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1. INTRODUCTION

Density functional theory (DFT) is nowadays one of the most popular methods for
ground state electronic structure calculations in quantum chemistry and solid state phy-
sics. Compared to traditional ab initio and semi-empirical approaches, contemporary
density functional methods show a favorable balance between accuracy and computational
efficiency. A number of commercial programs is available, and DFT calculations of ground
state energies, structures, and many other properties are routinely performed by non-
experts in (bio-)chemistry, physics, and materials sciences.

Hohenberg-Kohn density functional theory is strictly limited to ground states [1], which
excludes applications to photochemistry. This is a serious drawback, because photoex-
cited molecules are experimentally much more difficult to characterize than molecules in
their ground states. Reliable theoretical predictions for excited states are thus especially
valuable.

Several routes have been followed to extend conventional DFT to excited states (see,
e.g., Refs. [2–5]). In the present review, we focus on time-dependent density functional
theory (TDDFT), which is presently the most popular method to treat excited states in
a DFT framework. Extensive reviews on TDDFT exist [6–10]; most of them emphasize
formal aspects of the theory. The aim of the present work is to survey the use of TDDFT
in photochemistry. It is primarily written for non-experts with little background in DFT.
The literature in this field is growing rapidly, and we cannot claim to be exhaustive;
instead, we give a selective introduction to important concepts and recent developments
from a rather personal perspective.

Sec. 2 contains a brief introduction to the theory. We do not give any derivations
and merely state the most important results and explain their meaning. An overview
of popular density functionals is given in Sec. 2.3. Algorithms to compute spectra and
excited state properties are reviewed in Sec. 3. We mostly describe the steps neces-
sary in a TDDFT excited state calculation and give details only where necessary. Some
timings for typical applications are presented in Sec. 3.4. Sec. 4 summarizes the perfor-
mance of TDDFT excitation energies, transition moments, and excited state properties

∗Electronic address: filipp.furche@chemie.uni-karlsruhe.de.



in benchmark studies. This section is recommended to the reader interested in the ac-
curacy of TDDFT in general. Situations where present functionals fail are discussed as
well. Specific applications are surveyed in Sec. 5. Classes of compounds include aromatic
systems and fullerenes, porphyrins and related compounds, transition metal compounds,
metal and semiconductor clusters, organic polymers, and biologically relevant systems.
We close with an outlook in Sec. 6.

2. THEORETICAL FOUNDATIONS

2.1. Time-dependent response theory approach to excited states

Excited states are solutions of the time-independent stationary Schrödinger equation;
time-dependent response theory is used as a trick to reduce electronic excitations to
ground state properties. Consider a molecule in its electronic ground state subject to
a periodic perturbation by a uniform electric field E oscillating at frequency ω. The
distribution of the electronic charge and current density of the molecule is described by
the one-particle density matrix γ(t). γ(t) will perform driven oscillations about its ground
state value γ(0). The amplitude of these oscillations is given by the Fourier transform of
γ(t), denoted γ(ω) for simplicity. As a result of elementary perturbation theory, γ(ω) has
the following expansion in powers of the field E:

γ(ω) = γ(0) −
∑

n

(

γ0nµ0n

ω − Ω0n

−
γ†

0nµ
∗
0n

ω + Ω0n

)

E + O(E2) (1)

If the frequency ω approaches an excitation energy Ω0n of the system, there is a resonance
catastrophe and the amplitude of the oscillation diverges. Keeping the analogy to a system
of harmonic oscillators [11, 12], the excitation energies Ω0n are the eigenfrequencies of the
electrons in the molecule, and the transition density matrices γ0n are the corresponding
collective modes. After inversion of the relation between γ(ω) and E, the excitation
energies are obtained as eigenvalues of an electronic Hessian which may be imagined
as the matrix of second derivatives of the electron energy with respect to the electronic
degrees of freedom.

In this way, any ground-state theory can be extended to excited states, provided the
time-dependent response is well-defined. The thus obtained excitation energies and transi-
tion moments are in turn consistent with ground-state properties because sum over states
(SOS) expressions as in Eq. (1) hold. Both is generally not true for state-based methods.
On the other hand, the reliability of response theory based methods crucially depends on
the stability of the ground state (see below).

The formal basis for an extension of common ground-state density functional meth-
ods to time-dependent perturbations is TDDFT. Within the time-dependent Kohn-Sham
(TDKS) framework [13], one considers a system of N non-interacting fermions whose
density is constrained to the physical density ρ(t, x). This leads to the time-dependent
Kohn-Sham equations

i
∂

∂t
φj(t, x) = H[ρ](t, x) φj(t, x). (2)

The effective TDKS one-particle Hamiltonian H[ρ](t, x) = π2(t, x)/2 + vs[ρ](t, x) consists
of a kinetic energy part and a local time-dependent external potential vs[ρ]. The latter is



a unique functional of ρ(t, x) (up to a gauge transformation) for a given initial state, as
stated by Runge and Gross [13]. vs is usually decomposed according to

vs[ρ](t, x) = vext(t, x) + vC[ρ](t, x) + vxc[ρ](t, x) (3)

into the external one-particle potential vext, the time-dependent Coulomb (or Hartree)
potential vC[ρ](t, x) =

∫

dx′ρ(t, x′)/|r− r′|, and the time-dependent exchange-correlation
potential vxc[ρ](t, x).

Equivalently, one may consider the TDKS one-particle density matrix γ(t), which is
related to the TDKS orbitals via the spectral representation

γ(t, x, x′) =
N
∑

j=1

φj(t, x)φ∗
j (t, x

′). (4)

Its time evolution is governed by the von-Neumann equation

i
∂

∂t
γ(t) =

[

H[ρ](t), γ(t)
]

, (5)

subject to the idempotency constraint

γ(t, x, x′) =

∫

dx1γ(t, x, x1)γ(t, x1, x
′). (6)

This density matrix based approach [12, 14–16] is particularly convenient for response the-
ory, because the equations determining the first and higher order response of γ can be
derived by straightforward differentiation of Eqs. (5) and (6) with respect to an exter-
nal perturbation [15]. Complicated intermediates such as perturbed orbitals or response
functions are avoided.

Equations (5) and (6) describe a non-interacting system and are therefore computation-
ally manageable, while the solution of the full interacting N -electron problem is exponen-
tially more complex. This is, somewhat simplified, the main cause of the computational
advantage of density functional methods over conventional wave-function methods. The
price for this improved efficiency is that the potential vxc[ρ](t, x) has to be approximated.
The construction of accurate and inexpensive approximations to vxc[ρ] is a central problem
of TDDFT and will be discussed in Sec. 2.3. Formally, the TDKS construction implies [6]
that γ(t) yields the interacting density ρ and the interacting current density j according
to

ρ(t, x) = γ(t, x, x)

j(t, x) =
1

2

(

π(t, x) + π
∗(t, x′)

)

γ(t, x, x′)

∣

∣

∣

∣

x′=x

.
(7)

This means that the frequency-dependent TDKS density matrix response must have an
SOS expansion of the type (1). Therefore, the physical excitation energies are accessible
from the TDKS response, and the corresponding eigenmodes yield physical transition
moments.



2.2. Excited state properties

2.2.1. The Lagrangian of the excitation energy
The time-dependent response theory approach outlined in the last section provides a

route to excitation energies and transition moments. Excited state total energies are ac-
cessible by adding the corresponding ground state energy to the excitation energy. But
how to compute other excited state properties such as dipole moments without an excited
state wavefunction? – First it is important to remember that the wavefunction is only an
intermediate that relates properties of a system such as energies or densities to a Hamil-
tonian, i.e., external potentials. Properties of a stationary state may be defined without
reference to the wavefunction by the dependence of the energy on an applied external
perturbation. For example, the dipole moment may be defined as the first derivative of
the energy with respect to a constant electric field at zero field strength. More generally,
the excited state density can be defined as the functional derivative of the excited state
energy with respect to an external perturbing potential at zero coupling. It is therefore
sufficient to know the dependence of the excited state energy on the external potential to
compute static excited state properties.

The energy of a stationary state is stable with respect to the wavefunction; this leads to
the Hellmann-Feynman theorem for first-order properties and to the more general Wigner
2n + 1 rule. The latter states that the wavefunction through n-th order determines
all properties through order 2n + 1. The Lagrangian method establishes an analogous
variational principle for excited states in TDDFT. Here we present a summary only; for
a detailed derivation, the reader is referred to Ref. [17].

The Lagrangian of the excitation energy is defined by

L[X,Y,Ω, C, Z,W ] = 〈X,Y |Λ|X,Y 〉 − Ω(〈X,Y |∆|X,Y 〉 − 1)

+
∑

iaσ

ZiaσFiaσ −
∑

pqσ

Wpqσ(Spqσ − δpq).
(8)

F is the ground state Fock matrix, and S denotes the overlap matrix. L depends on
the ground state Kohn-Sham (KS) molecular orbital (MO) coefficients C; the latter are
related to the ground state KS MOs φpσ via the LCAO (linear combination of atomic
orbitals)

φpσ(r) =
∑

ν

Cνpσχν(r), (9)

where χν are atom-centered basis functions. Indices i, j, . . . are used for occupied, a, b, . . .
for virtual, and p, q, . . . for general MOs. We assume that the MOs are real and eigenfunc-
tions of the z component of the total spin. X and Y parameterize the transition density
matrix γ0n of the n-th excited state,

γ0n σ(r, r′) =
∑

ia

(

Xn iaσφaσ(r)φiσ(r′) + Yn iaσφiσ(r)φaσ(r′)
)

; (10)

we shall always refer to the n-th state and omit state labels where possible. X and Y are
conveniently gathered in the two component “transition vector”

(

X
Y

)

= |X,Y 〉. (11)



Ω, Z, and W are Lagrange multipliers enforcing additional constraints, as discussed below.
If L becomes stationary, the additional “penalty” terms introduced by Ω, Z, and W vanish
by construction. One is thus left with the term 〈X,Y |Λ|X,Y 〉 representing the excitation
energy. It may be considered an expectation value of the orbital rotation Hessian Λ
evaluated for the transition vector |X,Y 〉. Λ and ∆ are 2×2 “super-operators”,

Λ =

(

A B
B A

)

, ∆ =

(

1 0
0 −1

)

, (12)

where A and B have the matrix representation

(A + B)iaσjbσ′ = (ǫaσ − ǫiσ)δijδabδσσ′ + 2(iaσ|jbσ′) + 2fxc
iaσjbσ′

− cxδσσ′[(jaσ|ibσ) + (abσ|ijσ)] (13a)

(A−B)iaσjbσ′ = (ǫaσ − ǫiσ)δijδabδσσ′ + cxδσσ′[(jaσ|ibσ)− (abσ|ijσ)]. (13b)

(pqσ|rsσ′) is a two-electron repulsion integral in Mulliken notation, and fxc
pqσrsσ′ represents

a matrix element of the exchange-correlation kernel in the adiabatic approximation (AA),

fxc
σσ′(r, r′) =

δ2Exc

δρσ(r)δρσ′(r′)
, (14)

where Exc is the static exchange-correlation energy functional. The hybrid mixing pa-
rameter cx [18, 19] is used to interpolate between the limits of “pure” density functionals
(cx = 0) and time-dependent Hartree-Fock (TDHF) theory (cx = 1, Exc = 0).

2.2.2. Stationarity conditions for L
The following stationarity conditions determine the excited state energy and first order

properties.
1. The ground-state KS equations (in unitary invariant form),

δL

δZiaσ

= Fiaσ = 0, (15)

implying that the occupied-virtual block of the ground-state Fock operator F is zero. The
Lagrange multiplier W enforces orthonormality of the KS MOs,

δL

δWpqσ

= Spqσ − δpq = 0. (16)

2. The TDKS eigenvalue problem (EVP)

δL

δ〈X,Y |
= (Λ− Ω∆)|X,Y 〉 = 0, (17)

together with the non-standard normalization condition for the transition vectors

δL

δΩ
= 〈X,Y |∆|X,Y 〉 − 1 = 0, (18)

which is enforced by Ω. The form of Eqs. (17) and (18) is familiar from Hartree-Fock
(HF) theory [20]. This analogy was first recognized by Zangwil and Soven [21] and later



generalized by Casida [14]. Other schemes, including density based methods [22] and
Dyson-type procedures [23] are special cases of the density matrix based formalism.

The eigenvalues Ω of Λ are electronic excitation energies, and the corresponding transi-
tion vectors |X,Y 〉 are collective eigenmodes of the TDKS density matrix. Ω and |X,Y 〉
are the solutions of the TDKS EVP (17). The normalization condition (18) can be used
to assign a state in terms of excitations from occupied to virtual KS MOs. The weight of
a one-particle excitation from the occupied orbital i to the virtual orbital a is

wia = X2
iaσ − Y 2

iaσ. (19)

The configuration mixing reflects the change in the Coulomb and exchange-correlation
potentials upon excitation. More elaborate methods to analyze transition vectors use
transition natural orbitals [24] or attachment and detachment densities [25]. Denoting
the electronic dipole moment operator by µ, the oscillator strength for the transition
n← 0 is given by

f0n =
2

3
Ωn|〈µ|Xn, Yn〉|

2. (20)

Similarly, the rotatory strength is

R0n = Im
(

〈µ|Xn, Yn〉 · 〈Xn, Yn|m〉
)

, (21)

where m denotes the magnetic dipole moment operator. µ can be expressed in various
forms, e.g., the dipole-length or the dipole-velocity form [26] which are related by a gauge
transformation. Since the TDKS formalism is gauge invariant, the different forms of µ

lead to the same result in the basis set limit [15]. As expected for a response theory
based approach, the oscillator strength and the rotatory strength satisfy sum rules. For
example, the isotropic polarizability of the the ground state at frequency ω has the SOS
expansion

α(ω) =
∑

n

f0n

Ω2
0n − ω2

. (22)

This is true independent of the basis set and functional.
3. The “Z vector” equation and the determining equations for W . They follow from

the stationarity condition

δL

δCµpσ

= 0. (23)

The Z vector equation is a static perturbed KS equation of the form

(A + B)Z = −R. (24)

The expressions for R and W involve third order functional derivatives and are explicity
given in Ref. [17]. The difference between the excited and ground state density matrices
is given by

P = T + Z, (25)



where the “unrelaxed” part T contains products of the excitation vectors only. Z accounts
for relaxation of the ground state orbitals; it can be of the same order of magnitude as
T . The information contained in P is complementary to the information contained in the
transition vector. The latter is related to matrix elements between the ground and excited
state, while P is related to the difference of expectation values for the excited and the
ground state. For example, tr(Pµ) is the change of the dipole moment upon excitation
from the ground state; by adding the ground state density matrix to P , excited state
properties can be computed in this way. Population analysis or graphical representation
of P can give insight in the re-distribution of the electronic charge due to the excitation
process.

The remaining Lagrange multiplier W accounts for first-order changes in the energy due
to changes in the overlap matrix. W is therefore an “energy weighted difference density
matrix”, and is needed for gradient calculations only. The total gradient of L with respect
to a perturbation ξ has the form [17]

Lξ =
∑

µνσ

hξ
µνPµνσ −

∑

µνσ

Sξ
µνWµνσ +

∑

µνκλσσ′

(µν|κλ)ξΓµνσκλσ′

+
∑

µνσ

V xc (ξ)
µνσ Pµνσ +

∑

µνκλσσ′

f
xc (ξ)
µνσκλσ′(X + Y )µνσ(X + Y )κλσ′ ; (26)

h is the sum the kinetic and potential energy one-particle operators and V xc is the static
exchange-correlation potential. Γ is an effective two-particle density matrix that separates
into two-index quantities. ξ may represent, e.g., a component of an external electric field,
in which case all terms except the first are zero; or it may represent a nuclear coordinate.
Parentheses indicate that derivatives need to be taken only with respect to basis functions;
MO coefficient derivatives do not occur as a consequence of the 2n+1 rule. Lξ has nearly
the same form as the ground state energy gradient [27], the definitions of P , Γ, and W
being the main difference. Total excited state properties are obtained by simply adding
the ground state contributions.

2.3. Approximate exchange-correlation functionals

There are different approaches to the construction of approximate functionals. Empiri-
cal functionals contain a large number of parameters fitted to a “training set” of accurate
experimental or calculated data. Non-empirical functionals contain few or no fitted pa-
rameters and are designed to satisfy known constraints. Empirical functionals should
be accurate for systems and properties contained in the training set, but they can fail
for other systems. In contrast, non-empirical functional usually exhibit a more uniform
accuracy [28]. The accuracy of approximate exchange-correlation functionals is limited
by their form, i.e., there is a certain maximum accuracy that can be expected for local,
semi-local, etc. functionals. The “perfect agreement” with experiment reported in some
density functional studies should therefore rather give rise to concern, especially if highly
parameterized or exotic functionals are used.

The most common and universally used approximation in TDDFT is the above-mentio-
ned AA [29]. It replaces the time-dependent exchange-correlation potential by its static
counterpart, evaluated at the time-dependent density. The resulting potential is instanta-
neous, in contrast to the exact one, which has a “memory” of all times t′ ≤ t. In response



theory, the AA makes the exchange-correlation kernel and all higher derivatives of the
exchange-correlation potential independent of the frequency.

The AA has been considered uncritical for a long time. Only recently it has been clar-
ified that the lack of higher excited states in TDDFT excitation spectra is a consequence
of the AA [30]. This may be related to the failure of the AA in dissociating H2, where
doubly excited states are important [31].

2.3.1. Local and semi-local functionals
Semi-local functionals have the form

Exc =

∫

d3r f(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r), . . .). (27)

In the local spin density approximation (LSDA), f depends on the spin densities at
r only. The LSDA is derived from the exchange-correlation energy per particle of a
uniform electron gas, which has been accurately parameterized [32, 33]. For functionals
of the generalized gradient approximation (GGA), f also depends on the gradient of the
spin densities. Popular GGA functionals with few empirical parameters are Becke’s 1988
exchange functional [34] together with the correlation functional of Lee, Yang, and Parr
(BLYP) [35], or Perdew’s 1986 correlation functional (BP86) [36]. The GGA of Pewdew,
Burke, and Ernzerhof [37] (PBE) is parameter free, while Hamprecht, Cohen, Tozer,
and Handy (HCTH) have proposed an empirical GGA functional [38]. In meta-GGA
functionals, f depends on additional local information such as the kinetic energy density
or the Laplacian of the density. Examples are the 21 parameter meta-GGA of Van Voorhis
and Scuseria (VS98) [39], or the non-empirical meta-GGA of Tao, Perdew, Staroverov,
and Scuseria (TPSS) [28].

2.3.2. Hybrid functionals
Hybrid functionals interpolate between HF theory and semi-local functionals [18, 19];

the fraction of HF exchange is controlled by the exchange mixing parameter cx. The
exchange is treated as in HF theory, using non-local potentials. This interpolation leads to
an error compensation for many properties. Popular hybrid functionals are, e.g., B3LYP
[40], B3PW91 [19], or PBE0 [41].

2.3.3. Optimized effective potential (OEP) based functionals
Exact exchange (EXX) as a functional of the KS density matrix has the same form as

HF exchange. Differences arise in the variation of the energy. In HF theory, the energy
is minimized with respect to the density matrix. The resulting exchange potential is the
well-known non-local exchange operator in HF theory, while it is a local multiplicative
potential in KS theory. For a fixed density, this potential can be determined by an energy
optimization procedure, as first shown for atoms by Talman and Shadwick [42]. Com-
putation of the local exchange potential in molecules is a non-trivial problem [43], but
there has been recent progress in developing more efficient methods [44, 45] and approxi-
mations [46–48]. Full OEP calculations of the frequency-dependent exchange kernel have
been reported for solids, but not for molecules so far [49]; see Refs. [50, 51] for a review.
In most TDDFT applications, KS orbitals and orbital energies from an OEP calculation
are combined with adiabatic LSDA or GGA exchange-correlation kernels.



2.3.4. Asymptotic corrections
The exchange-correlation potentials of semi-local functionals decay too fast in the

asymptotic region outside a molecule. In most cases, the decay is exponential, instead of
the correct −1/r. As a result, diffuse excited states are often predicted too low in energy,
and higher Rydberg excitations may be absent from the bound spectrum [52]. Various
correction schemes have been suggest to remedy this problem [53–55]. These corrected
potentials are not the derivative of any exchange-correlation energy functional, however.
This does not affect vertical excitation energies, but makes a consistent definition of ex-
cited state total energies and properties difficult.

2.3.5. Current-dependent functionals
Some deficiencies of semi-local functionals can be cured by using the current density j

instead of the density. Vignale and Kohn have shown that the time-dependent exchange-
correlation vector potential of weakly inhomogeneous systems possesses a gradient ex-
pansion as a functional of j but not of ρ [56, 57]. Current dependent functionals capture
macroscopic polarization effects in solids which are ultra-non-local in the density [58].
First applications to molecular excitation energies [59] show a somewhat mixed picture,
however.

3. COMPUTATIONAL STRATEGIES

3.1. Basis set methods

As explained in the last section, performing a TDDFT excited state calculation amounts
to finding the stationary points of the Lagrangian L. Introduction of a finite basis set
(usually atom-centered) generates a finite number of MOs through the LCAO expansion
(9). If the basis set is suitably chosen, the excited state energy may be well approximated
by optimizing L on the corresponding subspace. We thus arrive at a finite-dimensional
optimization problem which can be solved by matrix algebra. The basis set incompleteness
can be checked by using hierarchical basis sets of different size, compare Sec. 3.3.

The steps necessary to compute excited state energy and gradients parallel the station-
arity conditions for L discussed in Sec. 2.2.2. A summary is given in Table 1, including
the scaling of the computational cost with the system size measured by N .

Table 1
Steps in an excited state energy and gradient calculation, formal and asymptotic scaling
of computational cost.

Scaling
Formal Asymptotic

Ground state energy and wavefunction N4 N2

Excitation energy N4 N2

Relaxed density and gradient N4 N2

The first step, solution of the ground-state KS equations in a finite basis set, is a
standard procedure in quantum chemistry and needs no further discussion here. In the



second step, (approximate) excitation energies and transition vectors are calculated by
solving the finite-dimensional TDKS EVP. Complete diagonalization of the electronic
Hessian Λ scales as N6 and is prohibitive for systems with more than 10 heavy atoms. In
most applications, however, especially in larger systems, only the lowest excited states are
of interest. By iterative methods, the lowest part of the spectrum of Λ can be calculated
much more efficiently than by complete diagonalization.

Iterative methods minimize L by expanding the excitation vector on a subspace whose
dimension is small compared to the full problem. One usually starts from unit vectors, i.e.,
the KS one-particle excitations. In each iteration, the best approximation to the excitation
energy is calculated by a small diagonalization on the current subspace (Ritz step). The
error is controlled by the norm of the residual which corresponds to the gradient of L. If
the error is small enough, the process terminates; otherwise, the subspace is extended in
the direction of the (preconditioned) gradient and a new iteration starts. Similar ideas
can be found in the early work of Lanczos [60] and Hestenes and Stiefel [61] already, but
it was only the preconditioning introduced by Davidson [62, 63] that made these iterative
algorithms useful for quantum chemistry. The extension to the special EVPs occurring in
response theory goes back to Olsen, Jensen, and Jørgensen [64]; in the meantime, several
modifications have been suggested [65–68]. If “pure” functionals are used, it is favorable
to transform the TDKS EVP to a symmetric problem of half the original dimension [69];
the latter is amenable to standard algorithms for symmetric-positive EVPs.

The time-determining step in all iterative methods is the computation of matrix-vector-
products |U, V 〉 = Λ|X,Y 〉, where |X,Y 〉 is a subspace basis vector. This is most efficiently
performed as

(U + V ) = (A + B)(X + Y ), (28a)

(U − V ) = (A− B)(X − Y ), (28b)

because the symmetry of (A ± B) (as a super-operator) and of (X ± Y ) can be fully
exploited. The diagonal contribution to (A ± B) resulting from the orbital energy dif-
ferences, cf. Eqs. (13), is trivial to compute. The multiplication by the the remaining
four-index integrals is best performed by transforming the vectors to the AO basis, in the
spirit of direct CI methods [70] in an AO formulation [71, 72]. Denoting the transformed
vectors by Greek indices, we have

(X ± Y )µνσ =
1

2

∑

ia

(X ± Y )iaσ(CµiσCνaσ ± CµaσCνiσ). (29)

With respect to the AO indices, (X + Y ) is a symmetric and (X − Y ) a skew-symmetric
square matrix. After that, one computes

(U + V )µνσ =
∑

κλσ′

(

2(µν|κλ) + 2fxc
µνσκλσ′ − cxδσσ′[(µκ|νλ) + (µλ|νκ)]

)

(X + Y )κλσ′

(30a)

(U − V )µνσ =
∑

κλσ′

cxδσσ′ [(µκ|νλ)− (µλ|νκ)](X − Y )κλσ′ . (30b)



Back-transformation finally yields the product vectors in the MO basis,

(U ± V )iaσ →
1

2

∑

µν

(U ± V )µνσ(CµiσCνaσ ± CµaσCνiσ). (31)

The part resulting from the two-electron integrals is fully equivalent to a ground-state
Fock matrix construction for a complex density matrix [65]. This means that highly effi-
cient direct SCF techniques available for ground states can be carried over to excited state
calculations with minimal modifications. Thus, in each iteration, only O(N2) non-zero
two-electron integrals (µν|κλ) are calculated “on the fly”, i.e., they are completely or
partly discarded after use and not stored. In contrast, an integral transformation would
lead to an O(N5) scaling of CPU-time and O(N4) I/O, because (A±B) is generally not
sparse in the MO basis. The analogy to ground-state calculations also holds for the con-
tribution arising from the exchange-correlation kernel. The four-index quantities fxc

µνσκλσ′

are never actually calculated; instead, the contributions to (U + V ) are formed directly
on the quadrature grid and integrated, which is virtually equivalent to setting up the ma-
trix of the ground-state exchange-correlation potential [17, 69]. For semi-local functionals,
prescreening leads to a scaling of O(N) for the exchange-correlation contribution to the
matrix-vector-products (U + V ). The vector transformation steps (29) and (31) have a
formal O(N3) scaling; however, if efficient linear algebra subroutines are used, the cost is
negligible for systems with up to ca. 10000 basis functions.

For simulating electronic excitation spectra of larger systems, block iteration methods
lead to dramatic further savings of computation time [73, 74]. In these methods, a number
of states is treated simultaneously. This means that the two-electron integrals need to
be calculated only once for all vectors of a block. In addition, block methods often show
favorable convergence compared to single-vector methods.

Molecular point group symmetry can be exploited in the MO basis by Clebsch-Gordan
reduction of MO products and in the AO basis by skeleton operator techniques [65, 74, 75].
This leads to an overall reduction of computational cost by approximately the order of the
point group. Advantage can be taken of spin symmetry as well. For closed-shell singlet
ground states, the TDKS EVP decomposes into two separate EVPs for singlet and triplet
excitations. A restricted open shell scheme for high spin ground states has been proposed
recently [76].

If first-order excited state properties are to be calculated, the Z vector equation (24)
needs to be solved in the third step. This is best done iteratively again, using the tech-
niques outlined above. Once the relaxed density matrices P and W have been obtained,
excited state properties can be evaluated in almost the same manner as ground state
properties. It is important that the thus obtained relaxed density matrices do not depend
on the perturbation. The cost for computing analytical gradients of the excited state
energy is therefore independent of the number of nuclear degrees of freedom. In contrast,
numerical differentiation leads to a cost that increases linearly with the number of nuclei.

The cost for computing excited state energies and first-order properties differs from
the cost for the corresponding ground-state calculations by a constant factor only. In
conclusion, excited state geometry optimizations within the TDDFT framework are hence
not significantly more expensive than conventional DFT ground state optimizations [17].
The prerequisite is, however, that the 2n + 1 rule is used and full advantage is taken of



the similarity to efficient ground state algorithms.

3.2. Approximations and extensions

3.2.1. Efficient treatment of the Coulomb energy
As explained in Sec. 3.1, computation of the two-electron integrals (µν|κλ) is the

bottleneck in larger TDDFT response calculations. For non-hybrid functionals (cx = 0),
these integrals contribute to the Coulomb part of the excitation energy only,

EC[ρ0n] =
1

2

∑

µνκλσσ′

(X + Y )µνσ(µν|κλ)(X + Y )κλσ′

=
1

2

∫

d3r d3r′
ρ0n(r)ρ0n(r

′)

|r− r′|
.

(32)

The last expression is identical to the ground state Coulomb energy functional, evaluated
at the spin-averaged transition density

ρ0n(r) =
∑

σ

γ0n σ(r, r) =
∑

µνσ

(X + Y )µνσχµ(r)χν(r) (33)

RI-J techniques for a fast evaluation of the ground state Coulomb energy [77, 78] can thus
be carried over to excited state calculations in a straightforward manner.

The key idea of RI-J approximation is to introduce an auxiliary expansion of the density
in a set of one-center functions χp(r) (usually atom-centered Gaussians) [79–83],

ρ̃0n(r) =
∑

p

cpχp(r). (34)

The expansion coefficients cp are determined by minimizing the error in the Coulomb
norm

‖ρ0n − ρ̃0n‖
2
C =

1

2

∫

d3r d3r′
[ρ0n(r)− ρ̃0n(r)][ρ0n(r′)− ρ̃0n(r′)]

|r− r′|
. (35)

This leads to the Coulomb energy in the RI-J approximation,

EC[ρ̃0n] =
1

2

∑

µνκλσσ′

∑

pq

(X + Y )µνσ(µν|p)(p|q)−1(q|κλ)(X + Y )κλσ′ . (36)

In this expression only three- and two-center electron repulsion integrals occur, with
products of basis functions replaced by auxiliary functions (denoted by labels p, q). In
the auxiliary basis set limit, Eq. (36) is formally obtained from Eq. (32) by inserting the
identity. The choice of the Coulomb metric implies that the error EC[ρ0n] − EC[ρ̃0n] is
positive and quadratic in the error in the density. This variational stability ensures that
good accuracy can be achieved with relatively small auxiliary basis sets.

The RI-J approximation has several computational advantages. First, the calculation
of four-center integrals (µν|κλ) that formally scales as N4 is replaced with two N3 steps.
By means of integral pre-screening, the scaling can be further reduced to N2, as in the
conventional case; the pre-factor is much lower, however. Secondly, a large amount of



integrals (µν|p) can be pre-computed and stored in memory. The inverse (p|q)−1 is never
actually calculated; instead, linear equation systems are solved using the Cholesky decom-
position of (p|q) [84]. This very fast O(N3) step is performed once before the iteration
starts and has almost no effect on total computation times for systems that are currently
feasible. Speedups of a factor of 10 and more are achieved for the Coulomb contribution to
the excitation energy compared to conventional methods [85]. This leads to a significant
reduction of total timings for large systems, where the exchange-correlation part becomes
less important due to its favorable O(N) scaling.

Auxiliary basis sets developed for ground state calculations [77, 86–90] are sufficient for
most TDDFT applications, although in some cases additional diffuse basis functions must
be included. For excitation energies RI-J errors of less than 0.005 eV are observed for
valence excitations, whereas for Rydberg excitations somewhat greater deviations up to
0.05 eV are found. These deviations are usually much smaller than both errors due to the
incompleteness of the one-particle basis set and due to the use of approximate functionals,
compare Secs. 3.3 and 4).

TDDFT implementations using fitting basis sets are available, e.g., in the deMon [91],
Turbomole [85], and PARAGAUSS [22, 92] program packages which make use of Gaus-
sian auxiliary basis functions. Basis sets of Slater-type (STO) are employed in the ADF
[67, 93, 94] program. Some of these implementations use other norms for the auxiliary
expansion, e.g., the overlap norm, or norms based on the exchange-correlation kernel fxc

or the full TDDFT response kernel instead of the Coulomb interaction [22]. A similar
resolution of the identity approach has been developed for non-local HF exchange [87].
This RI-JK approach can be useful for TDDFT calculations with hybrid functionals [95],
but is more demanding and requires larger auxiliary basis sets than the RI-J method.
Typical speedups are in the range of 2− 4 compared to the full calculation of four-center
integrals.

Analytical gradient calculations for excited states can take advantage of the RI-J ap-
proximation as well [96]. RI-J may be used in the determination of excitation energies
and transition vectors (X ± Y ) and in the iterative solution of the Z vector equation
(24). The calculation of excited state gradients can be carried out along the same lines
as for ground state gradients. The total computational effort for excited state optimiza-
tions is reduced by at least a factor of 4-6 by the RI-J approximation. This allows to
perform excited state optimizations on medium-size and large molecules with more than
100 atoms. RI-J errors in optimized bond lengths and angles amount to less then 0.5 pm
and 1 degree, respectively. For adiabatic excitation energies, RI-J errors of 0.01-0.02 eV
are found.

3.2.2. The Tamm-Dancoff-approximation (TDA)
The TDA amounts to constraining Y ≡ 0 in the variation of L. As a result, the TDKS

EVP reduces to the symmetric-positive EVP

AXTDA = ΩTDAXTDA. (37)

For TDHF, the TDA is equivalent to the configuration interaction singles (CIS) method,
where the excited states are determined by diagonalizing the singles part of the stationary
Hamiltonian. The TDA was introduced to TDDFT by Grimme [97], who used additional



empirical parameters to correct some of the systematic errors; the above form (37) is due
to Hirata and Head-Gordon [98].

A frequently used motivation for the TDA is its apparent computational advantage
due to the reduction of dimensionality. This argument overlooks that, in an integral
direct algorithm, the cost for computing a matrix-vector-product AX is approximately
the same as the cost for computing the two matrix-vector-products (A + B)(X + Y ) and
(A−B)(X−Y ). This is due to the lack of symmetry of the AO-transformed vector Xµνσ,
which is neither symmetric nor skew-symmetric. In fact, in an integral-driven algorithm,
where only non-redundant integrals (µν|κλ) are calculated in the innermost loop, AX has
to be computed according to [65]

AX =
1

2
[(A + B)X + (A−B)X]; (38)

this involves approximately the same operation count as the simultaneous formation of
(A + B)(X + Y ) and (A − B)(X − Y ). The vector-vector operations performed in the
MO basis are much less expensive and affect total CPU timings only marginally.

A positive aspect of the TDA is its improved stability. It is well known that closed-
shell HF solutions may be unstable with respect to a spin-symmetry breaking [99]. The
resulting instabilities lead to negative or imaginary excitation energies and a breakdown
of the response formalism in its usual form. Triplet instabilities are a common limitation
in TDHF theory, especially at geometries that differ significantly from the ground-state
minimum. The KS reference is generally less susceptible to instabilities [100]; nevertheless,
there is still a tendency to underestimate triplet excitation energies. The TDA alleviates
this problem, because the variational constraint leads to systematically higher excitation
energies.

Transition moments are somewhat ill-defined in the TDA because of its lack of gauge
invariance. For example, the length and velocity forms of the transition dipole moment
may differ even in the basis set limit. Furthermore, the TDA does not satisfy the usual
sum rules. These problems do not affect singlet-triplet excitations, where the transition
moments vanish due to spin symmetry.

3.2.3. Other approximations
Many approximations commonly made in ground state calculations are easily carried

over to TDDFT. Examples are the frozen core approximation or the use of effective
core potentials. We also mention semi-empirical approximations such as tight-binding
DFT [101] here. The single-pole approximation [23, 102] is mainly used in physics and
corresponds to first-order perturbation theory for the excitation energies starting from
the KS orbital energy differences as zeroth order. It is often appropriate in small systems
but breaks down in situations where excited states are nearly degenerate and strong
configuration mixing occurs.

3.2.4. Solvent effects
Electronic absorption and CD spectra usually exhibit a marked solvent dependence.

A common approach to include these effects in quantum chemical calculations is based
on classical electrostatic solvent models, e.g., the polarizable continuum model (PCM)
[103] or COSMO [104]. In these models, the solvent is approximated by a polarizable



continuum, while the solute molecule is placed in a cavity, whose dielectric constant is
set to one. The presence of the solvent leads to an additional external potential which
depends itself on the charge density of the electrons.

An extension of the PCM to TDDFT vertical excitation energies has been reported by
Cossi and Barone [105]. The computed solvent shifts were found to be fairly accurate in
benchmark applications to small molecules [106]. Solvent effects on excited state geome-
tries have been studied in an approximate TDDFT framework by Tomasi and coworkers
[107]. A hybrid Car-Parrinello quantum mechanical/molecular mechanical (QM/MM)
approach which includes the solvent explicitly has recently been applied to the ground
and first excited singlet state of acetone in water [108].

3.3. Basis set effects

Flexible Gaussian basis sets developed for ground states are usually well suited for low-
lying valence excited states. Split valence basis sets with polarization functions on all non-
hydrogen atoms such as 6-31G* [109] or SV(P) [110] are useful in exploratory calculations
or larger applications. These basis sets systematically overestimate excitation energies
by several tenths of an eV, and transition moments are qualitative only. Exceptions
are larger planar systems, where transitions in the molecular plane can be accurate in
small basis sets already. For states with Rydberg character and higher excitations, diffuse
augmentation is necessary. Usually one adds atom-centered or molecule-centered primitive
Gaussians whose exponents are determined by downward extrapolation or by optimization
for atomic anions [111]. In general, diffuse functions should be used sparingly, to avoid
imbalance and unnecessary computational cost. Continuum excitations show poor or no
basis set convergence [52] and require special techniques. The KS ionization threshold
should therefore always be checked in TDDFT excited state calculations. The basis set
dependence of excited state structures, dipole moments, and force constant parallels that
observed in ground states [74]; for example, C–C bonds lengths are usually overestimated
by ca. 1 pm in split-valence basis sets. For most applications, triple zeta valence basis
sets with two sets of polarization functions, i.e., 2d1f for first-row elements, yield basis
set errors well below the systematic errors of current functionals. Examples of triple zeta
valence basis sets are the segmented contracted TZVPP [112], or Dunning’s cc-pVTZ
[113], which uses generalized contractions. Larger basis sets are necessary for benchmark
and basis set convergence studies. For DFT total energies, basis set convergence within
“chemical accuracy” is reached at the quadruple zeta valence level [114].

3.4. Examples

A number of commercial quantum chemistry programs support the calculation of TD-
DFT vertical excitation energies, e.g., ADF [115], CADPAC [116], deMon [91], Gaussian
[117], Q-Chem [118], PARAGAUSS [22], and Turbomole [119]. The demonstrative CPU
timings in Table 2 are from Ref. [74] and were obtained using Turbomole V5-4. The
RI-J method was employed for the cases denoted “RI-TDDFT”; no other approximations
were made.

The examples in Table 2 show that TDDFT calculations are practicable for systems
with several hundreds of atoms and several thousands of basis functions, even on low-end
personal computers. TDDFT is thus becoming a challenge for semi-empirical methods,
which have almost exclusively been used for applications of this size.



Table 2
CPU timings (hours) for the calculation of excitation and CD spectra. p is the number
of (symmetry allowed) excitations including degeneracy, NBF is the number of Cartesian
basis functions. The computer platforms (P) include a 1.2 GHz Athlon PC (A) and a
440 MHz HP J5000 (B) workstation (both single processor).

System Sym. Method Basis/Grid NBF p CPU P
Tris(alanine)-CoIII C3 B3LYP SVP/m3 386 100 12:04 B
Cu-phthalocyaninea D4h B3LYP SVP/4 706 90 40:24 B
Tetrathia-[7]helicene C2 B3LYP SVP(s)/3 482 50 30:13 B
Fullerene C540 Ih BP/RI SVP/m5 8100 3 19:17 B
“Cd10Se16”

b T BP/RI SV(P)/m3 2804 300 128:04 A
Vancomycin C1 BP/RI SV(P)c/m3 1294 100 46:08 B
Methylcobalamine C1 BP/RI SV(P)d/m3 1600 100 62:18 A

aOpen shell
bCd10Se4(SePh)12(P

nPr3)4
cOptimized SZ basis sets on all weakly polarized alkyl und phenyl moieties
dLarger TZVDP+f basis set for cobalt
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Fig. 1. CPU time for computing a single-point excited state energy plus gradient with and
without the RI-J approximation as a function of the number of thiophene rings n. We used the
BP86 functional and a TZVPP basis set. The calculations were performed on a 1.2 GHz Athlon
PC.



The geometry optimization of the 21A state of chlorophyll a may serve as an example
for the efficiency of the RI-J approximation, as implemented in Turbomole. The BP86
functional and a SV(P) basis set were used, leading to a total of 1114 Cartesian basis
functions. The overall calculation took 13 geometry cycles starting from the optimized
ground state geometry and required 29:57 h of CPU time on a 2.4 GHz Pentium IV PC.

Fig. 3.4 displays the scaling of computational cost for single-point excited state gradient
calculations with and without the RI-J approximation. We consider α, α′-oligothiophenes
with increasing chain length. Both methods show the expected N2 scaling, but with
different pre-factors. For the larger members of the series, the RI-J approximation leads
to a reduction in total computation times of a factor of 4-6.

4. VALIDATION

4.1. Vertical excitation and CD spectra

Semi-local functionals predict low-lying valence excitation energies with errors in the
range of 0.4 eV [69, 91, 98, 120–127]. There is a systematic underestimation [69] which
may be due to the missing integer derivative discontinuity [128]. This underestimation is
larger for singlet-triplet excitations [129, 130]. Hybrid functionals yield smaller but less
systematic errors, at somewhat higher cost. Contemporary TDDFT methods certainly
cannot claim “chemical accuracy” (errors ≤ 0.05 eV), but they are often accurate enough
to make useful predictions. Calibration with accurate experimental or theoretical results
for small systems is always recommendable. The domain of TDDFT are larger systems,
where experimental inaccuracies may be comparable to the systematic errors of TDDFT,
and correlated ab initio methods are (still) too expensive. With errors of 1-2 eV and
more, traditional CIS and TDHF methods are considerably less accurate than TDDFT,
despite similar or higher computational requirements.

There are situations where semi-local functional tend to produce much larger errors,
though. Lower-lying diffuse states are often too low in energy, and higher Rydberg states
are spuriously unbound [52, 131]. Similarly, the excitation energies of charge transfer (CT)
and ionic states may be considerably underestimated [128, 132, 133]. In conjugated aro-
matic compounds [134] and polymers [135], the error in CT excitation energies increases
with the chain length, and excitons may be erroneously unbound [136].

These failures may partly be traced to the self-interaction problem of semi-local func-
tionals which has been known for a long time [137]. The classical Coulomb energy contains
self-interaction which semi-local functionals do not cancel properly in strongly inhomo-
geneous systems. As a result, an electron “sees” the effective charge of N rather than
N − 1 other electrons in the asymptotic tail of the density. The asymptotic correction
schemes mentioned in Sec. 2.3.4 partly remedy this problem by imposing the correct
−1/r-behavior on the exchange-correlation potential. They do not improve the descrip-
tion of CT states, however. Correction schemes have been devised to estimate the missing
derivative discontinuity in CT excitation energies from ∆ SCF calculations [132, 133]. At
present, these approaches are mainly of diagnostic value because they depend on assump-
tions such as complete charge separation that may not be satisfied in many situations.

The EXX methodology offers a more fundamental solution to the self-interaction prob-
lem. EXX potentials are self-interaction free and lead to a correct description of diffuse



states [138–140], and optical properties of conjugated polymers are improved [141]. Effi-
cient methods to generate exact [44, 45] or approximate [46–48] EXX potentials for molec-
ular systems are available. So far, they have been combined with adiabatic LSDA or GGA
kernels; the EXX kernel is frequency-dependent and applications have been reported for
solids only [49].

The dilemma of the EXX method is that, although it solves the Coulomb self-interaction
problem, it does not improve consistently upon semi-local functionals for all systems and
properties. For example, excitation energies of valence excited states are not better or even
worse [138, 140]. Unfortunately, the error cancellation between approximate exchange and
correlation in semi-local functionals is lost when exact exchange is combined with semi-
local correlation functionals. Hybrid functionals compromise between these extremes by
using only a fraction of exact exchange. While this is not a general solution, it works
often surprisingly well even for CT [142] and diffuse [143] states. In the long term, the
development of correlation functionals compatible with exact exchange remains desirable.

Oscillator strengths of well-separated states are usually predicted with errors in the
10% range [125]. They can be qualitatively wrong for strongly coupled states (as in most
other methods). As the excitation energy approaches the KS ionization threshold, i.e.,
the negative HOMO energy, the density of states increases and a reliable assignment of
individual transitions becomes impossible. This can be a major limitation in applica-
tions, especially to smaller systems and negative anions, because GGA potentials are too
repulsive which results in too few bound states, as explained above. In other cases, one
finds spurious intruder states which “steal” intensity from adjacent transitions of the same
symmetry [144]. Nevertheless, apart form the technical difficulties associated with con-
tinuum states, the overall shape of the computed spectra is often accurate [145]. This is
also true if states with strong double excitation character are involved [30]. Pure double
excitations are entirely missing in the TDDFT spectra [129], as a consequence of the AA.

Trends observed for calculated rotatory strengths are generally similar to those ob-
served for oscillator strengths [73, 146]. Rotatory strengths of individual transitions may
even have the wrong sign; but the overall CD spectra are often fairly accurate. The
use of gauge origin invariant London orbitals does not seem to be necessary [147]. The
simulation of CD spectra by TDDFT calculations is becoming increasingly popular as
an inexpensive method to determine the absolute configuration; additional information is
provided by optical rotations which can be calculated as well [148–151]. TDDFT works
for inherently chiral chromophores [152] and transition metal complexes [153, 154], but
has problems with weakly disturbed, inherently achiral chromophores and systems with
Rydberg-valence mixing [155].

4.2. Excited state properties

As analytical gradients of the excited state energy have become available only recently
[17, 156–158], the literature on excited state properties obtained with TDDFT is still
limited. A comparison with accurate spectroscopic data for small systems shows that
TDDFT excited state structures, dipole moments, and vibrational frequencies are of sim-
ilar accuracy as the corresponding DFT ground state properties [17]. Case studies for
other systems [159, 160] and correlated ab initio results [161] corroborate this finding,
which is somewhat unexpected in view of the relatively large errors in the excitation en-



ergies. Obviously, properties such as structures or dipole moments are less sensitive to
deficiencies of current exchange-correlation functionals, e.g., self-interaction. The tradi-
tional CIS method, which has almost exclusively been used for geometry optimization
of excited states in larger systems, is considerably less accurate at similar or even larger
computational cost.

Another significant advantage of TDDFT over HF-based methods for excited states is
the enhanced stability of the KS reference compared to the HF reference, as discussed in
Sec. 3.2.2. As a result, even excited state minima distant form the ground state minimum
are mostly reasonable with TDDFT. Adiabatic excitation energies thus show basically the
same error pattern as vertical excitation energies.

Excited state vibrational frequencies can be used to identify the structure of excited
states by comparison with, e.g., time-dependent infrared (TIR) or time-dependent reso-
nance Raman (TRR) spectra from pump-probe experiments [162]. This is a promising
combination, because TDDFT is applicable to fairly large systems and the information
contained in the experimental spectra is difficult to interpret. In addition, the vibronic
fine structure of UV spectra can be simulated within the Franck-Condon and Herzberg-
Teller approximations. Applications to aromatic hydrocarbons show a very encouraging
agreement with experiments [163].

4.3. Excited state dynamics

Early work by Casida [164] and Domcke and coworkers [165] indicated that TDDFT can
provide qualitatively correct excited state reaction paths. The validation is difficult and
has to rely almost exclusively on accurate ab initio results. For the conical intersection
in the retinal model Z-penta-2,4-dieniminium, TDDFT and CASPT2 (complete active
space self-consistent field plus second order perturbation theory) single-point results are
in agreement, while deviations have been reported for other systems [166]. A limitation
most studies is that the calculated reaction paths do not correspond to minimum energy
paths (MEPs), i.e., the internal degrees of freedom other than the reaction coordinate
are not relaxed. The first full MEP calculations using TDDFT have been performed
only recently [162]. For an adequate treatment of conical intersections and excited state
dynamics, non-adiabatic coupling needs to be taken into account [167, 168]. It seems
unlikely that present functionals are accurate enough for predicting, e.g., barrier heights,
but definite conclusions will have to await further studies.

5. APPLICATIONS

5.1. Aromatic compounds and fullerenes

Aromatic compounds are among the most frequently investigated molecules in TDDFT
studies. Several papers on singlet and triplet excitation energies of condensed polycyclic
aromatic hydrocarbons (PAHs) [92, 169–172] have appeared. In a recent study Grimme
and Parac [134] have pointed out that the energy of the ionic La states [173] is significantly
underestimated by common functionals. PAHs and their cations have also attracted
interest due to their proposed occurrence the dark interstellar matter [127, 174–177].

Chiroptical properties of a series of helicenes have been investigated in a joint ex-
perimental and theoretical study [73]. The simulated CD spectra are accurate enough
to assign the absolute configuration and can even be used to distinguish derivatives with



substituents coupling to the aromatic π system. CD spectra calculated with the DFT/SCI
method have been used by Grimme and co-workers for structure elucidation of paracy-
clophanes [178]. Recently, the absolute configuration of enantiopure 9,9’-biathryls could
be assigned by means of CD calculations [179].

For small aromatic heterocycles accurate excited state calculations with correlated ab
initio methods are available. TDDFT studies focus on solvation effects [180, 181], excited
state dynamics [182–185], and larger systems [186–191]. Moreover, TDDFT calculations
complement experimental investigations of newly synthesized ring systems like tetrathi-
afulvalene [192, 193] and trithiapentalene [194]. Other recent TDDFT studies deal with
indole derivatives related to tryptophane metabolism and melanin formation [195, 196].
Laaksonen an co-workers [197] have investigated photochemical properties of urocanic
acid, a human skin chromophore which plays a role in photo-immunosuppression and skin
cancer. Mechanisms of photoisomerization of prototypical molecular switches azobenzene
[198, 199] and stilbene [200, 201] have been the subject of other studies. Finally, the bi-
ological activity of the naturally occurring heterocycles luciferin [202] and flavins [203]
has been investigated with TDDFT. Luciferin is responsible for the bioluminescence of
fireflies, while flavins play a role in hydrogen transfer in cells.

So far, the only practicable route to prepare pure fullerenes is based on soot extraction.
Because of the extremely small yields, electronic absorption spectroscopy is, besides NMR
measurements, the most important method for the characterization of fullerenes. Apart
from a uniform red-shift, TDDFT using GGA functionals predicts the absorption spectra
of large gap fullerenes with surprising accuracy [204]. Small gap fullerenes are highly
reactive and can presently only be studied theoretically. For example, of the seven isomers
of C80 obeying the isolated pentagon rule, only three have a large gap, and two of those
have been observed [205]. Other studies focus on functionalized and substituted fullerenes
[206, 207], carbon nanotubes [208] and sheets [209, 210]. Lower symmetric larger fullerenes
frequently exhibit inherent chirality. In contrast to semi-empirical methods, TDDFT is
well suited to determine the absolute configuration of chiral fullerenes, as has been shown
for D2-C84 [152] as well as C76 and C78 isomers [74]. TDDFT calculations on C−

84 have
been used to assign the photoelectron spectrum of stable C84 dianions [211].

5.2. Porphyrins and related compounds

Porphyrins, phthalocyanines, porphyrazines, and similar heterocyclic systems show a
variety of optical and photochemical properties that are of interest from a biochemical
as well as a technological point of view. The first rationale of the characteristic features
observed in the absorption spectra of porphyrins was given by Gouterman [212, 213] in
1961. It is based on a simple perimeter model for [18]-annulene, the basic building unit of
porphyrins. In Gouterman’s scheme two energetically close pairs of orbitals, the two high-
est occupied molecular orbitals (HOMO and HOMO-1) and the two lowest virtual MOs
(LUMO and LUMO+1), are involved in the lowest singlet transitions and are responsible
for the so-called Q- and B-bands of porphyrins.

For the free base porphin, the weaker pair of Q-bands (Qx and Qy) is found in the
visible region whereas the substantially more intensive B-band (Soret band) is located in
the near UV, see Fig. 5.2. The Qx and Qy bands were ascribed to the HOMO → LUMO
transition and the antisymmetric combination of HOMO → LUMO+1 and HOMO-1
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Fig. 2. The absorption spectrum of free base porphin. The experimental spectrum is from Ref.
[214]. Calculated BP86/aug-SVP oscillator strengths [215] are indicated by sticks.

→ LUMO transitions, respectively. The symmetric combination of the latter two was
considered as the origin of the Soret band. Porphyrin derivatives and analogues exhibit
characteristic energy shifts and intensity patterns in the same energy range. The first
TDDFT results on free base porphin were reported by Bauernschmitt and Ahlrichs [69]
and later confirmed by Scuseria and co-workers [66]. Subsequent studies by van Gisbergen,
Baerends and co-workers and by Sundholm addressed the validation of the four-orbital
model of Gouterman for the free base porphin and the assignment of its UV/VIS spectrum
[215–218]. Investigations by Parusel and co-workers employed the DFT/SCI [219] and
DFT/MRCI methods [220] for the same purpose.

While a correspondence to the Gouterman model can be established for the Q bands,
the origin of the intense B band is still under discussion. It appears that lower occu-
pied orbitals are significantly involved in these transitions [215, 217], and a non-negligible
contribution from double excitations is suggested from DFT/MRCI results [220]; thus,
the simple four-orbital model does not hold. A similar picture emerges for porphyrazine
[217, 221], corrphycene [222] and corrin [223] molecules where Gouterman’s model provides
a rough description of low-lying electronic transitions. Positions of electronic excitations
in porphyrins are further strongly affected by conformational flexibility of the macrocy-
cle, deviations from planarity leading to red shifts of Q- and B-bands. The suggestion
that nonplanarity of hemes in hemoproteins and photosynthetic proteins may influence
their biological activity [224] stimulated much research on saddled and ruffled forms on
porphyrins. Porphyrin diacids [225, 226] and complexes bearing aromatic substituents



[227–230] have been investigated as well.
Porphyrinoid systems have a tendency to form chelate complexes with various metal

cations. Two large groups of complexes can be distinguished by their spectral behavior,
denoted regular and irregular porphyrins by Gouterman [213]. Main group and closed-
shell transition metal cations form regular complexes that largely resemble the parent
macrocycles because the contribution of the metal to the frontier orbitals is small. This
was shown by Nguyen, Baerends, and co-workers for ZnII [231–235] and by Sundholm for
MgII complexes [236]. In irregular metal complexes incomplete d-shells of transition metal
cations interact strongly with the π-system of the ligand; substantially different optical
properties [237–243] result. The most important representatives of this class are iron and
cobalt complexes which are closely related to heme [244, 245] and vitamin B12 [246, 247].

5.3. Transition metal compounds

For calculations of optical properties of transition metal complexes, TDDFT is often the
method of choice. In most cases the accuracy of TDDFT is sufficient for an assignment
of excitations in closed-shell oxide, carbonyl and cyclopentadienyl complexes [121, 248–
250]; hybrid functionals do not always lead to an improvement for these systems. Ligand
field d to d transitions appear at too high energies as a result of self-interaction error,
as Autschbach and co-workers have shown for CoIII and RhIII complexes [154]. Difficul-
ties are encountered for small open-shell molecules such as ScO or VO [251, 252]. The
diversity of photophysical and photochemical properties of transition metal complexes is
reflected in TDDFT investigations on this class of compounds. Possible applications in
photocatalysis and solar energy conversion have triggered research on complexes of copper
[253, 254], chromium [255], ruthenium [256, 257], paladium [258], platinum [259] and rhe-
nium [260] with aromatic heterocyclic ligands as 9,10-phenantroline (phen), α, α′-bipyridyl
(bipy) or dipyrido[3,2-a:2’,3’-c]phenazine (dppz). Dissociation and rearrangement dy-
namics upon photoexcitation has been discussed in connection with [Fe(CN)5(NO)]2−

[261, 262], [Cr(CO)5L] and [Fe(CO)4L] [263], as well as on [Ru(PH3)3(CO)(H2)] complexes
[264]. The catalytical activity of titanium complexes for polymerization and oxidation re-
actions has motivated several studies on titanocenes [265, 266] and alkoxy complexes [267].
Optical properties and bond dissociation of alkylplatinum complexes are the subject of
a recent study by van Slageren and co-workers [268]. TDDFT calculations for neutral
dithiolene complexes of nickel, palladium, and platinum have explained the uncommon
properties of these compounds, especially the presence of an exceedingly strong absorp-
tion in the near IR region [269]. Other studies investigate the photophysics and the
luminescence behavior of cyclometalated complexes of rhodium [270] and iridium [271].

5.4. Metal and semiconductor clusters

Metal clusters differ substantially in their properties from the bulk phase [272, 273] and
have received much attention in connection with possible applications in nanotechnology
and heterogenous catalysis. Experimental structure determination is a difficult task even
for small clusters, and theoretical results are particularly helpful. Flexible structures, a
large number of competing minima, and low-lying excited states are difficult challenges
for all electronic structure methods. Most theoretical work therefore address the most
simple class of metal cluster compounds, alkali metal clusters, for which reliable experi-
mental data as well as accurate quantum chemical calculations [273, 274] exist. TDDFT



applications on alkali metal clusters range from simple jellium [275–279] to full TDDFT
calculations employing GGA functionals [280–282]. Comparison with available experi-
mental data indicates a good accuracy of TDDFT results with typical errors of 0.1-0.2
eV or less in excitation energies [283–285]. For the dimers Li2, Na2 and K2, experimen-
tal vertical excitation energies are overestimated by TDDFT [281], in contrast to the
usual behavior of the method. Photoabsorption spectra are reproduced satisfactorily as
well [285–287]; finite temperature effects have been investigated by molecular dynamics
simulations [288, 289]. Similar studies have been performed for Al clusters [290, 291].

Coinage metal (Cu, Ag, Au) clusters are more complicated due to the presence of
rather polarizable d-electrons. Very little direct structural information is available from
experiment. Of particular interest is the transition from the planar structures that are
the most stable isomers for small clusters to bulk-like three-dimensional aggregates [292].
While the simple jellium model does not perform very well in this case, the polarizable
cluster core approximation [293–295] or full TDDFT calculations [296–298] provide better
results for photoabsorption spectra. Nevertheless, transitions with s → d character are
notoriously in error, which is a consequence of self-interaction [137]. In summary, TDDFT
absorption spectra can give useful hints, but are presently not accurate enough for a
unique determination of the geometric structure of most metal clusters.

The band gap of semiconductor clusters can be altered over a wide range by varying
the particle size; this makes them suitable materials for optoelectronic devices [299].
Recent TDDFT investigations have addressed optical properties of silicon [283, 287, 300–
305], gallium arsenide [287], as well as zinc sulfide, cadmium selenide, and related 12-16
clusters [306–311]. Most studies focus on the size dependence of the optical gap. With
increasing cluster size the band gap is reduced as a result of quantum confinement, e.g.
for hydrogenated Si clusters from 3.8 eV for Si47H107 to 2.5 eV for Si147H247 [300]. Another
important factor is the constitution of the cluster surface, with abstraction of hydrogen or
oxidation leading to a substantial decrease of the absorption edge [299]. The definition of
the optical gap is not straightforward, however, since the lowest electronic transitions are
very weakly allowed in large clusters. Within these limitations both LSDA and gradient
corrected functionals yield results in good agreement with experimental data.

5.5. Organic polymers

Two different theoretical approaches have been used for polymers: solid state meth-
ods employing periodical boundary conditions, and oligomer methods considering discrete
fragments of increasing size. For calculations of excitation energies of organic polymers,
the latter seems to be more widespread, although a LCAO-crystalline orbital implementa-
tion of excitation energies of extended systems has been reported [312, 313]. For oligomer
methods, the convergence of the calculated properties to the bulk limit and the quality of
extrapolated properties are of primary interest. Several papers by Ratner, Zojer, and co-
workers summarize computational results on different classes of polymers [314, 315], e.g.,
polyenes, polythiophenes, and polyphenylenes. From these results, the authors concluded
[316] that extrapolation techniques are capable of providing correct band gaps for the
polymers. However, empirical extrapolations with respect to 1/n, where n is the number
of monomer units, may show significant systematic errors. Cai and co-workers [135] note
a tendency to spurious metallic behavior and wrong ground state multiplicities in large



conjugated π-systems. For polyenes the relative stability of 11Bu and 21Ag states (in
C2h symmetry), which is of importance for carotenoids of the light harvesting complex,
has been extensively discussed [166, 317–319]. Polythiophene [320–326] and polypyrrole
[327, 328] polymers are important industrial materials for optoelectronic devices such as
light emitting diodes (LEDs) have been the subject of numerous TDDFT studies.

5.6. Charge and proton transfer

The geometric and electronic structure of a molecule can significantly change upon
photoexcitation. Transfer of charge or protons are among the most simple photochemical
reactions, and excitation energy transfer plays a fundamental role for the photosynthesis.
In work of Parusel, Grimme, and others, intramolecular charge transfer (ICT) in donor-
acceptor substituted aromatic systems was investigated by TDDFT [329], DFT/SCI [330,
331], and DFT/MRCI [332–334] methods (see Ref. [329] for an overview). Most of
the studies addressed 4-(N,N)-dimethylaminobenzonitrile (DMABN), a prototypical dual
fluorescent compound showing a strong emission from the ICT state in polar solutions.
In extensive studies by Jamorski and co-workers [142, 335–337], the accuracy of TDDFT
for exploration of intramolecular charge transfer phenomena has been assessed, and a
classification for the emission properties of these compounds was presented [338, 339].
A definite assignment of the structure of the two lowest singlet states has recently been
given by means of TDDFT calculations [162] and confirmed by coupled cluster calculations
[340]. Further investigations have dealt with solvent effects and photophysical properties
of donor-substituted pyridine derivatives [341, 342].

Excited state proton transfer phenomena have been the subject of a number of TDDFT
studies. So far, excited state proton transfer in salicylic acid and related aromatic com-
pounds [165, 343–346] as well as in 7-azonindole-water complexes [347] has been investi-
gated.

5.7. Biologically relevant systems

Most molecules of biological relevance are a challenge due to their size. Calculations
of optical properties of chlorophylls and bacteriochlorophylls by Sundholm [144, 236, 348,
349] and Yamaguchi [350, 351] showed that good accuracy can be achieved with the BP86
and B3LYP functionals. Different aspects of the interaction between chlorophyll molecules
and carotenoids and of the dynamics in the photosynthetic apparatus have been exten-
sively studied by Dreuw, Fleming and co-workers [317, 352–354]. Pullerits and co-workers
have investigated the dependence of excitation energies of bacteriochlorphyll on the lo-
cal environment represented by a uniform electric field [355]. The dissociation dynamics
of CO-hemoglobin complexes has recently been studied by Head-Gordon and co-workers
[244, 245] who showed that excitation into the 51A′′ and the 31A′ states of the complex
leads to repulsive interaction and dissociation of the CO molecule.

Photochemistry of nucleic acid bases is relevant for an understanding of DNA damage by
UV irradiation and cellular repair mechanisms. Absorption spectra, tautomeric equilibria,
and excited state geometries of adenine [356] and cytosine [357] have been reported.
A comprehensive study on absorption properties of DNA bases has appeared recently
[358]. The thermochemistry of thymine dimer formation and photoinduced cycloreversion
reactions occuring in DNA repair mechanisms have been investigated by Durbeej and
Eriksson [359, 360]. TDDFT calculations on complexes of thymine with psoralene have



been performed to clarify the effect of psoralenes which are utilized in photochemotherapy
[361].

TDDFT calculations allow to go beyond model compounds and investigate larger frag-
ments of biological systems like the photoactive centers of green fluorescent protein [362]
or photoactive yellow protein [363]. Future improvements of TDDFT such as a better
description of solvation effects or QM/MM coupling may help to provide deeper insight
into photochemical processes in living organisms.

6. OUTLOOK

Many phenomena in photochemistry are still not well understood, even in small model
systems. The enormous complexity of photochemical processes will require a combined
effort of theory and experiment to extend the frontier of our knowledge to real systems of
technical and biological interest. It is clear by now that TDDFT has the potential to play
an important role in this development, besides more accurate methods and experimental
techniques. Nevertheless, contemporary TDDFT is not a black box method, and every
user of commercial TDDFT codes should be aware of its limitations.
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[119] R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett., 162 (1989)
165, current version: see http://www.turbomole.com.

[120] S. Hirata and M. Head-Gordon, Chem. Phys. Lett., 302 (1999) 375 .
[121] S. J. A. van Gisbergen, J. A. Groeneveld, A. Rosa, J. G. Snijders, and E. J. Baerends, J.

Phys. Chem. A, 103 (1999) 6835.
[122] C. Adamo and V. Barone, Theo. Chem. Acc., 105 (2000) 169.
[123] J. Guan, M. E. Casida, and D. R. Salahub, J. Mol. Struct. (THEOCHEM), 527 (2000)

229.
[124] D. Guillaumont and S. Nakamura, Dyes and Pigments, 46 (2000) 85.
[125] N. N. Matsuzawa, A. Ishitani, D. A. Dixon, and T. Uda, J. Phys. Chem. A, 105 (2001)

4953.
[126] M. Parac and S. Grimme, J. Phys. Chem. A, 101 (2002) 6844.
[127] S. Hirata, M. Head-Gordon, J. Szczepanski, and M. Vala, J. Phys. Chem. A, 107 (2003)

4940.
[128] D. J. Tozer, J. Chem. Phys., 119 (2003) 12697.
[129] D. Tozer and N. C. Handy, Phys. Chem. Chem. Phys., 2 (2000) 2117.
[130] M. N. Paddon-Row and M. J. Shephard, J. Phys. Chem. A, 106 (2002) 2935.
[131] A. Wasserman, N. T. Maitra, and K. Burke, Phys. Rev. Lett., 91 (2003) 263001.
[132] M. E. Casida, F. Gutierrez, J. G. Guan, F. X. Gadea, D. R. Salahub, and J. P. Daudey,

J. Chem. Phys., 113 (2000) 7062.
[133] A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys., 119 (2003) 2943.
[134] S. Grimme and M. Parac, ChemPhysChem, 4 (2003) 292.
[135] Z. L. Cai, K. Sendt, and J. R. Reimers, J. Chem. Phys., 117 (2002) 5543.
[136] S. Tretiak, K. Igumenshchev, and V. Chernyak, preprint.
[137] J. P. Perdew and A. Zunger, Phys. Rev. B, 23 (1981) 5048.
[138] S. Hirata, S. Ivanov, I. Grabowski, and R. J. Bartlett, J. Chem. Phys., 116 (2002) 6468.
[139] S. Hamel, M. E. Casida, and D. R. Salahub, J. Chem. Phys., 116 (2002) 8276.
[140] A. G. Della Sala, F, Int. J. Quant. Chem., 91 (2003) 131.
[141] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. Snijders,

B. Champagne, and B. Kirtman, Phys. Rev. Lett., 83 (1999) 694.
[142] C. Jamorski, J. B. Foresman, C. Thilgen, and H. P. Lüthi, J. Chem. Phys., 116 (2002)
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J. Chem. Phys., 113 (2000) 5361.
[297] X. J. Wang, X. H. Wan, H. Zhou, S. Takami, M. Kubo, and A. Miyamoto, J. Mol. Struct.

(THEOCHEM), 579 (2002) 221.
[298] A. Schweizer, J. M. Weber, S. Gilb, H. Schneider, D. Schooß, and M. M. Kappes, J. Chem.

Phys., 119 (2003) 3699.
[299] J. R. Chelikowski, L. Kronik, and I. Vasiliev, J. Phys. Cond. Matt., 15 (2003) R1517.
[300] C. S. Garoufalis and A. D. Z. ans S Grimme, Phys. Rev. Lett., 87 (2001) 276402.
[301] D. Sundholm, Nano Lett., 3 (2003) 847.
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