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Abstract

Background—When studying learning, researchers directly observe only the participants' 

choices, which are often assumed to arise from a unitary learning process. However, a number of 

separable systems, such as working memory (WM) and reinforcement learning (RL), contribute 

simultaneously to human learning. Identifying each system's contributions is essential for mapping 

the neural substrates contributing in parallel to behavior; computational modeling can help design 

tasks that allow such a separable identification of processes, and infer their contributions in 

individuals.
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Methods—We present a new experimental protocol that separately identifies the contributions of 

RL and WM to learning, is sensitive to parametric variations in both, and allows us to investigate 

whether the processes interact. In experiments 1-2, we test this protocol with healthy young adults 

(n=29 and n=52). In experiment 3, we use it to investigate learning deficits in medicated 

individuals with schizophrenia (n=49 patients, n=32 controls).

Results—Experiments 1-2 established WM and RL contributions to learning, evidenced by 

parametric modulations of choice by load and delay, and reward history, respectively. It also 

showed interactions between WM and RL, where RL was enhanced under high WM load. 

Moreover, we observed a cost of mental effort, controlling for reinforcement history: participants 

preferred stimuli they encountered under low WM load. Experiment 3 revealed selective deficits in 

WM contributions and preserved RL value learning in individuals with schizophrenia compared to 

controls.

Conclusions—Computational approaches allow us to disentangle contributions of multiple 

systems to learning and, consequently, further our understanding of psychiatric diseases.

Keywords

Working memory; Reinforcement learning; effort; schizophrenia; computational modeling; 
decision-making

Intro

Multiple neurocognitive systems interact to support various forms of learning, each with 

their own strengths and limitations. As experimenters, we can only observe the net 

behavioral outcome of the multifaceted learning process; thus, understanding how different 

systems contribute to learning in parallel requires creating experimental designs that can 

disentangle their contributions over different learning conditions. Some research has focused 

on the separable contributions of goal-directed planning vs. stimulus-response habit 

formation during sequential multi-stage reinforcement learning (1–6). However, these 

processes can interact, and moreover, they can themselves be subdivided into multiple 

systems (e.g., planning involves working memory, accurate representation of environmental 

contingencies, guided strategic search through such contingencies to determine a desired 

course of action, etc.).

We have previously shown that, even in simple stimulus-action-outcome learning situations 

with minimal demands on planning and search, there are dissociable contributing processes 

of working memory and reinforcement learning (7,8). We refer to working memory (WM) as 

a system that actively maintains information (such as the correct action to take in response to 

a given stimulus) in the face of interference (multiple intervening trials). Working memory is 

characterized by the limited availability of this information, due to either capacity or 

resource limitation, and decay/forgetting (9–12). We refer to reinforcement learning (RL) as 

the process that uses reward prediction errors (RPEs) to incrementally learn stimulus-

response reward values in order to optimize expected future reward (13). These two systems 

have largely been studied in isolation, with WM depending on parietal/PFC function (14–

16), and RL relying on phasic dopaminergic signals conveying reward prediction errors that 
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modulate corticostriatal synaptic plasticity (17,18). However, how both systems jointly 

contribute to learning, and whether, and how they interact during learning is currently poorly 

understood.

We developed an experimental protocol to highlight the role of WM in tasks typically 

considered to be under the purview of model-free RL (7). Specifically, we showed that 

learning from reward was affected by set size (the number of stimulus items presented 

during a block of trials) and delay (number of intervening trials before a participant had a 

chance to reuse information). The effects of both load and delay decreased with repeated 

presentations, indicating a potential shift from early reliance on the faster but capacity-

limited WM to later dominance of the RL system when associations became habituated. Our 

previous work showed that parsing out the components of learning can identify selective 

individual differences in healthy young adults (7) or deficits in clinical populations (8). 

However, it remained possible in this work that the paradigm was simply more 

parametrically sensitive to demands of WM, and comparatively insensitive to the signature 

demands of RL. That is, in the deterministic environment, there was no need to learn precise 

estimates of reward probabilities for stimuli or actions.

Here we present an improved learning task with more comparable sensitivity across WM 

and RL systems, providing firmer ground for their quantitative assessment. The design of the 

current task (Fig. 1A-C) was motivated by prior modeling of WM and RL contributions to 

learning (Fig. 1D-E), and extended our previous design with two new features. First, we 

added probabilistic variation in reward magnitudes (1 vs. 2 points) across stimuli (Fig. 1 A-

B), and second, we added a subsequent surprise test phase (Fig. 1 C), affording the 

opportunity to assess whether choices were sensitive to parametric differences in values 

learned by RL (e.g. (19–21)). We anticipated that the combination of these new features 

would allow us to investigate RL-based contributions to learning more directly, in addition 

to the contribution of WM (Fig. 1D). Furthermore, this improved task allows us to 

investigate whether WM demands during learning also influence the degree of value 

learning (Fig. 1E). Such interactions would motivate refinement of existing computational 

models which assume that RL and WM processes proceed independently and only compete 

for behavioral output (1,7).

To exemplify the utility of this new task in computational psychiatry research, we 

administered our new paradigm to people with schizophrenia (PSZ) and healthy controls 

(HC) matched on important demographic variables. The literature remains unclear as to the 

specific nature of learning impairments in PSZ (22). Indeed, recent studies suggest that 

reward learning deficits in medicated PSZ are likely to result from a failure to represent and 

compare the expected value of response alternatives. Such representations have been 

hypothesized to rely on cortical WM function; thus, reductions in WM capacity may drive of 

learning deficits in PSZ (8), with relatively intact learning from striatal reward prediction 

errors (23). We sought to 1) replicate the observation of selective WM but not RL deficits in 

PSZ during learning (8), 2) show positive evidence in the test phase that RL-dependent 

learning is unimpaired in PSZ, as predicted from our previous study, and 3) investigate 

whether interactions of WM and RL are modified in PSZ compared to controls.

Collins et al. Page 3

Biol Psychiatry. Author manuscript; available in PMC 2018 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Experimental protocol

Experiments 1 and 2 were approved by the Brown University institutional review board 

(IRB), and administered to healthy young participants at Brown University. Experiment 3 

was approved by the University of Maryland School of Medicine IRB, and administered to 

PSZ and HC at the Maryland Psychiatric Research Center (MPRC). Experiment 1 took 

approximately 1 hour to administer. We conducted Experiment 2 in healthy young adults to 

test whether a shortened version (ca. 30 min; more appropriate for patient experiments) still 

provided the same power to identify RL and WM effects.

Learning phase—The experiments used an extension of our Reinforcement Learning/

Working Memory (RLWM) task (7). In this protocol (Fig. 1A-C), participants used reward 

feedback to learn which of three actions (key presses with three fingers of the dominant 

hand) to select in response to different stimuli. There was only one “correct” action, but the 

number of points participants could win differed across stimuli; all incorrect actions lead to 

no reward. To manipulate the requirement for capacity-limited and delay-sensitive WM, we 

varied the set size ns (number of image-action associations to learn in a block) across blocks, 

with new stimuli presented in each new block. Each correct stimulus-action association was 

assigned a probability p of yielding 2 points vs. 1 point, and this probability was either high 

(p=0.8), medium (p=0.5), or low (p=0.2). Stimulus probability assignment was 

counterbalanced within subjects to ensure equal overall value of different set sizes and motor 

actions. Depending on the experiment, there were between 10-22 blocks of learning, for 

totals of 30-75 different stimulus-action associations to be learned.

Testing phase—Following the learning blocks, participants were presented with a surprise 

test phase. On each test trial, participants were asked to choose which of two images 

previously encountered in the learning blocks they thought was more rewarding. Participants 

did not receive feedback during this phase; thus, the ability to select the more rewarding 

stimulus required having faithfully integrated probabilistic reward magnitude history over 

learning. Subjects were presented with 156-213 pairs in the test phase. Further details of the 

experiments can be found in the Supplementary Information (SI).

Analysis

Learning phase—We analyzed the proportion of correct choices as a function of the 

variables: set size (number of stimulus images in the block), iteration (how many times the 

stimulus has been encountered), pcor (number of previous correct choices for the current 

stimulus), and delay (number of trials since the last correct choice for the current trial's 

stimulus). See details in SI.

Test phase—We defined for each image the following characteristics: value (reward 

history: average of all feedback received for this image), set size, and block (the set size and 

block number of the block in which the stimulus image was encountered). We modeled test 

performance with a logistic regression, with the following key predictors (See supplement 

for full details):
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ΔQ = value(right)-value(left), assessing value difference effects.

Δns = ns(right)-ns(left), assessing whether subjects prefer items that had been 

encountered in high or low set sizes independently of experienced value, as might be 

expected if the experience of cognitive effort in high set sizes is aversive.

Mean(ns)*ΔQ: assessing whether value discrimination is stronger or weaker when 

the items came from relatively high or low set sizes.

Results

Results from the learning phase replicated our previous results, showing that working 

memory and value-based RL both dynamically contribute to learning, even with the 

presence of probabilistic reward. Indeed, in two separate experiments involving healthy 

young participants, we observed close-to-optimal learning curves for low set sizes, while 

performance improved more gradually for higher set sizes even for the equivalent number of 

iterations per stimulus (Fig. 2A). Reaction times decreased with learning and were strongly 

affected by set size (Fig. 2B). Note that, as elaborated in statistical analyses below, 

performance decreases in high set sizes were due to a combination of load and the increase 

in average delay between repeated presentations of the same stimulus (though this delay 

effect decreased with learning and with lower set sizes, as observed in Fig. 2C and 2E). We 

found no difference in learning performance for stimuli with a high, medium, or low 

probability of 2 points vs. 1 point (Fig. 2 D). This can be explained by the fact that reward 

probability is incidental to the stimulus, but, in each case, there is always one correct 

response (see Fig. 1 and Methods).

Learning phase results—To quantify the effect of reinforcement learning vs. working 

memory, we analyzed learning performance with logistic regression on trial-by-trial data, 

allowing us to parse out effects of delay from those of set size. In a first analysis, including 

only set size, number of previous correct choices, and delay as predictors, we found in both 

experiments strong effects of all three factors: worse performance with higher set size (Exp. 

1: t(27)=-5.3, p<10-4; Exp. 2: t(50)=-2.8, p=0.007), worse performance with higher delay 

(Exp. 1: t(27)=-2.8, p=0.009; Exp. 2: t(50)=-2.9, p=0.005), and better performance with 

increasing previous correct choices (Exp. 1: t(27)=15.9, p<10-4; Exp. 2 t(50)=7.5, p<10-4). 

Follow-up analysis with interaction terms replicated previous published results (Fig. 2F) 

showing that delay effects were stronger in higher set sizes and decreased with iterations 

(both p's<10-4, t>7.5 for Exp1; t= -3.1 and 2.3, p=.002, .02 respectively for Exp. 2), and the 

interaction between set size and iterations not reaching significance (Exp.1 p=0.1, t=1.7; 

Exp2 p=0.13, t=1.6).

Taken together, these results confirm that both WM and RL contributed to learning in this 

task, and hint at a possible shift from capacity-limited, but fast, WM to incremental RL after 

increasing exposure, with a weakening of the effects of delay and set size with iterations. 

The slightly weaker effects observed in Exp. 2 might be due to a smaller spread of set sizes 

(2-5 instead of 1-6), and about half the number of trials, weakening the inference of the 

logistic regression. However, because the effects were very comparable across the two 
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experiments, we next report test phase results pooled across both (but see figures for results 

within each experiment).

Test phase results—We first confirmed that participants had indeed encoded the reward 

values: in a logistic regression analysis, participants were significantly more likely to select 

the higher value image (Fig. 3 left; t(66)=3.0, p=0.003), showing sensitivity to the value 

difference between two images.

We next asked whether sensitivity to value difference depended on whether the stimuli had 

been learned in high or low set size blocks. Surprisingly, we found that value discrimination 

was enhanced when the items were learned in high rather than low set size blocks 

(t(66)=2.3, p=0.03). In particular, when we analyzed choice within trials where both images 

came from a high set size block (ns>4), and compared choice on trials where both images 

came from a low set size block (ns<4), we found that participants were sensitive to value 

differences in both subsets (Fig. 3 right both t>3.3, p≤0.001), but significantly more so in 

high set sizes (t=2.7, p=0.008). This result indicates that the value learning process is 

different when working memory is differently engaged, hinting at a potential interaction 

between the working memory and reinforcement learning systems (see below).

Finally, participants were significantly more likely to select an item from a low set size 

block than a high set size block (Fig. 3, left; t(66)=-4.4, p<10-4). This result is consistent 

with other studies indicating that cognitive effort associated with working memory demand 

or response conflict confers a cost (24–26) that translates into reduced effective value 

learning (27).

Experiment 3

Learning phase Results—We next used this task to investigate learning impairments in 

medicated people with schizophrenia. PSZ had fewer correct responses than healthy controls 

(t(77)=2.7, p=0.007; Cohen's d = 0.63), and this was true in all set sizes 3-5 (ts>2.2, 

ps<0.03; Fig. 5, left), with only marginal deficits in set size 2 (t(77)=1.4, p>.1). Based on 

our previous report, we hypothesized that PSZ would show reduced WM capacity for 

guiding learning (8), and hence would show greater differences in performance between 

sequentially adjacent set sizes once they were above capacity. Fig. 5 (top right) compares 

performances for sequentially-adjacent set sizes. We observed that performance in healthy 

controls was not significantly different between set sizes 2 and 3 (t(31)=1.3, p>.1), whereas 

there was a strong decrease in PSZ performance between these sets (t(46)=5.7, p<10-4); the 

difference between the two groups was significant (t(77)=2.6, p=0.01). Controls' 

performance instead decreased between set sizes 3 and 4 (t(31)=4.0, p=0.0003), supporting 

the interpretation that they had larger capacity (between 3 and 4 as reported in earlier 

studies; (7,8)). There was no other difference in the change in performance with set size 

between the two groups. Thus the main finding is that HC treat set sizes 2 and 3 as 

equivalent and suffer further decrements in performance with each additional increase in 

load, whereas PSZ already suffer from a difference in load between 2 and 3.

The logistic regression analysis (Fig. 5, bottom right) confirmed previous observations 

(including those in Experiments 1-2) that probability of correct choices decreased with set 
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size and delay, and increased with the number of previous correct choices (ts(77)>4.7, 

ps<10-4). There were also significant interactions of delay with set size and number of 

previous correct choices (ts(77)>4.5, ps<10-4), but there was not a significant interaction 

between set size and number of previous correct choices (t(77)=.05,ns.). The only significant 

difference between groups was observed for the set size effect (t(76)=2.1, p=0.04; all other 

ts<1.45), indicating a weaker effect of set size in PSZ than controls. This result is consistent 

with the notion that PSZ performance was less reliant on WM for guiding learning, 

indicating that PSZ exhibit reduced effects of manipulations that load on WM. The result 

further supports the previously-published finding that PSZ exhibited a deficit in performance 

already at ns=3 and therefore show less influence of further increases in load. Moreover, as 

reported earlier, incremental RL processes appeared to be intact, as suggested by the failure 

to find a significant difference between PSZ and controls in the effect of number of previous 

correct iterations (ns).

Test phase results—In contrast to the robust learning phase deficits, PSZ exhibited an 

identical ability to select stimuli having larger probabilistic reward values (Fig. 6, left). 

Specifically, for each group, performance for each tertile of value difference (low, medium 

and high) was significantly better than chance (ts>2.7, ps<0.01), and performance increased 

with value difference (high vs. medium or low, all ts>3.5, p<0.001). Furthermore in each 

tertile, performance was indistinguishable between the two groups (all t's<0.54).

Test phase logistic regression analysis confirmed our previous observation: across the whole 

group, the effect of value difference on choice was significant (Fig. 6 middle, ΔQ t(70)=3.9, 

p=0.0002), and there was no difference between the two groups (t=0.25, ns). Next, we 

investigated whether value-learning changed with set size, as found in the previous two 

experiments. Although the effect did not reach significance across the whole group in the 

analysis including all trials (t=1.46, p=0.15), it was significant in the more targeted analysis 

comparing sensitivity to value difference within high set size pairs compared to low set size 

pairs (Fig. 6, right; t(70)=2, p<0.05), supporting our previous observation. There was no 

difference between PSZ and controls (all t's<1.5, p's>.1). Finally, we investigated the 

previously found “effort” effect, whereby young healthy participants were more likely to 

select an image from a low set size than high set size block. We replicated this effect in 

healthy controls (t(28)=2.4, p=0.02), but interestingly, we did not observe a similar effect in 

PSZ (t(41)=0.44). However, the difference between groups was not significant (t=1.5, 

p=0.14). We did not find any relation between either test or learning phase performance with 

symptom ratings, neuropsychological performance, or antipsychotic dose.

Discussion

Findings from our new protocol extend those from our previously-developed learning task, 

enabling us to identify separable contributions of WM and RL to learning, and highlighting 

the role of WM in apparently model-free learning behavior (see SI). Indeed, in all three 

current experiments, learning performance was sensitive to load and delay, hallmarks of WM 

use, as well as to reward history, a hallmark of RL. Moreover, WM effects decreased as 

learning progressed, supporting prior computational modeling results suggesting a transition 

from WM to RL (7). Our new protocol also provides additional sensitivity to probabilistic 
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value learning within the RL system and more explicitly reveals interactions between WM 

and RL. The enhanced design was able to replicate our previous finding that impaired WM 

in people with schizophrenia (PSZ) substantially contributes to their poor instrumental 

learning performance. Strikingly, despite marked learning impairments driven by putative 

WM processes, the test phase results more definitively show that PSZ successfully 

integrated reward values – under the purview of RL. Overall, the consistent results reported 

across the three experiments presented here highlight a significant benefit of designing and 

analyzing experiments within a computational framework that disentangles contributions to 

learning.

In addition to including probabilistic rewards, one of the advancements of this task was to 

include a surprise test phase, in which participants were able to reliably select the images 

that had been most rewarded. We argue that this ability reflects the expression of RL 

processes. Indeed, participants were exposed to a large number of images in the learning 

phase (78 and 39 in experiments 1 and 2, respectively), far exceeding the capacity of WM 

(7,8,28). Furthermore, participants did not need to explicitly integrate the value of each 

image during learning; indeed the number of points they received per stimulus was not 

controllable, and participants were unaware of the upcoming test phase, thus any value 

learning occurred incidentally. Finally, the type of choices assessed in the test phase are 

similar to that in older tasks showing sensitivity to probabilistic value integration (19,21,29–

31). Indeed, a recent study assessing “model-based” and “model-free” RL revealed 

dissociable PFC and striatal genotypes that relate to model-based function during learning 

and probabilistic integration of value learning assessed during test, respectively (3). While 

these prior tasks demonstrated effects of striatal dopamine and individual differences thereof 

on sensitivity to learning from positive vs. negative outcomes; future work will need to 

assess whether similar biases are induced by manipulations in our analogous measure of 

biased learning in the test phase.

In addition to improving sensitivity to RL, while retaining sensitivity to WM, our new 

protocol allows us to investigate their interaction. We observed two interesting interactions 

between the two systems. First, we observed a cognitive effort effect on RL: in the test 

phase, participants were more likely to select an image which had been encountered in a low 

set size block than in a high set size bock, independently from the difference in value 

between the two images. Cognitive control is effortful, and may be aversive (24–26), and 

conflict, which requires cognitive control to resolve, is aversive and leads to reductions in 

learned value (27,32,33). This notion is consistent with our observation here that effective 

values are reduced for items that had been encountered under high WM load.

Second, we also observed a more counterintuitive interaction, whereby participants 

exhibited enhanced ability to discriminate objective differences in value when the two items 

had been learned in high set sizes (i.e., when learning was more difficult) than in low set 

sizes. This result highlights an interference of WM computations into RL computations. We 

propose that this interaction can be accounted for by a competitive or cooperative 

computational mechanism linking WM with RL. According to the competitive account, 

successful engagement of WM in low set sizes inhibits the RL system from accumulating 

values, and hence hindering subsequent value discrimination. Alternatively, a cooperative 
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account assumes that RL operates regardless of load, but that expectations in WM provide 

input to the RL system so that prediction errors are reduced when WM is successful (i.e., in 

low set sizes). As such, positive RPEs would be blunted with a working WM-RL interaction, 

leading to reduced integration of value in the RL system. Future work may be able to 

disentangle these competing explanations with imaging. In either case, our protocol allowed 

us to show that RL and WM do not operate separately, but that WM interferes with RL 

computations.

Disentangling the role of multiple systems in learning is crucial to link individual differences 

in behavior to the neural mechanisms supporting them. This is particularly true in 

psychiatric research: many psychiatric diseases include learning impairments, and knowing 

whether such impairments are more likely related to the striatal-dopaminergic integration of 

reward and punishment over time, or to working memory use, would be an important step 

toward a better understanding of the neural systems implicated in the disease. Here, we 

exemplify this with the case of schizophrenia. Learning impairments have been broadly 

observed in PSZ, but the nature of these impairments remains unclear (22), with conflicting 

findings across studies at the behavioral level (with impairments in some learning situations 

but not others (34,35), and at the neural level (identifying different striatal signals compared 

to controls (36–38)). In a previously-published study (8), we found that overall learning 

impairments in PSZ were entirely explained by WM contributions to learning, with no 

difference in the RL contributions between PSZ and controls. However, our initial study was 

less sensitive to RL than WM because of the use of fully deterministic stimulus-action-

outcome contingencies. Here, we provide a complete conceptual replication of our previous 

finding of WM impairments explaining poorer learning in the initial learning phase. This is 

particularly noteworthy in that we used probabilistic, as opposed to deterministic, feedback 

and examined different set size ranges across experiments, suggesting that this finding is 

likely quite robust and reliable. With the addition of the test phase, we more explicitly 

showed that PSZ possess fully intact ability to accumulate statistics of probabilistic values, 

as their ability to discriminate items based on these learned values was indistinguishable 

from controls. Given that PSZ typically demonstrate impairments relative to controls in 

effortful cognitive tasks, the fact that we have now seen fully normal performance levels in 

striatal RL across two independent experiments is a noteworthy example of the value of 

computational approaches. Our results were not linked to medication dosage and did not 

provide insight as to whether specific symptoms (beyond cognitive symptoms), in particular 

negative symptoms, were linked to distinct contributions to learning (see supplement for 

additional results and discussion).

Conclusions

We introduced a protocol designed to disentangle the role of reinforcement learning and 

working memory on instrumental performance, and showed that this protocol is sensitive to 

individual differences in both processes, and lets us investigate their interaction. Behavioral 

results showed that the two processes compete for choice during learning, and at a deeper 

level, as they perform their computations. Specifically, we hypothesized that WM 

contributes expectations to the computation of RL reward prediction errors, thus ironically 

weakening learning in the RL substrate. We demonstrated the usefulness of our protocol in 
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an experiment comparing learning in healthy controls and people with schizophrenia, 

confirming that learning impairments in PSZ are due to WM, while RL is fully spared. More 

generally, we hope that this protocol can get us closer to the underlying neural mechanisms 

supporting human learning, and thus further our understanding of healthy learning as well as 

learning impairments in different clinical populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental protocol
A) Learning phase. Participants learn to select one of three actions (key presses A1=3) for 

each stimulus in a block, using reward feedback. Incorrect choices lead to feedback 0, while 

correct choices lead to reward, either +1 or +2 points, probabilistically. The probability of 

obtaining 2 vs. 1 points is fixed for each stimulus, drawn from the set of (0.2, 0.5 or 0.8). 

The number of stimuli in a block (set size ns) varies from 1 to 6. B) In learning blocks, 

stimuli are presented individually, randomly intermixed. Delay indicates the number of trials 

that occurred since the last correct choice for the current stimulus. C) In a surprise test phase 

following learning, participants are asked to choose the more rewarding stimulus among 

pairs of previously encountered stimuli, without feedback. D) The computational model 

assumes that choice during learning comes from two separate systems (working memory and 

reinforcement learning), making behavior sensitive to load, delay, and reward history. In 

contrast, test performance is only dependent on RL, such that if RL and WM are 

independent, choice should only depend on reward history. E) 100 Simulations of the 

computational model with the new design for two sets of parameters representing poor WM 

use (capacity 2) and good WM use (capacity 3), respectively. Left: Learning curves indicate 

the proportion of correct trials as a function of the number of encounters with given stimuli 

in different set sizes. Middle: difference in overall proportion of correct choices between 

subsequent set sizes shows a maximal drop in performance between set sizes 2 and 3 with 

capacity 2, while the drop is maximal between set sizes 3 and 4 for capacity 3. Right: 

assuming RL independent of WM, the learned RL value at the end of each block is 

independent of set size (colors) and capacity (top vs. bottom), but is sensitive to the 

probability of obtaining 1 vs. 2 points in correct trials.
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Figure 2. 
A-B) learning curves show the proportion of correct trials and mean reaction times as a 

function of the encounter number of each stimulus, for different set sizes (ns). Left/right 

columns show results from experiment 1, 2. C,E) Proportion of correct trials as a function of 

delay (number of trials since correct choice for the current stimulus) for different set sizes, 

or at different learning times (early = up to two prior correct choices, late: final two trials for 

a given stimulus. D) Performance for stimuli with high, medium or low probability of 

reward 2 vs. 1 when correct choice is made.
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Figure 3. 
Learning phase: A) Results from the logistic show consistent effects of set size, delay, 

number of previous corrects (Pcor), and interactions (except set size with pcor). Error bars 

indicate standard error of the mean. B) Experiment 1 Logistic regression predictions (top 

left) show set size and pcor effect within trials with at least one previous correct choice for 

the current stimulus. Logistic predictions when correcting for set size or delay still show a 

remaining effect of set size, indicating that both factors play an important role in explaining 

the slower learning in higher set sizes.
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Figure 4. 
Test phase results. A) We analyze choice of the right vs. left image in the test phase as a 

function of the value difference ΔQ=value(right image) – value(left image), the set size 

difference Δns, ΔQ*ns the interaction of the mean set size of the two images with the value 

difference, as well as other regressors of non interest. We find a significant effect of all three 

factors across both experiments. B) the effect of value difference is significantly stronger in 

high set sizes than in low set sizes, indicating that RL was more efficient under high load, 

thus highlighting an interaction of RL with WM.
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Figure 5. 
Schizophrenia learning phase results replicate our previous finding that WM contributes to 

learning impairment. Left, learning curves (see Fig. 2) show slower learning for people with 

schizophrenia than control. Top right: change in performance from set size 2 to 3 is 

significantly higher in people with schizophrenia than controls. HC pattern matches a 

capacity 3 model simulation (Fig 1 E), while PSZ pattern matches a mixture of capacity 2 

and capacity 3 model simulation. Bottom right: logistic regression analysis shows only a 

difference in the set size effect between groups, implicating the working memory 

mechanism.
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Figure 6. 
Schizophrenia test phase supports our prediction that RL-dependent value learning is 

unimpaired in people with schizophrenia. Left: proportion of higher value choices increases 

with the value difference between the two items in a trial (grouped in tertiles based on 

absolute value difference); however, there was no difference between PSZ and controls 

(HC). Middle: logistic regression analysis of the test phase supported our finding supported 

our finding that PSZ and controls were equally sensitive to value difference. We found an 

effort effect in HC, but not in PSZ. Right: both groups were more sensitive to value 

difference in high than low set sizes, supporting our previous result.
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Table 1
Experiment 3 Demographics

HC PSZa P value

n 32 46

Age (years): mean (SD) 37.14 (10.21) 37.81 (8.97) 0.76

Education (years): mean (SD)

 Participant 15.06 (2.12) 13.27 (2.37) 0.001

 Maternal 13.75 (2.21) 14.02 (2.93) 0.66

 Paternal 14.20 (3.68) 13.74 (3.52) 0.60

Sex, Male/Female, n 21/11 28/18 0.58

Race/ethnicity, n 0.85

 African American 12 18

 White 17 26

 Other 3 2

a
Antipsychotic medication regimen (n): Aripiprazole: 3; Clozapine: 20; Fluphenazine: 1; Haloperidol: 3; Lurasidone: 1; Olanzapine: 1; Quetiapine: 

1; Risperidone/Paliperidone: 6; Ziprasidone: 2; Multiple Antipsychotics: 7; None: 1.
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