

2

)2
}

= 1, (3.90)

arg max
k

{
2K + 1− λk(A)

2K

}
= N. (3.91)

In other words,
(
λk(A)+1

2

)2

and 2K+1−λk(A)
2K

cannot reach their maximum values at the same

k. As a result,

‖Td‖2 < ‖Te‖2 =⇒ αd < αe. (3.92)

This means that the upper bound on µ in (3.74) is smaller than the upper bound on µ in

(3.78).
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We can also compare the convergence rates of EXTRA consensus and exact diffusion

when both algorithms converge. When A is symmetric and M = µIMK , from Theorem 3.1

we get the convergence rate of exact diffusion:

ρd = max
{

1− ν

K
µmax +

2αdδ
2µ2

max√
K(1− λ)

, λ+

√
Kαdδ

2µmax

ν
+

2α2
dδ

2µ2
max

1− λ

}
. (3.93)

It is clear from (3.93) and (3.77) that EXTRA consensus and exact diffusion have the same

convergence rate to first-order in µmax, namely,

ρ̂d = 1− ν

K
µmax = ρ̂e (3.94)

More generally, when higher-order terms in µmax cannot be ignored, it holds that ρd < ρe

because αd < αe (see (3.92)). In this situation, exact diffusion converges faster than EXTRA.

3.2.3 An Analytical Example

In this subsection we illustrate the stability of exact diffusion by considering the example

of mean-square-error (MSE) networks [1]. Suppose K agents are observing streaming data

{dk(i),uk,i} that satisfy the regression model

dk(i) = uT
k,iw

o + vk(i), (3.95)

where wo is unknown and vk(i) is the noise process that is independent of the regression

data uk,j for any k, j. Furthermore, we assume uk,i is zero-mean with covariance matrix

Ru,k = Euk,iuT
k,i > 0, and vk(i) is also zero-mean with power σ2

v,k = Ev2
k(i). We denote

the cross covariance vector between dk(i) and uk,i by rdu,k = Edk(i)uk,i. To discover the

unknown wo, the agents cooperate to solve the following mean-square-error problem:

min
w∈RM

1
2

∑K
k=1E

(
dk(i)− uT

k,iw
)2
. (3.96)

It was shown in Example 6.1 of [1] that the global minimizer of problem (3.96) coincides

with the unknown wo in (3.95).

When Ru,k and rdu,k are unknown and only realizations of uk,i and dk(i) are observed

by agent k, one can employ the diffusion algorithm with stochastic gradient descent to solve
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Figure 3.1: A two-agent network using combination weights {a, 1− a}

(3.96). However, when Ru,k and rdu,k are known in advance, problem (3.96) reduces to

deterministic optimization problem:

min
w∈RM

1

2

K∑
k=1

(
wTRu,kw − 2rTdu,kw

)
. (3.97)

We can then employ the exact diffusion or the EXTRA consensus algorithm to solve (3.97).

To illustrate the stability issue, it is sufficient to consider a network with 2 agents (see

Fig. 3.1) and with diagonal Hessian matrices, i.e.,

Ru,1 = Ru,2 = σ2IM . (3.98)

We assume the agents use the combination weights {a, 1− a} with a ∈ (0, 1), so that

A =

 a 1− a

1− a a

 ∈ R2×2, (3.99)

which is symmetric and doubly stochastic. The two agents employ the same step-size µ (or

µe in the EXTRA recursion). It is worth noting that the following analysis can be extended

to K agents with some more algebra.

Under (3.98), we have H1 = H2 = σ2IM and H = diag{H1, H2} = σ2I2M . For the matrix

A in (3.99), we have

λ1(A) = 1, λ2(A) = 2a− 1 ∈ (−1, 1), (3.100)

and p = [0.5; 0.5], P = 0.5I2.

Let Z̃i = [W̃i; Ỹi] ∈ R2M , and Z̃ei = [W̃e
i ; Ỹ

e
i ] ∈ R2M . The exact diffusion error recursion

(3.26) and the EXTRA error recursion (3.71) reduce to

Z̃i = QdZ̃i−1, (3.101)
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Z̃
e
i = QeZ̃ei−1, (3.102)

where

Qd=

 (1− µσ2)A −2V

(1− µσ2)V A A


︸ ︷︷ ︸

Qd

⊗IM , (3.103)

Qe=

 A− µeσ2I2 −2V

V (A− µeσ2I2) A


︸ ︷︷ ︸

Qe

⊗IM . (3.104)

To guarantee the convergence of Z̃i and Z̃ei , we need to examine the eigenstructure of the

4 × 4 matrices Qd and Qe. The proof of the next lemma is quite similar to Lemma 3.3; if

desired, see Appendix F of the arXiv version [16].

Lemma 3.4 (Eigenstructure of Qd) The matrix Qd admits the following eigendecompo-

sition

Qd = XQdX
−1, (3.105)

where

Qd =

 1 0

0 Ed

 (3.106)

and

Ed =


1− µσ2 0 0

0 (1− µσ2)a −
√

2− 2a

0 (1− µσ2)a
√

1−a
2

a

 . (3.107)

Moreover, the matrices X and X−1 are given by

X =
[
r XR

]
, X−1 =

 `T

XL

 , (3.108)

where XR ∈ R4×3, XL ∈ R3×4, and

r =
1

2

 0

12

 ∈ R4, ` =

 0

12

 ∈ R4. (3.109)
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It is observed that Qd always has an eigenvalue at 1, which implies that Qd is not stable no

matter what the step-size µ is. However, this eigenvalue does not influence the convergence

of recursions (3.101). To see that, from Lemma 3.4 we have

Qd = XQdX−1 =
[
R XR

] IM 0

0 Ed

 LT

XL

 (3.110)

where XR = XR ⊗ IM , XL = XL ⊗ IM , Ed = Ed ⊗ IM , and

R =
1

2

 0

12 ⊗ IM

 , L =

 0

12 ⊗ IM

 . (3.111)

Let  Ẑi
Ži

 = X−1Z̃i =

 LTZ̃i

XLZ̃i

 . (3.112)

The exact diffusion recursion (3.101) can be transformed into Ẑi

Ži

 =

 IM 0

0 Ed

 Ẑi−1

Ži−1

 , (3.113)

which can be further divided into two separate recursions:

Ẑi = Ẑi−1, Ži = EdŽi−1. (3.114)

Therefore, Ẑi = 0 if Ẑ0 = 0. Since Y0 = VW0 and Y?o ∈ range(V), we have Ỹ0 = Y?o − Y0 ∈

range(V). Therefore,

Ẑ0
(3.112)

= LTZ̃0 =
[

0 (12 ⊗ IM)T
] W̃0

Ỹ0

 (2.67)
= 0, (3.115)

As a result, we only need to focus on the other recursion:

Ži = EdŽi−1, where Ed = Ed ⊗ IM . (3.116)

If we select the step-size µ such that all eigenvalues of Ed stay inside the unit-circle, then we

guarantee the convergence of Ži and, hence, Z̃i.
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Lemma 3.5 (Stability of exact diffusion) When µ is chosen such that

0 < µσ2 < 2, (3.117)

all eigenvalues of Ed will lie inside the unit-circle, which implies that Z̃i in (3.101) converges

to 0, i.e., Z̃i → 0.

Proof. See Appendix 3.G. Next we turn to the EXTRA error recursion (3.102). �

Lemma 3.6 (Instability of EXTRA) When µe is chosen such that

µeσ2 ≥ a+ 1, (3.118)

it holds that Z̃ei generated through EXTRA (3.102) will diverge.

Proof. See Appendix 3.H. �

Comparing the statements of Lemmas 3.5 and 3.6, and since 1 + a < 2, exact diffusion

has a larger range of stability than EXTRA (i.e., exact diffusion is stable for a wider range

of step-size values). In particular, if agents place small weights on their own data, i.e., when

a ≈ 0, the stability range for exact diffusion will be almost twice as large as that of EXTRA.

3.3 Numerical Experiments

In this section we compare the performance of the proposed exact diffusion algorithm with

existing linearly convergent algorithms such as EXTRA [75], DIGing [93], and Aug-DGM

[95, 96]. In all figures, the y-axis indicates the relative error, i.e., ‖Wi − Wo‖2/‖W0 − Wo‖2,

where Wi = col{w1,i, · · · , wK,i} ∈ RKM and Wo = col{wo, · · · , wo} ∈ RKM . All simulations

employ the connected network topology with N = 20 nodes shown in Fig. 2.3 in Chapter 2.

3.3.1 Distributed Least-squares

In this experiment, we focus on the least-squares problem:

wo = arg min
w∈RM

1

2

K∑
k=1

‖Ukw − dk‖2. (3.119)
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The simulation setting is the same as Sec. 2.6 in Chapter 2.

In the simulation we compare exact diffusion with EXTRA, DIGing, and Aug-DGM.

These algorithms work with symmetric doubly-stochastic or right-stochastic matrices A.

Therefore, we now employ doubly-stochastic matrices for a proper comparison. Moreover,

there are two information combinations per iteration in DIGing and Aug-DGM algorithms,

and each information combination corresponds to one round of communication. In compar-

ison, there is only one information combination (or round of communication) in EXTRA

and exact diffusion. For fairness we will compare the algorithms based on the amount of

communications, rather than the iterations. In the figures, we use one unit amount of com-

munication to represent 2ME communicated variables, where M is the dimension of the

variable while E is the number of edges in the network. The problem setting is the same as

in the simulations in Chapter 2, except that A is generated through the Metropolis rule [1].

In the top plot in Fig. 3.2, all algorithms are carefully adjusted to reach their fastest con-

vergence. It is observed that exact diffusion is slightly better than EXTRA, and both of

them are more communication efficient than DIGing and Aug-DGM. When a larger step-size

µ = 0.02 is chosen for all algorithms, it is observed that EXTRA and DIGing diverge while

exact diffusion and Aug-DGM converge, and exact diffusion is much faster than Aug-DGM

algorithm.

We also compare exact diffusion with Push-EXTRA [100,123] and Push-DIGing [93] for

non-symmetric combination policies. We consider the unbalanced network topology shown

in Fig. 2.3 in chapter 2. The combination matrix is generated through the averaging rule.

Note that the Perron eigenvector p is known beforehand for such combination matrix A,

and we can therefore substitute p directly into the recursions of Push-EXTRA and Push-

DIGing. In the simulation, all algorithms are adjusted to reach their fastest convergence.

In Fig. 3.3, it is observed that exact diffusion is the most communication efficient among

all three algorithms. This figure illustrates that exact diffusion has superior performance for

locally-balanced combination policies.
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Figure 3.2: Convergence comparison between exact diffusion, EXTRA, DIGing, and Aug-DGM for dis-

tributed least-squares problem (3.119). In the top plot, the step-sizes for Exact diffusion, EXTRA, DIGing

and Aug-DGM are 0.013, 0.007, 0.0028 and 0.003. In the bottom plot, all step-sizes are set as 0.04.

91



0 100 200 300 400 500 600
10

−20

10
−15

10
−10

10
−5

10
0

amount of communication

R
e
la

ti
v
e
 e

rr
o
r

 

 

Exact Diffusion (3)−(5)

Push−EXTRA [15, 25]

Push−DIGing [19]

Figure 3.3: Convergence comparison between exact diffusion, EXTRA, DIGing, and Aug-DGM for dis-

tributed least-squares problem (3.119) with non-symmetric combination policy.

3.3.2 Distributed Logistic Regression

We next consider a pattern classification scenario. Each agent k holds local data samples

{hk,j, γk,j}Lj=1, where hk,j ∈ RM is a feature vector and γk,j ∈ {−1,+1} is the corresponding

label. Moreover, the value L is the number of local samples at each agent. All agents will

cooperatively solve the regularized logistic regression problem:

wo = arg min
w∈RM

K∑
k=1

[ 1

L

L∑
`=1

ln
(
1+exp(−γk,`hTk,`w)

)
+
ρ

2
‖w‖2

]
. (3.120)

The simulation setting is the same as Sec. 2.6 in Chapter 2.

In this simulation, we also compare exact diffusion with EXTRA, DIGing, and Aug-

DGM. A symmetric doubly-stochastic A is generated through the Metropolis rule. In the

top plot in Fig. 3.4, all algorithms are carefully adjusted to reach their fastest convergence.

It is observed that exact diffusion is the most communication efficient among all algorithms.

When a larger step-size µ = 0.04 is chosen for all algorithms in the bottom plot in Fig. 3.4,

it is observed that both exact diffusion and Aug-DGM are still able to converge linearly to

wo, while EXTRA and DIGing fail to do so. Moreover, exact diffusion is observed much
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more communication efficient than Aug-DGM.

3.A Proof of Lemma 3.3

Define V ′
∆
= V + 1K p

T ∈ RK×K , we claim that V ′ is a full rank matrix. Suppose to the

contrary that there exists some x 6= 0 such that V ′x = 0, i.e.,(V +1K p
T)x = V x+(pTx)1K =

0, which requires

V x = −(pTx)1K . (3.121)

When pTx 6= 0, relation (3.121) implies that 1K ∈ range(V ). However, from Lemma 2.4 we

know that

null(V ) = span{1K} ⇐⇒ range(V T)⊥ = span{1K}

⇐⇒ range(V )⊥ = span{1K}, (3.122)

where the last “⇔” holds because V is symmetric. Relation (3.122) is contradictory to

1K ∈ range(V ). Therefore, V ′x 6= 0. When pTx = 0, relation (3.121) implies that V x = 0,

which together with Lemma 2.4 implies that x = c1K for some constant c 6= 0. However,

since pT1K = 1, we have pTx = c 6= 0, which also contradicts with pTx = 0. As a result, V ′

has full rank and hence (V ′)−1 exists.

With V ′ = V + 1K and the fact V 1K = 0 (see Lemma 2.4), we also have

V V ′ = V (V + 1K p
T) = V 2 + V 1K p

T = V 2, (3.123)

V ′(IK − 1K p
T) = (V + 1K p

T)(IK − 1K p
T) = V. (3.124)

With relations (3.123) and (3.124), we can verify that

B=

IK 0

0 V ′

 A
T −P−1V 2

(V ′)−1V A
T
IK−(V ′)−1V P−1V 2

IK 0

0 (V ′)−1


(a)
=

IK 0

0 V ′

 A
T

A
T − IK

A
T − 1K p

T A
T

IK 0

0 (V ′)−1

 (3.125)
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Figure 3.4: Convergence comparison between exact diffusion, EXTRA, DIGing, and Aug-DGM for problem

(3.120). In the top plot, the step-sizes for Exact Diffusion, EXTRA, DIGing and AUG-DGM are 0.041, 0.028,

0.014 and 0.033. In the bottom plot, all step-sizes are set as 0.04.
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where in (a) we used V 2=(P−PA)/2 and A
T

=(IK+AT)/2. Using A = Y ΛY −1 from Lemma

2.3, we have

A
T

= (Y −1)TΛY T, A
T−IK = (Y −1)T(Λ−IK)Y T (3.126)

where Λ
∆
= (IK + Λ) /2. Obviously, Λ > 0 is also a real diagonal matrix. If we let

Λ = diag{λ1(A), · · · , λK(A)}, it holds that

λk(A) = (λk(A) + 1)/2 > 0, ∀ k = 1, · · · , N, (3.127)

and λ1(A) = 1. Moreover, we can also verify that

A
T − 1K p

T = (Y −1)TΛ1Y
T, (3.128)

where Λ1 = diag{0, λ2(A), · · · , λK(A)}. This is because the vectors 1T
K and p are the left-

and right-eigenvectors of A. Combining relations (3.127) and (3.128), we have A
T

A
T − IK

A
T − 1K p

T A
T


=

(Y −1)T 0

0 (Y −1)T

 Λ Λ− IK

Λ1 Λ

Y T 0

0 Y T

 . (3.129)

With permutation operations, it holds that

 Λ Λ− IK

Λ1 Λ

 =Π


E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · EK

ΠT, (3.130)

where Π ∈ RK×K is a permutation matrix, and

E1=

1 0

0 1

, Ek=

λk(A) λk(A)− 1

λk(A) λk(A)

, ∀k = 2, · · · , N. (3.131)

Now we seek the eigenvalues of Ek. Let d denote an eigenvalue of Ek. The characteristic

polynomial of Ek is

d2 − 2λk(A)d+ λk(A) = 0. (3.132)
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Therefore, we have

d =
2λk(A)±

√
4λ2

k(A)− 4λk(A)

2
. (3.133)

Since λk(A) ∈ (0, 1) when k = 2, 3, · · · , N , it holds that 4λ2
k(A) < 4λk(A). Therefore, d is a

complex number, and its magnitude is
√
λk(A). Therefore, Ek can be diagonalized as

Ek = Zk

 dk,1 0

0 dk,2

Z−1
k (3.134)

where dk,1 and dk,2 are complex numbers and

|dk,1| = |dk,2| =
√
λk(A) < 1. (3.135)

Define Z and X as

Z
∆
= diag{I2, Z2, Z3, · · · , ZK} (3.136)

X
∆
=

 IK 0

0 V ′

 (Y −1)T 0

0 (Y −1)T

ΠZ (3.137)

Since each factor in X is invertible, X
−1

must exist. Combining (3.125) and (3.129)–(3.135),

we finally arrive at

B = XDX
−1
, where D =

 I2 0

0 D1

 , (3.138)

and D1 has the structure claimed in (3.35).

Therefore, we have established so far the form of the eigenvalue decomposition of B.

In this decomposition, each k-th column of X is a right-eigenvector associated with the

eigenvalue D(k, k), and each k-th row of X
−1

is the left-eigenvector associated with D(k, k).

Recall, however, that eigenvectors are not unique. We now verify that we can find eigenvec-

tor matrices X and X
−1

that have the structure shown in (3.36) and (3.37). To do so, it is

sufficient to examine whether the two columns of R are independent right-eigenvectors asso-

ciated with eigenvalue 1, and the two rows of L are independent left-eigenvectors associated
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with 1. Let

R =
[
r1 r2

]
, where r1

∆
=

1K
0

 , r2
∆
=

 0

1K

 . (3.139)

Obviously, r1 and r2 are independent. Since

Br1 = r1, Br2 = r2, (3.140)

we know r1 and r2 are right-eigenvectors associated with eigenvalue 1. As a result, an

eigenvector matrix X can be chosen in the form X =
[
R XR

]
, where each k-th column

of XR corresponds to the right-eigenvector associated with eigenvalue D1(k, k). Similarly,

we let

L =

 `T1
`T2

 , where `1
∆
=

 p
0

 , `2
∆
=

 0

1
K
1K

 . (3.141)

It is easy to verify that `1 and `2 are independent left-eigenvectors associated with eigenvalue

1. Moreover, since LR = I2, X−1 has the structure

X−1 =

 L

XL

 , (3.142)

where each k-th row of XL corresponds to a left-eigenvector associated with eigenvalue

D1(k, k).

3.B Proof of Theorem 3.1

From the first line of recursion (3.60), we have

X̄ i=
(
IM−P

TMHi−1I
)
X̄ i−1−

1

c
PTMHi−1XR,uX̌ i−1. (3.143)

Squaring both sides and using Jensen’s inequality [124] gives

‖X̄ i‖2=

∥∥∥∥(IM−PTMHi−1I
)
X̄ i−1−

1

c
PTMHi−1XR,uX̌ i−1

∥∥∥∥2

≤ 1

1− t

∥∥∥IM−PTMHi−1I
∥∥∥2

‖X̄ i−1‖2

+
1

t

1

c2
‖PTMHi−1XR,u‖2‖X̌ i−1‖2 (3.144)
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for any t ∈ (0, 1). Using τk = µk/µmax, we obtain

PTMHi−1I = µmax

K∑
k=1

pkτkHk,i−1

(3.31)

≥ µmaxpkoτkoνIM
∆
= σ11µmaxIM , (3.145)

where σ11 = pkoτkoν. Similarly, we can also obtain

PTMHi−1I = µmax

K∑
k=1

pkτkHk,i−1

(3.31)

≤

(
K∑
k=1

pkτk

)
δµmaxIM

(a)

≤ δµmaxIM , (3.146)

where inequality (a) holds because τk < 1 and
∑K

k=1 pk = 1. It is obvious that δ > σ11. As

a result, we have

(1−δµmax)IM≤IM−P
TMHi−1I ≤ (1−σ11µmax)IM (3.147)

which implies that when the step-size satisfy

µmax < 1/δ, (3.148)

it will hold that

‖IM−P
TMHi−1I‖2 ≤ (1− σ11µmax)2. (3.149)

On the other hand, we have

1

c2
‖PTMHi−1XR,u‖2 ≤ 1

c2
‖PTM‖2‖Hi−1‖2‖XR,u‖2

(a)

≤ 1

c2

(
K∑
k=1

(τkpk)
2

)
δ2‖XR,u‖2µ2

max

(b)

≤ pmax

c2
δ2‖XR,u‖2µ2

max (3.150)

where inequality (b) holds because τk < 1, p2
k < pkpmax (where pmax = maxk{pk}) and∑K

k=1 pk = 1. Inequality (a) follows by noting that PTM = µmax[p1τ1, · · · , pKτK ] ⊗ IM .
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Introducing s = [p1τ1, p2τ2, · · · , pKτK ]T ∈ RK , we have

‖PTM‖2=µ2
max‖sT⊗IM‖2=µ2

maxλmax

(
(s⊗ IM)(sT ⊗ IM)

)
=µ2

maxλmax

(
ssT ⊗ IM

)
= µ2

maxλmax(ssT)

=µ2
max‖s‖2 = µ2

max

K∑
k=1

(pkτk)
2. (3.151)

Recall (3.50) and by introducing E =
[
IMK 0MK

]
, we have XR,u = EXR. Therefore, it

holds that

‖XR,u‖2 ≤ ‖E‖2‖XR‖2 = ‖XR‖2. (3.152)

Substituting (3.152) into (3.150), we have

1

c2
‖PTMHi−1XR,u‖2≤pmaxδ

2

c2
‖XR‖2µ2

max
∆
= σ2

12µ
2
max (3.153)

where σ12
∆
=
√
pmaxδ‖XR‖/c. Notice that σ12 is independent of µmax. Substituting (3.149)

and (3.150) into (3.144), we get

‖X̄ i‖2≤ 1

1− t
(1− σ11µmax)2‖X̄ i−1‖2 +

1

t
σ2

12µ
2
max‖X̌ i−1‖2

=(1−σ11µmax)‖X̄ i−1‖2+(σ2
12/σ11)µmax‖X̌ i−1‖2 (3.154)

where we are selecting t = σ11µmax.

Next we check the second line of recursion (3.60):

X̌ i = − cXLTi−1R1X̄ i−1 + (D1 −XLTi−1XR)X̌ i−1

= D1X̌ i−1 −XLTi−1(cR1X̄ i−1 + XRX̌ i−1). (3.155)

Squaring both sides and using Jensen’s inequality again,

‖X̌ i‖2 =‖D1X̌ i−1 −XLTi−1(cR1X̄ i−1 + XRX̌ i−1)‖2

≤‖D1‖2

t
‖X̌ i−1‖2+

1

1− t
‖XLTi−1(cR1X̄ i−1+XRX̌ i−1)‖2

≤‖D1‖2

t
‖X̌ i−1‖2+

2c2

1− t
‖XLTi−1R1‖2‖X̄ i−1‖2

+
2

1− t
‖XLTi−1XR‖2‖X̌ i−1‖2. (3.156)
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where t ∈ (0, 1). From Lemma 3.3 we have that λ
∆
= ‖D1‖ =

√
λ2(A) < 1. By setting

t = λ, we reach

‖X̌ i‖2 ≤ λ‖X̌ i−1‖2 + 2c2‖XLTi−1R1‖2‖X̄ i−1‖2/(1− λ)

+ 2‖XLT XR‖2‖X̌ i−1‖2/(1− λ). (3.157)

We introduce the matrix Γ = diag{τ1IM , · · · , τKIM}, and note that we can writeM = µmaxΓ.

Substituting it into (3.28),

Ti−1 = µmax

 AT
ΓHi−1 0

VAT
ΓHi−1 0


= µmax

 AT
0

VAT
0


︸ ︷︷ ︸

∆
= Td

 ΓHi−1 0

0 ΓHi−1

 , (3.158)

which implies that

‖Ti−1‖2 ≤ µ2
max‖Td‖2

(
max

1≤k≤K
‖Hk,i−1‖2

)
≤ ‖Td‖2δ2µ2

max. (3.159)

We also emphasize that ‖Td‖2 is independent of µmax. With inequality (3.159), we further

have

c2‖XLTi−1R1‖2≤c2µ2
max‖XL‖2‖Td‖2‖R1‖2δ2 ∆

= σ2
21µ

2
max (3.160)

‖XLTi−1XR‖2≤µ2
max‖XL‖2‖Td‖2‖XR‖2δ2 ∆

= σ2
22µ

2
max (3.161)

since ‖R1‖ = 1, and where σ21 and σ22 are defined as

σ21 = c‖XL‖‖Td‖δ, σ22 = ‖XL‖‖Td‖‖XR‖δ. (3.162)

With (3.160) and (3.161), inequality (3.157) becomes

‖X̌ i‖2≤
(
λ+

2σ2
22µ

2
max

1− λ

)
‖X̌ i−1‖2+

2σ2
21µ

2
max

1− λ
‖X̄ i−1‖2. (3.163)

Combining (3.154) and (3.163), we arrive at the inequality recursion‖X̄ i‖2

‖X̌ i‖2

 �
1− σ11µmax

σ2
12

σ11
µmax

2σ2
21µ

2
max

1−λ λ+
2σ2

22µ
2
max

1−λ


︸ ︷︷ ︸

∆
= G

‖X̄ i−1‖2

‖X̌ i−1‖2

 . (3.164)
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Now we check the spectral radius of the matrix G. Recall the fact that the spectral radius

of a matrix is upper bounded by any of its norms. Therefore,

ρ(G) ≤ ‖G‖1 = max
{

1− σ11µmax +
2σ2

21µ
2
max

1− λ
,

λ+
σ2

12

σ11

µmax +
2σ2

22µ
2
max

1− λ

}
, (3.165)

where we already know that λ < 1. To guarantee ρ(G) < 1, it is enough to select the

step-size parameter small enough to satisfy

1− σ11µmax +
2σ2

21µ
2
max

1− λ
< 1, (3.166)

λ+
σ2

12

σ11

µmax +
2σ2

22µ
2
max

1− λ
< 1. (3.167)

To get a simpler upper bound, we transform (3.167) such that

λ+
σ2

12

σ11

µmax +
2σ2

22µ
2
max

1− λ

= λ+
2σ2

12

σ11

µmax−
(
σ2

12

σ11

µmax−
2σ2

22µ
2
max

1− λ

)
≤ λ+

2σ2
12

σ11

µmax, (3.168)

where the last inequality holds when

µmax ≤
σ2

12(1− λ)

2σ11σ2
22

. (3.169)

If, in addition, we let (3.168) be less than 1, which is equivalent to selecting

µmax ≤
σ11(1− λ)

2σ2
12

, (3.170)

then we guarantee equality (3.167). Combing (3.166), (3.169) and (3.170), we have

µmax ≤ min

{
σ11(1− λ)

2σ2
21

,
σ2

12(1− λ)

2σ11σ2
22

,
σ11(1− λ)

2σ2
12

}
(3.171)

This together with (3.148), i.e.

µmax < 1/δ (3.172)
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will guarantee ‖G‖1 to be less than 1. In fact, the upper bound in (3.171) can be further

simplified. From the definitions of σ11, σ12, σ21 and σ22, we have

σ11(1− λ)

2σ2
21

=
pkoτkoν(1− λ)

2c2‖XL‖2‖Td‖2δ2
, (3.173)

σ2
12(1− λ)

2σ11σ2
22

=
pmax(1− λ)

2pkoτkoν‖XL‖2‖Td‖2c2
, (3.174)

σ11(1− λ)

2σ2
12

=
pkoτkoν(1− λ)c2

2pmax‖XR‖2δ2
. (3.175)

First, notice that

σ11(1− λ)

2σ2
21

/σ2
12(1− λ)

2σ11σ2
22

=
(pkoτkoν)2

pmaxδ2
< 1 (3.176)

because pko < pmax, τko < 1 and ν < δ. Therefore, the inequality in (3.171) is equivalent to

µmax ≤ min

{
pkoτkoν(1− λ)

2c2‖XL‖2‖Td‖2δ2
,
pkoτkoν(1− λ)c2

2pmax‖XR‖2δ2

}
=
pkoτkoν(1− λ)

2δ2
min

{
1

‖XL‖2‖Td‖2c2
,

c2

pmax‖XR‖2

}
. (3.177)

It is observed that the constant value c affects the upper bound in (3.177). If c is sufficiently

large, then the first term in (3.177) dominates and µmax has a narrow feasible set. On the

other hand, if c is sufficiently small, then the second term dominates and µmax will also

have a narrow feasible set. To make the feasible set of µmax as large as possible, we should

optimize c to maximize

min
{ 1

‖XL‖2‖Td‖2c2
,

c2

pmax‖XR‖2

}
. (3.178)

Notice that the first term 1/(‖XL‖2‖Td‖2c2) is monotone decreasing with c2, while the second

term c2/‖XR‖2 is monotone increasing with c2. Therefore, when

1

‖XL‖2‖Td‖2c2
=

c2

pmax‖XR‖2
⇐⇒ c2 =

√
pmax‖XR‖
‖XL‖‖Td‖

, (3.179)

we get the maximum upper bound for µmax, i.e.

µmax ≤
pkoτkoν(1− λ)

2
√
pmax‖XL‖‖Td‖‖XR‖δ2

. (3.180)
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Next we compare the above upper bound with 1/δ. Recall that for any matrix A, its spectral

radius is smaller than its 2−induced norm so that

‖Td‖ ≥ ρ(Td)
(3.158)

= ρ(A) = 1. (3.181)

Moreover, recall from Lemma 3.3 that XLXR = I2(K−1), so that XLXR = XLXR ⊗ IM =

I2M(K−1), which implies that

‖XL‖‖XR‖ ≥ ‖XLXR‖ = 1. (3.182)

Using relations (3.181) and (3.182), and recalling that pko ≤ pmax <
√
pmax, τko < 1, 1−λ < 1

and ν < δ, we have

pkoτkoν(1− λ)

2
√
pmax‖XL‖‖Td‖‖XR‖δ2

≤ ν

δ2
<

δ

δ2
=

1

δ
. (3.183)

Therefore, the upper bounds in (3.171), (3.172) are determined by

µmax ≤
pkoτkoν(1− λ)

2
√
pmax‖XL‖‖Td‖‖XR‖δ2

. (3.184)

In other words, when µmax satisfies (3.184), ‖G‖1 will be guaranteed to be less than 1, i.e.,

‖G‖1 = max
{

1− σ11µmax +
2σ2

21µ
2
max

1− λ
,

λ+
σ2

12

σ11

µmax +
2σ2

22µ
2
max

1− λ

}
= max

{
1− pkoτkoνµmax +

2c2‖XL‖2‖Td‖2δ2µ2
max

1− λ

λ+
pmax‖XR‖2δ2

c2pkoτkoν
µmax+

2‖XL‖2‖Td‖2‖XR‖2δ2µ2
max

1− λ

}
(3.179)

= max
{

1− pkoτkoνµmax +
2
√
pmaxαdδ

2µ2
max

1− λ
,

λ+

√
pmaxαdδ

2µmax

pkoτkoν
+

2α2
dδ

2µ2
max

1− λ

}
< 1, (3.185)

where αd
∆
= ‖XL‖‖Td‖‖XR‖. Let

zi
∆
=

 ‖X̄ i‖2

‖X̌ i‖2

 � 0, (3.186)
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and note from (3.164) that

zi � Gzi−1. (3.187)

Computing the 1-norm of both sides gives

‖X̄ i‖2+‖X̌ i‖2=‖zi‖1 ≤ ‖G‖1‖zi−1‖1 = ρ(‖X̄ i−1‖2+‖X̌ i−1‖2),

≤ρi(‖X̄0‖2+‖X̌0‖2), (3.188)

where we define ρ
∆
= ‖G‖1. Inequality (3.188) is equivalent to∥∥∥∥∥∥

X̄ i
X̌ i

∥∥∥∥∥∥
2

≤ ρi

∥∥∥∥∥∥
X̄0

X̌0

∥∥∥∥∥∥
2

, (3.189)

By re-incorporating X̂ i = 0, relation (3.189) also implies that∥∥∥∥∥∥∥∥∥


X̄ i

X̂ i

X̌ i


∥∥∥∥∥∥∥∥∥

2

≤ ρi

∥∥∥∥∥∥∥∥∥


X̄0

X̂0

X̌0


∥∥∥∥∥∥∥∥∥

2

∆
= C0ρ

i. (3.190)

From (3.48) we conclude that

∥∥∥∥∥∥
W̃i

Ỹi

∥∥∥∥∥∥
2

≤ ‖X‖2

∥∥∥∥∥∥∥∥∥


X̄ i

X̂ i

X̌ i


∥∥∥∥∥∥∥∥∥

2

≤ Cρi, (3.191)

where the constant C = ‖X‖2C0.

3.C Proof of Theorem 3.2

We define

M′
i

∆
= µodiag{q1IM/z1,i(1), · · · , qKIM/zK,i(K)}. (3.192)

Substituting recursions (2.97) and (2.98) into expression (2.99) we obtain (compare with

(2.92)):

Wi=A
T[

2Wi−1−Wi−2−
(
M′

i∇J o(Wi−1)−M′
i−1∇J o(Wi−2)

)]
, (3.193)
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which can be rewritten into a primal-dual form (compare with (2.88)):
Wi = AT

(
Wi−1−M′

i∇J o(Wi−1)
)
−P−1VYi−1,

Yi = Yi−1 + VWi.

(3.194)

For the initialization, we set y−1 = 0 and W−1 to be any value, and hence for i = 0 we have
W0 = AT

(
W−1−M′

0∇J o(W−1)
)
,

Y0 = VW0.

(3.195)

Recursions (3.194) and (3.195) are very close to the standard exact diffusion recursions (2.88)

and (2.89), except that the step-size matrix M′
i is now changing with iteration i. Following

the arguments (3.14) – (3.16), we have
AT
W̃i =A

T
(
W̃i−1+M′

i∇J o(Wi−1)
)

+P−1VYi,

Ỹi = Ỹi−1 − VWi.

(3.196)

Subtracting optimality conditions (3.1)–(3.2) from (3.196) leads to
AT
W̃i =A

T
(
W̃i−1+M

[
∇J o(Wi−1)−∇J o(W?)

])
−P−1V Ỹi

+AT
(M′

i −M)∇J o(Wi−1),

Ỹi = Ỹi−1 + VW̃i.

(3.197)

Comparing recursions (3.197) and (3.17), it is observed that recursion (3.197) has an extra

“mismatch” term, AT
(M′

i −M)∇J o(Wi−1). This mismatch arises because we do not know

the perron vector p in advance. We need to run the power iteration to learn it. Intuitively,

since M′
i →M as i→∞, we can expect the mismatch term to vanish gradually. Let

ei
∆
= (M′

i −M)∇J o(Wi−1). (3.198)

By following arguments (3.18)–(3.23), recursion (3.197) is equivalent to AT P−1V

−V IMK

 W̃i

Ỹi


=

AT
(IMK −MHi−1) 0

0 IMK

W̃i−1

Ỹi−1

+

AT

0

 ei. (3.199)
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By following (3.24)–(3.28), recursion (3.199) can be rewritten as W̃i

Ỹi

 = (B − Ti−1)

 W̃i−1

Ỹi−1

+ B`ei (3.200)

where B and Ti are defined in (3.28), and

B` =

 AT

VAT

 (3.201)

Relation (3.200) is the error dynamics for the exact diffusion algorithm 1′. Comparing (3.200)

with (3.26), we find that algorithm 1′ is essentially the standard exact diffusion with error

perturbation. Using Lemma (3.3) and by following arguments from (3.40) to (3.60), we can

transform the error dynamics (3.200) intoX̄ i
X̌ i

=

IM−PTMHi−1I −1
c
PTMHi−1XR,u

−cXLTi−1R1 D1 −XLTi−1XR

X̄ i−1

X̌ i−1


+

 PT

cXLB`

ei. (3.202)

Next we analyze the convergence of the above recursion. From the first line we have

‖X̄ i‖2=
∥∥∥(IM−PTMHi−1I

)
X̄ i−1

−1

c
PTMHi−1XR,uX̌ i−1 + PT

ei

∥∥∥∥2

(3.203)

≤ 1

1− t

∥∥∥IM−PTMHi−1I
∥∥∥2

‖X̄ i−1‖2

+
2

t

1

c2
‖PTMHi−1XR,u‖2‖X̌ i−1‖2 +

2

t
‖PT‖2‖ei‖2

≤(1−σ11µmax)‖X̄ i−1‖2+
σ2

12µmax

σ11

‖X̌ i−1‖2 +
2‖ei‖2

σ11µmax

, (3.204)
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where the last inequality follows the arguments in (3.143)–(3.154). From the second line of

recursion (3.202), we have

‖X̌ i‖2

=‖D1X̌ i−1−XLTi−1(cR1X̄ i−1 + XRX̌ i−1) + cXLB`ei‖2

≤‖D1‖2

t
‖X̌ i−1‖2+

2c2

1− t
‖XLTi−1R1‖2‖X̄ i−1‖2

+
2

1− t
‖XLTi−1XR‖2‖X̌ i−1‖2 +

2c2

1− t
‖XLB`‖2‖ei‖2

≤
(
λ+

2σ2
22µ

2
max

1− λ

)
‖X̌ i−1‖2+

2σ2
21µ

2
max

1− λ
‖X̄ i−1‖2+

2c2d‖ei‖2

1− λ
, (3.205)

where d
∆
= ‖XLB`‖2 is independent of iteration i. Moreover, the last inequality holds

because of arguments in (3.155)–(3.163). Combining (3.204) and (3.205), we arrive at the

inequality recursion (compare with (3.164)):‖X̄ i‖2

‖X̌ i‖2

 �
1− σ11µmax

σ2
12

σ11
µmax

2σ2
21µ

2
max

1−λ λ+
2σ2

22µ
2
max

1−λ


︸ ︷︷ ︸

∆
= G

‖X̄ i−1‖2

‖X̌ i−1‖2



+

 2
σ11µmax

2c2d
1−λ

 ‖ei‖2. (3.206)

Next let us bound the mismatch term ‖ei‖2. From (3.198) we have

ei = (M′
i −M) (∇J o(Wi−1)−∇J o(W?))

+ (M′
i −M)∇J o(W?)

(3.21)
= −(M′

i −M)Hi−1W̃i−1 + (M′
i −M)∇J o(W?). (3.207)

which implies that

‖ei‖2 ≤ 2δ2‖M′
i −M‖2‖W̃i−1‖2 + 2‖M′

i −M‖2g, (3.208)

where g
∆
= ‖J o(W?)‖2 is a constant independent of iteration. Recall that M = M ⊗ IM

and M′
i = M ′

i ⊗ IM where

M = diag{µ1, µ2, · · · , µK},

M ′
i = diag

{
q1µo
z1,i(1)

, · · · , qKµo
zK,i(K)

}
. (3.209)
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Using the relation µk = qkµo/pk (see (2.9)), we have

M −M ′
i

=diag

{
q1µo
p1

(
1− p1

z1,i(1)

)
, · · · , qKµo

pK

(
1− pK

zK,i(K)

)}
=diag

{
µ1

(
1− p1

z1,i(1)

)
, · · · , µK

(
1− pK

zK,i(K)

)}
=µmaxdiag

{
τ1

(
1− p1

z1,i(1)

)
, · · · , τK

(
1− pK

zK,i(K)

)}
, (3.210)

where τk = µk/µmax ≤ 1.

Now we examine the convergence of 1− pk/zk,i(k). From the discussion in Policy 5 form

from Chapter 2, it is known that Zi generated from the power iteration (see equation (2.36))

will converge to [(1K ⊗ IK)(pT ⊗ IK)]Z−1. Therefore,

Zi − [(1K ⊗ IK)(pT ⊗ IK)]Z−1

=
[(
AT
)i+1 − (1K ⊗ IK)(pT ⊗ IK)

]
Z−1

=
{[(

AT
)i+1 − 1Kp

T
]
⊗ IK

}
z−1

=
{[
AT − 1Kp

T
]i+1 ⊗ IK

}
z−1. (3.211)

Recall from the discussion in Chapter 2 that

[(1K ⊗ IK)(pT ⊗ IK)]Z−1 = col{p, · · · , p} ∈ RK2

. (3.212)

As a result,

|zk,i(k)− pk|2 ≤ ‖Zi − [(1K ⊗ IK)(pT ⊗ IK)]Z−1‖2

≤ ‖AT − 1Kp
T‖2(i+1)‖Z−1‖2

= h · ρ2(i+1)
A , ∀k = 1, · · · , N. (3.213)

where h
∆
= ‖Z−1‖2 is a constant, and ρA is the second largest eigenvalue magnitude of

matrix A, i.e., ρA = max{|λ2(A)|, |λK(A)|}. Since A is locally balanced, we know A is

diagonalizable with real eigenvalue in (−1, 1], and it has a single eigenvalue at 1 (see Table

2.1), we conclude that ρA < 1. Also, recall from the discussion at the end of Policy 5 in
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Chapter 2 that zk,i(k) > 0 is guaranteed when ākk > 0. Let

αk
∆
= min

i
{zk,i(k)} > 0, ∀ k = 1, · · · , N (3.214)

Combining (3.213) and (3.214), it holds that for k = 1, · · · , N ,(
1− pk

zk,i(k)

)2

≤ h

αk
ρ

2(i+1)
A = hkρ

2(i+1)
A , (3.215)

where we define hk
∆
= h/αk. Substituting (3.215) into (3.210), it holds that

‖M′
i −M‖2 = ‖M ′

i −M‖2 ≤ µ2
maxh

′ρ
2(i+1)
A , (3.216)

where h′
∆
= maxk{τ 2

khk} is a constant independent of iterations. Substituting (3.216) into

(3.208), we have

‖ei‖2 ≤ 2δ2‖M′
i −M‖2‖W̃i−1‖2 + 2‖M′

i −M‖2g

≤ 2δ2µ2
maxh

′ρ
2(i+1)
A ‖W̃i−1‖2 + 2µ2

maxh
′gρ

2(i+1)
A

≤ 2δ2µ2
maxh

′ρ
2(i+1)
A

(
‖W̃i−1‖2 + ‖Ỹi−1‖2

)
+ 2µ2

maxh
′gρ

2(i+1)
A . (3.217)

Recall from (3.48) that

 W̃i

Ỹi

 = X ′


X̄ i

X̂ i

X̌ i

 . (3.218)

We therefore have

‖W̃i‖2 + ‖Ỹi‖2 ≤ ‖X ′‖2
(
‖X̄ i‖2 + ‖X̂ i‖2 + ‖X̌ i‖2

)
= ‖X ′‖2

(
‖X̄ i‖2 + ‖X̌ i‖2

)
, (3.219)

where the last equality holds because X̂ i = 0 for i = 0, 1, · · · (see (3.59)). Substituting

(3.219) into (3.217), we have

‖ei‖2 ≤ 2δ2µ2
maxh

′‖X ′‖2ρ
2(i+1)
A

(
‖X̄ i−1‖2+‖X̌ i−1‖2

)
+ 2µ2

maxh
′gρ

2(i+1)
A (3.220)
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Substituting (3.220) into (3.206), we have‖X̄ i‖2

‖X̌ i‖2

�
1−σ11µmax +b′µmaxρ

2(i+1)
A

σ2
12

σ11
µmax +b′µmaxρ

2(i+1)
A

2σ2
21µ

2
max

1−λ + c′µ2
maxρ

2(i+1)
A λ+

2σ2
22µ

2
max

1−λ +c′µ2
maxρ

2(i+1)
A


·

‖X̄ i−1‖2

‖X̌ i−1‖2

+

 d′µmaxρ
2(i+1)
A

e′µ2
maxρ

2(i+1)
A

 , (3.221)

where b′, c′, d′, e′ are constants defined as

b′
∆
= 4δ2h′‖X ′‖2/σ11, c′

∆
= 4δ2h′‖X ′‖2c2d/(1−λ), (3.222)

d′
∆
= 4h′g/σ11, e′

∆
= 4h′gc2d/(1− λ). (3.223)

These constants are independent of iterations. It can be verified that when iteration i is

large enough such that

ρ
2(i+1)
A ≤ min

{
σ11

2b′
,
σ2

12

σ11b′
,

σ2
21

(1− λ)c′
,

σ2
22

(1− λ)c′

}
, (3.224)

the inequality (3.221) becomes‖X̄ i‖2

‖X̌ i‖2

 �
1− σ11µmax

2

2σ2
12

σ11
µmax

3σ2
21µ

2
max

1−λ λ+
3σ2

22µ
2
max

1−λ


︸ ︷︷ ︸

G′

‖X̄ i−1‖2

‖X̌ i−1‖2



+

 d′µmax

e′µ2
max

ρ2(i+1)
A , (3.225)

where we can prove ρ
∆
= ‖G′‖1 = 1−O(µmax) < 1 by following arguments (3.185). Inequality

(3.225) further implies that

(
‖X̄ i‖2+‖X̌ i‖2

)
≤ ρ

(
‖X̄ i−1‖2+‖X̌ i−1‖2

)
+ f ′ρ

2(i+1)
A (3.226)

where f ′
∆
= d′µmax + e′µ2

max > 0. Let β = max{ρ, ρA} < 1. Inequality (3.226) becomes

(
‖X̄ i‖2+‖X̌ i‖2

)
≤ β

(
‖X̄ i−1‖2+‖X̌ i−1‖2

)
+f ′β2(i+1). (3.227)
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By adding γf ′β2i+4, where γ can be any positive constant to be chosen, to both sides of the

above inequality, we get

(
‖X̄ i‖2 + ‖X̌ i‖2

)
+ γf ′β2i+4

≤ β
(
‖X̄ i−1‖2 + ‖X̌ i−1‖2

)
+ f ′β2i+2 + γf ′β2i+4

= β

(
‖X̄ i−1‖2 + ‖X̌ i−1‖2 +

1 + γβ2

β
f ′β2i+2

)
(3.228)

By setting

γ =
1

β − β2
> 0, (3.229)

it can be verified that

γ =
1 + γβ2

β
. (3.230)

Substituting (3.230) into (3.228), we have

(
‖X̄ i‖2 + ‖X̌ i‖2

)
+ γf ′β2(i+2)

≤ β
(
‖X̄ i−1‖2 + ‖X̌ i−1‖2 + γf ′β2(i+1)

)
. (3.231)

As a result, the quantity (‖X̄ i‖2 + ‖X̌ i‖2) + γf ′β2(i+2) converges to 0 linearly. Since f ′ >

0, γ > 0 and β > 0, we can conclude that ‖X̄ i‖2 + ‖X̌ i‖2, and hence ‖W̃i‖2 + ‖Ỹi‖2, converges

to 0 linearly.

3.D Error Recursion for EXTRA Consensus

Multiplying the second recursion of (3.66) by V gives:

VYei = VYei−1 +
P − PA

2
We
i . (3.232)

Substituting into the first recursion of (3.66) gives

AWe
i =AWe

i−1−µ∇J o(We
i−1)−P−1VYei , (3.233)
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From (3.233) and the second recursion in (3.66) we conclude thatAW̃
e
i =AW̃e

i−1+µ∇J o(We
i−1)+P−1VYei ,

Ỹ
e
i = Ỹ

e
i−1 − VWe

i .
(3.234)

Subtracting the optimality condition (3.68)–(3.69) from (3.234) leads toAW̃
e
i = (A−µHi−1)W̃e

i−1−P−1V Ỹei ,

Ỹ
e
i = Ỹ

e
i−1 + VW̃e

i .
(3.235)

which is also equivalent to A P−1V

−V IMK

W̃e
i

Ỹ
e
i

=

A− µHi−1 0

0 IMK

W̃e
i−1

Ỹ
e
i−1

 . (3.236)

Using relations A = IMK+A
2

and V2 = P−PA
2

, it is easy to verify that A P−1V

−V IMK

−1

=

 IMK −P−1V

V IMK − VP−1V

 . (3.237)

Substituting (3.237) into (3.236) gives (3.71)–(3.72).

3.E Error Recursion in Transformed Domain

Multiplying both sides of (3.71) by (X ′)−1:

(X ′)−1

 W̃e
i

Ỹ
e
i

 = [(X ′)−1(Be − T ei−1)X ′](X ′)−1

 W̃e
i−1

Ỹ
e
i−1

 (3.238)

leads to 
X̄ei

X̂
e
i

X̌ei

=



IM 0 0

0 IM 0

0 0 D1

− Sei−1



X̄ei−1

X̂
e
i−1

X̌ei−1

 , (3.239)

where we defined 
X̄ei

X̂
e
i

X̌ei

 ∆
= (X ′)−1

 W̃e
i

Ỹ
e
i

 =


LT

1

LT
2

XL


 W̃e

i

Ỹ
e
i

 , (3.240)
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and

Sei−1
∆
= (X ′)−1T ei−1X ′

=


LT

1 T ei−1R1 LT
1 T ei−1R2

1
c
LT

1 T ei−1XR

LT
2 T ei−1R1 LT

2 T ei−1R2
1
c
LT

2 T ei−1XR

cXLT ei−1R1 cXLT ei−1R2 XLT ei−1XR

 . (3.241)

To compute each entry of Sei−1, we let

XR =

 XR,u
XR,d

 , (3.242)

where XR,u ∈ RKM×2(K−1)M and XR,d ∈ RKM×2(K−1)M . For the first line of Sei−1, it can be

verified that

LT
1 T ei−1R1 =µPTHi−1I, (3.243)

LT
1 T ei−1R2 =0, (3.244)

1

c
LT

1 T ei−1XR =
µ

c
PTHi−1XR,u. (3.245)

Likewise, noting that

LT
2 T ei−1 =

[
0 1

K
IT
] µHi−1 0

µVHi−1 0

 (2.67)
=
[
0 0

]
, (3.246)

we find for the second line of Sei−1 that

cLT
2 T ei−1R1 = 0, cLT

2 T ei−1R2 = 0, LT
2 T ei−1XR = 0. (3.247)

Substituting (3.241), (3.243) and (3.247) into (3.239), we rewrite (3.239) as
X̄ei

X̂
e
i

X̌ei

=


IM−µP

THi−1I 0 −µcP
THi−1XR,u

0 IM 0

−cXLT ei−1R1 −cXLT ei−1R2 D1 −XLT ei−1XR



X̄ei−1

X̂
e
i−1

X̌ei−1

 (3.248)

From the second line of (3.248), we get

X̂
e
i = X̂

e
i−1. (3.249)
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As a result, X̂ei will converge to 0 only if the initial value X̂e0 = 0. To verify that, from the

definition of L2 in (3.40) and (3.240) we have

X̂
e
0 = LT

2

 W̃e
0

Ỹ
e
0

 =
1

K
ITỸe0

(3.70)
=

1

K
IT(Y?o − Ye0)

(3.67)
=

1

K
IT(Y?o − VWe

0). (3.250)

Recall that Y?o lies in the R(V), so that Y?o − VW0 also lies in R(V). Recall further from

Lemma 2.4 that ITV = 0, and conclude that X̂e0 = 0. Therefore, from (3.249) we have

X̂
e
i = 0, ∀i ≥ 0 (3.251)

With (3.251), recursion (3.248) is equivalent to (3.73).

3.F Proof of Theorem 3.3

From the first line of recursion (3.73), we have

X̄ei =
(
IM−µP

THi−1I
)
X̄ei−1−

µ

c
PTHi−1XR,uX̌ei−1. (3.252)

Squaring both sides and using Jensen’s inequality gives

‖X̄ei‖2 =
∥∥∥(IM−µPTHi−1I

)
X̄ei−1 −

µ

c
PTHi−1XR,uX̌ei−1

∥∥∥2

≤ 1

1− t

∥∥∥IM−µPTHi−1I
∥∥∥2

‖X̄ei−1‖2

+
1

tc2
‖µPTHi−1XR,u‖2‖X̌ei−1‖2 (3.253)

for any t ∈ (0, 1). For the term µPTHi−1I, we have

µPTHi−1I = µ
K∑
k=1

pkHk,i−1

(3.31)

≥ µ

K
νIM

∆
= σe11µIM , (3.254)

where σ11 = ν/N . Similarly, we can obtain the upper bound

µPTHi−1I = µ

K∑
k=1

pkHk,i−1

(3.31)

≤

(
K∑
k=1

pk

)
δµIM

(a)
= δµIM , (3.255)
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where equality (a) holds because
∑K

k=1 pk = 1. It is obvious that δ > σe11. As a result, we

have

(1−δµ)IM≤IM−µP
THi−1I ≤ (1−σe11µ)IM , (3.256)

which implies that when the step-size is sufficiently small to satisfy

µ < 1/δ, (3.257)

it will hold that ∥∥∥IM−µPTHi−1I
∥∥∥2

≤ (1− σe11µmax)2. (3.258)

On the other hand, we have

1

c2
‖µPTHi−1XR,u‖2

≤ µ2

c2
‖PT‖2‖Hi−1‖2‖XR,u‖2

≤ 1

c2

(
K∑
k=1

p2
k

)
δ2‖XR,u‖2µ2

=
δ2

c2K
‖XR,u‖2µ2

(3.152)

≤ δ2

c2K
‖XR‖2µ2 ∆

= (σe12)2µ2, (3.259)

where σe12 = δ‖XR‖/(c
√
K) and the “=” sign in the third line holds because pk = 1/N .

Notice that σe12 is independent of µ. Substituting (3.258) and (3.259) into (3.253), we get

‖X̄ei‖2

≤ 1

1− t
(1− σe11µ)2‖X̄ei−1‖2 +

1

t
(σe12)2µ2‖X̌ei−1‖2

= (1− σe11µ)‖X̄ei−1‖2 +
(σe12)2

σe11

µ‖X̌ei−1‖2, (3.260)

where we are selecting t = σe11µ.

Next we check the second line of recursion (3.73), which amounts to

X̌ei = − cXLT ei−1R1X̄
e
i−1 + (D1 −XLT ei−1XR)X̌ei−1

= D1X̌
e
i−1 −XLT ei−1(cR1X̄

e
i−1 + XRX̌ei−1). (3.261)
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Squaring both sides of (3.261), and using Jensen’s inequality again,

‖X̌ei‖2 =‖D1X̌
e
i−1 −XLT ei−1(cR1X̄

e
i−1 + XRX̌ei−1)‖2

≤‖D1‖2

t
‖X̌ei−1‖2+

1

1− t
‖XLT ei−1(cR1X̄

e
i−1 + XRX̌ei−1)‖2

≤‖D1‖2

t
‖X̌ei−1‖2 +

2c2

1− t
‖XLT ei−1R1‖2‖X̄ei−1‖2

+
2

1− t
‖XLT ei−1XR‖2‖X̌ei−1‖2. (3.262)

where t ∈ (0, 1). From Lemma 3.3 we have that λ
∆
= ‖D1‖ =

√
λ2(Ã) < 1. By setting

t = λ, we reach

‖X̌ei‖2 ≤ λ‖X̌ei−1‖2 +
2c2

1− λ
‖XLT ei−1R1‖2‖X̄ei−1‖2

+
2

1− λ
‖XLT ei−1XR‖2‖X̌2

i−1‖2. (3.263)

From the definition of T ei−1 in (3.72), we have

T ei−1=µ

 Hi−1 0

VHi−1 0

=µ

IMK 0

V 0


︸ ︷︷ ︸

∆
= Te

Hi−1 0

0 Hi−1

 , (3.264)

which implies that

‖T ei−1‖2 ≤ µ2‖Te‖2

(
max

1≤k≤K
‖Hk,i−1‖2

)
≤ ‖Te‖2δ2µ2. (3.265)

We also emphasize that ‖Te‖2 is independent of µ. With inequality (3.265), we further have

c2‖XLT ei−1R1‖2 ≤ c2µ2‖XL‖2‖Te‖2‖R1‖2δ2

∆
= (σe21)2µ2 (3.266)

‖XLT ei−1XR‖2 ≤ µ2‖XL‖2‖Te‖2‖XR‖2δ2

∆
= (σe22)2µ2, (3.267)

notice that ‖R1‖ = 1, σe21 and σe22 are defined as

σe21 = c‖XL‖‖Te‖δ, σe22 = ‖XL‖‖Te‖‖XR‖δ. (3.268)
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With (3.266) and (3.267), inequality (3.263) becomes

‖X̌ei‖2 ≤
(
λ+

2(σe22)2µ2

1− λ

)
‖X̌ei−1‖2 +

2(σe21)2µ2

1− λ
‖X̄ei−1‖2. (3.269)

Combining (3.260) and (3.269), we arrive at the inequality recursion:‖X̄ei‖2

‖X̌ei‖2

 �
1− σe11µ

(σe
12)2

σe
11
µ

2(σe
21)2µ2

1−λ λ+
2(σe

22)2µ2

1−λ


︸ ︷︷ ︸

∆
= Ge

‖X̄ei−1‖2

‖X̌ei−1‖2

 . (3.270)

From this point onwards, we follow exactly the same argument as in (3.166)–(3.191) to arrive

at the conclusion in Theorem 3.3.

3.G Proof of Lemma 3.5

It is observed from expression (3.107) for Ed that one of the eigenvalues is 1−µσ2. It is easy

to verify that when µ satisfies (3.117), it holds that −1 < 1 − µσ2 < 1. Next, we check the

other two eigenvalues. Let θ denote a generic eigenvalue of Ed. From the right-bottom 2× 2

block of Ed in (3.107), we know that θ will satisfy the following characteristic polynomial

θ2 − (2− µσ2)a θ + (1− µσ2)a = 0, (3.271)

where a ∈ (0, 1) is a combination weight (see the expression for A in (3.99)). Solving (3.271),

the two roots are

θ1,2 =
(2−µσ2)a±

√
(2−µσ2)2a2−4(1−µσ2)a

2
. (3.272)

Let

∆ = (2−µσ2)2a2−4(1−µσ2)a. (3.273)

Based on the value of µσ2 and a, ∆ can be negative, zero, or positive. Recall from (3.117)

that 0 < µσ2 < 2. In that case, over the smaller interval 1 ≤ µσ2 < 2, it holds that

(1−µσ2) ≥ 0 and, from (3.273), ∆ > 0. For this reason, as indicated in cases 1 and 2 below,

the scenarios corresponding to ∆ < 0 or ∆ = 0 can only occur over 0 < µσ2 < 1:

117



Case 1: ∆ < 0. It can be verified that when

1− µσ2 > 0, and a <
4(1− µσ2)

(2− µσ2)2
, (3.274)

it holds that ∆ < 0. In this situation, both θ1 and θ2 are imaginary numbers with magnitude

|θ1|= |θ2|=
1

4

(
(2−µσ2)2a2+(−∆)

)
=(1−µσ2)a < 1, (3.275)

where the last inequality holds because 0 < µσ2 < 1 (see (3.117) and (3.274)) and a ∈ (0, 1).

Case 2: ∆ = 0. It can be verified that when

1− µσ2 > 0, and a =
4(1− µσ2)

(2− µσ2)2
, (3.276)

it holds that ∆ = 0. In this situation, from (3.272) we have

θ1 = θ2 =
(2− µσ2)a

2
< 1, (3.277)

where the last inequality holds because 0 < µσ2 < 1 (see (3.117) and (3.274)) and a ∈ (0, 1).

Observe further that the upper bound on a in (3.274) is positive and smaller than one when

0 < µσ2 < 1.

Case 3: ∆ > 0. It can be verified that when

1− µσ2 > 0, and a >
4(1− µσ2)

(2− µσ2)2
, (3.278)

or when 1 ≤ µσ2 < 2, it holds that ∆ > 0. In this situation, θ is real and

θ1 =
(2−µσ2)a+

√
(2−µσ2)2a2−4(1−µσ2)a

2
, (3.279)

θ2 =
(2−µσ2)a−

√
(2−µσ2)2a2−4(1−µσ2)a

2
. (3.280)

Moreover, since (2−µσ2)a > 0, we have

|θ2| < |θ1| = θ1. (3.281)

We regard θ1 as a function of a, i.e., θ1 = f(a). It holds that f(a) is monotone increasing

with a. To prove it, note that

f ′(a) =
2− µσ2

2
+

2(2− µσ2)a− 4(1− µσ2)

4
√

∆
. (3.282)
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Now since

∆ = (2−µσ2)2a2−4(1−µσ2)a > 0

⇐⇒ (2−µσ2)2a > 4(1−µσ2) (because a > 0)

=⇒ 2(2− µσ2)a > 4(1−µσ2), (3.283)

we conclude that f ′(a) > 0. Since a < 1, it follows that

θ1 = f(a) < f(1) = 1. (3.284)

In summary, when µ satisfies (3.117), for any a ∈ (0, 1) it holds that all three eigenvalues of

Ed stay within the unit-circle, which implies that ρ(Ed) < 1, and also ρ(Ed) < 1. As a result,

Ži in (3.116) will converge to 0. Since Ẑi = 0 for any i, we conclude that Z̃i converges to 0.

3.H Proof of Lemma 3.6

Similar to the arguments used to establish Lemma 3.4 and (3.110)–(3.116), the EXTRA

error recursion (3.102) can also be divided into two separate recursions

Ẑ
e
i = Ẑ

e
i−1, and Žei = EeŽei−1, (3.285)

where Ee = Ee ⊗ IM , and

Ee =


1− µeσ2 0 0

0 a− µeσ2 −
√

2− 2a

0 (a− µeσ2)
√

1−a
2

a

 . (3.286)

Also, since both Ye0 and Y?o lie in the range(V), it can be verified that Ẑe0 = 0. Therefore,

we only focus on the convergence of Žei . Let θe denote a generic eigenvalue of Ee. From

the right-bottom 2 × 2 block of Ee in (3.286), we know that θe will satisfy the following

characteristic polynomial

(θe)2 − (2a− µeσ2) (θe) + (a− µeσ2) = 0. (3.287)
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Solving it, we have

θe1,2 =
2a− µeσ2 ±

√
(2a− µeσ2)2 − 4(a− µeσ2)

2
. (3.288)

Now we suppose µeσ2 ≥ a+ 1 as noted in (3.118), it then follows that

a− µeσ2 ≤ −1 (3.289)

and hence both θe1 and θe2 are real numbers with

θe1 =
2a−µeσ2+

√
(2a− µeσ2)2+4(µeσ2 − a)

2
, (3.290)

θe2 =
2a−µeσ2−

√
(2a− µeσ2)2+4(µeσ2 − a)

2
. (3.291)

Moreover, with µeσ2 ≥ a+ 1 we further have

2a− µeσ2 ≤ a− 1 < 0, (3.292)

which implies that

|θe2| =
µeσ2−2a+

√
(2a− µeσ2)2+4(µeσ2 − a)

2
> 1, (3.293)

where the last inequality holds because of (3.289) and (3.292). Therefore, when µe is chosen

such that µeσ2 ≥ 1+a, there always exists one eigenvalue θe such that |θe| > 1 which implies

that Žei diverges, and so does Z̃ei .
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CHAPTER 4

Exact Diffusion For Distributed Adaptation and

Online Learning

4.1 Introduction

This chapter considers stochastic optimization problems where a collection of K networked

agents work cooperatively to solve an aggregate optimization problem of the form:

w? = arg min
w∈RM

K∑
k=1

Jk(w), where Jk(w) = EQ(w;xk) (4.1)

The local risk function Jk(w) held by agent k is assumed to be differentiable and ν-strongly

convex, and it is constructed as the expectation of some loss function Q(w;xk). The random

variable xk represents the streaming data received by agent k, and the expectation in Jk(w)

is over the distribution of xk. While the cost functions Jk(w) may have different local

minimizers, all agents seek to determine the common global solution w? under the constraint

that agents can only communicate with their direct neighbors. Problem (4.1) can find

applications in a wide range of areas including wireless sensor networks [20, 21], distributed

statistical learning [13], and distributed adaptation and learning [1, 4, 14].

There are several techniques that can be used to solve problems of the type (4.1) such

as diffusion [1, 4] and consensus (also known as decentralized gradient descent) [5, 9, 141,

142] strategies. The latter class of strategies has been shown to be particularly well-suited

for stochastic and adaptive learning scenarios from streaming data due to their enhanced

stability range over other methods, as well as their ability to track drifts in the underlying

models and statistics [1, 4]. We therefore focus on this class of algorithms since we are

mainly interested in methods that are able to learn and adapt from data. For example, the
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adapt-then-combine (ATC) formulation [1, 4] of diffusion takes the following form:

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,i), (Adapt) (4.2)

wk,i =
∑
`∈Nk

a`kψ`,i, (Combine) (4.3)

where the subscript k denotes the agent index and i denotes the iteration index. The variable

xk,i is the data realization observed by agent k at iteration i. The nonnegative scalar a`k

is the weight used by agent k to scale information received from agent `, Nk is the set of

neighbors of agent k (including k itself), and it is required that
∑

`∈Nk
a`k = 1 for any k.

In (4.2)–(4.3), variable ψk,i is an intermediate estimate for w? at agent k, while wk,i is the

updated estimate. Note that step (4.2) uses the gradient of the loss function, Q(·), rather

than the gradient of its expected value Jk(w). This is because the statistical properties of

the data are not known beforehand. If Jk(w) were known, then we could use its gradient

vector in (4.2). In that case, we would refer to the resulting method as a deterministic

rather than stochastic solution. Throughout this chapter, we employ a constant step-size µ

to enable continuous adaptation and learning in response to drifts of the global minimizer

due to changes in the statistical properties of the data. The adaptation and tracking abilities

are crucial in many applications, as already explained in [1].

Previous studies have shown that both consensus and diffusion methods are able to solve

problems of the type (4.1) well for sufficiently small step-sizes. That is, the squared error

E‖w̃k,i‖2 approaches a small neighborhood around zero for all agents, where w̃k,i = w?−wk,i.

These methods do not converge to the exact minimizer w? of (4.1) but rather approach a

small neighborhood around w? with a small steady-state bias under both stochastic and deter-

ministic optimization scenarios. For example, in deterministic settings where the individual

costs Jk(w) are known, it is shown in [1,14] that the squared errors ‖w̃k,i‖2 generated by the

diffusion iterates converge to a O(µ2)-neighborhood. Note that, in the deterministic case,

this inherent limiting bias is not due to any gradient noise arising from stochastic approxi-

mations; it is instead due to the update structure in diffusion and consensus implementations

— see the explanations in Sec. III.B in [15]. For stochastic optimization problems, on the

other hand, the size of the bias is O(µ) rather than O(µ2) because of the gradient noise.
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When high precision is desired, especially in deterministic optimization problems, it would

be preferable to remove the O(µ2) bias altogether. Motivated by these considerations, the

works [15, 16] showed that a simple correction step inserted between the adaptation and

combination steps (4.2) and (4.3) is sufficient to ensure exact convergence of the algorithm

to w? by all agents — see expression (4.10) further ahead. In this way, the O(µ2) bias is

removed completely, and the convergence rate is also improved.

While the correction of the second order O(µ2) bias is critical in the deterministic setting,

it is not clear whether it can help in the stochastic and adaptive settings. This motivates

us to study exact diffusion under these settings in this paper and compare against standard

diffusion. To this end, we carry out a higher-order analysis of the error dynamics for both

methods, and derive their steady-state performance as an expansion in the first two powers

of the step-size parameter, i.e., µ and µ2. In contrast, traditional analysis for diffusion and

consensus focus mainly on performance expressions that depend on a first-order expansion

in µ [1, 4]. Our analysis will reveal conditions under which bias correction improves the

performance of diffusion.

4.1.1 Main Results

In particular, we will prove in Theorem 4.1, that, with small step-sizes, the exact diffusion

strategy will converge exponentially fast, at a rate ρ = 1−O(µν), to a neighborhood around

w? where ν is the strong convexity constant. Moreover, the size of the neighborhood will be

characterized as

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2
ed = O

(
µσ2

K
+
µ2σ2

1− λ

)
(4.4)

where the quantity σ2 is a measure of the variance of the gradient noise, and λ ∈ (0, 1) is

the second largest magnitude of the eigenvalues of the combination matrix A = [a`k] which

reflects the level of network connectivity. The subscript ed indicates that wk,i is generated

by the exact diffusion method. In comparison, we will show that the traditional diffusion
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strategy converges at a similar rate albeit to the following neighborhood:

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2
d =O

(
µσ2

K
+
µ2λ2σ2

1− λ
+
µ2λ2b2

(1− λ)2

)
(4.5)

where the subscript d indicates that wk,i is generated by the diffusion method (4.2)–(4.3),

and

b2 = (1/K)
K∑
k=1

‖∇Jk(w?)‖2 (4.6)

is a bias constant independent of the gradient noise. Observe that the expressions on the

right-hand side of (4.4) and (4.5) depend on µ and µ2. These are therefore more refined

performance expressions, which are more challenging to derive than earlier expressions that

just depend on µ (see [1,4,5,9,14,141]). The terms that depend on µ2 in (4.4) and (4.5) help

reveal the following important insights that arise from using the exact diffusion strategy.

First, it is obvious that diffusion suffers from an additional bias term µ2λ2b2/(1 − λ)2,

which is independent of the gradient noise σ2, while exact diffusion removes it completely.

In the deterministic setting when the gradient noise σ2 = 0, it is observed from (4.4) and

(4.5) that diffusion converges to an O(µ2)-neighborhood around the global solution w? while

exact diffusion converges exactly to w?. This result is consistent with [1, 14,16].

Second, it is further observed that the performance of diffusion and exact diffusion differs

only on the O(µ2) terms inside (4.4) and (4.5). When the step-size is moderately small so

that these O(µ2) terms are non-negligible, the superiority of exact diffusion or diffusion will

highly depend on the network topology. In particular, when the network topology is sparsely-

connected (in which case λ approaches 1), the bias term µ2λ2b2/(1−λ)2 will be significantly

large and the correction of this term will greatly improve the steady-state performance. It

should be emphasized that the bias-correction property of exact diffusion is particularly

critical for large-scale linear or cyclic networks where 1 − λ = O(1/K2) and grid networks

where 1 − λ = O(1/K) since the bias term will grow rapidly on these network topologies

as the size K increases. On the other hand, when the network is well-connected (in which

case λ approaches 0), one can find that the O(µ2) terms in diffusion (4.5) diminishes while

the O(µ2) term in exact diffusion (4.4) still exists. This implies that for well connected
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Figure 4.1: Performance of Exact Diffusion and Diffusion under different scenarios

networks and moderatly-small step-sizes, diffusion will perform better than exact diffusion.

The comparison between (4.4) and (4.5) provides guidelines on the proper choice of diffusion

or exact diffusion in various application scenarios.

Third, the difference between exact diffusion and diffusion will vanish as the step-size µ

approaches 0. This is because O(µσ2/K) will dominate the O(µ2) terms when µ is sufficiently

small. The “sufficiently” small µ can be roughly characterized as µ ≤ c(1− λ)2+x, where x

is any positive constant. This shows that diffusion and exact diffusion have the same upper

bound for the steady-state performance (ignoring higher order step-sizes). However, sharing

the same upper bound may not necessarily imply both algorithms perform the same. To

more accurately characterize the steady-state performance of diffusion and exact diffusion

when µ is sufficiently small, we shall establish the precise MSD expression defined as [1]

MSD = µ

(
lim
µ→0

lim sup
i→∞

1

µK

K∑
k=1

E‖w̃k,i‖2

)
(4.7)

for exact diffusion and find that it matches that of diffusion:

MSDed=MSDd=
µ

2K
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

) , (4.8)

where Hk = ∇2Jk(w
?) and Sk is the covariance matrix of gradient noise. Obviously, the

MSD expression (4.7) is exact to first order in µ and ignores all higher-order terms. Equality
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(4.8) states that when µ is sufficiently small, both diffusion and exact diffusion perform

exactly the same during the steady-state stage. The main results derived in this chapter are

summarized in Fig. 4.1 where we omit constant K for clarity.

4.1.2 Related work

In addition to exact diffusion, there exist some other useful bias-correction methods such

as EXTRA [75, 91], gradient-tracking methods [93, 97, 98, 143, 144], Aug-DGM [95, 96] and

NIDS [106]. All these methods converge linearly to the exact solution under the deter-

ministic setting, but their performance (especially their advantage over diffusion or con-

sensus) in the stochastic and adaptive settings remains unexplored and/or unclear. The

recent work [2] studies the gradient-tracking method (referred to as DIGing in [93]) under

the stochastic setting and shows that it can outperform the decentralized gradient descent

(DGD) [5, 9] via numerical simulations. However, it does not analytically discuss when and

why bias-correction methods can outperform consensus. Similarly, the work [3] also studies

the stochastic gradient-tracking method [97,98] and shows that it converges linearly around

a neighborhood of the minimizer. No comparison with diffusion or consensus is presented

in [3]. Another useful work is [145], which establishes the convergence property of exact

diffusion with decaying step-sizes in the stochastic and non-convex setting. It proves ex-

act diffusion is less sensitive to the data variance across the network than diffusion and is

therefore endowed with a better convergence rate when the data variance is large. Different

from [145], our bound in (4.5) shows that even small data variances (i.e., b2) can be signifi-

cantly amplified by a bad network connectivity – see the example graph topologies discussed

in Sec. 4.4.2. This observation implies that the superiority of exact diffusion does not just

rely on its robustness to data variance, but more importantly, on the network connectivity as

well. In addition, different from the works [2,145], which claim or suggest that the gradient-

tracking method [2] or exact diffusion [145] always converges better than traditional DGD or

diffusion, our current work disproves this statement and clarifies analytically that there are

important scenarios where exact diffusion performs similarly or even worse than diffusion.

Simulations also suggest that gradient tracking methods [2, 3] may also degrade the perfor-
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mance of traditional diffusion, which was not explored prior to this work. Finally, we remark

that work [146] showed that diffusion outperforms traditional primal-dual methods in the

stochastic setting for b2 = 0 and quadratic problems only, and is hence more restricted than

our result. Our results recover this case (see Remark 4.2) and show that exact diffusion,

which is also a primal-dual method, can outperform diffusion when b2 6= 0.

Notation. Throughout the paper we use col{x1, · · · , xK} or col{xk}Kk=1 and diag{x1, · · · , xK}

or diag{xk}Kk=1 to denote a column vector and a diagonal matrix formed from x1, · · · , xK .

The notation 1K = col{1, · · · , 1} ∈ RK and IK ∈ RK×K is an identity matrix. The Kro-

necker product is denoted by “⊗”. For two matrices X and Y , the notation X ≥ Y denotes

X − Y is nonnegative.

4.2 Exact Diffusion Strategy

The exact diffusion strategy from [15, 16] was originally proposed to solve deterministic

optimization problems. We adapt it to solve stochastic optimization problems by replacing

the gradient of the local cost Jk(w) by the stochastic gradient of the corresponding loss

function. That is, we now use:

ψk,i = wk,i−1−µ∇Q(wk,i−1;xk,i), (Adapt) (4.9)

φk,i = ψk,i +wk,i−1 −ψk,i−1, (Correct) (4.10)

wk,i =
∑
`∈Nk

ā`kφ`,i. (Combine) (4.11)

For the initialization, we let wk,−1 = ψk,−1 = 0. Observe that the fusion step (4.11) now

employs the corrected iterates from (4.10) rather than the intermediate iterates from (4.9).

Note that the weight ā`k is different from a`k used in the diffusion recursion (4.3). If we let

A = [a`k] ∈ RK×K and Ā = [ā`k] ∈ RK×K denote the combination matrices used in diffusion

and exact diffusion respectively, then the relation between them is Ā = (A + IK)/2. In the

paper, we assume A (and, hence, Ā) to be symmetric and doubly stochastic (see Assumption

4.2).

As explained in [15, 16], exact diffusion is essentially a primal-dual method. To rewrite
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the update (4.9)–(4.11) in a compact primal-dual form, we collect the iterates and gradients

from across the network into global vectors. Specifically, we introduce

Wi = col{wk,i}Kk=1 ∈ RKM , (4.12)

∇Q(Wi−1; X) = col{∇Q(wk,i−1;xk,i)}Kk=1 ∈ RKM , (4.13)

A = A ⊗ IM , and A = (A + IKM)/2. Since the combination matrix Ā is symmetric and

doubly stochastic, it holds that I − Ā is positive semi-definite. By introducing the eigen-

decomposition I−Ā = UΣUT and defining V = UΣ1/2UT ∈ RK×K , where Σ is a non-negative

diagonal matrix, we know that V is also positive semi-definite and V 2 = I − Ā. We further

let V = V ⊗ IM , which implies V2 = IKM −A. With these relations, it can be verified1 that

recursion (4.9)–(4.11) is equivalent to [15]
Wi = A

(
Wi−1 − µ∇Q(Wi−1; X i)

)
− VYi−1,

lYi = Yi−1 + VWi,

(4.14)

for i ≥ 0 with Y−1 = 0 where Yi ∈ RKM is a dual variable. The analysis in [15,16] explains how

the correction term in (4.10) guarantees exact convergence to w? by all agents in deterministic

optimization problems where the true gradient ∇Jk(w) is available. In the following sections,

we examine the convergence of exact diffusion in the stochastic setting.

4.3 Error Dynamics of Exact Diffusion

To establish the error dynamics of exact diffusion, we first introduce some standard assump-

tions. These assumptions are common in the literature (e.g, [1, 2]).

Assumption 4.1 ( Conditions on cost functions) Each Jk(w) is ν-strongly convex and

twice differentiable, and its Hessian matrix satisfies

νIM ≤ ∇2Jk(w) ≤ δIM , ∀ k (4.15)

where δ ≥ ν > 0. �

1To verify it, one can substitute the second recursion in (4.14) into the first recursion to remove Yi and
arrive at (4.9)–(4.11).
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We remark that the twice differentiability assumption is necessary to derive the MSD ex-

pression in Sec. 4.5.

Assumption 4.2 ( Conditions on combination matrix) The network is undirected and

strongly connected, and the combination matrix A is symmetric and doubly stochastic, i.e.,

it satisfies A = AT, A1K = 1K. �

Assumption 4.2 implies that Ā = (I + A)/2 is also symmetric and doubly-stochastic. Since

the network is strongly connected, it holds that 1 = λ1(Ā) > λ2(Ā) ≥ · · · ≥ λK(Ā) > 0.

To establish the optimality condition for problem (4.1), we introduce the following nota-

tion:

W = col{w1, · · · , wK} ∈ RKM , (4.16)

∇J (W) = col{∇J1(w1), · · · ,∇JK(wK)} ∈ RKM , (4.17)

where wk in (4.16) is the k-th block entry of vector W. With the above notation, the following

lemma from [16] states the optimality condition for problem (4.1).

Lemma 4.1 ( Optimality Condition) Under Assumption 4.1, if some block vectors (W?, Y?)

exist that satisfy:

µA∇J (W?) + VY? = 0, (4.18)

VW? = 0. (4.19)

then it holds that each block entries in W? satisfy:

w?1 = w?2 = · · · = w?N = w? (4.20)

where w? is the unique solution to problem (4.1). �

4.3.1 Error Dynamics

We define the gradient noise at agent k as

sk,i(wk,i−1)
∆
= ∇Q(wk,i−1;xk,i)−∇Jk(wk,i−1) (4.21)
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and collect them into the network vector

si(Wi−1) = col{s1,i(w1,i−1), · · · , sK,i(wK,i−1)} (4.22)

∇J (Wi−1) = col{∇J1(w1,i−1), · · · ,∇JK(wK,i−1)} (4.23)

It then follows that

∇Q(Wi−1; X i) = ∇J (Wi−1) + si(Wi−1). (4.24)

Next, we introduce the error vectors

W̃i = W? −Wi, Ỹi = Y? − Yi (4.25)

where (W?, Y?) are optimal solutions satisfying (3.1)–(3.2). By combining (4.14), (3.1), (3.2),

(4.24) and (4.25), we reach
W̃i = A

[
W̃i−1 + µ(∇J (Wi−1)−∇J (W?))

]
−V Ỹi−1 + µAsi(Wi−1),

lỸi = Ỹi−1 + VW̃i.

(4.26)

Since each Jk(w) is twice-differentiable (see Assumption 3.1), we can appeal to the mean-

value theorem from Lemma D.1 in [1], which allows us to express each difference in (4.26)

in terms of Hessian matrices for any k = 1, 2, . . . , N :

∇Jk(wk,i−1)−∇Jk(w?) = −Hk,i−1w̃k,i−1,

where Hk,i−1
∆
=
∫ 1

0
∇2Jk

(
w?−rw̃k,i−1

)
dr ∈ RM×M . We introduce the block diagonal matrix

Hi−1
∆
= diag{H1,i−1,H2,i−1, · · · ,HK,i−1} (4.27)

so that

∇J (Wi−1)−∇J (W?) = −Hi−1W̃i−1. (4.28)

Substituting (4.28) into the first recursion in (4.26), we reach
W̃i=A(IKM−µHi−1)W̃i−1−V Ỹi−1+µAsi(Wi−1),

lỸi=Ỹi−1 + VW̃i.

(4.29)
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Next, if we substitute the first recursion in (4.29) into the second one, and recall that

V2 = IKM −A, we reach the following error dynamics.

Lemma 4.2 ( Error Dynamics) Under Assumption 3.1, the error dynamics for the exact

diffusion recursions (4.9)–(4.11) is as follows W̃i

Ỹi

=

 A −V

VA A


︸ ︷︷ ︸

∆
= B

(
I2KM− µ

 Hi−1 0

0 0


︸ ︷︷ ︸

∆
= T i−1

) W̃i−1

Ỹi−1



+ µ

 A
VA


︸ ︷︷ ︸

∆
= B`

si(Wi−1), (4.30)

and Hi is defined in (4.27). �

4.3.2 Transformed Error Dynamics

The direct convergence analysis of recursion (4.30) is challenging. To facilitate the analysis,

we identify a convenient change of basis and transform (4.30) into another equivalent form

that is easier to handle. To this end, we introduce a fundamental decomposition from [16]

here.

Lemma 4.3 ( Fundamental Decomposition) Under Assumptions 3.1 and 4.2, the ma-

trix B defined in (4.30) can be decomposed as

B=
[
R1 R2 cXR

]
︸ ︷︷ ︸

X


IM 0 0

0 IM 0

0 0 D1


︸ ︷︷ ︸

D


LT

1

LT
2

1
c
XL


︸ ︷︷ ︸
X−1

(4.31)

where c can be any positive constant, and D ∈ R2KM×2KM is a diagonal matrix. Moreover,
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we have

R1 =

 I
0

 ∈ R2KM×M , R2=

 0

I

 ∈ R2KM×M , (4.32)

L1 =

 1
K
I

0

∈ R2KM×M , L2 =

 0

1
K
I

∈ R2KM×M , (4.33)

XR ∈ R2KM×2(K−1)M ,XL ∈ R2(K−1)M×2KM . where I = 1K ⊗ IM ∈ RKM×M . Also, the matrix

D1 is a diagonal matrix with complex entries. The magnitudes of the diagonal entries in D1

are all strictly less than 1. �

By multiplying X−1 to both sides of the error dynamics (4.30) and simplifying we arrive

at the following result.

Lemma 4.4 ( Transformed Error Dynamics) Under Assumption 3.1 and 4.2, the trans-

formed error dynamics for exact diffusion recursions (4.9)–(4.11) is as follows Z̄i

Ži

=

 IM− µ
K

∑K
k=1Hk,i−1 − cµ

K
ITHi−1XR,u

−µ
c
D1XLT i−1R1 D1 − µD1XLT i−1XR


×

 Z̄i−1

Ži−1

+ µ

 1
K
IT

1
c
D1XLB`

 si(Wi−1). (4.34)

where XR,u ∈ RKM×2(K−1)M is the upper part of matrix XR = [XR,u;XR,d]. The relation

between the original and transformed error vectors are W̃i

Ỹi

=
[
R1 cXR

] Z̄i

Ži

 . (4.35)

�

4.4 Mean-square Convergence

Using the transformed error dynamics derived in (4.34), we can now analyze the mean-square

convergence of exact diffusion (4.9)–(4.11) in the stochastic and adaptive setting. To begin
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with, we introduce the filtration

F i−1 = filtration{wk,−1,wk,0, · · · ,wk,i−1, all k}. (4.36)

The following assumption is standard on the gradient noise process (see [1,2]) and is satisfied

in many situations of interest such as linear and logistic regression problems.

Assumption 4.3 ( Conditions on gradient noise) It is assumed that the first and second-

order conditional moments of the individual gradient noises for any k and i satisfy

E[sk,i(wk,i−1)|F i−1] = 0, (4.37)

E[‖sk,i(wk,i−1)‖2|F i−1] ≤ β2
k‖w̃k,i−1‖2+σ2

k (4.38)

for some constants βk and σk. Moreover, we assume the sk,i(wk,i−1) are independent of each

other for any k, i given F i−1. �

With Assumption 4.3, it can be verified that

E[si(Wi−1)|F i−1] = 0, ∀ i, (4.39)

E

[∥∥∥ 1

K

K∑
k=1

sk,i(wk,i−1)
∥∥∥2∣∣∣F i−1

]
≤ β

2

K
‖W̃i−1‖2+

σ2

K
(4.40)

where β2 ∆
= maxk{β2

k}/K and σ2 ∆
=
∑K

k=1 σ
2
k/K.

Theorem 4.1 (Mean-Square Convergence) Under Assumptions 3.1–4.3, if the step-size

µ satisfies

µ ≤ (1− λ)ν

(32+16c1c2 +8
√
c1c2)(δ2 +β2

max)
=O

(
(1− λ)ν

δ2+β2
max

)
(4.41)

where λ = max{|λ2(A)|, |λK(A)|}, β2
max = maxk{β2

k}, and c1, c2 are constants defined in

(4.96), then the wk,i generated by exact diffusion recursion (4.14) converges exponentially

fast to a neighborhood around w?. The convergence rate is ρ = 1 − O(µν), and the size of

the neighborhood can be characterized as follows:

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2 = O

(
µσ2

Kν
+
δ2

ν2
· µ

2σ2

1− λ

)
(4.42)
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Proof. See Appendix 4.A. �

Theorem 4.1 indicates that when µ is smaller than a specified upper bound, the exact

diffusion over adaptive networks is stable. The theorem also provides a bound on the size of

the steady-state mean-square error. To compare exact diffusion with diffusion, we examine

the mean-square convergence property of diffusion as well.

Lemma 4.5 (Mean-square stability of Diffusion) Under Assumptions 3.1–4.3, if µ sat-

isfies

µ ≤ (1− λ)ν

(12+4e1e2 +
√

6e1e2)(δ2 +β2
max)

=O

(
(1− λ)ν

δ2+β2
max

)
(4.43)

where λ = max{|λ2(A)|, |λK(A)|}, β2
max = maxk{β2

k}, e1 and e2 are constants that are

independent of λ, δ, ν and β, then wk,i generated by the diffusion recursions (4.2)–(4.3)

converge exponentially fast to a neighborhood around w?. The convergence rate is 1−O(µν),

and the size of the neighborhood can be characterized as follows

lim sup
i→∞

1

K

K∑
k=1

‖w̃k,i‖2

= O

(
µσ2

Kν
+
δ2

ν2
· µ

2λ2σ2

1− λ
+
δ2

ν2
· µ

2λ2b2

(1− λ)2

)
, (4.44)

where b2 = (1/K)
∑K

k=1 ‖∇Jk(w?)‖2 is a bias term.

Proof. See Appendix 4.B for proof detail. �

Comparing (4.42) and (4.44), it is observed that the expressions for both algorithms

consist of two major terms – one O(µ) term and one O(µ2) term. However, diffusion suffers

from an additional bias term O(µ2λ2b2/(1− λ)2).

Remark 4.1 (Deterministic case) When σ2 = 0, both diffusion and exact diffusion re-

duce to the deterministic scenario in which the real gradient ∇Jk(w) is available. In this

scenario, it is observed from (4.42) and (4.44) that the error w̃k,i in exact diffusion con-

verges to 0 while that in diffusion converges to O(µ2b2), which is consistent with the results

presented in [9, 14–16]. �
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Remark 4.2 (Zero bias) When b2 = 0, it holds that each local minimizer w?k coincides

with the global minimizer w?, i.e., w?k = w? for any k. In this scenario, it is observed from

(4.44) that diffusion has the steady-state error bound

lim sup
i→∞

1

K

K∑
k=1

‖w̃k,i‖2
d = O

(
µσ2

Kν
+
δ2

ν2
· µ

2λ2σ2

1− λ

)
(4.45)

which is smaller than the error bound (4.42) for exact diffusion especially when λ approaches

0. This result is consistent with [146], which finds diffusion outperforms primal-dual dis-

tributed adaptive methods when w?k = w? in terms of steady-state performance. �

Remark 4.3 (Large bias) When b2 is sufficiently large so that the bias term (i.e., the third

term) in (4.44) dominates the entire error bound, it is observed from (4.42) and (4.44) that

exact diffusion performs better than diffusion since it removes the bias term completely. This

result is consistent with [145], which claims exact diffusion is endowed with faster convergence

rate when the data variance across the network is large. �

In the following subsections, we will focus on the scenario where σ2 > 0 and the bias b2

is a small positive constant. In this scenario, we will study how the step-size µ and topology

λ influence the diffusion and exact diffusion algorithms.

4.4.1 Well-connected Network

When the network is well-connected, it holds that λ approaches 0. For example, the fully-

connected network has λ = 0. In this scenario, the O(µ2) terms inside diffusion’s error bound

will vanish and (4.44) becomes

lim sup
i→∞

1

K

K∑
k=1

‖w̃k,i‖2
d = O

(
µσ2

Kν

)
. (4.46)

In comparison, the error bound (4.42) for exact diffusion is

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2
ed = O

(
µσ2

Kν
+
µ2δ2σ2

ν2

)
(4.47)

135



as λ→ 0. When µ is moderately small such that the term O(µ2δ2σ2/ν2) is non-negligible, we

conclude that diffusion works better than exact diffusion. To roughly characterize the “mod-

erately” small step-size, we assume O(µ2δ2σ2/ν2) is non-negligible if µ2δ2σ2/ν2 ≥ µσ2/(Kν),

from which we get µ ≥ ν/(Kδ2). Combining it with (4.41) we conclude that if µ satisfies

(note that λ→ 0)

ν

Kδ2
≤ µ ≤ d1ν

δ2 + β2
max

(4.48)

where d1 = 1/(32 + 16c1c2 + 8
√
c1c2), it holds that O(µ2δ2σ2/ν2) is non-trivial and diffusion

has better steady-state performance than exact diffusion. To make the interval in (4.48)

valid, it is enough to let K be sufficiently large.

However, if the step-size µ is chosen sufficiently small, then the second term in (4.47)

is also negligible and hence both diffusion and exact diffusion will perform similarly. An

example for “sufficiently” small step-size is when µ = ν/(K2δ2). By substituting µ =

ν/(K2δ2) into (4.47), we reach lim supi→∞
1
K

∑K
k=1 E‖w̃k,i‖2

ed = O( σ2

K3δ2 + σ2

K4δ2 ) = O( σ2

K3δ2 ) =

O(µσ
2

Kν
) in which the O(µ2) term is negligible.

4.4.2 Sparsely-connected Network

When the network is sparsely-connected, it holds that λ approaches 1. In this scenario, even

a trivial bias constant b2 can be significantly amplified by the coefficient 1/(1− λ)2. When

λ approaches 1, the first two terms in (4.44) will be the same as those in (4.42). As a result,

when µ is moderately small and λ is close to 1 such that the bias term O(µ2δ2λ2b2/(1− λ)2ν2)

is non-negligible, we conclude that exact diffusion works better than diffusion. Furthermore,

the advantage of exact diffusion will be more evident if the bias gets more significant as

λ → 1. In the following example, we list several network topologies in which the bias

O(µ2b2/(1− λ)2) dominates (4.5) easily.

Example (Linear, Cyclic, and Grid networks). A linear or cyclic network with K

agents is a network where each agent connects with its previous and next neighbors. On the

other hand, a grid network with K agents is a network in which each node connects with its

neighbors from left, right, top, and bottom. The grid and cycle networks are illustrated in
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Figure 4.2: Illustration of the grid topology and cyclic topology.

Fig. 4.2. For these networks, it is shown in [110,147] that

1− λ = O(1/K2) (linear or cyclic network) (4.49)

1− λ = O(1/K) (grid network) (4.50)

and therefore, the bias term O(µ2b2/(1 − λ)2) in diffusion over linear (or cyclic) graph and

grid graph becomes O(µ2b2K4) and O(µ2b2K2) respectively, which increases rapidly with

the size of the network. As a result, exact diffusion, by correcting the bias term, is evidently

superior to diffusion over these network topologies. �

To roughly characterize the “moderately” small step-size, we assumeO(µ2δ2λ2b2/(1− λ)2ν2)

is non-trivial if

δ2

ν2
· µ2b2

(1− λ)2
≥ µσ2

Kν
(4.51)

from which we get µ ≥ (1− λ)2σ2ν/Kδ2b2. Combining it with (4.43), we conclude that if µ

satisfies

(1− λ)2σ2ν

Kδ2b2
≤ µ ≤ d2(1− λ)ν

δ2 + β2
max

, (4.52)

where d2 = 12 + 4e1e2 +
√

6e1e2 is a constant, then the bias term in (4.44) is significant and

exact diffusion is expected to have better performance than diffusion in steady-state. To

make the interval in (4.52) valid, it is enough to let λ be sufficiently close to 1 and K be

sufficiently large such that

(1−λ)2σ2ν

Kδ2b2
<
d2(1− λ)ν

δ2 + β2
⇐⇒ b2

1− λ
>

(δ2 + β2)

d2Kδ2
σ2. (4.53)
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On the other hand, if µ is adjusted to be sufficiently small, the O(µ) term in both

expressions (4.42) and (4.44) will eventually dominate for any fixed b2 and λ. In such

scenario, it holds that

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2
ed = O

(µσ2

Kν

)
, (4.54)

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2
d = O

(µσ2

Kν

)
. (4.55)

It is observed that both diffusion and exact diffusion will have the same mean-square error

order, which implies that diffusion and exact diffusion will perform similarly in this scenario.

Such “sufficiently” small step-size can be roughly characterized by the range

µ ≤ d3(1− λ)2+x where x > 0. (4.56)

for some d3 > 0. The comparison between exact diffusion and diffusion is listed in Fig. 4.1.

4.5 Mean-square Deviation Expression

In the last section, we showed that when µ is sufficiently small, the steady-state mean-square

deviation of both diffusion and exact diffusion will be dominated by a term on the order of

O(µσ2/ν), as illustrated by (4.54)–(4.55). However, the hidden constants inside the big-O

notation are still unclear. In this section, we show that, when µ is approaching 0, i.e., µ→ 0,

diffusion and exact diffusion will have exactly the same MSD expression in steady state. To

this end, we recall the definition of mean-square deviation (MSD) from [1] as follows:

MSD = µ
(

lim
µ→0

lim sup
i→∞

1

µK

K∑
k=1

E‖w̃k,i‖2
)
. (4.57)

Note that the MSD defined above is precise to the first-order in the step-size. All higher

order terms are ignored.

4.5.1 Approximate Error Dynamics

It is generally difficult to derive the MSD performance of exact diffusion with the original

transformed error dynamics developed in Lemma 4.4. We therefore propose an approximate
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error dynamics and employ it to assess the MSD performance. To this end, we define

Hk=∇2Jk(w
?), H=diag{H1, · · · , HK}, T =

H 0

0 0

. (4.58)

Obviously, it holds that Hk,i → H, Hi → H and T i → T if Wi → W?. Next, we consider

the approximate error dynamic as follows. Z̄′i

Ž′i

=

 IM− µ
K

∑K
k=1Hk − cµ

K
ITHXR,u

−µ
c
D1XLT R1 D1 − µD1XLT XR

 Z̄′i−1

Ž′i−1


+ µ

 1
K
IT

1
c
D1XLB`

 si(Wi−1). (4.59)

Note that we replace Hk,i−1, Hi−1 and T i−1 in (4.34) with Hk, H and T in (4.59). We can

show that the iterates Z̄′i and Ž′i generated through the approximate error dynamic (4.59)

are close enough to Z̄i and Ži generated from the original recursion (4.34) – see Lemma 4.6

below. This implies that we can employ recursion (4.59) rather than (4.34) to establish the

MSD performance. To this end, we first introduce a few more assumptions on cost functions

and the gradient noise. These assumptions are adapted from [1].

Assumption 4.4 (Smoothness condition in the limit) For each cost function Jk(w),

it is assumed that

‖∇2Jk(w
? + ∆w)−∇2Jk(w

?)‖ ≤ κ‖∆w‖ (4.60)

for small perturbations ‖∆w‖ ≤ ε, where κ > 0 is a constant. �

Assumption 4.5 (Forth-Order Moment) It is assumed for each k and i that

E[‖sk,i(wk,i−1)‖4|F i−1] ≤ β4
4,k‖w̃k,i−1‖4+σ4

4,k. (4.61)

where β4,k and σ4,k are some positive constants. �

By following the proof of Theorem 10.2 from [1], we can prove in the following lemma

that difference between the original iterates (4.34) and the transformed iterates (4.59) is

small.
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Lemma 4.6 (Approximation Error) Under Assumptions 3.1–4.5, it holds for sufficiently

small step-sizes that

lim sup
i→∞

E

∥∥∥∥∥∥
 Z̄i

Ži

−
 Z̄′i

Ž′i

∥∥∥∥∥∥
2

= O(µ2) (4.62)

�

4.5.2 Deriving the MSD expression

Recall from (4.35) that

W̃i =
[
I cXR,u

] Z̄i

Ži

 . (4.63)

This together with ITXR,u = 02 implies that

‖W̃i‖2 =

 Z̄i

Ži

T  KIKM 0

0 c2X T
R,uXR,u


︸ ︷︷ ︸

∆
= Γ

 Z̄i

Ži

 (4.64)

For simplicity, in the following we let

Zi =

 Z̄i

Ži

 , Z′i =

 Z̄′i

Ž′i

 . (4.65)

and it holds that E‖W̃i‖2 = E‖Zi‖2
Γ. The following lemma shows that E‖Zi‖2

Γ is close to

E‖Z′i‖2
Γ.

Lemma 4.7 (Approximation Scaled Error) Under Assumptions 3.1–4.5, it holds for

sufficiently small step-sizes that

lim sup
i→∞

E‖Zi‖2
Γ − E‖Z′i‖2

Γ = O(µ3/2) (4.66)

�

2Since X−1X = I with X and X−1 defined in (4.31), we have cLT
1XR = c

K I
TXR,u = 0.
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Figure 4.3: Diffusion v.s. exact diffusion over grid networks for problem (4.73).

Proof. It holds that

E‖Z′i‖2
Γ = E‖Z′i − Zi + Zi‖2

Γ

≤ E‖Z′i − Zi‖2
Γ + E‖Zi‖2

Γ + 2E[(Z′i − Zi)
TΓZi]

≤ E‖Z′i−Zi‖2
Γ+E‖Zi‖2

Γ+2
√

E‖Z′i − Zi‖2
ΓE‖Zi‖2

Γ,

which implies that

E‖Z′i‖2
Γ − E‖Zi‖2

Γ

≤ E‖Z′i−Zi‖2
Γ + 2

√
E‖Z′i − Zi‖2

ΓE‖Zi‖2
Γ

≤ λmax(Γ)E‖Z′i−Zi‖2 + 2λmax(Γ)
√

E‖Z′i−Zi‖2E‖Zi‖2

where λmax(Γ) is the largest eigenvalue of Γ. From (4.65) we know it holds for sufficiently
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Figure 4.4: The superiority of exact diffusion is more evident as the grid network becomes

larger when solving problem (4.73).

small µ that

lim sup
i→∞

E‖Zi‖2 = lim sup
i→∞

E‖Z̄i‖2 + lim sup
i→∞

E‖Ži‖2

(4.111)
= O(µ) +O(µ2) = O(µ). (4.67)

Also, from (4.62) we have lim supi→∞ E‖Z′i − Zi‖2 = O(µ2). Since Γ is independent of µ, it

therefore holds that

lim sup
i→∞

(
E‖Z′i‖2

Γ − E‖Zi‖2
Γ

)
= O(µ3/2). (4.68)

�

Now we establish the MSD expression for exact diffusion. Since E‖W̃i‖2 = E‖Zi‖2
Γ is close

to E‖Z′i‖2
Γ as proved in Lemma 4.7, we will first derive the MSD expression for E‖Z′i‖2

Γ and

use it to facilitate the derivation of the MSD for exact diffusion, i.e., E‖W̃i‖2. To proceed,

we assume that, in the limit, the following covariance matrix evaluated at the global solution
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w? exists

Sk
∆
= lim

i→∞
E[sk,i(w

?)sk,i(w
?)T]. (4.69)

The following theorem establishes the MSD expression of the approximate error dynamics.

Theorem 4.2 (MSD expression) Under Assumptions 3.1–4.5, it holds for exact diffusion

that

MSDed =
µ

2K
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

) . (4.70)

Proof. See Appendix 4.C. �

Recall the MSD expression for standard diffusion is [1, Equation (11.140)]:

MSDd =
µ

2K
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

) . (4.71)

It is observed that the MSD expression for diffusion (4.71) is equal to that of exact diffusion

(4.70). This implies that diffusion and exact diffusion will perform exactly the same in steady

state for sufficiently small step-sizes.

4.6 Numerical Simulation

4.6.1 Mean-square-error Network

In this subsection we consider the scenario in which K agents observe streaming data

{dk(i),uk,i} that satisfy the regression model

dk(i) = uT
k,iw

?
k + vk(i) (4.72)

where w?k is the local optimal solution at agent k, and the noise process, vk(i), is independent

of the regression data, uk,i. The cost over the mean-square-error (MSE) network is defined

by

min
w∈RM

K∑
k=1

E
(
dk(i)− uT

k,iw
)2
. (4.73)

143



To generate {dk(i),uk,i}, we first generate the local optimal solution following a standard

Gaussian distribution, i.e., w?k ∼ N (0, IM). Next we generate uk,i ∼ N (0,Λk) where Λk is

a positive diagonal matrix and vk(i) ∼ N (0, 0.1IM). With w?k, uk,i and vk(i), we generate

dk(i) according to (4.72). Also, we can verify that the global solution to (4.73) is given by

w? =

(
K∑
k=1

Λk

)−1 K∑
k=1

Λkw
?
k. (4.74)

In all figures below, the y-axis indicates the MSD performance
∑K

k=1 E‖wk,i − w?‖2/K.

We first compare the performance of exact diffusion and diffusion over a grid topology

— see the first plot in Fig.4.3. We first let K = 9 and µ = 0.005 and compare exact

diffusion and diffusion. With these two parameters, it is shown in the first plot in Fig.4.3

that both methods perform almost the same, and the steady-state MSD performance of both

methods coincide with the derived MSD expression (4.70). In the second plot in Fig.4.3, we

maintain µ = 0.005 but increase the network size to 100 nodes. As we explained in Sec.4.4.2,

a grid topology with larger network size has λ closer to 1, which amplifies the inherent

bias O(µ2b2/(1 − λ)2) suffered by diffusion. It is observed that exact diffusion has a clear

advantage over diffusion during the steady-state stage. Note that in the second plot both

diffusion and exact diffusion do not coincide with the derived theoretical MSD expression.

This is because the theoretical MSD expression in (4.70) is only precise to first-order in µ.

When λ approaches 1 as the grid network gets larger, the second-order term of µ is amplified

by 1/(1 − λ) and becomes non-negligible. In the third plot, we maintain K = 100 and

µed = 0.005 for exact diffusion while decreasing the step-size of diffusion to (µd = 0.003)

so that it has the same steady-state MSD performance as diffusion. It is observed that in

this scenario exact diffusion converges faster than diffusion to reach the same steady-state

performance, which implies that exact diffusion has faster adaptive and tracking abilities

than diffusion over large grid graphs. In the fourth plot of Fig.4.3, we adjust µ = 0.0001

for both methods while keeping K = 100. Since µ gets much smaller, the inherent bias in

diffusion (4.44) becomes trivial and both methods perform similarly again, and they coincide

with the derived MSD expression.

To further show how superior the exact diffusion can be compared to diffusion over the
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Figure 4.5: Diffusion v.s. exact diffusion over a fully connected network for problem (4.73).
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Figure 4.6: Diffusion v.s. exact diffusion over cyclic networks for problem 4.75.

grid network, we depict the performance of diffusion and exact diffusion for different network

sizes in Fig.4.4. It is observed that the superiority of exact diffusion becomes more evident as

the grid network gets larger, and exact diffusion performs much better than diffusion when

K = 400.

In the third experiment, we compare diffusion with exact diffusion over a fully connected

network with K = 30. Since λ = 0 for this scenario, it is expected diffusion has better steady-

state performance than exact diffusion when µ is moderately small, see the discussion in Sec.

4.4.1. Also, the superiority of diffusion should vanish as the step-size becomes sufficiently

small. The comparison results shown in Fig.4.5 are consistent with our discussion in 4.4.1.
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Figure 4.7: The superiority of exact diffusion gets more evident as the cyclic networks gets

larger when solving problem 4.75.

4.6.2 Distributed Logistic Regression

In this subsection we compare the performance of exact diffusion and diffusion when solving

a decentralized logistic regression problem of the form:

min
w∈RM

K∑
k=1

E
{

ln
(

1 + e−γkh
T
kw
)}

+
ρ

2
‖w‖2, (4.75)

where (hk,γk) represent the streaming data received by agent k. Variable hk ∈ RM is the

feature vector and γk ∈ {−1,+1} is the label scalar. In all experiments, we set M = 20

and ρ = 0.001. To make the Jk(w)’s have different minimizers, we first generate K different

local minimizers {w?k}. All w?k are normalized so that ‖w?k‖2 = 1. At agent k, we generate

each feature vector hk,i ∼ N (0, I20). To generate the corresponding label γk(i), we generate

a random variable zk,i ∈ U(0, 1). If zk,i ≤ 1/(1 + exp(−hT
k,iw

?
k)), we set γk(i) = 1; otherwise

γk(i) = −1.
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Figure 4.8: Diffusion v.s. exact diffusion over a fully connected network for problem (4.75).
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Figure 4.9: Comparison between diffusion [1], exact diffusion (proposed), and gradient track-

ing [2, 3] over cyclic networks for problem (4.73).

We first compare these two methods over a cyclic network, see the simulation in Figs.

4.6 and 4.7. Similar to Sec. VI.A, the simulation results shown in Figs. 4.6 and 4.7 are also

consistent with our discussions in Sec.4.4.2. In the third plot in Fig.4.6, we set µd = 0.003

and µed = 0.006 so that both diffusion and exact diffusion have the same MSD performance.

Next, we compare diffusion with exact diffusion over a fully connected network in Fig.4.8.

It is observed that the results are consistent with the discussion in Sec.4.4.1.

4.6.3 Comparison with Gradient Tracking Methods

In this subsection we compare exact diffusion with the distributed stochastic gradient track-

ing method [2,3]. While [2] shows stochastic gradient tracking has better steady-state MSD

performance than decentralized gradient descent (DGD) via numerical simulations, it does

not study when and why gradient tracking can be better DGD. In fact, since gradient tracking

149



can also be used to correct the bias suffered by diffusion, we can expect the gradient tracking

method to have roughly a similar behavior to exact diffusion. In other words, gradient track-

ing will have better MSD performance than diffusion when the network is sparsely-connected

and worse MSD performance when the network is well-connected. Moreover, the difference

between diffusion and gradient tracking will diminish for small step-sizes. In this subsection,

we verify this conclusion using simulations. We first consider the MSE-network (4.73) over a

cyclic network (which is a sparsely-connected network). The results in Fig.4.9 show stochas-

tic gradient tracking behaves as we expected, and it has almost the same performance as

exact diffusion in all scenarios. Note though that the gradient tracking method [2,3] requires

twice the amount of communication that is required by exact diffusion, which implies exact

diffusion is more communication efficient. In the third plot in Fig.4.9, we set µd = 0.003 and

µed = µtrack = 0.006 to endow the algorithms with the same steady-state MSD performance.

We next compare diffusion, exact diffusion, and gradient tracking method over a fully-

connected network (which is a well-connected network). It is observed in Fig.4.10 that

diffusion has the best MSD performance compared to exact diffusion and gradient tracking,

which confirms our conclusion. While reference [2] suggests that gradient tracking is supe-

rior to consensus, we observe from the analytical results in the current manuscript and from

the simulations in Fig.4.10 that there are situations when gradient tracking cannot outper-

form the traditional diffusion; their performance measures match each other and sometimes

gradient tracking can be worse.

4.7 Conclusion

This chapter studies the convergence property of exact diffusion under the stochastic and

adaptive setting and compares it with traditional diffusion strategy, which illustrates the

influence of bias-correction on distributed stochastic optimization. Conditions are established

when exact diffusion can improve, match, or even degrade the performance of diffusion.

In particular, it is analytically proven that the superiority of exact diffusion will be more

evident over sparsely-connected network topologies. Future work includes improving the
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Figure 4.10: Comparison between diffusion [1], exact diffusion (proposed), and gradient

tracking [2, 3] over a fully connected network when solving problem (4.73).
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current exact diffusion structure so that it can match, or even outperform diffusion over

well-connected networks.

4.A Proof of Theorem 4.1

From the first line in the transformed error dynamics (4.34), we know that

Z̄i =
(
IM−

µ

K

K∑
k=1

Hk,i−1

)
Z̄i−1 −

cµ

K
ITHi−1XR,uŽi−1

+
µ

K
ITsi(Wi−1). (4.76)

By squaring and taking conditional expectation of both sides of the recursion and recalling

(4.37), we get

E[‖Z̄i‖2|F i−1] =∥∥∥(I− µ
K

K∑
k=1

Hk,i−1

)
Z̄i−1−

cµ

K
ITHi−1XR,uŽi−1

∥∥∥2

+ µ2E
[∥∥∥ 1

K

K∑
k=1

sk,i(wk,i)
∥∥∥2∣∣∣F i−1

]
. (4.77)

Next note that ∥∥∥(I− µ
K

K∑
k=1

Hk,i−1

)
Z̄i−1−

cµ

K
ITHi−1XR,uŽi−1

∥∥∥2

(a)

≤ 1

1− t

∥∥∥I− µ
K

K∑
k=1

Hk,i−1

∥∥∥2

‖Z̄i−1‖2

+
c2µ2

K2t
‖I‖2‖Hi−1‖2‖XR,u‖2‖Ži−1‖2

(b)

≤ (1− µν)2

1− t
‖Z̄i−1‖2 +

c2µ2δ2‖XR,u‖2

Kt
‖Ži−1‖2

(c)
= (1− µν)‖Z̄i−1‖2 +

µc2δ2‖XR,u‖2

Kν
‖Ži−1‖2, (4.78)

where (a) holds for t ∈ (0, 1) because of Jensen’s inequality, and (b) holds since ν2 ≤

‖Hi−1‖2 ≤ δ2, ‖I‖2 = K, and ‖I − µ
K

∑K
k=1Hk,i−1‖2 ≤ (1− µν)2 when µ ≤ 1/δ. Moreover,
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equality (c) holds if we choose t = µν. In addition, recall from (4.40) that

E
[∥∥∥ 1

K

K∑
k=1

sk,i(wk,i−1)
∥∥∥2∣∣∣F i−1

]
≤ β

2

K
‖W̃i−1‖2+

σ2

K
(4.79)

Moreover, we can bound ‖W̃i−1‖2 as

‖W̃i−1‖2 (4.35)
= ‖IZ̄i−1 + cXR,uŽi−1‖2

≤ 2‖IZ̄i−1‖2 + 2c2‖XR,uŽi−1‖2

≤ 2K‖Z̄i−1‖2 + 2c2‖XR,u‖2‖Ži−1‖2. (4.80)

Substituting (4.78), (4.79) and (4.80) into (4.77), we reach

E[‖Z̄i‖2|F i−1]

≤ (1− µν + 2µ2β2)‖Z̄i−1‖2

+
(µc2δ2

Kν
+

2µ2c2β2

K

)
‖XR,u‖2‖Ži−1‖2 +

µ2σ2

K

≤ (1− µν + 2µ2β2)‖Z̄i−1‖2

+
(µc2δ2

Kν
+

2µ2c2β2

K

)
‖XR‖2‖Ži−1‖2 +

µ2σ2

K
, (4.81)

where the last inequality holds since

‖XR,u‖2 = ‖
[
IKM 0

]
XR‖2

≤ ‖
[
IKM 0

]
‖2‖XR‖2 = ‖XR‖2 (4.82)

By taking expectation over the filtration, we get

E‖Z̄i‖2 ≤ (1− µν + 2µ2β2)E‖Z̄i−1‖2

+
(µc2δ2

Kν
+

2µ2c2β2

K

)
‖XR‖2E‖Ži−1‖2 +

µ2σ2

K
. (4.83)

On the other hand, from the second line in (4.34) we have

Ži = D1Ži−1 −
µ

c
D1XLT i−1(R1Z̄i−1 + cXRŽi−1)

+
µ

c
D1XLB`si(Wi−1). (4.84)
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By squaring and taking conditional expectation of both sides of the above recursion and

recalling (4.37), we get

E[‖Ži‖2|F i−1]

= ‖D1Ži−1 −
µ

c
D1XLT i−1(R1Z̄i−1 + cXRŽi−1)‖2

+
µ2‖D1‖2

c2
E[‖XLB`si(Wi−1)‖2|F i−1]. (4.85)

Note that

‖D1Ži−1 − (µ/c)XLT i−1(R1Z̄i−1 + cXRŽi−1)‖2

≤ 1

t
‖D1Ži−1‖2 +

µ2‖D1‖2

c2(1− t)
‖XLT i−1(R1Z̄i−1 + cXRŽi−1)‖2

≤ 1

t
‖D1‖2‖Ži−1‖2 +

2µ2‖D1‖2

c2(1− t)
‖XL‖2‖T i−1‖2‖R1‖2‖Z̄i−1‖2

+
2µ2‖D1‖2

1− t
‖XL‖2‖T i−1‖2‖XR‖2‖Ži−1‖2, (4.86)

where t ∈ (0, 1). To simplify the above inequality, we denote

λ2
∆
= λ2(A), λ′

∆
= λ2(Ā), (4.87)

λ
∆
= max{|λ2(A)|, |λK(A)|}. (4.88)

Since Ā = (A+ IK)/2 and A is doubly-stochastic, we have

λ′ = (1 + λ2)/2 ∈ (0, 1). (4.89)

From Lemma 4 in [16] we know that

‖D1‖ =
√
λ′ ∈ (0, 1). (4.90)

Also, from the definition of T i in (4.30), we have

‖T i‖2 =

∥∥∥∥∥∥
 Hi 0

0 0

∥∥∥∥∥∥
2

≤ δ2. (4.91)
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By substituting (4.91) into (4.86), setting t =
√
λ′ and recalling ‖R1‖2 = ‖I‖2 = K, we get

‖D1Ži−1 −
µ

c
XLT i−1(R1Z̄i−1 + cXRŽi−1)‖2

≤
(√
λ′+

2µ2δ2λ′‖XL‖2‖XR‖2

1−
√
λ′

)
‖Ži−1‖2

+
2Kµ2δ2‖XL‖2λ′

c2(1−
√
λ′)

‖Z̄i−1‖2 (4.92)

In addition, it also holds that

E[‖XLB`si(Wi−1)‖2|F i−1]

≤ ‖XL‖2‖B`‖2E[‖si(Wi−1)‖2|F i−1]

(a)

≤ K‖XL‖2β2‖W̃i−1‖2 +K‖XL‖2σ2

(4.80)

≤ 2K2‖XL‖2β2‖Z̄i−1‖2 + 2Kc2‖XR,u‖2‖XL‖2β2‖Ži−1‖2

+K‖XL‖2σ2

(b)

≤ 2K2‖XL‖2β2‖Z̄i−1‖2

1−
√
λ′

+
2c2K‖XR‖2‖XL‖2β2‖Ži−1‖2

1−
√
λ′

+K‖XL‖2σ2 (4.93)

where (a) holds because of inequality (4.40) and the fact

‖B`‖2 =

∥∥∥∥∥∥B
 IKM

0

∥∥∥∥∥∥
2

≤ ‖B‖2 = 1

in which the last equality holds because of Lemma 4.3. The inequality (b) holds since

1−
√
λ′ ∈ (0, 1) and inequality (4.82). By substituting (4.92) and (4.93) into (4.85), we have

E[‖Ži‖2|F i−1]

≤
(√

λ′ +
2λ′µ2(δ2 +Kβ2)‖XL‖2‖XR‖2

1−
√
λ′

)
‖Ži−1‖2

+
2λ′Kµ2(δ2 +Kβ2)‖XL‖2

(1−
√
λ′)c2

‖z̄i−1‖2

+
µ2λ′K‖XL‖2σ2

c2
(4.94)
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By taking expectation over the filtration, we get

E‖Ži‖2

≤
(√

λ′ +
2λ′µ2(δ2 +Kβ2)‖XL‖2‖XR‖2

1−
√
λ′

)
E‖Ži−1‖2

+
2Kλ′µ2(δ2 +Kβ2)‖XL‖2

(1−
√
λ′)c2

E‖Z̄i−1‖2

+
λ′µ2K

c2
‖XL‖2σ2 (4.95)

To simplify notation, we introduce the constants

c1 = ‖XL‖2, c2 = ‖XR‖2. (4.96)

Combining (4.83) and (4.95), we haveE‖Z̄i‖2

E‖Ži‖2

≤
 1−µν+2µ2β2

(
µc2δ2

Kν
+ 2µ2c2β2

K

)
c2

2Kλ′µ2(δ2+Kβ2)c1
(1−
√
λ′)c2

√
λ′+ 2µ2λ′(δ2+Kβ2)c1c2

1−
√
λ′


×

E‖Z̄i−1‖2

E‖Ži−1‖2

+

 1
K
µ2σ2

Kλ′c1
c2

µ2σ2

 . (4.97)

Note that c is a parameter that can be set to any positive value. If we let c2 = Kc1, then

the above inequality becomesE‖Z̄i‖2

E‖Ži‖2

 ≤
 1− µν + 2µ2β2

(
µδ2

ν
+ 2µ2β2

)
c1c2

2λ′µ2(δ2+Kβ2)

1−
√
λ′

√
λ′ + 2λ′µ2(δ2+Kβ2)c1c2

1−
√
λ′


×

E‖Z̄i−1‖2

E‖Ži−1‖2

+

 1
K
µ2σ2

λ′µ2σ2

 . (4.98)

If we choose µ sufficiently small such that

1− µν + 2µ2β2 ≤ 1− 1

2
µν, (4.99)(µδ2

ν
+ 2µ2β2

)
c1c2 ≤

2µδ2c1c2

ν
, (4.100)

2λ′µ2(δ2 +Kβ2)

1−
√
λ′

≤ 1

4
λ′µν, (4.101)

√
λ′ +

2λ′µ2(δ2 +Kβ2)c1c2

1−
√
λ′

≤ 1 +
√
λ′

2
, (4.102)
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then inequality (4.98) becomesE‖Z̄i‖2

E‖Ži‖2

 ≤
 1− 1

2
µν 2µδ2c1c2

ν

1
4
λ′µν 1+

√
λ′

2


︸ ︷︷ ︸

∆
= C

E‖Z̄i−1‖2

E‖Ži−1‖2



+

 1
K
µ2σ2

λ′µ2σ2

 . (4.103)

To satisfy (4.99)–(4.102), it is enough to let µ satisfy

µ ≤ (1−
√
λ′)ν

(8+4c1c2 +
√

4c1c2)(δ2 +Kβ2)
, (4.104)

Also, note that 1 −
√
λ′ = (1 − λ′)/(1 +

√
λ′). Since 0 < λ′ < 1, we have (1− λ′)/2 <

1−
√
λ′ < 1− λ′. Moreover, since λ′ = (1 + λ2)/2 (see (4.89)), we have

1− λ2

4
< 1−

√
λ′ <

1− λ2

2
. (4.105)

From (4.88) we have |λ2| ≤ λ, which further implies −λ ≤ λ2 ≤ λ. This together with

(4.105) leads to

1− λ
4

< 1−
√
λ′ <

1 + λ

2
. (4.106)

With relation (4.106), we know that if µ satisfies

µ ≤ (1− λ)ν

(32+16c1c2 +8
√
c1c2)(δ2 +Kβ2)

, (4.107)

then µ must also satisfy (4.104). Recall that β2 =
maxk{β2

k}
K

, we have Kβ2 = β2
max =

maxk{β2
k}.

Next we examine the spectral radius of the matrix C. Note that λ′ ∈ (0, 1), it is easy to

verify that

ρ(C) ≤ ‖C‖1 = max

{
1−µν

2
+
λ′µν

4
,

1 +
√
λ′

2
+

2µδ2c1c2

ν

}

≤ max

{
1−µν

4
,

1 +
√
λ′

2
+

2µδ2c1c2

ν

}
(4.104)

≤ 1− 1

4
µν < 1, (4.108)
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and therefore C is a stable matrix, and ρ(C) = 1−O(µν) is the convergence rate of E‖W̃i‖2.

Next we examine:

(I − C)−1

=

 µν
2

−2µδ2c1c2
ν

−λ′µν
4

1−
√
λ′

2

−1

=
4

(1−
√
λ′)µν − 2λ′µ2δ2c1c2

 1−
√
λ′

2
2µδ2c1c2

ν

µνλ′

4
µν
2


(a)

≤ 8

µν(1−
√
λ′)

 1−
√
λ′

2
2µδ2c1c2

ν

µνλ′

4
µν
2


=

 4
µν

16δ2c1c2
ν2(1−

√
λ′)

2λ′

1−
√
λ′

4

1−
√
λ′

 , (4.109)

where inequality (a) holds since

(1−
√
λ′)µν − 2λ′µ2δ2c1c2 ≥

(1−
√
λ′)µν

2
(4.110)

when µ satisfies (4.104). By iterating (4.103), we conclude that

lim sup
i→∞

E‖Z̄i‖2

E‖Ži‖2

 ≤ (I − C)−1

 1
K
µ2σ2

λ′µ2σ2


(4.109)

=

 4µσ2

Kν
+ 16λ′δ2c1c2µ2σ2

ν2(1−
√
λ′)

2λ′µ2σ2

K(1−
√
λ′)

+ 4λ′µ2σ2

1−
√
λ′

 . (4.111)
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As a result, we obtain

lim sup
i→∞

E‖W̃i‖2

(4.80)

≤ lim sup
i→∞

(
2KE‖Z̄i‖2 + 2Kc1c2E‖Ži‖2

)
(4.111)

≤ 8µσ2

ν
+

(32Kδ2 + 4ν2 + 8Kν2)λ′c1c2µ
2σ2

ν2(1−
√
λ′)

≤ 8µσ2

ν
+

44Kδ2λ′c1c2µ
2σ2

ν2(1−
√
λ′)

(4.106)

≤ 8µσ2

ν
+

176Kλ′c1c2δ
2µ2σ2

ν2(1− λ)
(a)

≤ 8µσ2

ν
+

88K(1 + λ)c1c2δ
2µ2σ2

ν2(1− λ)

(b)
= O

(
µσ2

ν
+
Kδ2

ν2
· µ

2σ2

1− λ

)
(4.112)

where (a) holds because λ′ = (1 +λ2(A))/2 ≤ (1 +λ)/2 and (b) holds because λ < 1. Result

(4.112) leads to (4.42) by dividing K to both sides of (4.112).

4.B Proof of Lemma 4.5

This section establishes the mean-square convergence of diffusion. With definition (4.12),

we can rewrite diffusion recursions (4.2)–(4.3) as

Wi = A
(
Wi−1 − µ∇Q(Wi−1; X i)

)
. (4.113)

With relation (4.24), the above recursion becomes

Wi = A
(
Wi−1 − µ∇J (Wi−1)− µsi(Wi−1)

)
, (4.114)

which also leads to

W̃i = A
(
W̃i−1 + µ∇J (Wi−1) + µsi(Wi−1)

)
= A

(
W̃i−1 + µ∇J (Wi−1)− µ∇J (W?)

)
+ µA∇J (W?) + µAsi(Wi−1)

(4.28)
= A

(
(I − µHi−1)W̃i−1 + µh+ µsi(Wi−1)

)
, (4.115)
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where W̃i = W? −Wi and h
∆
= ∇J (W?). Note that A = A ⊗ IM is symmetric and doubly

stochastic, it holds that

A =
[
I cXR

]
︸ ︷︷ ︸

X

 IM 0

0 Λ

 1
K
IT

1
c
XL


︸ ︷︷ ︸
X−1

, (4.116)

where I = 1K ⊗ IM and λ
∆
= ‖Λ‖ = max{|λ2(A)|, |λK(A)|} < 1. Note that XR and XL are

different matrices from the ones defined in (4.31). Now we define W̄i

W̌i

 ∆
= X−1W̃i (4.117)

and multiply X−1 to both sides of (4.115), it holds that W̄i

W̌i

 =

 IM − µ
K

∑K
k=1Hk,i−1 − cµ

K
ITHi−1XR

−µ
c
ΛXLHi−1I Λ− µΛXLHi−1XR


×

 W̄i−1

W̌i−1

+

 µ
K
ITh

µ
c
ΛXLh

+

 µ
K
IT

µ
c
ΛXL

 si(Wi−1). (4.118)

For notational simplicity, we further define

ȟ
∆
=

1

c
ΛXLh, (4.119)

s̄i
∆
=

1

K
ITsi(W̃i−1), (4.120)

ši
∆
=

1

c
ΛXLsi(W̃i−1), (4.121)

Recalling that h = ∇J (W?) and, thus, ITh =
∑K

k=1∇Jk(w?) = 0. Therefore, recursion

(4.118) becomes  W̄i

W̌i

 =

 IM − µ
K

∑K
k=1Hk,i−1 − cµ

K
ITHi−1XR

−µ
c
ΛXLHi−1I Λ− µΛXLHi−1XR


×

 W̄i−1

W̌i−1

+

 0

µȟ

+

 µs̄i

µši

 . (4.122)
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In the first line of the above transformed recursion, we have

W̄i =
(
IM −

µ

K

K∑
k=1

Hk,i−1

)
W̄i−1

− cµ

K
ITHi−1XRW̌i−1 + µs̄i. (4.123)

By following arguments in (4.76)–(4.83), we reach

E‖W̄i‖2 ≤ (1− µν + 2µ2β2)E‖W̄i−1‖2

+
(c2δ2µ

Kν
+

2c2β2µ2

K

)
‖XR‖2E‖W̌i−1‖2 +

µ2σ2

K
. (4.124)

In the second line of (4.122), we have

W̌i =(Λ− µΛXLHi−1XR)W̌i−1

− µ

c
ΛXLHi−1IW̄i−1 + µȟ+ µši. (4.125)

By following arguments similar to the ones in (4.84)–(4.95), we have

E‖W̌i‖2

≤
(
λ+

3µ2λ2(δ2 +Kβ2)‖XL‖2‖XR‖2

1− λ

)
E‖W̌i−1‖2

+
3Kµ2λ2(δ2 +Kβ2)‖XL‖2

(1− λ)c2
E‖W̄i−1‖2

+
3µ2λ2‖XL‖2‖h‖2

(1− λ)c2
+
Kµ2λ2

c2
‖XL‖2σ2 (4.126)

To simplify notation, we introduce the constants

e1 = ‖XL‖2, e2 = ‖XR‖2, b2 = ‖h‖2/K. (4.127)

Meanwhile, we also set c2 = e1K in (4.124) and (4.126). With these notations and operations,

we combine (4.124) and (4.126) to getE‖W̄i‖2

E‖W̌i‖2

 ≤
 1− µν + 2µ2β2

(
µδ2

ν
+ 2µ2β2

)
e1e2

3µ2λ2(δ2+Kβ2)
1−λ λ+ 3µ2λ2(δ2+Kβ2)e1e2

1−λ


×

E‖W̄i−1‖2

E‖W̌i−1‖2

+

 1
K
µ2σ2

µ2λ2σ2 + 3µ2λ2b2

1−λ

 . (4.128)
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If we choose sufficiently small µ such that

1− µν + 2µ2β2 ≤ 1− 1

2
µν, (4.129)(µδ2

ν
+ 2µ2β2

)
e1e2 ≤

2µδ2e1e2

ν
, (4.130)

3µ2λ2(δ2 +Kβ2)

1− λ
≤ 1

4
µλ2ν, (4.131)

λ+
3µ2λ2(δ2 +Kβ2)e1e2

1− λ
≤ 1 + λ

2
, (4.132)

then inequality (4.128) becomesE‖W̄i‖2

E‖W̌i‖2

 ≤
 1− µν

2
2µδ2e1e2

ν

µλ2ν
4

1+λ
2


︸ ︷︷ ︸

∆
= C

E‖W̄i−1‖2

E‖W̌i−1‖2



+

 1
K
µ2σ2

µ2λ2σ2 + 3µ2λ2b2

1−λ

 . (4.133)

To make inequalities (4.129)–(4.132) hold, it is enough to set

µ ≤ (1− λ)ν

(12+4e1e2 +λ
√

6e1e2)(δ2 +Kβ2)
= O

(
(1− λ)ν

δ2 +Kβ2

)
. (4.134)

Note that Kβ2 = β2
max. Similar to (4.108), it can be easily verified that when µ satisfies

(4.134), we have that ρ(C) < 1. Moreover, we also have

(I − C)−1 =

 µν
2

−2µδ2e1e2
ν

−µλ2ν
4

1−λ
2

−1

=
1

µν(1−λ)
4
− µ2δ2λ2e1e2

2

 1−λ
2

2µδ2e1e2
ν

µλ2ν
4

µν
2


(a)

≤ 8

µν(1− λ)

 1−λ
2

2µδ2e1e2
ν

µλ2ν
4

µν
2


=

 4
µν

16δ2e1e2
ν2(1−λ)

2λ2

1−λ
4

1−λ

 . (4.135)

where step (a) denotes entry-wise inequality, which holds because

µν(1− λ)

4
− µ2δ2λ2e1e2

2
≥ µν(1− λ)

8
(4.136)
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when µ satisfies (4.134). By iterating (4.133), we get

lim sup
i→∞

E‖W̄i‖2

E‖W̌i‖2


= (I − C)−1

 1
K
µ2σ2

µ2σ2 + 3µ2b2

1−λ


=

 4
µν

16δ2e1e2
ν2(1−λ)

2λ2

1−λ
4

1−λ

 1
K
µ2σ2

µ2λ2σ2 + 3µ2λ2b2

1−λ


=

 4µσ2

Kν
+ 16δ2e1e2µ2λ2σ2

ν2(1−λ)
+ 48δ2e1e2µ2λ2b2

ν2(1−λ)2

2µ2λ2σ2

K(1−λ)
+ 4µ2λ2σ2

1−λ + 12µ2λ2b2

(1−λ)2

 (4.137)

Therefore,

lim sup
i→∞

E‖W̃i‖2

(4.117)

≤ lim sup
i→∞

(
2KE‖W̄i‖2 + 2Ke1e2E‖W̌i‖2

)
=

8µσ2

ν
+

(4ν2 + 32Kδ2 + 8Kν2)e1e2µ
2λ2σ2

ν2(1− λ)

+
(96δ2 + 24ν2)Ke1e2µ

2λ2b2

ν2(1− λ)2

≤ 8µσ2

ν
+

44Ke1e2δ
2µ2λ2σ2

ν2(1− λ)
+

120Ke1e2δ
2µ2λ2b2

ν2(1− λ)2

= O

(
µσ2

ν
+
δ2

ν2
· Kµ

2λ2σ2

(1− λ)
+
δ2

ν2
· Kµ

2λ2b2

(1− λ)2

)
. (4.138)

This leads to (4.43) by dividing K to both sides of (4.138).
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4.C Proof of Theorem 4.2

The derivation of the MSD expression adjusts the arguments from [1, Ch. 11] to our case.

We start by introducing

C ∆
=

 IM− µ
K

∑K
k=1Hk − cµ

K
ITHXR,u

−µ
c
D1XLT R1 D1 − µD1XLT XR

 , (4.139)

G ∆
=

 1
K
IT

1
c
D1XLB`

 , si
∆
= si(Wi−1), (4.140)

With these definitions, we can rewrite the approximate error dynamics (4.59) as Z′i = CZ′i−1+

µGsi. By squaring and taking conditional expectation over the filtration F i−1, we have

E[‖Z′i‖2
Σ|F i−1] = ‖Z′i−1‖2

CTΣC+µ
2E[‖si‖2

GTΣG|F i−1]. (4.141)

where Σ is any positive semi-definite matrix to be decided later. By taking expectation

again, we have

E‖Z′i‖2
Σ = E‖Z′i−1‖2

CTΣC + µ2E‖si‖2
GTΣG. (4.142)

Now we analyze the gradient noise term. To do that, we introduce the network noise quantity

S ∆
= diag{S1, S2, · · · , SK}. (4.143)

where Sk is defined in (4.69). Note that µ2E‖si‖2
GTΣG = µ2Tr

(
ΣGE[sis

T
i ]GT

)
. By following [1,

(11.72) – (11.76)], it holds that µ2E‖si‖2
GTΣG can be well approximated by µ2Tr(ΣGSGT). To

be more precise, we have

lim sup
i→∞

µ2E‖si‖2
GTΣG = µ2Tr(ΣY) + Tr(Σ) · o(µ2), (4.144)

where Y ∆
= GSGT and o(µ2) = O(µ2+ε) with ε > 0. By substituting (4.144) into (4.142)

and taking the limit, we have

lim sup
i→∞

E‖Z′i‖2
Σ−CTΣC = µ2E‖si‖2

GTΣG

= µ2Tr(ΣY) + Tr(Σ) · o(µ2). (4.145)
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Note that from (4.64), we are interested in lim supi→∞ ‖W̃i‖2 = E‖Z′i‖2
Γ. Thus, we need

Σ− CTΣC = Γ. (4.146)

We now recall two block Kronecker product properties that are useful in the following deriva-

tions [1, Appendix F]:

bvec(ACB) = (BT ⊗b A)bvec(C) (4.147a)

Tr(AB) = [bvec(BT)]Tbvec(A) (4.147b)

for any A, B, and C of appropriate dimensions. To solve for Σ in (4.146), we apply property

(4.147a) to both sides of (4.146) and reach

bvec(Σ)− (CT ⊗b CT)bvec(Σ) = bvec(Γ), (4.148)

where ⊗b is block Kronecker operation. Now we define F = CT⊗bCT ∈ R(2K−1)2M2×(2K−1)2M2
.

Since C is stable for sufficiently small step-sizes, we know F is also stable and hence I − F

is invertible. Therefore, it holds that

bvec(Σ) = (I −F)−1bvec(Γ). (4.149)

Next we evaluate the right-hand side in (4.145). From property (4.147b), we have

µ2Tr(ΣY) = µ2[bvec(YT)]Tbvec(Σ)

(4.149)
= µ2[bvec(YT)]T(I −F)−1bvec(Γ). (4.150)

To examine the above quantity, we have to evaluate (I −F)−1 first. We recall from (4.139)

that

CT =

 IM − µ
K

∑K
k=1Hk −µ

c
RT

1 T TX T
LD1

− cµ
K
X T
R,uHI D1 − µX T

RT TX T
LD1

 . (4.151)

With definition F = CT ⊗b CT, we partition F into four blocks

F =

 F11 F12

F21 F22

 (4.152)
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where

F11 =

(
IM −

µ

K

K∑
k=1

Hk

)
⊗

(
IM −

µ

K

K∑
k=1

Hk

)
(4.153)

It can be verified that

(I −F)−1

=

(IM ⊗ µ
K

∑K
k=1Hk+ µ

K

∑K
k=1Hk ⊗ IM)−1 0

0 0

+O(1)

=

 IM2

0

Z−1
[
IM2 0

]
+O(1) (4.154)

where Z =
∑K

k=1
µ
K

(IM⊗Hk+Hk⊗IM). With (4.154), we have

(I −F)−1bvec(Γ)

=

 IM2

0

Z−1
[
IM2 0

]
bvec(Γ) +O(1). (4.155)

By substituting [
IM2 0

]
bvec(Γ)

=
([

IM 0
]
⊗b
[
IM 0

])
bvec(Γ)

= bvec

[ IM 0
]

Γ

 IM

0


= Kbvec(IM) = Kvec(IM) (4.156)

into (4.155), we have

(I −F)−1bvec(Γ)=K

 IM2

0

Z−1vec(IM)+O(1). (4.157)

Next we let

P
∆
= unvec

(
Z−1vec(IM)

)
=

1

2

(
µ

K

K∑
k=1

Hk

)−1

. (4.158)
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where the last equality can be verified by following similar arguments to [1, Equations

(11.123)–(11.129)]. Substituting (4.158) into (4.157), we have

(I −F)−1bvec(Γ) = K

 IM2

0

 bvec(P ) +O(1). (4.159)

Substituting (4.159) into (4.150), we have

µ2Tr(ΣY)=µ2K[bvec(YT)]T

 IM2

0

bvec(P )

︸ ︷︷ ︸
∆
= a

+O(µ2) (4.160)

To examine µ2Tr(ΣY) in the previous expression, we need to evaluate Y . Since Y = GSGT,

we have

Y =

 1
K
IT

1
c
XLB`

S [ 1
K
I 1

c
BT
` X T

L

]

=

 1
K2ITSI 1

K
ITSBT

` X T
L

1
K
XLB`SI 1

c2
XLB`SBT

` X T
L

 . (4.161)

Note that from (4.143), we have ITSI =
∑K

k=1 Sk. With the expression of Y in (4.161), we

have

a = µ2KTr

unbvec


 IM2

0

 bvec(P )

Y


(a)
= µ2KTr[

 IM

0

P [ IM 0
]
Y ]

=
µ

2
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

) . (4.162)

where step (a) follows from property (4.147a) and in the last step we used (4.158) and

(4.161). With the same technique as above, we can also derive that

Tr(Σ) · o(µ2) = o(µ). (4.163)
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Substituting (4.160)–(4.163) into (4.145), we have

lim sup
i→∞

E‖Z′i‖2
Γ =

µ

2
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

)+o(µ). (4.164)

With relation (4.66) in Lemma 4.7, we also have

lim sup
i→∞

E‖Zi‖2
Γ

=
µ

2
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

)+ o(µ). (4.165)

Recalling the facts that E‖W̃i‖2 =
∑K

k=1 E‖w̃k,i‖2 and limµ→0 o(µ)/µ = 0, we therefore

derive the MSD expression of exact diffusion as follows

MSD = µ

(
lim
µ→0

lim sup
i→∞

1

µK
E‖W̃i‖2

)
(4.64)
= µ

(
lim
µ→0

lim sup
i→∞

1

µK
E‖Zi‖2

Γ

)

=
µ

2K
Tr


(

K∑
k=1

Hk

)−1( K∑
k=1

Sk

) . (4.166)
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CHAPTER 5

Exact Diffusion for Distributed Empirical Learning

5.1 Context and Background

This chapter considers empirical risk minimization under the decentralized network setting.

For most traditional machine learning tasks, the training data are usually stored at a single

computing unit [148–151]. This unit can access the entire data set and can carry out training

procedures in a centralized fashion. However, to enhance performance and accelerate con-

vergence speed, there have also been extensive studies on replacing this centralized mode of

operation by distributed mechanisms [54,63,152–154]. In these schemes, the data may either

be artificially distributed onto a collection of computing nodes (also known as workers), or

it may already be physically collected by dispersed nodes or devices. These nodes can be

smart phones or tablets, wireless sensors, wearables, drones, robots or self-driving automo-

biles. Each node is usually assigned a local computation task and the objective is to enable

the nodes to converge towards the global minimizer of a central learning model. Neverthe-

less, in most of these distributed implementations, there continues to exist a central node,

referred to as the master, whose purpose is to regularly collect intermediate iterates from

the local workers, conduct global update operations, and distribute the updated information

back to all workers.

Clearly, this mode of operation is not fully decentralized because it involves coordination

with a central node. Such architectures are not ideal for on-device intelligence settings

[63,155] for various reasons. First, the transmission of local information to the central node,

and back from the central node to the dispersed devices, can be expensive especially when

communication is conducted via multi-hop relays or when the devices are moving and the
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network topology is changing. Second, there are privacy and secrecy considerations where

individual nodes may be reluctant to share information with remote centers. Third, there is a

critical point of failure in centralized architectures: when the central node fails, the operation

comes to a halt. Moreover, the master/worker structure requires each node to complete its

local computation before aggregating them at the master node, and the efficiency of the

algorithms will therefore be dependent on the slowest worker.

Motivated by these considerations, in this chapter we develop a fully decentralized solu-

tion for multi-agent network situations where nodes process the data locally and are allowed

to communicate only with their immediate neighbors. We shall assume that the dispersed

nodes are connected through a network topology and that information exchanges are only

allowed among neighboring devices. By “neighbors” we mean nodes that can communicate

directly to each other as allowed by the graph topology. For example, in wireless sensor

networks, neighboring nodes can be devices that are within the range of radio broadcasting.

Likewise, in smart phone networks, the neighbors can be devices that are within the same

local area network. In the proposed algorithm, there will be no need for a central or master

unit and the objective is to enable each dispersed node to learn exactly the global model

despite their limited localized interactions.

5.1.1 Problem Formulation

In a connected network with K nodes, if node k stores local data samples {xk,n}Nk
n=1, where

Nk is the size of the local samples, then the data stored by the entire network is:

{xn}Nn=1
∆
=
{
{x1,n}N1

n=1, {x2,n}N2
n=1, · · · , {xK,n}

NK
n=1

}
, (5.1)

where N =
∑K

k=1Nk. We consider minimizing an empirical risk function, J(w), which is

defined as the sample average of loss values over all observed data samples in the network:

w?
∆
= arg min

w∈M
J(w)

∆
=

1

N

N∑
n=1

Q(w;xn)

=
1

N

K∑
k=1

Nk∑
n=1

Q(w;xk,n). (5.2)
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Here, the notation Q(w;xn) denotes the loss value evaluated at w and the n-th sample, xn.

We also introduce the local empirical risk function, Jk(w), which is defined as the sample

average of loss values over the local data samples stored at node k, i.e., over {xk,n}Nk
n=1:

Jk(w)
∆
=

1

Nk

Nk∑
n=1

Q(w;xk,n). (5.3)

Using the local empirical risk functions, {Jk(w)}, it can be verified that the original global

optimization problem (5.2) can be reformulated as the equivalent problem of minimizing the

weighted aggregation of K local empirical risk functions:

w?
∆
= arg min

w∈M
J(w)

∆
=

K∑
k=1

qkJk(w). (5.4)

where qk
∆
= Nk/N . The following assumptions are standard in the distributed optimization

literature, and they are automatically satisfied by many loss functions of interest in the

machine learning literature (such as quadratic losses, logistic losses — see, e.g., [1, 4]). For

simplicity in this article, we assume the loss functions are smooth, although the arguments

can be extended to deal with non-smooth losses, as we have done in [156,157].

Assumption 5.1 The loss function, Q(w;xn), is convex, twice-differentiable, and has a

δ-Lipschitz continuous gradient, i.e., for any w1, w2 ∈ RM and 1 ≤ n ≤ N :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δ‖w1 − w2‖ (5.5)

where δ > 0. Moreover, there exists at least one loss function Q(w;xno) that is strongly

convex, i.e.,

∇2
wQ(w;xno) ≥ νIM > 0, for some no. (5.6)

�

5.1.2 Related Work

There exists an extensive body of research on solving optimization problems of the form

(5.4) in a fully decentralized manner. Some recent works include techniques such as ADMM

[74,85], DLM [87], EXTRA [75], ESOM [158], DIGing [93], Aug-DGM [95] and exact diffusion

[15, 16]. These methods provide linear convergence rates and are proven to converge to the

exact minimizer, w?. The exact diffusion method, in particular, has been shown to have a
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wider stability range than EXTRA implementations (i.e., it is stable for a wider range of

step-sizes, µ), and is also more efficient in terms of communications than DIGing. However,

all these methods require the evaluation of the true gradient vector of each Jk(w) at each

iteration. It is seen from the definition (5.3), and depending on the size Nk, that this

computation can be prohibitive for large-data scenarios.

One can resort to replacing the true gradient by a stochastic gradient approximation, as

is commonplace in traditional diffusion or consensus algorithms [1,4–6,8,9,12,142]. In these

implementations, each node k approximates the true gradient vector ∇Jk(w) by using one

random sample gradient, ∇Q(w;xk,n), where n ∈ {1, 2, · · · , Nk} is a uniformly-distributed

random index number. While this mode of operation is efficient, it has been proven to

converge linearly only to a small O(µ)−neighborhood around the exact solution w? [36]

where µ is the constant step-size. If convergence to the exact solution is desired, then

one can employ decaying step-sizes instead of constant step-sizes; in this case, however,

the convergence rate will be slowed down appreciably. An alternative is to employ variance-

reduced techniques to enable convergence to the exact minimizer while employing a stochastic

gradient approximation. One proposal along these lines is the DSA method [77], which is

based on the variance-reduced SAGA method [149, 151]. However, similar to SAGA, the

DSA method suffers from the same huge memory requirement since each node k will need to

store an estimate for each possible gradient {∇Q(w;xk,n)}Nk
n=1. This requirement is a burden

when Nk is large, as happens in applications involving large data sets.

5.1.3 Contribution

This chapter derives a new fully-decentralized variance-reduced stochastic-gradient algorithm

with linear convergence guarantees and with significantly reduced memory requirements. We

refer to the technique as the diffusion-AVRG method (where AVRG stands for the “amor-

tized variance-reduced gradient” technique proposed in the related work [76] for single-agent

learning). Unlike DSA and SAGA, this method does not require extra memory to store

gradient estimates. The method is also different from the well-known alternative to SAGA

known as SVRG [150, 159]. The SVRG method has an inner loop to perform stochastic
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variance-reduced gradient descent and an outer loop to calculate the true local gradient.

These two loops introduce imbalances into the gradient calculation and complicate decen-

tralized implementations. In comparison, the AVRG construction involves balanced gradient

calculations and is amenable to fully distributed solutions, especially when the size of the

data is unevenly distributed across the nodes. More comparisons between diffusion-AVRG

and diffusion-SVRG are discussed in Section 5.4.1. This paper also proposes to use the

mini-batch technique to save communications in diffusion-AVRG.

Notation Throughout this paper we use diag{x1, · · · , xN} to denote a diagonal matrix

consisting of diagonal entries x1, · · · , xN , and use col{x1, · · · , xN} to denote a column vector

formed by stacking x1, · · · , xN . For symmetric matrices X and Y , the notation X ≤ Y

or Y ≥ X denotes Y − X is positive semi-definite. For a vector x, the notation x � 0

denotes that each element of x is non-negative. For a matrix X, we let ‖X‖ denote its

2-induced norm (maximum singular value), and λ(X) denote its eigenvalues. The notation

1K = col{1, · · · , 1} ∈ RK , and 0K = col{0, · · · , 0} ∈ RK . For a nonnegative diagonal matrix

Λ = diag{λ1, · · · , λK}, we let Λ1/2 = diag{λ1/2
1 , · · · , λ1/2

K }.

5.2 Two Key Components

In this section we review two useful techniques that will be blended together to yield the

diffusion-AVRG scheme. The first technique is the exact diffusion algorithm from [15, 16],

which is able to converge to the exact minimizers of the decentralized optimization problem

(5.4). The second technique is the amortized variance-reduced (AVRG) algorithm proposed

in our earlier work [76, 160], which has balanced computations per iteration and was shown

there to converge linearly under random reshuffling. Neither of the methods alone is sufficient

to solve the multi-agent optimization problem (5.4) in a decentralized and efficient manner.

This is because exact diffusion is decentralized but not efficient for the current problem,

while AVRG is efficient but not decentralized.
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Algorithm 5.1 (Exact diffusion strategy for each node k)

Let A = (IN +A)/2 and a`k = [A ]`k. Initialize wk,0 arbitrarily, and let ψk,0 = wk,0.

Repeat iteration i = 1, 2, 3 · · ·

ψk,i+1 = wk,i − µ qk∇Jk(wk,i), (adaptation) (5.8)

φk,i+1 = ψk,i+1 + wk,i − ψk,i, (correction) (5.9)

wk,i+1 =
∑
`∈Nk

a`kφ`,i+1. (combination) (5.10)

End

5.2.1 Exact Diffusion Algorithm

Thus, consider again the aggregate optimization problem (5.4) over a strongly-connected

network with K nodes, where the {qk} are positive scalars. Each local risk Jk(w) is a

differentiable and convex cost function, and the global risk J(w) is strongly convex. To

implement the exact diffusion algorithm, we need to associate a combination matrix A =

[a`k]
K
`,k=1 with the network graph, where a positive weight a`k is used to scale data that flows

from node ` to k if both nodes happen to be neighbors; if nodes ` and k are not neighbors,

then we set a`k = 0. In this paper we assume A is symmetric and doubly stochastic, i.e.,

a`k = ak`, A = AT and A1K = 1K (5.7)

where 1 is a vector with all unit entries. Such combination matrices can be easily generated

in a decentralized manner through the Laplacian rule, maximum-degree rule, Metropolis rule

or other rules (see, e.g., Table 14.1 in [1]). We further introduce µ as the step-size parameter

for all nodes, and let Nk denote the set of neighbors of node k (including node k itself).

The exact diffusion algorithm [15] is listed in (5.8)–(5.10). The subscript k refers to the

node while the subscript i refers to the iteration. It is observed that there is no central node

that performs global updates. Each node performs a local update (see equation (5.8)) and

then combines its iterate with information collected from the neighbors (see equation (5.10)).

174



The correction step (5.9) is necessary to guarantee exact convergence. Indeed, it is proved

in [16] that the local variables wk,i converge to the exact minimizer of problem (5.4), w?, at

a linear convergence rate under relatively mild conditions. However, note from (5.3) that it

is expensive to calculate the gradient ∇Jk(w) in step (5.8), especially when Nk is large. In

the proposed algorithm derived later, we will replace the true gradient ∇Jk(w) in (5.8) by

an amortized variance-reduced gradient, denoted by ∇̂Jk(wk,i−1).

5.2.2 Amortized Variance-Reduced Gradient (AVRG) Algorithm

The AVRG construction [76] is a centralized solution to optimization problem (5.2). It

belongs to the class of variance-reduced methods. There are mainly two families of variance-

reduced stochastic algorithms to solve problems like (5.2): SVRG [150, 159] and SAGA

[149, 151]. The SVRG solution employs two loops — the true gradient is calculated in the

outer loop and the variance-reduced stochastic gradient descent is performed within the

inner loop. For this method, one disadvantage is that the inner loop can start only after the

calculation of the true gradient is completed in the outer loop. This leads to an unbalanced

gradient calculation. For large data sets, the calculation of the true gradient can be time-

consuming leading to significant idle time, which is not well-suited for decentralized solutions.

More details are provided later in Sec. 5.4. In comparison, the SAGA solution has a single

loop. However, it requires significant storage to estimate the true gradient, which is again

prohibitive for effective decentralization on nodes or devices with limited memory.

These observations are the key drivers behind the introduction of the amortized variance-

reduced gradient (AVRG) algorithm in [76]: it avoids the disadvantages of both SVRG and

SAGA for decentralization, and has been shown to converge at a linear rate to the true

minimizer. AVRG is based on the idea of removing the outer loop from SVRG and amortizing

the calculation of the true gradient within the inner loop evenly. To guarantee convergence,

random reshuffling is employed in each epoch. Under random reshuffling, the algorithm is run

multiple times over the data where each run is indexed by t and is referred to as an epoch.

For each epoch t, a uniform random permutation function σt is generated and data are
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Algorithm 5.2 (AVRG strategy)

Initialize w0
0 arbitrarily; let g0 = 0, ∇Q(w0

0;xn)← 0 for n ∈ {1, 2, · · · , N}.

Repeat epoch t = 0, 1, 2, · · · :

h generate a random permutation function σt and set gt+1 = 0;

h Repeat iteration i = 0, 1, · · · , N − 1:

nti = σt(i+ 1) (5.11)

wt
i+1 = wt

i − µ
(
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
) + gt

)
(5.12)

gt+1 ← gt+1 +
1

N
∇Q(wt

i;xni) (5.13)

h End

h set wt+1
0 = wt

N ;

End

sampled according to it. AVRG is listed in Algorithm 2, which has balanced computation

costs per iteration with the calculation of two gradients ∇Q(wt
i;xni

) and ∇Q(wt
0;xni

).

Different from SVRG and SAGA, the stochastic gradient estimate ∇̂J(wt
i) = ∇Q(wt

i;xni
)−

∇Q(wt
0;xni

) +gt is biased. However, it is explained in [76] that E‖∇̂J(wt
i)−∇J(wt

i)‖2 will

approach 0 as epoch t tends to infinity, which implies that AVRG is an asymptotic unbiased

variance-reduced method.

5.3 Diffusion–AVRG Algorithm for Balanced Data Distributions

We now design a fully-decentralized algorithm to solve (5.4) by combining the exact diffusion

strategy (5.8)–(5.10) and the AVRG mechanism (5.11)–(5.13). We consider first the case in

which all nodes store the same amount of local data, i.e., N1 = · · · = NK = sN = N/K.

For this case, the cost function weights {qk} in problem (5.4) are equal, q1 = · · · = qK =

1/K, and it makes no difference whether we keep these scaling weights or remove them
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from the aggregate cost. The proposed diffusion-AVRG algorithm to solve (5.4) is listed in

Algorithm 3 under Eqs. (5.14)–(5.19). Since each node has the same amount of local data

samples, Algorithm 3 can be described in a convenient format involving epochs t and an inner

iterations index i within each epoch. For each epoch or run t over the data, the original

data is randomly reshuffled so that the sample of index i+ 1 at agent k becomes the sample

of index ntk,i = σtk(i + 1) in that run. Subsequently, at each inner iteration i, each node k

will first generate an amortized variance-reduced gradient ∇̂Jk(wt
k,i) via (5.14)–(5.16), and

then apply it into exact diffusion (5.17)–(5.19) to update wt
k,i+1. Here, the notation wt

k,i

represents the estimate that agent k has for w? at iteration i within epoch t. With each node

combining information from neighbors, there is no central node in this algorithm. Moreover,

unlike DSA [77], this algorithm does not require extra memory to store gradient estimates.

The linear convergence of diffusion-AVRG is established in the following theorem.

Theorem 5.1 (Linear Convergence) Under Assumption 5.1, if the step-size µ satisfies

µ ≤ C

(
ν(1− λ)

δ2
sN

)
, (5.20)

then, for any k ∈ {1, 2, · · · , K}, it holds that

E‖wt+1
k,0 − w

?‖2 ≤ Dρt, (5.21)

where

ρ =
1− N

8
aµν

1− 8bµ3δ4
sN3/ν

< 1. (5.22)

The constants C,D, a, b are positive constants independent of sN , ν and δ; they are defined

in the appendices. The constant λ = λ2(A) < 1 is the second largest eigenvalue of the

combination matrix A.

Proof: The derivation of this result is lengthy and is given in Appendix 5.A. The proof

is by no means trivial for various reasons. One source of complication is the decentralized

nature of the algorithm with nodes only allowed to interact locally. Moreover, due to the bias

in the gradient estimate, current analyses used for SVRG [150], SAGA [151], or DSA [77]

are not suitable; these analyses can only deal with uniform sampling and unbiased gradient

constructions. In our setting, the gradient constructions are biased and sampling is random

with reshuffling (rather than uniform). The detailed proof is given in the appendix. �
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Algorithm 5.3 (diffusion-AVRG at node k for balanced data)

Initialize w0
k,0 arbitrarily; let ψ0

k,0 = w0
k,0, g0

k = 0, and ∇Q(w0
0;xk,n) ← 0, 1 ≤ n ≤ sN , where

sN = N/K.

Repeat epoch t = 0, 1, 2, · · ·

h generate a random permutation function σtk and set gt+1
k = 0.

h Repeat iteration i = 0, 1, · · · , sN − 1:

ntk,i = σtk(i+ 1), (5.14)

∇̂Jk(wt
k,i) = ∇Q(wt

k,i;xk,nt
k,i

)−∇Q(wt
k,0;xk,nt

k,i
) + gtk, (5.15)

gt+1
k ← gt+1

k +
1
sN
∇Q(wt

k,i;xk,nt
k,i

), (5.16)

update wt
k,i+1 with exact diffusion:

ψtk,i+1 = wt
k,i − µ∇̂Jk(wt

k,i), (5.17)

φtk,i+1 = ψtk,i+1 +wt
k,i −ψtk,i, (5.18)

wt
k,i+1 =

∑
`∈Nk

a`kφ
t
`,i+1.

(5.19)

hh End

hh set wt+1
k,0 = wt

k, sN
and ψt+1

k,0 = ψt
k, sN

End

5.4 Diffusion–AVRG Algorithm for Unbalanced Data Distribu-

tions

When the size of the data collected at the nodes may vary drastically, some challenges arise.

For example, assume we select N̂ = maxk{Nk} as the epoch size for all nodes. When node

k with a smaller Nk finishes its epoch, it will have to stop and wait for the other nodes to

finish their epochs. Such an implementation is inefficient because nodes will be idle while

they could be assisting in improving the convergence performance.

We instead assume that nodes will continue updating without any idle time. If a partic-

ular node k finishes running over all its data samples during an epoch, it will then continue
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Figure 5.1: Illustration of the operation of diffusion-AVRG for a two-node network.

its next epoch right away. In this way, there is no need to introduce a uniform epoch. We

list the method in Algorithm 4; this listing includes the case of balanced data as a special

case. In other words, we have a single diffusion-AVRG algorithm. We are describing it in

two formats (Algorithms 3 and 4) for ease of exposition so that readers can appreciate the

simplifications that occur in the balanced data case.

In Algorithm 4, at each iteration i, each node k will update its wk,i to wk,i+1 by exact

diffusion (5.26)–(5.28) with stochastic gradient. Notice that qk has to be used to scale

the step-size in (5.26) because of the spatially unbalanced data distribution. To generate

the local stochastic gradient ∇̂Jk(wk,i), node k will transform the global iteration index

i to its own local epoch index t and local inner iteration s. With t and s determined,

node k is able to generate ∇̂Jk(wk,i) with the AVRG recursions (5.23)–(5.25). Note that

t, s,σtk,θ
t
k,0,n

t
s are all local variables hidden in node k to help generate the local stochastic

gradient ∇̂Jk(wk,i) and do not appear in exact diffusion (5.26)–(5.28). Steps (5.23)–(5.27)

are all local update operations within each node while step (5.28) needs communication with

neighbors. It is worth noting that the local update (5.23)–(5.27) for each node k at each

iteration requires the same amount of computations no matter how different the sample sizes

{Nk} are. This balanced computation feature guarantees the efficiency of diffusion-AVRG

and reduces waiting time. Figure 5.1 illustrates the operation of Algorithm 4 for a two-node

network with N1 = 2 and N2 = 3. That is, the first node collects two samples while the

second node collects three samples. For each iteration index i, the nodes will determine the

local values for their indices t and s. These indices are used to generate the local variance-

reduced gradients ∇̂Jk(wk,i). Once node k finishes its own local epoch t, it will start its next
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epoch t+1 right away. Observe that the local computations has similar widths because each

node has a balanced computation cost per iteration. Note that Wi = [w1,i;w2,i] in Figure

5.1.

5.4.1 Comparison with Decentralized SVRG

AVRG is not the only variance-reduced algorithm that can be combined with exact diffusion.

In fact, SVRG is another alternative to save memory compared to SAGA. SVRG has two

loops of calculation: it needs to complete the calculation of the true gradient before starting

the inner loop. Such two-loop structures are not suitable for decentralized setting, especially

when data can be distributed unevenly. To illustrate this fact assume, for the sake of

argument, that we combine exact diffusion with SVRG to obtain a diffusion-SVRG variant,

which we list in Algorithm 5. Similar to diffusion-AVRG, each node k will transform the

global iteration index i into a local epoch index t and a local inner iteration s, which are then

used to generate ∇̂J(wk,i) through SVRG. At the very beginning of each local epoch t, a true

local gradient has to be calculated in advance; this step causes a pause before the update of

φk,i+1. Now since the neighbors of node k will be waiting for φk,i+1 in order to update their

own w`,i+1, the pause by node k will cause all its neighbors to wait. These waits reduce

the efficiency of this decentralized implementation, which explains why the earlier diffusion-

AVRG algorithm is preferred. Fig. 5.2 illustrates the diffusion-SVRG strategy with N1 = 2

and N2 = 3. Comparing Figs. 5.1 and 5.2, the balanced calculation resulting from AVRG

effectively reduces idle times and enhances the efficiency of the decentralized implementation.

5.5 Diffusion-AVRG with Mini-batch Strategy

Compared to exact diffusion [15, 16], diffusion-AVRG allows each agent to sample one gra-

dient at each iteration instead of calculating the true gradient with Nk data. This property

enables diffusion-AVRG to be more computation efficient than exact diffusion. It is observed

in Figs. 5.6 and 5.7 from Section 5.6 that in order to reach the same accuracy, diffusion-
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AVRG needs less gradient calculation than exact diffusion.

However, such computational advantage comes with extra communication costs. In the

exact diffusion method listed in Algorithm 1, it is seen that agent k will communicate after

calculating its true gradient ∇J(w) = 1
Nk

∑Nk

n=1Q(w;xk,n). But in the diffusion-AVRG listed

in Algorithms 2 and 3, each agent will communicate after calculating only one stochastic

gradient. Intuitively, in order to reach the same accuracy, diffusion-AVRG needs more it-

erations than exact diffusion, which results in more communications. The communication

comparison for diffusion-AVRG and exact diffusion are also shown in Figs. 5.6 and 5.7 in

Section 5.6.

In this section we introduce the mini-batch strategy to balance the computation and

communication of diffusion-AVRG. For simplicity, we consider the situation where all local

data size Nk are equal to sN , but the strategy can be extended to handle the spatially

unbalanced data distribution case. Let the batch size be B, and the number of batches

L
∆
= sN/B. The local data in agent k can be partitioned as

{xk,n}
sN
n=1=

{
{x(1)

k,n}
B
n=1, {x

(2)
k,n}

B
n=1, · · · , {x

(L)
k,n}

B
n=1

}
, (5.35)

where the superscript (`) indicates the `-th mini-batch. In addition, the local cost function

Jk(w) can be rewritten as

Jk(w) =
1
sN

sN∑
n=1

Q(w;xk,n) =
B
sN

L∑
`=1

1

B

B∑
n=1

Q(w;x
(`)
k,n)

=
1

L

L∑
`=1

Q
(`)
k (w), (5.36)

where the last equality holds because L = sN/B and

Q
(`)
k (w)

∆
=

1

B

B∑
n=1

Q(w;x
(`)
k,n) (5.37)

is defined as the cost function over the `-th batch in agent k. Note that the mini-batch

formulations (5.36) and (5.37) are the generalization of cost function (5.3). When B =

1, formulations (5.36) and (5.37) will reduce to (5.3). Moreover, it is easy to prove that

{Q`
k(w)}K,Lk=1,`=1 satisfy Assumption 5.1.

Since the mini-batch formulations (5.36) and (5.37) fall into the form of problem (5.3)
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Figure 5.2: Illustration of what would go wrong if one attempts a diffusion-SVRG implementation

for a two-node network, and why diffusion-AVRG is the recommended implementation.

and (5.4), we can directly extend Algorithm 3 to the mini-batch version with the convergence

guarantee. The only difference is for each iteration, a batch, rather than a sample will be

picked up, and then length of batches is L rather than sN . We also list the mini-batch

algorithm in Algorithm 6.

Diffusion-AVRG with mini-batch stands in the middle point between standard diffusion-

AVRG and exact diffusion. For each iteration, Algorithm 6 samples B gradients, rather

than 1 gradient or sN gradients, and then communicates. The size of B will determine the

computation and communication efficiency, and there is a trade-off between computation and

communication. When given the actual cost in real-world applications, we can determine the

Pareto optimal for the batch-size. In our simulation shown in Section 5.6, when best batch-

size is chosen, diffusion-AVRG with mini-batch can be much more computation efficient

while maintaining almost the same communication efficiency with exact diffusion.

5.6 Simulation Results

In this section, we illustrate the convergence performance of diffusion-AVRG. We consider

problem (5.4) in which Jk(w) takes the form of regularized logistic regression loss function:

Jk(w)
∆
=

1

Nk

Nk∑
n=1

(ρ
2
‖w‖2+ln

(
1+exp(−γk(n)hTk,nw)

))
with qk = Nk/N . The vector hk,n is the n-th feature vector kept by node k and γk(n) ∈ {±1}

is the corresponding label. In all experiments, the factor ρ is set to 1/N , and the solution w?

182



Figure 5.3: Comparison between diffusion-AVRG and DSA over various datasets. Top: data are

evenly distributed over the nodes; Bottom: data are unevenly distributed over the nodes. The

average sample size is Nave =
∑K

k=1Nk/K.

to (5.4) is computed by using the Scikit-Learn Package. All experiments are run over four

datasets: covtype.binary1, rcv1.binary2, MNIST3, and CIFAR-104. The last two datasets

have been transformed into binary classification problems by considering data with labels 2

and 4, i.e., digital two and four classes for MNIST, and cat and dog classes for CIFAR-10. All

features have been preprocessed and normalized to the unit vector [159]. We also generate a

randomly connected network with K = 20 nodes, which is shown in Fig. 5.4. The associated

doubly-stochastic combination matrix A is generated by the Metropolis rule [1].

In our first experiment, we test the convergence performance of diffusion-AVRG (Algo-

rithm 3) with even data distribution, i.e., Nk = N/K. We compare the proposed algorithm

with DSA [77], which is based on SAGA [151] and hence has significant memory require-

ment. In comparison, the proposed diffusion-AVRG algorithm does not need to store the

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3http://yann.lecun.com/exdb/mnist/

4http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 5.4: A random connected network with 20 nodes.

Figure 5.5: Diffusion-AVRG is more stable than DSA.
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gradient estimates and is quite memory-efficient. The experimental results are shown in the

top 4 plots of Fig. 5.3. To enable fair comparisons, we tune the step-size parameter of each

algorithm for fastest convergence in each case. The plots are based on measuring the aver-

aged relative square-error, 1
K

∑K
k=1 ‖wt

k,0−w?‖2/‖w?‖2. It is observed that both algorithms

converge linearly to w?, while diffusion-AVRG converges faster (especially on Covtype and

CIFAR-10).

In our second experiment, data are randomly assigned to each node, and the sample sizes

at the nodes may vary drastically. We now compare diffusion-AVRG (Algorithm 3) with

DSA. Since there is no epoch for this scenario, we compare the algorithms with respect to

the iterations count. In the result shown in bottom 4 plots of Fig. 5.3, it is also observed

that both algorithms converge linearly to w?, with diffusion-AVRG converging faster than

DSA.

In our third experiment, we test the stability of DSA and diffusion-AVRG. For simplicity,

this experiment is conducted in the context of solving a linear regression problem with

synthetic data. Each feature-label pair (hn,γ(n)) is drawn from a Gaussian distribution.

We generate N = 100, 000 data points, which are evenly distributed over the 20 nodes. We

set the same step-size to both algorithms and check which one of them exhibits a wider

step-size range for stability. For example, in Fig. 5.5, it is observed that DSA diverges while

diffusion-AVRG still converges when µ = 0.13. It has been observed during these experiments

that diffusion-AVRG is more stable than DSA. This improved stability is inherited from the

structure of the exact diffusion strategy [4, 15, 16]. The improved stability range also helps

explain why diffusion-AVRG is faster than DSA in Fig. 5.3.

In our fourth experiment, we test how the mini-batch size B influences the computa-

tion and communication efficiency in diffusion-AVRG. The experiment is conducted on the

MNIST and RCV1 datasets. For each batch size, we run the algorithm until the relative error

reaches 10−10. The step-size for each batch size is adjusted to be optimal. The communica-

tion is examined by counting the number of message passing rounds, and the computation

is examined by counting the number of ∇Q(w;xn) evaluations. The exact diffusion is also

tested for comparison. In Fig. 5.6, we use “AVRG” to indicate the standard diffusion-
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Figure 5.6: Performance of diffusion-AVRG with different batch sizes on MNIST dataset. Each

agent holds sN = 1200 data.

AVRG method. It is observed that standard diffusion-AVRG is more computation efficient

than exact diffusion. To reach 10−10 relative error, exact diffusion needs around 2 × 105

gradient evaluations while diffusion-AVRG just needs around 2 × 104 gradient evaluations.

However, exact diffusion is much more communication efficient than diffusion-AVRG. To see

that, exact diffusion requires around 200 communication rounds to reach 10−10 error while

diffusion-AVRG requires 2 × 104 communication rounds. Similar observation also holds for

RCV1 dataset, see Fig. 5.7.

It is also observed in Fig. 5.6 that mini-batch can balance the communication and

computation for diffusion-AVRG. As batch size grows, the computation expense increases

while the communication expense reduces. Diffusion-AVRG with appropriate batch-size is

able to reach better performance than exact diffusion. For example, diffusion-AVRG with

B = 200 will save around 60% computations while maintaining almost the same amount of

communications. Similar observation also holds for RCV1 dataset, see Fig. 5.7.
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Figure 5.7: Performance of diffusion-AVRG with different batch sizes on RCV1 dataset. Each

agent holds sN = 480 data.

5.A Proof of Theorem 5.1

In this section we establish the linear convergence property of diffusion-AVRG (Algorithm

2). We start by transforming the exact diffusion recursions into an equivalent linear error

dynamics driven by perturbations due to gradient noise (see Lemma 2). By upper bounding

the gradient noise (see Lemma 3), we derive a couple of useful inequalities for the size of

the inner iterates (Lemma 4), epoch iterates (Lemma 5), and inner differences (Lemma 6).

We finally introduce an energy function and show that it decays exponentially fast (Lemma

7). From this result we will conclude the convergence of E‖wt
k,0 − w?‖2 (as stated in (5.21)

in Theorem 1). Throughout this section we will consider the practical case where sN ≥ 2.

When sN = 1, diffusion-AVRG reduces to the exact diffusion algorithm whose convergence

is already established in [16].
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5.A.1 Extended Network Recursion

Recursions (5.17)–(5.19) of Algorithm 2 only involve local variables wt
k,i, φ

t
k,i and ψt

k,i. To

analyze the convergence of all {wt
k,i}Kk=1, we need to combine all iterates from across the

network into extended vectors. To do so, we introduce

Wt
i = col{wt

1,i, · · · ,wt
K,i} (5.44)

φti = col{φt1,i, · · · ,φtK,i} (5.45)

ψt
i = col{ψt

1,i, · · · ,ψt
K,i} (5.46)

∇J (Wt
i) = col{∇J1(wt

1,i), · · · ,∇JK(wt
K,i)} (5.47)

∇̂J (Wt
i) = col{∇̂J1(wt

1,i), · · · , ∇̂JK(wt
K,i)} (5.48)

A = A⊗ IM (5.49)

where ⊗ is the Kronecker product. With the above notation, for 0 ≤ i ≤ sN − 1 and t ≥ 0,

recursions (5.17)–(5.19) of Algorithm 2 can be rewritten as
ψt
i+1 = Wt

i − µ∇̂J (Wt
i),

φti+1 = ψt
i+1 + Wt

i −ψt
i,

Wt
i+1 = Aφti+1,

(5.50)

and we let ψt+1
0 = ψt

sN and Wt+1
0 = Wt

sN
. In particular, since ψ0

0 is initialized to be equal to

W0
0, for t = 0 and i = 0, it holds that

ψ0
1 = W0

0 − µ∇̂J (W0
0),

φ0
1 = ψ0

1,

W0
1 = Aφ0

1,

(5.51)

Substituting the first and second equations of (5.50) into the third one, we have that for

1 ≤ i ≤ sN and t ≥ 0:

Wt
i+1 = A

(
2Wt

i−Wt
i−1−µ[∇̂J (Wt

i)−∇̂J (Wt
i−1)]

)
, (5.52)

and we let Wt+1
0 = Wt

sN
and Wt+1

1 = Wt
sN+1

for each epoch t. Moreover, we can also rewrite

(5.51) as

W0
1 = A

(
W0

0 − µ∇̂J (W0
0)
)
. (5.53)
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It is observed that recursion (5.52) involves two consecutive variables Wt
i and Wt

i−1, which

complicates the analysis. To deal with this issue, we introduce an auxiliary variable Yti

to make the structure in (5.52) more tractable. For that purpose, we first introduce the

eigen-decomposition:

1

2K
(IK − A) = UΣUT, (5.54)

where Σ is a nonnegative diagonal matrix (note that IK−A is positive semi-definite because

A is doubly stochastic), and U is an orthonormal matrix. We also define

V
∆
= UΣ1/2UT, V ∆

= V ⊗ IM . (5.55)

Note that V and V are symmetric matrices. It can be verified (see Appendix 5.B) that

recursion (5.52) is equivalent to
Wt
i+1 = A

(
Wt
i − µ∇̂J (Wt

i)
)
−KVYti

Yti+1 = Yti + VWt
i+1

(5.56)

where 0 ≤ i ≤ sN−1 and t ≥ 0, Y0
0 is initialized at 0, and Wt+1

0 = Wt
sN
, Yt+1

0 = Yt
sN

after epoch

t. Note that recursion (5.56) is very close to recursion for exact diffusion (see equation (93)

in [15]), except that ∇̂J (Wt
i) is a stochastic gradient generated by AVRG. We denote the

gradient noise by

s(Wt
i) = ∇̂J (Wt

i)−∇J (Wt
i). (5.57)

Substituting into (5.56), we get
Wt
i+1 = A

(
Wt
i−µ∇J (Wt

i)
)
−KVYti − µA s(Wt

i)

Yti+1 = Yti + VWt
i+1

(5.58)

In summary, the exact diffusion recursions (5.17)–(5.19) of Algorithm 2 are equivalent to

form (5.58).

5.A.2 Optimality Condition

It is proved in Lemma 4 of [16] that there exists a unique pair of variables (W?, Y?o), with Y?o

lying in the range space of V , such that

µA∇J (W?) +KVY?o = 0 and VW? = 0, (5.59)
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where we partition W? into block entries of sizeM×1 each as follows: W? = col{w?1, w?2, · · · , w?K} ∈

RKM . For such (W?, Y?o), it further holds that the block entries of W? are identical and coincide

with the unique solution to problem (4), i.e.

w?1 = w?2 = · · · = w?K = w?. (5.60)

In other words, equation (5.59) is the optimality condition characterizing the solution to

problem (5.4).

5.A.3 Error Dynamics

Let W̃
t
i = W?−Wt

i and Ỹ
t
i = Y?o−Yti denote error vectors relative to the solution pair (W?, Y?o).

It is proved in Appendix 5.C that recursion (5.58), under Assumption 5.1, can be transformed

into the following recursion driven by a gradient noise term: W̃
t
i+1

Ỹ
t
i+1

 = (B − µT t
i)

 W̃
t
i

Ỹ
t
i

+ µBls(Wt
i), (5.61)

where 0≤ i≤ sN − 1, t ≥ 0, and W̃
t+1
0 = W̃

t
sN , Ỹ

t+1
0 = Ỹ

t
sN after epoch t. Moreover, B,Bl and

T t
i are defined as

B ∆
=

 A −KV

VA A

 , Bl ∆
=

 A
VA

 , T t
i

∆
=

 AHt
i 0

VAHt
i 0

 , (5.62)

where

Ht
i = diag{H t

1,i, · · · ,H t
K,i} ∈ RKM×KM , (5.63)

H t
k,i

∆
=

∫ 1

0

∇2Jk
(
w?−rw̃t

k,i

)
dr ∈ RM×M . (5.64)

To facilitate the convergence analysis of recursion (5.61), we diagonalize B and transform

(5.61) into an equivalent error dynamics. From equations (64)–(67) in [16], we know that B

admits an eigen-decomposition of the form

B ∆
= XDX−1, (5.65)
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where X ,D and X−1 are KM by KM matrices defined as

D ∆
=


IM 0 0

0 IM 0

0 0 D1

 ∈ R2KM×2KM , (5.66)

X ∆
=
[
R1 R2 XR

]
∈ R2KM×2KM , (5.67)

X−1 ∆
=


LT

1

LT
2

XL

 ∈ R2KM×2KM . (5.68)

In (5.66), matrix D1 = D1 ⊗ IM and D1 ∈ R2(K−1)×2(K−1) is a diagonal matrix with ‖D1‖ =

λ2(A)
∆
= λ < 1. In (5.67) and (5.68), matrices R1, R2, L1 and L2 take the form

R1 =

 1K

0K

⊗ IM , R2 =

 0K

1K

⊗ IM (5.69)

L1 =

 1
K
1K

0K

⊗ IM , L2 =

 0K

1
K
1K

⊗ IM (5.70)

Moreover, XR ∈R2KM×2(K−1)M and XL ∈R2(K−1)M×2KM are some constant matrices. Since

B is independent of sN , δ and ν, all matrices appearing in (5.65)–(5.68) are independent of

these variables as well. By multiplying X−1 to both sides of recursion (5.61), we have

X−1

 W̃
t
i+1

Ỹ
t
i+1


=[X−1(B − µT t

i)X ]X−1

 W̃
t
i

Ỹ
t
i

+ µX−1Bls(Wt
i)

(3.42)
=
(
D−µX−1T t

iX
)X−1

 W̃
t
i

Ỹ
t
i

+µX−1Bls(Wt
i). (5.71)

Now we define 
X̄ t
i

X̂
t
i

X̌ t
i

 ∆
= X−1

 W̃
t
i

Ỹ
t
i

 (5.68)
=


LT

1

LT
2

XL


 W̃

t
i

Ỹ
t
i

 , (5.72)
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as transformed errors. Moreover, we partition XR as

XR =

 XR,u
XR,d

 , where XR,u ∈ RKM×2(K−1)M . (5.73)

With the help of recursion (5.71), we can establish the following lemma.

Lemma 5.1 (Useful Transformation) When Y0
0 is initialized at 0, recursion (5.61) can

be transformed intoX̄ t
i+1

X̌ t
i+1

=

IM− µ
K
ITHt

iI −
µ
K
ITHt

iXR,u

−µXLT t
iR1 D1−µXLT t

iXR

X̄ t
i

X̌ t
i

+µ
 1
K
IT

XLBl

s(Wt
i) (5.74)

where I = 1K ⊗ IM . Moreover, the relation between W̃
t
i, Ỹ

t
i and X̄ t

i, X̌
t
i in (5.71) reduces to W̃

t
i

Ỹ
t
i

 = X


X̄ t
i

0M

X̌ t
i

 . (5.75)

Notice that XL, XR, XR,u and X are all constant matrices and independent of sN, δ and ν.

Proof. See Appendix 5.D. The proof is similar to the derivations in equations (68)–(82)

from [16] except that we have an additional noise term in (5.61). �

Starting from (5.74), we can derive the following recursions for the mean-square errors

of the quantities X̄ t
i and X̌ t

i.

Lemma 5.2 (Mean-square-error Recursion) Under Assum-ption (5.1), Y0
0 = 0 and for

step-size µ < 1/δ, it holds that E‖X̄ t
i+1‖2

E‖X̌ t
i+1‖2

 �
1− a1µν

2a2µδ2

ν

a4µ
2δ2 λ+ a3µ

2δ2

 E‖X̄ t
i‖2

E‖X̌ t
i‖2


+

 2µ
ν
E‖s(Wt

i)‖2

a5µ
2E‖s(Wt

i)‖2

 , (5.76)

where the scalars al, 1 ≤ l ≤ 5 are defined in (5.152); they are positive constants that are

independent of sN , δ and ν.

Proof. See Appendix 5.E. �

192



It is observed that recursion (5.76) still mixes gradient noise E‖s(Wt
i)‖2 (which is corre-

lated with Wt
i) with iterates X̄ t

i and X̌ t
i. To establish the convergence of E‖X̄ t

i‖2 and E‖X̌ t
i‖2,

we need to upper bound E‖s(Wt
i)‖2 with terms related to X̄ t

i and X̌ t
i. In the following lemma

we provide such an upper bound.

Lemma 5.3 (Gradient Noise) Under Assumption 5.1, the second moment of the gradient

noise term satisfies:

E‖s(Wt
i)‖2

≤ 6bδ2E‖X̄ t
i − X̄ t

0‖2 + 12bδ2E‖X̌ t
i‖2 + 18bδ2E‖X̌ t

0‖2

+
3bδ2

sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2+

6bδ2

sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2, (5.77)

where b = ‖X‖2 is a positive constant that is independent of sN , ν and δ.

Proof. See Appendix 5.F. �

In the following subsections, we will exploit the error dynamic (3.164) and the upper

bound (5.77) to establish the convergence of E‖X̄ t
i‖2 and E‖X̌ t

i‖2, from which we will conclude

later the convergence of E‖W̃t
i‖2.

5.A.4 Useful Inequalities

To simplify the notation, we define

At ∆
=

1
sN

sN−1∑
j=0

E‖X̄ t
j − X̄ t

0‖2, (5.78)

Bt ∆
=

1
sN

sN−1∑
j=0

E‖X̄ t
j − X̄ t

sN‖
2, (5.79)

Ct ∆
=

1
sN

sN−1∑
j=0

E‖X̌ t
j‖2. (5.80)

All these quantities appear in the upper bound on gradient noise in (5.77), and their recur-

sions will be required to establish the final convergence theorem.
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Lemma 5.4 ( E‖X̌ t
i‖2 Recursion) Suppose Assumption 1 holds. If the step-size µ satisfies

µ ≤ C1

√
1− λ
δ2

sN
, (5.81)

where C1 > 0, which is defined in (5.178), is a constant independent of sN , ν and δ, it then

holds that

Ct ≤ c1µ
2δ2

sNE‖X̄ t
0‖2+λ3E‖X̌ t

0‖2+c2µ
2δ2

sNAt

+ c3µ
2δ2

sNBt−1+c4µ
2δ2

sNCt−1, (5.82)

E‖X̌ t+1
0 ‖2 ≤ c1µ

2δ2
sNE‖X̄ t

0‖2+λ2E‖X̌ t
0‖2+c2µ

2δ2
sNAt

+c3µ
2δ2

sNBt−1+c4µ
2δ2

sNCt−1, (5.83)

where the constants λ2 < 1, λ3 < 1, and {cl}4
l=1, which are defined in Appendix 5.G, are all

positive scalars that are independent of sN , ν and δ.

Proof. See Appendix 5.G. �

Lemma 5.5 ( E‖X̄ t
0‖2 Recursion) Suppose Assumption 1 holds. If the step-size µ satisfies

µ ≤ C2

(
ν
√

1− λ
δ2

sN

)
, (5.84)

where C2 > 0, which is defined in (5.190), is a constant independent of sN , ν and δ, it then

holds that

E‖X̄ t+1
0 ‖2

≤
(

1−
sN

3
a1µν

)
E‖X̄ t

0‖2 +
d1µδ

2
sN

ν
E‖X̌ t

0‖2

+
d2δ

2µ sN

ν
At +

d3δ
2µ sN

ν
Bt−1 +

d4δ
2µ sN

ν
Ct−1 (5.85)

where {dl}4
l=1, which are defined in (5.188), are positive constants that are independent of

sN , ν and δ.

Proof. See Appendix 5.H. �

Lemma 5.6 (Inner Difference Recursion) Suppose Assumption 1 holds. If the step-size

µ satisfies

µ ≤ C3

√
1− λ
δ2

sN
, (5.86)
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where C3 > 0, which is defined in (5.205), is a constant independent of sN , ν and δ, it then

holds that

At≤12µ2δ2
sN2E‖X̄ t

0‖2+e6µ
2δ2

sN2E‖X̌ t
0‖2+2e3µ

2δ2
sN2At

+ 2e4µ
2δ2

sN2Bt−1 + 2e5µ
2δ2

sN2Ct−1, (5.87)

Bt≤12µ2δ2
sN2E‖X̄ t

0‖2+e6µ
2δ2

sN2E‖X̌ t
0‖2+2e3µ

2δ2
sN2At

+ 2e4µ
2δ2

sN2Bt−1 + 2e5µ
2δ2

sN2Ct−1 (5.88)

where {ei}6
i=3, which are defined in (5.198), are positive constants that are independent of

sN , ν and δ.

Proof. See Appendix 5.J. �

5.A.5 Linear Convergence

With the above inequalities, we are ready to establish the linear convergence of the trans-

formed diffusion-AVRG recursion (5.74).

Lemma 5.7 (Linear Convergence) Under Assumption 5.1, if the step-size µ satisfies

µ ≤ C

(
ν(1− λ)

δ2
sN

)
, (5.89)

where C > 0, which is defined in (5.246), is a constant independent of sN , ν and δ, and

λ = λ2(A) is second largest eigenvalue of the combination matrix A, it then holds that(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+
γ

2

(
At+1 + Bt + Ct

)
≤ρ
{(

E‖X̄ t
0‖2 + E‖X̌ t

0‖2
)

+
γ

2
(At + Bt−1 + Ct−1)

}
(5.90)

where γ = 8f5δ
2µ sN/ν > 0 is a constant, and

ρ =
1− sN

8
a1µν

1− 8f1f5µ3δ4
sN3/ν

< 1. (5.91)

The positive constants a1, f1 and f5 are independent of sN , ν and δ. Their definitions are in

(5.152) and (5.214).

Proof. See Appendix 5.K. �

Using Lemma 5.7, we can now establish the earlier Theorem 5.1.

195



Proof of Theorem 5.1. From recursion (5.90), we conclude that(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+
γ

2

(
At+1 + Bt + Ct

)
≤ ρt

{(
E‖X̄1

0‖2 + E‖X̌1
0‖2
)

+
γ

2
(A1 + B0 + C0)

}
. (5.92)

Since γ > 0, it also holds that

E‖X̄ t+1
0 ‖2 + E‖X̌ t+1

0 ‖2

≤ ρt
{(

E‖X̄1
0‖2 + E‖X̌1

0‖2
)

+
γ

2
(A1 + B0 + C0)

}
. (5.93)

On the other hand, from (5.75) we have

‖W̃t+1
0 ‖2 + ‖Ỹt+1

0 ‖2 ≤ ‖X‖2
(
‖X̄ t+1

0 ‖2 + ‖X̌ t+1
0 ‖2

)
. (5.94)

By taking expectation of both sides, we have

E‖W̃t+1
0 ‖2 + E‖Ỹt+1

0 ‖2 ≤ ‖X‖2
(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
. (5.95)

Combining (5.93) and (5.95), we have

E‖W̃t+1
0 ‖2 + E‖Ỹt+1

0 ‖2

≤ ρt
(
‖X‖2

{(
E‖X̄1

0‖2+E‖X̌1
0‖2
)
+
γ

2
(A1+B0+C0)

})
︸ ︷︷ ︸

∆
= D

. (5.96)

Since E‖W̃t+1
0 ‖2 =

∑K
k=1 E‖w? −w

t+1
k,0 ‖2 ≤ E‖W̃t+1

0 ‖2 + E‖Ỹt+1
0 ‖2, we conclude (5.21). �

5.B Proof of recursion (5.56)

Since V = UΣ1/2UT, it holds that

V 2 =UΣUT (5.54)
= (IK − A)/2K, (5.97)

which implies that

V2 =V 2⊗IM = (IKM−A)/2K. (5.98)

Moreover, since A1K = 1K we get

V 21K = (IKM − A)1K/2K = 0. (5.99)

By noting that ‖V 1K‖2 = 1T
KV

21K = 0, we conclude that

V 1K = 0, and VI = 0, (5.100)

where I ∆
= 1K ⊗ IM . Result (5.100) will be used in Appendix 5.D.
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Now, for t = 0 and i = 0, substituting Y0
0 = 0 into (5.56) we have

W0
1 = A

(
W0

0 − µ∇̂J (W0
0)
)

Y0
1 = VW0

1

(5.101)

The first expression in (5.101) is exactly the first expression in (5.52). For t ≥ 0 and

1 ≤ i ≤ sN , from the first recursion in (5.56) we have

Wt
i+1−Wt

i =A
(
Wt
i−Wt

i−1−µ
(
∇̂J (Wt

i)−∇̂J (Wt
i−1)
))

−KV(Yti−Yti−1), (5.102)

We let Wt+1
1 = Wt

sN+1
and Wt+1

0 = Wt
sN

after epoch t. Recalling from the second recursion in

(5.56) that Yti − Yti−1 = VWt
i, and substituting into (5.102) we get

Wt
i+1 −Wt

i

= A
(
Wt
i−Wt

i−1−µ
(
∇̂J (Wt

i)−∇̂J (Wt
i−1)
))
−KV2Wt

i

(5.98)
= A

(
Wt
i−Wt

i−1−µ
(
∇̂J (Wt

i)−∇̂J (Wt
i−1)
))

− 1

2
(IKM−A) Wt

i. (5.103)

Using A = (IKM +A)/2, the above recursion can be rewritten as

Wt
i+1 =A

(
2Wt

i−Wt
i−1−µ

(
∇̂J (Wt

i)−∇̂J (Wt
i−1)
))

(5.104)

which is the second recursion in (5.52).

5.C Proof of recursion (5.61)

The proof of (5.61) is similar to (36)–(50) in [16] except that we have an additional gradient

noise term s(Wt
i). We subtract W? and Y?o from both sides of (5.58) respectively and use the

fact that AW? = 1
2
(IMK +A)W? = W? to get

W̃
t
i+1 =A

(
W̃
t
i+µ∇J (Wt

i)
)

+KVYti+µA s(Wt
i)

Ỹ
t
i+1 = Ỹ

t
i−VWt

i+1

(5.105)
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Subtracting the optimality condition (5.59) from (5.105) gives
W̃
t
i+1 = A

(
W̃
t
i + µ[∇J (Wt

i)−∇J (W?)]
)

+KV(Yti−Y?o) + µA s(Wt
i)

Ỹ
t
i+1 = Ỹ

t
i−V(Wt

i+1−W?)

(5.106)

Recall that ∇J (W) is twice-differentiable (see Assumption 5.1). We can then appeal to the

mean-value theorem (see equations (40)–(43) in [16]) to express the gradient difference as

∇J (Wt
i)−∇J (W?) = −Ht

iW̃
t
i, (5.107)

where Ht
i is defined in (2.102). With (5.107), recursion (5.106) becomes

W̃
t
i+1 =A

(
IMK−µHt

i

)
W̃
t
i−KV Ỹ

t
i+µA s(Wt

i)

Ỹ
t
i+1 = Ỹ

t
i+VW̃

t
i+1

(5.108)

From relations (5.54) and (5.55), we conclude that V 2 = (IK − A)/2K, which also implies

that V2 = (IMK −A)/2K. With this fact, we substitute the second recursion in (5.108) into

the first recursion to get
AW̃

t
i+1=A

(
IMK−µHt

i

)
W̃
t
i−KV Ỹ

t
i+1+µA s(Wt

i)

Ỹ
t
i+1= Ỹ

t
i+VW̃

t
i+1

(5.109)

which is also equivalent to A KV

−V IMK

 W̃
t
i+1

Ỹ
t
i+1


=

 A(IMK−µHt
i

)
0

0 IMK

 W̃
t
i

Ỹ
t
i

+

 µA
0

s(Wt
i). (5.110)

Also recall (5.54) that A = IK − 2KUΣUT. Therefore,

A =
IK + A

2
= IK−KUΣUT = U(IK−KΣ)UT. (5.111)

This together with the fact that V = UΣ1/2UT leads to

V A=UΣ1/2UTU(IK−KΣ)UT (5.112)

=UΣ1/2(IK−KΣ)UT =U(IK−KΣ)Σ1/2UT =AV, (5.113)
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which also implies that VA = AV . As a result, we can verify that A KV

−V IMK

−1

=

 IMK −KV

V A

 . (5.114)

Substituting the above relation into (5.110), we get W̃
t
i+1

Ỹ
t
i+1

=

 A(IMK−µHt
i

)
−KV

VA
(
IMK−µHt

i

)
A

 W̃
t
i

Ỹ
t
i


+ µ

 A
VA

 s(Wt
i) (5.115)

which matches equations (5.61)–(3.28).

5.D Proof of Lemma 5.1

Now We examine the recursion (5.71). By following the derivation in equations (71)–(77)

from [16], we have

X−1T t
iX=


1
K
ITHt

iI 0 1
K
ITHt

iXR,u

0 0 0

XLT t
iR1 XLT t

iR2 XLT t
iXR

 , (5.116)

where I ∆
= 1K ⊗ IM . It can also be verified that

X−1Bl
(5.68)
=


LT

1

LT
2

XL


 A
VA

(5.70)
=


ITA/K

ITVA/K

XLBl

=


IT/K

0

XLBl

 , (5.117)

where the last equality holds because

ITA = (1T
KA)⊗ IM = 1T

K ⊗ IM = IT, (5.118)

ITVA = (1T
KV A)⊗ IM

(5.100)
= 0. (5.119)
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Substituting (5.116) and (5.117) into recursion (5.71), and also recalling the definition in

(5.72), we get 
X̄ t
i+1

X̂
t
i+1

X̌ t
i+1

 =


IM− µ

K
ITHt

iI 0 − µ
K
ITHt

iXR,u

0 IM 0

−µXLT t
iR1 −µXLT t

iR2 D1−µXLT t
iXR



·


X̄ t
i

X̂
t
i

X̌ t
i

+ µ


1
K
IT

0

XLBl

 s(Wt
i). (5.120)

Notice that the second line of the above recursion is

X̂
t
i+1 = X̂

t
i. (5.121)

As a result, X̂
t
i+1 will stay at 0 if the initial value X̂

0
0 = 0. From (5.72) we can derive that

X̂
0
0

(5.72)
= LT

2

 W̃
0
0

Ỹ
0
0

(3.43)
=

1

K
IT(Yo−Y0

0)
(a)
=

1

K
ITYo

(b)
= 0, (5.122)

where equality (a) holds because Y0
0 = 0. Equality (b) holds because Yo lies in the range space

of V (see Section 5.A.2) and ITV = 0 (see (5.100)). Therefore, with (5.121) and (5.122), we

conclude that

X̂
t
i = 0, 0 ≤ i ≤ sN − 1, t ≥ 0. (5.123)

With (5.123), the transformed error recursion (3.47) reduces toX̄ t
i+1

X̌ t
i+1

 =

IM− µ
K
ITHt

iI − µ
K
ITHt

iXR,u

−µXLT t
iR1 D1−µXLT t

iXR

X̄ t
i

X̌ t
i


+ µ

 1
K
IT

XLBl

 s(Wt
i), (5.124)

while (5.72) reduces to  W̃
t
i

Ỹ
t
i

=X


X̄ t
i

0M

X̌ t
i

 . (5.125)
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5.E Proof of Lemma 5.2

Since Q(w;xn) is twice-differentiable, it follows from (5.5) that ∇2
wQ(w;xn) ≤ δIM for 1 ≤

n ≤ N , which in turn implies that

∇2Jk(w) =
1

Nk

Nk∑
n=1

∇Q(w;xk,n) ≤ δIM ,∀ k ∈ {1, · · · , K} (5.126)

Moreover, since all Q(w;xn) are convex and at least one Q(w;xno) is strongly convex (see

equation (5.6), there must exist at least one node ko such that

∇2Jko(w) =
1

Nko

Nko∑
n=1

∇2
wQ(w;xko,n) ≥ νIM , (5.127)

which implies that the global risk function, J(w), is ν-strongly convex as well. Substituting

(5.126) and (5.127) into H t
k,i defined in (2.102), for t ≥ 0 and 0 ≤ i ≤ sN − 1 it holds that

H t
k,i

(5.64)
=

∫ 1

0

∇2Jk
(
w?−rw̃t

k,i

)
dr

(5.126)

≤ δIM ,∀k ∈ {1, · · · , K} (5.128)

H t
ko,i

(5.64)
=

∫ 1

0

∇2Jko
(
w?−rw̃t

ko,i

)
dr

(5.127)

≥ νIM , (5.129)

Ht
i

(5.64)
= diag{H t

1,i, · · · ,H t
K,i}

(5.128)

≤ δIM . (5.130)

Now we turn to derive the mean-square-error recursion. From the first line of error recursion

(5.74), we have

X̄ t
i+1 =

(
IM−

µ

K
ITHt

iI
)

X̄ t
i

− µ

K

(
ITHt

iXR,u
)
X̌ t
i +

µ

K
ITs(Wt

i). (5.131)

Recalling that I = 1K ⊗ IM , it holds that

1

K
ITHt

iI =
1

K

K∑
k=1

H t
k,i. (5.132)

Substituting relations (5.128) and (5.129) into (5.132), it holds that

ν

K
IM ≤

1

K
ITHt

iI ≤ δIM , (5.133)

which also implies that∥∥∥IM− µ

K
ITHt

iI
∥∥∥2

≤ max

{(
1− µν

K

)2

, (1− µδ)2

}
≤
(

1− µν
K

)2

, (5.134)
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where the last inequality holds when the step-size µ is small enough so that

µ < 1/δ. (5.135)

Now we square both sides of equation (5.131) and reach

‖X̄ t
i+1‖2

=
∥∥∥(IM− µ

K
ITHt

iI
)
X̄ t
i−

µ

K

(
ITHt

iXR,u
)
X̌ t
i+

µ

K
ITs(Wt

i)
∥∥∥2

(a)
=

∥∥∥∥(1− t) 1

1− t

(
IM−

µ

K
ITHt

iI
)

X̄ t
i

+t
1

t

[
− µ

K

(
ITHt

iXR,u
)
X̌ t
i+

µ

K
ITs(Wt

i)
]∥∥∥∥2

(b)

≤ 1

1− t

∥∥∥IM − µ

K
ITHt

iI
∥∥∥2

‖X̄ t
i‖2

+
1

t

∥∥∥ µ
K

(
ITHt

iXR,u
)
X̌ t
i +

µ

K
ITs(Wt

i)
∥∥∥2

(c)

≤ 1

1− t

∥∥∥IM− µ

K
ITHt

iI
∥∥∥2

‖X̄ t
i‖2

+
2µ2

tK2

∥∥ITHt
iXR,u

∥∥2‖X̌ t
i‖2+

2µ2

tK2
‖IT‖2

∥∥s(Wt
i)
∥∥2

(d)

≤ 1

1− t

(
1− µν

K

)2

‖X̄ t
i‖2

+
2µ2δ2‖XR,u‖2

Kt
‖X̌ t

i‖2 +
2µ2

Kt

∥∥s(Wt
i)
∥∥2

(e)
=
(

1− µν

K

)
‖X̄ t

i‖2 +
2µδ2‖XR,u‖2

ν
‖X̌ t

i‖2 +
2µ

ν

∥∥s(Wt
i)
∥∥2

(5.136)

where equality (a) holds for any constant t ∈ (0, 1), inequality (b) holds because of the

Jensen’s inequality, inequality (c) holds because ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 for any two vectors

a and b, and inequality (d) holds because of relation (5.134) and

‖IT‖2 = K, (5.137)∥∥ITHt
iXR,u

∥∥2≤‖IT‖2‖Ht
i‖2‖XR,u‖2≤Kδ2‖XR,u‖2. (5.138)

Equality (e) holds when t = µν/K.

Next we turn to the second line of recursion (5.74):

X̌ t
i+1=D1X̌

t
i−µ

(
XLT t

iR1X̄
t
i+XLT t

iXRX̌ t
i−XLBls(Wt

i)
)

(5.139)
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By squaring and applying Jensen’s inequality, we have

‖X̌ t
i+1‖2 ≤ 1

t
‖D1‖2‖X̌ t

i‖2+
3µ2

1− t

(
‖XLT t

iR1‖2‖X̄ t
i‖2

+ ‖XLT t
iXR‖2‖X̌ t

i‖2+‖XLBl‖2‖s(Wt
i)‖2
)

(5.140)

for any constant t ∈ (0, 1). From the definition of T t
i in (3.28) and recalling from (5.111)

that AV = VA, we have

T t
i =

 A 0

0 A

 IKM 0

V 0

 Ht
i 0

0 Ht
i

 . (5.141)

It can also be verified that∥∥∥∥∥∥
 IKM 0

V 0

∥∥∥∥∥∥
2

= λmax


 IKM 0

V 0

T  IKM 0

V 0




= λmax

 IKM + V2 0

0 0


= λmax

(
IKM +

IKM−A
2K

)
≤ 2 (5.142)

where the last inequality holds because 0 < λ(A) ≤ 1. With (5.141), (5.142) and the facts

that λmax(A) = 1, λmax(Ht
i) ≤ δ, we conclude that

‖T t
i‖2≤

∥∥∥∥∥∥
 A 0

0 A

∥∥∥∥∥∥
2∥∥∥∥∥∥
 IKM 0

V 0

∥∥∥∥∥∥
2∥∥∥∥∥∥
 Ht

i 0

0 Ht
i

∥∥∥∥∥∥
2

≤2δ2. (5.143)

Similarly, using AV = VA we can rewrite Bl defined in (3.28) as

Bl =

 A 0

0 A

 IKM

V

 , (5.144)

and it can be verified that∥∥∥∥∥∥
 IKM

V

∥∥∥∥∥∥
2

= λmax


 IKM

V

T  IKM

V




= λmax

(
IKM + V2

)
= λmax

(
IKM +

IKM−A
2K

)
≤ 2. (5.145)
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As a result,

‖Bl‖2 ≤

∥∥∥∥∥∥
 A 0

0 A

∥∥∥∥∥∥
2 ∥∥∥∥∥∥
 IKM

V

∥∥∥∥∥∥
2

≤ 2. (5.146)

Furthermore,

‖R1‖2 =

∥∥∥∥∥∥
 1K

0

⊗ IM
∥∥∥∥∥∥

2

= λmax


 1K

0

T  1K

0

⊗ IM
 = K. (5.147)

With (5.143)–(5.147), we have

‖XLT t
iR1‖2 ≤ ‖XL‖2‖T t

i‖2‖R1‖2 ≤ 2Kδ2‖XL‖2, (5.148)

‖XLT t
iXR‖2 ≤ 2δ2‖XL‖2‖XR‖2, (5.149)

‖XLBl‖2 ≤ 2‖XL‖2. (5.150)

Substituting (5.148) into (5.140) and recalling that ‖D1‖ = λ < 1, we have

‖X̌ t
i+1‖2

≤ 1

t
λ2‖X̌ t

i‖2+
3µ2

1− t

(
2Kδ2‖XL‖2‖X̄ t

i‖2

+ 2δ2‖XL‖2‖XR‖2‖X̌ t
i‖2+2‖XL‖2‖s(Wt

i)‖2
)

=

(
λ+

6µ2δ2‖XL‖2‖XR‖2

1− λ

)
‖X̌ t

i‖2

+
6Kµ2δ2‖XL‖2

1− λ
‖X̄ t

i‖2 +
6‖XL‖2µ2

1− λ
‖s(Wt

i)‖2, (5.151)

where the last equality holds by setting t = λ. If we let

a1 = 1/K, a2 = ‖XR,u‖2, a3 =
6‖XL‖2‖XR‖2

1− λ
,

a4 =
6K‖XL‖2

1− λ
, a5 =

6‖XL‖2

1− λ
(5.152)

and take expectations of inequalities (5.140) and (5.151), we arrive at recursion (3.164),

where al, 1 ≤ l ≤ 5 are positive constants that are independent of sN , δ and ν.
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5.F Proof of Lemma 5.3

We first introduce the gradient noise at node k:

sk(w
t
k,i)

∆
= ∇̂Jk(wt

k,i)−∇Jk(wt
k,i). (5.153)

With (5.153) and (5.57), we have

s(Wt
i) = col{s1(wt

1,i), s2(wt
2,i), · · · , sN(wt

N,i)}. (5.154)

Now we bound the term ‖sk(wt
k,i)‖2. Note that

sk(w
t
k,i)

= ∇̂Jk(wt
k,i)−∇Jk(wt

k,i)

(5.15)
= ∇Q(wt

k,i;xk,nt
k,i

)−∇Q(wt
k,0;xk,nt

k,i
) + gtk−∇Jk(wt

k,i)

(5.16)
= ∇Q(wt

k,i;xk,nt
k,i

)−∇Q(wt
k,0;xk,nt

k,i
)

+
1
sN

sN−1∑
j=0

∇Q
(
wt−1
k,j ;xk,nt−1

k,j

)
− 1

sN

sN∑
n=1

∇Q
(
wt
k,i;xk,n

)
(5.155)

Since nt−1
k,j = σt−1(j + 1) is sampled by random reshuffling without replacement, it holds

that
sN−1∑
j=0

∇Q
(
wt−1
k, sN

;xk,nt−1
k,j

)
=

sN∑
n=1

∇Q
(
wt−1
k, sN

;xk,n

)
(a)
=

sN∑
n=1

∇Q
(
wt
k,0;xk,n

)
(5.156)

where equality (a) holds because wt
k,0 = wt−1

k, sN
. With relation (5.156), we can rewrite (5.155)

as

sk(w
t
k,i)

= ∇Q(wt
k,i;xk,nt

k,i
)−∇Q(wt

k,0;xk,nt
k,i

)

+
1
sN

sN−1∑
j=0

∇Q
(
wt−1
k,j ;xk,nt−1

k,j

)
− 1

sN

sN−1∑
j=0

∇Q
(
wt−1
k, sN

;xk,nt−1
k,j

)

+
1
sN

sN∑
n=1

∇Q
(
wt
k,0;xk,n

)
− 1

sN

sN∑
n=1

∇Q
(
wt
k,i;xk,n

)
(5.157)
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By squaring and applying Jensen’s inequality, we have

‖sk(wt
k,i)‖2

≤ 3
∥∥∥∇Q(wt

k,i;xk,nt
k,i

)−∇Q(wt
k,0;xk,nt

k,i
)
∥∥∥2

+
3
sN

sN−1∑
j=0

∥∥∥∇Q(wt−1
k,j ;xk,nt−1

k,j

)
−∇Q

(
wt−1
k, sN

;xk,nt−1
k,j

)∥∥∥2

+
3
sN

sN∑
n=1

∥∥∇Q (wt
k,0;xk,n

)
−∇Q

(
wt
k,i;xk,n

)∥∥2

≤ 6δ2‖wt
k,i−wt

k,0‖2 +
3δ2

sN

sN−1∑
j=0

∥∥∥wt−1
k,j −w

t−1
k, sN

∥∥∥2

(5.158)

where the last inequality holds because of the Lipschitz inequality (5.5) in Assumption 1.

Consequently,

‖s(Wt
i)‖2

(5.154)
=

K∑
k=1

‖sk(wt
k,i)‖2

≤ 6δ2

K∑
k=1

‖wt
k,i−wt

k,0‖2 +
3δ2

sN

sN−1∑
j=0

K∑
k=1

∥∥∥wt−1
k,j −w

t−1
k, sN

∥∥∥2

= 6δ2‖Wt
i−Wt

0‖2 +
3δ2

sN

sN−1∑
j=0

∥∥Wt−1
j −Wt−1

sN

∥∥2

= 6δ2‖W̃t
i−W̃

t
0‖2 +

3δ2

sN

sN−1∑
j=0

∥∥W̃t−1
j −W̃

t−1
sN

∥∥2

≤ 6δ2
(
‖W̃t

i−W̃
t
0‖2+‖Ỹti−Ỹ

t
0‖2
)

+
3δ2

sN

sN−1∑
j=0

(∥∥W̃t−1
j −W̃

t−1
sN

∥∥2
+
∥∥Ỹt−1

j −Ỹ
t−1
sN

∥∥2
)
. (5.159)
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Now note that

‖W̃t
i−W̃

t
0‖2+‖Ỹti−Ỹ

t
0‖2

=

∥∥∥∥∥∥
 W̃

t
i

Ỹ
t
i

−
 W̃

t
0

Ỹ
t
0

∥∥∥∥∥∥
2

(5.75)

≤ ‖X‖2

∥∥∥∥∥∥∥∥∥


X̄ t
i

0M

X̌ t
i

−


X̄ t
0

0M

X̌ t
0


∥∥∥∥∥∥∥∥∥

2

= ‖X‖2
(
‖X̄ t

i− X̄ t
0‖2 + ‖X̌ t

i− X̌ t
0‖2
)

≤ ‖X‖2‖X̄ t
i− X̄ t

0‖2 + 2‖X‖2‖X̌ t
i‖2 + 2‖X‖2‖X̌ t

0‖2 (5.160)

Similarly, it holds that∥∥W̃t−1
j −W̃

t−1
sN

∥∥2
+
∥∥Ỹt−1

j −Ỹ
t−1
sN

∥∥2

≤ ‖X‖2‖X̄ t−1
j −X̄ t−1

sN
‖2+2‖X‖2‖X̌ t−1

j ‖2+2‖X‖2‖X̌ t
0‖2. (5.161)

Substituting (5.160) and (5.161) into (5.159) and letting b = ‖X‖2, we have

‖s(Wt
i)‖2 ≤ 6bδ2‖X̄ t

i− X̄ t
0‖2 + 12bδ2‖X̌ t

i‖2 + 18bδ2‖X̌ t
0‖2

+
3bδ2

sN

sN−1∑
j=0

‖X̄ t−1
j −X̄ t−1

sN
‖2 +

6bδ2

sN

sN−1∑
j=0

‖X̌ t−1
j ‖2 (5.162)

By taking expectations, we achieve inequality (5.77).

5.G Proof of Lemma 5.4

It is established in Lemma 5.2 that when step-size µ satisfies

µ <
1

δ
, (5.163)
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the dynamic system (3.164) holds. Using Jensen’s inequality, the second line of (3.164)

becomes

E‖X̌ t
i+1‖2

≤
(
λ+a3µ

2δ2
)
E‖X̌ t

i‖2 +2a4µ
2δ2E‖X̄ t

i−X̄ t
0‖2

+2a4µ
2δ2E‖X̄ t

0‖2 +a5µ
2E‖s(Wt

i)‖2

(5.77)

≤
(
λ+ (a3 + 12a5b)µ

2δ2
)
E‖X̌ t

i‖2

+ (2a4 + 6a5b)µ
2δ2E‖X̄ t

i− X̄ t
0‖2 + 2a4µ

2δ2E‖X̄ t
0‖2

+ 18a5bµ
2δ2E‖X̌ t

0‖2 +
3a5bµ

2δ2

sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

+
6a5bµ

2δ2

sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2. (5.164)

Now we let λ1 = (1 + λ)/2 < 1. It can be verified that when the step-size µ is small enough

so that

µ ≤

√
1− λ

2(a3 + 12a5b)δ2
, (5.165)

it holds that

λ+ (a3 + 12a5b)µ
2δ2 ≤ λ1 < 1. (5.166)

Substituting (5.166) into (5.164), we have

E‖X̌ t
i+1‖2

≤ λ1E‖X̌ t
i‖2 +(2a4 +6a5b)µ

2δ2E‖X̄ t
i− X̄ t

0‖2

+2a4µ
2δ2E‖X̄ t

0‖2 +18a5bµ
2δ2E‖X̌ t

0‖2

+
3a5bµ

2δ2

sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2+

6a5bµ
2δ2

sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2. (5.167)
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Iterating (5.167), for 0 ≤ i ≤ sN − 1, we get

E‖X̌ t
i+1‖2

≤ λi+1
1 E‖X̌ t

0‖2 + (2a4 + 6a5b)µ
2δ2

i∑
j=0

λi−j1 E‖X̄ t
j− X̄ t

0‖2

+
(

2a4µ
2δ2E‖X̄ t

0‖2 + 18a5bµ
2δ2E‖X̌ t

0‖2
) i∑
j=0

λi−j1

+

(
3a5bµ

2δ2

sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

+
6a5bµ

2δ2

sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
i∑

j=0

λi−j1

(a)

≤ λi+1
1 E‖X̌ t

0‖2 + (2a4 + 6a5b)µ
2δ2

i∑
j=0

E‖X̄ t
j− X̄ t

0‖2

+ 2a4µ
2δ2(i+ 1)E‖X̄ t

0‖2 + 18a5bµ
2δ2(i+ 1)E‖X̌ t

0‖2

+
3a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

+
6a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

=
(
λi+1

1 + 18a5bµ
2δ2(i+ 1)

)
E‖X̌ t

0‖2

+ (2a4 + 6a5b)µ
2δ2

i∑
j=0

E‖X̄ t
j− X̄ t

0‖2

+ 2a4µ
2δ2(i+ 1)E‖X̄ t

0‖2

+
3a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

+
6a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2, (5.168)

where (a) holds because λ1 < 1 and hence
∑i

j=0 λ
i−j
1 ≤ i+1. Next we let λ2 = (1+λ1)/2 < 1.

If the step-size µ is chosen small enough such that

λi+1
1 + 2a4µ

2δ2(i+ 1) ≤ λ2, ∀ i = 0, · · · , sN − 1 (5.169)

209



then it follows that

E‖X̌ t
i+1‖2

≤ λ2E‖X̌ t
0‖2 + (2a4 + 6a5b)µ

2δ2

i∑
j=0

E‖X̄ t
j− X̄ t

0‖2

+ 2a4µ
2δ2(i+ 1)E‖X̄ t

0‖2

+
3a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

+
6a5bµ

2δ2(i+ 1)
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

≤ λ2E‖X̌ t
0‖2 +(2a4 +6a5b)µ

2δ2

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

+2a4µ
2δ2

sNE‖X̄ t
0‖2

+ 3a5bµ
2δ2

sN

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ 6a5bµ
2δ2

sN

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
, ∀ i = 0, · · · , sN − 1 (5.170)

Notice that

λi+1
1 + 2a4µ

2δ2(i+ 1) ≤ λ1 + 2a4µ
2δ2

sN, ∀i = 0, · · · , sN − 1. (5.171)

Therefore, to guarantee (5.169), it is enough to set

λ1 + 2a4µ
2δ2

sN ≤ λ2 ⇐⇒ µ ≤

√
λ2−λ1

2a4δ2
sN
. (5.172)
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From (5.170) we can derive
sN−1∑
i=1

E‖X̌ t
i‖2

≤ λ2( sN − 1)E‖X̌ t
0‖2

+(2a4 +6a5b)µ
2δ2( sN − 1)

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

+2a4µ
2δ2

sN( sN−1)E‖X̄ t
0‖2

+ 3a5bµ
2δ2

sN( sN − 1)

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+6a5bµ
2δ2

sN( sN − 1)

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.173)

As a result,

1
sN

sN−1∑
i=0

E‖X̌ t
i‖2

=
1
sN

(
sN−1∑
i=1

E‖X̌ t
i‖2 +E‖X̌ t

0‖2

)

≤ λ2( sN − 1)+1
sN

E‖X̌ t
0‖2

+(2a4 +6a5b)µ
2δ2

sN

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+ 2a4µ
2δ2

sNE‖X̄ t
0‖2

+3a5bµ
2δ2

sN

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ 6a5bµ
2δ2

sN

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.174)

To simplify the notation, we let

λ3 =
λ2( sN − 1)+1

sN
,

c1 = 2a4, c2 = 2a4 +6a5b, c3 = 3a5b, c4 = 6a5b. (5.175)

Using λ2 < 1, we have

λ3 =
λ2( sN − 1)+1

sN
<

sN − 1+1
sN

= 1. (5.176)
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In summary, when µ satisfies (5.163), (5.165) and (5.172), i.e.

µ ≤ min

{
1

δ
,

√
1− λ

2(a3 + 12a5b)δ2
,

√
λ2−λ1

2a4δ2
sN

}
, (5.177)

we conclude recursion (5.82). To get a simple form for the step-size, with λ2−λ1 = (1−λ)/4

we can further restrict µ as

µ ≤ min

{
1,

√
1

2(a3 + 12a5b)
,

√
1

8a4

}√
1− λ
δ2

sN

∆
= C1

√
1− λ
δ2

sN
. (5.178)

It is obvious that all step-sizes within the range defined in (5.178) will also satisfy (5.177).

Moreover, recursion (5.83) holds by setting i = sN − 1 in (5.170).

5.H Proof of Lemma 5.5

Substituting (5.77) into the first line of (3.164), we have

E‖X̄ t
i+1‖2

≤ (1− a1µν)E‖X̄ t
i‖2 +

2a2µδ
2

ν
E‖X̌ t

i‖2 +
2µ

ν
E‖s(Wt

i)‖2

(5.77)

≤ (1− a1µν)E‖X̄ t
i‖2 +

2a2µδ
2

ν
E‖X̌ t

i‖2

+
12bδ2µ

ν
E‖X̄ t

i− X̄ t
0‖2 +

24bδ2µ

ν
E‖X̌ t

i‖2

+
36bδ2µ

ν
E‖X̌ t

0‖2 +
6bδ2µ

ν sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

+
12bδ2µ

sNν

sN−1∑
j=0

E‖X̌ t−1
j ‖2

= (1− a1µν)E‖X̄ t
i‖2 +

(2a2 +24b)µδ2

ν
E‖X̌ t

i‖2

+
12bδ2µ

ν
E‖X̄ t

i− X̄ t
0‖2 +

36bδ2µ

ν
E‖X̌ t

0‖2

+
6bδ2µ

ν sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2 +

12bδ2µ
sNν

sN−1∑
j=0

E‖X̌ t−1
j ‖2 (5.179)
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Iterate (5.179), then for 0 ≤ i ≤ sN − 1 it holds that

E‖X̄ t
i+1‖2

≤ (1− a1µν)i+1E‖X̄ t
0‖2

+
(2a2 +24b)µδ2

ν

i∑
j=0

(1− a1µν)i−jE‖X̌ t
j‖2

+
12bδ2µ

ν

i∑
j=0

(1− a1µν)i−jE‖X̄ t
j− X̄ t

0‖2

+

(
36bδ2µ

ν
E‖X̌ t

0‖2 +
6bδ2µ

ν sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

+
12bδ2µ

sNν

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
i∑

j=0

(1− a1µν)j

≤ (1− a1µν)i+1E‖X̄ t
0‖2 +

(2a2 + 24b)µδ2

ν

i∑
j=0

E‖X̌ t
j‖2

+
12bδ2µ

ν

i∑
j=0

E‖X̄ t
j− X̄ t

0‖2 +

(
36bδ2µ

ν
E‖X̌ t

0‖2

+
6bδ2µ

ν sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

+
12bδ2µ

sNν

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
(i+ 1), (5.180)

where the last inequality hold when we choose µ small enough such that

0 < 1− a1µν < 1⇐⇒ µ <
1

a1ν
. (5.181)
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Let i = sN − 1 in (5.180). It holds that

E‖X̄ t+1
0 ‖2

≤ (1− a1µν)
sNE‖X̄ t

0‖2 +
(2a2 + 24b)µδ2

ν

sN−1∑
j=0

E‖X̌ t
j‖2

+
12bδ2µ

ν

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2 +

(
36bδ2

sNµ

ν
E‖X̌ t

0‖2

+
6bδ2µ

ν

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2 +

12bδ2µ

ν

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)

= (1−a1µν)
sNE‖X̄ t

0‖2 +
(2a2 + 24b)µδ2

sN

ν

(
1
sN

sN−1∑
j=0

E‖X̌ t
j‖2

)

+
12bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)
+

36bδ2
sNµ

ν
E‖X̌ t

0‖2

+
6bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

)

+
12bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.182)

According to Lemma 5.4, the inequality (5.82) holds when step-size µ satisfies

µ ≤ C1

√
1− λ
δ2N

. (5.183)
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Substituting (5.82) into (5.182), we get

E‖X̄ t+1
0 ‖2

≤
(

(1− a1µν)
sN +

c1(2a2 + 24b)µ3δ4
sN2

ν

)
E‖X̄ t

0‖2

+

(
36bδ2

sNµ

ν
+
λ3(2a2 + 24b)µδ2

sN

ν

)
E‖X̌ t

0‖2

+

(
12bδ2µ sN

ν
+
c2(2a2 + 24b)µ3δ4

sN2

ν

)
·

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+

(
6bδ2µ sN

ν
+
c3(2a2 + 24b)µ3δ4

sN2

ν

)
·

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

)

+

(
12bδ2µ sN

ν
+
c4(2a2 + 24b)µ3δ4

sN2

ν

)
·

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.184)

For the term (1− a1µν)
sN , it is established in Appendix 5.I that if

µ ≤ 1

a1
sNν

, (5.185)

then the inequality (1 − a1µν)
sN ≤ 1 − a1

sNµν/2 holds. Furthermore, if the step-size µ is

chosen small enough such that

1− a1
sNµν

2
+
c1(2a2 + 24b)µ3δ4

sN2

ν
≤ 1− a1

sNµν

3
12bδ2µ sN

ν
+
c2(2a2 + 24b)µ3δ4

sN2

ν
≤ 24bδ2

sNµ

ν
6bδ2µ sN

ν
+
c3(2a2 + 24b)µ3δ4

sN2

ν
≤ 12bδ2µ sN

ν
12bδ2µ sN

ν
+
c4(2a2 + 24b)µ3δ4

sN2

ν
≤ 24bδ2µ sN

ν
(5.186)
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recursion (5.184) will imply

E‖X̄ t+1
0 ‖2

≤
(

1−
sN

3
a1µν

)
E‖X̄ t

0‖2

+

(
(36b+ 2λ3a2 + 24λ3b)µδ

2
sN

ν

)
E‖X̌ t

0‖2

+
24bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+
12bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j − X̄ t−1

sN
‖2

)

+
24bδ2µ sN

ν

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.187)

To simplify the notation, we let

d1 = 36b+ 2λ3a2 + 24λ3b, d2 = 24b, d3 = 12b, d4 = 24b, (5.188)

then recursion (5.85) is proved. To guarantee (5.181), (5.183), (5.185) and (5.186), it is

enough to set

µ ≤ min

{
1

a1ν
, C1

√
1−λ
δ2

sN
,

1

a1
sNν

,

√
a1

6c1(2a2 + 24b) sN

( ν
δ2

)
,

√
12b

c2(2a2 + 24b)δ2
sN
,√

6b

c3(2a2 + 24b)δ2
sN
,

√
12b

c4(2a2 + 24b)δ2
sN

}
(5.189)

Note that ν2/δ2 < 1 and 1 − λ < 1. To get a simple form for the step-size, we can further

restrict µ as

µ ≤ min

{
C1,

1

a1

,

√
a1

2c1(2a2 + 24b)
,

√
12b

c2(2a2 + 24b)
,√

6b

c3(2a2 + 24b)
,

√
12b

c4(2a2 + 24b)

}(
ν
√

1− λ
δ2

sN

)
∆
= C2

(
ν
√

1− λ
δ2

sN

)
, (5.190)

where C2 is independent of ν, δ and sN .
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5.I Upper Bound on (1− a1µν)
sN

We first examine the term (1− x)
sN where x ∈ (0, 1). Using Taylor’s theorem, (1− x)

sN can

be expanded as

(1− x)
sN = 1− sNx+

sN( sN − 1)(1− τ)
sN−2

2
x2, (5.191)

where τ ∈ (0, x) is some constant, and hence, τ < 1. To ensure (1 − x)
sN ≤ 1 − 1

2
sNx, we

require

1− sNx+
sN( sN − 1)(1− τ)

sN−2

2
x2 ≤ 1−

sNx

2

⇐⇒ x ≤ 1

( sN − 1)(1− τ) sN−2
. (5.192)

Note that

1
sN
<

1
sN − 1

<
1

( sN − 1)(1− τ) sN−2
. (5.193)

If we choose x ≤ 1/ sN , then it will also satisfy (5.192). By letting x = a1µν, it holds that

(1− a1µν)
sN ≤ 1− a1

sNµν

2
. (5.194)

when µ ≤ 1/(a1
sNν).

5.J Proof of Lemma 5.6

From the first line in recursion (5.74), we have

X̄ t
i+1−X̄ t

i=−
µ

K
ITHt

iIX̄ t
i−

µ

K
ITHt

iXR,uX̌ t
i+

µ

K
ITs(Wt

i) (5.195)

By squaring and applying Jensen’s inequality, we have

‖X̄ t
i+1− X̄ t

i‖2

≤ 3µ2

∥∥∥∥ 1

K
ITHt

iI
∥∥∥∥2

‖X̄ t
i‖2

+
3µ2

K2
‖ITHt

iXR,u‖2‖X̌ t
i‖2

+
3µ2

K2
‖IT‖2‖s(Wt

i)‖2

(a)

≤ 3µ2δ2‖X̄ t
i‖2 +

3µ2

K
δ2‖XR,u‖2‖X̌ t

i‖2 +
3µ2

K
‖s(Wt

i)‖2 (5.196)
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where inequality (a) holds because of equations (5.133) and (5.137). By taking expectations,

we have

E‖X̄ t
i+1− X̄ t

i‖2

≤ 3µ2δ2E‖X̄ t
i‖2 +

3µ2

K
δ2‖XR,u‖2E‖X̌ t

i‖2 +
3µ2

K
E‖s(Wt

i)‖2

≤ 6µ2δ2E‖X̄ t
0‖2 + 6µ2δ2E‖X̄ t

i− X̄ t
0‖2

+
3µ2

K
δ2‖XR,u‖2E‖X̌ t

i‖2 +
3µ2

K
E‖s(Wt

i)‖2

(5.77)

≤ 6µ2δ2E‖X̄ t
0‖2 +

54bµ2δ2

K
E‖X̌ t

0‖

+

(
3‖XR,u‖2 + 36b

K

)
µ2δ2E‖X̌ t

i‖2

+

(
6 +

18b

K

)
µ2δ2E‖X̄ t

i− X̄ t
0‖2

+
9bδ2µ2

K

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+
18bδ2µ2

K

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
, 0 ≤ i ≤ sN − 1 (5.197)

For simplicity, if we let

e1 =
54b

K
, e2 =

3‖XR,u‖2 + 36b

K
,

e3 = 6 +
18b

K
, e4 =

9b

K
, e5 =

18b

K
, (5.198)

inequality (5.197) becomes

E‖X̄ t
i+1− X̄ t

i‖2

≤ 6µ2δ2E‖X̄ t
0‖2 + e1µ

2δ2E‖X̌ t
0‖2 + e2µ

2δ2E‖X̌ t
i‖2

+ e3µ
2δ2E‖X̄ t

i− X̄ t
0‖2

+ e4µ
2δ2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.199)
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For 1 ≤ i ≤ sN − 1, we have

E‖X̄ t
i− X̄ t

0‖2

≤ i
i∑

j=1

E‖X̄ t
j− X̄ t

j−1‖2

(5.199)

≤ 6µ2δ2i2E‖X̄ t
0‖2 + e1µ

2δ2i2E‖X̌ t
0‖2

+e2µ
2δ2i

i∑
j=1

E‖X̌ t
j−1‖2 +e3µ

2δ2i
i∑

j=1

E‖X̄ t
j−1− X̄ t

0‖2

+ e4µ
2δ2i2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2i2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)

≤ 6µ2δ2
sN2E‖X̄ t

0‖2 + e1µ
2δ2

sN2E‖X̌ t
0‖2

+ e2µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t
j‖2

)

+ e3µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+ e4µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.200)
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From the above recursion, we can also derive

1
sN

sN−1∑
i=0

E‖X̄ t
i− X̄ t

0‖2

≤ 6µ2δ2
sN2E‖X̄ t

0‖2 + e1µ
2δ2

sN2E‖X̌ t
0‖2

+ e2µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t
j‖2

)

+ e3µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+ e4µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
(5.201)

According to Lemma 5.4, the inequality (5.82) holds when step-size µ satisfies

µ ≤ C1

√
1− λ
δ2N

. (5.202)

Substituting (5.82) into (5.201), we have

1
sN

sN−1∑
i=0

E‖X̄ t
i− X̄ t

0‖2

≤
(
6µ2δ2

sN2 + c1e2µ
4δ4

sN3
)
E‖X̄ t

0‖2

+ (e1 + λ3e2)µ2δ2
sN2E‖X̌ t

0‖2

+
(
e3µ

2δ2
sN2 +c2e2µ

4δ4
sN3
)( 1

sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+
(
e4µ

2δ2
sN2 +c3e2µ

4δ4
sN3
)( 1

sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+
(
e5µ

2δ2
sN2 +c4e2µ

4δ4
sN3
)( 1

sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.203)
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If the step-size µ is chosen small enough such that

6µ2δ2
sN2 + c1e2µ

4δ4
sN3 ≤ 12µ2δ2

sN2,

e3µ
2δ2

sN2 + c2e2µ
4δ4

sN3 ≤ 2e3µ
2δ2

sN2,

e4µ
2δ2

sN2 + c3e2µ
4δ4

sN3 ≤ 2e4µ
2δ2

sN2,

e5µ
2δ2

sN2 + c4e2µ
4δ4

sN3 ≤ 2e5µ
2δ2

sN2. (5.204)

then recursion (5.201) can be simplified to equation (5.87), where we define e6
∆
= e1 +λ2e2.

To guarantee (5.202) and (5.204), it is enough to set

µ ≤ min

{
C1,

√
6

c1e2

,

√
e3

c2e2

,

√
e4

c3e2

,

√
e5

c4e2

}√
1− λ
δ2

sN

∆
= C3

√
1− λ
δ2

sN
. (5.205)
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Next we establish the recursion for
∑

sN−1
i=0 E‖X̄ t

i−X̄ t
sN
‖2/N . Note that for 0 ≤ i ≤ sN − 1, it

holds that

E‖X̄ t
i−X̄ t

sN‖
2

≤ ( sN− i)
sN−1∑
j=i

E‖X̄ t
j+1−X̄ t

j‖2

(5.199)

≤ 6µ2δ2( sN − i)2E‖X̄ t
0‖2 + e1µ

2δ2(N − i)2E‖X̌ t
0‖2

+ e2µ
2δ2( sN − i)

sN−1∑
j=i

E‖X̌ t
j‖2

+ e3µ
2δ2(N − i)

sN−1∑
j=i

E‖X̄ t
j−1− X̄ t

0‖2

+ e4µ
2δ2( sN−i)2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2( sN−i)2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)

≤ 6µ2δ2
sN2E‖X̄ t

0‖2 + e1µ
2δ2

sN2E‖X̌ t
0‖2

+ e2µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t
j‖2

)

+ e3µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t
j− X̄ t

0‖2

)

+ e4µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̄ t−1
j −X̄ t−1

sN
‖2

)

+ e5µ
2δ2

sN2

(
1
sN

sN−1∑
j=0

E‖X̌ t−1
j ‖2

)
. (5.206)

Since the right-hand side of inequality (5.206) is the same as inequality (5.200), we can follow

(5.201)–(5.205) to conclude recursion (5.88).
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5.K Proof of Theorem 5.7

With Lemmas 5.4, 5.5 and 5.6, when the step-size µ satisfies

µ ≤ min

{
C1

√
1− λ
δ2

sN
, C2

(
ν
√

1− λ
δ2

sN

)
, C3

√
1− λ
δ2

sN

}
, (5.207)

it holds that

E‖X̄ t+1
0 ‖2 ≤

(
1−

sN

3
a1µν

)
E‖X̄ t

0‖2 +
d1µδ

2
sN

ν
E‖X̌ t

0‖2

+
d2δ

2µ sN

ν
At +

d3δ
2µ sN

ν
Bt−1 +

d4δ
2µ sN

ν
Ct−1 (5.208)

E‖X̌ t+1
0 ‖2 ≤ c1µ

2δ2
sNE‖X̄ t

0‖2 + λ2E‖X̌ t
0‖2

+ c2µ
2δ2

sNAt + c3µ
2δ2

sNBt−1 + c4µ
2δ2

sNCt−1 (5.209)

At+1 ≤ 12µ2δ2
sN2E‖X̄ t+1

0 ‖2 + e6µ
2δ2

sN2E‖X̌ t+1
0 ‖2

+2e3µ
2δ2

sN2At+1+2e4µ
2δ2

sN2Bt+2e5µ
2δ2

sN2Ct (5.210)

Bt ≤ 12µ2δ2
sN2E‖X̄ t

0‖2 + e6µ
2δ2

sN2E‖X̌ t
0‖2

+2e3µ
2δ2

sN2At+2e4µ
2δ2

sN2Bt−1+2e5µ
2δ2

sN2Ct−1 (5.211)

Ct ≤ c1µ
2δ2

sNE‖X̄ t
0‖2 + λ3E‖X̌ t

0‖2

+ c2µ
2δ2

sNAt + c3µ
2δ2

sNBt−1 + c4µ
2δ2

sNCt−1 (5.212)
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Let γ be an arbitrary positive constant whose value will be decided later. From the above

inequalities we have

E‖X̄ t+1
0 ‖2 + E‖X̌ t+1

0 ‖2 + γ
(
At+1 + Bt + Ct

)
≤
(

1−
sN

3
a1µν+c1µ

2δ2
sN

)
E‖X̄ t

0‖2+

(
λ2+

d1µδ
2

sN

ν

)
E‖X̌ t

0‖2

+

(
d2δ

2µ sN

ν
+c2µ

2δ2
sN

)
At+

(
d3δ

2µ sN

ν
+ c3µ

2δ2
sN

)
Bt−1

+

(
d4δ

2µ sN

ν
+ c4µ

2δ2
sN

)
Ct−1

+ γf1µ
2δ2

sN2
(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+ γf2µ

2δ2
sN2(At+1 + Bt + Ct) + γf3µ

2δ2
sN2E‖X̄ t

0‖2

+ γ(λ3 + e6µ
2δ2

sN2)E‖X̌ t
0‖2

+ γf4µ
2δ2

sN2(At + Bt−1 + Ct−1), (5.213)

where the constants {fi}4
i=1 are defined as

f1 = max{12, e6}, f2 = 2 max{e3, e4, e5}, (5.214)

f3 = 12 + c1, f4 =max{2e3+c2, 2e4+c3, 2e5+c4}. (5.215)

If the step-size µ is chosen small enough such that

1−
sN

3
a1µν + c1µ

2δ2
sN ≤ 1−

sN

4
a1µν, (5.216)

λ2 +
d1µδ

2
sN

ν
≤ 1 + λ2

2
∆
= λ4 < 1, (5.217)

d2δ
2µ sN

ν
+ c2µ

2δ2
sN ≤ 2d2δ

2µ sN

ν
, (5.218)

d3δ
2µ sN

ν
+ c3µ

2δ2
sN ≤ 2d3δ

2µ sN

ν
, (5.219)

d4δ
2µ sN

ν
+ c4µ

2δ2
sN ≤ 2d4δ

2µ sN

ν
, (5.220)
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recursion (5.213) can be simplified to

(1− γf1µ
2δ2

sN2)
(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+ γ(1− f2µ

2δ2
sN2)

(
At+1 + Bt + Ct

)
≤
(

1−
sN

4
a1µν

)
E‖X̄ t

0‖2 + λ4E‖X̌ t
0‖2

+
2d2δ

2µ sN

ν
At +

2d3δ
2µ sN

ν
Bt−1 +

2d4δ
2µ sN

ν
Ct−1

+ γf3µ
2δ2

sN2E‖X̄ t
0‖2 + γ(λ3 + e6µ

2δ2
sN2)E‖X̌ t

0‖2

+ γf4µ
2δ2

sN2(At + Bt−1 + Ct−1)

≤
(

1−
sN

4
a1µν + γf3µ

2δ2
sN2

)
E‖X̄ t

0‖2

+
[
λ4 + γ(λ3 + e6µ

2δ2
sN2)
]
E‖X̌ t

0‖2

+

(
f5δ

2µ sN

ν
+ γf4µ

2δ2
sN2

)
(At + Bt−1 + Ct−1), (5.221)

where f5
∆
= 2 max{d2, d3, d4}. To guarantee (5.217)–(5.220), it is enough to set

µ ≤ min

{
a1ν

12c1δ2
,
(1− λ2)ν

2d1δ2
sN
,
d2

c2ν
,
d3

c3ν
,
d4

c4ν

}
. (5.222)

Since ν/δ < 1, it holds that

dl
clν
≥ dl
clν

ν2

δ2
sN

=
dlν

clδ2
sN
, 2 ≤ l ≤ 4. (5.223)

Also recall that 1− λ2 = (1− λ)/4. Therefore, if µ satisfies

µ≤min

{
a1

12c1

,
1

8d1

,
d2

c2

,
d3

c3

,
d4

c4

}
ν(1− λ)

δ2
sN

∆
= C4

ν(1− λ)

δ2
sN

(5.224)

it also satisfies (5.222). Next we continue simplifying recursion (5.221). Suppose µ and γ

are chosen such that

1−
sN

4
a1µν + γf3µ

2δ2
sN2 ≤ 1−

sN

8
a1µν, (5.225)

λ4 + γ(λ3 + e6µ
2δ2

sN2) ≤ 1 + λ4

2
∆
= λ5 < 1, (5.226)

f5δ
2µ sN

ν
+ γf4µ

2δ2
sN2 ≤ 2f5δ

2µ sN

ν
, (5.227)
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recursion (5.221) can be further simplified to

(1− γf1µ
2δ2

sN2)
(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+ γ(1− f2µ

2δ2
sN2)

(
At+1 + Bt + Ct

)
≤
(

1−
sN

8
a1µν

)
E‖X̄ t

0‖2

+ λ5E‖X̌ t
0‖2 +

2f5δ
2µ sN

ν
(At + Bt−1 + Ct−1). (5.228)

Now we check the conditions on µ and γ to satisfy (5.225)–(5.227). Since λ3 < 1, if we

choose µ and γ such that

λ3 + e6µ
2δ2

sN2 ≤ 1, (5.229)

λ4 + γ ≤ 1 + λ4

2
, (5.230)

then inequality (5.226) holds. To guarantee (5.225), (5.227) and (5.230), it is enough to set

γ ≤ 1− λ4

2
, µ ≤

√
1− λ3

e6δ2
sN2
, γµ ≤ min

{
a1ν

8f3δ2
sN
,
f5

f4ν sN

}
. (5.231)

Moreover, if we further choose step-size µ such that

λ5 ≤ 1−
sN

8
a1µν ⇐⇒ µ ≤ 8(1− λ5)

a1ν sN
, (5.232)

recursion (5.228) becomes

(1− γf1µ
2δ2

sN2)
(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+ γ(1− f2µ

2δ2
sN2)

(
At+1 + Bt + Ct

)
≤
(

1−
sN

8
a1µν

)(
E‖X̄ t

0‖2 + E‖X̌ t
0‖2
)

+
2f5δ

2µ sN

ν
(At + Bt−1 + Ct−1) (5.233)

When µ and γ are chosen such that

1− γf1µ
2δ2

sN2 > 0⇐⇒ γµ2 <
1

f1δ2
sN2
, (5.234)
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recursion (5.233) is equivalent to(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+ γ

(
1− f2µ

2δ2
sN2

1− γf1µ2δ2
sN2

)(
At+1 + Bt + Ct

)
≤

1− sN
8
a1µν

1− γf1µ2δ2
sN2

{(
E‖X̄ t

0‖2 + E‖X̌ t
0‖2
)

+
2f5δ

2µ sN

ν(1− a1
sNµν/8)

(At + Bt−1 + Ct−1)

}
(5.235)

If we also choose µ such that

1− f2µ
2δ2

sN2 ≥ 1

2
, and 1− 1

8
a1

sNµν ≥ 1

2
, (5.236)

recursion (5.235) can be simplified as(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+
γ

2

(
At+1 + Bt + Ct

)
≤

1− 1
8
a1

sNµν

1− γf1µ2δ2
sN2

{(
E‖X̄ t

0‖2 + E‖X̌ t
0‖2
)

+
4f5δ

2µ sN

ν
(At + Bt−1 + Ct−1)

}
. (5.237)

To guarantee (5.236), it is enough to set

µ ≤ min

{√
1

2f2δ2
sN2
,

4

a1ν sN

}
. (5.238)

If we let

γ = 8f5δ
2µ sN/ν > 0, (5.239)

then recursion (5.237) is equivalent to(
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+
γ

2

(
At+1 + Bt + Ct

)
≤

1− sN
8
a1µν

1− 8f1f5µ3δ4
sN3/ν

{(
E‖X̄ t

0‖2 + E‖X̌ t
0‖2
)

+
γ

2
(At + Bt−1 + Ct−1)

}
. (5.240)

If µ is small enough such that

1−8f1f5µ
3δ4

sN3

ν
>1−1

8
a1

sNµν ⇐⇒ µ <

√
a1

64f1f5

ν

δ2
sN

(5.241)
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it then holds that (
E‖X̄ t+1

0 ‖2 + E‖X̌ t+1
0 ‖2

)
+
γ

2

(
At+1 + Bt + Ct

)
≤ ρ

{(
E‖X̄ t

0‖2 + E‖X̌ t
0‖2
)

+
γ

2
(At + Bt−1 + Ct−1)

}
, (5.242)

where

ρ =
1− sN

8
a1µν

1− 8f1f5µ3δ4
sN3/ν

< 1. (5.243)

Finally, we decide the feasible range of step-size µ. Substituting γ into (5.231) and (5.234),

it requires

µ ≤ min

{
1− λ4

16f5

ν

δ2
sN
,

√
1− λ3

e6

√
1

δ2
sN
,

√
a1

64f3f5

( ν

δ2
sN

)
,√

1

8f4

1

δ sN
,

(
ν

8f1f5δ4
sN3

)1/3
}
. (5.244)

Note that 1− λ4 = (1− λ)/8 and 1− λ3 ≥ (1− λ)/8, and hence if we restrict µ as

µ ≤ min

{
1

128f5

,

√
1

8e6

,

√
a1

64f3f5

,

√
1

8f4

,(
1

8f1f5

)1/3
}
ν(1− λ)

δ2
sN

∆
=

C5ν(1− λ)

δ2
sN

(5.245)

it can be verified that such µ satisfies (5.244). Combining all step-size requirements in

(5.207), (5.224), (5.232), (5.238), (5.241) and (5.245) recalling 1 − λ5 = (1 − λ)/16, we can

always find a constant C.

C
∆
= min

{
C1, C2, C3, C4, C5,

1

2a1

,

√
1

2f2

,
4

a1

,

√
a1

64f1f5

}
(5.246)

such that if step-size µ satisfies

µ <
Cν(1− λ)

δ2
sN

, (5.247)

then all requirements in (5.207), (5.224), (5.232), (5.238), (5.241) and (5.245) will be satisfied.

Note that C is independent of ν, δ and sN .
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Algorithm 5.4 (diffusion-AVRG at node k for unbalanced data)

Initialize wk,0 arbitrarily; let qk = Nk/N , ψk,0 = wk,0, g0
k = 0, and ∇Q(θ0

k,0;xk,n)← 0, 1 ≤ n ≤

Nk

Repeat i = 0, 1, 2, · · ·

hcalculate t and s such that i=tNk+s, where t ∈ Z+ and s=jmod(i,Nk);

hIf s = 0:

hhgenerate a random permutationσtk; let gt+1
k = 0, θtk,0 = wk,i;

hEnd

hgenerate the local stochastic gradient:

nts = σtk(s+ 1), (5.23)

∇̂Jk(wk,i) = ∇Q(wk,i;xk,nt
s
)−∇Q(θtk,0;xk,nt

s
) + gtk, (5.24)

gt+1
k ← gt+1

k +
1

Nk
∇Q(wk,i;xk,nt

s
), (5.25)

update wk,i+1 with exact diffusion:

ψk,i+1 = wk,i − µqk∇̂Jk(wk,i), (5.26)

φk,i+1 = ψk,i+1 +wk,i −ψk,i, (5.27)

wk,i+1 =
∑
`∈Nk

a`kφ`,i+1. (5.28)

End
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Algorithm 5.5 (diffusion-SVRG at node k for unbalanced data)

Initialize wk,0 arbitrarily; let qk = Nk/N , ψk,0 = wk,0

Repeat i = 0, 1, 2, · · ·

h calculate t and s such that i=tNk+s, where t ∈ Z+ and s= jjmod(i,Nk);

h If s = 0:

h generate a random permutation function σtk, set θtk,0 = wk,i

h and compute the full gradient:

gtk =
1

Nk

Nk∑
n=1

∇Q(θtk,0;xk,n), (5.29)

h End

generate the local stochastic gradient:

nts = σtk(s+ 1), (5.30)

∇̂Jk(wk,i) = ∇Q(wk,i;xk,nt
s
)−∇Q(θtk,0;xk,nt

s
) + gtk, (5.31)

h update wk,i+1 with exact diffusion:

ψk,i+1 = wk,i − µqk∇̂Jk(wk,i), (5.32)

φk,i+1 = ψk,i+1 +wk,i −ψk,i, (5.33)

wk,i+1 =
∑
`∈Nk

a`kφ`,i+1. (5.34)

End
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Algorithm 5.6 (diffusion-AVRG with mini-batch at node k)

Initialize w0
k,0 arbitrarily; let ψ0

k,0 = w0
k,0, g0

k = 0; equally partition the data into L batches, and

each batch has size B. Set ∇Q(`)
k (w0

0)← 0, 1 ≤ ` ≤ sL

Repeat epoch t = 0, 1, 2, · · ·

h generate a random permutation function σtk and set gt+1
k = 0.

h Repeat iteration i = 0, 1, · · · , L− 1:

`tk,i = σtk(i+ 1), (5.38)

∇̂Jk(wt
k,i) = ∇Q(`tk,i)

k (wt
k,i)−∇Q

(`tk,i)

k (wt
k,0) + gtk, (5.39)

gt+1
k ← gt+1

k +
1

L
∇Q(`tk,i)

k (wt
k,i), (5.40)

update wt
k,i+1 with exact diffusion:

ψtk,i+1 = wt
k,i − µ∇̂Jk(wt

k,i), (5.41)

φtk,i+1 = ψtk,i+1 +wt
k,i −ψtk,i, (5.42)

wt
k,i+1 =

∑
`∈Nk

a`kφ
t
`,i+1.

(5.43)

hh End

hh set wt+1
k,0 = wt

k,L and ψt+1
k,0 = ψtk,L

End

231



CHAPTER 6

Conclusion and Future Work

In this dissertation, we proposed an exact diffusion strategy and studied its performance for

distributed optimization, adaptation and learning over networks. The main results can be

summarized as follows:

• Diffusion strategy solves an approximate problem of the target problem (1.1), which

explains why diffusion converges to a small neighborhood around, rather than converges

exactly to, the global solution w? to problem (1.1).

• We proposed an exact diffusion method to eliminate the bias. Exact diffusion has the

same computational complexity as diffusion, and it converges exponentially fast to w?

under standard assumptions. Furthermore, exact diffusion works for broader family of

combination matrices than EXTRA [75], namely, locally-balanced combination matri-

ces. When symmetric and doubly stochastic matrices are employed, exact diffusion is

proved to have a wider stability range and hence an improved convergence rate than

EXTRA.

• We extended exact diffusion to the distributed adaptation and online learning scenario.

Under this stochastic setting, we provide conditions under which exact diffusion has

superior steady-state mean-square deviation (MSD) performance than traditional al-

gorithms without bias-correction. In particular, it is proven that this superiority is

more evident over sparsely-connected network topologies such as lines, cycles, or grids.

• We extended exact diffusion to the distributed empirical learning scenario. Under

this setting, we integrate the amortized variance-reduced learning algorithm to ex-

act diffusion and enable it to converge exponentially fast to the global solution. We
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also proposed algorithms that work for the unbalanced data scenario and non-smooth

scenario.

While exact diffusion has been extended to various useful scenarios, there are several

open issues that deserve further investigation:

• Exact diffusion is studied for undirected network in this dissertation. However, there

are applications in which the network is directed. For example, it is very common

in practice that agent k can send information to agent ` while agent ` cannot send

information to agent k. In this case, the link between agent k and ` is directed. How

to modify the exact diffusion strategy so that it fits into this important scenario is

still an open question. One possible solution is to use the push-sum technique [161] to

correct the bias incurred by the directed network topology. Another possible solution

is to employ the push-pull strategy proposed by [97,98].

• Exact diffusion is studied for smooth objective functions in this dissertation. How-

ever, there are applications that have a composite problem structure that involve

both the smooth and non-smooth terms in the objective function. Various algorithms

have been proposed to solve the composite distributed optimization problems such

as [88,91,106,108]. While convergence of these algorithms is studied in literature, it is

still unknown whether exits a distributed algorithm that can solve the composite opti-

mization problem with linear convergence rate. Very recently, it is proved in [109] that

a new distributed primal-dual algorithm can converge linearly to the global solution

when all agents share the same non-smooth regularization term. This is an encouraging

result since it is very common for all agents to have the same regularization under the

machine learning setting. Can one prove linear convergence of proximal exact diffusion

under the same assumption?

• Exact diffusion is studied for convex objective functions in this dissertation. However,

there are applications that have a non-convex problem structure such as deep learning.

It is important to answer questions such as whether exact diffusion can escape from
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saddle points and converge to a local minimum of the non-convex problem, and whether

the collaboration among the agents is beneficial to finding the global solution of the

non-convex problem. Some insightful work appear recently that study the performance

of diffusion for non-convex optimization, see [162,163]. These results may help clarify

the behavior of exact diffusion for distributed non-convex optimization.
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[5] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[6] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1847–1864, 2010.

[7] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed gossip (linear
parameter) estimation: Fundamental limits and tradeoffs,” IEEE Journal of Selected
Topics in Signal Processing, vol. 5, no. 4, pp. 674–690, 2011.

[8] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter estimation in
sensor networks: Nonlinear observation models and imperfect communication,” IEEE
Transactions on Information Theory, vol. 58, no. 6, pp. 3575–3605, 2012.

[9] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,”
SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[10] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and dis-
tributed sensor fusion,” in Proc. IEEE Conference on Decision and Control (CDC).
IEEE, 2005, pp. 6698–6703.

[11] S. Sardellitti, M. Giona, and S. Barbarossa, “Fast distributed average consensus al-
gorithms based on advection-diffusion processes,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 2, pp. 826–842, 2010.

[12] P. Braca, S. Marano, and V. Matta, “Running consensus in wireless sensor networks,”
in Proc. IEEE International Conference on Information Fusion, Cologne, Germany,
2008, pp. 1–6.

[13] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: convergence analysis and network scaling,” IEEE Transactions on Au-
tomatic Control, vol. 57, no. 3, pp. 592–606, 2012.

235



[14] J. Chen and A. H. Sayed, “Distributed Pareto optimization via diffusion strategies,”
IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 205–220, 2013.

[15] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffusion for distributed opti-
mization and learning – Part I: Algorithm development,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 708 – 723, 2019.

[16] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffusion for distributed opti-
mization and learning – Part II: Convergence analysis,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 724 – 739, Feb. 2019.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning with the parameter
server,” in Proc. Operating Systems Design and Implementation (OSDI), 2014, pp.
583–598, Broomfield, Denver, Colorado.

[18] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and
E. P. Xing, “More effective distributed ML via a stale synchronous parallel parameter
server,” in Proc. Advances in neural information processing systems (NIPS), Lake
Tahoe, NV, 2013, pp. 1223–1231.

[19] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with wire-
less sensor networks,” in Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Salt Lake City, UT, 2001, vol. 4, pp. 2033–2036.

[20] L. A. Rossi, B. Krishnamachari, and C. C.J. Kuo, “Distributed parameter estimation
for monitoring diffusion phenomena using physical models,” in Proc. IEEE Conference
on Sensor and Ad Hoc Communications and Networks (SECON), Santa Clara, CA,
2004, pp. 460–469.

[21] D. Li, K. D. Wong, Y. Hu, and A. M. Sayeed, “Detection, classification, and tracking
of targets,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 17–29, 2002.

[22] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002.

[23] K. Yuan, Q. Ling, W. Yin, and A. Ribeiro, “A linearized bregman algorithm for
decentralized basis pursuit,” in European Signal Processing Conference (EUSIPCO
2013). IEEE, 2013, pp. 1–5.

[24] K. Yuan, Q. Ling, and Z. Tian, “A decentralised linear programming approach to
energy–efficient event detection,” International Journal of Sensor Networks, vol. 17,
no. 1, pp. 52–62, 2015.

[25] K. Yuan, Q. Ling, and Z. Tian, “Communication-efficient decentralized event mon-
itoring in wireless sensor networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 8, pp. 2198–2207, 2014.

236



[26] F. Zeng, C. Li, and Z. Tian, “Distributed compressive spectrum sensing in cooperative
multihop cognitive networks,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 1, pp. 37–48, 2010.

[27] J. J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative spectrum sensing
from sparse observations in cognitive radio networks,” IEEE Journal on Selected Areas
in Communications, vol. 29, no. 2, pp. 327–337, 2011.

[28] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82, 2007.

[29] K. Zhou and S. I. Roumeliotis, “Multirobot active target tracking with combinations
of relative observations,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 678–695,
2011.

[30] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: power delivery for the 21st
century,” IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34–41, 2005.

[31] C. Ibars, M. Navarro, and L. Giupponi, “Distributed demand management in smart
grid with a congestion game,” in Proc. IEEE International Conference on Smart Grid
Communications (SmartGridComm),, Gaithersburg, MD, 2010, IEEE, pp. 495–500.

[32] H. Kim, Y.-J. Kim, K. Yang, and M. Thottan, “Cloud-based demand response for
smart grid: Architecture and distributed algorithms,” in Proc. IEEE International
Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium,
2011, IEEE, pp. 398–403.

[33] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B W., “Monitoring
and optimization for power grids: A signal processing perspective,” IEEE Signal
Processing Magazine, vol. 30, no. 5, pp. 107–128, 2013.

[34] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimization
and learning over networks,” IEEE Transactions on Signal Processing, vol. 60, no. 8,
pp. 4289–4305, 2012.
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[113] H. Hendrikx, L. Massoulié, and F. Bach, “Accelerated decentralized optimization
with local updates for smooth and strongly convex objectives,” arXiv preprint
arXiv:1810.02660, 2018.

[114] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: some of its appli-
cations,” IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 62–75, 2005.

[115] X. Zhao, Learning under Imperfections by Networked Agents, Ph.D. Dissertation,
Electrical Engineering Department, UCLA, Sep. 2014.

243



[116] P. Whittle, “Equilibrium distributions for an open migration process,” Journal of
Applied Probability, pp. 567–571, 1968.

[117] J. R. Norris, Markov Chains, Number 2. Cambridge university press, 1998.

[118] W. K. Hastings, “Monte carlo sampling methods using Markov chains and their ap-
plications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[119] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed Kalman filtering
and smoothing,” IEEE Transactions on automatic control, vol. 55, no. 9, pp. 2069–
2084, 2010.

[120] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying directed
graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615, 2015.

[121] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm,” in Proc. Advances in Neural Information
Processing Systems (NIPS), Montreal, Canada, 2014, pp. 1017–1025.

[122] P. Zhao and T. Zhang, “Stochastic optimization with importance sampling for reg-
ularized loss minimization,” in Proc. International Conference on Machine Learning
(ICML), Lille, France, 2015, pp. 1–9.

[123] C. Xi and U. A. Khan, “On the linear convergence of distributed optimization over
directed graphs,” arXiv:1510.02149, Oct. 2015.

[124] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge university press,
2004.

[125] R. Fletcher, Practical Methods of Optimization,, John Wiley & Sons, New York, NY,
USA, second edition, 1987.

[126] Z. J. Towfic and A. H. Sayed, “Adaptive penalty-based distributed stochastic convex
optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 15, pp. 3924–3938,
2014.

[127] D. P. Bertsekas, Nonlinear programming, Taylor & Francis, 1997.

[128] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: theory and
algorithms, John Wiley & Sons, 2013.

[129] Ali Jadbabaie, Asuman Ozdaglar, and Michael Zargham, “A distributed newton
method for network optimization,” in IEEE Conference on Decision and Control
(CDC). IEEE, 2009, pp. 2736–2741.

[130] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimization theory
and applications, vol. 4, no. 5, pp. 303–320, 1969.

244



[131] A. Miele, E. E. Cragg, R. R. Lyer, and A. V. Levy, “Use of the augmented penalty
function in mathematical programming problems: Part 1,” Journal of Optimization
Theory and Applications, vol. 8, no. 2, pp. 115–130, 1971.

[132] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods, Academic
press, 2014.

[133] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,
2006.

[134] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence properties of
dynamic average consensus estimators,” in Proceedings of the 45th IEEE Conference
on Decision and Control. IEEE, 2006, pp. 338–343.

[135] M. Zhu and S. Martinez, “Discrete-time dynamic average consensus,” Automatica,
vol. 46, no. 2, pp. 322–329, 2010.

[136] B. Ying, K. Yuan, and A. H. Sayed, “Dynamic average diffusion with randomized
coordinate updates,” to appear in IEEE Transactions on Information and Signal Pro-
cessing over Networks, 2019.

[137] F. Saadatniaki, R. Xin, and U. A. Khan, “Optimization over time-varying directed
graphs with row and column-stochastic matrices,” arXiv:1810.07393, 2018.

[138] S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed, “Decentralized proximal
gradient algorithms with linear convergence rates,” submitted for publication, 2019.

[139] Y. Nesterov, Introductory lectures on convex optimization: A Basic course, Springer
Science & Business Media, NY, 2004.

[140] E. I. Jury, “A simplified stability criterion for linear discrete systems,” Proceedings of
the IRE, vol. 50, no. 6, pp. 1493–1500, 1962.
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