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Abstract 

This report describes the interface synthesis methodology at behavioral RTL, based on handshaking protocol using the the 
SpecC system level design language, which has been developed at CAD Lab., UC Irvine. We use the parity encoder with two 
communicating behaviors as example. To synchronize two communicating behaviors, we show the methodology to generate 
the handshaking protocol and transducer. 
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Interface Synthesis at Behavioral RTL 

Dongwan Shin, Pei Zhang and Daniel Gajski 
Center for Embedded Computer System 

Information and Computer Science 
University of California, Irvine 

Abstract 

This report describes the interface synthesis methodol­
ogy at behavioral RTL, based on handshaking protocol us­
ing the the Spece system level design language, which has 
been developed at CAD Lab., UC Irvine. We use the par­
ity encoder with two communicating behaviors as exam­
ple. To synchronize two communicating behaviors, we show 
the methodology to generate the handshaking protocol and 
transducer. 

1. Introduction 

The Spece methodology[GZD+oo] uses Spece system­
level design language to implement a system from the 
specification model to manufacturing-ready implementa­
tion model. 

The Spece methodology has 4 levels of abstraction: 
specification, architecture, communication, and implemen­
tation model. The specification model is a pure behav­
ioral description, in which communication between the be­
havioral blocks are implemented by using global variables 
rather than channels since up to now no concurrency and 
synchronization characteristic is specified. 

The architecture model is an refined model from the 
specification model by partitioning the hardware and soft­
ware. The concurrency and synchronization relationships 
are explicitly described by substituting the global variables 
with the channels, which will finally be encapsulated into 
global busses. The communication between the software 
blocks running on the same processor is still implemented 
by using the global variables. 

The communication model is the same as the architec­
ture model in that the blocks are mapped to the same com­
ponents. However, the protocol descriptions for the inter­
block communication is refined into the timing-accurate 
description. The timing-accurate model can be described 
without knowing the internal structure of the hardware if 
the I/O protocols between these communicating blocks are 
clearly defined. But if the protocol is not explicitly given for 

Start lnport 

~--- -- -------------------------, I .--"---__.___....., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

is tart 

idata 

idone 

iocount 

One's 
Counter 

I'---~~....., 
L__ --- -------------------------! 

DoneOutport 

Figure 1. Parity encoder with two communicating be­
haviors 

a block, the RTL description must be analyzed to generate 
the corresponding I/O protocol. If protocols for the com­
municating blocks are not compatible, transducer has to be 
inserted to synchronize them. 

Finally, the hardware blocks are refined into cycle­
accurate description, which is the lowest level of abstrac­
tion in the Spece methodology. The implemenation model 
has two views: a behavioral RTL view and a structural 
RTL view. The behaviroal RTL specifies the operations 
performed in each clock cycle with explicitly modelling 
the units in the component's datapath and is obtained by 
scheduling the operations in the e code into clock cycles. 
However, due to the interdependence of scheduling, alloca­
tion, and binding, behavioral RTL requires all three steps to 
be preformed, and should be refined into the structural RTL. 
Therefore, the structural RTL view of the implemenation 
model explicity models the allocation of RTL components, 
the scheduling of register transfers into clock cycles, and the 
binding of operations, variables and assignments to func­
tional units, register/memoryies and components busses. 

In this report, we mainly focus on synthesizing the com­
munication model into implementation model(behavioral 
RTL view) of parity encoder, which is written at 2 differ­
ent levels of abstraction in the Spece methodology. The 
rest of the report is organized as follows: section 2 shows 
the parity encoder algorithm at 2 levels of abstraction. Sec-
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Figure 2. Parity encoder with two communicating be­
haviors at behavioral RTL 

tion 3 describes transducer synthesis methodology for two 
communicating behaviors with different clocks for the par­
ity encoder. We conclude the report in section 4. 

2. Synthesis for Parity Encoder 

Parity encoder is utilized as error detection/correction 
coding in data communication community. We select it to 
find the problems which occur in refining from communica­
tion model with communicating behaviors into implemen­
tation model. The operation of parity encoder is shown 
in Fig. 1. The parity encoder is activated by start 
signal, and gets data as input, and generates done signal 
and even parity output. The parity encoder is composed 
of two behaviors: one's counter and even parity checker. 
The first computes the number of one for data, and the last 
generates even parity bit by examining the output of one's 
counter. These two behaviors communicate through signals 
such as istart, idone, idata, and iocount. The 
one's counter is actived when is tart signal is asserted to 
high and idone is asserted to high when the number of 
one's is calculated. Appendix A.l represents the communi­
cation model for the parity encoder. 

2.1. Parity encoder with single clock 

Assuming that the delay of all data processing operations 
is one clock cycle and ALU and shifter unit are only used 
as datapath unit, the parity encoder is designed into behav­
ioral RTL model in FSMD represenation. Fig. 2 shows the 
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Figure 3. Timing diagram with two communicating 
behaviors 

behavioral RTL description for parity encoder with one's 
counter which is sub-FSMD of parity encoder. The even 
parity checker has 5 states and one's counter 8 states. In 
Fig. 2, dotted line represents that the one's counter is the 
sub FSMD of parity checker in state S2. Because the one's 
counter has internal loop between S4 and S6, the latency 
of the parity encoder is not known before its execution. 
We know just the maximum/minimum latency of the par­
ity encoder. Fig.3 shows the timing diagram between parity 
checker and one's counter. In our implementation, the pe­
riod of clock for even parity checker is selected 6ns and 
one's counter, 4ns. The behavioral RTL Spece codes for 
parity encoder is shown in Appendix A.2. 

2.2. Parity encoder with internal different clocks 

In our implementation, handshaking protocol is utilized 
to implement the parity encoder. Generally handshaking 
protocol solved the synchronization problem for commu­
nicating behaviors with different clocks. The implemena­
tion which is shown in section 2.1 is working when the 
clock period of parity checker is larger than that of one's 
counter. But one's counter goes to state SO because is­
tart of one's counter is 1 after state S7 while even parity 
checker waits that idone becomes 1, and then it results in 
generating incorrect output. This synchronization problem 
can be fixed by moving ocount = iocount in state S3 
into state S2 of parity checker and merging state S3 and 
states 4. Fig. 4 shows the FSMD model for the parity en­
coder with different clocks. The timing diagram with com­
municating behaviors with two different clocks is shown in 
Fig. 5 and the modified code of parity checker is shown in 
Appendix A.3 
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2.3. Parity encoder with acknowledge signals 

As mentioned so far, the communication protocol be­
tween parity checker and one's counter don't have ac­
knowledge signal ack, and the istart signal and idata 
should be maintained through execution of one's counter. 
If the protocol has acknowledge signals, iack_start for 
istart and iack_done for idone, the istart and 
idata don't need to be maintained during the execution of 
one's counter any longer. Fig. 6 shows the modified FSMD 
for parity encoder with acknowledge signals. Timing dia­
gram is shown in Fig. 7 

3. Transducer design for parity encoder 

The functionality of transducer includes: 1) repacket the 
data to the type which can be recognized by the other com­
municating block; 2) adjust the data arrival and leaving time 
such that data is safely transferred. Because implemenation 
of parity encoder doesn't have application layer communi­
cation protocols such as slicing, we don't need to consider 
repacketing the data into the other communicating block. 
Now we consider just adjusting the data synchronization. 
Fig. 8 represents the parity encoder which is composed of 
even parity checker and one's counter, communicating with 
different clock period. The even parity checker is operated 
by cl kl and one's counter clk2. The clock of transducer 
is selected between minimum of clkl and clk2, and 3rd 
clock(greatest common divisor of the clock periods). The 
selection of clock period of transducer is important. If clock 
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Figure 5. timing diagram with two communicating 
behaviors with different clocks 

period is larger than those of two behavior, overall latency 
of parity encoder will increase. Otherwise, latency is will 
decrease but design may have the timing violation problem 
due to clock skew. In our irnplemenation, the clock of trans­
ducer is selected to minimum of t.hat of parity checker and 
one's counter. 

3.1. Transducer synthesis methodology 

A protocol specification is typically composed of 5 
atomic operations( data read/write, control wait/assign, time 
delay)[NG95]: 

1. waiting for an event on an input control line 

2. assigning a value to an output control line 

3. reading a value from input data line 

4. assigning a value from output data line, and 

5. waiting for a fixed time interval 

Becasuse time delay operation is not implemented by hard­
ware synthesis tool and all operations are synchronized by 
event, we don't need to consider time delay operation any 
longer. 

The first step in interface synthesis is to represent each 
of the two communicating protocols as ordered set of rela­
tions, which is a set of assignments to output control and 
data lines and the reading of a value from input data lines, 
upon the occurrence of a certain condition. The condition 
could be an event on an input control line or fixed delay with 
respect to some previous event. The protocol of even par­
ity checker and one's counter should be extracted from their 



Atomic Spece Dual operation 
operation equivalent in transducer 

waiting for event signal. waitval( 1) signal.assign( 1) 
assign control line signal.assign( 1) signal. waitval( 1) 

read data line var= data data= temp_ var 
assign data line data= var temp_ var= data 

fixed delay waitfor(lO) waitfor(lO) 

Table 1. Dual of atomic protocol operations 

behavioral description as ordered set of relations, which is 
shown in Fig. 9(a). Having derived the set of relations for 
the two protocols, we now need to group the relations in 
the two protocols into a set of relation groups, which are 
ordered subset of the set of relations that represents a unit 
of data transfer between the two processes. The relation 
groups are created in such a manner that the size of the data 
generated by the relations in the group from one protocol 
is identical to that expected by the relations in the group 
from the other protocol. Fig. 9 shows the partitioning the 
relations of parity encoder. 

Having combined the relations into a set of relations 
groups, we now generate the interface process to make the 
two protocols compatible. The set of operations in the rela­
tion groups taken in order represents the sequence of atomic 
operations across the two protocols. The interface process 
can be obtained by simply replacing them with their exact 
dual or complementary operations which are shown in Ta­
ble 1. Fig. 10 shows the transducer behavior with dual of 
operations in parity encoder. Two lines of codes in circle 
will be omitted because is tart. wai tval ( 0) is fol­
lowed by is tart. wai tval ( 1) and the parity checker 
doesn't wait for istart to be low. The transducer has 
FSMD with the 4 states which is shown in Fig. 11 and the 
datapath for transducer is shown in Fig. 12. The timing di­
agram for Transducer implementation is shown in Fig. 13. 
The detail codes is shown in Appendix A.5. 
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parity checker 
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4. Conclusion 

In this report, we refined communication model into be­
havioral RTL model in Spece design methodology. The 
communication model and behavioral RTL model of the 
parity encoder was written in Spece language. To synchro­
nize two communicating behaviors with different clocks, 
the transducer and the handshaking protocol were imple­
mented in well-defined steps. But we know through this 
work that behavioral RTL with same protocol doesn't need 
transducer as though it has internal different clocks. 
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A. Spece codes for parity encoder 

A.1. Parity encoder: communicaton model 

A.1.1 Parity encoder: parity.sc 

import "ones"; 
import " even" ; 

5 behavior parity(in bit[31:0] Inport, out bit[31:0] Outport, iISignal Start, 
iOSignal Done) 

{ 

10 

bit[31:0] data, ocount; 
cSignal cstart, cdone ; 

even UOO(Inport, Outport, Start, Done, data, ocount, cstart, cdone); 
ones UOl(data, ocount, cstart, cdone); 

void main (void) 
15 { 

20 

par 

} 

} i 

UO 0 . main ( ) ; 
UOl .main (); 

A.1.2 Even parity checker: even.Sc 

import "bus " ; 

behavior even(in bit[31:0] Inport, out bit[31:0] Outport, iISignal Start, 
iOSignal Done, out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, 
iISignal idone) 

void main(void) 
bit[31:0] ocount; 

10 bit[31:0] mask= OxOOOl; 

15 

20 

25 

while (1) 
printf("even:uSO\n"); 
Done.assign(O); 
Outport = -1; 
Start.waitval(l); 

istart.assign(l); 
idata = Inport; II inlined master bus write 
waitfor(l); 
istart.assign(O); 

printf("even:uSl\n"); 
idone.waitval(l); II inlined master bus read 
ocount = iocount; II wait for result of one's counter 
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30 

} 

} ; 

printf("even:~S2\n"); 

Outport = ocount & mask; II even parity checker 
Done.assign(l); 
waitfor(l); II synchronization for testbench 

A.1.3 One's counter: ones.sc 

import "bus " ; 

behavior ones(in bit[31:0] inport, out bit[31:0] outport, iISignal start, 
iOSignal done) 

{ 

void main(void) { 
bit[31:0] data; 
bit[31:0] ocount; 

10 bit[31:0] mask; 
bit[31:0] temp; 

15 

20 

25 

30 

10 

while (1) 
printf("ones:~SO\n"); 

start.waitval(l); II slave bus read 
data = inport; 

ocount = O; 
mask = 1; 

while (data != 0) { 
temp = data & mask; 
ocount = ocount + temp; 
data = data >> 1; 

II slave bus write done.assign(l); 
outport = ocount; 
waitfor(l); 
done.assign(O); 
printf("ones:~Sl\n"); 

} 

} i 

A.1.4 Testbench: tb.sc 

import 11 io"; 
import "ones"; 
import 11 pari ty"; 

behavior Main 

bit[31:0] inport, outport; 
cSignal start, done; 

IO io(inport, outport, start, done); 

8 



15 

20 

10 

15 

20 

parity UOO(inport, outport, start, done); 

} ; 

int main (void) 

par 

} 

io.main(); 
UDO .main (); 

return O; 

A.1.5 Input/Output for testbench: io.sc 

import 11 bus " ; 

II get interger from stdin 
behavior IO(out bit[31:0] inport, in bit[31:0] outport, iOSignal start, 

iISignal done) 
{ 

} ; 

void main(void) 
char buf [ 16 ] ; 

while (1) { 
start.assign(O); //maintain start signal low 
print f ( 11 Inpu t'-'f or '-'parity '-'checker: '-' 11 

) ; 

gets (buf); 
inport = atoi(buf); 

done.waitval(O); 
start.assign(l); 

done.waitval(l); 

II start parity checker 

printf ( 11 parity'-'checker'-'output'-'='-'%d\n 11
, (int) outport); 

A.1.6 Bus: bus.sc 
//Signal channel for representation of control signal 
interface iOSignal 
{ 

void assign ( int v ) 
} ; 

interface iISignal 

int val () ; 
10 void wai tval ( int v ) 

} ; 

channel cSignal() 
implements iISignal, iOSignal 

15 

int value=O; 
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20 

25 

event ev; 

void assign 
{ 

int v ) 

value = v 
notify { ev 

II assign a value 

int val {) II return a value 

return value ; 
} 

30 void waitval { int v ) / / wait for a value 
{ 

} 

while { value != v 
wait { ev ) ; 

35 } i 

//master bus channle 
interface iMasterBus 
{ 

~ bit[31:0] read{); 
void write{bit[31:0] data); 

} i 

II master bus side of protocol 
45 channel cMasterBus{iOSignal start, iISignal done, out bit[31:0] wdata, 

in bit[31:0] rdata) implements iMasterBus 

50 

55 

60 

} i 

bit [ 31 : 0 ] read { ) { 
int data; 
done.waitval{l); 
data = rdata; 
return data; 

} 

II wait for done signal 
II sample data bus 

void write{bit[31:0] data) { 
start.assign{l); II assert start signal 
wdata =data; //write to data bus 
waitfor{l); 
start.assign{O); II deassert start signal 

} 

//slave bus channel 
65 interface iSlaveBus 

bit[31:0] receive{); 
void send{bit[31:0] data); 

} i 
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//slave bus side of protocol 
channel cSlaveBus(iISignal start, iOSignal done, out bit[31:0] wdata, 

in bit[31:0] rdata) implements iSlaveBus 
{ 

~ bit [31:0] receive() { 
int data; 
start.waitval(l); 
data = rdata; 
return data; 

II wait for start signal 
II sample data bus 

80 } 

void send(bit[31:0] data) { 
done.assign(l); //assert done signal 
wdata =data; //write to data bus 

s5 waitfor(l); 
done.assign(O); II deassert done signal 

} ; 

90 #endif 

A.2. Parity encoder with single clock: RTL model 

A.2.1 Parity encoder: parity.sc 

import "ones 11 
; 

import 11 even 11 
; 

5 behavior parity(in event clkl, in event clk2, in bit[O:O] rst, 

10 

in.bit[31:0] Inport, out bit[31:0] Outport, iISignal Start, iOSignal Done) 

bit[31:0] data, ocount; 
cSignal cstart, cdone ; 

even UOO(clkl, rst, Inport, Outport, Start, Done, data, ocount, cstart, cdone); 
ones U01(clk2, rst, data, ocount, cstart, cdone); 

void main (void) 
15 { 

20 } 

} ; 

par 

} 

UDO.main(); 
U01.main(); 

A.2.2 Even parity checker: even.sc 

import "bus 11 
; 

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport, 
out bit[31:0] Outport, iISignal Start, iOSignal Done, 
out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone) 

11 



void main(void) { 
bit[31:0] ocount; 

lo bit [ 31 : 0] mask; 

15 

20 

25 

30 

35 

40 

45 

50 

enum state { SO, Sl, S2, S3, S4} state; 

state = SO; 

while (1) { 
wait (elk); 
if (rst == lb) { 

state = SO; 
Outport = -1; 

switch (state) { 
case SO: 

Outport = -1; 
Done.assign(O); 
if (Start. val () 

state Sl; 
else 

state SO; 
break; 

case Sl: 
mask = OxOOOl; 
state = S2; 
break; 

case S2: 
idata = Inport; 
istart.assign(l); 

1) 

if (idone.val() 1) II wait for result of one's counter 
state S3; 

else 
state 

break; 
case S3: 

S2; 

ocount = iocount; 
istart.assign(O); 
state = S3; 
break; 

case S3: 
Outport = ocount & mask; 
Done.assign(l); 
state = SO; 
break; 

II even parity checker 

55 } ; 

A.2.3 One's counter: ones.sc 

import 11 bus 11 
; 

behavior ones(in event elk, in bit [O:OJ rst, in bit[31:0] inport, 

12 



out bit[31:0] outport, iISignal start, iOSignal done) 

void main(void) { 
bit[3l:OJ data; 
bit[31:0] ocount; 

10 bit [ 31 : 0 J mask; 
bit[3l:OJ temp; 

15 

20 

25 

30 

35 

40 

45 

50 

55 

enum state { SO, Sl, S2, S3, S4, S5, S6, S7 } state; 

state = SO; 

while (1) { 

wait (elk); 
if (rst == lb) { 

outport = OxOOOO; 
state = SO; 

switch (state) { 
case SO : 

done.assign(O); 
outport = -1; 
if (start.val() 1) 

state Sl; 
else 

state 
break; 

case Sl: 

SO; 

data = inport; 
state = S2; 
break; 

case S2: 
ocount = O; 
state = S3; 
break; 

case S3: 
mask = 1; 
state = S4; 
break; 

case S4: 
temp = data & mask; 
state = S5; 
break; 

case S5: 
ocount = ocount + temp; 
state = S6; 
break; 

case S6: 
data = data >> 1; 
if (data == 0) 

state 
else 

S7; 

state S4; 

13 
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65 

break; 
case S7: 

} ; 

A.2.4 Testbench: tb.sc 

import 11 io 11
; 

import 11 clock_gen 11 
; 

import "ones 11 
; 

outport = ocount; 
done.assign(l); 
state = SO; 
break; 

5 import "parity"; 

behavior Main 

bit[31:0] inport, outport; 
w bit[O:OJ rst; 

15 

20 

25 

30 

} i 

event clkl, clk2; 
int clkl_period = 6; 
int clk2_period = 4; 
cSignal start, done; 

IO io(clkl, rst, inport, outport, start, done); 
clock_gen clk_genOl(clkl, clkl_period); 
clock_gen clk_gen02(clk2, clk2_period); 
parity UOO(clkl, clk2, rst, inport, outport, start, done); 

int main (void) 

par 
io.main(); 
clk_gen01.main(); 
clk_gen02.main(); 
UOO .main (); 

return 0; 

A.2.5 Input/Output for testbench: io.sc 

import 11 bus 11
; 

II ilo for testbench 
5 behavior IO(in event elk, out bit[O:OJ rst, out bit[31:0] inport, 

out bit[31:0] outport, iOSignal start, iISignal done) 

10 

void main(void) { 
char buf [16]; 
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rst =lb; //reset all storage elements in design during 2 clock cycles 
start.assign(O); II maintain start signal low during 2 clock cycle 
wait(clk); 
wait(clk); 

rst = Ob; II deassign reset 

while (1) 
wait(clk); 

} 

printf ( 11 Input'-'for'-'one's'-'counter:'-' 11
); 

gets (buf); 
inport = atoi(buf); 

start.assign(l); 
wait(clk); 

II now, design calculates num. of one in inport 

done.waitval(l); 
printf( 11 output'-'='-'%d\n 11

, (int)outport); 

wait(clk); 
start.assign(O); 
wait(clk); 
wait(clk); 

35 } 

JO 

} i 

A.2.6 Clock generation: clock_gen.sc 

import "bus " ; 

behavior clock_gen(out event elk, in int hw_clk_period) 
{ 

} i 

void main(void) { 
while (1) { 

waitfor(hw_clk_period); 
printf ( 11 \nclock'-'event (period:'-' %d) ! ! ! \n" , hw_clk_period) ; 
notify(clk); 

A.2.7 Bus: bus.sc 
//Signal channel for representation of control signal 
interface iOSignal 
{ 

void assign ( int v ) 
} i 

interface iISignal 

int val () ; 
10 void wai tval ( int v ) 

} i 

15 
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channel cSignal() 
implements iISignal, iOSignal 

int value=O; 
event ev; 

void assign 
{ 

int v ) 

value = v 
notify ( ev 

II assign a value 

int val() II return a value 

return value ; 

30 void wai tval ( int v ) I I wait for a value 

} 

while ( value != v 
wait ( ev ) ; 

35 } ; 

//master bus channle 
interface iMasterBus 
{ 

~ bit[31:0] read(); 
void write(bit[31:0] data); 

} ; 

II master bus side of protocol 
45 channel cMasterBus(iOSignal start, iISignal done, out bit[31:0] wdata, 

in bit[31:0] rdata) implements iMasterBus 
{ 

50 

55 

60 

} ; 

bit [ 31 : 0 J read ( ) { 
int data; 
done.waitval(l); 
data = rdata; 
return data; 

} 

II wait for done signal 
II sample data bus 

void write(bit[31:0] data) 
start.assign(l); //assert start signal 
wdata =data; II write to data bus 
waitfor(l); 
start.assign(O); II deassert start signal 

//slave bus channel 
65 interface iSlaveBus 
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{ 

bit[31:0] receive(); 
void send(bit[31:0] data); 

} ; 

//slave bus side of protocol 
channel cSlaveBus(iISignal start, iOSignal done, out bit[31:0] wdata, 

in bit[31:0] rdata) implements iSlaveBus 
{ 

~ bit [31:0] receive() { 

80 } 

int data; 
start.waitval(l); 
data = rdata; 
return data; 

II wait for start signal 
II sample data bus 

void send(bit[31:0] data) { 
done.assign(l); //assert done signal 
wdata =data; //write to data bus 

85 wait for ( 1) ; 
done.assign(O); II deassert done signal 

} ; 

90 #endif 

A.3. Parity encoder with two different clocks: RTL model 

A.3.1 Even parity checker: even.sc 

import 11 bus 11 
; 

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport, 
out bit[31:0] Outport, iISignal Start, iOSignal Done, 

{ 

out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone) 

void main(void) { 
bit[31:0] ocount; 

10 bit[31:0] mask; 

15 

20 

25 

enum state { SO, Sl, S2, S3 } state; 

state = SO; 

while (1) { 
wait (elk); 
if (rst == lb) { 

state = SO; 
Outport = -1; 

} 

switch (state) { 
case SO: 

Outport = -1; 
Done.assign(O); 
if (Start. val () 1) 

17 
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50' } 

} ; 

state Sl; 
else 

state SO; 
break; 

case Sl: 
mask = OxOOOl; 
state = S2; 
break; 

case S2: 
idata = Inport; 
istart.assign(l); 
ocount = iocount; 
if (idone.val() 1) 

state S3; 
else 

state S2; 
break; 

case S3: 
istart.assign(O); 
Outport = ocount & mask; 
Done.assign(l); 
state = SO; 
break; 

A.4. Parity encoder with acknowledge signals 

A.4.1 Even parity checker: even.sc 

import "bus " ; 

II even parity checker 

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport, 
out bit[31:0] Outport, iISignal Start, iOSignal Done, 
out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone, 
iISignal iack_start, iOSignal iack_done) 

void main(void) { 
w bit[31:0] ocount; 

bit[31:0] mask; 

15 

20 

enum state { SO, Sl, S2, S3, S4 } state; 

state = SO; 

while (1) { 
wait (elk); 
if (rst == lb) { 

state = SO; 
Outport = -1; 

} 

switch (state) 
case SO: 
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65 

} 

} ; 

printf ( "even:'-'SO\n"); 
Outport = -1; 
Done.assign(O); 
iack_done.assign(O); 
if (Start.val() == 1) 

state Sl; 
else 

state SO; 
break; 

case Sl: 
printf( 11 even:'-'Sl\n 11

); 

mask = OxOOOl; 
state = S2; 
break; 

case S2: 
printf("even:'-'S2\n"); 
idata = Inport; 
istart.assign(l); 
if (iack_start.val() 

state S3; 
else 

state 
break; 

S2; 

case S3: 
printf("even:'-'S3\n"); 
istart.assign(O); 
ocount = iocount; 
if (idone.val() 1) 

state S4; 
else 

state S3; 
break; 

case S4: 
printf("even:'-'S4\n"); 
iack_done.assign(l); 
Outport = ocount & mask; 
Done.assign(l); 
state = SO; 
break; 

A.4.2 One's counter: ones.sc 

import "bus 11
; 

1) 

II even parity checker 

behavior ones(in event elk, in bit [0:0] rst, in bit[31:0] inport, 
out bit[31:0] outport, iISignal start, iOSignal done) 

void main(void) { 
bit[31:0] data; 
bit[31:0] ocount; 
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bit[31:0] mask; 
bit[31:0] temp; 

enum state { SO, Sl, 82, S3, S4, SS, S6, S7 } state; 

state = SO; 

while (1) { 
wait (elk); 
if (rst == lb) { 

outport = OxOOOO; 
state = SO; 

switch (state) { 
case SO : 

done.assign(O); 
outport = -1; 
if (start.val() 1) 

state Sl; 
else 

state 
break; 

case Sl: 

SO; 

data = inport; 
state = S2; 
break; 

case S2: 
ocount = O; 
state = S3; 
break; 

case 83: 
mask = l; 
state = S4; 
break; 

case S4: 
temp = data & mask; 
state = SS; 
break; 

case SS: 
ocount = ocount + temp; 
state = S6; 
break; 

case S6: 
data = data >> l; 
if (data == 0) 

state S7; 
else 

state S4; 
break; 

case S7: 
outport = ocount; 
done.assign(l); 
state = SO; 
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break; 

} ; 

A.5. Parity encoder with transducer: RTL model 

A.5.1 Transducer: txducer.sc 

import "bus " ; 

behavior txducer(in event elk, in bit[31:0] data_f, out bit[31:0] data_t, 
in bit[31:0] ocount_f, out bit[31:0] ocount_t, iISignal istart_f, iOSignal istart_t, 
iISignal idone_f, iOSignal idone_t) 

void main(void) { 
enum state { SO, Sl, S2, S3 } state; 

state = SO; 
while (1) { 

wait(clk); 
switch (state) 

case SO: 
if (idone_f .val() 

state Sl; 
else 

state SO; 
break; 

case Sl: 
idone_t.assign(O); 
if (istart_f.val() 

state S2; 
else 

state Sl; 
break; 

case S2: 
data_t = data_f; 
istart_t.assign(l); 
ocount_t = ocount_f; 

0) 

1) 

if (idone_f .val() 1) 
state S3; 

else 
state S2; 

break; 
case S3: 

istart_t.assign(O); 
idone_t.assign(l); 
if (istart_f.val() 

state SO; 
else 

state S3; 
break; 

0) 
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} ; 
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