UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
PCLEARN : A model for learning perceptual-chunks

Permalink
https://escholarship.org/uc/item/72552004
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Authors
Suwa, Masaki
Motoda, Hiroshi

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7z55200z
https://escholarship.org
http://www.cdlib.org/

PCLEARN: A model for learning perceptual-chunks

Masaki Suwa

Hiroshi Motoda

Advanced Research Laboratory, Hitachi Ltd.
2520, Hatoyama, Saitama, 350-03, Japan
{suwa,motoda}@harl.hitachi.co.jp

Abstract

Past research in cognitive science reveals that prototyp-
ical configurations of domain objects, called perceptual-
chunks, underlie the abilities of experts to solve prob-
lems efficiently. Little research, however, has been car-
ried out on the mechanism used for learning perceptual-
chunks from solving problems. The present paper ad-
dresses this issue in the domain of geometry proof
problem-solving. We have developed a computational
model that chunks, from problem diagrams, configura-
tion of the elements which are visually grouped together,
based on perceptual chunking criterion. This criterion,
called recognition rules, reflects how people see prob-
lem diagrams and thus works effectively to determine
which portion of problem diagrams are more likely to
be grouped as a chunk. This distinguishes the proposed
method from the goal-oriented chunking techniques used
in machine-learning community. Experiments on solving
geometry problems show that our technique can detect
essential diagram configurations common to many prob-
lems. Additionally, implications of the recognition rules
are discussed from a cognitive point of view.

Introduction

Characterizing the adaptive processes that allow for the
acquisition of expertise is a significant goal of cognitive
science. In the past there have been extensive studies
on expert-novice distinctions in many aspects. One as-
pect of this is, as De Groot (1966) showed, chess masters
exhibit better recall of realistic board positions than do
novices, but not randomly placed board positions. Simi-
lar findings were presented in other domains as well, such
as in the sequence of a baseball game (Voss et al., 1980)
and in an electric circuit diagram (Egan & Schwaltz,
1979). Another aspect is that experts show a greater
tendency to reason forward from the given conditions of
a problem rather than backward from the goal (Patel &
Groen, 1986). In other words, they react to some fea-
tures within a problem for devising appropriate plans,
without resorting to goal-directed backward planning.
Agre calls this reasoning by reacting (Agre & Chapman,
1987). Expert’s reactive performance is observed in the
task of x-ray film perception as well (Kundel & Nodine,
1983); their visual attention tends to be immediately
directed toward the parts containing abnormalies, with-
out searching through the entire film. These aspects of
expertise are attribited primarily to the cognitive struc-
tures for storing prototypical configurations of objects
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about which reasoning is performed. They are called
perceptual-chunks (or schemas).

How, then, do people learn perceptual-chunks through
experience that allow them to transform themselves from
novices to experts? This is called a schema acquisi-
tion problem. Surprisingly, little research has been car-
ried out on this issue. Sweller (1988) attributed this
lack of activity to the conventional framework of goal-
directed problem-solving, such as means-ends analysis.
He pointed out that the restricted focus on reducing dif-
ferences between a given problem state and the goal state
under a means-ends strategy deprives problem-solvers of
both the intention and cognitive processing capacity nec-
essary to detect essential schematic features in problem
structures. Most learning systems have been necessar-
ily goal-oriented as well, since they learn from problem-
solving traces that goal-directed solvers make. For exam-
ple, SOAR (Laird et al., 1987) chunks in a goal-oriented
way based on universal subgoaling technique, and vari-
ous explanation-based learners (Mitchell et al., 1986), m
concept formation and macro-operator learning, chunk
goal/subgoal structures that explain the solver’s target
concepts. Although goal-orientedness is preferably gen-
eral and domain-independent, it follows at the same time
that those learners fail to reflect human regularity in feel-
ing which portions of problem structures are more likely
to be chunked into schemas. The mechanism of chunk-
ing them seems more perceptual and more specific to the
domain objects themselves appearing in problem-solving
situations (Koedinger & Anderson, 1989).

This paper presents a computational model called the
PCLEARN (perceptual chunking learner) that learns
perceptual-chunks in geometry proof problem-solving,
based on a perceptual criterion that reflects human reg-
ularity in perceiving and detecting essential features in
problem strcutures. Geometry proofs are suitable for
this study because solving and learning from geometry
problems involves recognizing diagrammatic information
of problems perceptually. In the second section, we dis-
cuss regularity in experts’ solving and learning geometry
problems. The third section explains our perceptual-
chunking method and investigates its feasibility from re-
sults provided by our model. In the fourth section, we
argue that learning perceptual-chunks is relevant to con-
structing “good” and “meaningful” mental models that
may facilitate efficient and flexible problem-solving per-
formance.
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How people solve and learn in geometry
domains

As discussed in many studies on geometry proof
problem-solving (Greeno, 1983; McDougal & Hammond,
1992; Koedinger & Anderson, 1990), perceptual chunks
underlie the ability of experts to solve and learn ef-
ficiently; experts solve problems by matching familiar
chunks to the subparts of diagrams representing entire
problems (Koedinger & Anderson, 1990), and they then
extract certain essential subdiagrams as new perceptual-
chunks. This latter process of decomposing the entire
diagram into subdiagrams for perceptual-chunks either
used or newly extracted is essential for understanding
problem structures.

Cue-for-retrieval ; XY=YZ
v 7z IF XY=YZ, WY=YV, collinearXYZ,

collinearVYW
Y IHEN
LXYW=LZYV, AXYWmAZYV,
LXWY=LZVY, LIWXY=LVZY,
w XWAHVZ, XW=ZV
_ ; YW=YX
Y LFE YW=YX, LWYZ=LXYZ,
collinearWZX
THEN
AWYZ mAXYZ, LYZW=LYZX,
LYWZ=LYXZ, WZ=XZ,
W Z X WX LYZ

Figure 1: Typical perceptual-chunks in the domain of
geometry

Figure 1 shows diagrams for two typical perceptual-
chunks with their corresponding macro-operators. These
macro-operators are needed for these chunks to be ap-
plied to problem-solving situations; each chunk is re-
called by the existence of a certain problem feature that
matches cue-for-retrieval information and, thus, the cor-
responding macro-operator is tested for application. If
all the statements in the IF part are satisfied within
the current problem, the instantiated statements of the
THEN part will create new nodes in the proof tree.

What portions of the problem diagrams are more likely
to be chunked as essential information into perceptual-
chunks? In other words, what kind of regularity do ex-
perts reveal in detecting and chunking problem features?
Koedinger et al. (1990) presented evidence from ver-
bal reports on subjects indicating that, when subjects
applied perceptual-chunks, they could not always im-
mediately recall what intermediate macro-operator se-
quences the chunks were configured from. It is more
likely that experts perceptually chunk an aggregation of
domain objects appearing in problem-solving situations,
not sequences of consecutively applied problem-solving
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operators, and that they remember the diagrams corre-
sponding to the chunked objects.

This regularity theory is consistent with observations
that even experts cannot solve problems without draw-
ing diagrams of the problem involved. Why diagrams
are essential is a common question among all studies on
diagrammatic reasoning (Narayanan et al., 1992). One
possibility may be that diagrammatic information cues
relevant perceptual-chunks in a current problem-solving
context because they are memorized as configurations
of diagrammatic features. If so, regularity in acquiring
perceptual-chunks may arise from seeing diagrammatic
features in a current geometry problem.

Perceptual-chunking method

We designed our model PCLEARN to chunk the dia-
gram elements of a problem that are visually grouped to-
gether, when it has solved the problem. We hypothesized
that domain-specific knowledge about how people see di-
agrammatic features of domain objects determines which
elements should be visually grouped together, and called
the knowledge recognition rules. Extraction of diagram
configuration by use of recognition rules is performed in
process 2 described later. In order for acquired chunks
to be really useful in future problem-solving situations,
PCLEARN refers to the proof-tree of a target problem
in the following objectives; (1) to detect seeds that mo-
tivate chunking processes (process 1), (2) to provide a
macro-operator to the extracted diagram elements (pro-
cess 3), (3) and to remove irrelevant portions from the
diagram elements of an extracted chunk so that it will
be meaningful in problem-solving contexts (process 3).

The main point that distinguishes the PCLEARN sys-
tem from conventional learning systems, including EBL
systems, is the use of recognition rules as a chunking
criterion. Conventional systems chunk such problem-
solving traces that lead to a certain target concept
(Mitchell et al., 1986; Minton et al., 1989) or have been
developed under a subgoal in the goal-structure hierar-
chy (Laird et al., 1987). Consequently, if we have a care-
ful look at the learned chunks, they are not always iden-
tical with those to be acquired perceptually by human
experts.

Recognition rules

A domain object, O, is “recognizable” when peo-
ple become aware of its existence in chunking pro-
cesses, and this statement is represented as a literal
recognizable(0). Each recognition rule describes the
conditions necessary for a domain object to be recog-
nizable. Its head is a literal expressing that a target
object is recognizable, and its bodies are conjunctions
of (1) the literals expressing that other related objects
are recognizable and (2) the literals expressing that ad-
ditional conditions hold among those objects. By re-
lated, we mean part-whole relationships. For example,
the domain objects we deal with in geometry are points,
segments, angles and triangles. Part-whole relationships
are such that a point is a part of a segment, a segment
is a part of an angle or a triangle, and so on. In the first
case we can say that the point and the segment have



recognizable(X):- recognizable(s(X.,Y)).
recognizable(s(X,Y)):- recognizable(a(X,Y,Z)).
recognizable(s(X,Y)):- recognizable(ir(X,Y,Z)).
recognizable(s(X.,Y)):-

recognizable(X), recognizable(Y), exist(s(X.Y)).
recognizable(s(X,Y)):-

recognizable(X), recognizable(Y), collinean(X.Z.Y).
recognizable(a(X,Y,2)):-

recognizable(s(X,Y)), recognizable(s(Y,Z)).
recognizable(ir(X,Y,2)):-

recognizable(s(X,Y)), recognizable(s(Y,Z)),

recognizable(s(Z,X)).

where s(X,Y) -- segment XY, tr(X,Y,Z) -- triangle XYZ,
a(X,Y.Z) -- angle XYZ

The literals underlined are additional conditions.

Figure 2: The set of recognition rules used in geometry

a part-whole relationship, and in general, whole objects
in a domain constitute a partially ordered hierarchy in
terms of part-whole relationships.

Figure 2 is the set of recognition rules we provided for
geometry. The first rule states that point X is always
recognizable when segment XY is recognizable. When
an object is recognizable, its partial objects will be al-
ways recognizable as well. The first three rules listed
in Fig. 2 pertain to this category. In contrast, when
certain partial objects of an object are recognizable, we
cannot always determine recognizablity of the object and
sometimes need some additional conditions. For exam-
ple, for segment XY to be recognizable, it does not suf-
fice to confirm the recognizability of the two end points
X and Y; additionally we have to prove the statement
that segment XY actually exists in the problem dia-
gram (exist(s(X,Y))) or the statement that segments
XZ and ZY are on the same line for another point Z
(collinear(X, Z,Y)).

Each rule only expresses the interrelationship between
the recognizability of related objects. Therefore, recog-
nition rules can be used to determine the entire set of
recognizable objects only when statements for certain
recognizable objects are initially given (see Process 2 for
the details of their use).

Perceptual-chunking processes

Perceptual-chunking is performed after the solver fin-
ishes solving a problem, i.e. constructing a full proof-
tree. It consists of the following four processes.

Process 1: Detecting seeds for chunking

The first process involves identifying, in the proof-
tree, seeds which motivate chunking processes. The
PCLEARN solver searches for applicable problem-
solving operators and/or perceptual-chunks it has al-
ready retained in order to produce an AND/OR proof
tree!. A seed node for learning is the one which is rele-

1The tree consists of nodes and links; the nodes represent
the statements given initially or produced during the proof,
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vant to proving the goal node and also to which irrele-
vant problem-solving operators have been tested and/or
applied?. This node is called a control decision node
(CDN), and the relevant problem-solving operator ap-
plied at a CDN is called SAO (successfully applied op-
erator). The notion of CDN itself is not original; this
corresponds to a training example selected by the “other-
operators-have-failed” heuristic in PRODIGY systems
(Minton et al., 1989).

CDNs are promising for learning seeds because, if a
problem-solving search at a CDN is directed well by us-
ing a relevant perceptual-chunk, the solver may save the
cost of applying other irrelevant operators. The subse-
quent three processes will be performed for each CDN
identified. Figure 3 is an example of the proof tree for
problem 1 in the set of problems shown in Appendix
A. Only relevant nodes and links are represented here,
nol those nodes produced but irrelevant to the goal nor
those operators that have been tested but not applied.
The underlined nodes here are the CDNs. We explain
the subsequent process for the CDN, AC = CF.

problem-solving 0ml
“Cong-by-SAS"

Figure 3: A proof-tree for Problem 1

Process 2: Extracting diagram configuration as a
chunk

Chunking for a CDN starts by seeing the diagram el-
ements included in the SAO for the CDN. Technically
this means asserting that the domain objects appearing
as arguments of the constituent statements for the SAO
are all recognizable as initial givens. Process 2 involves
extracting the diagram configuration composed of those
domain objects which are grouped in a chunk together
with the above recognizable objects in the SAQ. We be-
gin by matching the recognizability of SAO-involving ob-
Jjects to the bodies of recognition rules and finally pro-
duce the entire set of recognizable domain objects.

and a link between several nodes and their upper node repre-
sents an operator used for proving the existence of the upper
node when the lower nodes exist. The node on top of the tree
represents the goal statement.

2During problem-solving search, in general, many trials
of testing to apply the available problem-solving operators
occur, most of which will fail in vain.



The SAO for AC = CF is the theorem of congruence
by SAS (two sides and one angle) (see Fig. 3). Objects
BC, AC,CD,CF, (BCA, (DCF, AACB and AFCD
are involved in the SAO and these are initially asserted
as recognizable. Use of recognition rules, then, proves
the recognizability of the following objects; A, B, C, D,
F,AB, DF, BD, AF, LtBAC, LBAF, LABC, LABD,
LDFC, (DFA, LFDC, LFDB, (BCF and LACD.
The entire set of extracted recognizable objects forms a
diagram configuration.

Process 3: Providing a macro-operator to the di-
agram configuration

This process begins by identifying the following state-
ments in the proof tree; (1) the statements of the addi-
tional conditions appearing in the recognition rules used
in process 2, only when they were verified, and (2) the
statements constituting the SAO. These two kinds of
statements are the ones that human beings would recog-
nize when they see the diagrams elements of the SAO.
Especially the first ones are important because they are
implicitly included in the current appearance of the ex-
tracted diagram configuration and thus they will be es-
sential features constituting the macro-operator to be
provided. Examples of the first are collinearACF and
collinear BCD verified in proving the recognizability of
AF and BD. Examples of the second are AC = CF,
BC = CD, LACB = LFCD and AACB = AFCD.

These are shown in Fig. 3 as grey nodes.

The statements located lowest on the proof-tree out
of all these identified ones will form the antecedent part
of the macro-operator to be attached to the extracted
diagram configuration. In our example, AC = CF,
BC = CD, collinearACF and collinearBCD corre-
spond to these. The intermediate and the remaning
parts of the macro-operator are obtained by deriving
all the possible statements in the restricted environ-
ment where only the above identified statements hold
within the diagram extracted in process 2. By this
derivation, we obtain AB = FD, {CAB = /CFD,
LCBA = (LCDF and AB//DF. The last two should be
incorporated in a chunk although they were not relevant
in the current proof. This derivation process is essential
also for the following objective. Those diagram elements
that do not appear during this process are judged to be
irrelevant to problem-solving contexts and thus removed
from the diagram configuration. The new diagram con-
figuration developed here is the final configuration of the
perceptual-chunk to be acquired.

No diagram elements were removed in the examples we
have shown. A good example of this is the chunking pro-
cess for the CDN, AB = FD. In this case, the extracted
diagram configuration in process 2 includes segment AF
with the collinear statement collinear AEF. Because the
collinearity is irrelevant in obtaining the macro-operator,
however, segment AF will be removed and thus the con-
straint forcing point A on the same line as segment EF
will be eliminated.

Process 4: Generalizing
The final process involves generalizing each node in the
macro-operator sequences by dissolving problem-specific
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instantiations of each constituent operator. The gener-
alized version of the macro-operator will be attached to
the diagram configuration acquired in process 3. The
left perceptual-chunk in Fig. 1 is acquired for the CDN,
AC =CF.

Note here that use of recognition rules restricts the
derivation in process 3 to a portion of the entire proof-
tree and thus determines which portion of the entire
problem diagrams should be chunked into a perceptual-
chunk.

Experimental Results

A desirable computational model that learns perceptual-
chunks should provide for the identification of visual
cues common to different problems. The following ex-
periment supports the feasibility of our model. We se-
lected twenty geometry problems belonging to two cat-
egories of geometry proofs®, expecting that they would
reveal cross-problem commonalities in terms of chunks.
The whole set of problems used for this experiment is
shown in Appendix A. PCLEARN solves each problem
in ascending order of problem complexity*. After solving
each one, it acquires perceptual-chunks and stores them.
In solving problems, the solver is allowed to use the
perceptual-chunks acquired from solving the previous
ones®. After solving all twenty problems, we examined
the frequencies at which the same perceptual-chunks in
terms of diagrammatic information® are learned from
solving different problems.

Table 1: The frequencies of perceptual-chunks being
learned

The number of perceptual-chunks
Frequency
PCLEARN EBL
1 43 86
2 9 7
3 5 0
4 3 1
more than 4 4 0
total 64 94

We compared the result for PCLEARN with that for
an explanation-based learner (Minton et al., 1989) which
chunks the inference path that reaches out from each
CDN to the goal node. Table 1 shows the number of the

3 Parallel lines and angles and congruence of triangles

*For simplicity, we use the sum of the numbers of lines
and points as a measure of complexity.

*Strictly speaking, the preferential order of macro-
operators being selected for use will affect problem-solving
performance as well as the kind of chunks to be acquired
in future. Analysis of cost-effective utility of learned knowl-
edge may be the best to provide ordering to the entire set
of macro-operators. Readers can refer to (Suwa & Motoda,
1993) for further information on this.

8Various macro-operator sequences are possible in a dia-
gram configuration.



kinds of perceptual-chunks for each frequency at which
they were acquired. The total number of chunks ac-
quired from different problems more than two times are
21 in PCLEARN and 8 in EBL. This suggests that the
perceptual chunking technique provides advantages over
goal-oriented chunking in extracting essential diagram-
matic configurations common to different problems.

As for improvement of problem-solving performance
by use of perceptual-chunks, we have papers (Suwa &
Motoda, 1993; 1994) on cumulative costs for solving the
twenty problems in PCLEARN, the EBL system and
the system without any learning module. A brief char-
acterization of the comparison is that we obtain bet-
ter problem-solving performance in PCLEARN than the
system without learning, but heavy degradation in the
EBL systems. This is mainly because the chunks learned
by EBL tend to be specific to the goal-structure of the
original problem and thus have extremely low applica-
bility to other problems. In contrast to that, the chunks
learned by PCLEARN are such ones that can be recog-
nized commonly in many problems and thus have higher
applicability. See details in the above references.

General Discussions

If we assume that perceptual-chunks are domain-specific
visual categories acquired through experiences, argu-
ments may arise on whether they should be acquired
as “visually good chunks” determined by gestalt princi-
ples (Bower & Glass, 1976), or as chunks “meaningful”
to theoretical knowledge and problem-solving planning.
This is an important but open question. For X-ray film
recognition (Kundel & Nodine, 1983), theoretical knowl-
edge about organs, cancer and so on helps us decompose
the entire film area into chunks. In chess domain (Chase
& Simon, 1973), chunks are configured so that they re-
flect plans in attack and defence. This means that they
are meaningful chunks. In contrast, typical gestalt laws
that control the process of perceiving line drawings are
common direction and prorimily (Bower & Glass, 1976).
Gestalt laws say that two diagram elements satisfying as
a whole either feature are likely to be chunked together.

In our model, as suggested in section 3, the recognition
rule containing a collinear statement plays an important
role in perceptual-chunking. Using this rule and incor-
porating collinearlity as a feature in a perceptual-chunk
has exactly the same connotation as recognizing two seg-
ments with a common direction as a chunk. In this sense,
the PCLEARN model has an aspect of chunking “visu-
ally good” subdiagrams. It also has an aspect of chunk-
ing “meaningful” diagrams in the three ways mentioned
earlier; it uses information on problem-solving traces for
detecting motivation from which to learn, for assigning a
macro-operator to the extracted diagram configuration,
and for removing the diagram elements that are irrel-
evant to problem-solving knowledge. As for the effect
of eliminating irrelevant diagram elements, it would be
valuable to do a sensitivity analysis of the processes in
PCLEARN for evaluating which processes are really cen-
tral for acquiring “meaningful” perceptual-chunks. That
is one of our future work.
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Related to this issue are the past extensive psycho-
logical experiments in which subjects are exposed to a
whole diagram and are supposed to recall subdiagrams
or recall the diagram from some partial cues (Bower &
Glass, 1976; Reed, 1974). Here, configurations natural
to human eyes provide good visual cues. These experi-
ments, however, were done in the context of looking at
diagrams without objectives or intentions. Rather how
subjects see diagrams in the context of problem-solving
objectives may be an interesting issue for psychological
investigation. That is one of our future work in this
domain because geometry proofs are suitable for this in-
vestigation.

Recognition rules can be extended so as to apply
in many domains as a perceptual-chunking criterion.
Recognition rules are the knowledge representing how
human beings see diagrammatic features of domain ob-
jects. Since people with different levels of knowledge dif-
ferently recognize problem structures, PCLEARN could
potentially model different skill levels by manipulating
the sophistication of the rules.

Visually decomposing the problem diagrams into
subparts is relevant to constructing mental models
(Johnson-Laird, 1983) and recognizing analogy across
problems. In order to establish a theory that allows for
the construction of mental models which are good, natu-
ral and meaningful and for efficient analogical reasoning,
further work along these lines must be pursued.

Conclusion

We developed a computational model PCLEARN that
learns prototypical configurations of diagram elements,
called perceptual-chunks, in the domain of geometry
proof problem-solving. Our model perceptually chunks,
for each of the seed nodes in the proof-tree, the por-
tion of problem diagrams that are visually grouped to-
gether with the diagrams corresponding to the problem-
solving operator applied to the seed node. We use a
perceptual chunking criterion, called recognition rules.
This criterion is domain-specific knowledge about how
people see problem diagrams and thus works effectively
to determine which portion of diagrams should be vi-
sually grouped together. This distinguishes our chunk-
ing method from other theories in the machine learn-
ing community which chunk knowledge in terms of
goal/subgoal structures in problem-solving traces. The
acquired chunks in our model are meant to be “visually
good and natural” because PCLEARN uses perceptual
criterion, and are also meant to be also “meaningful” in
problem-solving situations, because it uses information
from an explored problem-solving proof tree for provid-
ing relevant macro-operator and for removing irrelevant
diagram elements from the extracted configuration.
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A. The geometry problems used for

experiments
Givens: £ Givens:
E; BC=CD, ':ﬁ BDC collinear Givens:
AC=CF, AB=AC, F AB=AC,
AB=DE, LBAD=£LCAD AE#BC,
BCD collinear, Goal: BD=CD g;\: collinear,
ACF collinear, :
Goal: B DC LFAE=LCAE
4BAC=£DEC
Givens: Givens: Gi 3
ADRAK, sl AEC collinear, BDHC collinear,
£LABD=LCBD, BED collincar, DH=HC,
LACE=4BCE, AB=AD, LDHA=1,
A o BC=DC £ZDBA=£DAB
ADC collincas Goal: Goal: BD=AC
B C Goal: BD=CE £ZBEA=1
: Givens: Givens: Givens:
BEC collinear, B AFC collinear, m BD=DC,
AFE collinear, BGD collinear, AF=AC,
ADgBC, B AF=FC, DE# BF,
4ABF=ZEBF BG=GD, BAF collinear,
£BAE=4DAE AB=CD, BDC collinear,
Goat: ZAFE=L, CEF collinear
£BFASL A LBGEsL £ Goas:
Dhicon Ao
Givens: . Giveas:
A“B‘NBCCD' EI m ADB collinesr,
oy A BG=GE, CED collinear,
frop ot A\ A5
e BGE collinear, Goal:
Goal: AB=BP X8 il XD 3 AATCRL
----- G LABC=£DEF
= AEB collincar, [13] Oems: 5] Givens:
N M ADC collinear, ADC collinear ADC collinear,
BDM collinear, £ADB=1, AFF collinear,
CEN collinear, AABD=LCBD BED muh‘e‘_
AE=EB, Goal: AD=CD BFGC collinear,
AD=DC, ADC AD=DC,
B C BD=DM BE=ED,
CE=EN F G C ARrfDG
Goal: AN=AM Goal: BF=CG
i Givens: i Givens: H Givens:
16 | BNMC collinear, i ADB collinear, fae RPQ collinear,
AEN collinear, ACE collinecar, AFB collincar,
A ADM collinear, DME collinear, CAQ collinear,
LABD=£CBD, BFMC collinear, BRC collinear,
LACE=£BCE, BD=CE, P, AB=AC,
LADB=L, o CM=MF, LBRQ=1
LAEC=L B F DM=ME B R Goual: AP=AQ
Goal: DE#MN Goal: AB=AC
Givens: 20 Givens:
AEC collinear, ... R BAR collinear,
ADB collinear, BPC collinear,
DYE collinear, APE collinear,
BXC collinear, AQDC collinear,
AYX collinear, B PQR collinear,
AD=DB, AE=EC AB=CD, BP=PC,
C Goal: AY=YX AP=PE, AQ=QD
Goal: AQ=AR
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