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ARTICLE

Extremely stable graphene electrodes doped with
macromolecular acid
Sung-Joo Kwon1, Tae-Hee Han2,3, Taeg Yeoung Ko4, Nannan Li 5, Youngsoo Kim6, Dong Jin Kim6,7,

Sang-Hoon Bae3, Yang Yang3, Byung Hee Hong 7, Kwang S. Kim 5, Sunmin Ryu4 & Tae-Woo Lee2,8

Although conventional p-type doping using small molecules on graphene decreases its sheet

resistance (Rsh), it increases after exposure to ambient conditions, and this problem has been

considered as the biggest impediment to practical application of graphene electrodes. Here,

we report an extremely stable graphene electrode doped with macromolecular acid

(perfluorinated polymeric sulfonic acid (PFSA)) as a p-type dopant. The PFSA doping on

graphene provides not only ultra-high ambient stability for a very long time (> 64 days) but

also high chemical/thermal stability, which have been unattainable by doping with

conventional small-molecules. PFSA doping also greatly increases the surface potential

(~0.8 eV) of graphene, and reduces its Rsh by ~56%, which is very important for practical

applications. High-efficiency phosphorescent organic light-emitting diodes are fabricated with

the PFSA-doped graphene anode (~98.5 cd A−1 without out-coupling structures). This work

lays a solid platform for practical application of thermally-/chemically-/air-stable graphene

electrodes in various optoelectronic devices.
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Graphene has outstanding electrical, mechanical, and
optical properties1–5, so it has been regarded as an alter-
native to indium tin oxide (ITO), which is the conven-

tional transparent electrode in optoelectronic devices but is not
suitable for electrodes in flexible optoelectronics due to its brit-
tleness and increasing cost6,7. Since the development of chemical
vapor deposition (CVD) methods to produce high-quality and
large-area graphene2–5, much research has been devoted to
applying graphene in flexible electronics such as organic light-
emitting diodes (OLEDs)8–16, organic solar cells17–19, and organic
transistors20–22. However, pristine graphene has high sheet
resistance (Rsh > 300Ω sq−1) and low work function (WF ~4.4
eV) which are still inferior to those of ITO (Rsh ~10Ω sq−1, WF
~4.8 eV), so pristine graphene must be modified before it can be a
practical replacement for ITO electrodes23,24.

Various researchers had used chemical doping to control the
electrical properties of pristine graphene3,8,15,25–37. Dopants used
in graphene for electrodes to date have been mainly classified into
two types: (1) small molecules3,8,25–35, and (2) transition metal
oxides14,36,37; both exploit charge transfer on the graphene sur-
face. Charge-transfer doping of graphene with small-molecule
dopants such as inorganic small-molecule acids (e.g., HNO3, HCl,
H2SO4)3,8,25 and metal chlorides (e.g., AuCl3, FeCl3)8,26–29 has
been widely used and developed to increase the electrical con-
ductivity of graphene; however, graphene that is doped with
inorganic small-molecule acid has serious environmental
instability, which has been considered as a great impediment to
practical application of graphene electrodes. Rsh of an HNO3-
doped graphene gradually increases under ambient conditions
due to high volatility of small-molecule acids, and high tem-
perature accelerates significant degradation in its electrical con-
ductivity8. After doping with metal chlorides, reduction of metal
cations can produce metal particles on the graphene surface; these
have two deleterious effects: they can decrease the optical trans-
mittance (OT) of the graphene, and if they are large, they pro-
trude and provide leakage paths for electrical current in thin-film
devices8,26–29. Also, transition metal oxides are not uniformly
deposited on the graphene surface because the graphene lacks
dangling bonds or surface functional groups. Therefore, thermal
evaporation of transition metal oxide on graphene also roughens
its surface38. Ideal chemical doping of graphene for practical use
as an anode in electronic devices should achieve: (1) low Rsh, (2)
high WF, (3) high stability against heat, chemical, and ambient
conditions, (4) smooth film surface, and (5) high OT.

Here, we introduce a novel approach to macromolecular che-
mical doping that uses a polymeric acid, which has not been used
for graphene doping and demonstrated extraordinary results on
all kinds of aspects of stability (high temperature, chemicals, and
air) and high WF; these characteristics are almost unattainable
with conventional small-molecule acid doping. We use a per-
fluorinated polymeric sulfonic acid (PFSA) for application to
flexible graphene anodes in optoelectronics. PFSA is composed of
a perfluorinated carbon backbone and sulfonic acid groups. Due
to the electron-withdrawing properties from electronic dipole of
acidic proton in sulfonic acid groups, PFSA induces p-type
doping of graphene. Furthermore, the perfluorinated carbon
backbones have large ionization potential, which substantially
increases the surface potential of graphene. Superior thermal and
chemical stability of PFSA molecule provided outstanding stabi-
lity of chemically doped graphene against high temperature
heating and exposure to various chemicals including strong acids
and bases39,40. Therefore, the PFSA is an ideal form of macro-
molecular p-type dopant for graphene electrode. Our uncon-
ventional approach of using polymeric acid may stimulate
research into high-stability graphene doping, and can be a

starting point in the development of polymeric-acid dopants for
ideal graphene electrodes.

Results
Doping effects of a polymeric fluorinated acid on graphene.
We used non-volatile polymeric acid (i.e., PFSA) instead of
volatile small-molecule acid (e.g., HNO3) to dope graphene
(Fig. 1a). To study PFSA doping characteristics on graphene, we
spin-cast a PFSA on high-quality and large-area single-layered
graphene (SLG) that had been prepared using CVD on Cu foil,
followed by conventional wet-transfer4,8,10,14. PFSA doping on
graphene did not degrade the optical properties of graphene: at
wavelength= 550 nm, pristine four-layered graphene (4LG) had
OT= 90%, and PFSA-doped 4LG had OT= 89% (Fig. 1b).

Raman spectroscopy is a non-destructive tool to identify the
doping characteristics, the number of layers, and the structural
disorder in graphene41,42. Raman spectra were obtained from
pristine and PFSA-doped SLG (Fig. 1c). The spectrum of the
pristine graphene showed a very small D-band (~1350 cm−1),
which indicates that high-quality graphene had been successfully
grown and transferred onto the substrate with few defects. The
spectrum of PFSA-doped graphene also showed a very weak D
band; this result proves that solution-processed doping of the
PFSA does not induce any significant structural defects in the
graphene lattice. The G- and 2D-bands of the PFSA-doped
graphene were up-shifted compared to those of pristine graphene
(G-band shift: from 1587 to 1594 cm−1, 2D band shift:
from 2684 to 2696 cm−1); this change indicates that PFSA causes
p-type doping of graphene43.

To prove the uniformity of PFSA-doping over a large area, we
prepared large area 4LG (> 3 cm × 4 cm) on glass substrate, then
performed spatial mapping of Rsh by using the EddyCus® TF map
2525SR system (Fig. 1d, e). Pristine 4LG without vacuum
annealing showed Rsh= 352.7 ± 48.0Ω sq−1. PFSA doping uni-
formly reduces the Rsh of graphene throughout the large area, and
PFSA-doping followed by 300 °C annealing showed significant
reduction in the magnitude and variation in Rsh (Pristine: 352.7 ±
48.0Ω sq−1, PFSA-doped: 91.4 ± 30.1Ω sq−1) (Fig. 1d, e). This
result demonstrates the spatial large-area uniformity of PFSA-
doped graphene.

The PFSA-doped graphene had a flatter and smoother surface
(root mean square roughness (Rrms) ~0.495 nm) than that of
pristine graphene (Rrms ~1.47 nm) (Supplementary Fig. 1). Peak
heights along the cross section of the PFSA-doped graphene were
< 1 nm because deposition of thin polymeric layer can flatten
uneven regions of the pristine graphene, such as wrinkles and
grain boundaries. This result indicates that PFSA doping can
yield a uniform surface of flexible graphene electrode without
large particles.

Thermal stability and doping mechanism. The thermal stability
of PFSA-doped and HNO3-doped graphene samples was inves-
tigated. HNO3 caused a stronger doping effect than PFSA:
compared to pristine graphene, the HNO3-doping reduced the
Rsh by ~69.7 ± 1.2%, which is more substantial than the reduction
by PFSA doping (~52.4 ± 0.9%). To verify doping stability under
high temperature, each p-type doped graphene (asD in Fig. 2a)
was thermally annealed at 100 °C ≤ annealing temperature (Ta) ≤
300 °C in ambient conditions.

High-temperature annealing affected Rsh (Supplementary
Table 1). Compared to Rsh of the as-doped graphene, Rsh of
PFSA-doped graphene on Si/SiO2 substrate gradually decreased as
Ta increased (up to ~22.4% decrease of Rsh (asD) at Ta= 300 °C),
whereas Rsh of HNO3-doped graphene on Si/SiO2 substrate
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increased as Ta increased (~119.6% increase of Rsh (asD) at Ta=
300 °C) (Fig. 2a); this trend is due to the high volatility of HNO3.
These results indicate that thermal stability is much better in
PFSA-doped graphene than in HNO3-doped graphene.

Large-area mapping (> 3 cm × 4 cm) of Rsh in the PFSA-doped
graphene was performed after annealing at various Ta. Over the
whole region, Rsh decreased as Ta of PFSA increased (Supple-
mentary Fig. 2a−d). Potential difference after annealing at
various Ta was also identified using Kelvin probe measurement
(Fig. 2b). The PFSA-doped graphene had a uniform WF over a
large area (> 1.5 mm × 1.5 mm). PFSA-coating and annealing at
100 °C yielded ~0.73 eV increase of surface potential; this change
is consistent with the results of ultraviolet photoelectron
spectroscopy (UPS) (Supplementary Fig. 3). Thermal annealing
also gradually increased the surface potential of graphene to
~1.01 eV at Ta= 300 °C. The Rsh decrease and WF increase after
high-temperature annealing indicate that it increases p-type
doping.

To determine the mechanism by which PFSA dopes graphene,
we performed density-functional theory (DFT) calculation of
PFSA-doped graphene. For ease of calculation, we used the
simplest molecular form of PFSA. In the most energetically
favorable configuration of PFSA-doped graphene (Fig. 2c, d
and Supplementary Fig. 4), the acidic proton in the sulfonic acid
group (−SO3H) faces towards graphene. PFSA doping increases
the WF of graphene by ~0.71 eV (Fig. 2c), which is consistent
with results of Kelvin probe (~0.73 eV) and UPS (~0.8 eV). Acidic
protons in sulfonic acid (−SO3H) cause electronic dipole
interaction with graphene, thereby reducing the electron density
of graphene (Fig. 2d, green clouds). The substantial increase in
WF can be attributed to the electronic dipole interaction of the
acidic proton in sulfonic acid (–SO3H) as well as an interface
dipole formed by the electronegative perfluorinated backbone on

the graphene; this dipole caused by fluorinated substituents can
induce a similar vacuum-level shift in self-assembled monolayers
on the electrode surface44–48. The increased surface WF of the
PFSA-doped graphene can effectively reduce the hole-injection
energy barrier from the anode to overlying organic layers in
OLEDs. Thermal annealing would cause rearrangement of PFSA
at high Ta49. Thermal annealing causes the perfluorinated
backbone that has low surface energy to become dominant at
the film surface, and sulfonic acid groups (−SO3H) in PFSA
rearrange towards the underlying graphene. Therefore, high-
temperature annealing of PFSA-doped graphene increases the p-
type doping effect in PFSA-doped graphene.

To quantify the p-type doping effect in PFSA-doped graphene,
we calculated the charge concentration (n) by using in-depth
Raman spectrum analysis and the Dirac point shift in field-effect
transistors (FETs). The hole-doping effect can be differentiated
from the strain effect50. To monitor changes in n and strain as a
function of Ta after PFSA doping, we obtained a hundred Raman
spectra for each graphene sample by raster-scanning an area of
10 μm× 10 μm, then verified the variation of G-band and 2D-
band position of each spectrum (Fig. 3a). G-band and 2D-band
distributions of pristine graphene showed n ~3 × 1012 cm−2,
which increased to ~8 × 1012 cm−2 after PFSA doping without
significant strain generated in the graphene layer. Without PFSA
doping, thermal annealing did not increase n in pristine
graphene. However, PFSA-doped graphene caused gradual and
considerable increase in n as Ta increased; this result indicates
that increase of n in PFSA-doped graphene can be attributed to
rearrangement of PFSA at high Ta. Notably, PFSA-doped
graphene treated at Ta= 300 °C showed n ~11 × 1012 cm−2,
which is three times higher than n in pristine graphene (Fig. 3b,
c). PFSA-doped graphene showed slight increase in strain
(Pristine graphene: 0.1% to −0.2%, PFSA-doped graphene at
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Ta= 300 °C: 0.1% to −0.3%); this change can be attributed to
slight thermal deformation during annealing.

We also fabricated graphene-based FETs on Si/SiO2 (300 nm)
substrate and measured electrical properties of FETs that used
pristine or PFSA-doped graphene (Fig. 3d). FETs that used
pristine graphene had a Dirac point of 6.2 ± 1.5 V. After PFSA
doping and sequential thermal annealing, a Dirac point increased
substantially to 106.2 ± 17.2 V; this change indicates that PFSA
strongly p-doped graphene. Further thermal annealing further
increased the Dirac point (135.8 ± 22.7 V at 200 °C, > 180 V at
300 °C) (Supplementary Fig. 5); this change implies that the
doping effect is increased by thermal annealing. Hole concentra-
tions calculated using the shift in Dirac point also increased as Ta
increased (pristine graphene: n= 4.46 × 1011 cm−2, Ta= 100 °C:
n= 7.65 × 1012 cm−2, Ta= 200 °C: n= 9.78 × 1012 cm−2, Ta=
300 °C: n > 1.296 × 1013 cm−2) (Fig. 3e).32

These results also support that rearrangement of PFSA at high
Ta influences the n of PFSA-doped graphene because the number
of acidic protons in the proximity of graphene increases. All
measurements showed that thermal annealing caused Rsh
decrease, WF increase and n increase in PFSA-doped graphene
as Ta increased; these results are direct evidence that increased Ta
influences the doping effect of PFSA.

Chemical and air stability. To quantify the doping stability of
PFSA under various conditions, we compared Rsh changes of
PFSA-doped and HNO3-doped graphene under exposure to
chemicals, and ambient conditions. To demonstrate the chemical
invulnerability of PFSA-doped graphene, polar protic (deionized

water, isopropyl alcohol (IPA)), polar aprotic (dimethyl sulf-
oxide), and non-polar solvent (toluene) were spin-coated on p-
doped graphene samples, which were then gently annealed to
remove residual solvents. All treatments significantly increased
the Rsh of HNO3-doped graphene on Si/SiO2 substrate, but had
negligible effect on Rsh in the PFSA-doped graphene (Fig. 4a and
Supplementary Table 2).

We also tested the chemical stability by dipping HNO3-doped
or PFSA-doped graphene into a solution of strong acid
(hydrochloric acid, Ka > 1), weak acid (acetic acid, Ka: ~1.8 × 10
−5), weak base (ammonium hydroxide, Kb: ~1.8 × 10−5), or
strong base (sodium hydroxide, Kb > 1) for 15 s. Rsh of HNO3-
doped graphene greatly increased after acid and base treatments
(Fig. 4b and Supplementary Table 3). Especially, Rsh of HNO3-
doped graphene after sodium hydroxide treatment was unmea-
surable using the 4-point probe method; this result can be
attributed to tearing of the surface of HNO3-doped graphene by
treatment with strong base chemicals (Supplementary Fig. 6a). In
contrast, the surface of PFSA-doped graphene remained smooth
even in strong base solution, so Rsh of this graphene increased
much less than it did in HNO3-doped graphene (Supplementary
Fig. 6b). These results demonstrate that p-type doping using
macromolecular acid is stable against almost every chemical
environment.

To verify the long-term air-stability of PFSA, we monitored the
Rsh change of PFSA-doped and HNO3-doped graphene under
ambient conditions (Fig. 4c). Although HNO3 doping reduced the
Rsh of graphene to ~38.3% of the Rsh of pristine graphene, Rsh
increased over 4 days to ~74.1% the Rsh of pristine graphene. On
the contrary, the PFSA-doped graphene showed decreased Rsh to
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~55.4% compared to the Rsh of pristine graphene; this reduction
in Rsh was retained for 64 days without noticeable change under
ambient conditions. Before the investigation of graphene’s doping
stability, pristine graphene samples were vacuum-annealed at 500
°C to eliminate inevitable p-type doping effects of residual
dopants (e.g., PMMA, etchant, oxygen, water molecules)1,51

which were introduced during transfer process. We measured
contact angles by using deionized water and diiodomethane on
pristine, HNO3- and PFSA-doped 4LG to calculate surface
energies of the graphene according to p-type doping (Fig. 4c and
Supplementary Fig. 7); the Owens−Wendt model was used to
calculate the surface energy52,53. The water contact angle of
pristine 4LG was 55.3°; it increased to 96.7° when PFSA was
doped on it; this change indicates that PFSA doping increased the
hydrophobicity of the graphene surface. The calculated surface
energy of the PFSA-doped graphene was ~21.69 mJ m−2

(Supplementary Fig. 7 and 8). The hydrophobic surface with
low surface energy of the PFSA-doped graphene can more stably
maintain the p-type doping effect in ambient conditions than can
HNO3-doped 4LG (surface energy: 41.20 mJ m−2). Similarly,
increased WF by PFSA doping was also stably maintained for
10 days under ambient conditions (Fig. 4d), whereas the WF of

HNO3-doped graphene decreased from 4.57 eV to 4.43 eV after
exposure to ambient conditions for 8 days (Fig. 4e).

We also performed conductive atomic force microscopy (c-
AFM) (Supplementary Fig. 9) to spatially resolve the electrical
properties of graphene films according to doping methods. In-
plane conductance of HNO3-doped and PFSA-doped graphene
were monitored after 5 days in ambient conditions by measuring
current between p-doped graphene and Sb-doped Si tip. p-Type
doping with HNO3 or PFSA did not affect the surface topography
of graphene. PFSA-doped graphene film showed uniform current
in surface mapping, but the HNO3-doped graphene surface
showed significant heterogeneity of in-plane conductance (Sup-
plementary Fig. 9b).

Calculated n from Raman spectroscopy (Supplementary
Fig. 10) and FET (Supplementary Fig. 11) results quantitatively
prove that PFSA doping of graphene is stable under ambient
conditions. The outstanding doping stability of PFSA on
graphene can be attributed partly to the affluent fluorinated
alkyls in PFSA, which substantially reduces the surface energy of
the PFSA-doped graphene surface; it would repulse the molecules
of applied solvents or ambient air, and maintain the doping
effect54.
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The simplest PFSA-graphene configuration has binding energy
of 0.79 eV, which is much larger than that of HNO3-graphene
(0.33 eV)33. The configurations between each dopant and
graphene suggest that the acidic proton of HNO3 is more
exposed to outer circumstances than is the acidic proton of PFSA
(Supplementary Fig. 4). In contrast to the parallel HNO3-
graphene configuration (Supplementary Fig. 4a, b), PFSA has
non-planar molecular configuration (Supplementary Fig. 4d, e).
The non-planar configuration and higher binding energy between
PFSA and graphene improves doping stability over that of HNO3

does; this coincides well with our experimental observations.
Furthermore, these charge density calculations used the simplest
molecule of PFSA, so binding energy between the dopant and
graphene could be underestimated. Indeed, DFT calculation
indicates that an increase in the length of the PFSA molecule
gradually increases binding energy between the molecule and
graphene (Supplementary Fig. 12, Supplementary Table 4,
Supplementary Note 7). Therefore, the actual doping stability of
macromolecular PFSA-doped graphene could be much higher
than the calculation suggests.

X-ray photoelectron spectroscopy of p-doped graphene shows
an intense F1s peak (~690 nm), and S2p peak (~170 eV)
(Supplementary Fig. 13a); these peaks confirm that the PFSA
molecule remains on the graphene surface: The C1s spectrum of
PFSA-doped graphene revealed C−C sp2 bonding (~284.7 eV),
with four PFSA-related chemical bonds (i.e., C−O–C (~286.5
eV), C−S (~289.6 eV), −CF2 (~292.4 eV), −CF3 (~294.0 eV))
23,55. which can be confirmed in the chemical structure of PFSA
(Supplementary Fig. 13b, c).

Graphene doping using other macromolecules (PMMA and
PEDOT:PSS) showed weak p-type doping effect and poor
ambient stability, respectively (Supplementary Figs. 14 and 15);
these results exhibit the uniqueness of the graphene doping using
PFSA (Supplementary Note 9 and 10).

Considering all the experimental observations and further
analyses of PFSA-doped graphene, we can conclude that PFSA
meets all the requirements of an ideal p-type dopant to produce a
graphene anode: (1) large Rsh decrease, (2) substantial increase in
surface WF, (3) high stability against high temperature,
chemicals, and ambient conditions, (4) smooth and uniform
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surface without any defects or large particles, and (5) negligible
decrease in OT.

Optoelectronics application. To demonstrate the improved hole-
injection capability of the PFSA-doped graphene anode in organic
optoelectronics, we fabricated hole-only devices (HODs) and
green-emitting phosphorescent OLEDs that had anode made of
pristine or PFSA-doped 4LG (Fig. 5a). Because of the large energy
difference (> 1.0 eV) between the highest occupied molecular
orbital energy level of the N,N'-Di(1-naphthyl)-N,N'-diphenyl-
(1,1'-biphenyl)-4,4'-diamine (NPB) (~5.4 eV) and WF of pristine
graphene (~4.3 eV), hole injection from the pristine graphene
anode is seriously obstructed, so an HOD with the pristine 4LG
showed very low current density. When the graphene was doped
with PFSA, the hole current density in the HOD was dramatically
increased by a factor of > 103 due to a ~0.8 eV increase in the
surface WF and reduced Rsh (Fig. 5b). Hole injection efficiencies
(η) were calculated (see Supplementary Note 11 for detail), and η
of the HOD with PFSA-doped graphene was > 103 higher than in
the HOD with pristine graphene (Supplementary Fig. 16). We
uniformly spin-coated the polymeric hole-injection layers diluted
with IPA on hydrophobic PFSA-doped graphene surface to fab-
ricate green-emitting phosphorescent OLEDs (Supplementary
Fig. 17). The OLED with the PFSA-doped graphene anode also
had higher current density than did the OLED that had a pristine
4LG anode; this result was also caused by improved hole injection
from graphene anode due to the increased surface WF of PFSA-
doped graphene (Supplementary Fig. 18a). The OLED with
PFSA-doped 4LG had lower operating voltage than the OLED
with pristine 4LG, because PFSA-doped graphene anode has
lower Rsh and higher hole injection capability than did pristine
graphene anode (Fig. 5c). As a result, the device with PFSA-doped
4LG also showed higher current efficiency (CE ~98.5 cd A−1) and
higher power efficiency (PE ~95.6 lm W−1) without an out-
coupling structure than did the device with the pristine 4LG

(~82.7 cd A−1 and ~77.6 lmW−1) (Fig. 5d, Supplementary
Fig. 18b). The improved electroluminescent properties of OLED
with the PFSA-doped graphene demonstrate the possibility of
using PFSA-doped graphene as flexible anode to simultaneously
reduce operating voltage and increase luminous efficiency.

Discussion
We used a macromolecular fluorinated acid, PFSA, as a chemical
p-type dopant to give extremely stable chemical p-type doping for
graphene. The PFSA-doped graphene met the requirements for
ideal p-type doping of graphene anode: (1) large Rsh decrease, (2)
substantial increase in surface WF, (3) high stability against all
kinds of circumstances (high temperatures, chemicals, and
ambient conditions), (4) smooth and uniform surface, and (5)
negligible decrease in OT. The non-volatility, strong binding to
graphene, and chemical and thermal stability of PFSA can explain
the excellent environmental stability of PFSA-doped graphene.

We also fabricated HODs and OLEDs to demonstrate the
superior hole injection and electroluminescent characteristics of
devices that used the PFSA-doped graphene as an anode. An
HOD that used the PFSA-doped graphene showed dramatic
improvement of hole current, and OLEDs that used PFSA-doped
graphene exhibited increase of luminous efficiencies: this result
demonstrates the possibility of practical anode application of the
PFSA-doped graphene due to its improved electrical conductivity
and surface WF, and confirms that our PFSA is a promising p-
type chemical dopant to make more ideal flexible graphene
electrodes with excellent environmental stability, high WF;
simultaneous achievement of these attributes has been almost
impossible using conventional doping with small molecules.

This work provides a promising way to overcome the demerits
of chemically doped graphene electrodes and is a significant step
towards development of stable graphene electrodes for practical
use in various opto-electronic devices.
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Methods
Fabrication and characterization of graphene anodes. SLG was synthesized on
Cu foil by CVD. The foils were heated to 1060 °C with 15-sccm flow of H2 gas and
annealed for 30 min. As a carbon source, 60 sccm of CH4 gas was flowed for 30
min, then the Cu foil was rapidly cooled to room temperature. After synthesis of
graphene on Cu foil, PMMA was applied by spin-coating polymer solution (996k,
purchased from Sigma Aldrich) as a supporting polymer layer for graphene
transfer. O2-plasma treatment using reactive ion etching (RIE) was performed to
remove the graphene that grew on the bottom of the Cu foil. The foil was immersed
in a CE100 (YMS tech) etchant solution for 1 h to etch the Cu foil, then rinsed with
deionized water for several hours to remove the etchant residue. Floated SLG was
transferred onto the target substrate. Before measuring the stability, we performed
vacuum annealing on transferred graphene at ~500 °C. Glass substrates were used
to investigate the OT, large-area uniformity, and ambient stability. To perform c-
AFM, we used native Si as substrates. In other characterizations of PFSA doping
effect (e.g., Raman spectroscopy, chemical-/thermal- stability test), we used Si/SiO2

(~300 nm) substrate. The supporting polymer layer was removed by soaking in an
acetone bath. 4LG was stacked by repeating this process. Then 0.1 wt.% tetra-
fluoroethylene-perfluoro-3,6-dioxa-4-methyl-7octenesulfonic acid copolymer (CAS
number: 31175-20-9, Sigma-Aldrich) in IPA was spin-cast to chemically dope the
graphene, then the sample was annealed at 100 °C for 10 min to remove the sol-
vent. Raman spectra were obtained using a home-built setup operated with a 514-
nm laser50. Rsh of graphene electrodes was measured using a 4-point probe com-
bined with a Keithley 2400 source meter. Rsh decrease of PFSA-doped graphene
saturates at PFSA thickness of ~10 nm, and we used 3.4 nm-thick PFSA layer for
chemical doping of graphene. Surface potential difference was measured using an
SKP-5050 Kelvin Probe measurement system. OT was measured using a SCINCO
S-3100 UV-Vis spectrophotometer. To probe the morphology, conducting atomic
force microscopy (c-AFM) was measured using a Bruker Dimension Icon Scanning
Probe Microscope equipped with TUNA module in contact mode with a 0.01
−0.025Ω·cm Antimony (n) doped Si tip (SCM-PIC, Bruker). A 300-nm-thick layer
of SiO2 on p-doped Si was used as substrate for graphene-based FETs. Pristine
graphene was transferred onto SiO2 substrate, then Cr (5 nm)/Au (300 nm) layers
were thermally deposited using a pre-patterned mask to form FETs of width 200
μm and length 400 μm. XPS and UPS measurement of pristine and PFSA-doped
graphene samples were conducted using the same equipment in collaboration with
the Korea Basic Science Institute.

Fabrication of green phosphorescent OLED devices. To prepare graphene as a
transparent conducting electrode in OLEDs, we formed a 4LG anode by stacking
SLGs. The prepared multi-layered graphene was patterned by RIE using O2 plasma
and a pre-patterned shadow mask. UV-ozone treatment was performed for 10 min
to activate the graphene films and to uniformly deposit the GraHIL on the gra-
phene anode. The polymeric hole-injection layer was composed of Poly(3,4-ethy-
lenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (CLEVIOS P VP
AI4083) and PFSA, and was spin-coated to give a 50-nm-thick layer on the gra-
phene anode, then annealed on a hot plate at 150 °C for 30 min. A 15-nm-thick
layer of Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane (TAPC) was deposited on
top of the HIL as a hole transporting material. A 5-nm-thick layer of 1,1-bis[4-5
[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TCTA) doped with green phosphor-
escent dopants (bis(2-phenylpyridine)iridium (III) acetylacetonate (Ir(ppy)2(acac))
(97:3 by volume), and a 5-nm thick layer of 4,4′-N,N′-dicarbazolylbiphenyl (CBP)
doped with Ir(ppy)2(acac) (96:4 by volume)) were deposited successively as a
green-emitting layer. Then a 55-nm-thick layer of 1,3,5-tri(phenyl-2-benzimida-
zolyl)-benzene (TPBI) was deposited as an electron-transporting layer. Finally, LiF
(1 nm)/Al (100 nm) was deposited on top of the TPBI layer as a cathode. The
devices were encapsulated using a glass lid and epoxy resin. A Keithley 236 source
measurement unit and Minolta CS 2000 spectroradiometer were used to measure
current-voltage-luminance characteristics of green phosphorescent OLEDs.

Calculation methods. All DFT calculations were performed using projector aug-
mented wave pseudopotentials with the Perdew−Burke−Ernzerhof type of gen-
eralized gradient approximation functions, which is implanted in the Vienna Ab-
initio Simulation Package56. The experimental system was modeled as one PFSA
molecule doped on each 4 × 4 graphene layer; this doping density is the most
appropriate for the system. To avoid the undesirable interaction from the periodic
supercell images, we used a supercell as large as 9.84 Å × 9.84 Å × 35 Å within
potential dipole corrections for all calculations. The plane-wave energy cutoff was
650 eV, and the Brillouin-zone sampling meshes were 7 × 7 × 1. For the geometry
optimization, all the coordinates were fully relaxed until the forces were < 0.01 eV
Å−1. The Tkatchenko−Scheffler Van der Waals correction57 was used to describe
the dispersion interaction between the adsorbate molecule and graphene layer.

The adsorption energy per PFSA molecule is defined as:

Ead ¼ EPFSA-graphene � EPFSA � Egraphene;

where EPFSA-graphene is the total energy of PFSA-doped graphene, EPFSA is the total
energy of isolated PFSA molecule, and Egraphene is the total energy of the pristine
graphene layer.

Data availability. The datasets generated during the current study are available
from the corresponding authors upon reasonable request.
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