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Model Close Match as a Criterion for Structured Model Comparison and Its Robust

Statistical Tests

Abstract

In the traditional model comparison procedure, two nested structural models are hypothe-

sized to be equal under some constraints, e.g., equality constraints. A strict null hypothesis is

then evaluated by statistical tests to decide on the acceptance or rejection of the restrictions

that differentiate the models. We propose instead to evaluate model close match, using the

distance between two models in terms of the Kullback-Leibler (1951) Information Criterion,

either as important supplementary information or as a criterion for nested structured model

comparison. Based on the results of Vuong (1989) and Yuan, Hayashi and Bentler (2005),

we develop some ADF-like generalized RMSEA tests for inference on model closeness. Sim-

ulation studies show that our proposed tests have robust and desirable performance in spite

of severe nonnormality across several examples when sample size is as large as 150, and

its relevance to educational research is shown with models for some TOEFL data. Conse-

quently, a two-stage procedure which combines the traditional nested model comparison and

the additional inferential information regarding model close match is further suggested to

improve the typical practice of structured model modification.

Key words: Likelihood ratio statistic, RMSEA, model close match, asymptotics



1. Introduction

Structural equation modeling (SEM) with latent variables is an important research tool

in the behavioral and social sciences such as psychology, sociology, marketing research etc.

In a typical study, the mean and covariance implications of a model based on some sets

of hypothesized linear relationships among interesting variables is tested against sample

means and covariances. A variety of statistics are used for evaluating the adequacy of the

model, including the classical normal theory based likelihood ratio (NTLR) test, Browne’s

asymptotically distribution free test (Browne, 1984), the Satorra-Bentler scaled test (Satorra

& Bentler, 1988, 1994) or the more recent residual-based tests (Yuan & Bentler, 1997, 1998,

1999). The distribution, and hence performance, of all of these statistics depends on meeting

the various assumptions underlying these statistics. One of these assumptions is that the

strict null hypothesis holds, namely, that the model is exactly correct in the population.

Model evaluations are in principle carried out in a classical way by evaluating where a test

statistic falls in the distribution under the null. In turn, the actual performance of these

statistics may be evaluated by such features as their type I and type II errors.

Another standard statistical issue in SEM involves the comparison of alternative models,

especially nested models that contain additional restrictions beyond those of the more general

model. A standard approach to such a model comparison involves the chi-square difference

test (e.g., Joreskog, 1971; Steiger, Shapiro, & Browne, 1985). This is often an NTLR test;

for greater robustness of this test, Satorra (2000) and Satorra and Bentler (2001) extended

the Satorra-Bentler (SB) corrections to nested models. Difference tests require estimation of

both the general and restricted models. Because it is often more convenient to work with only

the more general model or only the more restricted model, the Lagrange Multiplier (LM)

and Wald (W) tests were introduced for such model comparisons (e.g., Chou & Bentler,

1990; Lee & Bentler, 1980; Lee, 1985; Sorbom, 1989). As when a single model is evaluated,

the distribution of these various statistics depends on meeting various assumptions (Satorra,

1989). One of the most important assumptions is the strict correctness of the null hypothesis,

namely, that the parameters that differentiate the general and restricted models are precisely

zero in the population. Similarly, significance of each of these statistics is determined with
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reference to the assumed distribution under the null. While such a procedure may not work

perfectly in practice (e.g., Yuan & Bentler, 2004), especially when such a model comparison

is post hoc rather than a priori (e.g., MacCallum, Roznowski & Necowitz, 1992), some type

of model comparison can not be avoided in practice. Most a priori models are incorrect

in some way, and the process of model modification to yield improved models remains an

inevitable and important part in the application of SEM (Joreskog, 1993). One rationale

for imposing constraints on a general model is that the estimates in the more restricted and

parsimonious model will be more precise (Bentler & Mooijaart, 1989).

Ever since Joreskog (1969) developed confirmatory factor analysis, these types of sta-

tistical tests have been embraced in SEM because they provide scientific rigor to testing

hypotheses with nonexperimental data. After some limitations were raised on the role of

testing in exploratory factor analysis (Tucker & Lewis, 1973), Bentler and Bonett (1980)

noted that tests of exact fit in general SEM can not on their own provide a sufficient basis

for evaluation of models, especially in large samples where any restrictive null hypothesis is

liable to be rejected. They proposed that a model also needed to be evaluated in terms of the

extent to which it explains covariances better than a most restricted model of uncorrelated

variables which explains no covariances. They provided several so-called fit indices to evalu-

ate such an increment in fit, and also proposed to evaluate differences in model fit between

two nested models by evaluating the associated increment in fit. In the meantime, additional

fit indices such as the root mean square error of approximation (RMSEA, Steiger & Lind,

1980), comparative fit index (CFI, Bentler, 1990), goodness of fit index (GFI, Joreskog &

Sorbom, 1981) etc. have been devised to provide a measure of the extent of approximate or

close fit of a model.

Critiques of tests of exact fit were also made from two other perspectives, namely from

a rejection of the basic null hypothesis, and from the point of view of statistical theory.

It does not make sense to test a specific model null hypothesis if one does not in the first

place believe that a specific model might exist in the population. Any particular model may

be nothing more than an approximation to reality, and it may be said that the modeling

enterprise should mainly aim to provide information about the relative performance of alter-
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native plausible models, none of which may be precisely true (e.g., Bentler & Bonett, 1980;

de Leeuw, 1988; Browne & Cudeck, 1993; MacCallum, 2003). From the point of view of

statistical theory, questions have been raised on whether the distribution of a test statistic

under the null hypothesis provides the most meaningful possible model evaluation when such

a null hypothesis may not make a priori sense. To provide an alternative, recently researchers

such as Ogasawara (2005) and Yuan, Hayashi, and Bentler (2005) investigated the general

distribution of the NTLR test under model misspecification and weak distributional assump-

tions on the data. In addition, some asymptotically robust model close fit tests implemented

via the sample RMSEA also have been introduced and studied by Li and Bentler (2006).

These critiques of hypothesis testing on exact fit of a given model apply directly to the

comparison of nested models, but little statistical development has been done to provide an

alternative approach for comparing such models. In this paper, we first review some relevant

statistical theories and propose a measure of close match between two competing models and

their corresponding estimators. Then, using the results of Vuong (1989) and Yuan, Hayashi

and Bentler (2005), the asymptotic distribution of these estimators will be derived and some

asymptotic robust tests of close match between competing models will be defined. Finally,

numerical examples will be given.

2. Theoretical Background

In classical single population structural equation modeling, the relationship of p-observed

variables in a p × 1 random vector X = (x1, . . . ,xp) and m-unobserved factors may have

many different specifications. Without loss of generality, we only consider two such model

specifications at one time for simplicity. In one parameterization, M1 has q free unknown

parameters which are included in a q × 1 parameter vector θ, while another competing

parameterization M2 has r free unknown parameters which are included in an r×1 parameter

vector γ. As a result, the hypothesized model M1 leads to the model-implied mean µ(θ) and

covariance matrix Σ(θ) and M2 leads to µ(γ) and Σ(γ).

For simplicity, we assume that sampling yields a complete data set. Now let µ = E(X),

Σ = cov(X), X̄ and S be the corresponding mean and unbiased sample estimator and
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S∗ = (n − 1) · S/n be the MLE estimator of Σ, where n is the sample size. Let β denote

the parameter vector of the saturated model, then in this case β = (µ′, vech(Σ)′)′, where

vech(·) is an operator which transforms a symmetric matrix into a vector by stacking the

nonduplicated elements of the matrix. Further, β̂∗ ≡ (X̄ ′, vech(S∗)′)′ and β̂ ≡ (X̄ ′, vech(S)′)′

will be its MLE and unbiased estimator separately. Although two estimators are different,

their difference will be very slight when the sample size n is large (e.g., Anderson, 1984).

Suppose that the data Xi = (xi1, . . . , xip), i = 1, . . . , n = N + 1 are identically and

independently drawn from X. The normal theory based log likelihood function of the obser-

vations is then given by

ln(β) =
n∑

i=1

logf(Xi; β) = constant − n

2
log|Σ| − 1

2

n∑

i=1

(Xi − µ)′Σ−1(Xi − µ)

where f(Xi; β) is the density function of the multivariate normal distribution for individual

observation Xi. Obviously, β̂∗ is the maximizer of ln(β).

Let µ0, Σ0 denote the population counterparts to µ, Σ and β0 ≡ (µ′

0, vech(Σ0)
′). Let Γ

be the asymptotic covariance matrix of β̂ and thus β̂∗, then under some standard regularity

conditions (e.g., Kano, 1986; Shapiro, 1984), β̂∗ and thus β̂, will be strongly consistent and

asymptotically normally distributed, that is,
√

n(β̂∗ − β0)
a
=

√
n(β̂ − β0)

L−→ N(0,Γ), where

a
= refers to asymptotic equality (i.e., the difference between both sides of the equality tends to

zero in probability as n → ∞). Further, Γ can be shown to be equal to A−1(β0)B(β0)A
−1(β0)

(e.g., Vuong, 1989; Yuan & Jennrich, 1998) with

A(β0) = −E

[
∂2li(β0)

∂β0∂β′

0

]
B(β0) = E

[
∂li(β0)

∂β0

∂li(β0)

∂β′

0

]

where E(·) denotes the expectation with respect to the true distribution of X.

When µ and Σ are parameterized as M1 and M2 as mentioned before, then the corre-

sponding log likelihood functions become

ln(θ) =
n∑

i=1

logf(Xi; θ) = constant − n

2
log|Σ(θ)| − 1

2

n∑

i=1

(Xi − µ(θ))′Σ−1(θ)(Xi − µ(θ))

ln(γ) =
n∑

i=1

logf(Xi; γ) = constant − n

2
log|Σ(γ)| − 1

2

n∑

i=1

(Xi − µ(γ))′Σ−1(γ)(Xi − µ(γ))
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separately. Estimators of θ and γ can be obtained by minimizing the well-known normal

theory maximum likelihood discrepancy functions (Browne & Arminger, 1995)

FML(X̄,S∗; µ(θ),Σ(θ)) = (X̄ − µ(θ))′Σ−1(θ)(X̄ − µ(θ)) + log|Σ(θ)| + tr(S∗Σ−1(θ))

−log|S∗| − p (1)

FML(X̄,S∗; µ(γ),Σ(γ)) = (X̄ − µ(γ))′Σ−1(γ)(X̄ − µ(γ)) + log|Σ(γ)| + tr(S∗Σ−1(γ))

−log|S∗| − p (2)

respectively. Consequently, the minimizers of the equations above, θ̂NML and γ̂NML , are the

maximum likelihood estimators of θ and γ respectively. Plugging θ̂NML and γ̂NML into (1)

and (2), we obtain the statistics

TNML M1 ≡ nFML(X̄,S∗; µ(θ̂NML),Σ(θ̂NML)) = 2
[
ln(β̂∗) − ln(θ̂NML)

]

= 2
n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]

≡ 2LRn(β̂∗, θ̂NML) (3)

TNML M2 ≡ nFML(X̄,S∗; µ(γ̂NML),Σ(γ̂NML)) = 2
[
ln(β̂∗) − ln(γ̂NML)

]

= 2
n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; γ̂NML)

]

≡ 2 · LRn(β̂∗, γ̂NML) (4)

for M1 and M2 respectively. Clearly, TNML M1 and TNML M2 are the well-known NTLR test

statistics for testing the exact fit of M1 and M2 respectively.

In SEM practice, instead of FML(X̄,S∗; µ(θ),Σ(θ)) and FML(X̄,S∗; µ(γ),Σ(γ)), the

discrepancy functions FML(X̄,S; µ(θ),Σ(θ)) and FML(X̄,S; µ(γ),Σ(γ)) are used in most

cases. Their minimizers, θ̂ML and γ̂ML, and the corresponding NTLR statistics TML M1 =

NFML(X̄,S; µ(θ̂ML),Σ(θ̂ML)) and TML M2 = NFML(X̄,S; µ(γ̂ML),Σ(γ̂ML)) are given in the

standard output of typical software packages (e.g., EQS, Bentler 2006; Mplus, Muthen &

Muthen 2003). Although there is some difference between these two sets of estimators and

test statistics, such differences will become very slight as the sample size n increases (e.g.,

Bentler, 2006; Bollen, 1989; Browne & Arminger, 1995).

Let θ∗ and γ∗ be the minimizer of FML(µ0,Σ0; µ(θ),Σ(θ)) and FML(µ0,Σ0; µ(γ),Σ(γ))
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respectively. Then it has been proved that under some standard regularity conditions (e.g.,

Kano, 1986; Shapiro, 1984), θ̂NML and γ̂NML, thus θ̂ML and γ̂ML, will be strongly consistent

and asymptotically normally distributed (Yuan & Jennrich, 1998), and

√
n(θ̂ML − θ∗)

a
=

√
n(θ̂NML − θ∗)

L−→ N(0, Ωθ∗) (5)

√
n(γ̂ML − γ∗)

a
=

√
n(γ̂NML − γ∗)

L−→ N(0, Ωγ∗) (6)

with Ωθ∗ = A−1
θ∗

Bθ∗A
−1
θ∗

and Ωγ∗ = A−1
γ∗ Bγ∗A

−1
γ∗ .

3. Model Exact vs. Close Match

For convenience of illustration, we introduce the idea of model exact vs. close match by

using an example by Curran, Bollen, Chen, Paxton and Kirby (2003) (see their population

model 2). In this example, the population model underlying the data is as follows,

y = Πη + ε η = Bη + ζ

where ε and ζ are independent to each other with E(ε) = 0, Cov(ε)=Ψ, E(ζ) = 0, Cov(ζ)=Ξ.

Moreover, Ψ = diag(.51, .51, .51, .51, .51, .2895, .51, .51, .51, .2895, .2895, .51, .51, .51, .51), Ξ =

diag(.49, .3136, .3136),

Π =




1.0 1.0 1.0 1.0 1.0 .30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 .30 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .30 1.0 1.0 1.0 1.0 1.0




′

and B =




.00 .00 .00

.60 .00 .00

.00 .60 .00


 .

For our illustration, we focus on four specifications used by Curran et al. (2003). They

are: Specification 1 is properly specified, Specification 2 sets π11,2 as zero, Specification 3

sets π11,2 and π10,3 as zero, and Specification 4 sets π11,2, π10,3 and π6,1 as zero. During the

model fitting of each specification, we set π1,1, π7,2 and π12,3 to 1.0 for identification while all

other nonzero parameters in the population model are set free. As a result, the models by

Specification 1, 2, 3, and 4 have degrees of freedom equal to 85, 86, 87 and 88, respectively.
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For model comparison, any pair of these four specifications can be a comparison pair.

Let us denote the general model of a comparison pair as M1 while the restricted one of

the pair which is nested in M1 as M2. Then the equality constraints bridging M1 and M2

such as π6,1 = 0 for the comparison pair of Specification 3 vs. 4 can be reparameterized as

the null hypothesis HE
0 : θ = θ(γ). In this article, we consider HE

0 : θ = θ(γ) as the null

hypothesis of equality or exact match of the models M1 and M2. Clearly, when θ is equal to

β ≡ (µ′, vech(Σ)′)′, then HE
0 : θ = θ(γ) becomes the null hypothesis of exact fit of M2.

Since the omitted paths (cross loadings), π11,2, π10,3 and π6,1, are equal to .30 in the

population when compared all other loadings that are 1.0, we can consider these as minor

cross loadings. In general, a simple cluster structure such as Specification 4 in this example

will be very desirable from a theoretical perspective. However, real data hardly allow such a

simple cluster structure, and typically may require a more complex factor loading structure,

like the population model in this example where the cluster structure is compounded by

some minor cross-loadings. As a result, the null hypothesis HE
0 : θ = θ(γ) for any pair of the

four specifications above is false, and related test statistics such as the NTLR statistic will

reject this hypothesis if the sample size is large enough. Then the unwanted minor paths

will be included in the final model, perhaps making it less interpretable.

What we illustrated here is a typical model comparison paradigm by the traditional

approach. Like exact fit tests in model overall evaluation, the traditional approach to the

model comparison involves choosing between the better fit of the general model M1 and the

parsimony or meaningfulness of the restricted model M2 by examining a statistic assessing

the equality or exact match of the nested models. Even though this approach is valuable,

it may not be a complete one. In practice, HE
0 : θ = θ(γ) may not hold because of some

minor differences between two models, e.g., unexpected minor cross loadings as illustrated

above. Even though these differences may be minor or unmeaningful substantively, the

traditional exact match testing procedure would inevitably favor M1 (especially in a large

sample) because of the infeasibility of exact model equality. In practice, a more realistic

approach to model comparison would decide between the better fit of M1 and the parsimony

or meaningfulness of M2, using as a criterion the degree of close match instead of exact match
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between two models1. In other words, like the concept of close fit in overall model evaluation,

the concept of close match between M1 and M2 may yield an appropriate comparison of two

models. As an additional approach to model comparison, this may yield a more practical

criterion for model modification in substantive research.

Like many so-called fit indices in model close fit, we first need to define some measure

of match between competing nested models. Let F1 = FML(µ0,Σ0; µ(θ∗),Σ(θ∗)) and F2 =

FML(µ0,Σ0; µ(γ∗),Σ(γ∗)). Let df1 = p∗ − q and df2 = p∗ − r denote the degrees of freedom

of M1 and M2 respectively, where p∗ = p + p(p + 1)/2. The well-known RMSEA indices

(Browne & Cudeck, 1993; Steiger & Lind, 1980) corresponding to these models are defined

as

RMSEA1 =

√
F1

df1

RMSEA2 =

√
F2

df2

for M1 and M2 respectively. For this example, the true RMSEAs of the four specifications

are 0, .0215, .0308 and .040 respectively.

In this article, we consider the RMSEAs above as sample size and model size independent

measures of match between the preferred models and the saturated one. However, we need

to generalize the concept behind this measure into one that provides a metric for comparing

two different models M1 and M2. At the first glance, the difference between RMSEA1 and

RMSEA2 would seem to be the obvious choice for such a measure. However, one problem

with this difference is that when HE
0 : θ = θ(γ) holds but neither model is exactly correct,

F1 = F2 but the difference between RMSEA1 and RMSEA2 is not equal to zero. It varies

with F1, F2, df1 and df2. Hence we conclude that this obvious difference does not accurately

reflect the exact or close match of two competing models, and so we exclude it from further

discussion.

Now let us look at these two quantities: F12 = F2−F1 and df12 = df2−df1. Like F1 for M1

and F2 for M2, F12 is a sample size independent measure of the degree of overmisspecification

of M2 compared to M1 or the distance between M1 and M2. Further, in model comparison

between M1 and M2, F12 is dependent on the number of the constraints df12 as well as the

1Another approach to the issue of the minor cross loadings or error covariances mentioned here is to use
inequality constraints. We will address this approach with examples later.
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model size df1 or df2.

We shall define a relative RMSEA, RMSEA12, as the measure of the match between M1

and M2. That is,

RMSEA12 =

√
F12

df1

. (7)

At first glance, df2 or df12 instead of df1 similarly could be chosen for (7), since then RMSEA12

will be reduced to RMSEA2 when M1 is the saturated model.

However, this is not the whole story. Let us look at df2 first. In a typical setting of

traditional model comparison, M1 and M2 are assumed to be equal under the constraint set.

Under such an assumption, it is reasonable to start from M1 to add the constraints, or from

M2 to free them. However, this logic does not necessarily make sense when this assumption

is violated. When HE
0 : θ = θ(γ) doesn’t hold, the constraints should be freed according to

the exact match criterion, and then the only thing left is to decide if M2 is still close enough

to M1. In this case the starting point of consideration must be M1 and correspondingly df1

instead of df2 should be selected for RMSEA12 in (7) on account of the model size.

The more difficult choice may be between df1 and df12. Let ˜RMSEA12 denote the relative

RMSEA calculated by using df12 instead of df1 in (7). For better illustration, we calculated

RMSEA12 and ˜RMSEA12 for all comparison pairs based on the four specifications in the

example. The results are presented in Table A1 and A2 respectively. From two tables, it is

clear that RMSEA12 has a similar scale as RMSEA while ˜RMSEA12 is different. Besides the

gross similarities, a detailed comparison in how the indices change with varying misspecifi-

cation may be more important. In each of the last two rows of the two tables, the patterns

of change in index size are different. RMSEA12 decreases along each of the rows in its table

while ˜RMSEA12 increases instead. However, in this setup the distance between Specifica-

tion 1 vs. 3 in this example should be reasonably considered to be larger than the distance

between Specification 2 vs. 3. As a result, a measure of model difference that is useful

for model comparison purposes should correspondingly have a larger value when comparing

Specification 1 vs. 3 than when comparing Specification 2 vs. 3. A similar trend should be

seen in the comparison of Specification 4 against other three specifications as listed in last
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row of two tables. In Table A1, RMSEA12 performs consistent with these expectations. Its

values decrease along the rows of Table A1. In contrast, the performance of ˜RMSEA12 in

Table A2 contradicts these expectations. Its values increase instead of decrease along the

rows of Table A2. For example, in Table A2 the comparison of Specification 1 vs. 3 with

a larger model discrepancy has a smaller ˜RMSEA12 value than Specification 2 vs. 3. The

same phenomenon can be seen in the comparison pairs of Specification 4 with the other three

specifications in Table A2.

In theory, ˜RMSEA12 is a measure of the overmisspecification of M2 averaged by the

number of constraints. Even though such averaging is used in RMSEA when assessing exact

or close fit, it may not be the best approach for our purposes. Usually, different individual

constraints in a constraint set have a different impact on the excessive restrictions in M2

compared to M1. Even though the average excess restriction can be small, some individual

constraints or subsets in a constraint set may generate more overmisspecification than others

and may even make a big difference if considered alone. For example, a cross loading of

some significant magnitude may make a big difference if ignored in a model. However, if

this cross loading is omitted together with some other minor cross loadings, then the average

overmisspecification due to the exclusion of these cross loadings can be low. So for these

reasons, it seems appropriate when comparing two competing structured models that the

total overmisspecification caused by the constraints be considered, rather than the average

one. Hence in this study, df1 instead of df12 is used to define (7).

Browne and Cudeck (1993) pointed out that the null hypothesis of exact fit of M1 and

M2 can be expressed in the form of RMSEA. Given the nested relationship between M1 and

M2, the null hypothesis HE
0 : θ = θ(γ) can be expressed alternatively as

HE
0 : RMSEA12 = 0. (8)

By further extending the close fit expression in term of RMSEA proposed by Browne and

Cudeck (1993), we may express the hypothesis of close match of M1 and M2 as

H0 : RMSEA12 ≤ a (9)

where a is an arbitrary small positive value. The idea behind (9) is clear. A restricted
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model like M2 may not be equal to the unrestricted one M1 as assumed in (8). However, if

the distance between two models is small and in some tolerable range, the restricted model

with more parsimony or meaningfulness is still a good candidate to replace the unrestricted

one. In the SEM literature, .05, .08 and .10 have been widely used as cutoff values for the

population RMSEA when evaluating model close fit. Clearly, by the same idea, some small

positive values can be used to define cutoff values of RMSEA12 for evaluating model close

match.

In Table A1, all comparison pairs on the diagonal line have a one single minor cross

loading difference in specification and their RMSEA12 values are less than .03. When there

are two minor cross loading differences as in the comparison of Specification 1 vs. 3 or

Specification 2 vs. 4, the RMSEA12 values are then between .03 and .04. When there are

three minor cross loading differences, as in the comparison of Specification 1 vs. 4, the

RMSEA12 value becomes over .04. So in this example the omission of a single minor path

increases the RMSEA12 value no more than .03 while the omission of two minor paths will

increase it to between .03 and .04. Now if we consider the omission of a single minor path

as when comparing Specification 3 vs. 4 as a minor difference between two models, then .03

can be used as a cutoff value for RMSEA12. Correspondingly, if the omission of two minor

paths as in the comparison of Specification 2 vs. 4 can be considered as a minor difference,

then .04 can be used for RMSEA12.

The issue of whether model exact match or model close match is best used in model

comparison probably depends on the truth or correctness of the more general model. When

the general model is true there may be greater interest in whether the more restricted model

is also exactly true, i.e., model exact match may be of greater concern. Unfortunately,

in real data analysis it is quite likely that both models in a nested model comparison are

misspecified. Certainly it has been argued that models are always an approximation to

reality and hence that no model will ever be precisely true. In that case, the comparison of

nested models involves comparing two models that are both technically incorrect. In such a

situation, a null hypothesis of exact model match would seem to make little sense and the key

issue is how tolerable the difference between the models may be. Given a small discrepancy
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in fit in term of RMSEA12 between such nested models, the parsimony or meaningfulness of

the more restricted but less well fitting model can be a reason to accept the restrictions.

4. General distribution of likelihood ratio statistics

Let F̂1 = FML(X̄,S; µ(θ̂ML),Σ(θ̂ML)) and F̂2 = FML(X̄,S; µ(γ̂ML),Σ(γ̂ML)). Then

TML 12 = NF̂2 − NF̂1
L−→ χ2

df12
under normality is the NTLR test statistic that is used

to test HE
0 in (8) in a nested model comparison. When HE

0 in (8) doesn’t hold, the inequal-

ity of two nested models becomes true and TML 12 follows χ2
df12

(NF12) under normality and

the population drift assumption which is

µ0 − µ(θ∗) = O(1/
√

n) and Σ0 − Σ(θ∗) = O(1/
√

n) (10)

µ0 − µ(γ∗) = O(1/
√

n) and Σ0 − Σ(γ∗) = O(1/
√

n) (11)

(e.g., Satorra, 1989; Satorra & Saris, 1985; Steiger, Shapiro, & Browne, 1985). Although this

noncentral chi-square distribution of TML 12 can be used for testing H0 : RMSEA12 ≤ a in

(9) under the inequality of two nested models, the assumptions of normality and population

drift are hard to satisfy or verify in practice. These limitations prevent TML 12 from being

the appropriate statistic to use in such practical testing situations. Satorra (1989) further

proposed a generalized score test and generalized wald test which drop the assumption of

normality and are asymptotically noncentral chi-square distributed under the inequality of

two nested models. However, the noncentrality parameters of their noncentral chi-square

distributions contain Γ which is based on the distribution of the data and varies with its

nonnormality. Such distributional dependence of the noncentrality parameters, along with

the requisite population drift assumption, similarly raise questions about the appropriateness

of using these statistics for testing model close match in (9).

Given the inadequacy of existing methods for testing of model close match, we turn our

attention to some results of Yuan, Hayashi and Bentler (2005). They applied the theory

of Vuong (1989) to mean and covariance structure analysis and derived the asymptotic

distribution of TML 12 under the alternative hypothesis of HE
0 in (8). Given the unfamiliarity

of Vuong’s theory in the SEM literature, we give a brief explanation of Vuong’s theory. Then

we apply it to the issue of model close match.
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Since the theory of Vuong (1989) focuses on TNML 12 instead of TML 12, let TNML 12 =

TNML M2 − TNML M1. Then from (3) and (4), it can be easily found that

1

2n
TNML 12 =

1

n

n∑

i=1

log

[
f(Xi; θ̂NML)

f(Xi; γ̂NML)

]
≡ 1

n
LRn(θ̂NML, γ̂NML) (12)

As mentioned before, θ̂NML and γ̂NML are strongly consistent and θ̂NML − θ∗ = Op(1/
√

n),

γ̂NML − γ∗ = Op(1/
√

n) under some standard regularity conditions. Given these properties

of θ̂NML and γ̂NML, by using a Taylor expansion of LRn(θ∗, γ∗) around (θ̂′NML, γ̂′

NML)′, we

can get

1

n
LRn(θ∗, γ∗)

≡ 1

n

n∑

i=1

log

[
f(Xi; θ∗)

f(Xi; γ∗)

]
(13)

=
1

n

n∑

i=1

log

[
f(Xi; θ̂NML)

f(Xi; γ̂NML)

]
+

1

n
· V ·

[
(θ′

∗
, γ′

∗
)′ − (θ̂′NML, γ̂′

NML)′
]
+ Op(1/n)

where

V = ∂
n∑

i=1

log

[
f(Xi; θ̂NML)

f(Xi; γ̂NML)

]/
∂(θ̂′NML, γ̂′

NML)

Since θ̂NML and γ̂NML are MLE estimators, V = 0. Then by some algebra, we get

1

n

n∑

i=1

log

[
f(Xi; θ̂NML)

f(Xi; γ̂NML)

]
=

1

n

n∑

i=1

log

[
f(Xi; θ∗)

f(Xi; γ∗)

]
+ Op(1/n) (14)

Now assume that Xi is i.i.d. sampled from X, then log [f(Xi; θ∗)/f(Xi; γ∗)] is also i.i.d.

sampled from some unknown distribution H. By the Law of Large Numbers,

1

n

n∑

i=1

log

[
f(Xi; θ∗)

f(Xi; γ∗)

]
a.s.−→ E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]

The term on the right side of the equation is the Kullback-Leibler (1951) Information Cri-

terion in statistical theory. Suppose E [log [f(Xi; θ∗)/f(Xi; γ∗)]]
2 is finite, then the second

central moment of the unknown distribution H is

ω2 = E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]2

−
[
E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]]2

By the Central Limit Theorem,

√
n

{
1

n
LRn(θ∗, γ∗) − E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]}
L−→ N(0, ω2) (15)

13



Lemma 1. The following identity holds

E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]
=

1

2
F12

Proof.

E

[
log

[
f(Xi; θ∗)

f(Xi; γ∗)

]]

= E [logf(Xt; θ∗)] − E [logf(Xi; γ∗)]

= −1

2
E

[
log|Σ(θ∗)| + (Xt − µ(θ∗))

′Σ−1(θ∗)(Xt − µ(θ∗))
]

+
1

2
E

[
log|Σ(γ∗)| + (Xt − µ(γ∗))

′Σ−1(γ∗)(Xt − µ(γ∗))
]

= −1

2

[
log|Σ(θ∗)| + tr(Σ0Σ

−1(θ∗)) + (µ0 − µ(θ∗))
′Σ−1(θ∗)(µ0 − µ(θ∗))

−log|Σ0| − p] +
1

2

[
log|Σ(γ∗)| + tr(Σ0Σ

−1(γ∗)) + (µ0 − µ(γ∗))
′Σ−1(γ∗)(µ0 − µ(γ∗))

−log|Σ0| − p]

=
1

2
(F2 − F1)

=
1

2
F12

Combining (12), (13), (14), (15) and Lemma 1, we obtain

√
n

{
1

2n
TNML 12 −

1

2
F12

}
L−→ N(0, ω2) (16)

One point which should be mentioned is that this asymptotic approximation holds only when

ω2 6= 0. Vuong (1989) pointed out that the equivalence between ω2 = 0 and f(Xi; θ∗) =

f(Xi; γ∗) holds in general (see Lemma 4.1 by Vuong). For nested models, Vuong (1989)

showed that f(Xi; θ∗) = f(Xi; γ∗) and θ∗ = θ(γ∗) are equivalent to each other under standard

regularity conditions (see Lemma 7.1 by Vuong). So a rejection of the equality or exact

match of two nested models: θ∗ = θ(γ∗) or RMSEA12 = 0, which is equivalent to f(Xi; θ∗) =

f(Xi; γ∗), is a way to establish ω2 6= 0 and should be conducted before the use of (16).

Now let F̂12 = F̂2 − F̂1. By (16) and the asymptotic equivalence between TNML 12 and

TML 12, we obtain the following corollary (Yuan, Hayashi & Bentler, 2005, Corollary 1)

Corollary 1. Under standard regularity conditions as in Yuan and Bentler (1997),

√
n

(
F̂12 − F12

)
L−→ N(0, 4ω2)
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if ω2 6= 0 or equivalently if RMSEA12 6= 0 when two models are nested.

Let σ1∗ = (µ(θ∗)
′, vech(Σ(θ∗))

′)′, σ2∗ = (µ(γ∗)
′, vech(Σ(γ∗))

′)′, σ̇1∗ = ∂σ1∗/∂θ∗ and

σ̇2∗ = ∂σ2∗/∂γ∗ respectively and let Dp be the duplication matrix as defined by Magnus

and Neudecker (1988). Then we define

W1∗ ≡ diag
[
Σ−1(θ∗), 2

−1D′

p(Σ
−1(θ∗) ⊗ Σ−1(θ∗))Dp

]

W2∗ ≡ diag
[
Σ−1(γ∗), 2

−1D′

p(Σ
−1(γ∗) ⊗ Σ−1(γ∗))Dp

]

U1 ≡ W1∗ − W1∗σ̇1∗(σ̇
′

1∗W1∗σ̇1∗)
−1σ̇′

1∗W1∗

U2 ≡ W2∗ − W2∗σ̇2∗(σ̇
′

2∗W2∗σ̇2∗)
−1σ̇′

2∗W2∗

Then it has been shown that under the population drift assumption (10) and (11) (Yuan &

Marshall, 2004),

AE(TML M1) = NF1 + tr(U1Γ) (17)

AE(TML M2) = NF2 + tr(U2Γ) (18)

where AE represents the asymptotic expectation with respect to the true distribution of X.

When normality is assumed, this reduces to

AE(TML M1) = NF1 + df1 (19)

AE(TML M2) = NF2 + df2 (20)

Combining (17), (18), (19), (20) and Corollary 1, we obtain the following Corollary (Yuan,

Hayashi & Bentler, 2005, Corollary 2 and 3)

Corollary 2. Under standard regularity conditions as in Yuan and Bentler (1997),

√
n

(
F̂12 − F12 −

tr(U2Γ)

n
+

tr(U1Γ)

n

)
L−→ N(0, 4ω2)

if ω2 6= 0 or equivalently if RMSEA12 6= 0 when two models are nested. When normality is

assumed, this reduces to

√
n

(
F̂12 − F12 −

df2

n
+

df1

n

)
L−→ N(0, 4ω2)
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Notice that Corollary 2 has no conflict with Corollary 1 because the extra term tr(U1Γ)/n,

tr(U2Γ)/n, df1/n and df2/n in Corollary 2 approach zero as n goes to infinity. Vuong (1989)

further gave a consistent estimator of ω2, that is,

ω̂2
Vuong =

1

n

n∑

i=1

[
log

[
f(Xi; θ̂NML)

f(Xi; γ̂NML)

]]2

−
[
1

n

n∑

i=1

[
log

f(Xi; θ̂NML)

f(Xi; γ̂NML)

]]2

Given the asymptotic equivalence between θ̂NML vs. θ̂ML and γ̂NML vs. γ̂ML, we obtain the

following estimator of ω2, that is,

ω̂2 =
1

n

n∑

i=1

[
log

[
f(Xi; θ̂ML)

f(Xi; γ̂ML)

]]2

−
[
1

n

n∑

i=1

[
log

f(Xi; θ̂ML)

f(Xi; γ̂ML)

]]2

(21)

Clearly, ω̂2 is also a consistent estimator of ω2.

Yuan, Hayashi and Bentler (2005) further derived an explicit form for ω2 under various

conditions and gave the corresponding estimators. Although their work is valuable, our

preliminary results from a simulation study of normal data show that there is no big difference

in performance between their estimators and ω̂2 in (21). More importantly, their estimators

are limited to single group mean and covariance structure analysis and are not as general as

ω̂2. So, in this article, we use ω̂2 for the tests that follow.

5. Tests of model close match

In section 3, we proposed RMSEA12 as a measure of model close match and the null

hypothesis H0 : RMSEA12 ≤ a against its alternative H1 : RMSEA12 > a to be one

way to test model close match. Clearly, by (7), the null and alternative hypotheses above

can be written as H0 : F12 ≤ df1 · a2 against H1 : F12 > df1 · a2. Suppose now for two

nested models, H0 : F12 ≤ df1 · a2 is true and TML 12
L−→ χ2

df12
(NF12), then Pr{TML 12 >

χ2
df12,.95(N × df1 × a2)} → .05. So a test of close match can be proposed for nested model

comparison. The null hypothesis will be rejected in favor of the alternative if TML 12 is

greater than χ2
df12,.95(N × df1 × a2). Otherwise, the null hypothesis can not be rejected.

The last section gave some asymptotic results for F̂12, and a consistent estimator of ω2

was given in (21). Based on these results, we propose two test statistics for model close

match. The first is Vuong’s test statistic (T1), which is
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T1 =

√
n

(
F̂12 − df1 · a2 − df2/n + df1/n

)

2ω̂

as well as a robust version of Vuong’s test statistic (T2), which is

T2 =

√
n

(
F̂12 − df1 · a2 − tr(Û2Γ̂)/n + tr(Û1Γ̂)/n

)

2ω̂

where Γ̂ is the consistent estimator of Γ (e.g., Bentler, 2006), and Û1 and Û2 are consistent

estimators of U1 and U2 obtained by replacing θ∗ and γ∗ by θ̂ML and γ̂ML respectively.

Corollary 3. Given ω2 6= 0 or equivalently RMSEA12 6= 0 when two models are nested,

then under some standard regularity conditions as in Yuan and Bentler (1997)

T1
a
= T2

L−→ N(
√

nδ1, 1) and δ1 =
df1

ω
·
[
a2

0 − a2

2

]

where a0 is the value of RMSEA12. Further,

1. When RMSEA12 = a, then δ1 = 0 and T1
a
= T2

L−→ N(0, 1).

2. When RMSEA12 > a, then δ1 > 0 and T1
a
= T2 −→ +∞ as n −→ +∞.

3. When RMSEA12 < a, then δ1 < 0 and T1
a
= T2 −→ −∞ as n −→ +∞.

Let λ.95 be 95 percent quantile of the standard normal distribution, then Pr{T1 or T2 >

λ.95} → .05. Clearly, T1 and T2 can be used to test (9) if ω2 6= 0 or equivalently if RMSEA12 6=

0 when two models are nested. For each of them, (9) will be rejected if it is greater than

λ.95. Otherwise, it can not be rejected.

In an earlier section, we proposed RMSEA12 as a measure of model close match. Since

the true value of RMSEA12 is unknown, we define a sample RMSEA12 as its estimate. That

is,

̂RMSEA12 =

√√√√max

(
F̂12

df1

− df2

n · df1

+
1

n
, 0

)
.

Notice that in the definition above we use 1/n instead of 1/N as suggested by (19) and

(20). However, the difference between 1/n and 1/N will be tiny when n is reasonably large.
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From (17) and (18), the asymptotic bias of TML M1 and TML M2 differs from df1 and df2 in

nonnormal conditions. So it is not hard to define a robust sample RMSEA12 as follows

˜RMSEA12 =

√√√√max

(
F̂12

df1

− tr(Û2Γ̂)

n · df1

+
tr(Û1Γ̂)

n · df1

, 0

)
.

Obviously, ̂RMSEA12, ˜RMSEA12 and RMSEA12 are some power transformations of F̂12 and

F12. By Corollary 1 and the Delta method, we obtain the following approximation.

Corollary 4. Given ω2 6= 0 or equivalently if RMSEA12 6= 0 when two models are nested,

then under some standard regularity conditions as in Yuan and Bentler (1997)

√
n

( ̂RMSEA12 − RMSEA12

)
L−→ N

(
0,

ω2

df1 · F12

)

and

√
n

( ˜RMSEA12 − RMSEA12

)
L−→ N

(
0,

ω2

df1 · F12

)

Proof.

√
n

( ̂RMSEA12 − RMSEA12

)
a
=

√
n

(√
F̂12/df1 −

√
F12/df1

)

L−→ N

(
0,

ω2

df1 · F12

)
(Delta method)

The distribution of ˜RMSEA12 can be proved in the same way.

By Corollary 4, we define the RMSEA12 test statistic T3 which is

T3 =

√
n

( ̂RMSEA12 − a
)

ω̂
/√

df1 ·
(
F̂12 − df2/n + df1/n

)

and the robust RMSEA12 test statistic T4 which is

T4 =

√
n

( ˜RMSEA12 − a
)

ω̂
/√

df1 ·
(
F̂12 − df2/n + df1/n

)

Let ĉ = (tr(Û2Γ̂) − tr(Û1Γ̂) − df2 + df1)/n. Following Li and Bentler (2006), we further

define another two RMSEA12 test statistics T5 and T6 as

T5 =

√
n

( ˜RMSEA12 − a
)

√
ω̂2 − ĉ

/√
df1 ·

(
F̂12 − df2/n + df1/n + ĉ

)
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and

T6 =

√
n

( ˜RMSEA12 − a
)

√
ω̂2 − 2.5 · ĉ

/√
df1 ·

(
F̂12 − df2/n + df1/n + ĉ

)

Clearly, ĉ is an estimator of c0 = (tr(U2Γ) − tr(U1Γ) − df2 + df1)/n and converges to c0

in the order of Op(n
−3/2). When the data is normal, c0 is equal to zero and ĉ will converge

to zero in the order of Op(n
−3/2). So in this condition, T3, T4, T5 and T6 should have similar

performance. When the data is nonnormal, c0 and thus ĉ carry information on nonnormality

of the data. So compared to T3, T4 has a correction in the numerator while T5 and T6 have

a correction both in numerator and denominator. Even though such corrections should not

matter asymptotically, they may make a difference in performance with small samples.

Another point which should be mentioned here is that when two models are nested, one

or several quantities among F̂12−df2/n+df1/n, F̂12−df2/n+df1/n+ ĉ, ω̂2− ĉ and ω̂2−2.5 · ĉ

can be less than or equal to zero especially in a small sample. Then the corresponding test

statistics T3, T4, T5 or T6 will be undefined respectively. So during the simulations below,

replications with such a problem will be discarded.

Corollary 5. Given ω2 6= 0 or equivalently if RMSEA12 6= 0 when two models are nested,

then under some standard regularity conditions as in Yuan and Bentler (1997)

T3
a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1) and δ2 =
df1

ω
· (a2

0 − a0 · a)

where a0 is the value of RMSEA12. Further,

1. When RMSEA12 = a, then δ2 = 0 and T3
a
= T4

a
= T5

a
= T6

L−→ N(0, 1).

2. When RMSEA12 > a, then δ2 > 0 and T3
a
= T4

a
= T5

a
= T6 −→ +∞ as n −→ +∞.

3. When RMSEA12 < a, then δ2 < 0 and T3
a
= T4

a
= T5

a
= T6 −→ −∞ as n −→ +∞.

Clearly, after a rejection of exact match, like T1 and T2 discussed before, T3, T4, T5 or

T6 also can be used to test the hypothesis of close match in (9). The null hypothesis will

be rejected for each statistic if its estimate is greater than λ.95. Otherwise, it can not be

rejected.
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Corollary 6. Under H1 : RMSEA0 > a and some standard regularity conditions as in

Yuan and Bentler (1997), then T3, T4, T5 and T6 have more asymptotic power than T1 and

T2 to reject the hypothesis of model close match.

Proof. By Corollary 3 and 5,

T1
a
= T2

L−→ N(
√

nδ1, 1) T3
a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1)

where

δ1 =
df1

ω
·
[
a2

0 − a2

2

]
δ2 =

df1

ω
· (a2

0 − a0 · a)

It is not hard to prove that δ2 > δ1 when a0 > a > 0.

6. Examples

In the sections above, we discussed seven test statistics and their corresponding critical

values for testing. They are TML 12, T1, T2, T3, T4, T5 and T6. In order to establish these

statistics as reliable tools for testing H0 : RMSEA12 ≤ a, we first need to look at the

asymptotic approximation and one-sided type I errors of these statistics when RMSEA12 = a.

It is hard to manipulate the level of RMSEA12 to a specific value a such as the suggested

cutoff value a = .03. Instead, we set a equal to the value of RMSEA12 for all statistics

since RMSEA12 is known in a simulation study. Thus, for each statistic, if it has a desirable

approximation to the corresponding theoretical distribution and its exceedance probability

over the 95 percent quantile of that distribution is close to .05 across conditions, then it can

be suggested as a reliable test of the hypothesis of close fit. Otherwise, it should not be used.

Since the statistics we proposed are asymptotically distribution free, we generated data

under three distribution conditions for each of three examples below. They are: normal,

mild nonnormal and severe nonnormal. In the mild nonnormal condition, the skewness and

kurtosis of each observed variable is set to 1.0 and 3.0 during data generation. In the severe

nonnormal condition, they are set to 2.0 and 7.0. For all examples, the sample size levels

are set to 150, 300, 500 and 1000. So there are 3× 4 = 12 data conditions for each example.

The number of replications is set to 2000 under each data condition.
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The whole data generation and analysis were conducted by using EQS 6.1 (Bentler, 2006).

In addition, we specified SE=OBS during the analysis. Thus, the term ( ˆ̇σ∗

′

Ŵ∗
ˆ̇σ∗), the Fisher

information estimator, in Û1 and Û2 is replaced by the estimator of the Hessian or observed

information matrix.

Example 1: Unwanted Paths. The example in section 3 is our first example. It contains

some unwanted paths, which occurs frequently in SEM practice. For this example, we only

study the performance of the comparison pairs on the diagonal line of Table A1. For all

these pairs, a in the statistics is set to the RMSEA12 value of that pair. Then the rejection

rates of all statistics for Specification 1 vs. 2, Specification 2 vs. 3 and Specification 3 vs. 4

are presented in Table 1A-1C, Table 2A-2C and Table 3A-3C respectively.

In Table 1A, under the normal condition, TML 12 performs well across the sample sizes.

However, in Tables 1B and 1C, across the sample sizes, the inflation of the rejection rates

of TML 12 increases as the nonnormality of the data increases. Its performance is poor,

especially with severe nonnormal data. Unlike TML 12, T1 and T2 perform poorly across all

sample sizes in the three tables. They overaccept in all conditions. As we mentioned before,

T3, T4, T5 and T6 can be undefined if some elements in the denominators of their definitions

are less than or equal to zero, and then will be discarded from the analysis. We put the

number of undefined replications into parenthesis after the rejection rates in each cell. In

Tables 1A-1C, T3, T4, T5 and T6 are undefined over ten percent of the time when n = 150.

Their failures increase as nonnormality increases, but failure reduces dramatically when n

increases to 300 for all data conditions. Their rejection performance is consistent across

the sample sizes in the three tables. The rejection rates are close to the target .05 for all

conditions, even though they, and especially T4, have a slight tendency to overaccept across

the tables.

The results on these seven statistics for Specification 2 vs. 3 in Tables 2A-2C, and

Specification 3 vs. 4 in Tables 3A-3C, are very similar. When the data is normal, TML 12

performs well for Specification 2 vs. 3 and Specification 3 vs. 4 as long as the sample size is

150. However, for both specification pairs, overrejections of the null hypothesis occurs for all

sample sizes as the nonnormality of the data increases. Its performance becomes especially
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poor when the data is severely nonnormal. As before, T1 and T2 perform poorly across the

sample sizes in all six tables. With the same data, the rejection rates of T3, T4, T5 and T6

for Specification 2 vs. 3 and Specification 3 vs. 4 reach the target level of .05 more closely

than in Specification 1 vs. 2 in most conditions across the six tables. This may be due to

the increased RMSEA12 values of these two specification pairs (see Table A1). Also in three

tables of each specification pair in this example, the number of undefined cases for the four

statistics generally decreases in the corresponding cells along three specification pairs. This

also may be due to the increased RMSEA12 values along these pairs.

In total, in this example, TML 12 in normal data and T3, T5 and T6 in general have a

desirable rejection performance across specification pairs as long as the sample size reaches

150. Based on these results, we believe that the new statistics should be helpful in practice

for testing the magnitude of paths and rejecting the unwanted or unnecessary minor ones in

a model.

Until this point, we have not focused on inequality constraints. Theoretically, imposing

an inequality constraint on unwanted or unnecessary minor paths such as π6,1 ≤ .4 and

testing this by the likelihood ratio test (see Dijkstra, 1992; Shapiro, 1985) is also a possible

way of handling minor paths. Unfortunately to our knowledge, there is no development of an

appropriate methodology for such purpose, with existing approaches to inequality constraints

requiring a correctly specified fitting function. This requirement limits their application to

close fitting models, especially when the data is nonnormal.

Example 2: Model Uncertainty. In previous example, a clean structure is compounded

with some undesirable paths. In these types of cases, a researcher may have a strong a

priori reason to reject unwanted paths in spite of the lack of support from exact match based

test statistics such as the NTLR test. Clearly, in this situation, our close match based test

statistics can provide some help for deciding between models.

A perhaps more typical situation occurs when a researcher does not have a strong sub-

stantive preference for a specific model. In SEM practice, there often may be many models

that can be considered for one single data that are meaningful substantively. This is certainly

true in exploratory factor analysis. For example, both a two factor model and a three factor
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model may be interpretable for some psychological data. Typically, the NTLR test will give

support to the model with more parameters if the extra factor in the three factor model can

capture some extra characteristics of the population. On the other hand, methods like AIC

and BIC, due to their assigning a penalty for more parameters in the model, sometimes may

yield the opposite result. Similarly, other indicators such as χ2/df ratio or various fit indices

may indicate only a small distance between the models. Even though these supplementary

criteria are valuable, they are not probabilistic criteria and hence they do not optimally

allow inference on the discrepancy between models in the population. As a remedy, our

close match based test statistics are probabilistic decision criteria like the traditional exact

testing or NTLR tests. By their very definition, like AIC and BIC, our close match approach

already includes a tradeoff between model goodness of fit and model parsimony.

In this example, we illustrate our close match approach to solving model uncertainty by

using an example from a TOEFL r© iBT test2 developed by the Educational Testing Service.

We treat an empirical data set as a population, sample from this population under several

circumstances, and evaluate the performance of our approach under this somewhat more

realistic situation.

For this TOEFL r© iBT test, the variables in the original data (n=774) were grouped

within each of four test sections: Speaking, Writing, Reading and Listening. After some

parceling, there are 22 variables: six variables for Speaking, two variables for Writing, eight

variables for Reading and six variables for Listening. In the language assessment area, there

is not a consensus on the number of factors underlying data such as this. As a result, models

with a different number of factors have been hypothesized and studied (Bachman, Davidson,

Ryan, & Choi, 1995; Carroll, 1983; Hale, Rock, & Jirele, 1989; Kunnan, 1995; Swinton &

Powers, 1980). In our example, we focus on only three specifications. In Specification 1,

there are three factors: one factor is for all variables in the Speaking section, one factor

for all variables in the Writing section, and one factor for all variables in the Reading and

Listening section. In Specification 2, there are two factors: one factor is for all variables in

2TOEFL r© is a registered trademark of Educational Testing Service (ETS), which provided the data for
this study. This publication is not endorsed or approved by ETS.
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the Speaking section and another for all other variables in the test. In Specification 3, there

are also two factors: one factor is for all variables in the Speaking and Writing sections and

another for all variables in the Reading and Listening sections. In each specification above,

all factors are hypothesized to be correlated with each other.

In traditional simulation studies, the data is generated by a predefined true model, much

as we did in Example 1. In reality, a true model may not exist, or if it does, it may be

disturbed or distorted by many other sources. Thus many models can be close fitted to such

a population. As stated, in this example the sample covariance matrix of the 22 variables

from the TOEFL r© iBT test data is treated as the population matrix. We do not know

its true structure, but whatever its structure, normal, mild and severely nonnormal samples

with different sample sizes are generated from this matrix. The rationale behind this research

paradigm is that the sample is a representative of the population underlying the TOEFL r©

iBT test and the samples generated from the sample covariance matrix actually represent

something like parametric bootstrap-like samples. Then, as in typical bootstrap analysis,

fitting the three specifications in last paragraph to the sample and the obtained bootstrap-

like samples mimics the fitting to the unknown population and its many possible samples.

However, unlike the bootstrap, we are able to control the distribution of the variables in our

samples.

These three specifications have 206, 208, and 208 degrees of freedoms, respectively, and

their population RMSEAs are .061, 0.067 and 0.072 respectively. By the widely-used cutoff

values for the population RMSEA, they all have some mild misspecifications. However, the

differences among these three true RMSEAs are minor. Presumably, the sample RMSEAs (or

other indices mentioned before) also will imply minor misspecification, and model uncertainty

will result if there is not a strong substantive preference for a particular parameterization.

Clearly, Specifications 2 and 3 are nested in Specification 1. We present the RMSEA12

values of each nested pair in Table B. Although three specifications in terms of RMSEA are

not very distinguishable, in terms of RMSEA12 one could choose between models using our

cutoff value .03 for model close match. Using that cutoff, the difference between Specification

1 vs. 2 can be considered as minor while the difference between Specification 1 vs. 3 is not
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ignorable. Although the Specification 1 will have a better fit due to more parameters, the

ignorable difference between Specifications 1 and 2 makes Specification 2 a good candidate

to replace Specification 1, while the nonignorable difference between Specification 1 and 3

would propose a rejection of Specification 3. Like Example 1, we first examine how our

proposed statistics would evaluate two nested pairs in terms of type I error when confronted

with a sample from this population. The simulation results regarding these statistics on the

two comparison pairs above are presented in Tables 4A-5C.

One surprising result in Tables 4A-5C is that, in contrast to Example 1, TML 12 comparing

two nested pairs now performs poorly under both normal and nonnormal conditions. One

possible reason may be a violation of the population drift assumption in this example. As

before, T1 and T2 perform poorly most of the time in all six tables. When the data is normal

or mildly nonnormal, T3, T4, T5 and T6 have similar rejection patterns that are close to the

target one, even when n = 150. However, when the data is severely nonnormal, T3 still

performs very well at all sample sizes while T4 overaccepts the null hypothesis exclusively.

The performance of T5 and T6 under the severe nonnormality is somewhere between those

of T3 and T4. They are better than T4 but have some general tendency to overaccept.

So far, we set a = RMSEA12 in all statistics for all specification pairs. Given that the

RMSEA12 values of two specification pairs in this example are different from our proposed

cutoff value .03, so in the next step we set a in all seven statistics to .03 for all specifi-

cation pairs and look at the acceptance or rejection performance of these statistics when

a 6= RMSEA12. Let TML 12,0.03, T1,0.03, T2,0.03, T3,0.03, T4,0.03, T5,0.03, and T6,0.03 denote the

corresponding test statistics when a is set to .03. Ideally, we expect the close match hypoth-

esis to be always accepted or rejected, i.e., hardly ever rejected or accepted, depending on if

the RMSEA12 value of the specification pair is less than or greater than .03. The rejection

rates of these statistics in the simulation are presented in Tables 6A-6C (Specification 1 vs.

2) and Tables 7A-7C (Specification 2 vs. 3).

The results, shown in Tables 6A-7C, basically match our expectation. Overall, all statis-

tics intend to accept Specification 1 vs. 2 completely, while rejecting Specification 1 vs. 3

completely as n increases. Compared to the other six statistics, TML 12,0.03 performs poorly
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for acceptance in Tables 6A-6C, while it does better for rejection in Tables 7A-7C. For Spec-

ification 1 vs. 2, T1,0.03 and T2,0.03 perform better than T3,0.03, T4,0.03, T5,0.03 and T6,0.03 in

general. But T3,0.03, T4,0.03, T5,0.03 and T6,0.03 have more power to reject than T1,0.03 and T2,0.03,

as expected when comparing Specification 1 vs. 3, although they reach rejection rates above

90% only in the normal condition with n = 1000.

7. Discussion

The close match approach and related statistics provides a new approach to model com-

parison. We believe that the methods provide an additional tool for evaluating a preferred

model which may be rejected by a traditional exact match based test. In addition to avoiding

limitations of the traditional exact match approach, they provide a new alternative in SEM

to such common model comparison methods as AIC, BIC, χ2/df ratio and the difference

between fit indices.

Our simulation results in two examples show that T3, T5 and T6 perform well in terms

of type I error rates across different data conditions when n is as large as 150. As to the

power to reject, the simulation results are consistent with Corollaries 3, 5 and 6, although

sometimes a large sample size is needed to achieve complete rejection (e.g., Tables 7A-7C).

Additional power analysis of the proposed test statistics can be conducted based on these

Corollaries. And obviously, cutoff values other than .03 may also be interesting to explore.

One important point we want to emphasize again is that RMSEA12 = 0, i.e., model

exact match, must be rejected in order to appropriately use T3, T5 and T6 for comparing

specification pairs. Since in practice one does not know exactly whether this requirement

is satisfied or not, it makes sense that in a specific study one should first conduct some

evaluation of the exact match hypothesisis. Of course there are many possible tests for

evaluating exact match, including the NTLR test, LM test or Wald test under normality,

or an asymptotically distribution free test such as the Satorra-Bentler scaled difference test

(Satorra, 2000; Satorra & Bentler, 2001) or generalized score or Wald tests (Satorra, 1989).

Thus we propose to use a sequential two-stage procedure for overall nested model comparison:

accept the restricted model if it satisfies an exact match test; or, accept the model if it is
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rejected by the exact match test but still satisfies one of the close match tests such as T3, T5

and T6.

One potential problem of the two-stage procedure above is its significance level during

overall nested model comparison. Notice that H0 : RMSEA12 ≤ a is a composite of HE
0

and H0 − HE
0 . Let TE denote some reliable exact match test statistic such as the Satorra-

Bentler scaled difference test, and let TC denote some reliable close match test statistic such

as T3,0.03, T5,0.03 and T6,0.03. Further, let A ≡ { TE > χ2
df12,α} and B ≡ { TC > λα} .

Then Pr[reject H0|H0]=Pr[A ∩ B|H0] ≤max{ Pr(A ∩ B|HE
0 ), Pr(A ∩ B|H0 − HE

0 )} ≤max{

Pr(A|HE
0 ), Pr(B|H0−HE

0 )} . Let αE and αC be the asymptotic significance levels of TE and

TC respectively, then Pr(A|HE
0 ) → αE and Pr(B|H0−HE

0 ) → αC . So the significance level of

the two-stage strategy is asymptotically bounded above by the maximum of the asymptotic

significance levels αE and αC .

The theory of Vuong (1989) is based on likelihood ratio principles. In Li and Bentler

(2006), we further demonstrate that tr(U1Γ) and tr(U2Γ), which are widely used in the

Satorra-Bentler procedure and our RMSEA test statistics, are special cases of a more gen-

eral term based on the likelihood ratio principle. Given this result and the generality of

the likelihood ratio, it seems that our close match test statistics, and hence the two-stage

procedure of nested model comparison, may be extendable to a wide variety of situations

where the likelihood ratio principle applies. Clearly, this would tremendously increase the

scope of application of the proposed methodology.
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Table A1. RMSEA12s by specification pairs in Example 1

Specification of Specification of unrestricted model

restricted model Specification 1 Specification 2 Specification 3

Specification 2 .0216 - -

Specification 3 .0312 .0224 -

Specification 4 .0408 .0343 .0258

Table A2. ˜RMSEA12s by specification pairs in Example 1

Specification of Specification of unrestricted model

restricted model Specification 1 Specification 2 Specification 3

Specification 2 .1990 - -

Specification 3 .2034 .2077 -

Specification 4 .2166 .2249 .2409

Table B. RMSEA12s by specification pairs in Example 2

Specification of Specification of the baseline model

the competing model Specification 1

Specification 2 .0279

Specification 3 .0377
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Table 1A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.051 0.061 0.051 0.061

T1 0.011 0.021 0.022 0.026

T2 0.012 0.021 0.022 0.028

T3 0.040(203) 0.045(23) 0.037(1) 0.045(0)

T4 0.041(203) 0.045(23) 0.037(1) 0.045(0)

T5 0.040(201) 0.044(22) 0.037(1) 0.045(0)

T6 0.038(204) 0.045(22) 0.037(1) 0.045(0)

Table 1B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.072 0.074 0.077 0.073

T1 0.011 0.016 0.017 0.021

T2 0.009 0.013 0.013 0.021

T3 0.042(220) 0.042(29) 0.037(5) 0.037(0)

T4 0.038(220) 0.037(29) 0.033(5) 0.035(0)

T5 0.040(202) 0.039(29) 0.034(3) 0.035(0)

T6 0.042(223) 0.041(31) 0.036(3) 0.036(0)

Table 1C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.125 0.112 0.124 0.115

T1 0.013 0.013 0.014 0.019

T2 0.008 0.008 0.011 0.013

T3 0.054(283) 0.036(77) 0.044(8) 0.043(0)

T4 0.038(283) 0.028(77) 0.036(8) 0.037(0)

T5 0.044(242) 0.033(59) 0.039(2) 0.038(0)

T6 0.051(299) 0.036(76) 0.041(6) 0.039(0)
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Table 2A. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.060 0.053 0.054 0.059

T1 0.013 0.015 0.021 0.029

T2 0.013 0.016 0.022 0.029

T3 0.045(135) 0.038(21) 0.040(1) 0.045(0)

T4 0.047(135) 0.037(21) 0.040(1) 0.045(0)

T5 0.046(134) 0.038(22) 0.040(1) 0.045(0)

T6 0.043(134) 0.038(22) 0.040(1) 0.045(0)

Table 2B. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.082 0.085 0.083 0.076

T1 0.008 0.018 0.026 0.029

T2 0.004 0.017 0.025 0.025

T3 0.050(170) 0.047(32) 0.052(4) 0.048(0)

T4 0.042(170) 0.043(32) 0.048(4) 0.045(0)

T5 0.047(165) 0.044(30) 0.051(4) 0.046(0)

T6 0.050(176) 0.047(31) 0.052(4) 0.048(0)

Table 2C. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.118 0.113 0.11 0.118

T1 0.012 0.012 0.015 0.026

T2 0.006 0.006 0.009 0.020

T3 0.053(271) 0.041(64) 0.037(13) 0.05(0)

T4 0.037(271) 0.030(64) 0.032(13) 0.043(0)

T5 0.045(231) 0.034(47) 0.035(6) 0.046(0)

T6 0.053(298) 0.040(58) 0.036(10) 0.048(0)
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Table 3A. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.053 0.056 0.054 0.046

T1 0.016 0.024 0.026 0.026

T2 0.017 0.025 0.026 0.026

T3 0.039(67) 0.043(2) 0.042(0) 0.036(0)

T4 0.039(67) 0.044(2) 0.041(0) 0.037(0)

T5 0.039(64) 0.043(2) 0.041(0) 0.036(0)

T6 0.039(66) 0.043(2) 0.041(0) 0.036(0)

Table 3B. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.07 0.079 0.073 0.075

T1 0.018 0.028 0.027 0.030

T2 0.015 0.021 0.021 0.028

T3 0.047(83) 0.056(3) 0.045(0) 0.048(0)

T4 0.040(83) 0.049(3) 0.043(0) 0.041(0)

T5 0.044(83) 0.051(3) 0.043(0) 0.041(0)

T6 0.046(88) 0.055(3) 0.045(0) 0.043(0)

Table 3C. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.119 0.122 0.111 0.117

T1 0.020 0.023 0.022 0.026

T2 0.013 0.013 0.013 0.021

T3 0.056(156) 0.056(17) 0.048(0) 0.048(0)

T4 0.039(156) 0.040(17) 0.036(0) 0.039(0)

T5 0.046(146) 0.050(12) 0.040(0) 0.042(0)

T6 0.054(173) 0.054(15) 0.044(0) 0.044(0)
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Table 4A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.062 0.069 0.067 0.073

T1 0.021 0.024 0.025 0.039

T2 0.021 0.024 0.026 0.037

T3 0.042(2) 0.044(0) 0.043(0) 0.054(0)

T4 0.039(2) 0.043(0) 0.041(0) 0.053(0)

T5 0.039(0) 0.044(0) 0.042(0) 0.053(0)

T6 0.041(0) 0.043(0) 0.042(0) 0.054(0)

Table 4B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.099 0.09 0.1 0.098

T1 0.025 0.022 0.036 0.036

T2 0.015 0.015 0.029 0.034

T3 0.052(3) 0.042(0) 0.054(0) 0.048(0)

T4 0.041(3) 0.032(0) 0.046(0) 0.044(0)

T5 0.047(2) 0.035(0) 0.047(0) 0.045(0)

T6 0.05(2) 0.037(0) 0.049(0) 0.045(0)

Table 4C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.146 0.162 0.142 0.149

T1 0.025 0.027 0.029 0.03

T2 0.01 0.013 0.017 0.022

T3 0.054(10) 0.053(0) 0.045(0) 0.045(0)

T4 0.031(10) 0.035(0) 0.032(0) 0.032(0)

T5 0.036(9) 0.041(0) 0.035(0) 0.034(0)

T6 0.042(15) 0.044(0) 0.036(0) 0.035(0)
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Table 5A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.066 0.074 0.069 0.065

T1 0.029 0.037 0.034 0.04

T2 0.028 0.037 0.034 0.04

T3 0.042(0) 0.05(0) 0.045(0) 0.048(0)

T4 0.04(0) 0.049(0) 0.045(0) 0.048(0)

T5 0.04(0) 0.049(0) 0.045(0) 0.048(0)

T6 0.041(0) 0.049(0) 0.045(0) 0.048(0)

Table 5B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.095 0.09 0.092 0.101

T1 0.034 0.029 0.033 0.036

T2 0.025 0.022 0.026 0.029

T3 0.052(0) 0.046(0) 0.044(0) 0.048(0)

T4 0.042(0) 0.035(0) 0.038(0) 0.041(0)

T5 0.045(0) 0.038(0) 0.039(0) 0.041(0)

T6 0.047(0) 0.04(0) 0.04(0) 0.042(0)

Table 5C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.14 0.148 0.133 0.153

T1 0.028 0.037 0.034 0.035

T2 0.013 0.021 0.018 0.022

T3 0.052(0) 0.058(0) 0.047(0) 0.046(0)

T4 0.026(0) 0.033(0) 0.035(0) 0.034(0)

T5 0.033(0) 0.04(0) 0.036(0) 0.037(0)

T6 0.038(0) 0.044(0) 0.036(0) 0.037(0)
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Table 6A. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.029 0.018 0.013 0.011

T1,0.03 0.009 0.007 0.005 0.003

T2,0.03 0.009 0.007 0.005 0.003

T3,0.03 0.018(2) 0.014(0) 0.009(0) 0.003(0)

T4,0.03 0.019(2) 0.014(0) 0.009(0) 0.003(0)

T5,0.03 0.018(0) 0.014(0) 0.009(0) 0.003(0)

T6,0.03 0.018(0) 0.014(0) 0.009(0) 0.003(0)

Table 6B. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.059 0.041 0.038 0.025

T1,0.03 0.011 0.009 0.01 0.004

T2,0.03 0.007 0.005 0.008 0.004

T3,0.03 0.027(3) 0.015(0) 0.015(0) 0.009(0)

T4,0.03 0.016(3) 0.009(0) 0.013(0) 0.005(0)

T5,0.03 0.02(2) 0.01(0) 0.015(0) 0.006(0)

T6,0.03 0.023(2) 0.011(0) 0.015(0) 0.006(0)

Table 6C. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.095 0.096 0.058 0.045

T1,0.03 0.014 0.015 0.007 0.006

T2,0.03 0.005 0.005 0.004 0.004

T3,0.03 0.031(10) 0.024(0) 0.013(0) 0.011(0)

T4,0.03 0.017(10) 0.014(0) 0.007(0) 0.007(0)

T5,0.03 0.02(9) 0.017(0) 0.007(0) 0.007(0)

T6,0.03 0.025(15) 0.018(0) 0.009(0) 0.007(0)
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Table 7A. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.382 0.58 0.77 0.95

T1,0.03 0.21 0.429 0.633 0.904

T2,0.03 0.208 0.424 0.629 0.903

T3,0.03 0.294(0) 0.5(0) 0.697(0) 0.926(0)

T4,0.03 0.291(0) 0.495(0) 0.69(0) 0.924(0)

T5,0.03 0.292(0) 0.496(0) 0.69(0) 0.924(0)

T6,0.03 0.293(0) 0.497(0) 0.692(0) 0.924(0)

Table 7B. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.422 0.577 0.735 0.927

T1,0.03 0.194 0.351 0.559 0.841

T2,0.03 0.159 0.319 0.534 0.837

T3,0.03 0.29(0) 0.44(0) 0.623(0) 0.867(0)

T4,0.03 0.258(0) 0.412(0) 0.601(0) 0.861(0)

T5,0.03 0.269(0) 0.421(0) 0.604(0) 0.863(0)

T6,0.03 0.28(0) 0.428(0) 0.611(0) 0.863(0)

Table 7C. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.425 0.565 0.702 0.885

T1,0.03 0.157 0.275 0.413 0.691

T2,0.03 0.091 0.202 0.353 0.661

T3,0.03 0.249(0) 0.359(0) 0.505(0) 0.739(0)

T4,0.03 0.182(0) 0.305(0) 0.451(0) 0.712(0)

T5,0.03 0.207(0) 0.32(0) 0.469(0) 0.718(0)

T6,0.03 0.223(0) 0.327(0) 0.477(0) 0.721(0)
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