
UC Irvine
ICS Technical Reports

Title
Interface synthesis at behavioral RTL

Permalink
https://escholarship.org/uc/item/7z59398k

Authors
Shin, Dongwan
Zhang, Pei
Gajski, Daniel

Publication Date
2001-02-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z59398k
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by copyright Law
(Title 17 U.S .)

Dongwan Shin, Pei Zhang and Daniel Gajski

Technical Report ICS-01-07
February 15, 2001

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{ dongwans, pzhang, gajski}@ics.uci.edu

Interface Synthesis at Behavioral RTL

Dongwan Shin, Pei Zhang and Daniel Gajski

Technical Report ICS-01-07
February 15, 2001

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{ dongwans, pzhang, gajski}@ics.uci.edu

Abstract

This report describes the interface synthesis methodology at behavioral RTL, based on handshaking protocol using the the
SpecC system level design language, which has been developed at CAD Lab., UC Irvine. We use the parity encoder with two
communicating behaviors as example. To synchronize two communicating behaviors, we show the methodology to generate
the handshaking protocol and transducer.

2

Contents

1. Introduction

2. Synthesis for Parity Encoder
2.1. Parity encoder with single clock
2.2. Parity encoder with internal different clocks .
2.3. Parity encoder with acknowledge signals

3. Transducer design for parity encoder
3.1. Transducer synthesis methodology.

4. Conclusion

5. Acknowledgement

A Spece codes for parity encoder
A.1 Parity encoder: communicaton model

A.1.1 Parity encoder: parity.sc . .
A.1.2 Even parity checker: even.sc
A.1.3 One's counter: ones.sc . . .
A.1.4 Testbench: tb.sc
A.1.5 Input/Output for testbench: io.sc .
A.1.6 Bus: bus.sc

A.2 Parity encoder with single clock: RTL model
A.2.1 Parity encoder: parity.sc . .
A.2.2 Even parity checker: even.sc
A.2.3 One's counter: ones.sc . . .
A.2.4 Testbench: tb.sc
A.2.5 Input/Output for testbench: io.sc
A.2.6 Clock generation: clock_gen.sc .
A.2.7 Bus: bus.sc

A.3. Parity encoder with two different clocks: RTL model
A.3.1 Even parity checker: even.sc ..

A.4. Parity encoder with acknowledge signals
A.4.1 Even parity checker: even.sc . .
A.4.2 One's counter: ones.sc

A.5 Parity encoder with transducer: RTL model
A.5 .1 Transducer: txducer.sc

1

2
2
2
3

3
3

6

6

7
7
7
7
8
8
9
9

11
11
11
12
14
14
15
15
17
17
18
18
19
21
21

List of Figures

1 Parity encoder with two communicating behaviors
2 Parity encoder with two communicating behaviors at behavioral RTL .
3 Timing diagram with two communicating behaviors
4 FSMD diagram with two communicating behaviors with different clocks .
5 timing diagram with two communicating behaviors with different clocks .
6 FSMD diagram with acknowledge signals
7 Timing diagram with acknowledge signals
8 Parity encoder with transducer by different clock period
9 (a) two protocal in Spece language (b) parititiong the relations of parity encoder
10 transducer behavior with dual of operations in parity encoder
11 transducer in FSMD
12 Datapath for transducer
13 Timing diagram for parity encoder with transducer

ii

1
2
2
3
3
4
4
4
5
5
5
5
5

Interface Synthesis at Behavioral RTL

Dongwan Shin, Pei Zhang and Daniel Gajski
Center for Embedded Computer System

Information and Computer Science
University of California, Irvine

Abstract

This report describes the interface synthesis methodol­
ogy at behavioral RTL, based on handshaking protocol us­
ing the the Spece system level design language, which has
been developed at CAD Lab., UC Irvine. We use the par­
ity encoder with two communicating behaviors as exam­
ple. To synchronize two communicating behaviors, we show
the methodology to generate the handshaking protocol and
transducer.

1. Introduction

The Spece methodology[GZD+oo] uses Spece system­
level design language to implement a system from the
specification model to manufacturing-ready implementa­
tion model.

The Spece methodology has 4 levels of abstraction:
specification, architecture, communication, and implemen­
tation model. The specification model is a pure behav­
ioral description, in which communication between the be­
havioral blocks are implemented by using global variables
rather than channels since up to now no concurrency and
synchronization characteristic is specified.

The architecture model is an refined model from the
specification model by partitioning the hardware and soft­
ware. The concurrency and synchronization relationships
are explicitly described by substituting the global variables
with the channels, which will finally be encapsulated into
global busses. The communication between the software
blocks running on the same processor is still implemented
by using the global variables.

The communication model is the same as the architec­
ture model in that the blocks are mapped to the same com­
ponents. However, the protocol descriptions for the inter­
block communication is refined into the timing-accurate
description. The timing-accurate model can be described
without knowing the internal structure of the hardware if
the I/O protocols between these communicating blocks are
clearly defined. But if the protocol is not explicitly given for

Start lnport

~--- -- -------------------------, I .--"---__.___.....,
I
I
I
I
I
I
I
I
I
I
I
I

is tart

idata

idone

iocount

One's
Counter

I'---~~.....,
L__ --- -------------------------!

DoneOutport

Figure 1. Parity encoder with two communicating be­
haviors

a block, the RTL description must be analyzed to generate
the corresponding I/O protocol. If protocols for the com­
municating blocks are not compatible, transducer has to be
inserted to synchronize them.

Finally, the hardware blocks are refined into cycle­
accurate description, which is the lowest level of abstrac­
tion in the Spece methodology. The implemenation model
has two views: a behavioral RTL view and a structural
RTL view. The behaviroal RTL specifies the operations
performed in each clock cycle with explicitly modelling
the units in the component's datapath and is obtained by
scheduling the operations in the e code into clock cycles.
However, due to the interdependence of scheduling, alloca­
tion, and binding, behavioral RTL requires all three steps to
be preformed, and should be refined into the structural RTL.
Therefore, the structural RTL view of the implemenation
model explicity models the allocation of RTL components,
the scheduling of register transfers into clock cycles, and the
binding of operations, variables and assignments to func­
tional units, register/memoryies and components busses.

In this report, we mainly focus on synthesizing the com­
munication model into implementation model(behavioral
RTL view) of parity encoder, which is written at 2 differ­
ent levels of abstraction in the Spece methodology. The
rest of the report is organized as follows: section 2 shows
the parity encoder algorithm at 2 levels of abstraction. Sec-

start=<> I
Dona=<>; Outport;-X I

--- SO istart=O

start=1

51 mask=1

I
I

ldata= lnport; I
lstart=1

idone=1 \

53
ocount=iocou~
lstart=O \

\
,___--i

54
Outport=ocount&ma~;
Dona=1 \

\

lstart=O

,oo .. ~,._,_, I
lstart=1

data=idata

Figure 2. Parity encoder with two communicating be­
haviors at behavioral RTL

tion 3 describes transducer synthesis methodology for two
communicating behaviors with different clocks for the par­
ity encoder. We conclude the report in section 4.

2. Synthesis for Parity Encoder

Parity encoder is utilized as error detection/correction
coding in data communication community. We select it to
find the problems which occur in refining from communica­
tion model with communicating behaviors into implemen­
tation model. The operation of parity encoder is shown
in Fig. 1. The parity encoder is activated by start
signal, and gets data as input, and generates done signal
and even parity output. The parity encoder is composed
of two behaviors: one's counter and even parity checker.
The first computes the number of one for data, and the last
generates even parity bit by examining the output of one's
counter. These two behaviors communicate through signals
such as istart, idone, idata, and iocount. The
one's counter is actived when is tart signal is asserted to
high and idone is asserted to high when the number of
one's is calculated. Appendix A.l represents the communi­
cation model for the parity encoder.

2.1. Parity encoder with single clock

Assuming that the delay of all data processing operations
is one clock cycle and ALU and shifter unit are only used
as datapath unit, the parity encoder is designed into behav­
ioral RTL model in FSMD represenation. Fig. 2 shows the

2

Parity Checker'
Clock(elk)

istart

idata

One's Counter
CLK(clk)

iocount

id one

CAO CR1 CR2 CR3 CR4 CR5 CR6 CR7 CRB CR9
4ns I 4ns 4ns 4ns 4ns 4ns 4ns 4ns I 4ns 4ns j

Figure 3. Timing diagram with two communicating
behaviors

behavioral RTL description for parity encoder with one's
counter which is sub-FSMD of parity encoder. The even
parity checker has 5 states and one's counter 8 states. In
Fig. 2, dotted line represents that the one's counter is the
sub FSMD of parity checker in state S2. Because the one's
counter has internal loop between S4 and S6, the latency
of the parity encoder is not known before its execution.
We know just the maximum/minimum latency of the par­
ity encoder. Fig.3 shows the timing diagram between parity
checker and one's counter. In our implementation, the pe­
riod of clock for even parity checker is selected 6ns and
one's counter, 4ns. The behavioral RTL Spece codes for
parity encoder is shown in Appendix A.2.

2.2. Parity encoder with internal different clocks

In our implementation, handshaking protocol is utilized
to implement the parity encoder. Generally handshaking
protocol solved the synchronization problem for commu­
nicating behaviors with different clocks. The implemena­
tion which is shown in section 2.1 is working when the
clock period of parity checker is larger than that of one's
counter. But one's counter goes to state SO because is­
tart of one's counter is 1 after state S7 while even parity
checker waits that idone becomes 1, and then it results in
generating incorrect output. This synchronization problem
can be fixed by moving ocount = iocount in state S3
into state S2 of parity checker and merging state S3 and
states 4. Fig. 4 shows the FSMD model for the parity en­
coder with different clocks. The timing diagram with com­
municating behaviors with two different clocks is shown in
Fig. 5 and the modified code of parity checker is shown in
Appendix A.3

Start=O

ldon<>=O Ida ta= lnport;

I
I
I

istart=1
ocount=iocount;

istart=O \\,
.___ _ ___, S3 utport=ocount&maSI<;

Oone=1 \

istart=O

data!=O

\.___ _ _.

idone=O;locount=X

mask=1

Figure 4. FSMD diagram with two communicating
behaviors with different clocks

2.3. Parity encoder with acknowledge signals

As mentioned so far, the communication protocol be­
tween parity checker and one's counter don't have ac­
knowledge signal ack, and the istart signal and idata
should be maintained through execution of one's counter.
If the protocol has acknowledge signals, iack_start for
istart and iack_done for idone, the istart and
idata don't need to be maintained during the execution of
one's counter any longer. Fig. 6 shows the modified FSMD
for parity encoder with acknowledge signals. Timing dia­
gram is shown in Fig. 7

3. Transducer design for parity encoder

The functionality of transducer includes: 1) repacket the
data to the type which can be recognized by the other com­
municating block; 2) adjust the data arrival and leaving time
such that data is safely transferred. Because implemenation
of parity encoder doesn't have application layer communi­
cation protocols such as slicing, we don't need to consider
repacketing the data into the other communicating block.
Now we consider just adjusting the data synchronization.
Fig. 8 represents the parity encoder which is composed of
even parity checker and one's counter, communicating with
different clock period. The even parity checker is operated
by cl kl and one's counter clk2. The clock of transducer
is selected between minimum of clkl and clk2, and 3rd
clock(greatest common divisor of the clock periods). The
selection of clock period of transducer is important. If clock

3

Parity Checker
clk1

istart

CRO CR1 CR2 CR3 CR4 CR5 CR6
6ns

I
I I~

idata I V -r i Dalal /I))...----j.--

One's Counter
clk2

iocount

idone

I j i j I I j 1' i : j
1CR0 1CR1 CR2 1CR3 CR4,CR5 1 CR6 CR7'CRBlCR9 1

4ns 4ns 4ns 4ns 4ns 4ns 4ns; 4ns 4ns 4ns

Figure 5. timing diagram with two communicating
behaviors with different clocks

period is larger than those of two behavior, overall latency
of parity encoder will increase. Otherwise, latency is will
decrease but design may have the timing violation problem
due to clock skew. In our irnplemenation, the clock of trans­
ducer is selected to minimum of t.hat of parity checker and
one's counter.

3.1. Transducer synthesis methodology

A protocol specification is typically composed of 5
atomic operations(data read/write, control wait/assign, time
delay)[NG95]:

1. waiting for an event on an input control line

2. assigning a value to an output control line

3. reading a value from input data line

4. assigning a value from output data line, and

5. waiting for a fixed time interval

Becasuse time delay operation is not implemented by hard­
ware synthesis tool and all operations are synchronized by
event, we don't need to consider time delay operation any
longer.

The first step in interface synthesis is to represent each
of the two communicating protocols as ordered set of rela­
tions, which is a set of assignments to output control and
data lines and the reading of a value from input data lines,
upon the occurrence of a certain condition. The condition
could be an event on an input control line or fixed delay with
respect to some previous event. The protocol of even par­
ity checker and one's counter should be extracted from their

Atomic Spece Dual operation
operation equivalent in transducer

waiting for event signal. waitval(1) signal.assign(1)
assign control line signal.assign(1) signal. waitval(1)

read data line var= data data= temp_ var
assign data line data= var temp_ var= data

fixed delay waitfor(lO) waitfor(lO)

Table 1. Dual of atomic protocol operations

behavioral description as ordered set of relations, which is
shown in Fig. 9(a). Having derived the set of relations for
the two protocols, we now need to group the relations in
the two protocols into a set of relation groups, which are
ordered subset of the set of relations that represents a unit
of data transfer between the two processes. The relation
groups are created in such a manner that the size of the data
generated by the relations in the group from one protocol
is identical to that expected by the relations in the group
from the other protocol. Fig. 9 shows the partitioning the
relations of parity encoder.

Having combined the relations into a set of relations
groups, we now generate the interface process to make the
two protocols compatible. The set of operations in the rela­
tion groups taken in order represents the sequence of atomic
operations across the two protocols. The interface process
can be obtained by simply replacing them with their exact
dual or complementary operations which are shown in Ta­
ble 1. Fig. 10 shows the transducer behavior with dual of
operations in parity encoder. Two lines of codes in circle
will be omitted because is tart. wai tval (0) is fol­
lowed by is tart. wai tval (1) and the parity checker
doesn't wait for istart to be low. The transducer has
FSMD with the 4 states which is shown in Fig. 11 and the
datapath for transducer is shown in Fig. 12. The timing di­
agram for Transducer implementation is shown in Fig. 13.
The detail codes is shown in Appendix A.5.

4

idone=

,.,,.,, iack_done=1

iack_donr/

i
I

g~:aa:i~x; ! ;
iack_done=O; ! •

I istart/
I

' ;
I /

;

v· /
52 ~data=lnport; • / j • /

1start=1;- • ..- , _,

iack_start=1..o-- • "t.
I

83
istart=O; j
ocount=iocount; •

idone=1 <C• - • _. ,;~
iack_done=1 r'' "'_
Outport=acount&mask; -... !done
Done=1; • '·

'·

outport=X;
idone=O;
iack_start=O;

ocount=O;

Figure 6. FSMD diagram with acknowledge signals

Parity Checker
clk1

istart

idata

One's Counter
clk2

iocount

iack_start --t---1

idone

CR2 CR3 CR4 CR5 CR6

Figure 7. Timing diagram with acknowledge signals

Start lnport

-------------------------,
~,i__.___,. ~--~1

I
I

One's l
Counter l
(clk2) l

I
I
I

~--~1

-------------------------~

Done Outport

Figure 8. Parity encoder with transducer by different
clock period

parity checker

islart_f.assign(O)

idala_f = lnport;
istart_f.assign(1)

idone_l. wattval(1);
ocount = iocounU
lstart_f.assign(O)

istarU

idone_t

iocounU

parity checker

istart_f.assign(O)

idata_f = lnport;
istart_f .assign(1)

istart_f.assign(O)

(a)

istart_l

idala_l

idone_f

iocount_f

one's counter

idone_f.assign(O);

lslart_l.waitval(1)

data= idata_t;

iocounU = ocount;
idone_f.assign(1)

one's counter

istart_l.wattval(1)
data= idata_t;

idone_l.waitval(1); iocount = ocounl;
ocounl = iocounU idone_t.assign(1)

(b)

Figure 9. (a) two protocal in SpecC language (b) par­
ititiong the relations of parity encoder

parity checker

istart.assign(O) 1---'i"'sta~rt.:..:....f _..,

Jdata = lnport;
istart.assign(1)

Jdata_f

Jdone_t

idone.waitval(1); iocount t
ocount = Jocount;_ -
istart.asslgn(O)

transducer

1~~~:-=i.~!~%~~~~; istart t

istart_f.waitva~'l--i-da-ta ___ t -t~.i
istart_t.assgln~...__i_do_n_e __ f--1

one's counter

done.assign(O);
islart.waitval(1)

data = idata;

Jstart_f.waitval(1); ... iocounU iocount = ocount;

data_!= data_f; done.assign(1)
Jstart_t.assign(1)

ocount_t = ocount_f;
Jdone_f.waitval(1);
idone_t.asslgn(1)

istart_t. waitvaf(O);
istart_t.assign(O)

Figure 10. transducer behavior with dual of operations
in parity encoder

idono_f::::: 1

idono_f:; data_l=data_f;
S2 lslar1_t::::1;

ocounU=ocounU

Figure 11. transducer in FSMD

5

istart_r idone_f idata_r iocount_r

1-------1 - I
I I I
I I
I I
I Controller I
I (FSM) I
I I
I I
I I
L_

istart_t idone_t idata_t iocount_t

Figure 12. Datapath for transducer

CRO CR1 CR2 CR3 CR4 CRS CR6
6ns 6ns 6ns 6ns 6ns 6ns 6ns

Parity Checker
clk1

istarU

idata_f Data

I

I I
I

I I

CRJ CR1 CR2 CR3 CR4 CRS CR6 I CR7 CRB CR9

4n; 4ns 4ns 4ns 4ns 4ns 4ns I 4ns 4ns \4ns
Transducer

clk2

istart_t

idata_t Data

iocount_t

idone_t
One's Counter

iocounU

idone_f

Figure 13. Timing diagram for parity encoder with
transducer

4. Conclusion

In this report, we refined communication model into be­
havioral RTL model in Spece design methodology. The
communication model and behavioral RTL model of the
parity encoder was written in Spece language. To synchro­
nize two communicating behaviors with different clocks,
the transducer and the handshaking protocol were imple­
mented in well-defined steps. But we know through this
work that behavioral RTL with same protocol doesn't need
transducer as though it has internal different clocks.

5. Acknowledgement

The authors would like to thank BroadComm and
Conexant of providing fellowship to CECS of UC, Irvine,
and Andreas Gerslauer who made many helpful comments
for its improvement.

References

[GZD+oo] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,
and S. Zhao. SpecC: Specification Language
and Methodology. Kluwer Academic Publish­
ers, January 2000.

[NG95] Sanjiv Narayan and Daniel D. Gajski. Interfac­
ing incompatible protocols using interface pro­
cess generation. In Proceedings of the Design
Automation Conference, pages 468-473, June
1995.

6

A. Spece codes for parity encoder

A.1. Parity encoder: communicaton model

A.1.1 Parity encoder: parity.sc

import "ones";
import " even" ;

5 behavior parity(in bit[31:0] Inport, out bit[31:0] Outport, iISignal Start,
iOSignal Done)

{

10

bit[31:0] data, ocount;
cSignal cstart, cdone ;

even UOO(Inport, Outport, Start, Done, data, ocount, cstart, cdone);
ones UOl(data, ocount, cstart, cdone);

void main (void)
15 {

20

par

}

} i

UO 0 . main () ;
UOl .main ();

A.1.2 Even parity checker: even.Sc

import "bus " ;

behavior even(in bit[31:0] Inport, out bit[31:0] Outport, iISignal Start,
iOSignal Done, out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart,
iISignal idone)

void main(void)
bit[31:0] ocount;

10 bit[31:0] mask= OxOOOl;

15

20

25

while (1)
printf("even:uSO\n");
Done.assign(O);
Outport = -1;
Start.waitval(l);

istart.assign(l);
idata = Inport; II inlined master bus write
waitfor(l);
istart.assign(O);

printf("even:uSl\n");
idone.waitval(l); II inlined master bus read
ocount = iocount; II wait for result of one's counter

7

30

}

} ;

printf("even:~S2\n");

Outport = ocount & mask; II even parity checker
Done.assign(l);
waitfor(l); II synchronization for testbench

A.1.3 One's counter: ones.sc

import "bus " ;

behavior ones(in bit[31:0] inport, out bit[31:0] outport, iISignal start,
iOSignal done)

{

void main(void) {
bit[31:0] data;
bit[31:0] ocount;

10 bit[31:0] mask;
bit[31:0] temp;

15

20

25

30

10

while (1)
printf("ones:~SO\n");

start.waitval(l); II slave bus read
data = inport;

ocount = O;
mask = 1;

while (data != 0) {
temp = data & mask;
ocount = ocount + temp;
data = data >> 1;

II slave bus write done.assign(l);
outport = ocount;
waitfor(l);
done.assign(O);
printf("ones:~Sl\n");

}

} i

A.1.4 Testbench: tb.sc

import 11 io";
import "ones";
import 11 pari ty";

behavior Main

bit[31:0] inport, outport;
cSignal start, done;

IO io(inport, outport, start, done);

8

15

20

10

15

20

parity UOO(inport, outport, start, done);

} ;

int main (void)

par

}

io.main();
UDO .main ();

return O;

A.1.5 Input/Output for testbench: io.sc

import 11 bus " ;

II get interger from stdin
behavior IO(out bit[31:0] inport, in bit[31:0] outport, iOSignal start,

iISignal done)
{

} ;

void main(void)
char buf [16] ;

while (1) {
start.assign(O); //maintain start signal low
print f (11 Inpu t'-'f or '-'parity '-'checker: '-' 11

) ;

gets (buf);
inport = atoi(buf);

done.waitval(O);
start.assign(l);

done.waitval(l);

II start parity checker

printf (11 parity'-'checker'-'output'-'='-'%d\n 11
, (int) outport);

A.1.6 Bus: bus.sc
//Signal channel for representation of control signal
interface iOSignal
{

void assign (int v)
} ;

interface iISignal

int val () ;
10 void wai tval (int v)

} ;

channel cSignal()
implements iISignal, iOSignal

15

int value=O;

9

20

25

event ev;

void assign
{

int v)

value = v
notify { ev

II assign a value

int val {) II return a value

return value ;
}

30 void waitval { int v) / / wait for a value
{

}

while { value != v
wait { ev) ;

35 } i

//master bus channle
interface iMasterBus
{

~ bit[31:0] read{);
void write{bit[31:0] data);

} i

II master bus side of protocol
45 channel cMasterBus{iOSignal start, iISignal done, out bit[31:0] wdata,

in bit[31:0] rdata) implements iMasterBus

50

55

60

} i

bit [31 : 0] read {) {
int data;
done.waitval{l);
data = rdata;
return data;

}

II wait for done signal
II sample data bus

void write{bit[31:0] data) {
start.assign{l); II assert start signal
wdata =data; //write to data bus
waitfor{l);
start.assign{O); II deassert start signal

}

//slave bus channel
65 interface iSlaveBus

bit[31:0] receive{);
void send{bit[31:0] data);

} i

10

70

//slave bus side of protocol
channel cSlaveBus(iISignal start, iOSignal done, out bit[31:0] wdata,

in bit[31:0] rdata) implements iSlaveBus
{

~ bit [31:0] receive() {
int data;
start.waitval(l);
data = rdata;
return data;

II wait for start signal
II sample data bus

80 }

void send(bit[31:0] data) {
done.assign(l); //assert done signal
wdata =data; //write to data bus

s5 waitfor(l);
done.assign(O); II deassert done signal

} ;

90 #endif

A.2. Parity encoder with single clock: RTL model

A.2.1 Parity encoder: parity.sc

import "ones 11
;

import 11 even 11
;

5 behavior parity(in event clkl, in event clk2, in bit[O:O] rst,

10

in.bit[31:0] Inport, out bit[31:0] Outport, iISignal Start, iOSignal Done)

bit[31:0] data, ocount;
cSignal cstart, cdone ;

even UOO(clkl, rst, Inport, Outport, Start, Done, data, ocount, cstart, cdone);
ones U01(clk2, rst, data, ocount, cstart, cdone);

void main (void)
15 {

20 }

} ;

par

}

UDO.main();
U01.main();

A.2.2 Even parity checker: even.sc

import "bus 11
;

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport,
out bit[31:0] Outport, iISignal Start, iOSignal Done,
out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone)

11

void main(void) {
bit[31:0] ocount;

lo bit [31 : 0] mask;

15

20

25

30

35

40

45

50

enum state { SO, Sl, S2, S3, S4} state;

state = SO;

while (1) {
wait (elk);
if (rst == lb) {

state = SO;
Outport = -1;

switch (state) {
case SO:

Outport = -1;
Done.assign(O);
if (Start. val ()

state Sl;
else

state SO;
break;

case Sl:
mask = OxOOOl;
state = S2;
break;

case S2:
idata = Inport;
istart.assign(l);

1)

if (idone.val() 1) II wait for result of one's counter
state S3;

else
state

break;
case S3:

S2;

ocount = iocount;
istart.assign(O);
state = S3;
break;

case S3:
Outport = ocount & mask;
Done.assign(l);
state = SO;
break;

II even parity checker

55 } ;

A.2.3 One's counter: ones.sc

import 11 bus 11
;

behavior ones(in event elk, in bit [O:OJ rst, in bit[31:0] inport,

12

out bit[31:0] outport, iISignal start, iOSignal done)

void main(void) {
bit[3l:OJ data;
bit[31:0] ocount;

10 bit [31 : 0 J mask;
bit[3l:OJ temp;

15

20

25

30

35

40

45

50

55

enum state { SO, Sl, S2, S3, S4, S5, S6, S7 } state;

state = SO;

while (1) {

wait (elk);
if (rst == lb) {

outport = OxOOOO;
state = SO;

switch (state) {
case SO :

done.assign(O);
outport = -1;
if (start.val() 1)

state Sl;
else

state
break;

case Sl:

SO;

data = inport;
state = S2;
break;

case S2:
ocount = O;
state = S3;
break;

case S3:
mask = 1;
state = S4;
break;

case S4:
temp = data & mask;
state = S5;
break;

case S5:
ocount = ocount + temp;
state = S6;
break;

case S6:
data = data >> 1;
if (data == 0)

state
else

S7;

state S4;

13

60

65

break;
case S7:

} ;

A.2.4 Testbench: tb.sc

import 11 io 11
;

import 11 clock_gen 11
;

import "ones 11
;

outport = ocount;
done.assign(l);
state = SO;
break;

5 import "parity";

behavior Main

bit[31:0] inport, outport;
w bit[O:OJ rst;

15

20

25

30

} i

event clkl, clk2;
int clkl_period = 6;
int clk2_period = 4;
cSignal start, done;

IO io(clkl, rst, inport, outport, start, done);
clock_gen clk_genOl(clkl, clkl_period);
clock_gen clk_gen02(clk2, clk2_period);
parity UOO(clkl, clk2, rst, inport, outport, start, done);

int main (void)

par
io.main();
clk_gen01.main();
clk_gen02.main();
UOO .main ();

return 0;

A.2.5 Input/Output for testbench: io.sc

import 11 bus 11
;

II ilo for testbench
5 behavior IO(in event elk, out bit[O:OJ rst, out bit[31:0] inport,

out bit[31:0] outport, iOSignal start, iISignal done)

10

void main(void) {
char buf [16];

14

15

20

25

30

rst =lb; //reset all storage elements in design during 2 clock cycles
start.assign(O); II maintain start signal low during 2 clock cycle
wait(clk);
wait(clk);

rst = Ob; II deassign reset

while (1)
wait(clk);

}

printf (11 Input'-'for'-'one's'-'counter:'-' 11
);

gets (buf);
inport = atoi(buf);

start.assign(l);
wait(clk);

II now, design calculates num. of one in inport

done.waitval(l);
printf(11 output'-'='-'%d\n 11

, (int)outport);

wait(clk);
start.assign(O);
wait(clk);
wait(clk);

35 }

JO

} i

A.2.6 Clock generation: clock_gen.sc

import "bus " ;

behavior clock_gen(out event elk, in int hw_clk_period)
{

} i

void main(void) {
while (1) {

waitfor(hw_clk_period);
printf (11 \nclock'-'event (period:'-' %d) ! ! ! \n" , hw_clk_period) ;
notify(clk);

A.2.7 Bus: bus.sc
//Signal channel for representation of control signal
interface iOSignal
{

void assign (int v)
} i

interface iISignal

int val () ;
10 void wai tval (int v)

} i

15

15

20

25

channel cSignal()
implements iISignal, iOSignal

int value=O;
event ev;

void assign
{

int v)

value = v
notify (ev

II assign a value

int val() II return a value

return value ;

30 void wai tval (int v) I I wait for a value

}

while (value != v
wait (ev) ;

35 } ;

//master bus channle
interface iMasterBus
{

~ bit[31:0] read();
void write(bit[31:0] data);

} ;

II master bus side of protocol
45 channel cMasterBus(iOSignal start, iISignal done, out bit[31:0] wdata,

in bit[31:0] rdata) implements iMasterBus
{

50

55

60

} ;

bit [31 : 0 J read () {
int data;
done.waitval(l);
data = rdata;
return data;

}

II wait for done signal
II sample data bus

void write(bit[31:0] data)
start.assign(l); //assert start signal
wdata =data; II write to data bus
waitfor(l);
start.assign(O); II deassert start signal

//slave bus channel
65 interface iSlaveBus

16

70

{

bit[31:0] receive();
void send(bit[31:0] data);

} ;

//slave bus side of protocol
channel cSlaveBus(iISignal start, iOSignal done, out bit[31:0] wdata,

in bit[31:0] rdata) implements iSlaveBus
{

~ bit [31:0] receive() {

80 }

int data;
start.waitval(l);
data = rdata;
return data;

II wait for start signal
II sample data bus

void send(bit[31:0] data) {
done.assign(l); //assert done signal
wdata =data; //write to data bus

85 wait for (1) ;
done.assign(O); II deassert done signal

} ;

90 #endif

A.3. Parity encoder with two different clocks: RTL model

A.3.1 Even parity checker: even.sc

import 11 bus 11
;

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport,
out bit[31:0] Outport, iISignal Start, iOSignal Done,

{

out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone)

void main(void) {
bit[31:0] ocount;

10 bit[31:0] mask;

15

20

25

enum state { SO, Sl, S2, S3 } state;

state = SO;

while (1) {
wait (elk);
if (rst == lb) {

state = SO;
Outport = -1;

}

switch (state) {
case SO:

Outport = -1;
Done.assign(O);
if (Start. val () 1)

17

30

35

40

45

50' }

} ;

state Sl;
else

state SO;
break;

case Sl:
mask = OxOOOl;
state = S2;
break;

case S2:
idata = Inport;
istart.assign(l);
ocount = iocount;
if (idone.val() 1)

state S3;
else

state S2;
break;

case S3:
istart.assign(O);
Outport = ocount & mask;
Done.assign(l);
state = SO;
break;

A.4. Parity encoder with acknowledge signals

A.4.1 Even parity checker: even.sc

import "bus " ;

II even parity checker

behavior even(in event elk, in bit[O:O] rst, in bit[31:0] Inport,
out bit[31:0] Outport, iISignal Start, iOSignal Done,
out bit[31:0] idata, in bit[31:0] iocount, iOSignal istart, iISignal idone,
iISignal iack_start, iOSignal iack_done)

void main(void) {
w bit[31:0] ocount;

bit[31:0] mask;

15

20

enum state { SO, Sl, S2, S3, S4 } state;

state = SO;

while (1) {
wait (elk);
if (rst == lb) {

state = SO;
Outport = -1;

}

switch (state)
case SO:

18

25

30

35

40

45

50

55

60

65

}

} ;

printf ("even:'-'SO\n");
Outport = -1;
Done.assign(O);
iack_done.assign(O);
if (Start.val() == 1)

state Sl;
else

state SO;
break;

case Sl:
printf(11 even:'-'Sl\n 11

);

mask = OxOOOl;
state = S2;
break;

case S2:
printf("even:'-'S2\n");
idata = Inport;
istart.assign(l);
if (iack_start.val()

state S3;
else

state
break;

S2;

case S3:
printf("even:'-'S3\n");
istart.assign(O);
ocount = iocount;
if (idone.val() 1)

state S4;
else

state S3;
break;

case S4:
printf("even:'-'S4\n");
iack_done.assign(l);
Outport = ocount & mask;
Done.assign(l);
state = SO;
break;

A.4.2 One's counter: ones.sc

import "bus 11
;

1)

II even parity checker

behavior ones(in event elk, in bit [0:0] rst, in bit[31:0] inport,
out bit[31:0] outport, iISignal start, iOSignal done)

void main(void) {
bit[31:0] data;
bit[31:0] ocount;

19

10

15

20

25

30

35

40

45

50

55

60

bit[31:0] mask;
bit[31:0] temp;

enum state { SO, Sl, 82, S3, S4, SS, S6, S7 } state;

state = SO;

while (1) {
wait (elk);
if (rst == lb) {

outport = OxOOOO;
state = SO;

switch (state) {
case SO :

done.assign(O);
outport = -1;
if (start.val() 1)

state Sl;
else

state
break;

case Sl:

SO;

data = inport;
state = S2;
break;

case S2:
ocount = O;
state = S3;
break;

case 83:
mask = l;
state = S4;
break;

case S4:
temp = data & mask;
state = SS;
break;

case SS:
ocount = ocount + temp;
state = S6;
break;

case S6:
data = data >> l;
if (data == 0)

state S7;
else

state S4;
break;

case S7:
outport = ocount;
done.assign(l);
state = SO;

20

65

10

15

20

25

30

35

40

45

break;

} ;

A.5. Parity encoder with transducer: RTL model

A.5.1 Transducer: txducer.sc

import "bus " ;

behavior txducer(in event elk, in bit[31:0] data_f, out bit[31:0] data_t,
in bit[31:0] ocount_f, out bit[31:0] ocount_t, iISignal istart_f, iOSignal istart_t,
iISignal idone_f, iOSignal idone_t)

void main(void) {
enum state { SO, Sl, S2, S3 } state;

state = SO;
while (1) {

wait(clk);
switch (state)

case SO:
if (idone_f .val()

state Sl;
else

state SO;
break;

case Sl:
idone_t.assign(O);
if (istart_f.val()

state S2;
else

state Sl;
break;

case S2:
data_t = data_f;
istart_t.assign(l);
ocount_t = ocount_f;

0)

1)

if (idone_f .val() 1)
state S3;

else
state S2;

break;
case S3:

istart_t.assign(O);
idone_t.assign(l);
if (istart_f.val()

state SO;
else

state S3;
break;

0)

21

} ;

22

