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ABSTRACT The genetic etiology of many complex diseases is highly heterogeneous. A complex disease can be caused by multiple
mutations within the same gene or mutations in multiple genes at various genomic loci. Although these disease-susceptibility
mutations can be collectively common in the population, they are often individually rare or even private to certain families. Family-
based studies are powerful for detecting rare variants enriched in families, which is an important feature for sequencing studies due to
the heterogeneous nature of rare variants. In addition, family designs can provide robust protection against population stratification.
Nevertheless, statistical methods for analyzing family-based sequencing data are underdeveloped, especially those accounting for
heterogeneous etiology of complex diseases. In this article, we introduce a random field framework for detecting gene-phenotype
associations in family-based sequencing studies, referred to as family-based genetic random field (FGRF). Similar to existing family-
based association tests, FGRF could utilize within-family and between-family information separately or jointly to test an association. We
demonstrate that FGRF has comparable statistical power with existing methods when there is no genetic heterogeneity, but can
improve statistical power when there is genetic heterogeneity across families. The proposed method also shares the same advantages
with the conventional family-based association tests (e.g., being robust to population stratification). Finally, we applied the proposed
method to a sequencing data from the Minnesota Twin Family Study, and revealed several genes, including SAMD14, potentially
associated with alcohol dependence.

KEYWORDS family-based association study; rare variants; genetic heterogeneity; population stratification; alcohol dependence

NEXT generation sequencing technologies, such as high-
throughput exome sequencing and whole-genome se-

quencing, are being used increasingly in human genetics
research. Sequencing-based studies hold great promise for
the identification and fine mapping of new genetic variants,
especially rare variants, associated with complex human
diseases (Raychaudhuri et al. 2011; Kiezun et al. 2012). De-
spite such promise, detecting disease-susceptibility rare var-
iants remains a great challenge because of the heterogeneous
nature and their low frequencies. Multiple rare mutations
within the same gene can independently influence the dis-

ease (i.e., allelic heterogeneity), and rare variants in different
genes can also be involved in related pathways underly-
ing complex human diseases (i.e., locus heterogeneity)
(McClellan and King 2010). Each casual rare mutation may
be present in only one or a small number of individuals or
families, making them hard to detect in a general population.
For example, a number of genes harbor high penetrance mu-
tations for breast cancer; but any woman carrying such
a mutation generally only has one (McClellan and King
2010). Another challenge raised by sequencing studies is
how to adequately control for potential confounding by pop-
ulation stratification. Although statistical methods, such as
the principal component method, can capture population
structure, it remains unclear how well they capture the
underlying population substructure for rare variants
(Mathieson and McVean 2012). Moreover, these popula-
tion-based methods can control for population stratifica-
tion only at a global level. Because the level of population
stratification at a particular locus could vary due to factors
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such as natural selection, using principle components to
adjust population stratification at a locus-specific level
could be either insufficient or overly adjusted (Marchini
et al. 2004).

Family-based studies provide a natural way to address the
issueof population stratification. In a family-basedassociation
study, a typical transmission disequilibrium test (TDT) com-
pares the alleles that are transmitted to an affected child from
parents to the alleles that are not transmitted. Therefore, it
matches ancestral background of samples within families,
and provides robustness against population stratification at
a locus-specific level. In addition, family-based studies can
offer a unique opportunity for considering genetic heteroge-
neity due to rare variants. Individuals in the same family tend
to have a more homogeneous profile of disease risk (e.g.,
sharing similar environment). Rare mutations involved in
the same etiological process are also likely to aggregate
within families, which could increase the chance of detec-
tion. The idea of using families to consider genetic hetero-
geneity can be traced back to the era of linkage. In a linkage
study, analytical methods, such as the ordered subset anal-
ysis, are used to consider genetic heterogeneity among fam-
ilies (Hauser et al. 2004).

Several statisticalmethodshavebeendevelopedrecently for
family-based sequencing data. These methods can be briefly
categorized into twocategories:TDT-basedandcorrelateddata
modeling-based, such as generalized estimating equations
(GEE) and linear mixed models (LMM). The conventional
TDT constructs test statistics within a family (e.g., comparing
transmitted and nontransmitted alleles), and therefore pro-
vide robustness against population stratification (Ionita-Laza
et al. 2013; He et al. 2014a). Nonetheless, because the TDT
only uses within-family information, but not between-family
information, it can have lower power thanGEE- or LMM-based
methods, which integrate both within-family and between-
family information (Chen et al. 2013; Schaid et al. 2013;
Wang et al. 2013). However, GEE or LMM-based methods do
not provide protection against population stratification be-
cause of the use of between-family information.

To facilitate the family-based association analysis of se-
quencing data, while addressing the issues of genetic hetero-
geneity and population stratification, we have developed a
family-based genetic random field method (FGRF). The
method combines both within-family and between-family
information to optimize the power of the association test,
but modifies the between-family information by conditioning
the genotype of family members on the average genotype
scores within each family. Therefore, FGRF removes the dif-
ference of allele frequencies across families and provides
robustness to population stratification. Another feature of
FGRF is being able to consider genetic heterogeneity, such
as locus heterogeneity and allelic heterogeneity. Because
FGRF is a gene-based approach, it can capture allelic hetero-
geneity by aggregating information across all variants in a
gene. FGRF can also capture locus heterogeneity by construct-
ing a test statistic for each family and then summarizing

statistics across all families. This is important because of
the heterogeneous nature of rare variants. Through simula-
tions, we compare the performance of FGRF with that of a
GEE-based kernel association test, referred to as GSKAT
(Wang et al. 2013), and a Burden test that first collapses
the rare variants and then applies the GEE method. Finally,
we illustrated the proposed method by applying it to a genome-
wide gene-based analysis of alcohol dependence (AD).

Methods

We and others have recently proposed random-field-based asso-
ciation tests for genetic association analysis of unrelated individ-
uals (He et al. 2014b; Li et al. 2014a). A random field is a
stochastic process that takes values in a Euclidean space, where
two observations tend to share similar outcomes if they are spa-
tially close to each other (Berg et al. 1989; Adler and Taylor
2007). Under the genetic random field framework, a genetic
space can be constructed by using individuals’ genetic data. Each
individual can be mapped to a location in the genetic space by
using his/her genetic profile as coordinates. When there is a
gene-phenotype association, we expect two individuals would
have similar phenotypes if their genetic profiles are similar (i.e.,
close in genetic space). In this article, based on the random field
framework, we develop a FGRF method to address the issues of
genetic heterogeneity and population stratification.

The overall test of the family-based genetic random
field (FGRF-O)

Assume we have m families with ni members from the i-th
family. The study population has a total of N individuals with

N ¼ Pm
i¼1

ni: Each individual is sequenced for K variants within

a genomic region (e.g., a gene or a linkage disequilib-
rium (LD) block), and measured for H additional nongenetic
covariates, such as age and gender. Let yi;j be the pheno-
typic value for the j-th member of the i-th family;
Gi;j ¼ ðgi;j;1; gi;j;2; . . . ; gi;j;KÞ9 be the genotypes for K variants
within the region, coded as the minor allele counts; and
Xi;j ¼ ðxi;j;1; xi;j;2; . . . ; xi;j;HÞ9 be the covariates. We use a con-
ditional auto-regressive model to describe the relationship
between phenotypes and genotypes considering the covari-
ates and familial correlation:

E
�
yi;jjy2ði;jÞ

�
¼ mi;j þ

X
l 6¼j

1# l#ni

vi;j;lðhÞðyi;l 2mi;lÞ

þ g
X

ði;jÞ6¼ði9;j9Þ
sði;jÞ;ði9;j9Þ

�
yi9;j9 2mi9;j9

� (1)

where y2ði;jÞ denotes the phenotypes of all individuals other
than yi;j; mi;j is the nongenetic mean of yi;j adjusting for all
covariates so that fðmi;jÞ ¼ X9i;jb and f ð:Þ is the link function
taking the form of f ðxÞ ¼ x for quantitative phenotypes and
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f ðxÞ ¼ logðx=ð12 xÞÞ for binary phenotypes; vi;j;lðhÞ is the
covariance term that models the correlation of phenotypes
among family members (see Appendix for details); and
sði;jÞ;ði9; j9Þ is the genetic similarity between two individuals
(i.e., the j-th member of the i-th family and the j9-th member
of the i9-th family). We define the genetic similarity by

sði;jÞ;ði9;j9Þ ¼
XK
k¼1

�
gi;j;k 2 qk

��
gi9;j9;k 2 qk

�
; where qk ¼ 1

N

Xm
i¼1

Xni

j¼1

gi;j;k: (2)

This similarity metric is proportional to the genetic relation-
ship used by GCTA for heritability estimation (Yang et al.
2011), and is also a centered version of the linear kernel
function used in sequence kernel association test and its ex-
tensions (Wu et al. 2011; Lee et al. 2012).

Thus, the conditional auto-regressive model (Equation 1)
adjusts for covariates and correlation among family mem-
bers, and predicts the phenotype of an individual (i.e., yi;j)
from the phenotypes of all of the other individuals
(i.e. y2ði;jÞ), where the contribution of another individual’s
phenotype (i.e., yi9;j9) is proportional to the genetic similarity
(i.e., sði;jÞ;ði9;j9Þ) of two individuals. The parameter g thus mea-
sures the magnitude of the joint association between genetic
variants and the phenotype. Under the null hypothesis of no
association, an individual’s phenotype cannot be predicted by
the phenotypes of the others. Therefore, the gene–phenotype
association can be tested as: H0 : g ¼ 0:

Equation 1 can be written in a simplified matrix form as
follows:

E
�
Y jY2

� ¼ mþ fVðhÞ þ gSg�Y 2m
�
; (3)

where Y ¼ �
y1;1; . . . :; y1;n1; y2;1; . . . :; y2;n2; . . . :ym;1; . . . :; ym;nm

�
is the phenotype vector of all individuals from all families in a
sequential order; fðmÞ ¼ Xb; VðhÞ is a N3N block diagonal
matrix in which the i-th block is a ni 3 ni matrix with the ðj; lÞ
element as vi;j;lðhÞ; S is a N3N matrix for pairwise genetic
similarity among N individuals.

We propose a generalized score test forH0 : g ¼ 0 through
the following estimating equations: (Liang and Zeger 1986).

Ug

�
b;h; g

� ¼ @E
�
Y jY2

�
@g

T

fY 2 E
�
Y jY2

�g
¼ �

Y2m
�TSfI2VðhÞ2 gSg�Y 2m

� ¼ 0: (4)

A generalized score statistic can thus be defined as (Boos
1992):

QO ¼ Ug

�
b̂; ĥ; 0

� ¼ �
Y2m̂

�
9SfI2VðĥÞgðY 2 m̂Þ; (5)

where gðm̂Þ ¼ Xb̂ and ĥ are estimated under the null hypoth-
esis of g ¼ 0: In the Appendix, we show that the above esti-
mating equation is unbiased, and that the score statistic
1=mQO follows asymptotically a mixture of Chi-square
distributions.

Between-family and within-family tests of FGRF
(FGRF-B and FGRF-W)

The family-based random field model proposed in Equation 1
is based on the genetic similarity among all individuals, both
within the same families and between different families. To
account for the possible genetic heterogeneity, we further
decompose the model into two components: a within-family
component and a between-family component,

E
�
yi;jjy2ði;jÞ

�
¼ mi;j þ

X
l 6¼j

1# l#ni

vi;j;lðhÞ
�
yi;l 2mi;l

�

þgw
X
l 6¼j

1# l#ni

sði;jÞ;ði;lÞ
�
yi;l2mi;l

�

þgb
X
i96¼i

Xni9

j9¼1

s*ði;jÞ;ði9;j9Þ
�
yi9;j9 2mi9;j9

�
: (6)

Intuitively, the within-family component predicts the pheno-
type of the individual ði; jÞ based on the phenotypes of mem-
bers in the same family; the between-family component
predicts the phenotype of the individual ði; jÞ based on
the phenotypes of individuals from all the other families.
Correspondingly, parameters gw and gb measures the joint
association based on within-family and between-family in-
formation, respectively. The gene–phenotype association
can thus be evaluated by testing the null hypothesis:
H0 : gw ¼ gb ¼ 0:

Assuming familymembers share the samegenetic ancestry,
the within-family component is not susceptible to population
stratification bias. To account for this possibility across fam-
ilies, we modify the genetic similarity for the between-family
component as:

s*ði;jÞ;ði9;j9Þ ¼
XK
k¼1

�
gi;j;k 2 qi;k

��
gi9;j9;k 2 qi9; k

�
; where qi;k ¼ 1

ni

Xni

j¼1

gi;j;k: (7)

The genetic similarity score in Equation 7 is centered within
each family, removing the differences of allele frequencies
across families. Therefore, the between-family component
is adjusted for population stratification.

For statistical inference, we rewrite Equation 6 in a matrix
form:

EðY jY2Þ ¼ mþ fVðhÞ þ gwSw þ gbSbgðY 2mÞ; (8)

where Sw is a block diagonal matrix in which i-th block is a
ni 3 ni matrix with the ðj; lÞ element as sði;jÞ;ði;lÞ; Sb is a N3N
matrix for pairwise genetic similarity of individuals from dif-
ferent families, as described in Equation 7.

Similar to FGRF-O described above, we derive a general-
ized score test based on within-information (FGRF-W) and a
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generalized score test based on between-family information
(FGRF-B) through the following estimating equations,

Ugw
ðb;h; gÞ ¼ @EðY jY2Þ

@gw

T

fY 2 EðY jY2Þg

¼ ðY2mÞTSwfI2VðhÞ2 gwSw 2gbSbgðY 2mÞ
¼ 0

Ugb
ðb;h; gÞ ¼ @EðY jY2Þ

@gb

T

fY 2EðY jY2Þg

¼ ðY2mÞTSbfI2VðhÞ2 gwSw 2gbSbgðY 2mÞ
¼ 0;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(9)

The generalized score statistics can thus be defined as (Boos
1992):(

Qw ¼ Ugw

�
b̂; ĥ ; 0

� ¼ ðY2m̂Þ9SwfI2VðĥÞgðY 2 m̂Þ
Qb ¼ Ugb

�
b̂; ĥ; 0

� ¼ ðY2m̂Þ9SbfI2VðĥÞgðY 2 m̂Þ; (10)

where gðm̂Þ ¼ Xb̂ and ĥ are estimated under the null
hypothesis H0 : gw ¼ gb ¼ 0. In the appendix, we show
that the 1ffiffiffi

m
p Qw follows asymptotically a normal dis-

tribution, while 1=mQb follows asymptotically a mixture
of Chi-square distributions.

Fisher’s combined probability test of FGRF (FGRF-F)

The within-family and between-family tests of FGRF (i.e.,
FGRF-W and FGRF-B) evaluate the gene–phenotype associa-
tion separately. We can combine these two sources of infor-
mation in a single test, for example, using Fisher’s combined
probability test (Fisher 1925). In particular, let pw and pb be
the P-values of FGRF-W and FGRF-B, respectively. Fisher’s
combined test gives the following test statistic:

QF ¼ 2 2loge pw2 2loge pb: (11)

FGRF-W and FGRF-B utilize two sources of information (i.e.,
within-family and between-family) that are independent.
Therefore, QF follows asymptotically a chi-square distribu-
tion with four degrees of freedom.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in themanuscript are represented fully
within the manuscript. Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.6108551.

Results

Simulation studies

Weconducted simulation studies to evaluate the performance
of FGRF, and compared it to two commonly used methods:
GSKAT and Burden test. In the simulations, we compared all

methods for type I error rates and statistical power. The type I
error rates were evaluated in the absence or presence of
population stratification. The statistical power was evaluated
under various disease scenarios with regard to genetic het-
erogeneity. Rare causal mutations underlying complex phe-
notypes may fall into two categories: (1) rare variants that
remainpolymorphic inoneormoremajorhumanpopulations;
and (2) private variants that are restricted to probands and
immediate relatives (Cirulli and Goldstein 2010). Corre-
spondingly, we considered three scenarios in terms of genetic
heterogeneity: (1) No genetic heterogeneity, representing a
scenario that “all unhappy families are alike”; (2) Genetic
heterogeneity caused by rare but not private mutations, rep-
resenting a scenario that “each unhappy population is un-
happy in its own way”; (3) Genetic heterogeneity caused by
private mutations, representing a scenario that “each un-
happy family is unhappy in its own way.”

To represent the actual structure of sequencing data (e.g.,
LD patterns and allele frequencies), we used real sequencing
data of 1092 individuals from the 1000 Genomes Project as
our founder population (The 1000 Genomes Project Consor-
tium et al. 2010). In particular, we randomly selected a 1 MB
region from the genome (i.e., Chromosome 17: 7344328–
8344327) as our analytical genetic data in the simulations.
We focused on genetic variants with less common frequen-
cies, and removed common variants with a minor allele fre-
quency of $5%. The 1 MB regions covered 10,527 variants
after we removed all common variants, and their minor allele
frequencies are illustrated in Figure 1. The variants were pre-
dominantly rare with a minor allele frequency ,1%. In each
simulation replicate, a 10 kb segment was randomly selected
from the 1 MB region as a candidate gene, within which
single nucleotide polymorphisms (SNP) were tested as a
SNP-set for joint association with the simulated phenotypes
(described below). The median number of variants within
the 10 kb segments in all simulations was 103.

We also considered three types of family structures in the
simulations: (1) nuclear families with four members (i.e.,
father, mother and two offspring); (2) three-generation fam-
ilies with eight members; and (3) a mixture of nuclear fam-
ilies and three-generation families. The family structures are
illustrated in Figure 2. The founders of each family were
randomly selected from the founder population. The off-
spring genotypes were then generated by randomly trans-
mitting one allele from each parent at each locus. In each
simulation replicate, we fixed our sample size at 1280,
which was equivalent to 320 nuclear families, 160 three-
generation families, or a mixture of 160 nuclear families
and 80 three-generation families. The simulation scenarios
are summarized in Table 1. The phenotype of each individ-
ual was simulated according to the following disease
scenarios.

Type I error rates in the absence of population stratifica-
tion: We first evaluated all methods for type I error rates when
population stratification was absent. The phenotypes were
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simulated independently from the genotypes. We considered
both quantitative phenotypes and binary phenotypes. The
quantitative phenotypes for the i-th family were simulated
based on a multivariate normal distribution,

Y13ni ¼ ðyi;1; yi;2; ::::::; yi;niÞ � Nð0;Sni 3niÞ; where

Sni 3ni ¼ Kinni 3ni þ CSni 3ni þ Ini 3ni: (12)

In the above equation, the variance-covariance matrix (i.e.,
Sni 3 ni) of the phenotypes was modeled by a mixture of cor-
relation structure: a correlation component due to kinship
coefficients (i.e., Kinni 3 ni), a correlation component due to
shared environment (i.e., CSni 3ni; compound symmetric) and
an independent component due to random errors (Ini 3ni).
For binary phenotypes of the i-th family, we first simulated
the disease liability by a multivariate normal distribution:

h13ni
¼ ðhi;1;hi;2::::::;hi;ni

Þ � Nð0;S9ni 3niÞ;where

S9ni 3ni ¼ Kinni 3ni þ CSni 3ni: (13)

The disease phenotypes were then simulated by a Bernoulli
distribution based on disease liability,

yi;j � Bernoulliðpi;jÞ;

pi;j ¼ logitðb0þhi;jÞ ¼
expðb0þhi;jÞ

1þ expðb0þhi;jÞ
; (14)

where b0 is a fixed parameter to ensure the disease preva-
lence was �20%.

Type I error rates in the presence of population stratifi-
cation: The participants of the 1000 Genome Project were

selected from diverse ethnic backgrounds, including 14 sub-
populations. The ethnicity groups are described in Table 2. To
evaluate the type I error rates in the presence of population
stratification, we simulated the phenotypes, allowing a shift
of distribution among 14 ethnicity groups. For quantitative
phenotypes, each subpopulation had a baseline phenotype
level randomly selected from a uniform distribution,
Unif ½0; 10�. For binary phenotypes, each subpopulation had
a disease prevalence randomly selected from a uniform dis-
tribution, Unif ½1%; 40%�: The phenotypes were then simu-
lated following the same strategy described in Equations
12, 13, and 14.

Statistical power when there is no genetic heterogeneity:
In such a scenario, we assumed that all subpopulations had the
same causal variants influencing the phenotypic variation,
representing a scenario that “all unhappy families are alike.” In
particular, we used a linear regression model and a logistic
regression model to simulate quantitative and binary pheno-
types, respectively.

yi;j ¼ b0 þ
XK
k¼1

bkxi;j;k þ ei;j;k (15)

logit  P
�
yi;j ¼ 1

� ¼ b9
0 þ

XK
k¼1

b9
kxi;j;k þ e9i;j;k; (16)

where the randomerrors (ei;j;k or e9i;j;k) are independent across
families, but had the correlation structure among family
members as described in Equation 12 or 13; xi;j;k is the geno-
type of the k-th variant for the j-th member from the i-th
family, coded as the minor allele count. We further assumed
that 5% of the total K variants were causal variants, and their
effect sizes were proportional to the logarithm of minor allele
frequencies.

jbkj ¼
�
2clogðMAFÞ if var a int  k  is  causal

0 if otherwise 1# k#K;

where c was a constant to ensure the statistical power was in
a reasonable range. We also evaluated the statistical power

Figure 2 Family structures used in the simulations. Left: a nuclear family
with four members. Right: a three-generation family with eight members.

Figure 1 Distribution of the minor allele frequencies of 10,527 variants
from the 1000 Genome Project (Chromosome 17: 7344328–8344327;
minor allele frequency of # 5%.
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by varying the directionality of the effect. For unidirectional
scenarios, all effect sizes were assumed to be positive, while
for bidirectional scenarios, a sign factor 1 or21 was selected
randomly for each bkwith a probability of 0.5.

Statistical power when genetic heterogeneity is caused by
rare but not private mutations: In such a scenario, we
assumed that the causal variants were the same within each
subpopulation, but varied across 14 subpopulations, repre-
senting a scenario that “each unhappy population is unhappy
in its own way.”Within each subpopulation, 5% of the total K
variants were selected randomly as causal variants. For each
subpopulation, Equations 15 and 16 were used to simulate
quantitative phenotypes and binary phenotypes, respectively.
Under such a scenario, we also evaluated the statistical
power for both unidirectional and bidirectional effect sizes.

Statistical power when genetic heterogeneity is caused by
private mutations: In such a scenario, we assumed that the

causal variants were the same within each family, but varied
across families, representing a scenario that “each unhappy
family is unhappy in its own way.” Within each family, 5% of
the total K variants were randomly selected as causal vari-
ants. For each family, Equations 15 and 16 were used to
simulate quantitative phenotypes and binary phenotypes, re-
spectively. Similar to previous scenarios, we also evaluated
the statistical power for both unidirectional and bidirectional
effect sizes.

Simulation results

We applied all statistical methods, including FGRF-O,
FGRF-B, FGRF-W, FGRF-F, GSKAT and Burden test, to each
simulation replicate evaluating their performance. All simu-
lations were conducted in R version 3.1.1. Both FGRF and
GSKATused thegeneralizedestimatingequation for statistical
inference,while theBurden testfirst collapsedall rare variants
and then applied the “gee” function in R. Each simulation
scenario was repeated 10,000 times to evaluate type I error

Table 1 Summary of simulation scenarios

Scenario Description

S0.a Type I error rates in the absence of population stratification
All subpopulations have same baseline phenotype or disease prevalence

S0.b Type I error rates in the presence of population stratification
Subpopulations have a shift of baseline phenotype or disease prevalence

S1 Statistical power when there is no genetic heterogeneity
“All unhappy families are alike”

S2 Statistical power when genetic heterogeneity is caused by rare variants that remain
polymorphic in one or more major human populations

“Each unhappy population is unhappy in its own way”
S3 Statistical power when genetic heterogeneity is caused by private mutations that are

restricted to probands and immediate relatives
“Each unhappy family is unhappy in its own way”

Features considered in each simulation scenario
Type of phenotypes Quantitative phenotype

Binary phenotype
Type of family structure Nuclear families: two parents and two offspring

Three-generation families with eight members
A mixture of nuclear families and three-generation families

Type of effect Unidirectional: all causal variants increase phenotype or disease risk
Bidirectional: each causal variant randomly increases or decreases phenotype or disease risk

Table 2 Fourteen ethnicity groups in the simulation to mimic population admixture

Abbreviation Subpopulation No. of Samples

ASW African ancestry in Southwest USA 61
CEU Utah residents with Northern and Western European ancestry 85
CHB Han Chinese in Beijing, China 97
CHS Southern Han Chinese 100
CLM Colombians from Medellin, Colombia 60
FIN Finnish in Finland 93
GBR British in England and Scotland 89
IBS Iberian population in Spain 14
JPT Japanese in Tokyo, Japan 89
LWK Luhya in Webuye, Kenya 97
MXL Mexican ancestry from Los Angeles 66
PUR Puerto Ricans from Puerto Rico 55
TSI Tuscans in Italy 98
YRI Yoruba in Ibadan, Nigeria 88
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rates at various levels (i.e., 0.05, 0.01, and 0.001), and re-
peated 1000 times to evaluate statistical power.

Type I error rates in the absence of population stratifica-
tion: The results are summarized in Table 3. When popula-
tion stratification was absent, FGRF-O, FGRF-B, and GSKAT
had well-controlled type I error rates. FGRF-W showed con-
servative type I error rates, which also led to slightly conser-
vative type I error rates for FGRF-F. On the other hand, the
Burden test showed slightly inflated type I error rates. The
results were highly consistent for quantitative phenotypes
and binary phenotypes.

Type I error rates in the presence of population stratifi-
cation: The results are summarized in Table 4. In the presence
of population stratification, FGRF-O, GSKAT and the Burden
test had inflated type I error rates. Their type I error rates were
significantly higher than the intended threshold for both quan-
titative and binary phenotypes. On the other hand, the type I
error rates of FGRF-W, FGRF-B, and FGRF-F were robust to
population stratification, which were similar to those in the ab-
sence of population stratification. FGRF-B had well-controlled
type I error rates, while FGRF-W and FGRF-F showed slightly
conservative type I error rates. The results were highly consistent
for quantitative and binary phenotypes.

Table 3 Simulation S0.a: type I error rates in the absence of population stratification

QTa FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

Nuclear families T1E = 0.05 0.0447 0.0505 0.0422 0.0468 0.0453 0.0551
T1E = 0.01 0.0098 0.0079 0.0057 0.0073 0.0097 0.0133
T1E = 0.001 0.0013 0.0005 0.0007 0.0008 0.0015 0.0021

Three-generation families T1E = 0.05 0.0530 0.0482 0.0373 0.0427 0.0505 0.0586
T1E = 0.01 0.0104 0.0101 0.0049 0.0080 0.0111 0.0135
T1E = 0.001 0.0008 0.0011 0.0003 0.0008 0.0008 0.0024

Mixed families T1E = 0.05 0.0515 0.0465 0.0421 0.0437 0.0522 0.0565
T1E = 0.01 0.0106 0.0109 0.0069 0.0083 0.0111 0.0132
T1E = 0.001 0.0012 0.0013 0.0002 0.0004 0.0011 0.0023

BTb FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

Nuclear families T1E = 0.05 0.0503 0.0492 0.0398 0.0440 0.0515 0.0548
T1E = 0.01 0.0129 0.0100 0.0051 0.0072 0.0128 0.0136
T1E = 0.001 0.0021 0.0014 0.0002 0.0004 0.0022 0.0008

Three-generation families T1E = 0.05 0.0551 0.0539 0.0354 0.0443 0.0559 0.0571
T1E = 0.01 0.0152 0.0120 0.0042 0.0086 0.0147 0.0135
T1E = 0.001 0.0025 0.0018 0.0002 0.0010 0.0017 0.0016

Mixed families T1E = 0.05 0.0527 0.0503 0.0408 0.0432 0.0529 0.0554
T1E = 0.01 0.0122 0.0089 0.0057 0.0065 0.0115 0.0126
T1E = 0.001 0.0020 0.0012 0.0001 0.0011 0.0022 0.0012

a Quantitative phenotype.
b Binary phenotype.

Table 4 Simulation S0.b: type I error rates in the presence of population stratification

QTa FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

Nuclear families T1E = 0.05 0.4765 0.0483 0.0448 0.0674 0.7787 0.1405
T1E = 0.01 0.3261 0.0109 0.0106 0.0167 0.6468 0.0593
T1E = 0.001 0.1860 0.0010 0.0003 0.0023 0.4989 0.0184

Three-generation families T1E = 0.05 0.2583 0.0525 0.0472 0.0478 0.7085 0.0743
T1E = 0.01 0.1347 0.0117 0.0070 0.0094 0.5637 0.0216
T1E = 0.001 0.0563 0.0013 0.0003 0.0012 0.4046 0.0041

Mixed families T1E = 0.05 0.5568 0.0513 0.0499 0.0501 0.7470 0.1067
T1E = 0.01 0.3997 0.0108 0.0076 0.0086 0.6004 0.0362
T1E = 0.001 0.2506 0.0011 0.0003 0.0004 0.4493 0.0081

BTb FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

Nuclear families T1E = 0.05 0.1808 0.0487 0.0447 0.0463 0.2210 0.1240
T1E = 0.01 0.0761 0.0109 0.0067 0.0100 0.1010 0.0444
T1E = 0.001 0.0239 0.0014 0.0004 0.0009 0.0362 0.0113

Three-generation families T1E = 0.05 0.1612 0.0525 0.0375 0.0449 0.2137 0.1024
T1E = 0.01 0.0675 0.0133 0.0061 0.0087 0.0986 0.0351
T1E = 0.001 0.0225 0.0013 0.0003 0.0006 0.0343 0.0085

Mixed families T1E = 0.05 0.1694 0.0527 0.0434 0.0454 0.2155 0.1129
T1E = 0.01 0.0692 0.0119 0.0042 0.0084 0.0991 0.0416
T1E = 0.001 0.0236 0.0012 0.0007 0.0010 0.0379 0.0103

a Quantitative phenotype.
b Binary phenotype.
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Statistical power when there is no genetic heterogeneity:
The results are summarized in Figure 3. When there is no
genetic heterogeneity, FGRF-O (black) and GSKAT (cyan)
had comparable power, which were higher than other meth-
ods. FGRF-F (blue) had comparable power to FGRF-O or
GSKAT for quantitative phenotypes, and but had a slightly
reduced power for binary phenotypes. The power of FGRF-F
and FGRF-B were comparable, both of which were signifi-
cantly higher than that of FGRF-W and the Burden test. This
result indicates that the power of FGRF-F was driven largely
by the power of FGRF-B (red) under this scenario. GSKAT and
all the FGRF-based tests were robust to the directionality of
effect sizes, while the Burden test (magenta) had a substan-
tial power loss when the effect sizes were bidirectional. When
there is no genetic heterogeneity, FGRF-W tended to have the
lowest power among all methods. The power of the Burden
test was also substantially reduced compared to that of
FGRF-O, FGRF-F, or GSKAT. The family structure did not
have amajor impact on the performance of the different tests.
The power of all methods remained consistent for nuclear
families, three-generation families, and a mixture of both
nuclear and three-generation families.

Statistical power when genetic heterogeneity is caused by
rare but not private mutations: The results are summarized
in Figure 4. The power of all methods remained similar across
three family structures. When there is genetic heterogeneity
among subpopulations, FGRF-F had the highest power
among all methods. In such a scenario, FGRF-F borrowed
strength from both FGRF-B and FGRF-W, and attained an
improved power over both of them. The power of FGRF-W

was slightly lower than that of FGRF-F, but was substantially
higher than that of FGRF-B in all simulations. The power of
the Burden test was comparable to that of FGRF-W when the
effect sizes were unidirectional, but was the lowest among all
methods when the effect sizes were bidirectional. FGRF-O and
GSKAT still had comparable power in all simulations, and
tended to have power in between those of FGRF-B and FGRF-W.

Statistical power when genetic heterogeneity is caused by
private mutations: The results are summarized in Figure 5.
The power of all methods remained similar across three
family structures. When there is genetic heterogeneity by
family, FGRF-W tend to have the highest power among all
methods. The Burden test may have a power comparable to
that of FGRF-Wwhen the effect sizes were unidirectional, but
suffered from a substantial power loss when the effect sizes
were bidirectional. The power of FGRF-W was closely fol-
lowed by that of FGRF-F, which integrated the significance
levels of FGRF-B and FGRF-W. This result indicated that the
power of FGRF-F was driven largely by FGRF-W in such a
scenario. FGRF-O and GSKAT still had similar performance,
but the power of both methods was significantly lower than
that of FGRF-W and FGRF-F. In the simulations, the power of
FGRF-B tended to be the lowest among all methods.

Application to an AD sequencing dataset

We further applied the proposed methods to the enrichment
sample of theMinnesota Twin Family Study (MTFS). MTFS is
a longitudinal study of twins born in the state of Minnesota
between 1972 and 1984. MTFS was initiated in 1989 with
�1400 pairs of identical and same-sex fraternal twins and

Figure 3 Simulation S1: Statistical power of all methods when there is no
genetic heterogenerity. QT: Quantitative Trait; BT: Binary Trait. 1-D: Effect
of causal variants is unidirectional; 2-D: Effect of causal variants is bidi-
rectional. Black: FGRF-O; Red: FGRF-B; Green: FGRF-W; Blue: FGRF-F;
Cyan: GSKAT; Magenta: Burden test.

Figure 4 Simulation S2: statistical power of all methods when genetic
heterogenerity is caused by rare but not private mutations. QT, Quanti-
tative Trait; BT, Binary Trait; 1-D: Effect of causal variants is unidirectional;
2-D: Effect of causal variants is bidirectional. Black: FGRF-O; Red: FGRF-B;
Green: FGRF-W; Blue: FGRF-F; Cyan: GSKAT; Magenta: Burden test.
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their parents (Iacono et al. 1999). So far, over 9800 individu-
als have participated in MTFS. Since 2000, the enrichment
sample of MTFS was established to enhance the representa-
tion of twins at high risk for the development of substance
use. MTFS participating families were selected into the en-
richment sample only if at least one twin member exhibited
symptoms of childhood disruptive disorders (Keyes et al.
2009). A detailed description of MTFS and the MTFS enrich-
ment sample can be found elsewhere (Iacono et al. 1999;
Keyes et al. 2009).

Our study population comprised a total of 1431 individuals
from 681 families, including 321 singletons, 59 two-member
families, 212 three-member families, and 89 completed nu-
clear families with four members. Each individual was
assessed for various substance-related phenotypes, such as
alcohol, nicotine and other illicit drug dependence. The
phenotypic measures were based on protocols of the Sub-
stance Abuse Module (SAM) of the Composite International
Diagnostic Interview. The detailed description of the pheno-
types and diagnostic criteria can be found elsewhere (Hicks
et al. 2011). In our study, we focused on an AD factor, which
summarized various aspects of problematic alcohol use, such
as social and occupational problems, withdrawal and toler-
ance, and compulsive drinking and impairment in major life
activities. The AD factor was quantitative in its original scale.
Its distribution is illustrated in Figure 6.

Each individual was whole-genome sequenced. Similar to
our simulations, we focused on rare variants and removed
commonvariantswithaminorallele frequencyof5%or larger.
The number of rare variants varied largely across genes. After
we removed common variants, a total of 18,127 genes har-

bored two or more genetic variants. We then evaluated the
association between the AD factor and each of these 18,127
genes by using the FGRF-based methods, GSKAT, and the
Burden test. Figure 7 shows the quantile–quantile (Q–Q)
plots of the observed P-values from gene-level analyses vs.
the expected P-values under the null hypothesis of no asso-
ciation (i.e., uniform distribution). The observed P-values by
using GSKAT and all FGRF-based tests showed no significant
deviation from the null distribution, indicating that popula-
tion stratification was not a major concern in our data.
FGRF-O and GSKAT had similar genomic inflation factor
(i.e., l = 1.05 and l = 1.06, respectively). However, the
observed P-values from the Burden test showed some infla-
tion (i.e., l = 1.21).

The top genes identified by either FGRF or GSKAT are
summarized in Table 5. The results showed that a total
of 10 genes were identified using a significance level of
P , 0.0001. The results of GSKAT and FGRF-O were highly
consistent with very similar P-values. Four genes (i.e., C9,
PNP, RPLP2, and PTCHD2) were significant in both methods.
One gene (i.e., OR10H2) and four genes (i.e., LOC100133267,
ANHX, ZNF268, and UNC5B) were significant only by using
FGRF-O orGSKAT, respectively. However, the P-values of these
five genes were very close by using both methods, all of which
were at least marginally significant at a level of 1.0e204. For
the first nine genes listed in Table 5, FGRF-W gave P-values.
0.1. We hypothesize that there is no genetic heterogeneity for
these nine genes. Interestingly, we found that one gene (i.e.,
SAMD14) was only significant when using FGRF-W. FGRF-F
also achieved marginal significance for this gene. We hypoth-
esize that there is genetic heterogeneity within this gene. In
such a scenario, FGRF-W or FGRF-F would have a substantial
power improvement over FGRF-O or GSKAT.

The topgenes identifiedby theBurden test are summarized
in Table 6. A total of 12 genes were identified using a thresh-
old of 1.0e204 as the significant level. None of these 12 genes
overlapped with those 10 genes identified by FGRF or

Figure 5 Simulation S3: statistical power of all methods when genetic
heterogenerity is caused by private mutations. QT, Quantitative Trait; BT,
Binary Trait. 1-D: Effect of causal variants is unidirectional; 2-D: Effect of
causal variants is bidirectional. Black: FGRF-O; Red: FGRF-B; Green: FGRF-
W; Blue: FGRF-F; Cyan: GSKAT; Magenta: Burden test.

Figure 6 Distribution of AD phenotype.
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GSKAT. Three genes (i.e., USP17L17, USP17L18, and
USP17L19) appeared to be false positives due to the limited
number of rare variants within these genes. The collapsed
variant remained rare in the population, leading to incorrect
inference based on the asymptotic test. This could also be the
main reason for the early departure from the null hypothesis
observed in the Q–Q plot of the Burden test (i.e., genomic
inflation factor l = 1.21). Among the remaining nine genes
in Table 6, eight (i.e., TINAGL1, MGAT1, MAP3K7CL, MSLN,
PDDC1, ANKRD18A, KCNS2, SYCE3) were marginally signif-
icant either in FGRF-O or GSKAT. We hypothesize that there
is no genetic heterogeneity within these genes, and that the
causal variants within these genes had unidirectional effect
sizes. In such a scenario, the Burden test may achieve a com-
parable or higher power than FGRF-O and GSKAT.

Discussion

We have proposed a random field framework, referred to as
FGRF, for detecting gene–phenotype association in family-
based sequencing studies. FGRF leads to a comprehensive
group of tests suitable for various disease scenarios in terms
of genetic heterogeneity and population stratification, in-
cluding an overall test (FGRF-O), a between-family test
(FGRF-B), a within-family test (FGRF-W), and a Fisher’s com-

binational probability test (FGRF-F). Although the four tests
(i.e., FGRF-O, FGRF-W, FGRF-B, and FGRF-F) are developed
under the random field framework, they are essentially
different tests that utilize different sources of information
or different strategies to build test statistics. Therefore, their
performances could vary according to the underlying sce-
nario (e.g., presence of genetic heterogeneity). When there
is no genetic heterogeneity, FGRF-O, which has a similar per-
formance with existing methods such as the GSKAT, would
be the best option. When there is genetic heterogeneity,
FGRF-W, and FGRF-F would be good options as both can
use the within-family information to consider genetic hetero-
geneity. In the presence of population stratification, caution
should be taken before applying FGRF-O, GSKAT, or the Bur-
den test, all of which would have inflated type I error rates.
Under such a scenario, FGRF-W and FGRF-F utilize within-
family information to provide robustness against population
stratification. In reality, when one does not know whether
genetic heterogeneity or population stratification exists, we
recommend FGRF-F. In our simulations, FGRF-F rarely has
the highest power among all methods, but it is usually very
close to the method with the highest power, and can be sub-
stantially better than methods with the lowest power.

The proposed FGRF is suitable for multi-locus association
tests in family-based studies. A number of multi-locus tests

Figure 7 Q–Q plots of P-values (logarithm
scale) for gene-based association tests by using
each statistical method. l: Genomic inflation
factor.

Table 5 Top genes identified by using the FGRF and the GSKAT (threshold of 1e204)

Gene Chro. No. of SNPs FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

C9 5 842 7.93e205a 0.361 0.933 0.714 2.93e205a 0.074
PNP 14 122 4.97e205a 0.031 0.282 0.056 2.61e205a 0.068
RPLP2 11 149 3.16e205a 0.033 0.218 0.049 5.64e205a 2.58e203
PTCHD2 1 584 5.33e205a 0.308 0.235 0.259 6.55e205a 0.058
OR10H2 19 95 2.56e205a 5.57e203 0.977 0.020 6.54e204 1.43e203
LOC100133267 8 29 1.25e204 0.587 0.103 0.227 2.90e205a 0.258
ANHX 12 217 1.11e204 0.223 0.303 0.262 9.81e206a 0.73
ZNF268 12 352 1.03e204 0.358 0.857 0.668 1.08e205a 2.58e203
UNC5B 10 846 5.86e204 0.030 0.299 0.0531 8.25e205a 0.020
SAMD14 17 202 0.340 0.539 4.92e205a 3.12e204 0.334 0.670
a At least marginally significant at a level of 1.0e204.
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were previously proposed by considering the LD and linkage
information (Lou et al. 2005; Li and Wu 2009), demonstrat-
ing the strength of family-based designs. Family-based design
also has a unique advantage for investigating genetic imprint-
ing. A number of statistical methods have been developed
and applied to the fields of human and plant genetics
(Weinberg et al. 1998; Weinberg 1999; Li et al. 2014b; Sui
et al. 2014; Sun et al. 2015; Zhu et al. 2015). While the
current version of FGRF does not model parent-of-origin ef-
fects, it can be extended to consider genetic imprinting ef-
fects. This is an interesting topic worth further investigation
in future work.

We have used our new approach to search for disease-
susceptibility genes underlying AD. Several genes were iden-
tified, including SAMD14, which was identified by FGRF-W
alone. This indicates potential genetic heterogeneity of
SAMD14 across families. SAMD14 is located on chromosome
region 17q21.33, and its function is not completely under-
stood. Previous studies indicated SAMD14 might be a puta-
tive tumor suppressor gene. The DNA methylation within
SAMD14 is associated with silencing of its expression leading
to lung cancer and its malignant progression (Sun et al.
2008). FGRF-O and GSKAT gave consistent association re-
sults for a number of genes, including C9, RPLP2, PTCHD2,
OR10H2, LOC100133267, ANHX, ZNF268, and UNC5B. Gene
C9, complement component 9, was located on chromosome
region 5p14-p12. It encodes the final component of the com-
plement system, and mutation within this gene is found to
be associated with complement component 9 deficiency, age-
related macular degeneration, and chronic kidney disease
(Köttgen et al. 2010; Seddon et al. 2013). Gene PNP, purine
nucleoside phosphorylase, was located on chromosome
14q13.1. It encodes an enzyme that reversibly catalyzes the
phosphorolysis of purine nucleosides. Mutations within gene
PNP may lead to nucleoside phosphorylase deficiency, which
is often characterized by autoimmune disorders, lupus eryth-
ematosus, and neurological symptoms, such as developmen-
tal decline, hypotonia, and mental retardation (Markert
1991; Walker et al. 2011; Kariuki et al. 2015). Gene RPLP2,
ribosomal protein lateral stalk subunit P2, was located on
chromosome 11p15.5. It encodes a ribosomal phosphopro-

tein playing an important role in the elongation step of pro-
tein synthesis. Gene RPLP2 was suggested to be involved in
the development of systemic lupus erythematosus (Rhyner
et al. 2011). Gene PTCHD2, also known as dispatched RND
transporter family member 3 or DISP3, was located on chro-
mosome 1p36.22. It is highly expressed in neural tissues, and
implicated with neural differentiation (Ziková et al. 2014).
Gene OR10H2, olfactory receptor family 10 subfamily H
member 2, was located on chromosome 19p13.1. Olfactory
receptors initiate the odor perception by interacting with
odorant molecules in the nose, resulting a neuronal response
that triggers the perception of a smell (Malnic et al. 2004).
Gene ZNF268, zinc finger protein 268, was located on chro-
mosome 12q24.33. Previous studies have indicated that gene
ZNF268may be involved in fetal liver development, hemato-
logical diseases, cervical cancer. and ovarian cancer (Sun
et al. 2004; Wang et al. 2012; Hu et al. 2013). Gene
UNC5B, unc-5 netrin receptor B, was located on chromosome
10q22.1. This gene encodes a member of the netrin family of
receptors. The encoded protein also belongs to a group of
dependence receptors suggested to be involved in embryo-
genesis (Dakouane-Giudicelli et al. 2011), and development
of various types of cancers, such as bladder (Liu et al. 2013),
colorectal (Okazaki et al. 2012), prostate, and kidney (Kong
et al. 2013; Zhan et al. 2013).

Furthermore, theBurdentest identified12additional genes.
Considering the fact that the Burden test may have an inflated
type I error rate, we limited our discussion to the eight genes
(i.e.,TINAGL1,MGAT1,MAP3K7CL,MSLN, PDDC1,ANKRD18A,
KCNS2, and SYCE3) showing at least nominal significance
level by using FGRF-O or GSKAT. Gene TINAGL1, tubulointer-
stitial nephritis antigen like 1, was located on chromosome
1p35.2. It was suggested that TINAGL1 was related to lung
cancer, and could be a possible candidate for drug compounds
(Umeyama et al. 2014). GeneMGAT1, mannosyl (alpha-1, 3)–
glycoprotein beta-1,2-N-acetylglucosaminyltransferase, was
located on chromosome 5q35. Gene MGAT1 was suggested
to be associatedwithmultiple sclerosis and obesity. (Jacobsson
et al. 2012; Yu et al. 2014) Gene MSLN was located on chro-
mosome 16p13.3. It encodes the protein of mesothelin, which
a differentiation antigen highly expressed in several human

Table 6 Top genes identified by using the Burden test (threshold of 1e204)

Gene Chro. No. of SNPs FGRF-O FGRF-B FGRF-W FGRF-F GSKAT BD

TINAGL1 1 234 2.23e204 0.395 0.480 0.497 1.87e204 5.41e205a

MGAT1 5 5 2.98e204 0.037 0.708 0.111 1.81e203 7.79e207a

MAP3K7CL 21 898 2.65e203 0.115 0.868 0.329 3.61e203 3.97e205a

MSLN 16 178 1.80e203 0.211 0.048 0.0572 2.73e203 4.03e205a

PDDC1 11 219 6.18e203 0.142 0.580 0.298 2.16e203 9.09e205a

ANKRD18A 9 836 1.98e204 0.149 0.220 0.143 6.69e204 8.44e205a

KCNS2 8 104 3.17e204 1.75e203 0.067 1.39e203 0.025 2.25e205a

SYCE3 22 186 9.48e203 0.035 0.671 0.111 0.0490 3.28e205a

TMEM43 3 278 0.246 0.135 0.200 0.127 0.229 7.35e209a

USP17L17 4 2 0.141 0.217 0.158 0.149 0.160 9.28e226a

USP17L18 4 2 0.142 0.215 0.158 0.147 0.159 9.28e226a

USP17L19 4 2 0.142 0.221 0.158 0.148 0.159 9.28e226a

a At least marginally significant at a level of 1.0e204.
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cancers, including pancreatic, ovarian, and lung cancers
(Argani et al. 2001; Ordóñez 2003; Hassan et al. 2005). Gene
ANKRD18A, ankyrin repeat domain 18A, was located on chro-
mosome 9p13.1. It was suggested that hypermethylation and
consequent mRNA alterations might be an important mecha-
nism leading to the development of lung cancer (Liu et al.
2012). Gene SYCE3, synaptonemal complex central element
protein 3, was located on chromosome 22q13.33. During mei-
osis, the synaptonemal complex mediates synapsis of homol-
ogous chromosomes. As evidenced by animal models, gene
SYCE3 could be functional related to fertility (Schramm et al.
2011).

We hypothesized that the identified genes may have dis-
tinct mechanisms in terms of genetic heterogeneity. Our pro-
posed method is especially advantageous when there is
genetic heterogeneity across families. While it is biologically
plausible that these genes could play essential roles in the
development of AD, these interpretations are speculations
based on our simulation studies. Further studies are necessary
to replicate or validate these findings.
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