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Abstract

Models based on the Transformer neural network architecture
have seen success on a wide variety of tasks that appear to
require complex “cognitive branching”– or the ability to main-
tain pursuit of one goal while accomplishing others. In cogni-
tive neuroscience, success on such tasks is thought to rely on
sophisticated frontostriatal mechanisms for selective gating,
which enable role-addressable updating– and later readout– of
information to and from distinct “addresses” of memory, in
the form of clusters of neurons. However, Transformer models
have no such mechanisms intentionally built-in. It is thus an
open question how Transformers solve such tasks, and whether
the mechanisms that emerge to help them to do so bear any
resemblance to the gating mechanisms in the human brain.
In this work, we analyze the mechanisms that emerge within
a vanilla attention-only Transformer trained on a simple se-
quence modeling task inspired by a task explicitly designed to
study working memory gating in computational cognitive neu-
roscience. We find that, as a result of training, the self-attention
mechanism within the Transformer specializes in a way that
mirrors the input and output gating mechanisms which were
explicitly incorporated into earlier, more biologically-inspired
architectures. These results suggest opportunities for future
research on computational similarities between modern AI ar-
chitectures and models of the human brain.

Keywords: transformers; neural networks; working memory;
computational neuroscience; gating; computational cognitive
science; mechanistic interpretability

Introduction
Computational models based on the Transformer architecture
(Vaswani et al., 2017) have seen success on a wide variety
of tasks that appear to require complex “cognitive branch-
ing”: the ability to maintain pursuit of one over-arching goal
while performing other subtasks along the way. For exam-
ple, Transformer-based large language models (LLMs) have
demonstrated impressive abilities in not just language (Brown
et al., 2020), but planning (Huang, Abbeel, Pathak, & Mor-
datch, 2022), navigation (Du, Yu, & Zheng, 2021), and prob-
lem solving (Lewkowycz et al., 2022).

In humans, there is strong evidence that performance on
such tasks depends on a neural mechanism for gating (Frank
& Badre, 2012; Badre & Frank, 2012; Chatham, Frank,
& Badre, 2014; Rac-Lubashevsky & Kessler, 2016; Rac-
Lubashevsky & Frank, 2021), which controls whether new
information is maintained in working memory or not, the ad-
dress in memory where it is stored, and the address from
which stored information is recalled in response to a task.
Typical Transformer models have no specialized architecture

for working memory, in spite of their ability to succeed at
tasks which appear to require it. Although some Transformer
models have additional built-in structure for memory (Dai et
al., 2019; Burtsev, Kuratov, Peganov, & Sapunov, 2020), re-
currence (Dai et al., 2019), or hierarchy (Y.-S. Wang, Lee,
& Chen, 2019), vanilla Transformer models without any such
inductive biases remain the dominant architecture for modern
AI systems (Brown et al., 2020; Touvron et al., 2023). This
raises the question: in solving such tasks, does a mechanism
for selective input and output gating emerge within the vanilla
Transformer?

Transformers are good candidates for learning gating be-
havior because of inductive biases within the self-attention
mechanism, i.e., the Transformer’s defining architectural
component. Within self-attention, numerous “attention
heads” construct contextual representations for each item in
their input sequence through a learned weighted combination
of the previous items in the sequence. Attention heads could
in principle learn gating behavior by marking sequence ele-
ments with a key (input gating) and reading out those values
later by querying for those keys (output gating). Moreover,
the attention mechanism in Transformers is decomposed in
a way that enables it to readily differentiate “reading” and
“writing” operations. This behavior is analogous function-
ally to the neurobiological roles of corticostriatal circuits in
humans and other animals, in which isolated clusters of pre-
frontal neurons represent distinct “addresses” in memory that
can be updated or read out from via selective gating actions
triggered by basal ganglia and thalamus (O’Reilly & Frank,
2006; Frank & Badre, 2012; Calderon, Verguts, & Frank,
2022). In computational neuroscience models of this pro-
cess, the prefrontal clusters (or “stripes”) can also serve as
latent abstract “roles” that condition how to interpret content
within them, affording functions such as variable binding, in-
direction, and hierarchical generalization to new situations
(O’Reilly & Frank, 2006; Collins & Frank, 2013; Kriete,
Noelle, Cohen, & O’Reilly, 2013; Bhandari & Badre, 2018).
Thus, Transformers may use their attention heads to learn a
gating strategy that mimics certain functions of the brain.

In this work, we train vanilla Transformer models with
self-attention on a working memory task paradigm that was
specifically designed to evaluate models of selective gat-
ing and working memory in computational neuroscience
(O’Reilly & Frank, 2006; Rac-Lubashevsky & Frank, 2021).
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We use recent techniques from mechanistic interpretability
(Olah, 2022; Nanda & Bloom, 2022) to expose the mecha-
nism that the Transformer uses in order to perform the task.
We find that, as a result of training, the self-attention mech-
anism specializes in a way that resembles existing models
of input-output gating. Specifically, we find that the trained
model uses the key vectors within the attention mechanism
to control input gating, i.e., determining which elements in
the input to consider vs. ignore, as well as controlling how
the information is stored– in other words, assigning it a role
such that the model can access it later. The model uses
the query vectors to control output gating, i.e., determin-
ing which information is accessed in order to complete a
task. Our findings highlight the importance of considering
the emergent mechanisms that result from training in addition
to the innate architectural mechanisms when drawing com-
parisons between AI systems and human cognitive processes,
and opens the door for future analysis and work which can
enable more principled studies of the similarities and differ-
ences between human vs. machine cognition.

Background
Gating Mechanisms
There is strong evidence that working memory in hu-
man brains makes use of a gating mechanism, which pro-
cesses and stores information analogously to gates being
opened and closed (Rac-Lubashevsky & Kessler, 2016; Rac-
Lubashevsky & Frank, 2021; Bhandari & Badre, 2018). The
input gate controls which information is stored or not stored
in memory, and if stored, into which “address”. The output
gate controls which content within working memory is ac-
cessed in order to produce a response or to make subsequent
gating operations. Gating policies are also dependent on the
learned task-dependent context (i.e. role) of the information
to be stored and accessed in working memory.

In cognitive neuroscience, a variety of tasks are used to
study the capacity of working memory. In this work, we focus
on a variant of the “reference-back 2” task (Rac-Lubashevsky
& Frank, 2021), a human paradigm meant to mimic a task de-
signed to showcase the need for selective gating of indepen-
dent contents of information in frontostriatal neural networks
(O’Reilly & Frank, 2006). In the reference-back paradigm,
symbols such as letters or numbers are viewed one at a time,
and the subject must determine whether the current symbol
is the same or different as that stored in memory for a given
role (letter or number). They also are given a cue to indicate
whether to update the current symbol as the “reference” to
be compared on subsequent trials of the same role, or if in-
stead they should continue to maintain the previous reference.
Thus this task requires selective updating and accessing of in-
formation in a role-addressable manner.

Transformers
Transformers are powerful language models which create
contextualized representations of sequences of words, where

they learn to to predict the next token one at a time using
an “attention” mechanism (Bahdanau, Cho, & Bengio, 2014)
to scan the previously seen tokens for relevant information.
These models are able to learn and represent complex se-
quence modelling tasks.

For a given prediction, Transformer attention generates
three separate vectors at each position in the sequence: a
query, key, and value (q, k, v). The query vector scans the pre-
vious context (including the current token) for relevant keys,
and calculates how much the current prediction should “at-
tend” to those positions. Then, the value vectors at those po-
sitions are multiplied by the corresponding weights, summed
up, and added to the next representation: for token i at layer j,
the contextual representation is ∑k q j

i · k
j
k ∗ v j

k. Thus, the next
token prediction includes earlier sequential information by
combining the value vectors from previous tokens. In other
words, Transformer attention can be viewed as a read/write
mechanism: for a given token, the queries and keys dictate
which tokens to read from, the values are the content that is
read proportional to the attention calculated by the keys and
queries, and the summed content is written to a new represen-
tation at the given token. As we shall see below, the compar-
ison to role-addressable input and output gating operations is
evident, whereby the key vectors form addresses analogous
to the PFC “stripes”, with key construction determining in-
put gating, and the query vectors control which of them are
accessed, with query construction determining output gating.

Limitations as Cognitive Models: Transformers have
properties which make them obviously bad models of human
sequence processing. In particular, because Transformers can
attend to any part of the sequence when creating a represen-
tation, they are not limited by memory representation con-
straints. Transformers could thus solve tasks that would push
the limits of human working memory, but it should be noted
they accordingly require large amounts of training data. The
question addressed in this work is orthogonal to these limita-
tions. That is, we focus specifically on if and how Transform-
ers can learn to implement an efficient gating mechanism to
solve tasks with human working memory demands.

Mechanistic Interpretability
We use a set of recently introduced analysis tools (Elhage et
al., 2021) which enable us to uncover specific mechanisms
defined in terms of model weights within the Transformer.
Specifically, we use path-patching (K. Wang, Variengien,
Conmy, Shlegeris, & Steinhardt, 2022; Goldowsky-Dill,
MacLeod, Sato, & Arora, 2023), a generalization of causal
mediation analysis (Pearl, 2001) that allows us to determine
which components of a neural model (e.g., attention heads)
work together in order to produce observed behavior on a
task. The discovered components are referred to as a circuit
(Räuker, Ho, Casper, & Hadfield-Menell, 2023).

Path-patching involves making a incisive edit to the repre-
sentations of a trained model and observing how the model’s
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Figure 1: Graphical diagram of the path-patching process.
Attention heads are represented as circles (layer,head index),
and contextual representations of each token (as well as the
next token prediction) are represented as rectangles.

behavior is affected (see Fig. 1). Path-patching typically re-
quires a minimal pair of examples: the “clean” example and
the “corrupted” example, in which one token from the clean
example is changed, as well as the correct label. Given repre-
sentations from the model for both the clean and the corrupted
examples (the blue and orange components in the figure), we
can chose a specific component anywhere in the model (re-
ferred to as the “sender”), and insert the corrupted represen-
tation at that component into the clean representation. We
then use the model to recalculate the representations up until
another component of the model (the “receiver”), thus “patch-
ing” the path. In the figure, we send from layer 0, head 0 to
layer 1, both heads 0 and 1. All clean representations that are
not along this path are not modified and are unaffected by the
patch. The model then recomputes all representations after
the receiver (the “patched” representations), and arrives at a
new prediction. If the model output matches the corrupt pre-
diction rather than the clean one, that prediction is causally
dependent on the path from sender to receiver. See (K. Wang
et al., 2022) and (Goldowsky-Dill et al., 2023) for a more
comprehensive review of path-patching methods.
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Figure 2: Above: example of textual reference-back task as
model input. Below: step-by-step task process; models do not
view task-internal grey words. “Update Instruction” executes
after “Answer” despite appearing earlier sequentially.

Task
We create a modified text-based version of the reference-
back 2 task (Rac-Lubashevsky & Frank, 2021) designed to
tax selective WM gating (O’Reilly & Frank, 2006).The tex-
tual reference-back task requires making same/different judg-
ments between incoming symbols assigned to a particular
“register” in memory, with respect to those seen previously
and linked to those same registers. Like the original tasks,
the textual reference-back task is sequential, and requires the
maintenance and independent updating of two memory reg-
isters, each containing one of S arbitrary symbols at a time.
The contents of the registers are updated over the course of
the task. At the beginning of each sequence, each register is
initialized individually to one s ∈ S (the pool of symbols is
shared between registers, which was shown to more substan-
tively tax gating mechanisms in (O’Reilly & Frank, 2006)).
Each sequence is composed of L tuples, each containing reg-
ister address Regi, symbol Symi, same/different label Ansi,
and update instruction Insi. For a tuple i∈ L, the answer Ansi
is a binary value that is either same if symbol Symi is cur-
rently stored in the register with address Regi, or different
otherwise. The update instruction Insi also takes one of two
values, evenly distributed: if ignore, then there is no effect
further on in the sequence. If store, then from that point on
in the sequence, Symi is stored in the register with address
Regi until otherwise updated. An example is shown in Fig. 2.

We implement each reference-back task example in our
data as a single sequence, and measure models’ ability to pre-
dict same versus different for each Ansi. Each sequence
has 10 same/different answers, and we generate 100,000
train, 1,000 dev, and 1,000 held-out test sequences.

The class balance of same to different answer labels in
the train/test datasets is roughly 1:2, making a “maximum
class” heuristic solution 0.66 accuracy, 0.33 precision, and
0.5 recall. We test several other heuristics, the strongest of
which is predicting same if another tuple including Store and
the target register and target symbol exists in the sequence,
which scores 0.80 accuracy, 0.82 precision, and 0.85 recall.

Model
We use vanilla Transformers in order to facilitate inter-
pretability, as done in prior work that analyzes emergent
mechanisms (Elhage et al., 2022). Our models contain two
decoder-only layers, each with only two heads (four in to-
tal), and no multilayer perceptrons or layer normalization,
followed by a linear “unembed” layer to project the output of
the last decoder into the space of the entire vocabulary at each
timestep 1. Our network uses absolute positional embeddings
(Vaswani et al., 2017). The vocabulary contains all possi-
ble tokens, represented individually with embedding size E.
Models are trained to predict the next token with the language
modelling objective, meaning if the model is predicting Ansc,
it will have access to all (Insi, Regi, Symi, Ansi) tuples where
i < c, as well as Insc, Regc, and Symc. However, the models

1In practice, only ‘same’ and ‘different’ are ever predicted.
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only receive loss at positions where a same/different token
must be predicted. Furthermore, each layer gets a causal at-
tention mask– when constructing each token representation,
it cannot look ahead at tokens further down the sequence.

The models are trained over 60 epochs of the 100k training
data points, learning from 6 million examples in total. Models
are evaluated on their accuracy (whether the correct Ansi is
predicted for each tuple i), measured in precision and recall,
as well as the same versus different token logit difference.

Experiments
First, we select and analyze a single Transformer model
which succeeds on the task, and upon investigation of its
weights find that it learns a mechanism for input/output gat-
ing. Second, when we conduct a search over more trained
models, we find that model performance correlates with
markers of learning a gating policy, analogous to findings in
the frontostriatal neural networks (Frank & Badre, 2012).

We first establish that a Transformer model is able to suc-
ceed on the reference-back task. We perform a small hyperpa-
rameter search and select a model that reaches 100% accuracy
on the held-out test data for further analysis. We determine
the circuit that the model uses to solve the textual reference-
back task through an array of path-patching experiments with
a simple minimal pairs paradigm. Our “sender” within path-
patching is always both attention heads at layer 0, and our
“receiver” is always both attention heads at layer 1.

At layer 0, the model learns to condense the task-critical
information from each tuple into one embedding, at the posi-
tion for Symi

2. At this layer, the model pays 85.8% of total
attention to the task-critical information to that tuple, and just
14.2% of attention to other tuples.

At layer 1, the attention heads learn to attend to the Symi
key vector representing the tuple where information was last
stored in the target register. The heads pay 70.2% of total
attention to this tuple (the “stored” tuple), and only 29.8%
of attention to all other tokens. This behavior is tied to the
target register matching the register in the stored tuple, which
is analogous to gating of the relevant role-addressable PFC
stripe. We focus our analysis on the Layer 1 representations
which exhibit this learned gating policy, shown in Fig. 3.

Input Gating through Key Vectors
Input gates in working memory control what incoming infor-
mation is remembered and “role-addressable”– i.e., stored in
memory in such a way that it is able to be freely accessed
later when it is needed for task completion. In a Trans-
former, the key vectors serve the role of addresses (analogous
to PFC “stripes”), which are retrieved based on their match to
a query vector from the current or later timesteps during self-
attention. Thus the input gating in Transformers is controlled
through key construction; the composition of the output of
the Layer 0 attention controls which content is stored in the

2Redundantly, the model does the same at the position for Ansi.
Through additional experimentation, we determine that this is a
quirk of Transformer learning, and does not impact our analysis.

key vector at Layer 1 for later use. At a later timestep, a query
vector will address the information in the key vector.

In our model analysis, we find that key composition at the
Symi position (positions 2, 6, 10, and 14 in Fig. 3) roughly
represents each tuple. A query’s ability to address this po-
sition depends on whether the represented tuple contains a
Store or an Ignore. Key vectors representing an Ignore
tuple receive very little attention (0.4% of layer 1 attention
averaged over test set), whereas those representing a Store
tuple receive the bulk of the attention (86.8%). We determine
this effect causally with path-patching (Fig. 1). First, we
create clean sequences sampled from our test set, and then
corrupt these sequences by switching a Store within tuple i
to an Ignore. We then path-patch only the key vectors of
i. We expect, if the key controls input gating, that patching
these key vectors should “block” attention to all of tuple i.
An example attention pattern is in Fig. 3, examples a and b.
We find that the model’s attention shifts away from the tuple
accordingly in 100% of patched instances. The presence of
an Ignore or a Store within a tuple controls whether the key
construction acts as an open input gate or a closed input gate.

Key construction also depends on the role of the repre-
sented content; within our task, that means whether Regi is
Reg0 or Reg1. When making a same/different prediction, key
vectors representing a tuple that matches the target register re-
ceive most of the model’s attention (92.5% of total attention),
while those that do not match are not attended to (3.3% of to-
tal attention). Similarly to input gating, we use path-patching
to determine that key construction encodes roles. This time,
given a target tuple i with a target register, we corrupt the
register of the stored tuple, changing it from Reg0 to Reg1
or vice versa; to predict the answer for i, the model must at-
tend to an earlier tuple with the target register. An example is
Fig. 3, row c. The model’s attention shifts away accordingly
across every example in the test set. Note that the stored tu-
ple must be modified; if the same corruption is made earlier
(as in row d), attention does not shift. This behavior shows
that the gating within self-attention is role-addressable; the
registers within the task function as roles, and are embedded
within the key vectors as part of the representation.

Output Gating through Query Vectors
Within working memory, output gates control which address-
able information is accessed in order to complete a task.
Given that key vectors serve the role of addresses, query vec-
tors in turn control which key vectors are accessed, through
the final Q*K dot product in attention. Query construction
thus performs the role of output gating within Transformers.

The query composition controls which addressable Symi
representations are attended to based on the identity of the
target register; changing Reg1 to Reg0 controls which role-
addressable content is accessed. We determine this through a
final set of path-patching experiments, an example of which is
shown in Fig. 3, row e. Rather than editing the register in the
stored tuple as done in row c, we corrupt the target register it-
self; this means that the query must now find representations
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Figure 3: Model behavior when predicting same/different (token 15) is shown. We measure attention visualized as a shade
of purple, with deeper shade corresponding to higher attention to that token. We create “corrupted” minimal pairs in which
changing a token (light blue) either changes the correct label at index 15 (examples b, c, e) or does not (d, f). We make small
path-patching edits with the minimal pair to targeted network components (layer 1 keys for b, c, d, f; queries for e,f). In other
words, we replace specific components (denoted with red text) with their corresponding representation from the “corrupted”
sequence, but hold all other representations constant, and run the model and get a new same/different prediction. In all test
examples, making the small patch successfully results in the model’s prediction changing to align with the “corrupted” example.

corresponding to the other tuple. In row e, the model finds
Sym5, and predicts different; and in row f, we patch in
Sym4 at index 2, and the model predicts same. Upon inspec-
tion, the query corresponds with key vectors that represent tu-
ples which also contain the target register. When we edit the
target register in minimal pair experiments, we observe that
the attention shifts from the original stored tuple (74.1% of
attention) to the stored tuple that matches the edited register,
and successfully makes an updated same/different compari-
son to the symbol in the edited register in every instance.

Editing aspects of the target tuple other than target register
has minimal effect on the query construction behavior. No
edits to the query cause the model to attend to a Ignore tu-
ple, further evidencing of output gating behavior– only con-
tent that has been made “addressable” can be accessed for
a response. Furthermore, we find that the target instruction
and symbol do not factor into the query composition– chang-
ing them through path-patching to the query does not affect
attention. This is notable because the model could employ
other strategies for determining which tuples are eligible to
be the stored tuple; e.g. attending to all symbols to match if
any of them are the same as the target symbol.

Successful Task Performance is Related to
Discovering Gating Policies

To further identify how readily Transformer models learn a
gating policy, and how useful such a policy is to succeed on
the task, we train new models with the same hyperparame-
ters across many different random seeds, and measure their
performance on the target task as well as on markers of the
gating policy. We train 20 new models on the same textual
reference-back data, each with a different random initializa-

tion, and measure both training loss and test set accuracy. 5 of
the models succeed 100% of the time, and the other 15 mod-
els succeed between 94%-99.99% of the time, with a mean
of 97.72% and a standard deviation of 2.03. The models are
trained on the same amount of data (6 million examples).

We observed in the prior sections that the trained Trans-
former model uses its key composition to control input gat-
ing and its query composition to control output gating and
role addressability. To identify whether the new models learn
to gate similarly, we evaluate the key and query composition
of all 20 new models by making minimal pair path-patching
edits for every test example, where the answer changes from
same to different or vice versa, similarly to Figure 3.

To evaluate the ability to open and close input gates, we
corrupt the stored tuple’s Store to Ignore, and path-patch
only to the stored tuple’s key vectors. To evaluate the role
addressability of the content during output gating, we cor-
rupt the target register (changing Reg0 to Reg1 or vice versa),
and path-patch only to the query vector for making the
same/different judgment. This is a more challenging task than
patching to all of the keys or queries respectively; a model
will only succeed on these subtasks if it implements a gat-
ing policy with the same markers that the model analyzed in
earlier sections does. A model makes the patched prediction
successfully if its prediction matches the corrupted sequence
and not the original sequence– i.e. the targeted path-patch
was sufficient to change its same/different prediction.

We visualize the 5 runs that reach 100% accuracy on the
test data in Figure 4, as well as 5 randomly selected runs that
do not reach 100% accuracy on the test data, and plot their
training loss versus their accuracy (between 0 and 100) on
the two patched subtasks over the course of training.
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Figure 4: Model performance over training on patching sub-
tasks. Each graph contains an individual model’s training
loss (solid line) and subtask accuracy (dashed line, between 0
and 1) over time; the line’s color corresponds to whether the
model reaches 100% accuracy on the general test set.

Two trends become apparent from the data: first, models
which score a perfect test accuracy appear to succeed at the
subtasks more readily than models which do not. Of the for-
mer, 3 of 5 models reach 100% accuracy on both subtasks
readily, plateauing less than halfway through training dura-
tion. However, examples from the latter category of models
do not reach such immediate success at the patched subtasks
(including the 10 not pictured in this graph); in fact, many cat-
egorically fail, scoring as low as 49% accuracy. These results
do not indicate that this class of models’ representations are
useless for the task– they all score between 94% and 99.99%,
well above heuristic performance. Failing to succeed at the
targeted patching subtasks reveals that these models may im-
plement some other strategy that is not gating, and may be
brittle or heuristic in some way. We take these results as evi-
dence that learning a robust policy for gating correlates with
model performance at the textual reference-back task.

The second emergent trend is that many models across both
classes have a sharp decline in training loss, which correlates
with a similarly steep increase in accuracy on both subtasks.
Sudden jumps in performance is a noted phenomenon that has
been observed in other Transformer models in cases of e.g.,
grokking (Power, Burda, Edwards, Babuschkin, & Misra,
2022). We interpret this phase transition as suddenly learning
a gating mechanism. Models that do not exhibit phase transi-
tions to the same degree take longer to fit the task, and do not
reach high subtask accuracy. The cause of phase transitions
and what is learned during this process is left for future work.

Summary and Discussion
In this work, we investigate Transformer models for emer-
gence of a learned gating mechanism; a network component
performing role-addressable gating, similar to that in work-
ing memory of humans. We observe that the model readily
learns a gating policy, and upon training more models find
that task performance is correlated with gating ability. Our re-
sults show how competence at cognitive branching tasks can
emerge in Transformers, and suggest that integrating Trans-

former components may improve existing computational neu-
roscience models of working memory.

The Transformer models are capable of making use of key
composition for input gating and query composition for out-
put gating on the task. We find that making precise corrup-
tions to specific architectural elements of the network causes
the model’s prediction to change from same to different
or vice versa, indicating that those components are causally
responsible for the gating mechanism. The architectural bi-
ases of attention within the vanilla Transformer model lend
themselves well to representing role-addressable content, as
the learnable nature of keys, queries, and values allows the
model to learn to create internal representations in a manner
which allows it to represent roles and addresses, mimicking
the variable binding and input / output gating mechanisms in
biological neural networks (O’Reilly & Frank, 2006; Frank
& Badre, 2012; Collins & Frank, 2013; Kriete et al., 2013).

In this work, we focused on characterizing the mechanism
that the Transformer model learns as a result of training on
cognitive branching tasks, and did not evaluate the robust-
ness of the mechanism. The textual reference-back task is
similar in nature to the FFLM task (Liu, Ash, Goel, Krishna-
murthy, & Zhang, 2023), comprised of 1 register, 2 symbols
(0 or 1), and long sequences. Liu et al. found that similar
Transformer models were able to succeed on FFLM data, but
struggled to generalize outside of their training distribution.
We leave experiments characterizing generalization of Trans-
former mechanism behavior on data with the reference-back
paradigm– e.g. more than 2 registers, distinct sets of symbols,
novel symbols introduced at test time– for future work.

When we trained more models on the task, we found that
the models which perform best on the task correlate with the
markers of gating we observed in our circuit analysis, and that
the learning trajectory shows a steep decrease in training loss
and a steep rise in patched subtask accuracy simultaneously,
suggesting that the model has learned a component of the gat-
ing policy at that time. Both findings are analogous to those
of Frank and Badre (2012), in which they find that networks
which learned a hierarchical gating policy performed better at
a hierarchical learning task, and humans that learn this policy
also show a sharp decrease in loss when they discover it.

Ultimately, finding connections between emergent behav-
ior of Transformer models and human working memory
serves to benefit both computational cognitive neuroscience
and artificial intelligence. Although Transformer models
themselves are limited in their biological plausibility, in this
setting they learned behavior mimicking the functionality of
working memory, and their application within computational
models of the brain should be further explored. From the per-
spective of artificial intelligence, understanding the strengths
and limitations of Transformer models on cognitive branch-
ing tasks may inform model analysis across the many diverse
settings in which these models are applied.
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